JP2004349180A - Membrane electrode assembly - Google Patents

Membrane electrode assembly Download PDF

Info

Publication number
JP2004349180A
JP2004349180A JP2003146820A JP2003146820A JP2004349180A JP 2004349180 A JP2004349180 A JP 2004349180A JP 2003146820 A JP2003146820 A JP 2003146820A JP 2003146820 A JP2003146820 A JP 2003146820A JP 2004349180 A JP2004349180 A JP 2004349180A
Authority
JP
Japan
Prior art keywords
value
membrane
electrode
ion
electrolyte membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003146820A
Other languages
Japanese (ja)
Inventor
Masaki Ando
雅樹 安藤
Takumi Taniguchi
拓未 谷口
Mitsuyasu Kawahara
光泰 川原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003146820A priority Critical patent/JP2004349180A/en
Publication of JP2004349180A publication Critical patent/JP2004349180A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a membrane electrode assembly capable of maintaining a constant power generation property even if continuous operation is required under different environments. <P>SOLUTION: The membrane electrode assembly 1 comprises an electrolyte membrane 10 made of an ion-exchange resin, and a catalyst layer (fuel electrode 20, air electrode 30) arranged on each surface of the electrolyte membrane having a catalyst-carrying conductor and an ion-exchange resin. The relation of an EW value:A of the ion-exchange resin in the catalyst-carrying conductor forming the fuel electrode 20 to which fuel gas is supplied, and an EW value:B of the electrolyte membrane 10, and an EW value:C of the ion-exchange resin in the catalyst layer forming the air electrode 30 is set to A<B<C. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は燃料電池、特に固体高分子型燃料電池を形成するのに用いられる膜電極接合体に関する。
【0002】
【従来の技術】
図5は、固体高分子型燃料電池の要部を示しており、膜電極接合体(MEA:Membrane−Electrode Assembly)1がセパレータ2で挟持されて多数配置されている。膜電極接合体1は、イオン交換樹脂からなる電解質膜10の両面に、触媒担持導電体とイオン交換樹脂を有する触媒層4a,4bが配置されて構成され、さらに、その上にガス拡散層5a,5bが積層される。触媒層4aとガス拡散層5aとで一方の電極(例えば燃料極20)とされ、また、触媒層4bとガス拡散層5bとで他方の電極(例えば空気極30)とされる。セパレータ2に形成された流路を介して、燃料極20には燃料ガス(水素)が、また、空気極30には酸化ガス(酸素、通常は空気)が供給される。
【0003】
膜電極接合体1における燃料極(陰極)20と空気極(陽極)30で進行する反応式は、次のとおりである。
燃料極(陰極):(1/2)H → H+e ・・・式1
空気極(陽極):2H+e+(1/2)O → HO・・・式2
【0004】
燃料極20で式1の反応式により生成した水素イオンがH(+HO)の水和状態で電解質膜(陽イオン交換膜)を透過して空気極30に至り、式2の反応式が進行する。このように水素イオンがH(+HO)の水和状態で電解質膜10を透過する都合上、燃料電池の電池特性の向上には、電解質膜10のイオン導電率の向上が不可欠である。このイオン導電率は、水素イオンに対するイオン交換基、例えばスルホン基,カルボキシル基の含有mol数や膜厚,膜中水分量(吸水量)の影響を受ける。具体的には、イオン交換基のmol数が少なかったり、膜厚が厚かったり、あるいは膜中水分量が不足すると、電解質膜10のイオン導電率の低下を招き結果的には発電性能を低下させてしまう。
【0005】
