WO2003088386A1 - Fuel cell, electrode for fuel cell, and method for manufacturing them - Google Patents

Fuel cell, electrode for fuel cell, and method for manufacturing them Download PDF

Info

Publication number
WO2003088386A1
WO2003088386A1 PCT/JP2003/004853 JP0304853W WO03088386A1 WO 2003088386 A1 WO2003088386 A1 WO 2003088386A1 JP 0304853 W JP0304853 W JP 0304853W WO 03088386 A1 WO03088386 A1 WO 03088386A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid polymer
polymer electrolyte
electrode
fuel cell
catalyst
Prior art date
Application number
PCT/JP2003/004853
Other languages
French (fr)
Japanese (ja)
Inventor
Shin Nakamura
Yoshimi Kubo
Tsutomu Yoshitake
Yuichi Shimakawa
Takashi Manako
Takeshi Obata
Hidekazu Kimura
Hideto Imai
Sadanori Kuroshima
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Publication of WO2003088386A1 publication Critical patent/WO2003088386A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a fuel cell, an electrode for a fuel cell, and a method for producing the same.
  • the present invention relates to a fuel cell, an electrode for a fuel cell, and a method for producing the same.
  • Conventional technology
  • a polymer electrolyte fuel cell is composed of a solid polymer electrolyte membrane such as a perfluorosulfonic acid membrane as an electrolyte, and a fuel electrode and an oxidizer electrode bonded to both sides of the membrane. This is a device that supplies oxygen to the agent electrode and generates power by an electrochemical reaction.
  • Fuel electrode H 2 ⁇ 2 H ++ 2 e-Oxidizer electrode: l Z2 ⁇ 2 + 2 H ++ 2 e— ⁇ H 2 ⁇
  • the polymer electrolyte fuel cell can obtain a high output of 1 A / cm 2 or more at normal temperature and normal pressure.
  • Each of the fuel electrode and the oxidizer electrode is provided with a mixture of carbon particles carrying a catalytic substance and a solid polymer electrolyte.
  • this mixture is applied to an electrode substrate such as a carbon paper which serves as a fuel gas diffusion layer.
  • a fuel cell is constructed by sandwiching a solid polymer electrolyte membrane between these two electrodes and thermocompression bonding.
  • the hydrogen gas supplied to the fuel electrode passes through the pores in the electrode and reaches the catalyst, and emits electrons to become hydrogen ions.
  • the emitted electrons are guided to the external circuit through the carbon particles and the solid electrolyte in the fuel electrode, and flow into the oxidant electrode from the external circuit.
  • the hydrogen ions generated at the fuel electrode reached the oxidizer electrode through the solid polymer electrolyte in the fuel electrode and the solid polymer electrolyte membrane disposed between both electrodes, and were supplied to the oxidizer electrode.
  • the oxygen reacts with the electrons flowing from the external circuit to produce water as shown in the above reaction formula.
  • electrons travel from the fuel electrode to the oxidizer electrode. JP03 / 04853
  • the interface between the electrode and the solid polymer electrolyte membrane has good adhesion. That is, it is required that the conductivity of the hydrogen ions generated by the electrode reaction be high at the interface between the two. Poor interfacial adhesion reduces the conductivity of hydrogen ions and increases the electrical resistance, which causes a reduction in battery efficiency.
  • Fuel cells that use organic liquid fuel include those that reform organic liquid fuel into hydrogen gas and use it as fuel, and those that do not reform organic liquid fuel, such as direct methanol fuel cells. There is known a fuel cell that supplies fuel directly to a fuel electrode.
  • a fuel cell that supplies organic liquid fuel directly to the anode without reforming it does not require a device such as a reformer because it has a structure that supplies organic liquid fuel directly to the anode. Therefore, there is an advantage that the configuration of the battery can be simplified, and the entire device can be reduced in size.
  • organic liquid fuels can be easily and safely transported compared to gaseous fuels such as hydrogen gas and hydrocarbon gas.
  • a solid polymer electrolyte membrane made of a solid high molecular ion exchange resin is used as an electrolyte.
  • hydrogen ions need to move through the membrane from the fuel electrode to the oxidizer electrode, but this movement of hydrogen ions may involve the movement of water.
  • the membrane it is necessary that the membrane contain a certain amount of moisture.
  • the polymer constituting the catalyst layer on the electrode surface should be a polymer having a high water content and high permeability to organic liquid fuel, and the polymer constituting the solid polymer electrolyte membrane should be used. It is considered preferable to use a material having a low water content and a property of low permeability for organic liquid fuel.
  • Japanese Patent Application Laid-Open Publication No. 2001-167775 discloses a technology relating to an ion conductive film which enables to suppress crossover of methanol while maintaining ion conductivity.
  • the surface layer of an ion conductive film having a basic structure of a fluororesin such as Nafion (registered trademark) is modified by electron beam irradiation or the like so that the conductivity becomes lower than the internal conductivity. ing.
  • an object of the present invention is to increase the adhesion at the interface between the surface of the catalyst electrode and the solid polymer electrolyte membrane, thereby improving battery characteristics and battery reliability.
  • Another object of the present invention is to suppress the crossover of the organic liquid fuel while maintaining good hydrogen ion conductivity and permeability of the organic liquid fuel in the catalyst electrode. Disclosure of the invention
  • a solid polymer electrolyte of a fuel cell As a solid polymer electrolyte of a fuel cell, a solid polymer electrolyte having high hydrogen ion conductivity represented by Nafion (registered trademark) or the like is generally used.
  • the high proton conductivity of the solid polymer electrolyte is manifested by the polymer electrolyte containing a large amount of water.On the other hand, the large amount of water causes the organic liquid fuel such as methanol to be produced. It will easily dissolve in water to promote mouth mouthover.
  • the present inventor has sought to use a polymer material having lower organic liquid fuel permeability than naphion or the like as the fuel electrode, oxidizer electrode, or solid polymer electrolyte constituting the solid polymer electrolyte membrane.
  • a direct methanol fuel cell was fabricated using this and evaluated. However, the characteristics of this fuel cell were lower than those of a conventional cell using naphion. This is thought to be due to the decrease in methanol permeability and hydrogen ion conductivity at the fuel electrode.
  • the fuel electrode of the fuel cell includes a catalyst layer in which carbon particles carrying a catalyst and a solid polymer electrolyte as a binder are mixed, and the solid polymer electrolyte is interposed between the catalysts. Structure.
  • the solid polymer electrolyte serving as these transmission paths has high permeability to liquid fuel such as methanol and excellent hydrogen ion conductivity. It is necessary to be. It is probable that in the battery with the above structure, good performance was not obtained because the solid polymer electrolyte did not sufficiently satisfy these performances.
  • the present inventors used Nafion as the solid polymer electrolyte on the electrode surface, and used the solid polymer electrolyte membrane as an organic liquid fuel permeability rather than Nafion or the like.
  • the bonding between the fuel electrode and the solid polymer electrolyte membrane was insufficient, and a battery that could withstand the evaluation could not be obtained.
  • the present inventors have found that the electrode surface is composed of a plurality of types of solid polymer electrolytes, so that the distance between the electrode surface and the solid polymer electrolyte membrane can be improved. It has been found that the adhesion at the interface can be improved, and the present invention has been completed.
  • a solid polymer electrolyte membrane and a catalyst electrode provided on the solid polymer electrolyte membrane, wherein the catalyst electrode comprises: a catalyst substance; a first solid polymer electrolyte;
  • a fuel cell including a catalyst layer including a second solid polymer electrolyte having higher adhesion to the solid polymer electrolyte membrane than the first solid polymer electrolyte.
  • the solid polymer electrolyte membrane includes: a catalyst electrode disposed on the solid polymer electrolyte membrane; the catalyst electrode includes a catalyst substance, a first solid polymer electrolyte, A fuel layer comprising a polymer different from the one solid polymer electrolyte; and a second solid polymer electrolyte comprising a polymer constituting the solid polymer electrolyte membrane or a derivative thereof.
  • a battery is provided.
  • the catalyst layer and the solid polymer electrolyte membrane may be in contact with or separated from each other. If a configuration in which these are in contact with each other is adopted, the adhesion at the interface between the catalyst electrode and the solid polymer electrolyte membrane can be reliably improved.
  • the “catalyst electrode” in the present invention is an electrode containing a catalyst, and is used as a general term including a fuel electrode and an oxidizer electrode.
  • the solid polymer electrolyte that constitutes the catalyst layer of the catalyst electrode has the role of electrically connecting the catalyst-supporting carbon particles and the solid polymer electrolyte membrane on the electrode surface and allowing the organic liquid fuel to reach the catalyst surface. Therefore, hydrogen ion conductivity and water mobility are required.
  • the fuel electrode is required to be permeable to organic liquid fuel such as methanol, and the oxidizer electrode is required to be permeable to oxygen.
  • the solid polymer electrolyte constituting the catalyst layer in the present invention includes the first solid polymer electrolyte and the second solid polymer electrolyte. Among them, the first solid polymer electrolyte has the above-mentioned role. Fulfill.
  • a material constituting the first solid polymer electrolyte a material excellent in hydrogen ion conductivity and organic liquid fuel permeability such as methanol is preferably used.
  • the solid polymer electrolyte membrane separates the fuel electrode and the oxidizer electrode, and has a role to transfer hydrogen ions between the two.
  • the liquid fuel moves from the fuel electrode to the oxidizer electrode, that is, It is desirable to have the property of suppressing the crossover of organic liquid fuel.
  • the present invention provides a solid polymer electrolyte on the electrode surface with a plurality of types having different functions to improve the adhesion between the electrodes and the solid polymer electrolyte membrane while selecting a suitable material.
  • the catalyst electrode according to the present invention is configured to include the first and second solid polymer electrolytes, and the first solid polymer electrolyte allows the hydrogen ion liquid fuel to move smoothly on the electrode surface.
  • the interface between the catalyst electrode and the solid polymer electrolyte membrane is firmly adhered to by the second solid polymer electrolyte. According to the present invention, by adopting such a configuration, it is possible to suppress a rise in electric resistance at the interface between the catalyst electrode and the solid polymer electrolyte membrane, and to maintain good battery efficiency over a long period of time. Can be realized.
  • the particles can be made of a material having excellent adhesion to the solid polymer electrolyte membrane, for example, a high molecule constituting the solid polymer electrolyte membrane or a derivative thereof.
  • the particles of the second solid polymer electrolyte can be made of a material having similar physical properties such as polarity, wettability and SP value to the material constituting the solid polymer electrolyte membrane.
  • the adhesion between the two is sufficiently good. From the above, the second solid polymer electrolyte shows good adhesion to both the solid polymer electrolyte membrane and the first solid polymer electrolyte, and as a result, the catalyst electrode and the solid polymer electrolyte membrane Are firmly joined.
  • an organic liquid fuel may be supplied to the catalyst electrode. That is, a so-called direct type fuel cell can be obtained.
  • the organic liquid fuel can be, for example, methanol.
  • Direct fuel cells have the advantages of high cell efficiency, space savings because a reformer is not required, and the like, but have the problem of crossover of organic liquid fuels such as methanol. Become.
  • the catalyst electrode can include a porous substrate, and the catalyst layer can be provided in contact with the porous substrate.
  • the content of the catalyst substance in the catalyst layer may have a distribution along the direction from the porous substrate to the solid polymer electrolyte membrane.
  • a configuration in which the catalyst layer contains a catalyst substance on the side in contact with the porous substrate and does not contain a catalyst substance on the side in contact with the solid polymer electrolyte membrane can be employed.
  • the content of the first solid polymer electrolyte in the catalyst layer may have a distribution along a direction from the porous substrate to the solid polymer electrolyte membrane.
  • the adhesive layer includes the first solid polymer electrolyte on the side in contact with the porous substrate, and does not include the first solid polymer electrolyte on the side in contact with the solid polymer electrolyte membrane.
  • the adhesive layer may not include the second solid polymer electrolyte on the side in contact with the porous base material, and may include the second solid polymer electrolyte on the side in contact with the solid polymer electrolyte membrane. it can. By doing so, the adhesion between the catalyst layer and the solid polymer electrolyte membrane can be improved.
  • a catalyst layer including a catalyst substance, a first solid polymer electrolyte, and a second solid polymer electrolyte made of a polymer different from the first solid polymer electrolyte.
  • the solid polymer electrolyte on the electrode surface is composed of a plurality of types having different functions. For this reason, it is possible to stably realize performance that is difficult to achieve with a single type of solid polymer electrolyte.
  • the smooth movement of hydrogen ions and liquid fuel on the electrode surface is ensured by the first solid polymer electrolyte, and the catalyst is formed by the second solid polymer electrolyte.
  • the interface between the electrode and the solid polymer electrolyte membrane is firmly adhered to, and the increase in electrical resistance at the interface between the catalyst electrode and the solid polymer electrolyte membrane is suppressed, and good battery efficiency is maintained over a long period of time. Achieving stability for the whole time Can be.
  • the first solid polymer electrolyte a material having excellent hydrogen ion conductivity and liquid fuel permeability is selected as the first solid polymer electrolyte.
  • As an electrolyte it is inferior in terms of hydrogen ion conductivity or liquid fuel permeability compared to the first solid polymer electrolyte, but is a low-cost material, or contributes to improvement in manufacturing stability such as film forming properties. Material can be selected. By doing so, it is possible to stably realize excellent electrode performance while realizing inexpensive cost or good manufacturing stability.
