JPH08306361A - Fuel electrode material for solid electrolyte fuel cell and its manufacture - Google Patents

Fuel electrode material for solid electrolyte fuel cell and its manufacture

Info

Publication number
JPH08306361A
JPH08306361A JP7127375A JP12737595A JPH08306361A JP H08306361 A JPH08306361 A JP H08306361A JP 7127375 A JP7127375 A JP 7127375A JP 12737595 A JP12737595 A JP 12737595A JP H08306361 A JPH08306361 A JP H08306361A
Authority
JP
Japan
Prior art keywords
zirconia
particles
fuel electrode
nickel
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7127375A
Other languages
Japanese (ja)
Inventor
Toshio Abe
俊夫 阿部
Masashi Mori
昌史 森
Hibiki Ito
響 伊藤
Toru Yamamoto
融 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP7127375A priority Critical patent/JPH08306361A/en
Publication of JPH08306361A publication Critical patent/JPH08306361A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE: To provide a fuel electrode material which can stably maintain functions equal to or higher than those of a conventional material for a long duration in the case the material is used as a fuel electrode of a solid electrolytic fuel cell. CONSTITUTION: A fuel electrode material for solid electrolytic fuel cell is composed of a mixture of a group of eight YSZ(yttrium-stabilized zirconia) coarse particles 31 with 20-75μm particle size, a group of eight fine particles 33 with 0.1-1μm particle size, and a group of NiO (which becomes metal NI at the time of operation of a fuel cell) particles 32 with 5-20μm particle size.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は固体電解質燃料電池用燃
料極材料およびその製造方法に関するものである。詳し
く述べると本発明は、固体電解質燃料電池の長寿命化を
図ることのできる燃料極の微細構造の改良に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel electrode material for solid electrolyte fuel cells and a method for producing the same. More specifically, the present invention relates to an improvement in the fine structure of a fuel electrode which can prolong the life of a solid oxide fuel cell.

【0002】[0002]

【従来の技術】固体電解質燃料電池は、大きく分類して
円筒型と平板型との2つの形式がある。例えば、円筒型
固体電解質燃料電池の一例として、縦縞円筒型を図12
に示す。この縦縞円筒型電解質燃料電池は、円筒型の支
持体20の周りに空気極21と固体電解質22と燃料極
23とを同心状に形成し、固体電解質22と燃料極23
を分断するように空気極21上に形成されたインターコ
ネクタ24によって空気極21側の電流が取出されるよ
うになっている。インターコネクタ24と燃料極23と
の間には、燃料極23とインターコネクタ24の電気的
絶縁のため溝25が設けられている。この縦縞円筒型固
体電解質燃料電池においては、空気が支持体20の内側
と通って空気極21に供給される。また、燃料ガスは支
持体20の外側を通って燃料極23に供給される。この
縦縞円筒型固体電解質燃料電池は比較的機械的強度も強
いため、平板型のものより開発が先行しており、現在既
に5kW級のものの発電に成功しており、25kW級の
ものの製作に入っている段階である。
2. Description of the Related Art Solid electrolyte fuel cells are roughly classified into two types, that is, a cylindrical type and a flat type. For example, as an example of a cylindrical solid oxide fuel cell, a vertical stripe cylindrical type is shown in FIG.
Shown in In this vertical stripe cylindrical electrolyte fuel cell, an air electrode 21, a solid electrolyte 22 and a fuel electrode 23 are concentrically formed around a cylindrical support 20 to form a solid electrolyte 22 and a fuel electrode 23.
The current on the side of the air electrode 21 is taken out by the interconnector 24 formed on the air electrode 21 so as to divide it. A groove 25 is provided between the interconnector 24 and the fuel electrode 23 for electrically insulating the fuel electrode 23 and the interconnector 24. In this vertical stripe cylindrical solid oxide fuel cell, air is supplied to the air electrode 21 through the inside of the support 20. Further, the fuel gas is supplied to the fuel electrode 23 through the outside of the support 20. Since this vertical-striped cylindrical solid oxide fuel cell has a relatively high mechanical strength, it has been developed before the flat type, and has already succeeded in generating 5 kW class power, and has begun to manufacture 25 kW class. It is in the stage of being.

【0003】また、平板型固体電解質燃料電池として
は、例えば図13に分解斜視図で一例を示したように、
平板の単電池1とセパレータ4をスペーサ2,3を介し
て交互に積み重ね、単電池1とセパレータ4によって形
成される空気供給用空間5と燃料ガス供給用空間6とに
燃料ガスと空気が燃料電池ガス供給パイプ7と空気供給
パイプ8を介して夫々供給される、さらに、単電池1は
固体電解質9の表面側に空気極10と燃料極11を形成
して成る。この平板型は現在1kW級の発電に成功して
いる。
Further, as a flat plate type solid electrolyte fuel cell, for example, as shown in an exploded perspective view of FIG.
The flat unit cells 1 and the separators 4 are alternately stacked via the spacers 2 and 3, and the fuel gas and the air are fed into the air supply space 5 and the fuel gas supply space 6 formed by the unit cells 1 and the separator 4. The cell 1 is supplied through the cell gas supply pipe 7 and the air supply pipe 8, respectively. Further, the unit cell 1 is formed by forming an air electrode 10 and a fuel electrode 11 on the surface side of the solid electrolyte 9. This flat plate type has succeeded in generating 1 kW class power.

【0004】ところで、これら固体電解質燃料電池の燃
料極材料としては、酸化ニッケル(NiO、但し燃料電
池作動時には金属ニッケルNi)とジルコニア(ZrO
2 )の微粒子を混合して得たニッケル−ジルコニアサー
メットが、高い触媒活性(水素の還元能力)を有し、か
つ室温から1000℃までの高温でも導電率(電気抵抗
の逆数)が高いことから適していると考えられていた。
しかしながら、燃料極中のニッケルの含有量が多いと、
熱膨脹係数の違いから熱応力が発生し、セル破壊につな
がる可能性があり、ニッケルの含有量をあまりふやすこ
とができず、反面、ニッケルの量が少ないと、電極特性
はあまり良くなく、電流を取り出すことが困難になり、
更に、焼結性が高く緻密化しやすいなどの問題があっ
た。そこで、従来、ジルコニアとして8モル%のイット
リアで結晶構造を安定化させたジルコニア(以下8YS
Zと記する。)を用いたものが採用されるようになって
きている。
By the way, as a fuel electrode material of these solid electrolyte fuel cells, nickel oxide (NiO, but metallic nickel Ni when the fuel cell is operating) and zirconia (ZrO) are used.
Since the nickel-zirconia cermet obtained by mixing the fine particles of 2 ) has high catalytic activity (reduction capacity for hydrogen), and has high conductivity (reciprocal of electric resistance) even at high temperatures from room temperature to 1000 ° C. Was considered suitable.
However, if the content of nickel in the fuel electrode is high,
Thermal stress may occur due to the difference in thermal expansion coefficient, which may lead to cell destruction, and the nickel content cannot be increased so much. On the other hand, when the nickel content is low, the electrode characteristics are not so good and the current flow is reduced. It becomes difficult to take it out,
Further, there is a problem that the sinterability is high and the composition is easily densified. Therefore, conventionally, zirconia whose crystal structure has been stabilized with 8 mol% yttria (hereinafter referred to as 8YS
Write Z. ) Has been adopted.