従って、発電性能の低下を防止するために、水素ガスを水蒸気により加湿して供給することで電解質膜を適当な吸水状態においたり、膜厚を薄くしたり、あるいは上記のイオン交換基の含有mol数を高めることが一般に行なわれている。このイオン交換基の含有mol数は、イオン交換基1mol当たりのイオン交換樹脂乾燥重量をEW値として定義すれば、このイオン交換基当量重量で規定することができる。すなわち、イオン交換基当量重量(equivalent weight:本発明でこれをEWと略称する)の値が小さければイオン交換基の含有mol数が大きくなり膜のイオン導電率は高くなり、EW値が大きければ、反対にイオン交換基の含有mol数が小さくなって膜のイオン導電率は低くなる。また、EWの値が小さければイオン交換基の含有mol数が大きいので、吸水率をも高めてガス透過性を向上させることができる。よって、EW値が小さい陽イオン交換膜を電解質膜に使用することが望ましい。
【0006】
しかしながら、EW値が小さい陽イオン交換膜を電解質膜に使用した場合に、次のような問題点が指摘される。EW値を小さくするとイオン交換基が多くなりイオン導電率,吸水率,ガス透過性等は向上するが、イオン交換基が膜中に多くなるに従って膜の結晶性が崩れて膜強度が低下する。膜強度の低下は燃料電池を構成する耐久性の低下につながるので、膜強度を確保するために、EW値が小さい陽イオン交換膜を使用できない。そのために、燃料電池の電解質膜として実用されている陽イオン交換膜ではEW値の下限値は通常1100程度とされているが、EW値がこの1100よりも小さい陽イオン交換膜を使用した場合には、膜強度の確保のために膜をある程度まで厚くせざるを得ず、EW値が小さいにもかかわらず膜厚の増加分、膜を構成するイオン導電率等が低下するのを否めない。
【0007】
燃料極および空気極の両電極(両触媒層)における前述の反応式を円滑化するために、両触媒層を、触媒担持導電体を電解質膜の陽イオン交換膜と同一のイオン交換樹脂で被覆することが提案されており、これにより前述の反応式の円滑化ならびに促進が図られる(例えば、特許文献1:特開平5−36418号公報)。しかし、前記のように電解質膜の強度を確保するためにそのEW値の下限値は1100程度とせざるを得ず、両触媒層のEW値を同じ程度のものとすると、良好な発電効率は得られない。
【0008】
高分子陽イオン交換膜からなる電解質膜の強度確保と発電率の向上の両立を図ることを目的に、特許文献2:特開平7−135004号公報では、図4に示すように、燃料極20と空気極30との間に、イオン交換樹脂からなる電解質膜10を挟持してなる膜電極接合体1において、燃料極20と空気極30との双方の触媒層4a,4bのEW値を、電解質膜10のEW値より小さい値とすることが提案されている。具体的には、触媒層4a,4bは、触媒として白金51を担持したカーボン粒子(触媒担持導電体 )52とイオン交換樹脂53とで構成され、イオン交換樹脂53のEW値は900、電解質膜10のEW値は1100とされている。燃料極20を構成する触媒層4aのEW値:A,電解質膜10のEW値:B,空気極30を構成する触媒層4bのEW値:C,とすると、その関係は、A<B>Cとなる。これにより、触媒層は小さなEW値であることから、高いイオン導電率で高い吸水状態とすることができ、電極における反応をより促進させることが可能となる。一方、電解質膜のEW値は比較して高い値となるので、膜強度を確保することができる利点がある。
【0009】
【特許文献1】
特開平5−36418号公報
【特許文献2】
特開平7−135004号公報
【0010】
【発明が解決しようとする課題】
本発明者らは、固体高分子型燃料電池での膜電極接合体において、前記EW値が発電特性にどのような影響を与えるかについて、継続して実験と研究を行ってきているが、その過程で、運転条件が大きくは変化しない環境下では、図4に示した膜電極接合体を持つ燃料電池、すなわち、燃料極20を構成する触媒層4aのEW値:A,電解質膜10のEW値:B,空気極30を構成する触媒層4bのEW値:C,としたときに、その関係が、A<B>Cとされている膜電極接合体を持つ燃料電池は、EW値をすべて等しくしたものと比較して、良好な発電特性を示すが、運転条件が種々変化する環境下では、発電特性が変動したり、電池寿命が短くなることを経験した。
【0011】
すなわち、高加湿、高電流密度域での運転が長期間継続すると、低いEW値である空気極30に過剰に生成水が滞留してフラッティングを生じる場合があり、電圧低下の一因となる。運転条件が変化して低加湿下での運転状態となると、高いEW値である電解質膜10中の水分が空気極30と燃料極20の双方に移動(拡散)して電解質膜10が乾燥状態となって、発電性能の低下を引き起こす。燃料電池の運転環境は、特に自動車の駆動源として用いるような場合には大きく変化するものであり、異なった運転環境下でも、発電性能があまり変化しないことが望まれる。
本発明は、上記のような観点から、さらに改良された膜電極接合体を得ることを目的とする。
【0012】
【課題を解決するための手段】
上記の課題を解決するために、本発明では、イオン交換樹脂からなる電解質膜と、電解質膜の両面に配置され触媒担持導電体とイオン交換樹脂を有する触媒層とを少なくとも備えた膜電極接合体において、イオン交換基1mol当たりのイオン交換樹脂乾燥重量をEW値として定義したときに、燃料ガスが供給される燃料極を構成する触媒層中のイオン交換樹脂のEW値:A,電解質膜のEW値:B,空気極を構成する触媒層中のイオン交換樹脂のEW値:C,の関係を、A<B<Cとすることとした。
【0013】
