JPH10284087A - Electrode and membrane-electrode joining body for solid polymer fuel cell - Google Patents

Electrode and membrane-electrode joining body for solid polymer fuel cell

Info

Publication number
JPH10284087A
JPH10284087A JP9100854A JP10085497A JPH10284087A JP H10284087 A JPH10284087 A JP H10284087A JP 9100854 A JP9100854 A JP 9100854A JP 10085497 A JP10085497 A JP 10085497A JP H10284087 A JPH10284087 A JP H10284087A
Authority
JP
Japan
Prior art keywords
polymer
membrane
catalyst layer
catalyst
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9100854A
Other languages
Japanese (ja)
Other versions
JP3714766B2 (en
Inventor
Masanobu Wakizoe
雅信 脇添
Toshinori Hachitani
敏徳 蜂谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP10085497A priority Critical patent/JP3714766B2/en
Publication of JPH10284087A publication Critical patent/JPH10284087A/en
Application granted granted Critical
Publication of JP3714766B2 publication Critical patent/JP3714766B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To enhance water exhausting performance within a catalyst layer, remove influence of water on the diffusion into the catalyst layer of reaction gas, and obtain stable cell voltage even in high current density region by containing at least two kinds of different EWs of proton conducting polymers in the catalyst layer. SOLUTION: A proton conducting polymer is a perfluorocarbon polymer having a sulfonic acid group, a solid polymer membrane having EW of 700-1500, and a catalyst layer containing at least two kinds of different EWs of proton conducting polymers is preferably arranged. EW of a solid polymer electrolyte membrane is selected so that the difference to EW of the proton conducting polymer being dispersed in the catalyst layer coming in contact with both surfaces of the membrane is 800 or less, preferably within 600. The content of the proton conducting polymer being dispersed in the catalyst layer is in the range of a weight ratio of 0.1-10 based on the weight of carried catalyst.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は固体高分子型燃料電
池に関し、特には電極及び膜・電極接合体に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer electrolyte fuel cell, and more particularly to an electrode and a membrane / electrode assembly.

【0002】[0002]

【従来の技術】燃料電池は、電池内で水素やメタノール
等を電気化学的に酸化することにより、燃料の化学エネ
ルギーを直接電気エネルギーに変換して取り出すもので
あり、クリーンな電気エネルギー供給源として注目され
ている。特に、固体高分子型燃料電池は他と比較し低温
で作動することから、自動車用としての代替動力源とし
て期待されている。
2. Description of the Related Art Fuel cells convert fuel chemical energy directly into electric energy by electrochemically oxidizing hydrogen, methanol, etc. in the cell, and take it out as a clean electric energy supply source. Attention has been paid. In particular, polymer electrolyte fuel cells are expected to be used as alternative power sources for vehicles because they operate at lower temperatures than others.

【0003】かかる固体高分子型燃料電池は、固体高分
子電解質膜の両面に一対のガス拡散電極が接合されたも
のである。すなわち、固体高分子電解質膜の一方の面に
アノード触媒層、他方の面にはカソード触媒層が設けら
れ、さらに両面のその外側には一対のガス拡散層が隣接
してなる構造を有する。アノード及びカソード触媒層は
従来、電極触媒を担持させたカーボンブラックの粉末
と、プロトン伝導性を有するポリマー、撥水性を有する
ポリマーとからなる混合物をシート化したものであり、
固体高分子電解質膜にはホットプレスにより接合され
る。
In such a polymer electrolyte fuel cell, a pair of gas diffusion electrodes is joined to both sides of a polymer electrolyte membrane. That is, the solid polymer electrolyte membrane has a structure in which an anode catalyst layer is provided on one surface and a cathode catalyst layer is provided on the other surface, and a pair of gas diffusion layers is adjacent to the outside of both surfaces. Conventionally, the anode and cathode catalyst layers are formed by sheeting a mixture of a carbon black powder supporting an electrode catalyst, a polymer having proton conductivity, and a polymer having water repellency,
The solid polymer electrolyte membrane is joined by hot pressing.

【0004】アノードとしてのガス拡散電極側には燃料
(例えば水素)、カソードとしてのガス拡散電極側には
酸化剤(例えば酸素や空気ガス)をそれぞれ供給し、両
電極間を外部回路で接続することにより燃料電池として
作動する。すなわち、アノードにおいては、燃料の酸化
によりプロトンと電子が生じ、このプロトンは固体電解
質内を通過してカソード側に移動する。一方、電子は外
部回路を通ってカソードに到達する。カソードでは、か
かるプロトン及び電子と酸化剤中の酸素で水が生成さ
れ、この時電気エネルギーを取り出すことが出来る。
A fuel (eg, hydrogen) is supplied to the gas diffusion electrode as an anode, and an oxidant (eg, oxygen or air gas) is supplied to the gas diffusion electrode as a cathode, and the two electrodes are connected by an external circuit. This operates as a fuel cell. That is, in the anode, protons and electrons are generated by oxidation of the fuel, and the protons pass through the solid electrolyte and move to the cathode side. On the other hand, electrons reach the cathode through an external circuit. At the cathode, water is generated by such protons and electrons and oxygen in the oxidant, and at this time, electric energy can be extracted.

【0005】[0005]

【発明が解決しようとする課題】プロトンが固体高分子
電解質膜内を円滑に移動するためには、水を必要とする
ため、燃料は、加湿して水とともにアノードへ供給され
る。カソードで生成された水や膜内を移動してきた過剰
な水は、酸化剤とともに電極外部に放出される。触媒層
内は、高い触媒利用率を得るため、特開平6−3335
74号公報に記載されているように、例えば市販されて
いる米国アルドリッチ社製の「ナフィオン(5重量%溶
液)」のような高い含水率を有するプロトン伝導性ポリ
マーが均一に分散されている。そのため、撥水性ポリマ
ーを含んだ場合においても触媒層内から水が円滑に層外
・ガス拡散層外へ排出されにくい。燃料電池の運転を継
続している間触媒層内やガス拡散層内には水が徐々に滞
留してゆき、また高電流密度で行なうほど、水の蓄積は
進み、触媒層への酸化剤供給が大きく阻害されてしま
う。その結果、電気化学反応の抵抗が極めて大きくな
り、取り出しうる電池電圧の大幅な低下、スタックにお
いてはセル間での電圧バラツキの拡大化という問題を引
き起こしている。
In order for protons to move smoothly in the solid polymer electrolyte membrane, water is required, and the fuel is humidified and supplied to the anode together with the water. Water generated at the cathode and excess water that has migrated in the membrane are released to the outside of the electrode together with the oxidizing agent. In order to obtain a high catalyst utilization rate in the catalyst layer, see JP-A-6-3335.
As described in Japanese Patent Publication No. 74, a proton conductive polymer having a high water content, such as “Nafion (5% by weight solution)” commercially available from Aldrich, USA, is uniformly dispersed. Therefore, even when a water-repellent polymer is included, it is difficult for water to be smoothly discharged from the inside of the catalyst layer to the outside of the catalyst layer. During the operation of the fuel cell, water gradually accumulates in the catalyst layer and the gas diffusion layer. The higher the current density, the more water accumulates and the more oxidant is supplied to the catalyst layer. Is greatly hindered. As a result, the resistance of the electrochemical reaction becomes extremely large, causing a problem that the battery voltage that can be taken out is greatly reduced, and the voltage variation between cells in a stack is increased.