【0005】このように従来の固体電解質燃料電池用燃
料極材料は、細かい粉末のNiOと8YSZを混合して
得たものであった。しかしながら、この燃料極は初期特
性が優れているものの、発電開始後数十時間で劣化し、
発電が不可能な状態になる。この原因を解明したとこ
ろ、電池動作条件下において、燃料極の緻密化と体積収
縮ならびにNi粒子の凝集が原因であることがわかった
(電力中央研究所報告W93019 平成6年5月)。
As described above, the conventional fuel electrode material for a solid electrolyte fuel cell was obtained by mixing fine powders of NiO and 8YSZ. However, although this fuel electrode has excellent initial characteristics, it deteriorates several tens of hours after the start of power generation,
It becomes impossible to generate electricity. As a result of elucidation of the cause, it was found that the cause is the densification and volume contraction of the fuel electrode and the agglomeration of Ni particles under the battery operating conditions (Central Research Institute of Electric Power W93019, May 1994).

【0006】なお、Niの凝集や緻密化については他の
報告もある(電気化学協会第60回大会講演要旨集、第
269頁、平成5年4月1〜3日)。
[0006] There are other reports on the agglomeration and densification of Ni (Abstracts of the 60th Annual Meeting of the Electrochemical Society of Japan, p. 269, April 1-3, 1993).

【0007】さらに、Ni(Mg)O−8YSZを用い
ることによって、Ni粒子の高分散化と燃料極の長寿命
化を図ろうとする報告がある(第33回電池検討会講演
要旨集、第35〜36頁、平成4年9月16〜18日;
電気化学協会第59回大会講演要旨集、第197頁、平
成4年4月2〜4日;電気化学協会第60回大会講演要
旨集、第270頁、平成5年4月1〜3日)。
[0007] Further, there is a report that Ni (Mg) O-8YSZ is used to achieve high dispersion of Ni particles and long life of the fuel electrode (Abstracts of the 33rd Cell Study Meeting, No. 35). ~ P. 36, September 16-18, 1992;
(Proceedings of the 59th Congress of the Electrochemical Society, p. 197, April 2-4, 1992; Proceedings of the 60th Congress of the Electrochemical Society, p. 270, April 1-3, 1993) .

【0008】また粒径の大きいNiに粒径の小さいYS
Zを被覆させて、性能の向上を図ろうとした報告もある
(電気化学協会第59回大会講演要旨集、第198頁、
平成4年4月2〜4日)。
In addition, Ni having a large grain size has YS having a small grain size.
There is also a report of coating Z to improve the performance (Abstracts of the 59th Conference of the Electrochemical Society of Japan, p. 198,
April 2-4, 1992).

【0009】さらに金属ルテニウムにYSZを電気化学
蒸着した材料(第18回固体イオニクス討論会講演要旨
集、第5〜8頁、1992年10月12〜13日)や、
金属Niに気相法にてYSZを付着させた材料(電気化
学協会第59回大会講演要旨集、第199頁、平成4年
4月2〜4日)についても検討されている。
Further, a material obtained by electrochemically depositing YSZ on ruthenium metal (Abstracts of the 18th Solid Ionics Conference, pages 5-8, October 12-13, 1992),
A material in which YSZ is attached to metallic Ni by a vapor phase method (Abstracts of the 59th Annual Meeting of the Electrochemical Society of Japan, p. 199, April 2 to 4, 1992) is also being studied.

【0010】しかしながら、上記したような各種の報告
は主に発電性能の向上を図ろうとするものであり、長持
間の作動データに乏しいものであった。さらにYSZを
化学蒸着するあるいは気相法にて付着させる製法は、コ
スト的に高くなると考えられている(電力中央研究所報
告 W92028 平成5年3月)。
However, the various reports described above are mainly intended to improve the power generation performance, and the operation data for a long period of time has been scarce. Furthermore, the production method of chemical vapor deposition or vapor deposition of YSZ is considered to be costly (W Central Research Institute of Electric Power, W92028, March 1993).

【0011】[0011]

【発明が解決しようとする課題】このように上記従来技
術は、特に燃料極の性能の向上を目的とするものであ
り、長持間作動時の劣化についての検討が不十分である
とともに、製造コストに直接影響する製造工程に関する
配慮がなされておらず、製造工程の複雑さから製造コス
トが高価なものになるものであった。
As described above, the above-mentioned prior art is aimed at improving the performance of the fuel electrode in particular, and the study on deterioration during long-term operation is insufficient, and the manufacturing cost is low. No consideration was given to the manufacturing process that directly affects the manufacturing cost, and the manufacturing cost was high due to the complexity of the manufacturing process.

【0012】従って本発明は、最適なミクロ構造を有す
る固体電解質燃料用電池用燃料極材料を、簡便な製造技
術を用いて、低コストに大量生産できる製造方法を開発
し、さらに固体電解質燃料電池の燃料極に用いた場合に
おいて、従来の材料と同等以上の性能を、長持間安定し
て維持することのできる燃料極材料を提供することを目
的とする。
Therefore, the present invention has developed a manufacturing method capable of mass-producing a fuel electrode material for a solid electrolyte fuel cell having an optimum microstructure at a low cost by using a simple manufacturing technique, and further, a solid electrolyte fuel cell. It is an object of the present invention to provide a fuel electrode material which, when used in the fuel electrode of (1), is capable of maintaining a performance equal to or higher than that of a conventional material stably for a long time.

【0013】[0013]

【課題を解決するための手段】かかる目的を達成するた
め、本発明は、ニッケル−ジルコニア系固体電解質燃料
電池用燃料極材料において、比較的大きな粒径を有する
ジルコニア粗粒子群と、比較的小さな粒径を有するジル
コニア微粒子群と、酸化ニッケルないしニッケル粒子群
との混合物からなり、前記各粒子群の粒径がジルコニア
粗粒子>ニッケルないし酸化ニッケル粒子>ジルコニア
微粒子の関係を満たすようにしている。
In order to achieve the above object, the present invention provides a zirconia coarse particle group having a relatively large particle size and a relatively small particle size in a nickel-zirconia solid electrolyte fuel cell fuel electrode material. It is composed of a mixture of a zirconia fine particle group having a particle size and nickel oxide or a nickel particle group, and the particle size of each particle group satisfies the relationship of zirconia coarse particles> nickel or nickel oxide particles> zirconia fine particles.

【0014】前記ジルコニアとしては、安定化ジルコニ
ア、特に8モル%のイットリアで安定化させたジルコニ
ア(8YSZ)が好ましい。
The zirconia is preferably stabilized zirconia, particularly zirconia (8YSZ) stabilized with 8 mol% of yttria.

【0015】また前記各粒子の具体的な粒径としては、
ジルコニア粗粒子の粒径が20〜75μm、ジルコニア
微粒子の粒径が0.1〜1μm、ニッケルないし酸化ニ
ッケル粒子の粒径が5〜20μmであることが望まし
い。
The specific particle size of each particle is as follows.
It is desirable that the zirconia coarse particles have a particle size of 20 to 75 μm, the zirconia fine particles have a particle size of 0.1 to 1 μm, and the nickel or nickel oxide particles have a particle size of 5 to 20 μm.