  • a method for producing an electrode for a fuel cell in which a catalyst layer is provided on a substrate comprising: conductive particles carrying a catalyst substance; a first solid polymer electrolyte; A step of applying a coating solution containing a second solid polymer electrolyte composed of a polymer different from the solid polymer electrolyte onto a substrate to form the catalyst layer, A manufacturing method is provided.
  • the coating solution containing the first and second solid polymer electrolytes is applied to the base to form the catalyst layer, and thus the first and second solid polymer electrolytes are formed in the catalyst layer.
  • the respective characteristics of both are effectively exhibited, and both the performance of the catalyst electrode and the adhesion between the catalyst electrode and the solid polymer electrolyte membrane are improved.
  • the coating liquid may have a structure in which particles containing the first solid polymer electrolyte and particles containing the second solid polymer electrolyte are dispersed in the coating liquid. By doing so, workability during coating and production stability can be improved.
  • the catalyst electrode obtained by the above manufacturing method comprises a plurality of types of solid polymer electrolytes having different functions on the electrode surface. For this reason, it is possible to stably realize performance that is difficult to achieve with a single type of solid polymer electrolyte.
  • the catalyst electrode is obtained by the above-described method for producing an electrode for a fuel cell
  • the catalyst electrode and the solid polymer electrolyte are contacted with the catalyst layer and the solid polymer electrolyte membrane in contact with each other.
  • a method for manufacturing a fuel cell, comprising a step of thermocompression bonding with a membrane is provided.
  • the adhesive layer can be stably formed in a simple process, and a fuel cell having good adhesion between the catalyst electrode and the solid polymer electrolyte membrane can be obtained. It can be obtained stably.
  • the second solid polymer electrolyte preferably has a lower permeability of the organic liquid fuel than the first solid polymer electrolyte.
  • the second solid polymer electrolyte has a lower water content than the first solid polymer electrolyte.
  • the first solid polymer electrolyte and the second solid polymer electrolyte each include a protonic acid group; and the second solid polymer electrolyte comprises the first solid polymer electrolyte.
  • the density of the protonic acid groups is lower than that of the molecular electrolyte.
  • the protonic acid group is, for example, one or more polar groups selected from the group consisting of a sulfone group, a carboxyl group, a phosphoric acid group, a phosphonic acid group and a phosphinic acid group.
  • the first solid polymer electrolyte may be constituted by a fluorine-containing high molecule.
  • the second solid polymer electrolyte may be constituted by a high molecule not containing fluorine.
  • the second solid polymer electrolyte may be constituted by a polymer containing an aromatic.
  • the measurement of the resin content and the catalyst content in the present invention can be performed by, for example, a method such as performing secondary ion mass spectrometry (SIMS) while sputtering the layer structure to be measured from the surface. it can.
  • SIMS secondary ion mass spectrometry
  • FIG. 1 is a sectional view schematically showing the structure of an example of the fuel cell of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing a fuel electrode, an oxidizer electrode, and a solid polymer electrolyte membrane in an example of the fuel cell of the present invention.
  • FIG. 3 shows the fuel electrode and the solid polymer electrolyte membrane in the fuel cell according to the embodiment of the present invention. It is the figure which showed typically.
  • FIG. 4 is a diagram schematically showing a fuel electrode and a solid polymer electrolyte membrane in the fuel cell of Comparative Example 1.
  • Reference numeral 100 denotes a fuel cell.
  • Reference numeral 101 denotes an electrode-electrolyte assembly.
  • Reference numeral 102 is a fuel electrode.
  • Reference numeral 104 denotes a substrate.
  • Reference numeral 106 denotes a catalyst layer.
  • Reference numeral 108 denotes an oxidizer electrode.
  • Reference numeral 110 denotes a substrate.
  • Reference numerals 1 and 12 are catalyst layers.
  • Reference numeral 114 denotes a solid polymer electrolyte membrane.
  • Reference numeral 120 is a fuel electrode side separator.
  • Reference numeral 122 denotes an oxidizer electrode side separator.
  • Reference numeral 124 is fuel.
  • Reference numeral 126 is an oxidizing agent.
  • Reference numeral 140 is a carbon particle carrying a catalyst.
  • Reference numeral 150 is a first solid polymer electrolyte.
  • Reference numeral 160 is a second solid polymer electrolyte.
  • Reference numeral 301
  • the catalyst electrode in the present invention contains a catalyst substance and first and second solid polymer electrolytes.
  • a catalyst layer containing conductive particles carrying a catalyst and first and second solid polymer electrolytes is formed on a substrate such as carbon paper or the like. It can.
  • carbon particles and the like are used as the conductive particles.
  • the first and second solid polymer electrolytes serve to immobilize the conductive particles on the substrate and to electrically connect between the conductive particles and the solid polymer electrolyte membrane.
  • the first and second solid polymer electrolytes may be distributed uniformly or non-uniformly.
  • the content of the second solid polymer electrolyte on the surface of the catalyst layer opposite to the substrate is defined as If the content of the second solid polymer electrolyte in the surface of the layer on the substrate side (hereinafter referred to as the second surface) is higher, the adhesion between the solid polymer electrolyte membrane and the catalyst electrode becomes better. .
  • the first surface is mainly composed of the second solid polymer electrolyte and the second surface is mainly composed of the first solid polymer electrolyte
  • the transfer of hydrogen ions and organic liquid fuel on the electrode surface The adhesion between the catalyst electrode and the solid polymer electrolyte membrane can be improved while maintaining good properties.
  • FIG. 1 is a sectional view schematically showing the structure of the fuel cell according to the present embodiment.
  • the electrode-electrolyte assembly 101 includes a fuel electrode 102, an oxidant electrode 108, and a solid polymer electrolyte membrane 114.
  • the fuel electrode 102 is composed of a substrate 104 and a catalyst layer 106.
  • the oxidant electrode 108 is composed of a base 110 and a catalyst layer 112.
  • the plurality of electrode-electrolyte assemblies 101 are electrically connected via the fuel electrode side separator 120 and the oxidizing agent electrode side separator 122 to produce the fuel cell 100. .
  • the fuel electrode 102 of each electrode-electrolyte assembly 101 is supplied with the fuel 124 via the fuel electrode side separator 120. .
  • an oxidizer 126 such as air or oxygen is supplied to the oxidizer electrode 108 of each electrode-electrolyte assembly 101 via an oxidizer electrode side separator 122.
  • the solid polymer electrolyte membrane 114 has a role of separating the fuel electrode 102 from the oxidant electrode 108 and has a role of transferring hydrogen ions and water molecules between the two. For this reason, it is preferable that the solid polymer electrolyte membrane 114 has high conductivity for hydrogen ions. It is also preferable that the material is chemically stable and has high mechanical strength.
  • Examples of the material constituting the solid polymer electrolyte membrane 114 include an organic polymer having a polar group such as a strong acid group such as a sulfone group, a phosphate group, a phosphone group, or a phosphine group, or a weak acid group such as a lipoxyl group. Is preferably used.
  • organic polymers examples include aromatic-containing polymers such as sulfonated poly (4-phenoxybenzoyl-1,4-phenylene) and alkylsulfonated polybenzoimidazole; polystyrene sulfonic acid copolymer, polyvinyl Copolymers such as sulfonic acid copolymers, cross-linked alkylsulfonic acid derivatives, fluororesin skeletons, and fluorine-containing polymers composed of sulfonic acid; acrylamides such as acrylamide-12-methylpropanesulfonic acid And copolymers obtained by copolymerizing acrylates such as n_butyl methacrylate; sulfonate-containing perfluorocarbons (Naphion (registered trademark, manufactured by DuPont), a complex (manufactured by Asahi Kasei Corporation) ); Carboxyl group-containing perfluorocarbon (Flemion (registered trademark)
  • aromatic-containing polymer such as polybenzoimidazole
  • FIG. 2 is a cross-sectional view schematically showing the fuel electrode 102, the oxidizer electrode 108, and the solid polymer electrolyte membrane 114.
  • the fuel electrode 102 and the oxidizer electrode 108 are, for example, a catalyst layer 106 and a catalyst layer 1, each of which is a film containing carbon particles carrying a catalyst and fine particles of a solid polymer electrolyte.
  • a configuration in which the substrate 12 is formed on the substrate 104 and the substrate 110 can be employed.
  • the substrate surface may be subjected to a water-repellent treatment.
  • a crosslinkable substituent for example, a vinyl group, an epoxy group, an acrylic group, a methacryl group, a cinnamoyl group, a methylol group, an azide group, or a naphthoquinonediazide group is appropriately introduced into the above-described polymer.
  • a polymer crosslinked by irradiating the polymer with a radiation in a molten state can also be used.
  • both the fuel electrode 102 and the oxidizer electrode 108 are formed of carbon paper, carbon compact, sintered carbon, sintered metal, foamed metal, etc. Can be used.
  • a water repellent such as polytetrafluoroethylene can be used for the water repellent treatment of the substrate.
  • Examples of the catalyst for the anode 102 include platinum, alloys of platinum and ruthenium, gold, rhenium, etc., rhodium, palladium, iridium, osmium, ruthenium, rhenium, gold, silver, nickel, cobalt, lithium. , Lanthanum, strontium, and lithium.
  • the catalyst for the oxidant electrode 108 the same catalyst as the catalyst for the fuel electrode 102 can be used, and the above-mentioned exemplified substances can be used.
  • the catalyst of the fuel electrode 102 and the catalyst of the oxidation electrode 108 may be the same or different.
  • the carbon particles supporting the catalyst include acetylene black (Denka Black (registered trademark, manufactured by Denki Kagaku Kogyo), XC72 (Vu1can), etc.), ketjen black, carbon nanotubes, carbon nanohorns and the like. And the like.
  • the particle size of the carbon particles is, for example, 0.01 to 1 m, preferably 0.02 to 0.06 m.
  • the catalyst layer 106 and the catalyst layer 112 are made of a porous substrate 104 and a substrate. JP03 / 04853
  • Each of the bases 104 and 110 may have a configuration in which it is formed to be exposed to the surface of the base 104 and the base 110.
  • a configuration formed from the inside to the surface of 110 can also be adopted.
  • the fine particles of the solid polymer electrolyte constituting the fuel electrode 102 or the oxidizer electrode 108 have a constitution including at least a first solid polymer electrolyte and a second solid polymer electrolyte.
  • both the fuel electrode 102 and the oxidizer electrode 108 may be configured to include the first and second solid polymer electrolytes, or the fuel electrode 102 and the oxidizer electrode 108 One of them may be configured to include the first and second solid polymer electrolytes.
  • the fine particles of the solid polymer electrolyte have a role of electrically connecting the catalyst-supporting carbon particles to the solid polymer electrolyte membrane 114 on the electrode surface and allowing the organic liquid fuel to reach the catalyst surface. Hydrogen ion conductivity and water mobility are required.Furthermore, the fuel electrode 10 is required to have organic liquid fuel permeability such as methanol, and the oxidizing agent electrode 108 is required to have oxygen permeability. Desired.
  • the first solid polymer electrolyte satisfies these requirements, and a material having excellent hydrogen ion conductivity and organic liquid fuel permeability such as methanol is preferably used.
  • an organic polymer having a polar group such as a strong acid group such as a sulfone group or a phosphate group or a weak acid group such as a carboxyl group is preferably used.
  • organic polymers include sulfone-group-containing perfluorocarbons (Naphion (registered trademark, manufactured by DuPont), acyplex (manufactured by Asahi Kasei Corporation), etc.); carboxyl-group-containing perfluorocarbon (Flemion (registered trademark) S film) (Made by Asahi Glass Co., Ltd.); Copolymers such as polystyrene sulfonic acid copolymer, polyvinyl sulfonic acid copolymer, cross-linked alkylsulfonic acid derivative, fluororesin skeleton and fluorine-containing polymer composed of sulfonic acid; acrylic Copolymers obtained by copolymerizing acrylamides such as amide
  • Examples of the polymer to which the polar group is bonded include a polybenzimidazole derivative, a polybenzoxazole derivative, a polyethyleneimine cross-linked product, a polysilamine derivative, and a polyethylaminoethyl polystyrene.
  • Amine-substituted polystyrene Nitrogen or hydroxyl-containing resins such as nitrogen-substituted polyacrylates such as len and acetylaminoethyl polymethacrylate; hydroxyl-containing polyacrylic resins typified by silanol-containing polysiloxane and hydroxyethyl polymethyl acrylate; parahydroxy polystyrene Typical examples include a hydroxyl group-containing polystyrene resin; and the like.
  • nitrogen-substituted polyacrylates such as len and acetylaminoethyl polymethacrylate
  • hydroxyl-containing polyacrylic resins typified by silanol-containing polysiloxane and hydroxyethyl polymethyl acrylate
  • parahydroxy polystyrene Typical examples include a hydroxyl group-containing polystyrene resin; and the like.
  • a crosslinkable substituent for example, a vinyl group, an epoxy group, an acrylic group, a methacryl group, a cinnamoyl group, a methylol group, an azide group, or a naphthoquinonediazide group may be appropriately introduced into the above-described polymer. Good.