【0006】燃料、酸化剤を加圧し、燃料電池作動圧力
を高くして運転することにより、電極の反応効率は上昇
するものの、ガス流速低下により生成水等の排出能では
逆に低下してしまうため、電池特性の改善は期待出来な
い。触媒層内に分散させる撥水性ポリマーの量を多くす
ることは、逆に触媒利用率の大幅な低下、出力電圧の低
下を引き起こすために限界があり、大幅な撥水性向上は
望めない。また、プロトン伝導性ポリマーが含まれてい
るため、PTFEのような撥水性ポリマーを触媒層内に
分散させた後に、例えば特公平5−20868号公報に
記載されているような高温処理を行うことは不可能であ
るため、撥水性ポリマーの有効なマトリックスを形成す
ることは出来ない。本発明は、このような従来技術の課
題に着目してなされたものであり、触媒層内の水の排出
能を向上させ、反応ガスの触媒層内拡散への水の影響を
排除し、高電流密度領域においても安定した電池電圧を
示す固体高分子型燃料電池用の電極及び膜・電極接合体
を提供することを目的とする。
[0006] When the fuel cell and the oxidizing agent are pressurized and the fuel cell is operated at a high operating pressure, the reaction efficiency of the electrode increases, but the discharge capability of generated water and the like decreases due to a decrease in the gas flow rate. Therefore, improvement in battery characteristics cannot be expected. Increasing the amount of the water-repellent polymer dispersed in the catalyst layer conversely causes a significant reduction in catalyst utilization and a decrease in output voltage, and thus has a limit. Therefore, a significant improvement in water repellency cannot be expected. In addition, since a proton-conductive polymer is contained, a high-temperature treatment as described in, for example, Japanese Patent Publication No. 5-20868 is performed after a water-repellent polymer such as PTFE is dispersed in the catalyst layer. Is impossible, so that an effective matrix of the water-repellent polymer cannot be formed. The present invention has been made in view of such problems of the prior art, and has been made to improve the water discharging ability in the catalyst layer, to eliminate the influence of water on the diffusion of the reaction gas in the catalyst layer, An object of the present invention is to provide an electrode and a membrane / electrode assembly for a polymer electrolyte fuel cell which exhibit a stable cell voltage even in a current density region.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明では、固体高分子型燃料電池用ガス拡散電極
において、その触媒層が、EWの異なる少なくとも2種
類のプロトン伝導性ポリマーを含むことを特徴とする電
極を提供する。また、固体高分子型燃料電池用膜・電極
接合体において、EWが700〜1500である固体高
分子膜と、EWの異なる少なくとも2種類のプロトン電
導性ポリマーを含む触媒層を有する電極とからなること
を特徴とする膜・電極接合体を提供する。これらの電
極、膜・電極接合体を作製することにより、安定した電
池電圧が得られることを見出し、本発明に至った。
In order to achieve the above object, the present invention provides a gas diffusion electrode for a polymer electrolyte fuel cell, wherein the catalyst layer comprises at least two types of proton conductive polymers having different EWs. There is provided an electrode characterized by including: In the membrane / electrode assembly for a polymer electrolyte fuel cell, the membrane / electrode assembly has an EW of 700 to 1500 and an electrode having a catalyst layer containing at least two types of proton conductive polymers having different EWs. A membrane / electrode assembly is provided. It has been found that a stable battery voltage can be obtained by producing these electrodes and the membrane / electrode assembly, and the present invention has been accomplished.

【0008】触媒層内にプロトン伝導性ポリマーを分散
させる操作は、触媒の利用率を大きく向上することのた
めのものであるが、その効果をより発揮させるために
は、プロトン伝導性の高いポリマー、すなわちEWのよ
り低いポリマーが使用されることが望ましい。プロトン
伝導性ポリマーとしては、上記のナフィオンに代表され
るパーフルオロスルホン酸ポリマーが広く用いられてい
る。例えば、このパーフルオロスルホン酸ポリマーにお
いては、より低EWの、高いプロトン伝導性を有するポ
リマーは、相対的に高い親水性を示し、高い含水率から
なる。電池反応において、アノード触媒上で酸化された
プロトンは、高いプロトン伝導性を有するポリマー内を
通って膜に到達し、同じく伝導性を有する膜内を通過し
てカソード側に移動した後、再び、触媒層内に分散され
た高いプロトン伝導性ポリマー内を通ってカソード触媒
上に達する。ここを三相界面として、酸化剤反応ガスと
しての酸素ガス、外部回路を通ってきた電子と再び反応
して水を生成する。ここで、生成された水は、触媒活性
点上から、同じく触媒層内に分散された、より高EW
の、より含水率の低いポリマーへ速やかに移動し、この
通路を利用して触媒層からガス拡散層、電極外へと排出
される。このようにして、電池反応触媒活性点において
は、高い反応率を保持しつつ、かつ高い生成水排出能を
有した電極とすることが出来るものである。
[0008] The operation of dispersing the proton conductive polymer in the catalyst layer is intended to greatly improve the utilization of the catalyst, but in order to exert its effect more, it is necessary to use a polymer having a high proton conductivity. Ie, a polymer with a lower EW is preferably used. As the proton conductive polymer, a perfluorosulfonic acid polymer represented by Nafion described above is widely used. For example, in this perfluorosulfonic acid polymer, a polymer having lower EW and high proton conductivity shows relatively high hydrophilicity and has a high water content. In the battery reaction, the protons oxidized on the anode catalyst reach the membrane through the polymer having high proton conductivity, pass through the membrane having the same conductivity, and move to the cathode side. It reaches the cathode catalyst through high proton conductive polymer dispersed in the catalyst layer. With this as a three-phase interface, water reacts with oxygen gas as an oxidant reaction gas and electrons that have passed through an external circuit to produce water. Here, the generated water is dispersed in the catalyst layer from above the catalyst active point, and has a higher EW.
Quickly move to a polymer having a lower water content, and is discharged from the catalyst layer to the outside of the gas diffusion layer and the electrode using this passage. In this way, at the active point of the battery reaction catalyst, an electrode having a high reaction rate and a high ability to discharge generated water can be obtained.

【0009】ここで、上記に言うEWとは、プロトン伝
導性を有する交換基の当量重量を表している。当量重量
は、イオン交換基1当量あたりのイオン交換膜の乾燥重
量であり、「g/ew」の単位で表される。本発明に言
う、プロトン伝導性ポリマーの、最も高いEWと最も低
いEWの差は、好ましくは20以上あれば本発明の効果
を示しうるものであり、50以上あればより好ましく、
100以上あれば特に好ましい。また、3種以上のプロ
トン伝導性ポリマーを含む場合の最も近い数値同志のE
Wの差として、20以上あれば本発明の効果を享受する
ことができる。EWの差の上限は、800以下であれば
好ましく、600以下であればより好ましく、400以
下であれば特に好ましい。
Here, the above-mentioned EW represents the equivalent weight of an exchange group having proton conductivity. The equivalent weight is a dry weight of the ion exchange membrane per equivalent of the ion exchange group, and is expressed in units of “g / ew”. The difference between the highest EW and the lowest EW of the proton conductive polymer according to the present invention is preferably 20 or more, which can show the effect of the present invention, and 50 or more is more preferable.
It is particularly preferable if the number is 100 or more. In addition, when three or more types of proton conductive polymers are included, the closest numerical values of E
If the difference of W is 20 or more, the effect of the present invention can be enjoyed. The upper limit of the difference in EW is preferably 800 or less, more preferably 600 or less, and particularly preferably 400 or less.

【0010】プロトン伝導性ポリマーのEWは、少なく
とも700以上であれば良く、より好ましくは800以
上である。そして、1500以下であることが好まし
く、1300以下であることがより好ましい。700以
下では親水性が高すぎて、水の円滑な移動ができなくな
り、1500以上ではプロトン伝導性が低すぎるため、
本発明の効果を示し得なくなる。プロトン伝導性ポリマ
ーは、プロトンを伝導するポリマーであれば良く、好ま
しくは、含フッ素高分子を骨格として少なくともスルホ
ン酸基、カルボン酸基、ホスホン酸基、及びリン酸基の
うちから1種を有するものである。また、ポリオレフィ
ンの様な炭化水素を骨格とするものも使用可能である。
[0010] The EW of the proton conductive polymer may be at least 700 or more, more preferably 800 or more. And it is preferable that it is 1500 or less, and it is more preferable that it is 1300 or less. If it is less than 700, the hydrophilicity is too high, and smooth movement of water cannot be performed. If it is more than 1500, the proton conductivity is too low.
The effect of the present invention cannot be exhibited. The proton conductive polymer may be any polymer that conducts protons, and preferably has at least one of a sulfonic acid group, a carboxylic acid group, a phosphonic acid group, and a phosphoric acid group with a fluorinated polymer as a skeleton. Things. Further, those having a skeleton of a hydrocarbon such as polyolefin can also be used.