【0016】また、上記目的を達成するために、本発明
は、前記固体電解質燃料電池用燃料極材料の製造におい
て、ジルコニア粗粒子とニッケルないし酸化ニッケル粒
子とジルコニア微粒子との各粒子をジルコニア粗粒子>
ニッケル粒子ないし酸化ニッケル粒子>ジルコニア微粒
子の関係に予め粒径制御する工程と、ボールミルを用
い、乾式条件にて、まず比較的大きな粒径を有するジル
コニア粗粒子群と酸化ニッケル粒子群とを混合し、次い
でこの混合物に比較的小さな粒径を有するジルコニア微
粒子群を添加してさらに混合する工程とを有するように
している。
In order to achieve the above-mentioned object, the present invention provides a method for producing a fuel electrode material for a solid electrolyte fuel cell, wherein zirconia coarse particles, nickel or nickel oxide particles and zirconia fine particles are used as zirconia coarse particles. >
Nickel particles or nickel oxide particles> A step of controlling the particle diameter in advance in the relationship of zirconia fine particles, and using a ball mill under dry conditions, first, a zirconia coarse particle group and a nickel oxide particle group having a relatively large particle size are mixed. Then, a step of adding a zirconia fine particle group having a relatively small particle diameter to the mixture and further mixing is performed.

【0017】[0017]

【作用】このように本発明においては、固体電解質燃料
電池用燃料極材料に用いられる各原料の粒径を変更し、
その微細構造を改良したものである。
As described above, in the present invention, the particle size of each raw material used for the fuel electrode material for solid electrolyte fuel cells is changed,
The fine structure is improved.

【0018】従来のニッケル−ジルコニアサーメット系
固体電解質燃料電池用燃料極材料は、細かいNiOと8
YSZとの混合粉体であったが、本発明においては、比
較的大きな粒径を有するジルコニア粗粒子群と、比較的
小さな粒径を有するジルコニア微粒子群と、酸化ニッケ
ル粒子群との混合物としたものである。
The conventional nickel-zirconia cermet-based solid electrolyte fuel cell fuel electrode material is composed of fine NiO and 8
Although it was a mixed powder with YSZ, in the present invention, it was a mixture of a zirconia coarse particle group having a relatively large particle size, a zirconia fine particle group having a relatively small particle size, and a nickel oxide particle group. It is a thing.

【0019】この燃料極材料を構成する各粒子は、それ
ぞれ次に述べるような粒径に応じた機能を有するものと
考えられる。 (1)ジルコニア粗粒子 ・燃料極材料の骨格を形成し、電解質との熱膨脹差をな
くす。 ・粒子同志の隙間(粒間細隙)において気孔を形成し、
かつこれを維持する。 ・電極作動時のニッケル粒子の凝集を防ぎ、電子伝導経
路(以下、電流パスと称する。)の維持を図る。 (2)酸化ニッケル粒子(電極作動時にはニッケル粒
子) ・ジルコニア粗粒子表面を被覆し、かつニッケルの凝集
にも対応できるように、ジルコニア粗粒子間の隙間にも
分散させる。 ・電流パスを形成する。 ・ジルコニア粒子との界面を多くし、電極反応場を増大
させる。 (3)ジルコニア微粒子 ・ジルコニア粗粒子同志ならびにジルコニア電解質板と
の接着を良くする。 ・ニッケル粒子の固定化を図り、電流パスの遮断を防
ぐ。
It is considered that each particle constituting the fuel electrode material has a function according to the particle size as described below. (1) Coarse zirconia particles-Forms the skeleton of the fuel electrode material and eliminates the difference in thermal expansion from the electrolyte.・ Forms pores in the gaps between particles (inter-granular slits),
And maintain this. -Agglomeration of nickel particles during electrode operation is prevented, and an electron conduction path (hereinafter referred to as current path) is maintained. (2) Nickel oxide particles (nickel particles when the electrode is operating) -Coating the surface of the zirconia coarse particles and dispersing them in the gaps between the zirconia coarse particles so that nickel agglomeration can be dealt with. -Form a current path. -Increases the number of interfaces with zirconia particles and increases the electrode reaction field. (3) Fine particles of zirconia-Coarse particles of zirconia and good adhesion to zirconia electrolyte plates.・ Fixes nickel particles to prevent current path interruption.

【0020】したがって、これらの粒径の異なる原料が
複合化してなる本発明に係る燃料極材料は、従来の材料
に比べて、高温・還元雰囲気(電池作動条件に近い雰囲
気)下において、気孔率の変化、体積の収縮ともに極め
て小さくなり、あわせて電流パスの遮断が生じない。こ
れによって、長持間発電においても、燃料極の劣化は起
こりにくく、燃料電池の性能を低下させることがなくな
る。また電極反応場の増加効果によって、燃料極の性能
自体も向上させることができる。
Therefore, the fuel electrode material according to the present invention, which is a composite of these raw materials having different particle sizes, has a higher porosity under a high temperature / reducing atmosphere (an atmosphere close to the operating condition of the cell) than the conventional materials. And the contraction of the volume are extremely small, and the current path is not interrupted. As a result, even in long-term power generation, deterioration of the fuel electrode is unlikely to occur, and the performance of the fuel cell is not degraded. Further, the performance of the fuel electrode itself can be improved by the effect of increasing the electrode reaction field.

【0021】一方、このような燃料極材料の製造方法と
しての第2の発明は、ボールミルにより乾式混合撹拌を
行ない、上記したような各原料の所望粒径を維持し、上
記したような所望の性能を有する燃料極材料を作製する
ものであり、ボールミルという一般的でかつ簡便な装置
を使用するため、生産性および製造コストの面で優れた
ものとなる。
On the other hand, in the second invention as a method for producing such a fuel electrode material, dry mixing and stirring is performed by a ball mill to maintain the desired particle size of each raw material as described above, and the desired particle size as described above is maintained. Since the fuel electrode material having high performance is produced and a general and simple apparatus called a ball mill is used, it is excellent in productivity and manufacturing cost.

【0022】以下、本発明を実施態様に基づきより詳細
に説明する。
Hereinafter, the present invention will be described in more detail based on embodiments.

【0023】本発明の燃料極材料は、比較的大きな粒径
を有するジルコニア粗粒子群と、比較的小さな粒径を有
するジルコニア微粒子群と、酸化ニッケルないしニッケ
ル粒子群との混合物からなる。図1は、本発明に係る燃
料極材料を用いて、燃料極を形成した場合におけるその
微細構造を示す概念図であり、図中符号31はジルコニ
ア粗粒子、符号32は酸化ニッケル粒子、符号33はジ
ルコニア微粒子を示す。
The fuel electrode material of the present invention comprises a mixture of coarse zirconia particles having a relatively large particle diameter, zirconia fine particles having a relatively small particle diameter, and nickel oxide or nickel particles. FIG. 1 is a conceptual diagram showing the fine structure of a fuel electrode formed by using the fuel electrode material according to the present invention. In the figure, reference numeral 31 is zirconia coarse particles, reference numeral 32 is nickel oxide particles, and reference numeral 33. Indicates fine zirconia particles.