本発明による膜電極接合体では、電解質膜のEW値Bは空気極を構成する触媒層中のイオン交換樹脂のEW値Cよりも小さく、空気極での生成水は電解質膜側へ逆拡散する傾向にある。そのために、高加湿条件、高電流密度域での運転環境下で生成される多量の生成水は電解質膜側へ逆拡散し、さらに、燃料極を構成する触媒層中のイオン交換樹脂のEW値Aは電解質膜のEW値Bよりも小さいために、逆拡散してきた生成水は触媒層から燃料極側へさらに逆拡散する。それにより、空気極でのフラッティングを確実に抑制することができる。一方、低加湿条件での運転環境となったときにも、空気極での生成水が電解質膜側へ逆拡散する傾向は維持されるので、電解質膜が過度に乾燥状態になる、いわゆるドライアップは回避でき、一定の発電性能を維持することができる。
【0014】
そのために、本発明による膜電極接合体を備えた燃料電池は、異なった環境下での継続運転が求められる場合でも、一定の発電性能を常に維持することができるようになり、自動車などに搭載する燃料電池としてきわめて実用性の高いものとなる。
【0015】
本発明による膜電極接合体において、電解質膜および電極は、EW値がそれぞれ異なる点を除いて、従来知られているものと同様であってよい。例えば、電解質膜は適宜の陽イオン交換膜であってよく、フッ素系スルホン酸高分子樹脂の場合には、そのモノマー(テトラフルオロエチレンと、フルオロスルホニル基を含んだパーフルオロビニルエーテル)の共重合および加水分解を経て形成されるので、これらモノマーの量や重合度等を変えることで所望するEW値(例えば、EW値900)を得ることができる。
【0016】
燃料極と空気極を構成する触媒層は、触媒として例えば白金を所定量担持したカーボン粒子を、所望のEW値(例えば、EW値700とEW値1000)を持つ同様な陽イオン交換樹脂(電解質)を含んだ溶液中に徐々に加えて、ペースト状のカーボン粒子懸濁液を得て、これを拡散層の片面に塗布して乾燥させることにより得られる。
【0017】
そして、例えばEW値900である電解質膜10を、例えばイオン交換樹脂のEW値700である燃料極20と、例えばイオン交換樹脂のEW値1000である空気極30との間に挟持し、これらをホットプレスすることで、図1に例示すような、本発明による膜電極接合体1Aが得られる。
【0018】
【実施例】
以下、実施例と比較例により本発明を説明する。
図1に示す構成の膜電極接合体1Aを作った。電解質膜10は単一膜であり、その両側の燃料極20および空気極30とを配置した。燃料極20および空気極30は、いずれも拡散層と触媒層とから構成され、拡散層は、はっ水処理が施されてポリ四ふっ化エチレンを50wt%含有するカーボン粒子をカーボン繊維で織布されたカーボンクロス(厚さ0.4mm)に塗り込むことで作製した。
【0019】
触媒層は、触媒として白金を50wt%担持したカーボン粒子(Pt0.4mg/cm)を凝集・積層したものであり、次のようにして作製した。まず、陽イオン交換樹脂溶液(当該樹脂の固形分5wt%をプロパノール,水の混合溶液に配合した溶液)に上記カーボン粒子を徐々に加え、樹脂固形分が1mg/cm相当となるまでカーボン粒子を混合する。そして、ペースト状のカーボン粒子懸濁液を得て、これを拡散層の片面に塗布して乾燥させてカーボン粒子を陽イオン交換樹脂で固定し、触媒層とした。用いた陽イオン交換樹脂溶液は、フッ素系スルホン酸高分子樹脂であり、そのEW値は燃料極20側の触媒層では700、空気極30側の触媒層では1000とした。
【0020】
電解質膜10は、EW値が900で膜厚が30μmの陽イオン交換膜であるパーフルオロカーボンスルホン酸高分子膜のみからなる単一膜である。なお、この電解質膜10を、EW値が65乃至1500となるようテトラフルオロエチレンとパーフルオロビニルエーテルとの共重合および加水分解を経て製膜することもできる。そして、この電解質膜10を燃料極20と空気極30との間に挟持し、これらをホットプレス(120℃,100kg/cm)することで図1に示す膜電極積層体1Aを完成させた。
【0021】
完成した膜電極積層体1Aを用いた燃料電池の性能評価を行った。対比する燃料電池は、燃料極20および空気極30における触媒層の陽イオン交換樹脂が、電解質膜10のEW値と同一(EW値900)の陽イオン交換樹脂である比較例燃料電池1(比較例1)と、燃料極20および空気極30における触媒層の陽イオン交換樹脂のEW値が共に700である比較例燃料電池2(比較例2)の二つである。
【0022】
各燃料電池について、80℃フル加湿でのI−V特性を調べた。その結果を図2に示す。この図2から明らかなように、比較例1,2の燃料電池では、高電流密度においてフラッティングによるセル電圧低下が見られるが、実施例(本発明による燃料電池)においては電圧の低下が少ない。これは、EW値を請求項に記載のように傾斜させたことにより、燃料極側への生成水の逆拡散が促進されたことによると解される。
【0023】
各燃料電池について、低加湿条件でのセル電圧のセル温度に対する依存性を調べた。図3に示すように、実施例では比較例1,2よりもセル電圧が高く、より高温で運転できていることがわかる。これも上記と同様、生成水の逆拡散が促進されたことによりドライアップが生じることなく、電解質膜がより保温されているためである。
【0024】
【発明の効果】
上記のように、本発明による膜電極接合体を備えた燃料電池は、異なった環境下での継続した運転が求められる場合でも、一定の発電性能を常に維持することが可能となり、自動車などに搭載する燃料電池としてきわめて実用性の高いものとなる。
【図面の簡単な説明】
【図1】本発明による膜電極接合体を模式的に示す図。
【図2】実施例と比較例での電流−電圧曲線を示す図。
【図3】実施例と比較例における低加湿条件でのセル電圧のセル温度に対する依存性を示すグラフ。