【0011】含フッ素高分子としては、例えば、テトラ
フルオロエチレン、トリフルオロモノクロロエチレン、
トリフルオロエチレン、フッ化ビニリデン、1,1−ジ
フルオロ−2,2−ジクロロエチレン、1,1−ジフル
オロ−2−クロロエチレン、ヘキサフルオロプロピレ
ン、1,1,1,3,3−ペンタフルオロプロピレン、
オクタフルオロイソブチレン、エチレン、塩化ビニル、
及びアルキルビニルエステル等の第一群のモノマーと、
下記一般式(1)、 Y−(CF2 a −(CFRf b −(CFR´f c −O− −〔CF(CF2 X)−CF2 −O〕n −CF=CF2 ・・・ (1) (式中、Yは−SO2 F、−SO3 NH、−COOH、
−CN、−COF、−COOR(Rは炭素数1〜10の
アルキル基)、−PO3 2 、−PO3 Hであり、aは
0〜6、bは0〜6の整数、cは0または1であり、但
しa+b+cは0に等しくはならない。Xはn>1の
時、Cl、Br、Fまたはそれらの混合物であり、nは
0〜6である。Rf 及びR´f は独立にF、Cl、約1
〜10個の炭素原子を有するパーフルオロアルキル基及
び1〜10個の炭素原子を有するフルオロクロロアルキ
ル基からなる群から選択される。)で表される第二群の
モノマーから選ばれた、第二群モノマーを必須とする2
種あるいは3種以上のモノマーの共重合体、上記第二群
の1種以上の重合体などである。特には、スルホン酸基
を有するパーフルオロカーボン重合体であることが好ま
しい。
As the fluorine-containing polymer, for example, tetrafluoroethylene, trifluoromonochloroethylene,
Trifluoroethylene, vinylidene fluoride, 1,1-difluoro-2,2-dichloroethylene, 1,1-difluoro-2-chloroethylene, hexafluoropropylene, 1,1,1,3,3-pentafluoropropylene,
Octafluoroisobutylene, ethylene, vinyl chloride,
And a first group of monomers such as alkyl vinyl esters;
Following general formula (1), Y- (CF 2 ) a - (CFR f) b - (CFR' f) c -O- - [CF (CF 2 X) -CF 2 -O ] n -CF = CF 2 (1) (wherein, Y is -SO 2 F, -SO 3 NH, -COOH,
-CN, -COF, -COOR (R is an alkyl group having 1 to 10 carbon atoms), - PO 3 H 2, a -PO 3 H, a is Less than six, b is an integer of Less than six, c is 0 or 1, provided that a + b + c is not equal to 0. X is Cl, Br, F or a mixture thereof when n> 1, and n is 0-6. R f and R ′ f are independently F, Cl, about 1
It is selected from the group consisting of perfluoroalkyl groups having 10 to 10 carbon atoms and fluorochloroalkyl groups having 1 to 10 carbon atoms. 2) essential from the second group of monomers selected from the second group of monomers represented by
Copolymers of one or more species or three or more monomers, and one or more polymers of the second group. In particular, a perfluorocarbon polymer having a sulfonic acid group is preferable.

【0012】重合体は、モノマー2分子以上結合してお
れば良いが、耐久性の観点からその分子量は5000以
上が好ましい。さらに、重合体と低分子量化合物を混合
して用いることにより、EWを適宜調節することも可能
である。上記に述べられたようなプロトン伝導性ポリマ
ーは、例えばメタノール、エタノール、プロパノール、
ブタノール等のアルコール類、N,N’−ジメチルアセ
トアミド、N,N’−ジメチルホルムアミド、ジメチル
スルホキシド、スルホラン等の極性溶媒、テトラヒドロ
フラン等の環状エーテル類、及び上記溶媒群から選ばれ
た2種類以上の混合物、さらには上記溶媒群と水との混
合物などに溶解させて用いることができる。特には、エ
タノール、1−プロパノール、2−プロパノール等の低
級アルコールの単独もしくは2種以上の溶媒と水との混
合物が好ましい。さらには、上記溶媒群の少なくとも1
種と、フルオロカーボンや含フッ素アルコール等の含フ
ッ素化合物との混合溶媒も使用可能である。
The polymer may have two or more monomers bonded to each other. From the viewpoint of durability, the molecular weight is preferably 5,000 or more. Further, by mixing and using a polymer and a low molecular weight compound, EW can be appropriately adjusted. Proton conducting polymers as described above include, for example, methanol, ethanol, propanol,
Alcohols such as butanol, polar solvents such as N, N'-dimethylacetamide, N, N'-dimethylformamide, dimethylsulfoxide and sulfolane, cyclic ethers such as tetrahydrofuran, and two or more kinds selected from the above solvent group It can be used by dissolving it in a mixture, or a mixture of the above solvent group and water. In particular, a lower alcohol alone such as ethanol, 1-propanol and 2-propanol, or a mixture of two or more solvents and water is preferable. Further, at least one of the above solvent groups
A mixed solvent of a seed and a fluorine-containing compound such as a fluorocarbon or a fluorine-containing alcohol can also be used.

【0013】溶解されたプロトン伝導性ポリマー溶液の
濃度は、ガス拡散電極の触媒層内に分散された時に、触
媒表面に適切なプロトン伝導性ポリマーの被覆が形成さ
れやすい、3〜20重量%の範囲が好ましい。この濃度
が高すぎるとポリマーの触媒層内における分散性が悪く
なるとともに、上記被覆の厚みが大きくなりすぎて、三
相界面が不均一化・触媒利用率の低下を来たし、本発明
の効果を発揮できなくなる場合がある。また、濃度が低
すぎると、触媒表面へのプロトン伝導性ポリマー被覆
が、均一かつ充分な厚みを得られなくなったり、多孔質
の触媒層シート表面にプロトン伝導性ポリマー溶液を塗
布して触媒層内に分散させる場合、液の粘度が低すぎる
ために該ポリマーが局部的に集中してしまうため好まし
くない。
[0013] The concentration of the dissolved proton conductive polymer solution is 3 to 20% by weight, which is suitable for forming an appropriate proton conductive polymer coating on the catalyst surface when dispersed in the catalyst layer of the gas diffusion electrode. A range is preferred. If this concentration is too high, the dispersibility of the polymer in the catalyst layer will be poor, and the thickness of the coating will be too large, and the three-phase interface will be non-uniform and the catalyst utilization will be reduced. May not be able to demonstrate. On the other hand, if the concentration is too low, it is not possible to obtain a uniform and sufficient thickness of the proton conductive polymer coating on the catalyst surface, or the proton conductive polymer solution is applied to the surface of the porous catalyst layer sheet so that the inside of the catalyst layer is not coated. In the case of dispersing the polymer in water, the viscosity of the liquid is too low and the polymer locally concentrates, which is not preferable.

【0014】アノード、カソード触媒層に用いられる電
極触媒材料としては、水素の酸化反応及び酸素の還元反
応に触媒作用を有するものであれば良く、白金、ルテニ
ウム、イリジウム、ロジウム、パラジウム、オスニウ
ム、タングステン、鉛、鉄、クロム、コバルト、ニッケ
ル、マンガン、バナジウム、モリブデン、ガリウム、ア
ルミニウム等の金属またはそれらの合金から選択するこ
とができる。
The electrode catalyst material used for the anode and cathode catalyst layers may be any material that has a catalytic action on the oxidation reaction of hydrogen and the reduction reaction of oxygen. , Lead, iron, chromium, cobalt, nickel, manganese, vanadium, molybdenum, gallium, aluminum and the like or alloys thereof.