【0024】図1に示すように、ジルコニア粗粒子31
は、燃料極中において骨格をなし、かつ粒子間にできる
隙間(粒間細隙)によって気孔34を形成する。これら
によって電解質(安定化ジルコニア製)との熱的整合性
を図るとともに、焼結の進行による燃料極の収縮ならび
に気孔の閉塞を防止する。またジルコニア微粒子33
は、粒径の大きいジルコニア粗粒子31同志をより強固
に接着したり、電解質と燃料極の密着性をより良好にし
たりする。そして大小のジルコニア粒子31,33によ
て電極全体の焼結性が制御され、ニッケルの凝集防止と
電極反応場の増加が図られる。また、酸化ニッケル粒子
32は、粒径の大きなジルコニア粗粒子の周囲に分散さ
れ、電池作動時にニッケルに変化する。これによって、
燃料極の電流パスを形成し、かつジルコニア粒子31,
33と気孔との界面において、電極反応を生じる。
As shown in FIG. 1, zirconia coarse particles 31
Form a skeleton in the fuel electrode and form pores 34 by the gaps (intergranular gaps) formed between the particles. By these, thermal compatibility with the electrolyte (stabilized zirconia) is achieved, and contraction of the fuel electrode and clogging of pores due to progress of sintering are prevented. Further, zirconia fine particles 33
For more firmly adhering the zirconia coarse particles 31 having a large particle size to each other or improving the adhesion between the electrolyte and the fuel electrode. The large and small zirconia particles 31 and 33 control the sinterability of the entire electrode to prevent nickel agglomeration and increase the electrode reaction field. Further, the nickel oxide particles 32 are dispersed around the zirconia coarse particles having a large particle size, and change into nickel when the battery operates. by this,
A current path of the fuel electrode is formed, and the zirconia particles 31,
Electrode reaction occurs at the interface between 33 and the pores.

【0025】このような機能性を付与するために、本発
明においては、前記各粒子群の粒径がジルコニア粗粒子
>ニッケルないし酸化ニッケル粒子>ジルコニア微粒子
の関係となるようにした。より具体的には、例えば、ジ
ルコニア粗粒子の粒径が20〜75μm、より好ましく
は45〜75μm、ジルコニア微粒子の粒径が0.1〜
1μm、より好ましくは0.1〜0.5μm、ニッケル
ないし酸化ニッケル粒子の粒径が5〜20μm、より好
ましくはジルコニア粗粒子の粒径の10分の1以下とし
てこれらを組合せるものである。
In order to impart such functionality, in the present invention, the particle size of each particle group is set to satisfy the relationship of coarse zirconia particles> nickel or nickel oxide particles> zirconia fine particles. More specifically, for example, the zirconia coarse particles have a particle size of 20 to 75 μm, more preferably 45 to 75 μm, and the zirconia fine particles have a particle size of 0.1 to 0.1 μm.
1 μm, more preferably 0.1 to 0.5 μm, the particle size of nickel or nickel oxide particles is 5 to 20 μm, and more preferably 1/10 or less of the particle size of coarse zirconia particles.

【0026】なおジルコニアとしては、安定化ジルコニ
ア、特に8YSZが好ましい。この理由としては、前記
したように燃料極中のニッケルの含有量が多いと、熱膨
脹係数の違いから熱応力が発生し、セル破壊につながる
可能性があり、ニッケルの含有量をあまりふやすことが
できず、反面、ニッケルの量が少ないと、電極特性はあ
まり良くなく、焼結性も高いため、安定化ジルコニアな
いし8YSZを用いることで至適なニッケル含有量とす
ることができるためである。
As the zirconia, stabilized zirconia, particularly 8YSZ is preferable. The reason for this is that, as described above, if the content of nickel in the fuel electrode is large, thermal stress is generated due to the difference in the thermal expansion coefficient, which may lead to cell destruction, and it is possible to increase the nickel content too much. This is because when the amount of nickel is small, on the other hand, when the amount of nickel is small, the electrode characteristics are not so good and the sinterability is high. Therefore, the optimum nickel content can be obtained by using stabilized zirconia or 8YSZ.

【0027】本発明の燃料極材料は、前述した図12お
よび13に例示したような各種の形態の固体電解質燃料
電池の燃料極の作製に好適に用いることができ、燃料電
池、あるいは燃料極の形状等に何ら限定されることな
く、いずれの場合であっても、後述するような優れた性
能を発揮し得るものとなるのである。
The fuel electrode material of the present invention can be suitably used for producing a fuel electrode of a solid electrolyte fuel cell of various forms as exemplified in FIGS. 12 and 13 described above, and can be used for a fuel cell or a fuel electrode. The shape and the like are not limited at all, and in any case, excellent performance as described below can be exhibited.

【0028】本発明の燃料極材料の製造方法としては、
特に限定されるものではないが、上記したような各粒子
の所定の粒径、殊にジルコニア粗粒子の粒径を維持し
て、安定に混合することができるように、ボールミルを
用い、乾式条件にて撹拌混合することが望ましい。なお
ボールミルとしては、ポリ軟こう瓶とナイロン製ボール
の組合せといった、比較的軟質の表面を有する装置とす
ることが望まれる。
The method for producing the fuel electrode material of the present invention includes:
Although it is not particularly limited, while maintaining a predetermined particle diameter of each particle as described above, particularly the particle diameter of the zirconia coarse particles, it is possible to stably mix, using a ball mill, dry conditions It is desirable to mix with stirring. As the ball mill, it is desirable to use a device having a relatively soft surface such as a combination of a poly soft bottle and nylon balls.

【0029】撹拌混合は、最初に8YSZ粗粒子とNi
O粒子とを例えば、48〜60時間程度混合し、次いで
この混合物に8YSZ微粒子群を添加してさらに48時
間程度混合することにより行なわれる。
Stir mixing is performed by first mixing 8YSZ coarse particles and Ni.
For example, the O particles are mixed for about 48 to 60 hours, and then the 8YSZ fine particle group is added to this mixture, and the mixture is further mixed for about 48 hours.

【0030】[0030]

【実施例】以下、本発明を実施例に基づきより具体的に
説明する。
EXAMPLES The present invention will be described more specifically below based on examples.

【0031】(1)実験に用いた燃料極材料は、表1に
示すような混合比の粉末で、以降各粉末は表1中の試料
番号にて表記する。材料の作製は、図5に示す流れに基
づき作製された。すなわち、まず第1段階として、用い
る粉末の粒径調整を行う。8YSZの粗粒子は、予め1
400℃で20時間焼成した後、ふるいによって分級す
ることによって得た。一方、8YSZ微粒子およびNi
O粒子は、特殊ナイロン樹脂製容器と部分安定化ジルコ
ニアボールとからなる湿式ボールミルにて適当な条件で
粉砕することにより得た。次に第2段階としてポリ軟こ
う瓶とナイロン製ボールとからなるボールミルによって
各粉末を乾式混合する。なお、最初に8YSZ粗粒子と
NiO粒子とを混合し、次いでこの混合物に8YSZ微
粒子群を添加してさらに混合した。なお、従来の材料
は、還元後のNiが40容量%となるように粒径が数μ
mのNiOと8YSZとを混合して得たものである。
(1) The fuel electrode material used in the experiment was a powder having a mixing ratio shown in Table 1, and each powder will be denoted by a sample number in Table 1 hereinafter. The material was manufactured based on the flow shown in FIG. That is, first, as the first step, the particle size of the powder used is adjusted. 8YSZ coarse particles are 1
It was obtained by firing at 400 ° C. for 20 hours and then classifying with a sieve. On the other hand, 8YSZ fine particles and Ni
The O particles were obtained by crushing under appropriate conditions in a wet ball mill consisting of a special nylon resin container and partially stabilized zirconia balls. Next, as a second step, the respective powders are dry-mixed by a ball mill consisting of a poly ointment bottle and nylon balls. Incidentally, 8YSZ coarse particles and NiO particles were first mixed, and then 8YSZ fine particle group was added to this mixture and further mixed. The conventional material has a particle size of several μm so that the Ni content after reduction is 40% by volume.
It was obtained by mixing NiO of m and 8YSZ.