  • the second solid polymer electrolyte plays a role in improving the adhesion between the electrode surface and the solid polymer electrolyte membrane 114, and a material having good adhesion to the solid polymer electrolyte membrane 114 is used. Preferably, it is used.
  • the solid polymer electrolyte membrane 114 is composed of an organic polymer
  • a polymer having a structure similar to the organic polymer, polarity, wettability, SP value, etc. By selecting a polymer having similar physical properties, the adhesion between the electrode and the solid polymer electrolyte membrane 114 can be improved.
  • a polymer containing no fluorine is used as the material of the solid polymer electrolyte membrane 114
  • an aromatic polymer is used as the material of the solid polymer electrolyte membrane 114, it is preferable to select an aromatic polymer as the second solid polymer electrolyte.
  • both the solid polymer electrolyte membrane 114 and the second solid polymer electrolyte are made of a material having low permeability to organic liquid fuel.
  • an aromatic condensed polymer such as sulfonated poly (4-phenoxybenzoyl 1,4-phenylene) and alkyl sulfonidyl polybenzoimidazole.
  • the first solid polymer electrolyte in the fuel electrode 102 and the oxidant electrode 108 may be the same or different.
  • the second solid polymer electrolytes in the fuel electrode 102 and the oxidizer electrode 108 may be the same or different.
  • a liquid organic fuel or a hydrogen-containing gas is used as the fuel for the fuel cell according to the present invention. be able to. Among them, when the liquid organic fuel is used, the cell efficiency can be improved while suppressing the crossover of the organic liquid fuel, and the effect of the present invention is more remarkably exhibited.
  • the method for producing the fuel electrode 102 and the oxidant electrode 108 in the present invention is not particularly limited, but can be produced, for example, as follows.
  • the fuel electrode 102 and the oxidant electrode 108 can be supported on the carbon particles by the catalyst by a commonly used impregnation method.
  • the catalyst-supported carbon particles and the first and second solid polymer electrolyte particles are dispersed in a solvent to form a paste, which is then applied to a substrate and dried to form the catalyst layer 106 and
  • the fuel electrode 102 and the oxidant electrode 108 each having the catalyst layer 112 formed thereon can be produced.
  • the particle size of the carbon particles is, for example, 0.01 to 1 m.
  • the particle size of the catalyst particles is, for example, 0.1 nm to 100 nm.
  • the particle size of the first and second solid polymer electrolyte particles is, for example, 0.05 to 100 m.
  • the carbon particles and the solid polymer electrolyte particles are used, for example, in a weight ratio of 1: 5 to 40: 1.
  • the weight ratio between water and solute in the paste is, for example, about 1: 2 to 10: 1.
  • the weight ratio of the second solid polymer electrolyte Z in the paste to the first solid polymer electrolyte can be preferably 10/1 to 1/10, and more preferably 4/1 to 1Z4.
  • the method for applying the paste to the substrate is not particularly limited, and for example, methods such as brush coating, spray coating, and screen printing can be used.
  • the paste is applied to a thickness of about 1 ⁇ m to 2 mm. ⁇
  • heating is performed at a heating temperature and a heating time according to the first and second solid polymer electrolyte particles to be used, and a fuel electrode 102 or an oxidizer electrode 108 is produced.
  • the heating temperature and the heating time are appropriately selected depending on the material used.
  • the heating temperature can be 100 ° C. to 250 ° C.
  • the heating time can be 30 seconds to 30 minutes.
  • the solid polymer electrolyte membrane 114 in the present invention can be produced by employing an appropriate method according to the material to be used.
  • the solid polymer electrolyte membrane 114 is composed of an organic polymer material
  • a liquid in which the organic polymer material is dissolved or dispersed in a solvent is cast on a peelable sheet such as polytetrafluoroethylene. Let it dry Can be obtained.
  • the solid polymer electrolyte membrane 114 produced as described above is sandwiched between the fuel electrode 102 and the oxidant electrode 108 and hot pressed to obtain an electrode-electrolyte assembly. At this time, the surfaces of both electrodes where the catalyst is provided are in contact with the solid polymer electrolyte membrane 114.
  • the hot pressing conditions are selected according to the material, but when the solid polymer electrolyte membrane 114 and the electrolyte membrane on the electrode surface are composed of organic polymers, the temperature exceeds the softening temperature or glass transition temperature of these polymers. It can be. Specifically, for example, the temperature is 100 to 250 ° C., the pressure is 1 to 100 kgfZcm 2 , and the time is 10 seconds to 300 seconds.
  • the second solid polymer electrolyte constituting the fuel electrode 102 or the oxygen electrode 108 is common to the material of the solid polymer electrolyte membrane 114, an electrode containing the second solid polymer electrolyte is used.
  • the interface between the polymer electrolyte membrane 114 and the solid polymer electrolyte membrane 114 is firmly adhered. As a result, it is possible to suppress deterioration of battery performance due to hindrance of movement of hydrogen ions due to separation of the interface, as well as to increase physical strength and durability of the battery.
  • the present invention from the viewpoint of effectively suppressing crossover, it is effective to select the constituent materials of the first and second solid polymer electrolytes and the solid polymer electrolyte membrane 114 as follows.
  • a material having a lower methanol permeability than the first solid polymer electrolyte is selected as the solid polymer electrolyte membrane 114 and the second solid polymer electrolyte.
  • Methanol permeability can be measured as follows. 50 cc of 99.5% methanol on one side and 50 cc of pure water on the other side in a liquid container separated by the electrolyte membrane to be measured (membrane thickness 50 i / m, area 1 cm 2 ) Inject and seal each liquid so that it does not evaporate.
  • the time change of the concentration of methanol permeating the electrolyte membrane into pure water is measured by gas chromatography to determine the amount of methanol permeated.
  • the second solid polymer electrolyte has a unit area and a methanol permeation amount of 300 mo 1 / cm per unit time when a membrane having a thickness of 50 ⁇ m is used. it is preferable that the 2 / h or less. by selecting such a material, it is possible to suppress the methanol reaches the oxidizing agent, it can be overcome the problem of the crossover.
  • the moisture content is expressed as (B-A) ZA, where A is the weight of the test material dried at 100 ° C for 2 hours, and B is the weight of the test material after immersion in pure water for 24 hours. It is the value represented.
  • the content density of the polar group can be measured using a predetermined method according to the type of the functional group.
  • the sulfonate group can be quantified by ion chromatography or titration after converting the sulfonate group into a sulfate ion by an oxygen combustion flask method or the like. Titration is performed using carboxyl senazo as an indicator and titration with 0.1 M barium perchlorate to determine the color change point from blue to purple.
  • the fluorine content can be quantified by X-ray fluorescence analysis or the like.
  • the first and second solid polymer electrolyte particles may be distributed uniformly or non-uniformly.
  • the catalyst layer 106 or the catalyst layer 112 contains the first solid polymer electrolyte particles on the side in contact with the substrate 104 or the substrate 110, and the catalyst layer 106 or the catalyst layer 111 On the side where 2 is in contact with the solid polymer electrolyte membrane 114, it is possible to adopt a configuration that does not include the first solid polymer electrolyte particles.
  • the catalyst layer 106 or the catalyst layer 112 does not include the second solid polymer electrolyte particles on the side where the catalyst layer 106 or the catalyst layer 112 contacts the substrate 104 or the substrate 110, and the catalyst layer 106 or the catalyst layer 11 A configuration in which 2 includes second solid polymer electrolyte particles on the side in contact with the solid polymer electrolyte membrane 114 may be employed. in this way, T JP03 / 04853
  • the content of the first solid polymer electrolyte particles is increased in the region near the substrate 104 or the substrate 110, and the content of the second solid polymer electrolyte particles is increased in the region near the solid polymer electrolyte membrane 114.
  • the adhesion to the solid electrolyte membrane 114 is increased while the content of the first solid polymer electrolyte particles in the catalyst layer 106 and the catalyst layer 112 is maintained to some extent. be able to.
  • the first solid polymer electrolyte has a higher water content than the second solid polymer electrolyte and has a property of high organic liquid fuel and oxygen permeability, so that the organic liquid fuel can be efficiently moved and many hydrogen ions are removed. It can be supplied.
  • the catalyst layer 106 and the catalyst layer 112 can be formed as follows. First, the first solid polymer electrolyte particles and the carbon particles carrying the catalyst are dispersed in a solvent on the substrate 104, and a paste-like coating liquid a is applied. Subsequently, the first and second solid polymer electrolytes and the carbon particles carrying the catalyst are dispersed in a solvent on the applied coating liquid a, and a coating liquid b in the form of a paste is applied. Similarly, while gradually increasing the content of the second solid polymer electrolyte particles, the first and second solid polymer electrolytes and the carbon particles carrying the catalyst are dispersed in a solvent, and the paste is formed.
  • the coating liquids described above are sequentially applied to form a catalyst layer 106 or 112 composed of a plurality of layers. This makes it possible to form the catalyst layer 106 or 112 configured to increase the content of the second solid polymer electrolyte particles in the substrate 104 or in a region far from the substrate 110. it can.
  • the solid electrolyte membrane 114 is sandwiched between the fuel electrode 102 and the oxidant electrode 108 containing the catalyst layer 106 and the catalyst layer 112 formed in this manner, and the electrode is formed by hot pressing.
  • An electrolyte conjugate can be obtained.
  • the above steps may include a step of drying after applying each layer.
  • naphion is used as the first solid polymer electrolyte
  • sulfonated poly (4-phenoxybenzoyl-1,4-) is used as the second solid polymer electrolyte.
  • PPBP phenylene
  • platinum was used as a noble metal catalyst for both the fuel electrode and the oxidant electrode. A method for manufacturing a fuel cell according to this example will be described with reference to FIG.
  • acetylene black 1 Og (Denki Black (registered trademark); manufactured by Denki Kagaku Kogyo Co., Ltd.) is mixed with 500 g of dinitrodiamine platinum nitrate solution containing 3% of platinum serving as a catalyst at the fuel electrode 102 and the oxidizer electrode 108, followed by stirring. Thereafter, 60 ml of 98% ethanol was added as a reducing agent. This solution was stirred and mixed at about 95 ° C. for 8 hours, and the catalyst substance and the platinum fine particles were supported on the acetylene black particles. Then, this solution was filtered and dried to obtain catalyst-carrying carbon particles. The supported amount of platinum was about 50% based on the weight of the acetylene black.
  • This paste B is applied to the bases 104 and 110 which are carbon paper (manufactured by Toray Co., Ltd .: TGP-H-120) by a screen printing method, and then heated and dried at 100 ° C. to form the fuel electrodes 102 and ⁇ Oxidant electrode 108 was obtained.
  • the amount of platinum on the obtained electrode surface was 0.1 to 0.4 mg Zcm 2 .
  • a solid polymer electrolyte membrane 114 was sandwiched between these electrodes, and hot-pressed at a temperature of 150 ° C. and a pressure of 10 kgf / cm 2 for 10 seconds to produce an electrode-electrolyte assembly. Further, this electrode-electrolyte assembly was set in an apparatus for measuring a single cell of a fuel cell to produce a single cell. The current-voltage characteristics of the single cell were measured using a 10 wt% methanol aqueous solution and oxygen (1.1 atm, 25 ° C) as fuel. As a result, an open circuit voltage of 0.54 V and a short circuit current of 0.21 A / cm 2 were continuously observed.
  • the fuel electrode 102 and the oxidizer electrode 108 showed good bonding properties to the solid polymer electrolyte membrane 114, and it was confirmed that the fuel electrode 102 and the oxidant electrode 108 function effectively as a direct methanol fuel cell using methanol as a fuel.
  • FIG. 3 is a diagram schematically showing the fuel electrode 102 and the solid polymer electrolyte membrane 114 of the fuel cell according to the present embodiment.
  • the fuel electrode 102 comprises a catalyst layer formed by mixing a second solid polymer electrolyte 160 made of PP BP, a first solid polymer electrolyte 150 made of naphion, and carbon particles 140 carrying a catalyst. Is provided on the substrate 104.
  • the second solid polymer electrolyte 160 and the solid polymer electrolyte membrane 114 are both made of PPBP.
  • the one in contact with the solid polymer electrolyte membrane 114 serves as a binder at the interface between the solid polymer electrolyte membrane 114 and the fuel electrode 102. Therefore, the bonding property between the solid polymer electrolyte membrane 114 and the fuel electrode 102 is good, and this is considered to contribute to the good operation of the fuel cell in this embodiment.
  • Table 1 shows the values of methanol permeability and water content of PPBP and naphion.
  • naphion was used as the first solid polymer electrolyte
  • PP BP was used as the second solid polymer electrolyte
  • platinum was used as the catalyst for both the fuel electrode and the oxidant electrode.
  • the fuel electrode 102, the oxidizer electrode 108, and the solid electrolyte membrane 114 were produced in the same manner as in Example 1.
  • 0.1 ml of a dimethylformamide solution of PPBP obtained by the same method as in Example 1 and fine particles of PPBP mixed therein was mixed with the first A of the naphion obtained by the same method as in Example 1 to obtain the first C.
  • 0.15 ml of a dimethylformamide solution prepared by adding PPPP fine particles to paste A was mixed with paste A to obtain paste D.
  • paste C was applied to the substrate 104 and the substrate 110 by a brush coating method, and dried after application.
  • paste D was applied onto paste C by a brush coating method, and after coating, dried.