【0015】上記触媒の粒径は10〜300Åが好まし
く、さらには15〜100Åがより好ましい。10Å以
下では、現実的に製作が困難であり、300Å以上では
触媒利用率が低下してしまい、高い電池電圧は得られな
い。これらの触媒粒子は、カーボンブラック等の電導性
材料に担持されても良い。触媒の担持量は、触媒層シー
トを形成した状態で0.01〜5mg/cm2 であり、
より好ましくは0.1〜1mg/cm2 である。0.0
1mg/cm2 未満では有効的に触媒の性能が発揮でき
ず、5mg/cm2 以上ではコストが非常に大きくなる
ことと、性能的にも量相当分の効果が見られなくなる。
The particle size of the catalyst is preferably from 10 to 300 °, more preferably from 15 to 100 °. If it is less than 10 °, it is practically difficult to manufacture it. If it is more than 300 °, the catalyst utilization is reduced, and a high battery voltage cannot be obtained. These catalyst particles may be supported on a conductive material such as carbon black. The supported amount of the catalyst is 0.01 to 5 mg / cm 2 in a state where the catalyst layer sheet is formed,
More preferably, it is 0.1 to 1 mg / cm 2 . 0.0
If it is less than 1 mg / cm 2 , the performance of the catalyst cannot be effectively exhibited, and if it is 5 mg / cm 2 or more, the cost becomes extremely large, and the effect corresponding to the amount of the performance cannot be seen.

【0016】本発明に言う触媒層は、前記触媒材料、プ
ロトン伝導性ポリマー、カーボンブラック等の電導性材
料から構成されるものであり、必要に応じてPTFE等
の撥水性材料や結着剤が含まれていても良い。プロトン
伝導性ポリマーを触媒層内に分散させる方法としては、
上記触媒層構成材料を混合・成型し触媒層としても良い
し、予めプロトン伝導性ポリマー以外の他の構成材料を
混合・成型し触媒層とした後に、プロトン伝導性ポリマ
ーを含浸させても良い。導電性材料としては電子伝導性
物質であれば良く、例えば炭素材料として上記に挙げた
ファーネスブラック、チャンネルブラック、アセチレン
ブラック等のカーボンブラックの他、活性炭、黒鉛、ま
た各種金属も適用できるものである。
The catalyst layer referred to in the present invention is composed of the above-mentioned catalyst material, a conductive material such as a proton conductive polymer and carbon black. If necessary, a water repellent material such as PTFE or a binder is used. May be included. As a method of dispersing the proton conductive polymer in the catalyst layer,
The catalyst layer constituent material may be mixed and molded to form a catalyst layer, or a constituent material other than the proton conductive polymer may be mixed and molded in advance to form a catalyst layer, and then impregnated with a proton conductive polymer. Any conductive material may be used as long as it is an electron conductive material. Examples of the carbon material include carbon black such as furnace black, channel black, and acetylene black, as well as activated carbon, graphite, and various metals. .

【0017】パーフルオロスルホン酸等のプロトン伝導
性ポリマーは、ポリマー自体に結着剤としての機能も有
しており、触媒層内で触媒粒子、電導性粒子との充分な
安定性のあるマトリックスを形成させることは可能であ
る。また、結着剤としての機能の他に撥水性を付与させ
る目的から、例えばフッ素を含んだ各種樹脂を用いるこ
とも可能である。フッ素樹脂では、融点が400℃以下
のものが好ましく、例えば、ポリテトラフルオロエチレ
ン(PTFE)、テトラフルオロエチレン−パーフルオ
ロアルキルビニルエーテル共重合体などが挙げられる。
The proton conductive polymer such as perfluorosulfonic acid has a function as a binder in the polymer itself, and forms a sufficiently stable matrix with catalyst particles and conductive particles in the catalyst layer. It is possible to form. Further, for the purpose of imparting water repellency in addition to the function as a binder, for example, various resins containing fluorine can be used. The fluorine resin preferably has a melting point of 400 ° C. or lower, and examples thereof include polytetrafluoroethylene (PTFE) and a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer.

【0018】また、触媒層と固体高分子膜の接する界面
に、触媒層内のプロトン伝導性ポリマーや固体高分子膜
とは異なるEWのプロトン伝導性ポリマーの層を形成さ
せる時、特にはカソード側には固体高分子膜よりも高E
W、アノード側には固体高分子膜よりも低EWとするこ
とにより、親水性あるいは疎水性の差を利用し、燃料や
酸化剤の加湿が不充分な場合や電池の運転電流密度が低
い場合、あるいは運転停止時においても、膜内の水を保
持し、高いプロトン伝導性を維持させることも可能であ
る。この層の厚みは、0.05〜30μm、より好まし
くは0.1〜10μmである。0.05μm以下では、
上記の充分な機能の効果を得ることが出来ない。一方、
30μm以上では、抵抗が大きくなってしまい適さな
い。プロトン伝導性ポリマー層のEWは、少なくとも7
00以上であれば良く、より好ましくは800以上であ
る。そして、1500以下であることが好ましく、13
00以下であることがより好ましい。700以下では親
水性が高すぎて、水の円滑な移動が出来なくなり、15
00以上ではプロトン伝導性が低すぎるため、本発明の
効果を示し得なくなる。かかる界面のプロトン伝導性ポ
リマー層と固体高分子膜とのEWの差は、好ましくは2
0以上あれば本発明の効果を示しうるものであり、50
以上あればより好ましく、100以上あれば特に好まし
い。また、3種以上のプロトン伝導性ポリマーを含む場
合の最も近い数値同志のEWの差としては、20以上あ
れば本発明の効果を享受することができる。EWの差の
上限は、800以下であれば好ましく、600以下であ
ればより好ましく、400以下であれば特に好ましい。
When a layer of a proton conductive polymer in the catalyst layer or an EW proton conductive polymer different from that of the solid polymer membrane is formed at the interface where the catalyst layer and the solid polymer membrane are in contact with each other, particularly on the cathode side Has higher E than solid polymer membrane
W, by making the EW lower than that of the solid polymer membrane on the anode side, utilizing the difference in hydrophilicity or hydrophobicity, when the humidification of the fuel or oxidizing agent is insufficient or the operating current density of the battery is low Alternatively, even when the operation is stopped, it is also possible to retain water in the membrane and maintain high proton conductivity. The thickness of this layer is 0.05 to 30 μm, more preferably 0.1 to 10 μm. At 0.05 μm or less,
The effect of the above-mentioned sufficient function cannot be obtained. on the other hand,
If it is 30 μm or more, the resistance becomes large, which is not suitable. The EW of the proton conducting polymer layer should be at least 7
It is sufficient if it is 00 or more, and more preferably 800 or more. And it is preferably 1500 or less, and 13
More preferably, it is not more than 00. If it is less than 700, the hydrophilicity is too high and the smooth movement of water cannot be achieved.
If it is more than 00, the proton conductivity is too low, so that the effect of the present invention cannot be exhibited. The difference in EW between the proton conductive polymer layer and the solid polymer membrane at the interface is preferably 2
If the value is 0 or more, the effect of the present invention can be exhibited.
It is more preferable if it is at least 100, and particularly preferable if it is at least 100. In addition, the effect of the present invention can be enjoyed if the difference between the closest numerical values of the EWs when three or more proton conductive polymers are included is 20 or more. The upper limit of the difference in EW is preferably 800 or less, more preferably 600 or less, and particularly preferably 400 or less.

【0019】本発明において固体高分子電解質として用
いられる膜は、前記のプロトン伝導性ポリマーと同じ材
料を使用することができる。すなわち、含フッ素高分子
を骨格として少なくともスルホン酸基、カルボン酸基、
ホスホン酸基、及びリン酸基のうちから1種を有するも
のが好ましい。また、ポリエチレン等のポリオレフィン
膜にスルホン酸基やカルボン酸基を有する単量体をグラ
フト重合反応等で導入した膜も使用可能である。含フッ
素膜としては、例えば前記第一群のモノマーと前記第二
群のモノマーから選ばれた、第二群モノマーを必須とす
る2種以上、通常は2乃至3の共重合体である。これら
の膜には、より高いEWのフィルムで積層化することに
より機械強度を補強する方法の他、フィブリル状、織布
状、不織布状、多孔質シートのパーフルオロカーボン重
合体で補強することや、膜表面に無機酸化物あるいは金
属をコーティングすることにより補強することもでき
る。これらの膜のEWは、700以上であれば良く、よ
り好ましくは800以上である。そして、1500以下
であることが好ましく、1300以下であることがより
好ましい。700未満では、プロトン伝導性はより良く
なるものの膜の機械強度が低下するため、実用的ではな
い。1500以上では、機械強度はより向上するものの
プロトン伝導性が低くなり電池電圧の低下が生じるた
め、やはり好ましくない。
For the membrane used as the solid polymer electrolyte in the present invention, the same material as the above-mentioned proton conductive polymer can be used. That is, at least a sulfonic acid group, a carboxylic acid group, and a fluorinated polymer as a skeleton,
Those having one of a phosphonic acid group and a phosphoric acid group are preferred. Further, a membrane obtained by introducing a monomer having a sulfonic acid group or a carboxylic acid group into a polyolefin membrane such as polyethylene by a graft polymerization reaction or the like can also be used. The fluorinated film is, for example, a copolymer of two or more, usually two to three, essential from the second group of monomers selected from the first group of monomers and the second group of monomers. In addition to the method of reinforcing mechanical strength by laminating these films with a higher EW film, fibrils, woven fabrics, non-woven fabrics, reinforcement with a perfluorocarbon polymer of a porous sheet, It can also be reinforced by coating the film surface with an inorganic oxide or metal. The EW of these films may be 700 or more, more preferably 800 or more. And it is preferable that it is 1500 or less, and it is more preferable that it is 1300 or less. When the molecular weight is less than 700, the proton conductivity is improved, but the mechanical strength of the membrane is reduced, so that it is not practical. If it is more than 1500, the mechanical strength is further improved, but the proton conductivity is lowered and the battery voltage is lowered, which is not preferable.