【0032】(2)このようにして得た燃料極材料の発
電前および発電後の微細構造を電子顕微鏡(EPMA)
により観察した。従来の材料(FEM000)は細かい
粒径のNiと8YSZとで構成されている(図3)が、
本発明に係るFEM461は図4に示すように前記概念
図のようなミクロ構造になっていることが観察された。
(2) An electron microscope (EPMA) is used to examine the microstructure of the fuel electrode material thus obtained before and after power generation.
Observed by. The conventional material (FEM000) is composed of Ni and 8YSZ having a small particle size (Fig. 3).
It was observed that the FEM 461 according to the present invention has a microstructure as shown in the conceptual diagram as shown in FIG.

【0033】(3)実験に用いるために各材料粉末を空
気中にて1400℃で10時間焼成した後の収縮率を調
べた。その結果を表2に示す。この結果から、従来の材
料に比して、本発明に係る材料は収縮が小さいことが分
かる。
(3) For use in the experiment, each material powder was fired in air at 1400 ° C. for 10 hours, and the shrinkage ratio was examined. The results are shown in Table 2. From this result, it can be seen that the material according to the present invention has a smaller shrinkage than the conventional material.

【0034】(4)上記(3)で得た各材料の焼結体を
図6に示すような還元試験用電気炉装置を用いて、10
00℃、水素雰囲気にて保持した後の体積収縮の変化、
気孔率の変化を調べた。得られた体積収縮の変化結果を
図7に、また気孔率の変化結果を図8にそれぞれ示す。
図7に示す結果から明らかなように、NiO(試料FE
M010)の収縮は極めて大きく、従来の材料(試料F
EM000)も300時間後には17%収縮している。
これに対して本発明に係る燃料極材料は収縮が小さい。
また図8に示されるように気孔率の変化についても同様
に本発明に係る燃料極材料では変化が小さいものであっ
た。さらに本発明に係る燃料極材料において、8YSZ
粗粒子に対する8YSZ微粒子の混合量が増えるにつれ
て、空気中で焼成した時の収縮が大きくなる傾向があ
り、また水素中、1000℃で保持したときの体積収縮
と気孔率の変化が小さくなる傾向があることから、大小
の8YSZが材料の緻密化を制御していることが分か
る。つまり8YSZ微粒子は、材料中の骨格構造をより
強固にする作用があり、空気中で焼成して焼結体を得る
際には緻密化が起って、材料の体積を若干収縮させる。
しかし、この時点で材料の骨格ができあがるために、水
素中においては8YSZの緻密化が進行しないので、材
料の体積はほとんど変化せず、また気孔率も変化しなく
なる。
(4) The sintered body of each material obtained in the above (3) was placed in an electric furnace for reduction test as shown in FIG.
Change in volumetric shrinkage after holding in hydrogen atmosphere at 00 ° C,
The change in porosity was investigated. The obtained results of changes in volume contraction are shown in FIG. 7, and the results of changes in porosity are shown in FIG.
As is clear from the results shown in FIG. 7, NiO (sample FE
The shrinkage of M010 is extremely large, and the conventional material (Sample F)
EM000) also shrinks 17% after 300 hours.
In contrast, the fuel electrode material according to the present invention has a small shrinkage.
Further, as shown in FIG. 8, the change in porosity was also small in the fuel electrode material according to the present invention. Further, in the fuel electrode material according to the present invention, 8YSZ
As the amount of 8YSZ fine particles mixed with coarse particles increases, the shrinkage when fired in air tends to increase, and the volume shrinkage and the change in porosity when held at 1000 ° C in hydrogen tend to decrease. From this, it can be seen that large and small 8YSZ controls the densification of the material. That is, the 8YSZ fine particles have the effect of strengthening the skeleton structure in the material, and when fired in air to obtain a sintered body, densification occurs and the volume of the material slightly shrinks.
However, since the skeleton of the material is formed at this point, the densification of 8YSZ does not proceed in hydrogen, so that the volume of the material hardly changes and the porosity does not change either.

【0035】(5)上記の材料のうち、変化の最も小さ
かったFEM461を用いて固体電解質燃料電池を作製
し、発電試験ならびに燃料極の性能評価を行った。評価
には図9に示すような構成の測定装置を用いてカレント
・インタープラション法を用いた。また、評価用単電池
は、電解質板に燃料極材料をスラリー化したものを塗布
した後、1400℃、10時間で焼き付け、空気極には
ストロンチウムを添加したランタンマンガナイトをスラ
リー化したものを塗布した後、1150℃、4時間で焼
付け、更に参照極として白金ペーストを焼付けた。
(5) Of the above-mentioned materials, a solid electrolyte fuel cell was prepared using FEM461, which showed the smallest change, and a power generation test and performance evaluation of the fuel electrode were performed. For the evaluation, the current interpolation method was used by using a measuring device having a configuration as shown in FIG. Further, the evaluation unit cell was prepared by applying a slurry of the fuel electrode material to the electrolyte plate, baking it at 1400 ° C. for 10 hours, and applying a slurry of lanthanum manganite with strontium added to the air electrode. After that, it was baked at 1150 ° C. for 4 hours, and a platinum paste was baked as a reference electrode.

【0036】(6)FEM461についての発電試験に
おいて得られた図10に示す結果からして、3000時
間の発電が可能となった。なお、図10における250
0時間後のセル電圧の低下は、実験中に発生した地震に
よって空気極の剥離やセル破壊が起ったためであり、燃
料極の性能低下は起きていない。これに対し従来の燃料
極材料を用いた単セルの寿命は高々十数時間(電力中央
研究所報告 W93019、平成6年5月を参照のこ
と。)であり、著しい性能の安定化が示された。
(6) From the results shown in FIG. 10 obtained in the power generation test for FEM461, it was possible to generate power for 3000 hours. Note that 250 in FIG.
The decrease in the cell voltage after 0 hours was due to the separation of the air electrode and the cell destruction due to the earthquake that occurred during the experiment, and the performance of the fuel electrode did not decrease. On the other hand, the life of a single cell using a conventional fuel electrode material is at most a dozen hours (see Central Research Institute of Electric Power W93019, May 1994), which shows remarkable stabilization of performance. It was

【0037】(7)カレント・インタープラション法で
燃料極の性能評価を行なった結果を図11(a)に示
す。初期の性能に対して500時間後の過電圧が顕著に
大きくなっているが、これは過電流を流したためであ
り、500時間以降には大きな劣化は起っていない。再
現性を得るために、電流を変化させずに2500時間の
連続発電を行ったときには、過電圧に大きな変化が見ら
れなかった(図11(b))。
(7) The results of the performance evaluation of the fuel electrode by the current interpolation method are shown in FIG. 11 (a). The overvoltage after 500 hours is remarkably large with respect to the initial performance, but this is because an overcurrent has flowed, and no major deterioration has occurred after 500 hours. When continuous power generation was performed for 2500 hours without changing the current in order to obtain reproducibility, no large change was observed in the overvoltage (FIG. 11 (b)).