  • a catalyst layer 106 and a catalyst layer 112 composed of the paste C and the paste D were formed on the base 104 and the base 110.
  • hot pressing was performed in the same manner as in Example 1 to produce an electrode-electrolyte assembly.
  • This electrode-electrolyte assembly was set in an apparatus for measuring a single cell of a fuel cell to produce a single cell.
  • the current-voltage characteristics of the single cell were measured using a 1 Owt% methanol aqueous solution and oxygen (1.1 atm, 25 ° C) as fuel. As a result, an open circuit voltage of 0.54 V and a short circuit current of 0.19 A / cm 2 were continuously observed.
  • the solid polymer electrolyte membrane was produced in the same manner as in the above example.
  • the fuel electrode and the oxidizer electrode were prepared by applying paste A in Example 1 on a carbon paper by a screen printing method, and then heating and drying the paste.
  • the above-mentioned solid polymer electrolyte membrane was sandwiched between these electrodes, and hot-pressed under the conditions of a temperature of 150 ° C. and a pressure of 10 kgf / cm 2 10 seconds, thereby producing an electrode-electrolyte assembly.
  • FIG. 14 is a diagram schematically showing a numeral 14. As in the example, there is a carbon particle 140 supporting a catalyst and a first solid polymer electrolyte 150 composed of naphion on a substrate 104. That is, a solid polymer electrolyte made of the same material as the polymer electrolyte membrane 114 does not exist in the fuel electrode 301.
  • Comparative Example 1 an example was shown in which only naphion was used as the solid polymer electrolyte in the electrode.
  • this comparative example only PPPBP was used as the solid polymer electrolyte in the electrode, and the other configurations of the battery were the same as those in the above example and comparative example 1.
  • the solid polymer electrolyte membrane was produced in the same manner as in the above example.
  • An electrode-electrolyte assembly and a single cell were prepared from the above fuel electrode, oxidizer electrode and solid polymer electrolyte membrane in the same manner as in the above example, and a discharge test was performed. As a result, an open-circuit voltage of 0.58 V and a short-circuit current of 0.16 A / cm 2 were observed.
  • a solid polymer electrolyte having low organic liquid fuel permeability in a catalyst electrode by including a solid polymer electrolyte having low organic liquid fuel permeability in a catalyst electrode, a solid polymer electrolyte membrane made of a solid polymer electrolyte having low organic liquid fuel permeability can be obtained. Good bondability with the electrode is obtained. Therefore, improvement in battery characteristics and improvement in battery reliability can be realized. In addition, it is possible to suppress the crossover of the organic liquid fuel while maintaining the hydrogen ion conductivity and the permeability of the organic liquid fuel at the catalyst electrode in a good condition.

Abstract

The adhesion at the interface between the surface of an electrode and the solid polyelectrolyte membrane is enhanced, and the cell characteristics and the reliability of the cell are improved. A fuel cell comprising a solid polyelectrolyte membrane (114), a fuel electrode (102) provided on the electrolyte membrane, and an oxidizer electrode (108) also provided on the electrolyte membrane, wherein the fuel electrode (102) has a catalyst layer containing carbon particles (140) carrying a catalyst, a first solid polyelectrolyte (150), and a second polyelectrolyte (160) having a stronger adhesion to the solid polyelectrolyte membrane (114) than the first solid polyelectrolyte (150).

Description

03 04853  03 04853
燃料電池、 燃料電池用電極およびそれらの製造方法 技術分野 TECHNICAL FIELD The present invention relates to a fuel cell, an electrode for a fuel cell, and a method for producing the same.
本発明は、 燃料電池、 燃料電池用電極およびそれらの製造方法に関する。 従来技術  The present invention relates to a fuel cell, an electrode for a fuel cell, and a method for producing the same. Conventional technology
固体高分子型燃料電池はパ一フルォロスルフォン酸膜等の固体高分子電解質膜 を電解質とし、 この膜の両面に燃料極および酸化剤極を接合して構成され、 燃料 極に水素、 酸化剤極に酸素を供給して電気化学反応により発電する装置である。  A polymer electrolyte fuel cell is composed of a solid polymer electrolyte membrane such as a perfluorosulfonic acid membrane as an electrolyte, and a fuel electrode and an oxidizer electrode bonded to both sides of the membrane. This is a device that supplies oxygen to the agent electrode and generates power by an electrochemical reaction.
各電極では次のような電気化学反応が生じている。  The following electrochemical reaction occurs in each electrode.
燃料極: H2→2 H++ 2 e - 酸化剤極: l Z2〇2+ 2 H++2 e—→H2Fuel electrode: H 2 → 2 H ++ 2 e-Oxidizer electrode: l Z2〇 2 + 2 H ++ 2 e— → H 2
この反応によって、 固体高分子型燃料電池は常温 ·常圧で 1 A/ c m2以上の 高出力を得ることができる。 By this reaction, the polymer electrolyte fuel cell can obtain a high output of 1 A / cm 2 or more at normal temperature and normal pressure.
燃料極およぴ酸化剤極には、 触媒物質が担持された炭素粒子と固体高分子電解 質との混合体が備えられている。 一般的に、 この混合体は、 燃料のガスの拡散層 となる力一ボンペーパーなどの電極基体上に塗布されて構成される。 これら 2つ の電極により固体高分子電解質膜を挟み、 熱圧着することにより燃料電池が構成 される。  Each of the fuel electrode and the oxidizer electrode is provided with a mixture of carbon particles carrying a catalytic substance and a solid polymer electrolyte. In general, this mixture is applied to an electrode substrate such as a carbon paper which serves as a fuel gas diffusion layer. A fuel cell is constructed by sandwiching a solid polymer electrolyte membrane between these two electrodes and thermocompression bonding.
この構成の燃料電池において、 燃料極に供給された水素ガスは、 電極中の細孔 を通過して触媒に達し、 電子を放出して水素イオンとなる。 放出された電子は燃 料極内の炭素粒子および固体電解質を通って外部回路へ導き出され、 外部回路よ り酸化剤極に流れ込む。  In the fuel cell having this configuration, the hydrogen gas supplied to the fuel electrode passes through the pores in the electrode and reaches the catalyst, and emits electrons to become hydrogen ions. The emitted electrons are guided to the external circuit through the carbon particles and the solid electrolyte in the fuel electrode, and flow into the oxidant electrode from the external circuit.
一方、 燃料極において発生した水素イオンは、 燃料極中の固体高分子電解質お ょぴ両電極間に配置された固体高分子電解質膜を通って酸化剤極に達し、 酸化剤 極に供給された酸素と外部回路より流れ込む電子と反応して上記反応式に示すよ うに水を生じる。 この結果、 外部回路では燃料極から酸化剤極へ向かつて電子が JP03/04853 On the other hand, the hydrogen ions generated at the fuel electrode reached the oxidizer electrode through the solid polymer electrolyte in the fuel electrode and the solid polymer electrolyte membrane disposed between both electrodes, and were supplied to the oxidizer electrode. The oxygen reacts with the electrons flowing from the external circuit to produce water as shown in the above reaction formula. As a result, in the external circuit, electrons travel from the fuel electrode to the oxidizer electrode. JP03 / 04853
2 Two
流れ、 電力が取り出される。 Flow, and power is extracted.
上記のような構成の燃料電池の特性を向上させるためには、 電極と固体高分子 電解質膜との間の界面の密着性が良好であることが重要となる。 すなわち、 両者 の界面において、 電極反応によって生じた水素イオンの伝導性が高 ヽことが要求 される。 界面の密着性が不良であると、 水素イオンの伝導性が低下して電気抵抗 が上昇し、 電池効率の低下をもたらす原因となる。  In order to improve the characteristics of the fuel cell having the above structure, it is important that the interface between the electrode and the solid polymer electrolyte membrane has good adhesion. That is, it is required that the conductivity of the hydrogen ions generated by the electrode reaction be high at the interface between the two. Poor interfacial adhesion reduces the conductivity of hydrogen ions and increases the electrical resistance, which causes a reduction in battery efficiency.
以上、 水素を燃料とした燃料電池について説明したが、 近年はメタノールなど の有機液体燃料を用いた燃料電池の研究開発も盛んに行われている。  The fuel cell using hydrogen as a fuel has been described above. In recent years, research and development of a fuel cell using an organic liquid fuel such as methanol has been actively conducted.
有機液体燃料を使用する燃料電池には、 有機液体燃料を水素ガスへ改質して燃 料として使用するものや、ダイレクトメタノール型燃料電池に代表されるような、 有機液体燃料を改質せずに燃料極に直接供給するものなどが知られている。  Fuel cells that use organic liquid fuel include those that reform organic liquid fuel into hydrogen gas and use it as fuel, and those that do not reform organic liquid fuel, such as direct methanol fuel cells. There is known a fuel cell that supplies fuel directly to a fuel electrode.
中でも、 有機液体燃料を改質せずに燃料極に直接供給する燃料電池は、 有機液 体燃料を直接燃料極に供給する構造であるため、 改質器のような装置を必要とし ない。 そのため、 電池の構成を簡単なものとすることができ、 装置全体を小型ィ匕 することが可能であるというメリットを有している。 また、 水素ガスや炭化水素 ガス等の気体燃料と比較して、 有機液体燃料は容易かつ安全に運搬可能であると いう特徴も有している。  Above all, a fuel cell that supplies organic liquid fuel directly to the anode without reforming it does not require a device such as a reformer because it has a structure that supplies organic liquid fuel directly to the anode. Therefore, there is an advantage that the configuration of the battery can be simplified, and the entire device can be reduced in size. In addition, organic liquid fuels can be easily and safely transported compared to gaseous fuels such as hydrogen gas and hydrocarbon gas.
一般的に、 有機液体燃料を使用する燃料電池においては、 電解質として固体高 分子イオン交換樹脂からなる固体高分子電解質膜が用いられる。 ここで、 燃料電 池が機能するためには、 水素イオンがこの膜中を燃料極から酸化剤極へ移動する ことが必要であるが、 この水素イオンの移動には水の移動が伴うことが知られて おり、 当該膜には一定の水分が含まれていることが必要である。  Generally, in a fuel cell using an organic liquid fuel, a solid polymer electrolyte membrane made of a solid high molecular ion exchange resin is used as an electrolyte. Here, in order for the fuel cell to function, hydrogen ions need to move through the membrane from the fuel electrode to the oxidizer electrode, but this movement of hydrogen ions may involve the movement of water. Known, it is necessary that the membrane contain a certain amount of moisture.
しかし、水に対して親和性の高いメタノールなどの有機液体燃料を用いる場合、 当該有機液体燃料は水分を含んだ固体高分子電解質膜に拡散し、 さらには、 酸化 剤極まで到達する (クロスオーバー) という克服すべき課題を有していた。' この クロスオーバーは、 本来燃料極において電子を提供すべき有機液体燃料が酸化剤 極側で酸化されてしまい、 燃料として有効に使用されないことから、 電圧や出力 の低下、 燃料効率の低下を引き起こす。  However, when an organic liquid fuel such as methanol having a high affinity for water is used, the organic liquid fuel diffuses into the solid polymer electrolyte membrane containing water and further reaches the oxidant electrode (crossover). ). '' This crossover causes the voltage, output, and fuel efficiency to drop because the organic liquid fuel, which should originally provide electrons at the fuel electrode, is oxidized at the oxidant electrode and is not used effectively as fuel. .
こうしたクロスオーバーの問題を解消する観点からは、 固体高分子電解質膜の 03 04853 From the viewpoint of solving such a crossover problem, the solid polymer electrolyte membrane 03 04853
3 Three
材料として含水率の低い高分子を選択し、 メタノールなどの有機液体燃料が水と ともに拡散することを抑制することが望まれる。 しかしながら、 その電解質膜に 接する電極表面の触媒層については、 電極層から燃料となる有機液体燃料を効率 良く移動させ、 多くの水素イオンを供給することが重要である。 すなわち、 電極 表面の触媒層は有機液体燃料をよく透過し、 電解質膜は有機液体燃料を透過させ ないようにすることが望ましい。 このようにするためには、 電極表面の触媒層を 構成する高分子としては含水率が高く有機液体燃料の透過性の高い性質を有する ものを用い、 固体高分子電解質膜を構成する高分子としては含水率が低く有機液 体燃料の透過性の低い性質を有するものを用いることが好適と考えられる。 It is desirable to select a polymer with a low water content as the material and to suppress the diffusion of organic liquid fuel such as methanol with water. However, for the catalyst layer on the electrode surface in contact with the electrolyte membrane, it is important to efficiently move the organic liquid fuel as fuel from the electrode layer and supply a large amount of hydrogen ions. That is, it is desirable that the catalyst layer on the electrode surface is permeable to the organic liquid fuel and the electrolyte membrane is permeable to the organic liquid fuel. In order to achieve this, the polymer constituting the catalyst layer on the electrode surface should be a polymer having a high water content and high permeability to organic liquid fuel, and the polymer constituting the solid polymer electrolyte membrane should be used. It is considered preferable to use a material having a low water content and a property of low permeability for organic liquid fuel.