【0020】固体高分子電解質膜のEWは、膜両面に接
する触媒層中に分散されるプロトン伝導性ポリマーのE
Wとの差が800以下であれば良く、600以内であれ
ばより好ましい。800以上では、膜と触媒層との密着
性が充分ではなくなるため好ましくない。触媒層は、一
般的に知られている各種方法−噴霧法、転写法、スクリ
ーン印刷法、ローリング法等により作製が可能である。
エタノール等の低級アルコールを主成分とする溶媒に溶
解させたプロトン伝導性ポリマー、触媒、電導性材料、
及び/または撥水性ポリマーからなる触媒分散液を充分
攪拌した後、例えば転写法では、PTFEのような円滑
なシート上に、ある形状の面積に触媒分散液を塗布・乾
燥することにより触媒層を形成させる。この時、少なく
とも2種類以上のプロトン伝導性ポリマーを、予めかか
る触媒分散液に順次あるいは同時に投入し、均一にプロ
トン伝導性ポリマーが分散された触媒層とすることが出
来る。また、別な形態としては、前記触媒層を繰り返し
重ねて形成させることにより、各々異なるプロトン伝導
性ポリマーの一種以上を分散させた触媒層を複数積層し
た触媒層とすることも出来る。また、膜に直接触媒分散
液を塗布させる方法や、あるいは、これらの組み合わせ
等様々な形態をとりうるものであり、上記の範囲に制限
されるものではない。
The EW of the solid polymer electrolyte membrane is the proton conductive polymer dispersed in the catalyst layer in contact with both sides of the membrane.
The difference from W may be 800 or less, and more preferably 600 or less. If it is more than 800, the adhesion between the film and the catalyst layer becomes insufficient, which is not preferable. The catalyst layer can be prepared by various generally known methods, such as a spray method, a transfer method, a screen printing method, and a rolling method.
Proton conductive polymer, catalyst, conductive material, dissolved in a solvent mainly composed of lower alcohol such as ethanol,
After sufficiently stirring the catalyst dispersion comprising the water-repellent polymer and / or, for example, in a transfer method, the catalyst dispersion is applied to a smooth sheet such as PTFE over a certain shape area, and dried to form a catalyst layer. Let it form. At this time, at least two or more types of proton conductive polymers are sequentially or simultaneously added to the catalyst dispersion in advance to form a catalyst layer in which the proton conductive polymers are uniformly dispersed. In another embodiment, the catalyst layer may be formed by stacking a plurality of catalyst layers in which one or more types of different proton conductive polymers are dispersed by repeatedly forming the catalyst layers. In addition, the present invention can take various forms such as a method of directly applying a catalyst dispersion to a membrane, or a combination thereof, and is not limited to the above range.

【0021】触媒層内に分散させるプロトン伝導性ポリ
マーの量は、触媒担持量に対し、重量比で0.1〜10
の範囲である。対触媒重量比0.1以下では、反応活性
点の低下により充分な触媒利用率が得られなくなる。一
方、同重量比が10以上になると、プロトン伝導性ポリ
マーによる親水性の影響が大きくなり、本発明の効果が
得られなくなる。次に、固体高分子電解質膜の両面に、
触媒層を形成させたシートの触媒層面を膜側にして重ね
合わせ、加温・加熱下、触媒層を固体高分子電解質膜に
接合させる。かかる接合時の圧力及び温度は、固体高分
子電解質膜、プロトン伝導性ポリマー、触媒、電導性材
料が相互に充分な密着性を付加される条件から選択され
るものである。特に、パーフルオロスルホン酸ポリマー
を固体高分子電解質膜として用いる場合、ガラス転移点
以上であれば良く、好ましい接合温度は120〜200
℃である。
The amount of the proton conductive polymer dispersed in the catalyst layer is 0.1 to 10 by weight based on the amount of the catalyst carried.
Range. If the weight ratio to the catalyst is 0.1 or less, a sufficient catalyst utilization cannot be obtained due to a decrease in the reaction active point. On the other hand, when the weight ratio is 10 or more, the effect of the hydrophilic property of the proton conductive polymer becomes large, and the effect of the present invention cannot be obtained. Next, on both sides of the solid polymer electrolyte membrane,
The sheets on which the catalyst layers are formed are overlapped with the catalyst layer side facing the membrane side, and the catalyst layers are joined to the solid polymer electrolyte membrane under heating and heating. The pressure and temperature at the time of such bonding are selected from the conditions under which the solid polymer electrolyte membrane, the proton conductive polymer, the catalyst, and the conductive material have sufficient adhesion to each other. In particular, when a perfluorosulfonic acid polymer is used as the solid polymer electrolyte membrane, the temperature should be equal to or higher than the glass transition point, and the preferable bonding temperature is 120 to 200.
° C.

【0022】プロトン伝導性ポリマーは、最終的にプロ
トン型でなければ充分な伝導性を得ることが出来ない
が、接合時における固体高分子膜やプロトン伝導性ポリ
マーの耐熱性を向上させるために、ナトリウムやカリウ
ム等の一価の金属イオン、あるいは二価、三価の金属に
置換して、熱処理を行ない、最終的にプロトン型にする
ことも有効な方法である。
The proton conductive polymer cannot obtain sufficient conductivity unless it is finally a proton type. However, in order to improve the heat resistance of the solid polymer membrane and the proton conductive polymer at the time of joining, It is also an effective method to substitute a monovalent metal ion such as sodium or potassium, or a divalent or trivalent metal, perform a heat treatment, and finally obtain a proton type.

【0023】触媒層を固体高分子膜に接合した後に、さ
らに触媒層支持体としてカーボンペーパーやカーボンク
ロス等の電気伝導性多孔質織布・不織布と接合、もしく
は重ね合わせることにより、膜・電極接合体として燃料
電池セルに組み込むことが出来る。カーボンペーパーや
カーボンクロスは、拡散層と同様に、ポリテトラフロロ
エチレン樹脂を含浸させることにより、必要に応じて撥
水性を付与しうる。電気伝導性多孔質織布や不織布の空
孔率は、50%以上あれば充分な物質交換の機能を有す
る。
After the catalyst layer is bonded to the solid polymer membrane, it is further bonded or superposed to an electrically conductive porous woven or nonwoven fabric such as carbon paper or carbon cloth as a support for the catalyst layer to form a membrane / electrode bonding. It can be incorporated into a fuel cell unit as a body. As in the case of the diffusion layer, carbon paper or carbon cloth can be provided with water repellency as necessary by impregnating with a polytetrafluoroethylene resin. If the porosity of the electrically conductive porous woven fabric or nonwoven fabric is 50% or more, it has a sufficient material exchange function.

【0024】[0024]

【発明の実施の形態】以下、本発明を実施例に基づいて
更に詳細に説明するが、本発明は実施例に制限されるも
のではない。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the examples.