【0038】[0038]

【表1】 [Table 1]

【0039】[0039]

【表2】 [Table 2]

【0040】[0040]

【発明の効果】以上述べたように、本発明の燃料極材料
は、空気中ならびに電池動作雰囲気中においても体積収
縮や気孔率の減少といった緻密化が生じにくく、また、
従来の材料を用いて作製した燃料極に比して、本発明の
材料を用いて作製した燃料極は、発電性能も優れてお
り、長持間安定した発電が可能となった。これゆえ、本
発明の燃料極材料を用いれば、固体電解質燃料電池の高
性能化と長寿命化が可能になる。また本発明の製造方法
は、上記したような優れた特性を発揮する燃料極材料を
従来からある簡便な装置を用いて作製することができ、
生産性及び製造コストの面からも有利である。
As described above, the fuel electrode material of the present invention hardly causes densification such as volume shrinkage and reduction of porosity even in the air and in the operation atmosphere of the cell, and
Compared with the fuel electrode manufactured using the conventional material, the fuel electrode manufactured using the material of the present invention has excellent power generation performance, and stable power generation is possible over a long period of time. Therefore, by using the fuel electrode material of the present invention, it is possible to improve the performance and extend the life of the solid electrolyte fuel cell. In addition, the production method of the present invention can produce a fuel electrode material exhibiting the above-described excellent characteristics using a conventional simple device,
It is also advantageous in terms of productivity and manufacturing cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の燃料極材料を固体電解質燃料電池の燃
料極に用いた際における燃料極の微細構造を示す概念図
である。
FIG. 1 is a conceptual diagram showing a fine structure of a fuel electrode when the fuel electrode material of the present invention is used as a fuel electrode of a solid oxide fuel cell.

【図2】本発明の実施例において使用した各粒子の粒径
分布の測定結果を示す図であり、(a)は8YSZ粗粒
子、(b)はNiO粒子、(c)は8YSZ微粒子に関
するものである。
FIG. 2 is a diagram showing measurement results of a particle size distribution of each particle used in Examples of the present invention, (a) is 8YSZ coarse particles, (b) is NiO particles, and (c) is 8YSZ fine particles. Is.

【図3】従来の燃料極の発電前と発電後の微細構造を示
す電子顕微鏡写真であり、(a)は発電前の二次電子
像、(b)は発電前のNi分布像、(c)は発電後の二
次電子像、(d)は発電後のNi分布像である。
FIG. 3 is an electron micrograph showing a fine structure of a conventional fuel electrode before and after power generation, where (a) is a secondary electron image before power generation, (b) is a Ni distribution image before power generation, and (c). ) Is a secondary electron image after power generation, and (d) is a Ni distribution image after power generation.

【図4】本発明の一実施例に係る燃料極の発電後の微細
構造を示す電子顕微鏡写真であり、(a)は二次電子
像、(b)はNi分布像、(c)はZrの分布像、
(d)はZrの分布像((a)におけるA部拡大)であ
る。
FIG. 4 is an electron micrograph showing a fine structure of a fuel electrode according to an embodiment of the present invention after power generation, where (a) is a secondary electron image, (b) is a Ni distribution image, and (c) is Zr. Distribution image of
(D) is a Zr distribution image (enlarged area A in (a)).

【図5】本発明に係る製造方法における製造工程を示す
図である。
FIG. 5 is a diagram showing a manufacturing process in a manufacturing method according to the present invention.

【図6】本発明の実施例において水素還元雰囲気中に保
持する際用いた装置の概念図である。
FIG. 6 is a conceptual diagram of an apparatus used for holding in a hydrogen reducing atmosphere in an example of the present invention.

【図7】本発明の実施例において作製した各材料の還元
雰囲気中での体積収縮の経時的変化を示すグラフであ
る。
FIG. 7 is a graph showing changes over time in volumetric shrinkage in a reducing atmosphere of each material produced in the examples of the present invention.

【図8】本発明の実施例において作製した各材料の還元
雰囲気中での気孔率の経時的変化を示すグラフである。
FIG. 8 is a graph showing changes with time in porosity of each material produced in Examples of the present invention in a reducing atmosphere.

【図9】本発明の実施例において発電・電極評価に用い
た装置の概念図であり、(a)は測定装置構成を、
(b)は測定回路をそれぞれ示す。
FIG. 9 is a conceptual diagram of an apparatus used for power generation / electrode evaluation in an example of the present invention, in which (a) shows a measuring apparatus configuration,
(B) shows a measurement circuit, respectively.

【図10】本発明の一実施例の燃料極材料を用いた単電
池の発電状況を示すグラフである。
FIG. 10 is a graph showing a power generation state of a unit cell using the fuel electrode material according to one example of the present invention.

【図11】本発明の一実施例の燃料極材料の性能の経時
変化を示すグラフであり、(a)は過電流を流した場
合、(b)は一定電流を流した場合をそれぞれ示す。
FIG. 11 is a graph showing changes in the performance of the fuel electrode material of one example of the present invention with time, where (a) shows a case where an overcurrent is passed and (b) shows a case where a constant current is passed.

【図12】縦縞円筒型固体電解質燃料電池の一例の構造
を示す斜視図である。
FIG. 12 is a perspective view showing the structure of an example of a vertical stripe cylindrical solid oxide fuel cell.

【図13】平板難固体電解質燃料電池の分解斜視図であ
る。
FIG. 13 is an exploded perspective view of a flat plate-resistant solid electrolyte fuel cell.

【符号の説明】[Explanation of symbols]

1 単電池 11,23 燃料極 31 ジルコニア粗粒子 32 酸化ニッケル粒子 33 ジルコニア微粒子 1 Single Cell 11,23 Fuel Electrode 31 Coarse Zirconia Particles 32 Nickel Oxide Particles 33 Zirconia Fine Particles

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01M 8/02 H01M 8/12 8/12 C04B 35/48 B (72)発明者 山本 融 神奈川県横須賀市長坂2−6−1 財団法 人電力中央研究所 横須賀研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication location H01M 8/02 H01M 8/12 8/12 C04B 35/48 B (72) Inventor Yu Yamamoto Yu Kanagawa 2-6-1 Nagasaka, Yokosuka City Yokosuka Research Center