特開 2 0 0 1— 1 6 7 7 7 5号公報には、 イオン導電性を維持しながらメタノ ールのクロスオーバーを抑制することを可能にするイオン導電性膜に関する技術 が開示されている。 ここでは、 ナフイオン (登録商標) 等のフッ素樹脂を基本構 造とするイオン導電性膜の表面層を電子線照射等により改質して導電性が内部の 導電性に比較して低くなるようにしている。 発明が解決しょうとする課題  Japanese Patent Application Laid-Open Publication No. 2001-167775 discloses a technology relating to an ion conductive film which enables to suppress crossover of methanol while maintaining ion conductivity. . Here, the surface layer of an ion conductive film having a basic structure of a fluororesin such as Nafion (registered trademark) is modified by electron beam irradiation or the like so that the conductivity becomes lower than the internal conductivity. ing. Problems to be solved by the invention
ところが、 上記のように電極表面触媒層の材料と固体高分子電解質膜の材料と を異なる材料とした場合、 一般に、 充分な密着性が得られず、 電極表面と固体高 分子電解質膜との間の界面で剥離が発生する場合がある。 このような剥離が発生 すると、 界面における電気抵抗が上昇し、 電池性能の信頼性の低下をもたらす原 因となる。 また、 上記特許文献に記載されたように、 イオン導電性膜の表面層を 改質した場合も、 イオン導電性膜の膨潤時の表面強度が上がり、 電極表面触媒層 との密着性が悪化するという課題を有していた。  However, when the material of the electrode surface catalyst layer and the material of the solid polymer electrolyte membrane are different from each other as described above, in general, sufficient adhesion cannot be obtained, and the gap between the electrode surface and the solid polymer electrolyte membrane is generally low. Peeling may occur at the interface. When such peeling occurs, the electrical resistance at the interface increases, which causes a decrease in the reliability of the battery performance. Also, as described in the above-mentioned patent document, when the surface layer of the ion-conductive film is modified, the surface strength of the ion-conductive film at the time of swelling is increased, and the adhesion to the electrode surface catalyst layer is deteriorated. There was a problem that.
上記事情に鑑み、 本発明は、 触媒電極表面と固体高分子電解質膜との間の界面 における密着性を高め、 電池特性の向上および電池の信頼性の向上を図ることを 目的とする。  In view of the above circumstances, an object of the present invention is to increase the adhesion at the interface between the surface of the catalyst electrode and the solid polymer electrolyte membrane, thereby improving battery characteristics and battery reliability.
また本発明は、 触媒電極における水素イオン伝導性や有機液体燃料の透過性等 を良好に維持しつつ有機液体燃料のクロスオーバーを抑制することを目的とする。 発明の開示 Another object of the present invention is to suppress the crossover of the organic liquid fuel while maintaining good hydrogen ion conductivity and permeability of the organic liquid fuel in the catalyst electrode. Disclosure of the invention
燃料電池の固体高分子電解質には、 一般に、 ナフイオン (登録商標) 等に代表 される高い水素イオン伝導性を有する固体高分子電解質が使用されている。 こう した固体高分子電解質における高い水素イオン伝導性は、 高分子電解質が多量の 水分を含むことによって発現するのであるが、 一方では、 この多量の水分の含有 により、 メタノールのような有機液体燃料が水に容易に溶解してク口スオーバー を発生することを促すこととなる。  As a solid polymer electrolyte of a fuel cell, a solid polymer electrolyte having high hydrogen ion conductivity represented by Nafion (registered trademark) or the like is generally used. The high proton conductivity of the solid polymer electrolyte is manifested by the polymer electrolyte containing a large amount of water.On the other hand, the large amount of water causes the organic liquid fuel such as methanol to be produced. It will easily dissolve in water to promote mouth mouthover.
そこで本発明者は、 クロスオーバーの抑制を図るため、 燃料極や酸化剤極、 固 体高分子電解質膜を構成する固体高分子電解質として、 ナフイオン等よりも有機 液体燃料透過性の低い高分子材料を用いてダイレクトメタノール型燃料電池を作 製し、 評価を行った。 ところが、 この燃料電池はナフイオンを用いた従来の電池 と比較して電池特性が低下した。これは、燃料極において、メタノールの透過性、 水素ィォン伝導性が低下したことによるものと考えられる。 上記燃料電池の燃料 極は、 触媒を担持する炭素粒子と、 バインダとしての固体高分子電解質が混在し た形態の触媒層を備えた構成となっており、 触媒間に固体高分子電解質が介在し た構造となっている。 このため、 電極表面でメタノール、 水素、 電子が円滑に移 動するためには、 これらの伝達経路となる固体高分子電解質が、 高いメタノール 等液体燃料透過性、 優れた水素イオン伝導性を有していることが必要となる。 上 記構造の電池では、 固体高分子電解質がこれらの性能が充分に満足していなかつ たため、 良好な電池特性が得られなかったものと考えられる。  In order to suppress crossover, the present inventor has sought to use a polymer material having lower organic liquid fuel permeability than naphion or the like as the fuel electrode, oxidizer electrode, or solid polymer electrolyte constituting the solid polymer electrolyte membrane. A direct methanol fuel cell was fabricated using this and evaluated. However, the characteristics of this fuel cell were lower than those of a conventional cell using naphion. This is thought to be due to the decrease in methanol permeability and hydrogen ion conductivity at the fuel electrode. The fuel electrode of the fuel cell includes a catalyst layer in which carbon particles carrying a catalyst and a solid polymer electrolyte as a binder are mixed, and the solid polymer electrolyte is interposed between the catalysts. Structure. For this reason, in order for methanol, hydrogen, and electrons to move smoothly on the electrode surface, the solid polymer electrolyte serving as these transmission paths has high permeability to liquid fuel such as methanol and excellent hydrogen ion conductivity. It is necessary to be. It is probable that in the battery with the above structure, good performance was not obtained because the solid polymer electrolyte did not sufficiently satisfy these performances.
次に本発明者らは、 燃料極における触媒反応を効率ィヒするために、 電極表面の 固体高分子電解質としてナフイオンを用い、 固体高分子電解質膜として、 ナフィ オン等よりも有機液体燃料透過性の低い高分子材料を用いてダイレクトメタノー ル型燃料電池の作製を試みたところ、 燃料極と固体高分子電解質膜との接合が不 充分であり、 評価に耐える電池を得ることができなかった。  Next, in order to improve the efficiency of the catalytic reaction at the fuel electrode, the present inventors used Nafion as the solid polymer electrolyte on the electrode surface, and used the solid polymer electrolyte membrane as an organic liquid fuel permeability rather than Nafion or the like. An attempt was made to fabricate a direct methanol fuel cell using a polymer material with a low molecular weight. However, the bonding between the fuel electrode and the solid polymer electrolyte membrane was insufficient, and a battery that could withstand the evaluation could not be obtained.
以上の予備実験の結果を踏まえ、 さらに検討を行った結果、 本発明者らは、 電 極表面を複数種類の固体高分子電解質により構成することで、 電極表面と固体高 分子電解質膜との間の界面における密着性を高めることができることを見いだし、 本発明の完成に至った。 本発明によれば、 固体高分子電解質膜と、 該固体高分子電解質膜に配された触 媒電極とを備え、 前記触媒電極は、 触媒物質と、 第一の固体高分子電解質と、 前 記第一の固体高分子電解質よりも前記固体高分子電解質膜に対する密着性の高い 第二の固体高分子電解質とを含む触媒層を備えることを特徴とする燃料電池が提 供される。 Based on the results of the preliminary experiments described above, as a result of further studies, the present inventors have found that the electrode surface is composed of a plurality of types of solid polymer electrolytes, so that the distance between the electrode surface and the solid polymer electrolyte membrane can be improved. It has been found that the adhesion at the interface can be improved, and the present invention has been completed. According to the present invention, there is provided a solid polymer electrolyte membrane, and a catalyst electrode provided on the solid polymer electrolyte membrane, wherein the catalyst electrode comprises: a catalyst substance; a first solid polymer electrolyte; There is provided a fuel cell including a catalyst layer including a second solid polymer electrolyte having higher adhesion to the solid polymer electrolyte membrane than the first solid polymer electrolyte.
また本発明によれば、 固体高分子電解質膜と、 該固体高分子電解質膜に配され た触媒電極とを備え、前記触媒電極は、触媒物質と、第一の固体高分子電解質と、 前記第一の固体高分子電解質とは異なる高分子からなり、 前記固体高分子電解質 膜を構成する高分子またはその誘導体からなる第二の固体高分子電解質とを含む 触媒層を備えることを特徴とする燃料電池が提供される。  Further, according to the present invention, the solid polymer electrolyte membrane includes: a catalyst electrode disposed on the solid polymer electrolyte membrane; the catalyst electrode includes a catalyst substance, a first solid polymer electrolyte, A fuel layer comprising a polymer different from the one solid polymer electrolyte; and a second solid polymer electrolyte comprising a polymer constituting the solid polymer electrolyte membrane or a derivative thereof. A battery is provided.
上記燃料電池において、 触媒層と固体高分子電解質膜とは接していても離間し ていてもよい。 これらが接する構成を採用すれば、 触媒電極と固体高分子電解質 膜との間の界面の密着性を確実に向上させることができる。  In the above fuel cell, the catalyst layer and the solid polymer electrolyte membrane may be in contact with or separated from each other. If a configuration in which these are in contact with each other is adopted, the adhesion at the interface between the catalyst electrode and the solid polymer electrolyte membrane can be reliably improved.
本発明における 「触媒電極」 は、 触媒を含む電極であり、 燃料極および酸化剤 極を含む総称として用いている。 触媒電極の触媒層を構成する固体高分子電解質 は、 電極表面において、 触媒を担持した炭素粒子と固体高分子電解質膜を電気的 に接続するとともに触媒表面に有機液体燃料を到達させる役割を有しており、 水 素イオン伝導性や水移動性が要求される。 さらに、 燃料極においてはメタノール 等の有機液体燃料透過性が求められ、 酸化剤極においては酸素透過性が求められ る。  The “catalyst electrode” in the present invention is an electrode containing a catalyst, and is used as a general term including a fuel electrode and an oxidizer electrode. The solid polymer electrolyte that constitutes the catalyst layer of the catalyst electrode has the role of electrically connecting the catalyst-supporting carbon particles and the solid polymer electrolyte membrane on the electrode surface and allowing the organic liquid fuel to reach the catalyst surface. Therefore, hydrogen ion conductivity and water mobility are required. Further, the fuel electrode is required to be permeable to organic liquid fuel such as methanol, and the oxidizer electrode is required to be permeable to oxygen.
本発明における触媒層を構成する固体高分子電解質は、 第一の固体高分子電解 質および第二の固体高分子電解質を含んでいるが、 このうち、 特に第一の固体高 分子電解質が上記役割を果たす。 第一の固体高分子電解質を構成する材料として は、 水素ィォン伝導性や、 メタノ一ル等の有機液体燃料透過性に優れる材料が好 ましく用いられる。  The solid polymer electrolyte constituting the catalyst layer in the present invention includes the first solid polymer electrolyte and the second solid polymer electrolyte. Among them, the first solid polymer electrolyte has the above-mentioned role. Fulfill. As a material constituting the first solid polymer electrolyte, a material excellent in hydrogen ion conductivity and organic liquid fuel permeability such as methanol is preferably used.
一方、 固体高分子電解質膜は、 燃料極と酸化剤極を隔てるとともに、 両者の間 で水素イオンを移動させる役割を有し、 さらに、 液体燃料が燃料極から酸化剤極 へ移動すること、 すなわち有機液体燃料のクロスオーバーを抑える性質を備えて いることが望まれる。 T/JP03/04853 On the other hand, the solid polymer electrolyte membrane separates the fuel electrode and the oxidizer electrode, and has a role to transfer hydrogen ions between the two.In addition, the liquid fuel moves from the fuel electrode to the oxidizer electrode, that is, It is desirable to have the property of suppressing the crossover of organic liquid fuel. T / JP03 / 04853
6 6
以上のように燃料極および酸化剤極と固体電解質膜とは、 互いに要求される性 質が異なることから、 それぞれ異なる材料により構成することが望ましい。 しか しながら、 このようにした場合、 両者の間の密着性を充分に確保することは一般 に困難である。 そこで本発明は、 電極表面の固体高分子電解質を機能の異なる複 数種類により構成し、 電極および固体高分子電解質膜に適した材料を選択しつつ 両者の間の密着性を良好にしている。  As described above, since the properties required for the fuel electrode, the oxidizer electrode, and the solid electrolyte membrane are different from each other, it is preferable that the fuel electrode and the oxidant electrode be formed of different materials. However, in such a case, it is generally difficult to ensure sufficient adhesion between the two. Therefore, the present invention provides a solid polymer electrolyte on the electrode surface with a plurality of types having different functions to improve the adhesion between the electrodes and the solid polymer electrolyte membrane while selecting a suitable material.