【実施例】【Example】

(実施例1)40重量%の白金触媒担持カーボン(米国
E−TEK社製)に、プロトンタイプパーフルオロスル
ホン酸ポリマー樹脂の5重量%溶液(旭化成工業(株)
製、EW=910、溶媒組成はエタノール/水=50/
50)を、白金触媒とポリマーとの重量比が4対1とな
るように添加し、均一に分散させペースト状にした後
に、同じくEW=1030のプロトンタイプパーフルオ
ロスルホン酸ポリマー樹脂の5重量%溶液(旭化成工業
(株)製、溶媒組成は同上)をポリマー重量として同じ
量添加し、再び均一に分散させてペーストを調製した。
このペーストを200メッシュのスクリーンを用い、ポ
リテトラフロロエチレンシート上に塗布した後、大気雰
囲気中100℃で乾燥・固定化し、白金担持量0.2m
g/cm2の触媒シートを得た。
Example 1 A 5% by weight solution of a proton-type perfluorosulfonic acid polymer resin in 40% by weight of a platinum catalyst-supporting carbon (manufactured by E-TEK, USA) (Asahi Kasei Corporation)
EW = 910, solvent composition ethanol / water = 50 /
50) was added so that the weight ratio of the platinum catalyst to the polymer was 4: 1, and the mixture was uniformly dispersed to form a paste. Then, 5% by weight of a proton-type perfluorosulfonic acid polymer resin having the same EW of 1030 was used. A solution (manufactured by Asahi Kasei Kogyo Co., Ltd., solvent composition was the same as above) was added in the same amount as the polymer weight, and the mixture was dispersed uniformly again to prepare a paste.
This paste was applied on a polytetrafluoroethylene sheet using a 200-mesh screen, and then dried and fixed at 100 ° C. in an air atmosphere, and the platinum carrying amount was 0.2 m.
g / cm 2 of the catalyst sheet was obtained.

【0025】こうして得た触媒層シート2枚を向かい合
わせ、その間に、EW=950、厚みが100μmのパ
ーフルオロスルホン酸膜(旭化成工業(株)製)をはさ
み、150℃、圧力50kg/cm2 でホットプレスし
た後、両面のポリテトラフロロエチレンシートを剥が
し、膜・電極接合体を作製した。触媒層支持体として、
厚さ約400μmのカーボンクロス(E−TEK社製)
を用い、テトラフロロエチレン分散液(60重量%)に
浸漬した後、340℃でシンタリングを行い、カーボン
クロスに対し40重量%含浸させた。その空隙率は50
%であった。
The two catalyst layer sheets thus obtained are faced to each other, and a perfluorosulfonic acid membrane (manufactured by Asahi Kasei Kogyo Co., Ltd.) having an EW of 950 and a thickness of 100 μm is sandwiched between the catalyst layer sheets at 150 ° C. and a pressure of 50 kg / cm 2. After hot-pressing, the polytetrafluoroethylene sheets on both sides were peeled off to produce a membrane-electrode assembly. As a catalyst layer support,
Approximately 400 μm thick carbon cloth (manufactured by E-TEK)
After immersion in a tetrafluoroethylene dispersion (60% by weight), sintering was performed at 340 ° C. to impregnate the carbon cloth with 40% by weight. The porosity is 50
%Met.

【0026】これら膜・電極接合体と触媒層支持体を、
燃料電池単セル評価装置に組み込み、燃料に水素ガス、
酸化剤に空気ガスを用い、常圧、セル温度70℃で単セ
ル特性試験を行った。水素ガスは80℃で加湿を行な
い、また空気ガスは加湿せずそのままセルへ供給した。
0.5、1.0A/cm2 の電流密度の時、0.66
V、0.51Vがそれぞれ得られた。以下の実施例、比
較例も同じ膜・電極接合方法、拡散層、単セル運転条件
で試験を実施した。
The membrane / electrode assembly and the catalyst layer support are
Incorporated into a fuel cell single-cell evaluation device, hydrogen gas,
Using an air gas as the oxidizing agent, a single cell characteristic test was performed at normal pressure and a cell temperature of 70 ° C. Hydrogen gas was humidified at 80 ° C., and air gas was supplied to the cell without humidification.
At a current density of 0.5, 1.0 A / cm 2 , 0.66
V and 0.51 V were obtained. The following Examples and Comparative Examples were also tested under the same membrane / electrode bonding method, diffusion layer, and single cell operating conditions.

【0027】(実施例2)40重量%の白金触媒担持カ
ーボン(米国E−TEK社製)と、プロトンタイプパー
フルオロスルホン酸ポリマー樹脂の5重量%溶液(旭化
成工業(株)製、EW=950、溶媒組成はエタノール
/水=50/50)を、白金触媒とポリマーとの重量比
4対1で混合・攪拌した後、真空中100℃で乾燥さ
せ、ポリマー被覆白金触媒を予め作製した。さらに、こ
のポリマー被覆白金触媒と、EW=1030のプロトン
タイプパーフルオロスルホン酸ポリマー樹脂の5重量%
溶液(旭化成工業(株)製、溶媒組成は同上)を、白金
触媒とポリマーとの重量比4対1で混合し、均一に分散
させてペーストを調製した。後は、実施例1と同じ方法
で触媒シート化し、白金担持量0.2mg/cm2 を得
た。また、アノード触媒層は、実施例1と同じ手順で作
製した。0.5、1.0A/cm2 の電流密度の時、
0.66V、0.51Vがそれぞれ得られた。
Example 2 A 40% by weight platinum catalyst-supported carbon (manufactured by E-TEK, USA) and a 5% by weight solution of a proton-type perfluorosulfonic acid polymer resin (manufactured by Asahi Kasei Corporation, EW = 950) , A solvent composition of ethanol / water = 50/50) was mixed and stirred at a weight ratio of the platinum catalyst to the polymer of 4: 1, and dried at 100 ° C. in vacuum to prepare a polymer-coated platinum catalyst in advance. Further, the polymer-coated platinum catalyst and 5% by weight of a proton-type perfluorosulfonic acid polymer resin having an EW of 1030 were used.
The solution (manufactured by Asahi Chemical Industry Co., Ltd., solvent composition was the same as above) was mixed at a weight ratio of the platinum catalyst to the polymer of 4: 1 and uniformly dispersed to prepare a paste. Thereafter, a catalyst sheet was formed in the same manner as in Example 1 to obtain a platinum carrying amount of 0.2 mg / cm 2 . Further, the anode catalyst layer was manufactured in the same procedure as in Example 1. At a current density of 0.5, 1.0 A / cm 2 ,
0.66 V and 0.51 V were obtained, respectively.

【0028】(実施例3)実施例1のカソード触媒シー
ト上に、EW=1030のプロトンタイプパーフルオロ
スルホン酸ポリマー樹脂の5重量%溶液(同上)のみ
を、同じスクリーンを用いて塗布し、大気雰囲気中10
0℃で乾燥後、0.20mg/cm2 のポリマー層を形
成させた。一方、実施例1のアノード触媒シート上に
は、EW=910のプロトンタイプパーフルオロスルホ
ン酸ポリマー樹脂の5重量%溶液(同上)を用いて塗布
し、大気雰囲気中100℃で乾燥後、0.20mg/c
2 のポリマー層を形成させた。以下の、膜・電極接合
体作製以後の手順・方法は実施例1、2と同じとした。
0.5、1.0A/cm2 の電流密度の時、0.67
V、0.53Vがそれぞれ得られた。実施例3のセル構
造の模式図を図1に示す。
Example 3 On the cathode catalyst sheet of Example 1, only a 5% by weight solution of the proton-type perfluorosulfonic acid polymer resin having the EW = 1030 (same as above) was applied using the same screen, and air was applied. Atmosphere 10
After drying at 0 ° C., a polymer layer of 0.20 mg / cm 2 was formed. On the other hand, a 5% by weight solution of a proton-type perfluorosulfonic acid polymer resin having EW = 910 (same as above) was applied onto the anode catalyst sheet of Example 1, dried at 100 ° C. in an air atmosphere, and dried. 20mg / c
An m 2 polymer layer was formed. The following procedures and methods after production of the membrane / electrode assembly were the same as in Examples 1 and 2.
At a current density of 0.5, 1.0 A / cm 2 , 0.67
V and 0.53 V, respectively. FIG. 1 shows a schematic diagram of the cell structure of the third embodiment.