【図4】従来知られた膜電極接合体の一例を模式的に示す図。
【図5】固体高分子型燃料電池の要部を模式的に示す図。
【符号の説明】
10…電解質膜、20…燃料極、30…空気極
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a membrane electrode assembly used to form a fuel cell, particularly a polymer electrolyte fuel cell.
[0002]
[Prior art]
FIG. 5 shows a main part of a polymer electrolyte fuel cell, in which a large number of membrane electrode assemblies (MEAs) 1 are sandwiched by separators 2 and arranged. The membrane electrode assembly 1 is configured by arranging catalyst layers 4a and 4b having a catalyst-carrying conductor and an ion-exchange resin on both surfaces of an electrolyte membrane 10 made of an ion-exchange resin, and further having a gas diffusion layer 5a thereon. , 5b are stacked. The catalyst layer 4a and the gas diffusion layer 5a form one electrode (for example, the fuel electrode 20), and the catalyst layer 4b and the gas diffusion layer 5b form the other electrode (for example, the air electrode 30). Fuel gas (hydrogen) is supplied to the fuel electrode 20 and oxidizing gas (oxygen, usually air) is supplied to the air electrode 30 via a flow path formed in the separator 2.
[0003]
Reaction formulas that proceed at the fuel electrode (cathode) 20 and the air electrode (anode) 30 in the membrane electrode assembly 1 are as follows.
Fuel electrode (cathode) :( 1/2) H 2 → H + + e - ··· Formula 1
Air electrode (anode): 2H + + e + (1/2) O 2 → H 2 O Formula 2
[0004]
The hydrogen ions generated by the reaction formula of the formula 1 at the fuel electrode 20 pass through the electrolyte membrane (cation exchange membrane) in the hydrated state of H + (+ H 2 O) to reach the air electrode 30, and the reaction formula of the formula 2 Progresses. As described above, since hydrogen ions permeate the electrolyte membrane 10 in the hydrated state of H + (+ H 2 O), it is indispensable to improve the ionic conductivity of the electrolyte membrane 10 to improve the cell characteristics of the fuel cell. . The ionic conductivity is affected by the number of moles of ion-exchange groups, for example, sulfone groups and carboxyl groups, the film thickness, and the amount of water in the film (water absorption) with respect to hydrogen ions. Specifically, when the number of moles of the ion exchange group is small, the film thickness is large, or the amount of water in the film is insufficient, the ionic conductivity of the electrolyte membrane 10 is reduced, and as a result, the power generation performance is reduced. Would.