すなわち、 本発明に係る触媒電極は、 第一および第二の固体高分子電解質を含 む構成とし、 第一の固体高分子電解質によつて電極表面における水素ィォンゃ液 体燃料の円滑な移動を担保するとともに、 第二の固体高分子電解質により、 触媒 電極と固体高分子電解質膜との間の界面を強固に密着せしめている。 本発明によ れば、 こうした構成を採用することにより、 触媒電極と固体高分子電解質膜との 間の界面における電気抵抗の上昇を抑制しつつ、 良好な電池効率を長期間にわた つて安定的に実現することができる。  That is, the catalyst electrode according to the present invention is configured to include the first and second solid polymer electrolytes, and the first solid polymer electrolyte allows the hydrogen ion liquid fuel to move smoothly on the electrode surface. In addition to ensuring security, the interface between the catalyst electrode and the solid polymer electrolyte membrane is firmly adhered to by the second solid polymer electrolyte. According to the present invention, by adopting such a configuration, it is possible to suppress a rise in electric resistance at the interface between the catalyst electrode and the solid polymer electrolyte membrane, and to maintain good battery efficiency over a long period of time. Can be realized.
第二の固体高分子電解質により、 触媒電極と固体高分子電解質膜との間の界面 が強固に密着する理由は以下のように推察される。 まず、 この粒子は、 固体高分 子電解質膜との密着性が優れる材料、 たとえば固体高分子電解質膜を構成する高 分子またはその誘導体により構成することができる。 また、 第二の固体高分子電 解質の粒子を、 固体高分子電解質膜を構成する材料と極性、 濡れ性、 S P値等の 物性値が類似する材料により構成することができる。 これにより、 第二の固体高 分子電解質を第一の固体高分子電解質よりも固体高分子電解質膜に対する密着性 を高くすることができる。 このため、 第一の固体高分子電解質と固体高分子電解 質膜との間には良好な密着性が発現する。 一方、 第一の固体高分子電解質と第二 の固体高分子電解質とは両者が混在して層をなす形態となっているため、 両者の 間の密着性は充分に良好である。 以上のことから、 第二の固体高分子電解質は、 固体高分子電解質膜および第一の固体高分子電解質の両方に対して良好な密着性 を示し、 この結果、 触媒電極と固体高分子電解質膜とが強固に接合される。  The reason why the interface between the catalyst electrode and the solid polymer electrolyte membrane is firmly adhered by the second solid polymer electrolyte is presumed as follows. First, the particles can be made of a material having excellent adhesion to the solid polymer electrolyte membrane, for example, a high molecule constituting the solid polymer electrolyte membrane or a derivative thereof. Further, the particles of the second solid polymer electrolyte can be made of a material having similar physical properties such as polarity, wettability and SP value to the material constituting the solid polymer electrolyte membrane. Thereby, the adhesion of the second solid polymer electrolyte to the solid polymer electrolyte membrane can be higher than that of the first solid polymer electrolyte. For this reason, good adhesion is developed between the first solid polymer electrolyte and the solid polymer electrolyte membrane. On the other hand, since the first solid polymer electrolyte and the second solid polymer electrolyte are in a form in which both are mixed to form a layer, the adhesion between the two is sufficiently good. From the above, the second solid polymer electrolyte shows good adhesion to both the solid polymer electrolyte membrane and the first solid polymer electrolyte, and as a result, the catalyst electrode and the solid polymer electrolyte membrane Are firmly joined.
本発明の燃料電池において、 前記触媒電極に有機液体燃料が供給される構成と することができる。 すなわち、 いわゆるダイレクト型の燃料電池とすることがで きる。 ここで有機液体燃料としては、 たとえばメタノールとすることができる。 直接型の燃料電池は電池効率が高い、 改質器が不要であるため省スペース化を図 ることができる、 等の利点が得られる反面、 メタノールなどの有機液体燃料のク ロスオーバーが問題となる。 本発明によれば、 こうしたクロスオーバーの問題を 解消しつつ触媒電極と固体高分子電解質膜との間の界面における電気抵抗の上昇 を抑制し、 良好な電池効率を長期間にわたつて安定的に実現することができる。 本発明において、 触媒電極は、 多孔質基材を含むことができ、 触媒層は多孔質 基材に接して設けることができる。 触媒層中の触媒物質の含有率は、 多孔質基材 から固体高分子電解質膜に向かう方向に沿って分布を有していてもよい。 たとえ ば、 触媒層が、 多孔質基材と接する側において触媒物質を含み、 固体高分子電解 質膜と接する側において触媒物質を含まない構成とすることができる。 In the fuel cell according to the present invention, an organic liquid fuel may be supplied to the catalyst electrode. That is, a so-called direct type fuel cell can be obtained. Here, the organic liquid fuel can be, for example, methanol. Direct fuel cells have the advantages of high cell efficiency, space savings because a reformer is not required, and the like, but have the problem of crossover of organic liquid fuels such as methanol. Become. According to the present invention, it is possible to eliminate the problem of crossover while suppressing an increase in electric resistance at the interface between the catalyst electrode and the solid polymer electrolyte membrane, and stably maintain good battery efficiency over a long period of time. Can be realized. In the present invention, the catalyst electrode can include a porous substrate, and the catalyst layer can be provided in contact with the porous substrate. The content of the catalyst substance in the catalyst layer may have a distribution along the direction from the porous substrate to the solid polymer electrolyte membrane. For example, a configuration in which the catalyst layer contains a catalyst substance on the side in contact with the porous substrate and does not contain a catalyst substance on the side in contact with the solid polymer electrolyte membrane can be employed.
また、 触媒層中の第一の固体高分子電解質の含有率は、 多孔質基材から固体高 分子電解質膜に向かう方向に沿って分布を有していてもよい。 たとえば、 接着層 が、 多孔質基材と接する側において第一の固体高分子電解質を含み、 固体高分子 電解質膜と接する側において第一の固体高分子電解質を含まない構成とすること ができる。 このとき同時に、 接着層が、 多孔質基材と接する側において第二の固 体高分子電解質を含まず、 固体高分子電解質膜と接する側において第二の固体高 分子電解質を含む構成とすることができる。 このようにすれば、 触媒層と固体高 分子電解質膜の密着性を向上することができる。  Further, the content of the first solid polymer electrolyte in the catalyst layer may have a distribution along a direction from the porous substrate to the solid polymer electrolyte membrane. For example, a configuration can be adopted in which the adhesive layer includes the first solid polymer electrolyte on the side in contact with the porous substrate, and does not include the first solid polymer electrolyte on the side in contact with the solid polymer electrolyte membrane. At the same time, the adhesive layer may not include the second solid polymer electrolyte on the side in contact with the porous base material, and may include the second solid polymer electrolyte on the side in contact with the solid polymer electrolyte membrane. it can. By doing so, the adhesion between the catalyst layer and the solid polymer electrolyte membrane can be improved.
また本発明によれば、 触媒物質と、 第一の固体高分子電解質と、 該第一の固体 高分子電解質とは異なる高分子からなる第二の固体高分子電解質とを含む触媒層 を備えることを特徴とする燃料電池用電極が提供される。  Further, according to the present invention, there is provided a catalyst layer including a catalyst substance, a first solid polymer electrolyte, and a second solid polymer electrolyte made of a polymer different from the first solid polymer electrolyte. An electrode for a fuel cell is provided.
本発明においては、 電極表面の固体高分子電解質を機能の異なる複数種類によ り構成している。このため、単一種類の固体高分子電解質では実現困難な性能を、 安定的に実現することが可能となる。  In the present invention, the solid polymer electrolyte on the electrode surface is composed of a plurality of types having different functions. For this reason, it is possible to stably realize performance that is difficult to achieve with a single type of solid polymer electrolyte.
たとえば、 本発明に係る燃料電池の説明と同様、 第一の固体高分子電解質によ つて電極表面における水素イオンや液体燃料の円滑な移動を担保するとともに、 第二の固体高分子電解質により、 触媒電極と固体高分子電解質膜との間の界面が 強固に密着せしめ、 触媒電極と固体高分子電解質膜との間の界面における電気抵 抗の上昇を抑制しつつ、 良好な電池効率を長期間にわたつて安定的に実現するこ とができる。 For example, as in the description of the fuel cell according to the present invention, the smooth movement of hydrogen ions and liquid fuel on the electrode surface is ensured by the first solid polymer electrolyte, and the catalyst is formed by the second solid polymer electrolyte. The interface between the electrode and the solid polymer electrolyte membrane is firmly adhered to, and the increase in electrical resistance at the interface between the catalyst electrode and the solid polymer electrolyte membrane is suppressed, and good battery efficiency is maintained over a long period of time. Achieving stability for the whole time Can be.
また、 第一および第二の固体高分子電解質のうち、 第一の固体高分子電解質と して、 水素イオン伝導性や液体燃料の透過性に優れた材料を選択し、 第二の固体 高分子電解質として、 第一の固体高分子電解質に比べて水素イオン伝導性あるい は液体燃料の透過性の点で劣るもののコストの安い材料、 あるいは成膜性等、 製 造安定性の改善に寄与する材料を選択することができる。 こうすることにより、 安価なコスト、 あるいは、 良好な製造安定性を実現しつつ、 優れた電極性能を安 定的に実現することができる。  Also, of the first and second solid polymer electrolytes, a material having excellent hydrogen ion conductivity and liquid fuel permeability is selected as the first solid polymer electrolyte. As an electrolyte, it is inferior in terms of hydrogen ion conductivity or liquid fuel permeability compared to the first solid polymer electrolyte, but is a low-cost material, or contributes to improvement in manufacturing stability such as film forming properties. Material can be selected. By doing so, it is possible to stably realize excellent electrode performance while realizing inexpensive cost or good manufacturing stability.
さらに本発明によれば、 基体上に触媒層が設けられた燃料電池用電極の製造方 法であって、 触媒物質を担持した導電粒子と、 第一の固体高分子電解質と、 前記 第一の固体高分子電解質とは異なる高分子からなる第二の固体高分子電解質とを 含有する塗布液を基体上に塗布して前記触媒層を形成する工程を含むことを特徴 とする燃料電池用電極の製造方法が提供される。  Furthermore, according to the present invention, there is provided a method for producing an electrode for a fuel cell in which a catalyst layer is provided on a substrate, comprising: conductive particles carrying a catalyst substance; a first solid polymer electrolyte; A step of applying a coating solution containing a second solid polymer electrolyte composed of a polymer different from the solid polymer electrolyte onto a substrate to form the catalyst layer, A manufacturing method is provided.
この製造方法によれば、 第一および第二の固体高分子電解質を含む塗布液を基 体上に塗布して触媒層を形成するので、 触媒層中で第一および第二の固体高分子 電解質が良好に混在した状態となる。 このため、 両者のそれぞれの特性が効果的 に発現し、 触媒電極の性能および触媒電極と固体高分子電解質膜との密着性がい ずれも良好となる。  According to this production method, the coating solution containing the first and second solid polymer electrolytes is applied to the base to form the catalyst layer, and thus the first and second solid polymer electrolytes are formed in the catalyst layer. Are mixed well. For this reason, the respective characteristics of both are effectively exhibited, and both the performance of the catalyst electrode and the adhesion between the catalyst electrode and the solid polymer electrolyte membrane are improved.
上記塗布液は、 第一の固体高分子電解質を含む粒子および第二の固体高分子電 解質を含む粒子が塗布液中で分散した構成とすることができる。 こうすることに より、 塗布時の作業性および製造安定性を良好にすることができる。  The coating liquid may have a structure in which particles containing the first solid polymer electrolyte and particles containing the second solid polymer electrolyte are dispersed in the coating liquid. By doing so, workability during coating and production stability can be improved.
上記製造方法により得られた触媒電極は、 電極表面の固体高分子電解質を機能 の異なる複数種類により構成している。 このため、 単一種類の固体高分子電解質 では実現困難な性能を、 安定的に実現することが可能となる。  The catalyst electrode obtained by the above manufacturing method comprises a plurality of types of solid polymer electrolytes having different functions on the electrode surface. For this reason, it is possible to stably realize performance that is difficult to achieve with a single type of solid polymer electrolyte.
また、 本発明によれば、 上記の燃料電池用電極の製造方法によって触媒電極を 得た後、 前記触媒層と固体高分子電解質膜とを当接させた状態で前記触媒電極と 固体高分子電解質膜とを熱圧着する工程を含むことを特徴とする燃料電池の製造 方法が提供される。 この製造方法によれば、 接着層を簡便な工程で安定的に形成 することができ、 触媒電極と固体高分子電解質膜との密着性が良好な燃料電池を 安定的に得ることができる。 Further, according to the present invention, after the catalyst electrode is obtained by the above-described method for producing an electrode for a fuel cell, the catalyst electrode and the solid polymer electrolyte are contacted with the catalyst layer and the solid polymer electrolyte membrane in contact with each other. A method for manufacturing a fuel cell, comprising a step of thermocompression bonding with a membrane is provided. According to this manufacturing method, the adhesive layer can be stably formed in a simple process, and a fuel cell having good adhesion between the catalyst electrode and the solid polymer electrolyte membrane can be obtained. It can be obtained stably.
本発明において、 前記第二の固体高分子電解質は、 前記第一の固体高分子電解 質よりも前記有機液体燃料の透過性が低いことが好ましい。 このようにすること により、 触媒電極における有機液体燃料透過性および水素イオン伝導性を確保し つつ、 固体高分子電解質膜との密着性を得ることが可能となる。 これを実現させ るためには、 たとえば以下のような構成にするとよい。  In the present invention, the second solid polymer electrolyte preferably has a lower permeability of the organic liquid fuel than the first solid polymer electrolyte. By doing so, it becomes possible to obtain the adhesion with the solid polymer electrolyte membrane while securing the organic liquid fuel permeability and the hydrogen ion conductivity in the catalyst electrode. To achieve this, for example, the following configuration may be used.