【0029】(比較例1)40重量%の白金触媒担持カ
ーボン(米国E−TEK社製)に、プロトンタイプパー
フルオロスルホン酸ポリマー樹脂の5重量%溶液(旭化
成工業(株)製、EW=910、溶媒組成はエタノール
/水=50/50)を、白金触媒とポリマーとの重量比
が2対1となるように添加し、均一に分散させてペース
トを調製した。このペーストを200メッシュのスクリ
ーンを用いて、ポリテトラフロロエチレンシート上に塗
布した後、大気雰囲気中100℃で乾燥・固定化し、白
金担持量0.2mg/cm2 の触媒シートを得た。0.
5、1.0A/cm2 の電流密度の時、0.53V、
0.25Vがそれぞれ得られた。
Comparative Example 1 A 5% by weight solution of a proton type perfluorosulfonic acid polymer resin (manufactured by Asahi Kasei Corporation, EW = 910) in 40% by weight of a platinum catalyst-supported carbon (manufactured by E-TEK, USA) And a solvent composition of ethanol / water = 50/50) was added so that the weight ratio of the platinum catalyst to the polymer was 2: 1, and the mixture was uniformly dispersed to prepare a paste. The paste was applied on a polytetrafluoroethylene sheet using a 200-mesh screen, and then dried and fixed at 100 ° C. in an air atmosphere to obtain a catalyst sheet having a platinum loading of 0.2 mg / cm 2 . 0.
5, at a current density of 1.0 A / cm 2 , 0.53 V,
0.25 V was obtained in each case.

【0030】[0030]

【発明の効果】以上のように、EWの異なる少なくとも
2種類のプロトン伝導性ポリマーを含む触媒層とするこ
とにより、触媒活性点近傍の高プロトン伝導性の低EW
ポリマーは電池反応を円滑に進める効果を果たし、一
方、高EWのポリマーは触媒層内の生成水を速やかに層
外へ排出させ、触媒へのガス供給を保持させる示す。こ
れらにより、低電流密度から高電流密度まで安定した電
池電圧が得られる。特に、電極面積が大型化し、セル内
でガス加湿条件が変動する時にも、本発明の電極や膜・
電極接合体を用いることにより、大きく改善されるもの
である。
As described above, by forming a catalyst layer containing at least two types of proton-conductive polymers having different EWs, a low proton-conductive low EW near the catalytically active point is obtained.
The polymer has the effect of promoting the battery reaction smoothly, while the polymer having a high EW shows that the generated water in the catalyst layer is quickly discharged out of the layer and the gas supply to the catalyst is maintained. As a result, a stable battery voltage can be obtained from a low current density to a high current density. In particular, even when the electrode area becomes large and the gas humidification conditions fluctuate in the cell, the electrode and the membrane of the present invention can be used.
The use of an electrode assembly is a significant improvement.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の膜・電極接合体を適用した固体高分子
型燃料電池のセル構造の模式図である。
FIG. 1 is a schematic diagram of a cell structure of a polymer electrolyte fuel cell to which the membrane / electrode assembly of the present invention is applied.

【符号の説明】[Explanation of symbols]

1 固体高分子膜 2 アノード 3 カソード 4 膜・電極接合体 5 触媒層支持体 6 セパレータ 7 触媒層 8 プロトン伝導性ポリマー層 DESCRIPTION OF SYMBOLS 1 Solid polymer membrane 2 Anode 3 Cathode 4 Membrane electrode assembly 5 Catalyst layer support 6 Separator 7 Catalyst layer 8 Proton conductive polymer layer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 固体高分子型燃料電池用ガス拡散電極に
おいて、その触媒層が、EWの異なる少なくとも2種類
のプロトン伝導性ポリマーを含むことを特徴とする電
極。
1. A gas diffusion electrode for a polymer electrolyte fuel cell, wherein the catalyst layer contains at least two types of proton conductive polymers having different EWs.
【請求項2】 前記プロトン伝導性ポリマーが、スルホ
ン酸基を有するパーフルオロカーボン重合体である請求
項1記載の電極。
2. The electrode according to claim 1, wherein the proton conductive polymer is a perfluorocarbon polymer having a sulfonic acid group.
【請求項3】 固体高分子型燃料電池用膜・電極接合体
において、EWが700〜1500である固体高分子膜
と、EWの異なる少なくとも2種類のプロトン電導性ポ
リマーを含む触媒層を有する電極とからなることを特徴
とする膜・電極接合体。
3. An electrode comprising a solid polymer membrane having an EW of 700 to 1500 and a catalyst layer containing at least two types of proton conductive polymers having different EWs, in a membrane / electrode assembly for a polymer electrolyte fuel cell. A membrane / electrode assembly comprising:
【請求項4】 前記プロトン伝導性ポリマーが、スルホ
ン酸基を有するパーフルオロカーボン重合体である請求
項3記載の膜・電極接合体。
4. The membrane / electrode assembly according to claim 3, wherein the proton conductive polymer is a perfluorocarbon polymer having a sulfonic acid group.
【請求項5】 固体高分子膜と触媒層が接する界面に、
固体高分子膜と異なるEWのプロトン伝導性ポリマーの
層を有する請求項3又は請求項4記載の膜・電極接合
体。
5. An interface where the solid polymer membrane and the catalyst layer are in contact with each other,
5. The membrane-electrode assembly according to claim 3, further comprising a layer of a proton conductive polymer having an EW different from that of the solid polymer membrane.
JP10085497A 1997-04-04 1997-04-04 Electrode and membrane / electrode assembly for polymer electrolyte fuel cell Expired - Lifetime JP3714766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10085497A JP3714766B2 (en) 1997-04-04 1997-04-04 Electrode and membrane / electrode assembly for polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10085497A JP3714766B2 (en) 1997-04-04 1997-04-04 Electrode and membrane / electrode assembly for polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JPH10284087A true JPH10284087A (en) 1998-10-23
JP3714766B2 JP3714766B2 (en) 2005-11-09

Family

ID=14284906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10085497A Expired - Lifetime JP3714766B2 (en) 1997-04-04 1997-04-04 Electrode and membrane / electrode assembly for polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP3714766B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002037585A1 (en) 2000-10-31 2002-05-10 Asahi Kasei Kabushiki Kaisha Electrode for solid polymer type fuel cell
JP2003059494A (en) * 2001-08-09 2003-02-28 Asahi Glass Co Ltd Method for operating solid polymer fuel cell and fuel cell system
WO2003088386A1 (en) * 2002-04-17 2003-10-23 Nec Corporation Fuel cell, electrode for fuel cell, and method for manufacturing them
JP2006286330A (en) * 2005-03-31 2006-10-19 Equos Research Co Ltd Fuel cell and catalyst layer therefor
EP2062933A1 (en) 2007-11-26 2009-05-27 Solvay Solexis S.p.A. Fluoroionomer liquid composition
DE112007001894T5 (en) 2006-08-25 2009-06-25 Sumitomo Chemical Company, Ltd. Membrane electrode unit for a fuel cell and fuel cell
DE112007002033T5 (en) 2006-08-25 2009-09-10 Sumitomo Chemical Company, Limited Membrane electrode assembly for a fuel cell and fuel cell
JP2012064509A (en) * 2010-09-17 2012-03-29 Toppan Printing Co Ltd Electrode catalyst layer, method of producing the same, and solid polymer fuel cell using electrode catalyst layer
WO2013069380A1 (en) * 2011-11-11 2013-05-16 日産自動車株式会社 Fuel cell electrode catalyst layer, fuel cell electrode, fuel cell membrane-electrode assembly, and fuel cell
US9923223B2 (en) 2012-12-21 2018-03-20 Audi Ag Electrolyte membrane, dispersion and method therefor
US9923224B2 (en) 2012-12-21 2018-03-20 Audi Ag Proton exchange material and method therefor
JP2018060714A (en) * 2016-10-06 2018-04-12 凸版印刷株式会社 Method for manufacturing electrode catalyst layer for fuel cell, method for manufacturing catalyst ink, catalyst ink, and electrode catalyst layer for fuel cell
US10505197B2 (en) 2011-03-11 2019-12-10 Audi Ag Unitized electrode assembly with high equivalent weight ionomer
US11239471B2 (en) 2016-09-30 2022-02-01 Ballard Power Systems Inc. Cathode electrode design for electrochemical fuel cells