[0005]
Therefore, in order to prevent a decrease in power generation performance, the electrolyte membrane is kept in an appropriate water-absorbing state by reducing the thickness of the electrolyte membrane by supplying hydrogen gas with water vapor and supplied, or the above-mentioned ion exchange group-containing mol It is common to increase the number. The number of moles of the ion-exchange groups can be defined by the equivalent weight of the ion-exchange groups if the dry weight of the ion-exchange resin per 1 mol of the ion-exchange groups is defined as the EW value. That is, if the value of ion exchange group equivalent weight (equivalent weight: this is abbreviated as EW in the present invention) is small, the number of moles of the ion exchange group is increased, and the ionic conductivity of the membrane is increased. Conversely, the number of moles of the ion-exchange group is reduced, and the ionic conductivity of the membrane is lowered. Further, when the value of EW is small, the number of moles of the ion exchange group is large, so that the water absorption can be increased and the gas permeability can be improved. Therefore, it is desirable to use a cation exchange membrane having a small EW value for the electrolyte membrane.
[0006]
However, when a cation exchange membrane having a small EW value is used for the electrolyte membrane, the following problems are pointed out. When the EW value is reduced, the number of ion-exchange groups increases and the ionic conductivity, water absorption, gas permeability and the like are improved. However, as the number of ion-exchange groups increases in the film, the crystallinity of the film deteriorates and the film strength decreases. Since a decrease in membrane strength leads to a decrease in durability of the fuel cell, a cation exchange membrane having a small EW value cannot be used to secure membrane strength. For this reason, the lower limit of the EW value is generally set to about 1100 in a cation exchange membrane practically used as an electrolyte membrane of a fuel cell. However, when a cation exchange membrane having an EW value smaller than 1100 is used. However, in order to secure the film strength, the film must be thickened to a certain extent, and it is unavoidable that the ion conductivity and the like constituting the film are reduced by the increase in the film thickness despite the small EW value.
[0007]
In order to facilitate the above-mentioned reaction formulas at both the fuel electrode and the air electrode (both catalyst layers), both catalyst layers are coated with a catalyst-supporting conductor with the same ion exchange resin as the cation exchange membrane of the electrolyte membrane. It has been proposed that the above-mentioned reaction formula be smoothed and promoted (for example, Patent Document 1: JP-A-5-36418). However, as described above, in order to secure the strength of the electrolyte membrane, the lower limit of the EW value must be about 1100, and if the EW values of both catalyst layers are the same, a good power generation efficiency can be obtained. I can't.
[0008]
Patent Literature 2: Japanese Patent Application Laid-Open No. Hei 7-135004 discloses a fuel electrode 20 as shown in FIG. 4 for the purpose of ensuring the strength of an electrolyte membrane composed of a polymer cation exchange membrane and improving the power generation rate. In the membrane electrode assembly 1 in which the electrolyte membrane 10 made of an ion exchange resin is sandwiched between the fuel electrode 20 and the air electrode 30, the EW values of the catalyst layers 4a and 4b of both the fuel electrode 20 and the air electrode 30 are determined by: It has been proposed that the value be smaller than the EW value of the electrolyte membrane 10. Specifically, the catalyst layers 4a and 4b are made of carbon particles carrying platinum 51 as a catalyst (catalyst carrying conductor). ) 52 and an ion exchange resin 53, wherein the EW value of the ion exchange resin 53 is 900 and the EW value of the electrolyte membrane 10 is 1100. Assuming that the EW value of the catalyst layer 4a constituting the fuel electrode 20 is A, the EW value of the electrolyte membrane 10 is B, and the EW value of the catalyst layer 4b constituting the air electrode 30 is C, the relationship is A <B>. C. Thereby, since the catalyst layer has a small EW value, it can be brought into a high water absorption state with a high ionic conductivity, and the reaction at the electrode can be further promoted. On the other hand, since the EW value of the electrolyte membrane is relatively high, there is an advantage that the membrane strength can be secured.
[0009]
[Patent Document 1]
JP-A-5-36418 [Patent Document 2]
JP-A-7-135004
[Problems to be solved by the invention]
The present inventors have continuously conducted experiments and research on how the EW value affects power generation characteristics in a membrane electrode assembly in a polymer electrolyte fuel cell. In an environment in which the operating conditions do not change significantly during the process, the fuel cell having the membrane electrode assembly shown in FIG. 4, that is, the EW value of the catalyst layer 4a constituting the fuel electrode 20: A, the EW value of the electrolyte membrane 10 Value: B, the EW value of the catalyst layer 4b constituting the air electrode 30: C, and the fuel cell having the membrane electrode assembly having the relationship of A <B> C has an EW value of C. As compared with the case where all are equal, the power generation characteristics are better, but under the environment where the operating conditions are variously changed, the power generation characteristics fluctuate and the battery life is shortened.