( i ) 前記第二の固体高分子電解質は、 前記第一の固体高分子電解質よりも含水 率が低いこと。  (i) The second solid polymer electrolyte has a lower water content than the first solid polymer electrolyte.
( i i ) 前記第一の固体高分子電解質および前記第二の固体高分子電解質が、 い ずれも、 プロトン酸基を含む構成とし、 前記第二の固体高分子電解質は、 前記第 一の固体高分子電解質よりも前記プロトン酸基の含有密度が低いこと。 ここで、 プロトン酸基とは、 たとえば、 スルフォン基、 カルボキシル基、 リン酸基、 ホス ホン酸基およびホスフィン酸基からなる群から選択される一または二以上の極性 基である。 - また、 本発明において、 前記第一の固体高分子電解質を、 フッ素を含有する高 分子からなる構成とすることができる。  (ii) the first solid polymer electrolyte and the second solid polymer electrolyte each include a protonic acid group; and the second solid polymer electrolyte comprises the first solid polymer electrolyte. The density of the protonic acid groups is lower than that of the molecular electrolyte. Here, the protonic acid group is, for example, one or more polar groups selected from the group consisting of a sulfone group, a carboxyl group, a phosphoric acid group, a phosphonic acid group and a phosphinic acid group. -In the present invention, the first solid polymer electrolyte may be constituted by a fluorine-containing high molecule.
また、 本発明において、 前記第二の固体高分子電解質は、 フッ素を含まない高 分子からなる構成とすることができる。  Further, in the present invention, the second solid polymer electrolyte may be constituted by a high molecule not containing fluorine.
さらに、 本発明において、 前記第二の固体高分子電解質は、 芳香族を含有する 高分子からなる構成とすることができる。  Further, in the present invention, the second solid polymer electrolyte may be constituted by a polymer containing an aromatic.
なお、 本発明における樹脂含有率や触媒含有率の測定は、 たとえば、 測定対象 となる層構造に対して表面からスパッタリングを行いながら二次ィォン質量分析 ( S I M S) を行う等の方法により行うことができる。 図面の簡単な説明  The measurement of the resin content and the catalyst content in the present invention can be performed by, for example, a method such as performing secondary ion mass spectrometry (SIMS) while sputtering the layer structure to be measured from the surface. it can. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の燃料電池の一例の構造を模式的に表した断面図である。 図 2は、 本発明の燃料電池の一例における燃料極、 酸化剤極および固体高分子 電解質膜を模式的に表した断面図である。  FIG. 1 is a sectional view schematically showing the structure of an example of the fuel cell of the present invention. FIG. 2 is a cross-sectional view schematically showing a fuel electrode, an oxidizer electrode, and a solid polymer electrolyte membrane in an example of the fuel cell of the present invention.
図 3は、 本発明の実施例の燃料電池における燃料極と固体高分子電解質膜とを 模式的に示した図である。 FIG. 3 shows the fuel electrode and the solid polymer electrolyte membrane in the fuel cell according to the embodiment of the present invention. It is the figure which showed typically.
図 4は、 比較例 1の燃料電池における燃料極と固体高分子電解質膜とを模式的 に示した図である。 ,  FIG. 4 is a diagram schematically showing a fuel electrode and a solid polymer electrolyte membrane in the fuel cell of Comparative Example 1. ,
なお、 符号 1 0 0は、 燃料電池である。 符号 1 0 1は、 電極一電解質接合体で ある。符号 1 0 2は、燃料極である。符号 1 0 4は、基体である。符号 1 0 6は、 触媒層である。 符号 1 0 8は、 酸化剤極である。 符号 1 1 0は、 基体である。 符 号 1 1 2は、 触媒層である。 符号 1 1 4は、 固体高分子電解質膜である。 符号 1 2 0は、 燃料極側セパレータである。 符号 1 2 2は、 酸化剤極側セパレー夕であ る。 符号 1 2 4は、 燃料である。 符号 1 2 6は、 酸化剤である。 符号 1 4 0は、 触媒を担持した炭素粒子である。符号 1 5 0は、第一の固体高分子電解質である。 符号 1 6 0は、 第二の固体高分子電解質である。 符号 3 0 1は、 燃料極である。 発明を実施するための最良の形態  Reference numeral 100 denotes a fuel cell. Reference numeral 101 denotes an electrode-electrolyte assembly. Reference numeral 102 is a fuel electrode. Reference numeral 104 denotes a substrate. Reference numeral 106 denotes a catalyst layer. Reference numeral 108 denotes an oxidizer electrode. Reference numeral 110 denotes a substrate. Reference numerals 1 and 12 are catalyst layers. Reference numeral 114 denotes a solid polymer electrolyte membrane. Reference numeral 120 is a fuel electrode side separator. Reference numeral 122 denotes an oxidizer electrode side separator. Reference numeral 124 is fuel. Reference numeral 126 is an oxidizing agent. Reference numeral 140 is a carbon particle carrying a catalyst. Reference numeral 150 is a first solid polymer electrolyte. Reference numeral 160 is a second solid polymer electrolyte. Reference numeral 301 denotes a fuel electrode. BEST MODE FOR CARRYING OUT THE INVENTION
本発明における触媒電極は、 触媒物質と第一および第二の固体高分子電解質を 含むものである。 具体的には、 たとえば、 カーボンぺ一パーなどの基体上に、 触 媒を担持した導電粒子と、 第一および第二の固体高分子電解質とを含む触媒層が 形成された構成とすることができる。 ここで導電粒子としては炭素粒子等が用 ^ヽ られる。 第一および第二の固体高分子電解質は、 導電粒子を基体上に固定化する とともに導電粒子と固体高分子電解質膜との間を電気的に接続する役割を果たす。 触媒層中において、 第一および第二の固体高分子電解質は、 均一に分布してい ても不均一に分布していてもよい。 ここで、 触媒層のうち基体と反対側の面 (以 下、第一の面という)、すなわち、 固体高分子電解質膜と接する側の面における第 二の固体高分子電解質の含有率を、 触媒層のうち基体側の面 (以下、 第二の面と いう) における第二の固体高分子電解質の含有率よりも高くすれば、 固体高分子 電解質膜と触媒電極の密着性がより良好になる。 たとえば第一の面が第二の固体 高分子電解質から主としてなり、 第二の面が第一の固体高分子電解質から主とし てなる構成とすれば、 電極表面における水素イオンや有機液体燃料の伝達性を良 好に維持しつつ触媒電極と固体高分子電解質膜との間の密着性を向上させること ができる。 以下、 本発明の一実施形態につき詳細に説明する。 The catalyst electrode in the present invention contains a catalyst substance and first and second solid polymer electrolytes. Specifically, for example, a structure in which a catalyst layer containing conductive particles carrying a catalyst and first and second solid polymer electrolytes is formed on a substrate such as carbon paper or the like. it can. Here, carbon particles and the like are used as the conductive particles. The first and second solid polymer electrolytes serve to immobilize the conductive particles on the substrate and to electrically connect between the conductive particles and the solid polymer electrolyte membrane. In the catalyst layer, the first and second solid polymer electrolytes may be distributed uniformly or non-uniformly. Here, the content of the second solid polymer electrolyte on the surface of the catalyst layer opposite to the substrate (hereinafter, referred to as the first surface), that is, the surface in contact with the solid polymer electrolyte membrane, is defined as If the content of the second solid polymer electrolyte in the surface of the layer on the substrate side (hereinafter referred to as the second surface) is higher, the adhesion between the solid polymer electrolyte membrane and the catalyst electrode becomes better. . For example, if the first surface is mainly composed of the second solid polymer electrolyte and the second surface is mainly composed of the first solid polymer electrolyte, the transfer of hydrogen ions and organic liquid fuel on the electrode surface The adhesion between the catalyst electrode and the solid polymer electrolyte membrane can be improved while maintaining good properties. Hereinafter, an embodiment of the present invention will be described in detail.
図 1は本実施形態の燃料電池の構造を模式的に表した断面図である。 電極ー電 解質接合体 1 0 1は、 燃料極 1 0 2、 酸化剤極 1 0 8および固体高分子電解質膜 1 1 4から構成される。 燃料極 1 0 2は基体 1 0 4および触媒層 1 0 6から構成 される。 酸化剤極 1 0 8は基体1 1 0および触媒層 1 1 2から構成される。 上記複数の電極一電解質接合体 1 0 1が、 燃料極側セパレータ 1 2 0および酸 化剤極側セパレ一タ 1 2 2を介して電気的に接続され、 燃料電池 1 0 0が製造さ れる。  FIG. 1 is a sectional view schematically showing the structure of the fuel cell according to the present embodiment. The electrode-electrolyte assembly 101 includes a fuel electrode 102, an oxidant electrode 108, and a solid polymer electrolyte membrane 114. The fuel electrode 102 is composed of a substrate 104 and a catalyst layer 106. The oxidant electrode 108 is composed of a base 110 and a catalyst layer 112. The plurality of electrode-electrolyte assemblies 101 are electrically connected via the fuel electrode side separator 120 and the oxidizing agent electrode side separator 122 to produce the fuel cell 100. .
以上のように構成された燃料電池 1 0 0において、 各電極一電解質接合体 1 0 1の燃料極 1 0 2には、 燃料極側セパレータ 1 2 0を介して燃料 1 2 4が供給さ れる。 また、 各電極一電解質接合体 1 0 1の酸化剤極 1 0 8には、 酸化剤極側セ パレータ 1 2 2を介して空気あるいは酸素などの酸化剤 1 2 6が供給される。 固体高分子電解質膜 1 1 4は、 燃料極 1 0 2と酸化剤極 1 0 8とを隔てるとと もに、 両者の間で水素イオンや水分子を移動させる役割を有する。 このため、 固 体高分子電解質膜 1 1 4は、 水素イオンの導電性が高いことが好ましい。 また、 化学的に安定であつて機械的強度が高いことが好ましい。 固体高分子電解質膜 1 1 4を構成する材料としては、 スルフォン基、 リン酸基、 ホスホン基、 ホスフィ ン基などの強酸基や、 力ルポキシル基などの弱酸基などの極性基を有する有機高 分子が好ましく用いられる。 こうした有機高分子として、 スルフォン化ポリ (4 一フエノキシベンゾィルー 1 , 4一フエ二レン)、 アルキルスルフォン化ポリベン ゾィミダゾールなどの芳香族含有高分子; ポリスチレンスルホン酸共重合体、 ポ リビニルスルホン酸共重合体、 架橋アルキルスルフォン酸誘導体、 フッ素樹脂骨 格およぴスルフォン酸からなるフッ素含有高分子などの共重合体;アクリルアミ ド一 2 _メチルプロパンスルフォン酸のようなアクリルアミ ド類と n _プチルメ タクリレートのようなァクリレート類とを共重合させて得られる共重合体; スル フォン基含有パーフルォロカーボン (ナフイオン (登録商標、 デュポン社製)、 ァ シプレックス (旭化成社製)) ; カルボキシル基含有パーフルォロカーボン (フレ ミオン (登録商標) S膜 (旭硝子社製)) ;などが例示される。 このうち、 スルフ オン化ポリ (4—フエノキシベンゾィルー 1, 4一フエ二レン)、 アルキルスルフ ォン化ポリベンゾィミダゾールなどの芳香族含有高分子を選択した場合、 有機液 体燃料の透過を抑制でき、 クロスオーバーによる電池効率の低下を抑えることが できる。 In the fuel cell 100 configured as described above, the fuel electrode 102 of each electrode-electrolyte assembly 101 is supplied with the fuel 124 via the fuel electrode side separator 120. . In addition, an oxidizer 126 such as air or oxygen is supplied to the oxidizer electrode 108 of each electrode-electrolyte assembly 101 via an oxidizer electrode side separator 122. The solid polymer electrolyte membrane 114 has a role of separating the fuel electrode 102 from the oxidant electrode 108 and has a role of transferring hydrogen ions and water molecules between the two. For this reason, it is preferable that the solid polymer electrolyte membrane 114 has high conductivity for hydrogen ions. It is also preferable that the material is chemically stable and has high mechanical strength. Examples of the material constituting the solid polymer electrolyte membrane 114 include an organic polymer having a polar group such as a strong acid group such as a sulfone group, a phosphate group, a phosphone group, or a phosphine group, or a weak acid group such as a lipoxyl group. Is preferably used. Examples of such organic polymers include aromatic-containing polymers such as sulfonated poly (4-phenoxybenzoyl-1,4-phenylene) and alkylsulfonated polybenzoimidazole; polystyrene sulfonic acid copolymer, polyvinyl Copolymers such as sulfonic acid copolymers, cross-linked alkylsulfonic acid derivatives, fluororesin skeletons, and fluorine-containing polymers composed of sulfonic acid; acrylamides such as acrylamide-12-methylpropanesulfonic acid And copolymers obtained by copolymerizing acrylates such as n_butyl methacrylate; sulfonate-containing perfluorocarbons (Naphion (registered trademark, manufactured by DuPont), a complex (manufactured by Asahi Kasei Corporation) ); Carboxyl group-containing perfluorocarbon (Flemion (registered trademark) S film (Asahi Glass) Company, Ltd.)); and the like are exemplified. Of these, sulfonated poly (4-phenoxybenzoyl-1,4-phenylene), alkyl sulf When an aromatic-containing polymer such as polybenzoimidazole is selected, permeation of an organic liquid fuel can be suppressed, and a decrease in cell efficiency due to crossover can be suppressed.