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ニッケル−ジルコニア系固体電解質燃料
電池用燃料極材料であって、比較的大きな粒径を有する
ジルコニア粗粒子群と、比較的小さな粒径を有するジル
コニア微粒子群と、ニッケルないし酸化ニッケル粒子群
との混合物からなり、前記各粒子群の粒径がジルコニア
粗粒子>ニッケルないし酸化ニッケル粒子>ジルコニア
微粒子の関係を満たすことを特徴とする固体電解質燃料
電池用燃料極材料。
1. A fuel electrode material for a nickel-zirconia solid electrolyte fuel cell, comprising zirconia coarse particles having a relatively large particle diameter, zirconia particles having a relatively small particle diameter, and nickel or nickel oxide. A fuel electrode material for a solid electrolyte fuel cell, comprising a mixture with particle groups, wherein the particle size of each particle group satisfies the relationship of zirconia coarse particles> nickel or nickel oxide particles> zirconia fine particles.
【請求項2】 ジルコニアが安定化ジルコニアである請
求項1に記載の燃料極材料。
2. The fuel electrode material according to claim 1, wherein the zirconia is stabilized zirconia.
【請求項3】 ジルコニアが8モル%のイットリアで安
定化させたジルコニアである請求項1に記載の燃料極材
料。
3. The fuel electrode material according to claim 1, wherein the zirconia is zirconia stabilized with 8 mol% of yttria.
【請求項4】 ジルコニア粗粒子の粒径が20〜75μ
m、ジルコニア微粒子の粒径が0.1〜1μm、ニッケ
ルないし酸化ニッケル粒子の粒径が5〜20μmである
請求項1〜3のいずれかに記載の燃料極材料。
4. The zirconia coarse particles have a particle size of 20 to 75 μm.
4. The fuel electrode material according to claim 1, wherein the zirconia fine particles have a particle size of 0.1 to 1 μm, and the nickel or nickel oxide particles have a particle size of 5 to 20 μm.
【請求項5】 請求項1〜5のいずれかに記載の燃料極
材料の製造方法であって、ジルコニア粗粒子とニッケル
ないし酸化ニッケル粒子とジルコニア微粒子との各粒子
をジルコニア粗粒子>ニッケル粒子ないし酸化ニッケル
粒子>ジルコニア微粒子の関係に予め粒径制御する工程
と、ボールミルを用い、乾式条件にて、まず比較的大き
な粒径を有するジルコニア粗粒子群とニッケルないし酸
化ニッケル粒子群とを混合し、次いでこの混合物に比較
的小さな粒径を有するジルコニア微粒子群を添加してさ
らに混合する工程とを有することを特徴とする固体電解
質燃料電池用燃料極材料の製造方法。
5. The method for producing a fuel electrode material according to claim 1, wherein each of the zirconia coarse particles and nickel or nickel oxide particles and zirconia fine particles is replaced with zirconia coarse particles> nickel particles or Nickel oxide particles> A step of controlling the particle size in advance in the relation of fine particles of zirconia, and using a ball mill, in a dry condition, first, a zirconia coarse particle group having a relatively large particle diameter and a nickel or nickel oxide particle group are mixed, Next, a step of adding a zirconia fine particle group having a relatively small particle size to the mixture and further mixing the mixture, the method for producing a fuel electrode material for a solid electrolyte fuel cell.
JP7127375A 1995-04-28 1995-04-28 Fuel electrode material for solid electrolyte fuel cell and its manufacture Pending JPH08306361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7127375A JPH08306361A (en) 1995-04-28 1995-04-28 Fuel electrode material for solid electrolyte fuel cell and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7127375A JPH08306361A (en) 1995-04-28 1995-04-28 Fuel electrode material for solid electrolyte fuel cell and its manufacture

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004359523A Division JP4406355B2 (en) 2004-12-13 2004-12-13 Fuel electrode material for solid electrolyte fuel cells

Publications (1)

Publication Number Publication Date
JPH08306361A true JPH08306361A (en) 1996-11-22

Family

ID=14958436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7127375A Pending JPH08306361A (en) 1995-04-28 1995-04-28 Fuel electrode material for solid electrolyte fuel cell and its manufacture

Country Status (1)

Country Link
JP (1) JPH08306361A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999054946A1 (en) * 1998-04-21 1999-10-28 Toto Ltd. Solid electrolyte fuel cell and method of producing the same
JP2002260677A (en) * 2001-02-28 2002-09-13 Kyocera Corp Cell of solid electrolyte fuel cell and fuel cell
JP2004503054A (en) * 2000-06-30 2004-01-29 フオルシュングスツェントルム ユーリッヒ ゲーエムベーハー Method for producing electrode having temperature stable conductivity
US6740442B1 (en) 1999-05-31 2004-05-25 Central Research Institute Of Electric Power Industry Unit cell of flat solid oxide fuel cell and fuel cell stack comprising the same
JP2004182554A (en) * 2002-12-05 2004-07-02 Toray Ind Inc Zirconia powder
JP2005285750A (en) * 2004-03-29 2005-10-13 Sulzer Hexis Ag Anode material for high temperature fuel cell
WO2005112154A1 (en) * 2004-05-17 2005-11-24 Nippon Shokubai Co., Ltd. Anode supporting substrate for solid oxide fuel cell and process for producing the same
WO2006101136A1 (en) * 2005-03-23 2006-09-28 Nippon Shokubai Co., Ltd. Fuel electrode material for solid oxide fuel cell, fuel electrode using same, fuel-cell cell
KR100648144B1 (en) * 2005-09-15 2006-11-24 한국과학기술연구원 High performance anode-supported solide oxide fuel cell
JP2007335142A (en) * 2006-06-13 2007-12-27 Nippon Shokubai Co Ltd Nickel-ceria fuel electrode material for solid oxide fuel battery
JP2009016350A (en) * 2007-07-04 2009-01-22 Korea Inst Of Science & Technology Electrode/electrolyte composite powder for fuel cell, and its preparation method
JP2011009144A (en) * 2009-06-29 2011-01-13 National Institute Of Advanced Industrial Science & Technology Method for manufacturing solid oxide electrochemical cell
JP2011507160A (en) * 2007-12-07 2011-03-03 ネクステック、マテリアルズ、リミテッド High performance multilayer electrode for use in reducing gases
WO2011036972A1 (en) * 2009-09-25 2011-03-31 日本碍子株式会社 Cell of solid oxide fuel cell
WO2011074445A1 (en) * 2009-12-16 2011-06-23 日本碍子株式会社 Fuel cell and solid oxide fuel cell
US8128988B2 (en) 2004-08-10 2012-03-06 Central Research Institute Of Electric Power Industry Film-formed article and method for producing same
US8288053B2 (en) 2005-08-18 2012-10-16 Sumitomo Metal Mining Co., Ltd. Nickel oxide powder material for solid oxide fuel cell, production process thereof, raw material composition for use in the same, and anode material using the nickel oxide powder material
KR101335063B1 (en) * 2011-10-21 2013-12-03 한국생산기술연구원 Method of large powewr solid oxide fuel cell
JP5603516B1 (en) * 2013-08-12 2014-10-08 日本碍子株式会社 Solid oxide fuel cell
US20150004519A1 (en) * 2013-06-29 2015-01-01 Saint-Gobain Ceramics & Plastics, Inc. Solid Oxide Fuel Cell Having a Dense Barrier Layer
KR101521508B1 (en) * 2012-08-13 2015-05-19 가부시끼가이샤 리켄 Fuel electrode which also serves as supporting body of solid oxide fuel cell, and fuel electrode-supported solid oxide fuel cell
CN105431972A (en) * 2013-08-01 2016-03-23 株式会社Lg化学 Electrolyte containing inorganic oxide powder and sintered bodies thereof
WO2019087734A1 (en) * 2017-11-03 2019-05-09 株式会社デンソー Solid electrolyte, method for manufacturing same and gas sensor
JP2020135928A (en) * 2019-02-13 2020-08-31 株式会社豊田中央研究所 Fuel electrode for solid oxide type fuel cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0456070A (en) * 1990-06-20 1992-02-24 Seibu Gas Kk Manufacture of solid electrolytic fuel battery tube cell
JPH04192261A (en) * 1990-11-27 1992-07-10 Ngk Insulators Ltd Fuel electrode and its manufacture for solid electrolyte type fuel cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0456070A (en) * 1990-06-20 1992-02-24 Seibu Gas Kk Manufacture of solid electrolytic fuel battery tube cell
JPH04192261A (en) * 1990-11-27 1992-07-10 Ngk Insulators Ltd Fuel electrode and its manufacture for solid electrolyte type fuel cell