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05251086A (en) * 1992-03-09 1993-09-28 Hitachi Ltd Fuel cell and its applied device
JPH06231781A (en) * 1993-02-03 1994-08-19 Asahi Glass Co Ltd Solid high polymer electrolytic type fuel cell
JPH06251779A (en) * 1993-02-24 1994-09-09 Asahi Chem Ind Co Ltd Formation of joined body of solid polymer electrolyte layer and electrode for fuel cell
JPH06275282A (en) * 1993-03-18 1994-09-30 Hitachi Ltd Fuel cell
JPH06333574A (en) * 1993-03-26 1994-12-02 Asahi Chem Ind Co Ltd Electrode catalyst coating material for proton exchange film type fuel cell
JPH07135004A (en) * 1993-11-12 1995-05-23 Toyota Motor Corp Solid high molecular electrolytic film and fuel cell
JPH07254419A (en) * 1994-03-15 1995-10-03 Tanaka Kikinzoku Kogyo Kk Electrode for polyelectrolyte type electrochemical cell and its manufacture
JPH09213350A (en) * 1996-01-30 1997-08-15 Asahi Glass Co Ltd Fuel cell with solid polymer electrolyte
JPH10513006A (en) * 1995-10-06 1998-12-08 ザ ダウ ケミカル カンパニー Flow field structure for fuel cell membrane electrode assembly

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05251086A (en) * 1992-03-09 1993-09-28 Hitachi Ltd Fuel cell and its applied device
JPH06231781A (en) * 1993-02-03 1994-08-19 Asahi Glass Co Ltd Solid high polymer electrolytic type fuel cell
JPH06251779A (en) * 1993-02-24 1994-09-09 Asahi Chem Ind Co Ltd Formation of joined body of solid polymer electrolyte layer and electrode for fuel cell
JPH06275282A (en) * 1993-03-18 1994-09-30 Hitachi Ltd Fuel cell
JPH06333574A (en) * 1993-03-26 1994-12-02 Asahi Chem Ind Co Ltd Electrode catalyst coating material for proton exchange film type fuel cell
JPH07135004A (en) * 1993-11-12 1995-05-23 Toyota Motor Corp Solid high molecular electrolytic film and fuel cell
JPH07254419A (en) * 1994-03-15 1995-10-03 Tanaka Kikinzoku Kogyo Kk Electrode for polyelectrolyte type electrochemical cell and its manufacture
JPH10513006A (en) * 1995-10-06 1998-12-08 ザ ダウ ケミカル カンパニー Flow field structure for fuel cell membrane electrode assembly
JPH09213350A (en) * 1996-01-30 1997-08-15 Asahi Glass Co Ltd Fuel cell with solid polymer electrolyte

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7846614B2 (en) 2000-10-31 2010-12-07 Asahi Kasei Kabushiki Kaisha Electrode for solid polymer electrolyte fuel cell
WO2002037585A1 (en) 2000-10-31 2002-05-10 Asahi Kasei Kabushiki Kaisha Electrode for solid polymer type fuel cell
JP2003059494A (en) * 2001-08-09 2003-02-28 Asahi Glass Co Ltd Method for operating solid polymer fuel cell and fuel cell system
WO2003088386A1 (en) * 2002-04-17 2003-10-23 Nec Corporation Fuel cell, electrode for fuel cell, and method for manufacturing them
JP2006286330A (en) * 2005-03-31 2006-10-19 Equos Research Co Ltd Fuel cell and catalyst layer therefor
DE112007001894T5 (en) 2006-08-25 2009-06-25 Sumitomo Chemical Company, Ltd. Membrane electrode unit for a fuel cell and fuel cell
DE112007002033T5 (en) 2006-08-25 2009-09-10 Sumitomo Chemical Company, Limited Membrane electrode assembly for a fuel cell and fuel cell
JP2011505444A (en) * 2007-11-26 2011-02-24 ソルヴェイ・ソレクシス・エッセ・ピ・ア Fluoroionomer liquid composition
EP2062933A1 (en) 2007-11-26 2009-05-27 Solvay Solexis S.p.A. Fluoroionomer liquid composition
US8409766B2 (en) 2007-11-26 2013-04-02 Solvay Solexis, S.P.A. Fluoroionomer liquid composition
JP2012064509A (en) * 2010-09-17 2012-03-29 Toppan Printing Co Ltd Electrode catalyst layer, method of producing the same, and solid polymer fuel cell using electrode catalyst layer
US10505197B2 (en) 2011-03-11 2019-12-10 Audi Ag Unitized electrode assembly with high equivalent weight ionomer
WO2013069380A1 (en) * 2011-11-11 2013-05-16 日産自動車株式会社 Fuel cell electrode catalyst layer, fuel cell electrode, fuel cell membrane-electrode assembly, and fuel cell
JPWO2013069380A1 (en) * 2011-11-11 2015-04-02 日産自動車株式会社 Fuel cell electrode catalyst layer, fuel cell electrode, fuel cell membrane electrode assembly, and fuel cell
US9847532B2 (en) 2011-11-11 2017-12-19 Nissan Motor Co., Ltd. Fuel cell electrode catalyst layer, fuel cell electrode, fuel cell membrane electrode assembly and fuel cell having a proton-conductive material coated on a catalyst thereof
US9923223B2 (en) 2012-12-21 2018-03-20 Audi Ag Electrolyte membrane, dispersion and method therefor
US9923224B2 (en) 2012-12-21 2018-03-20 Audi Ag Proton exchange material and method therefor
US11239471B2 (en) 2016-09-30 2022-02-01 Ballard Power Systems Inc. Cathode electrode design for electrochemical fuel cells
JP2018060714A (en) * 2016-10-06 2018-04-12 凸版印刷株式会社 Method for manufacturing electrode catalyst layer for fuel cell, method for manufacturing catalyst ink, catalyst ink, and electrode catalyst layer for fuel cell

Also Published As

Publication number Publication date
JP3714766B2 (en) 2005-11-09

Similar Documents

Publication Publication Date Title
JP4023903B2 (en) Membrane / electrode assembly for polymer electrolyte fuel cells
US7846614B2 (en) Electrode for solid polymer electrolyte fuel cell
CN1974639B (en) Polymer electrolyte membrane for fuel cell and fuel cell system
JP5066998B2 (en) Membrane electrode assembly for polymer electrolyte fuel cells
JP4090108B2 (en) Membrane / electrode assembly for polymer electrolyte fuel cells
JPH1140172A (en) Method for producing film-electrode joined body for fuel cell
JP3714766B2 (en) Electrode and membrane / electrode assembly for polymer electrolyte fuel cell
JP5153130B2 (en) Membrane electrode assembly
JP2003203648A (en) Solid polymer electrolyte compound membrane, membrane /electrode joint body, solid polymer fuel cell using the sam
JP2003178780A (en) Polymer electrolyte type fuel cell system and operating method of polymer electrolyte type fuel cell
JP2005108770A (en) Manufacturing method of electrolyte membrane electrode joint body
JPH06295729A (en) High performance high polymer electrolyte type fuel cell
JPH11135136A (en) Solid poly electrolyte type fuel cell
JPH06203840A (en) Solid polyelectrolyte fuel cell
JP2004273257A (en) Electrode catalyst layer for fuel cell
JP4338491B2 (en) Method for producing gas diffusion layer for polymer electrolyte fuel cell
JPH06342667A (en) High molecular type fuel cell
JP2006085984A (en) Mea for fuel cell and fuel cell using this
JP4649094B2 (en) Manufacturing method of membrane electrode assembly for fuel cell
WO2008041622A1 (en) Membrane electrode assembly and method for producing the same
JP4529345B2 (en) Method for producing polymer electrolyte fuel cell
JP2001126737A (en) Electrode for a fuel cell, method for preparing the fuel cell, and the fuel cell
JP2006059661A (en) Solid polymer fuel cell
JPH06342666A (en) Solid high molecular type fuel cell
JP2004349180A (en) Membrane electrode assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050621

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050823

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130902

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term