[0011]
That is, if the operation in the high humidification and high current density range is continued for a long period of time, the generated water may excessively stay in the air electrode 30 having a low EW value and cause flooding, which may cause a voltage drop. . When the operating conditions change to an operating state under low humidification, the moisture in the electrolyte membrane 10 having a high EW value moves (diffuses) to both the air electrode 30 and the fuel electrode 20, and the electrolyte membrane 10 is in a dry state. As a result, the power generation performance is reduced. The operating environment of a fuel cell varies greatly especially when used as a drive source of an automobile, and it is desired that the power generation performance does not change much even under different operating environments.
An object of the present invention is to obtain a further improved membrane electrode assembly from the above viewpoints.
[0012]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a membrane electrode assembly including at least an electrolyte membrane made of an ion exchange resin, and a catalyst layer having a catalyst-carrying conductor and an ion exchange resin disposed on both sides of the electrolyte membrane. In the above, when the dry weight of the ion exchange resin per 1 mol of the ion exchange group is defined as the EW value, the EW value of the ion exchange resin in the catalyst layer constituting the fuel electrode to which the fuel gas is supplied: A, the EW of the electrolyte membrane The relationship between the value: B and the EW value of the ion-exchange resin in the catalyst layer constituting the air electrode: C was determined to be A <B <C.
[0013]
In the membrane / electrode assembly according to the present invention, the EW value B of the electrolyte membrane is smaller than the EW value C of the ion exchange resin in the catalyst layer constituting the air electrode, and the water generated at the air electrode reversely diffuses toward the electrolyte membrane. There is a tendency. Therefore, a large amount of water generated under high humidification conditions and an operating environment in a high current density region reversely diffuses toward the electrolyte membrane, and furthermore, the EW value of the ion exchange resin in the catalyst layer constituting the fuel electrode. Since A is smaller than the EW value B of the electrolyte membrane, the generated water that has been back-diffused further diffuses from the catalyst layer to the fuel electrode side. Thereby, flooding at the air electrode can be reliably suppressed. On the other hand, even in an operating environment under low humidification conditions, the tendency of water produced at the air electrode to diffuse back to the electrolyte membrane side is maintained, so that the electrolyte membrane becomes excessively dry, so-called dry-up. Can be avoided and constant power generation performance can be maintained.
[0014]
Therefore, the fuel cell provided with the membrane electrode assembly according to the present invention can always maintain a constant power generation performance even when continuous operation under different environments is required, and is mounted on an automobile or the like. The fuel cell becomes extremely practical as a fuel cell.
[0015]
In the membrane / electrode assembly according to the present invention, the electrolyte membrane and the electrode may be the same as those conventionally known, except that the EW value is different. For example, the electrolyte membrane may be an appropriate cation exchange membrane, and in the case of a fluorosulfonic acid polymer resin, copolymerization of its monomers (tetrafluoroethylene and perfluorovinyl ether containing a fluorosulfonyl group) and Since it is formed through hydrolysis, a desired EW value (for example, EW value 900) can be obtained by changing the amount of these monomers, the degree of polymerization, and the like.
[0016]
The catalyst layer constituting the fuel electrode and the air electrode is made of carbon particles carrying, for example, a predetermined amount of platinum as a catalyst, and a similar cation exchange resin (electrolyte) having a desired EW value (for example, EW value 700 and EW value 1000). ) Is gradually added to a solution containing the solution to obtain a paste-like carbon particle suspension, which is applied to one surface of the diffusion layer and dried.
[0017]
The electrolyte membrane 10 having an EW value of 900 is sandwiched between the fuel electrode 20 having an EW value of ion exchange resin of 700 and the air electrode 30 having an EW value of ion exchange resin of 1000, for example. By hot pressing, a membrane electrode assembly 1A according to the present invention as shown in FIG. 1 is obtained.
[0018]
【Example】
Hereinafter, the present invention will be described with reference to Examples and Comparative Examples.
A membrane electrode assembly 1A having the configuration shown in FIG. 1 was produced. The electrolyte membrane 10 is a single membrane, and the fuel electrode 20 and the air electrode 30 on both sides thereof are arranged. Each of the fuel electrode 20 and the air electrode 30 is composed of a diffusion layer and a catalyst layer. The diffusion layer is subjected to a water repellent treatment and is woven of carbon particles containing 50 wt% of polytetrafluoroethylene with carbon fibers. It was produced by applying it to a woven carbon cloth (thickness: 0.4 mm).