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999054946A1 (en) * 1998-04-21 1999-10-28 Toto Ltd. Solid electrolyte fuel cell and method of producing the same
US6692855B1 (en) 1998-04-21 2004-02-17 Toto Ltd. Solid electrolyte type fuel cell and method of producing the same
US6740442B1 (en) 1999-05-31 2004-05-25 Central Research Institute Of Electric Power Industry Unit cell of flat solid oxide fuel cell and fuel cell stack comprising the same
JP2004503054A (en) * 2000-06-30 2004-01-29 フオルシュングスツェントルム ユーリッヒ ゲーエムベーハー Method for producing electrode having temperature stable conductivity
JP2002260677A (en) * 2001-02-28 2002-09-13 Kyocera Corp Cell of solid electrolyte fuel cell and fuel cell
JP2004182554A (en) * 2002-12-05 2004-07-02 Toray Ind Inc Zirconia powder
JP2005285750A (en) * 2004-03-29 2005-10-13 Sulzer Hexis Ag Anode material for high temperature fuel cell
WO2005112154A1 (en) * 2004-05-17 2005-11-24 Nippon Shokubai Co., Ltd. Anode supporting substrate for solid oxide fuel cell and process for producing the same
US8128988B2 (en) 2004-08-10 2012-03-06 Central Research Institute Of Electric Power Industry Film-formed article and method for producing same
WO2006101136A1 (en) * 2005-03-23 2006-09-28 Nippon Shokubai Co., Ltd. Fuel electrode material for solid oxide fuel cell, fuel electrode using same, fuel-cell cell
US8288053B2 (en) 2005-08-18 2012-10-16 Sumitomo Metal Mining Co., Ltd. Nickel oxide powder material for solid oxide fuel cell, production process thereof, raw material composition for use in the same, and anode material using the nickel oxide powder material
EP1768208A2 (en) * 2005-09-15 2007-03-28 Korea Institute of Science and Technology High performance anode-supported solid oxide fuel cell
EP1768208A3 (en) * 2005-09-15 2008-05-28 Korea Institute of Science and Technology High performance anode-supported solid oxide fuel cell
KR100648144B1 (en) * 2005-09-15 2006-11-24 한국과학기술연구원 High performance anode-supported solide oxide fuel cell
JP2007335142A (en) * 2006-06-13 2007-12-27 Nippon Shokubai Co Ltd Nickel-ceria fuel electrode material for solid oxide fuel battery
JP2009016350A (en) * 2007-07-04 2009-01-22 Korea Inst Of Science & Technology Electrode/electrolyte composite powder for fuel cell, and its preparation method
JP2011507160A (en) * 2007-12-07 2011-03-03 ネクステック、マテリアルズ、リミテッド High performance multilayer electrode for use in reducing gases
US8828618B2 (en) 2007-12-07 2014-09-09 Nextech Materials, Ltd. High performance multilayer electrodes for use in reducing gases
JP2011009144A (en) * 2009-06-29 2011-01-13 National Institute Of Advanced Industrial Science & Technology Method for manufacturing solid oxide electrochemical cell
WO2011036972A1 (en) * 2009-09-25 2011-03-31 日本碍子株式会社 Cell of solid oxide fuel cell
JP4868557B2 (en) * 2009-09-25 2012-02-01 日本碍子株式会社 Solid oxide fuel cell
JP4820463B2 (en) * 2009-12-16 2011-11-24 日本碍子株式会社 Fuel cell and solid oxide fuel cell
WO2011074445A1 (en) * 2009-12-16 2011-06-23 日本碍子株式会社 Fuel cell and solid oxide fuel cell
KR101335063B1 (en) * 2011-10-21 2013-12-03 한국생산기술연구원 Method of large powewr solid oxide fuel cell
KR101521508B1 (en) * 2012-08-13 2015-05-19 가부시끼가이샤 리켄 Fuel electrode which also serves as supporting body of solid oxide fuel cell, and fuel electrode-supported solid oxide fuel cell
US20150004519A1 (en) * 2013-06-29 2015-01-01 Saint-Gobain Ceramics & Plastics, Inc. Solid Oxide Fuel Cell Having a Dense Barrier Layer
US10297853B2 (en) * 2013-06-29 2019-05-21 Saint-Gobain Ceramics & Plastics, Inc. Solid oxide fuel cell having a dense barrier layer
CN105431972A (en) * 2013-08-01 2016-03-23 株式会社Lg化学 Electrolyte containing inorganic oxide powder and sintered bodies thereof
JP5603516B1 (en) * 2013-08-12 2014-10-08 日本碍子株式会社 Solid oxide fuel cell
WO2019087734A1 (en) * 2017-11-03 2019-05-09 株式会社デンソー Solid electrolyte, method for manufacturing same and gas sensor
JP2019085284A (en) * 2017-11-03 2019-06-06 株式会社デンソー Solid electrolyte, method of manufacturing the same, and gas sensor
JP2020135928A (en) * 2019-02-13 2020-08-31 株式会社豊田中央研究所 Fuel electrode for solid oxide type fuel cell

Similar Documents

Publication Publication Date Title
JPH08306361A (en) Fuel electrode material for solid electrolyte fuel cell and its manufacture
RU2342740C2 (en) Solid oxide fuel cells with bearing anode and cermet ionogen
US20020028367A1 (en) Electrode-supported solid state electrochemical cell
JPH09505684A (en) Electrochemical device
US5314508A (en) Solid electrolyte fuel cell and method for manufacture of same
Suzuki et al. High power density solid oxide electrolyte fuel cells using Ru/Y2O3 stabilized zirconia cermet anodes
JP2009224346A (en) Fuel electrode material for solid electrolyte fuel cell
US20060257714A1 (en) Electrode material and fuel cell
WO2009120439A1 (en) Anode with ceramic additives for molten carbonate fuel cell
JPH11219710A (en) Electrode of solid electrolyte fuel cell and manufacture thereof
JP4201247B2 (en) Fuel electrode material for solid oxide fuel cells
JPH09259895A (en) Electrode base of solid electrolytic fuel cell
JP4428946B2 (en) Fuel electrode for solid oxide fuel cell
JP4406355B2 (en) Fuel electrode material for solid electrolyte fuel cells
JP2003217597A (en) Solid electrolyte type fuel cell
JP4889166B2 (en) Low-temperature sinterable solid electrolyte material, electrolyte electrode assembly and solid oxide fuel cell using the same
JP3411064B2 (en) Method for producing solid electrolyte sintered body for solid oxide fuel cell
JP3351865B2 (en) Fuel electrode for solid oxide fuel cell and self-standing membrane flat solid electrolyte fuel cell using this fuel electrode
JP2000044340A (en) Sintered lanthanum gallate, its production and fuel cell produced by using the gallate as solid electrolyte
JP3342610B2 (en) Solid oxide fuel cell
JP2771090B2 (en) Solid oxide fuel cell
JPH04192261A (en) Fuel electrode and its manufacture for solid electrolyte type fuel cell
JP3336171B2 (en) Solid oxide fuel cell
JPH10144337A (en) Fuel electrode of solid electrolytic fuel cell and manufacture thereof
JP3301199B2 (en) Method for producing conductive ceramic sintered body

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040414

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041213

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050128

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050218