[0019]
The catalyst layer is formed by agglomerating and laminating carbon particles (Pt 0.4 mg / cm 2 ) carrying 50 wt% of platinum as a catalyst, and was prepared as follows. First, the above-mentioned carbon particles were gradually added to a cation exchange resin solution (a solution in which 5 wt% of the solid content of the resin was mixed with a mixed solution of propanol and water), and the carbon particles were added until the resin solid content became 1 mg / cm 2. Mix. Then, a paste-like carbon particle suspension was obtained, applied to one surface of the diffusion layer and dried to fix the carbon particles with a cation exchange resin to form a catalyst layer. The cation exchange resin solution used was a fluorinated sulfonic acid polymer resin, and its EW value was 700 for the catalyst layer on the fuel electrode 20 side and 1000 for the catalyst layer on the air electrode 30 side.
[0020]
The electrolyte membrane 10 is a single membrane composed of only a perfluorocarbonsulfonic acid polymer membrane which is a cation exchange membrane having an EW value of 900 and a thickness of 30 μm. The electrolyte membrane 10 may be formed through copolymerization and hydrolysis of tetrafluoroethylene and perfluorovinyl ether so that the EW value is 65 to 1500. Then, the electrolyte membrane 10 was sandwiched between the fuel electrode 20 and the air electrode 30 and hot pressed (120 ° C., 100 kg / cm 2 ) to complete the membrane electrode laminate 1A shown in FIG. .
[0021]
The performance of a fuel cell using the completed membrane electrode stack 1A was evaluated. The fuel cell to be compared is a comparative fuel cell 1 in which the cation exchange resin of the catalyst layer at the fuel electrode 20 and the air electrode 30 is the same (EW value 900) as the EW value of the electrolyte membrane 10 (comparison). Example 1) and Comparative Example fuel cell 2 (Comparative Example 2) in which the EW values of the cation exchange resins of the catalyst layers in the fuel electrode 20 and the air electrode 30 are both 700.
[0022]
For each fuel cell, the IV characteristics at 80 ° C. full humidification were examined. The result is shown in FIG. As apparent from FIG. 2, in the fuel cells of Comparative Examples 1 and 2, a decrease in cell voltage due to flooding is observed at a high current density, but in the example (fuel cell according to the present invention), the decrease in voltage is small. . It is understood that this is because the back diffusion of the generated water toward the fuel electrode side was promoted by inclining the EW value as described in the claims.
[0023]
For each fuel cell, the dependence of cell voltage on cell temperature under low humidification conditions was examined. As shown in FIG. 3, it can be seen that the example has a higher cell voltage than Comparative Examples 1 and 2, and can be operated at a higher temperature. This is also because, similarly to the above, the electrolyte membrane is kept warmer without the occurrence of dry-up due to the promotion of the reverse diffusion of the produced water.
[0024]
【The invention's effect】
As described above, the fuel cell equipped with the membrane electrode assembly according to the present invention can always maintain a constant power generation performance even when continuous operation under different environments is required, and can be used in automobiles and the like. This makes the fuel cell extremely practical as a mounted fuel cell.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing a membrane electrode assembly according to the present invention.
FIG. 2 is a diagram showing current-voltage curves in an example and a comparative example.
FIG. 3 is a graph showing the dependence of cell voltage on cell temperature under low humidification conditions in Examples and Comparative Examples.
FIG. 4 is a diagram schematically showing an example of a conventionally known membrane electrode assembly.
FIG. 5 is a diagram schematically showing a main part of a polymer electrolyte fuel cell.
[Explanation of symbols]
10 ... electrolyte membrane, 20 ... fuel electrode, 30 ... air electrode

Claims (1)

イオン交換樹脂からなる電解質膜と、電解質膜の両面に配置され触媒担持導電体とイオン交換樹脂を有する触媒層とを少なくとも備えた膜電極接合体において、イオン交換基1mol当たりのイオン交換樹脂乾燥重量をEW値として定義したときに、燃料ガスが供給される燃料極を構成する触媒層中のイオン交換樹脂のEW値:A,電解質膜のEW値:B,空気極を構成する触媒層中のイオン交換樹脂のEW値:C,の関係が、A<B<Cであることを特徴とする膜電極接合体。Dry weight of ion-exchange resin per 1 mol of ion-exchange groups in a membrane-electrode assembly comprising at least an electrolyte membrane made of an ion-exchange resin, and a catalyst layer having a catalyst-carrying conductor and an ion-exchange resin disposed on both sides of the electrolyte membrane Is defined as the EW value, the EW value of the ion exchange resin in the catalyst layer constituting the fuel electrode to which the fuel gas is supplied: A, the EW value of the electrolyte membrane: B, and the EW value of the catalyst layer constituting the air electrode. A membrane electrode assembly, wherein the relation of EW value: C of the ion exchange resin is A <B <C.
JP2003146820A 2003-05-23 2003-05-23 Membrane electrode assembly Pending JP2004349180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003146820A JP2004349180A (en) 2003-05-23 2003-05-23 Membrane electrode assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003146820A JP2004349180A (en) 2003-05-23 2003-05-23 Membrane electrode assembly

Publications (1)

Publication Number Publication Date
JP2004349180A true JP2004349180A (en) 2004-12-09

Family

ID=33533563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003146820A Pending JP2004349180A (en) 2003-05-23 2003-05-23 Membrane electrode assembly

Country Status (1)

Country Link
JP (1) JP2004349180A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007329015A (en) * 2006-06-08 2007-12-20 Hitachi Ltd Polymer electrolyte membrane, membrane electrode assembly, and fuel cell using it
EP2161771A1 (en) * 2007-06-15 2010-03-10 Sumitomo Chemical Company, Limited Membrane-electrode assembly, method for production thereof, and solid polymer fuel cell
JP2011003552A (en) * 2004-04-28 2011-01-06 Nissan Motor Co Ltd Membrane-electrode assembly for fuel cell, and fuel cell using the same
JP2011029070A (en) * 2009-07-28 2011-02-10 Japan Gore Tex Inc Polymer electrolyte fuel cell
CN103718078A (en) * 2011-08-11 2014-04-09 索尼公司 Driving unit, lens module and image pick-up device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011003552A (en) * 2004-04-28 2011-01-06 Nissan Motor Co Ltd Membrane-electrode assembly for fuel cell, and fuel cell using the same
JP2007329015A (en) * 2006-06-08 2007-12-20 Hitachi Ltd Polymer electrolyte membrane, membrane electrode assembly, and fuel cell using it
EP2161771A1 (en) * 2007-06-15 2010-03-10 Sumitomo Chemical Company, Limited Membrane-electrode assembly, method for production thereof, and solid polymer fuel cell
EP2161771A4 (en) * 2007-06-15 2010-07-28 Sumitomo Chemical Co Membrane-electrode assembly, method for production thereof, and solid polymer fuel cell
JP2011029070A (en) * 2009-07-28 2011-02-10 Japan Gore Tex Inc Polymer electrolyte fuel cell
CN103718078A (en) * 2011-08-11 2014-04-09 索尼公司 Driving unit, lens module and image pick-up device
US9590169B2 (en) 2011-08-11 2017-03-07 Dexterials Corporation Drive device, lens module, and image pickup unit

Similar Documents

Publication Publication Date Title
US20040115516A1 (en) Electrode for fuel cell and fuel cell therewith
JP5066998B2 (en) Membrane electrode assembly for polymer electrolyte fuel cells
JP4956870B2 (en) Fuel cell and fuel cell manufacturing method
JP3778506B2 (en) Electrode for polymer electrolyte fuel cell
JP2007141588A (en) Membrane-electrode assembly for fuel cell, and polymer electrolyte fuel cell using it
KR100773669B1 (en) Direct-type fuel cell and direct-type fuel cell system
US20060257715A1 (en) Direct oxidation fuel cell and manufacturing method therefor
WO2006040985A1 (en) Fuel cell system
JP2001057218A (en) Solid polymer type fuel cell and manufacture thereof
JP3577402B2 (en) Polymer electrolyte fuel cell
Kinoshita et al. Development of PFSA Ionomers for the Membrane and the Electrodes
JPH10334923A (en) Solid high polymer fuel cell film/electrode connecting body
JP2003178780A (en) Polymer electrolyte type fuel cell system and operating method of polymer electrolyte type fuel cell
JP5294550B2 (en) Membrane electrode assembly and fuel cell
JP2005108770A (en) Manufacturing method of electrolyte membrane electrode joint body
JPH10284087A (en) Electrode and membrane-electrode joining body for solid polymer fuel cell
WO2002091503A1 (en) Electrode for fuel cell and method of manufacturing the electrode
JP2000003718A (en) Method for activating high molecular electrolyte fuel cell
JP5094295B2 (en) Membrane electrode assembly and fuel cell
KR101326190B1 (en) Membrane Electrode Assembly for fuel cell and fuel cell using the same
KR100719095B1 (en) A direct methanol fuel cell having less crossover phenomenon of methanol comprising a layer of material for controlling diffusion rate of fuel
JP2004349180A (en) Membrane electrode assembly
JP2006085984A (en) Mea for fuel cell and fuel cell using this
JP2002319421A (en) Starting method and manufacturing method of solid polymer fuel cell
KR101112693B1 (en) Membrane-electrode assembly of fuel cell and preparing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091027