図 2は燃料極 1 0 2、 酸化剤極 1 0 8および固体高分子電解質膜 1 1 4を模式 的に表した断面図である。 図のように、 燃料極 1 0 2および酸化剤極 1 0 8は、 たとえば、 触媒を担持した炭素粒子と固体高分子電解質の微粒子とを含む膜であ る触媒層 1 0 6および触媒層 1 1 2を基体 1 0 4および基体 1 1 0上に形成した 構成とすることができる。 基体表面は撥水処理してもよい。  FIG. 2 is a cross-sectional view schematically showing the fuel electrode 102, the oxidizer electrode 108, and the solid polymer electrolyte membrane 114. As shown in the figure, the fuel electrode 102 and the oxidizer electrode 108 are, for example, a catalyst layer 106 and a catalyst layer 1, each of which is a film containing carbon particles carrying a catalyst and fine particles of a solid polymer electrolyte. A configuration in which the substrate 12 is formed on the substrate 104 and the substrate 110 can be employed. The substrate surface may be subjected to a water-repellent treatment.
また、 上記した高分子に対して、 適宜、 架橋性の置換基、 例えば、 ビニル基、 エポキシ基、 アクリル基、 メタクリル基、 シンナモイル基、 メチロール基、 アジ ド基、 ナフトキノンジアジド基を導入し、 これらの高分子を溶融した状態で放射 線を照射すること等により架橋したものを用いることもできる。  In addition, a crosslinkable substituent, for example, a vinyl group, an epoxy group, an acrylic group, a methacryl group, a cinnamoyl group, a methylol group, an azide group, or a naphthoquinonediazide group is appropriately introduced into the above-described polymer. A polymer crosslinked by irradiating the polymer with a radiation in a molten state can also be used.
基体 1 0 4および基体 1 1 0としては、 燃料極 1 0 2、 酸化剤極 1 0 8ともに カーボンぺ一パー、 カーボンの成形体、 力一ボンの焼結体、 焼結金属、 発泡金属 などの多孔性基体を用いることができる。 また、 基体の撥水処理にはポリテトラ フルォロェチレンなどの撥水剤を用いることができる。  For the base material 104 and the base material 110, both the fuel electrode 102 and the oxidizer electrode 108 are formed of carbon paper, carbon compact, sintered carbon, sintered metal, foamed metal, etc. Can be used. In addition, a water repellent such as polytetrafluoroethylene can be used for the water repellent treatment of the substrate.
また燃料極 1 0 2の触媒としては、 白金、 白金とルテニウム、 金、 レニウムな どとの合金、 ロジウム、 パラジウム、 イリジウム、 オスミウム、 ルテニウム、 レ 二ゥム、 金、 銀、 ニッケル、 コバルト、 リチウム、 ランタン、 ストロンチウム、 イツトリゥムなどが例示される。 一方、 酸化剤極 1 0 8の触媒としては、 燃料極 1 0 2の触媒と同様のものが用いることができ、 上記例示物質を使用することが できる。 なお、 燃料極 1 0 2およぴ酸ィ匕剤極 1 0 8の触媒は同じものを用いても 異なるものを用いてもよい。  Examples of the catalyst for the anode 102 include platinum, alloys of platinum and ruthenium, gold, rhenium, etc., rhodium, palladium, iridium, osmium, ruthenium, rhenium, gold, silver, nickel, cobalt, lithium. , Lanthanum, strontium, and lithium. On the other hand, as the catalyst for the oxidant electrode 108, the same catalyst as the catalyst for the fuel electrode 102 can be used, and the above-mentioned exemplified substances can be used. The catalyst of the fuel electrode 102 and the catalyst of the oxidation electrode 108 may be the same or different.
また、 触媒を担持する炭素粒子としては、 アセチレンブラック (デンカブラッ ク (登録商標、 電気化学工業社製)、 X C 7 2 (V u 1 c a n社製) など)、 ケッ チェンブラック、カーボンナノチューブ、カーボンナノホーンなどが例示される。 炭素粒子の粒径は、 たとえば、 0. 0 0 1〜: 1 m、 好ましくは 0. 0 2〜0. 0 6 mとする。  The carbon particles supporting the catalyst include acetylene black (Denka Black (registered trademark, manufactured by Denki Kagaku Kogyo), XC72 (Vu1can), etc.), ketjen black, carbon nanotubes, carbon nanohorns and the like. And the like. The particle size of the carbon particles is, for example, 0.01 to 1 m, preferably 0.02 to 0.06 m.
ここで、 触媒層 1 0 6および触媒層 1 1 2は、 多孔質の基体 1 0 4および基体 JP03/04853 Here, the catalyst layer 106 and the catalyst layer 112 are made of a porous substrate 104 and a substrate. JP03 / 04853
13 13
1 1 0それぞれの内部に入り込んだ構成とすることもでき、 基体 1 0 4および基 体 1 1 0の表面に露出して形成された構成とすることもでき、 また基体 1 0 4お よび基体 1 1 0の内部から表面にわたって形成された構成とすることもできる。  Each of the bases 104 and 110 may have a configuration in which it is formed to be exposed to the surface of the base 104 and the base 110. A configuration formed from the inside to the surface of 110 can also be adopted.
本発明において、 燃料極 1 0 2または酸化剤極 1 0 8を構成する固体高分子電 解質の微粒子は、 少なくとも第一の固体高分子電解質と第二の固体高分子電解質 とを含む構成とする。 ここで、 燃料極 1 0 2および酸化剤極 1 0 8の両方につい て、 第一および第二の固体高分子電解質を含む構成としてもよいし、 燃料極 1 0 2および酸化剤極 1 0 8のいずれか一方について、 第一および第二の固体高分子 電解質を含む構成としてもよい。  In the present invention, the fine particles of the solid polymer electrolyte constituting the fuel electrode 102 or the oxidizer electrode 108 have a constitution including at least a first solid polymer electrolyte and a second solid polymer electrolyte. I do. Here, both the fuel electrode 102 and the oxidizer electrode 108 may be configured to include the first and second solid polymer electrolytes, or the fuel electrode 102 and the oxidizer electrode 108 One of them may be configured to include the first and second solid polymer electrolytes.
固体高分子電解質の微粒子は、 電極表面において、 触媒を担持した炭素粒子と 固体高分子電解質膜 1 1 4を電気的に接続するとともに触媒表面に有機液体燃料 を到達させる役割を有しており、 水素イオン伝導性や水移動性が要求され、 さら に、 燃料極 1 0 においてはメ夕ノ一ル等の有機液体燃料透過性が求められ、 酸 化剤極 1 0 8においては酸素透過性が求められる。 第一の固体高分子電解質はこ うした要求を満たすためのものであり、 水素イオン伝導性や、 メタノール等の有 機液体燃料透過性に優れる材料が好ましく用いられる。 具体的には、 スルフォン 基、 リン酸基などの強酸基や、 カルボキシル基などの弱酸基などの極性基を有す る有機高分子が好ましく用いられる。 こうした有機高分子として、 スルフォン基 含有パ一フルォロカーボン (ナフイオン (登録商標、 デュポン社製)、 ァシプレツ クス (旭化成社製) など);カルボキシル基含有パーフルォロカーボン (フレミオ ン (登録商標) S膜 (旭硝子社製) など) ;ポリスチレンスルホン酸共重合体、 ポ リビニルスルホン酸共重合体、 架橋アルキルスルフォン酸誘導体、 フッ素樹脂骨 格およびスルフォン酸からなるフッ素含有高分子などの共重合体;アクリルアミ ドー 2—メチルプロパンスルフォン酸のようなアクリルアミ ド類と n—プチルメ タクリレートのようなアタリレート類とを共重合させて得られる共重合体;など が例示される。  The fine particles of the solid polymer electrolyte have a role of electrically connecting the catalyst-supporting carbon particles to the solid polymer electrolyte membrane 114 on the electrode surface and allowing the organic liquid fuel to reach the catalyst surface. Hydrogen ion conductivity and water mobility are required.Furthermore, the fuel electrode 10 is required to have organic liquid fuel permeability such as methanol, and the oxidizing agent electrode 108 is required to have oxygen permeability. Desired. The first solid polymer electrolyte satisfies these requirements, and a material having excellent hydrogen ion conductivity and organic liquid fuel permeability such as methanol is preferably used. Specifically, an organic polymer having a polar group such as a strong acid group such as a sulfone group or a phosphate group or a weak acid group such as a carboxyl group is preferably used. Examples of such organic polymers include sulfone-group-containing perfluorocarbons (Naphion (registered trademark, manufactured by DuPont), acyplex (manufactured by Asahi Kasei Corporation), etc.); carboxyl-group-containing perfluorocarbon (Flemion (registered trademark) S film) (Made by Asahi Glass Co., Ltd.); Copolymers such as polystyrene sulfonic acid copolymer, polyvinyl sulfonic acid copolymer, cross-linked alkylsulfonic acid derivative, fluororesin skeleton and fluorine-containing polymer composed of sulfonic acid; acrylic Copolymers obtained by copolymerizing acrylamides such as amide 2-methylpropanesulfonic acid and atalylates such as n-butyl methacrylate; and the like.
また、 極性基の結合する対象の高分子としては他に、 ポリベンズィミダゾ一ル 誘導体、 ポリベンズォキサゾ一ル誘導体、 ポリエチレンィミン架橋体、 ポリサイ ラミン誘導体、 ポリジェチルアミノエチルポリスチレン等のアミン置換ポリスチ レン、 ジェチルアミノエチルポリメタクリレート等の窒素置換ポリアクリレート 等の窒素または水酸基を有する樹脂;シラノール含有ポリシロキサン、 ヒドロキ シェチルポリメチルァクリレートに代表される水酸基含有ポリァクリル樹脂;パ ラヒドロキシポリスチレンに代表される水酸基含有ポリスチレン樹脂;などを用 いることもできる。 Examples of the polymer to which the polar group is bonded include a polybenzimidazole derivative, a polybenzoxazole derivative, a polyethyleneimine cross-linked product, a polysilamine derivative, and a polyethylaminoethyl polystyrene. Amine-substituted polystyrene Nitrogen or hydroxyl-containing resins such as nitrogen-substituted polyacrylates such as len and acetylaminoethyl polymethacrylate; hydroxyl-containing polyacrylic resins typified by silanol-containing polysiloxane and hydroxyethyl polymethyl acrylate; parahydroxy polystyrene Typical examples include a hydroxyl group-containing polystyrene resin; and the like.
また、 上記した高分子に対して、 適宜、 架橋性の置換基、 例えば、 ビニル基、 エポキシ基、 アクリル基、 メタクリル基、 シンナモイル基、 メチロール基、 アジ ド基、 ナフトキノンジアジド基を導入してもよい。  In addition, a crosslinkable substituent, for example, a vinyl group, an epoxy group, an acrylic group, a methacryl group, a cinnamoyl group, a methylol group, an azide group, or a naphthoquinonediazide group may be appropriately introduced into the above-described polymer. Good.
第二の固体高分子電解質は、 電極表面と固体高分子電解質膜 1 1 4との密着性 を改良する役割を果たすものであり、 固体高分子電解質膜 1 1 4に対する密着性 の良好な材料を用いることが好ましい。 たとえば、 固体高分子電解質膜 1 1 4を 有機高分子で構成した場合、 第二の固体高分子電解質として、 当該有機高分子と 類似の構造を有する高分子や、 極性、 濡れ性、 S P値等の物性値が類似する高分 子を選択することにより、 電極と固体高分子電解質膜 1 1 4との間の密着性を向 上させることができる。 たとえば、 固体高分子電解質膜 1 1 4の材料としてフッ 素を含まない高分子を用いた場合、 第二の固体高分子電解質としてフッ素を含ま ない高分子を選択することが好ましい。 また、 固体高分子電解質膜 1 1 4の材料 として芳香族系高分子を用いた場合、 第二の固体高分子電解質として芳香族系高 分子を選択することが好ましい。  The second solid polymer electrolyte plays a role in improving the adhesion between the electrode surface and the solid polymer electrolyte membrane 114, and a material having good adhesion to the solid polymer electrolyte membrane 114 is used. Preferably, it is used. For example, when the solid polymer electrolyte membrane 114 is composed of an organic polymer, as the second solid polymer electrolyte, a polymer having a structure similar to the organic polymer, polarity, wettability, SP value, etc. By selecting a polymer having similar physical properties, the adhesion between the electrode and the solid polymer electrolyte membrane 114 can be improved. For example, when a polymer containing no fluorine is used as the material of the solid polymer electrolyte membrane 114, it is preferable to select a polymer containing no fluorine as the second solid polymer electrolyte. When an aromatic polymer is used as the material of the solid polymer electrolyte membrane 114, it is preferable to select an aromatic polymer as the second solid polymer electrolyte.
ここで、 クロスオーバー抑制の観点からは、 固体高分子電解質膜 1 1 4および 第二の固体高分子電解質を、 いずれも、 有機液体燃料の透過性の低い材料を用い ることが好ましい。 たとえば、 スルフォン化ポリ (4ーフヱノキシベンゾィルー 1 , 4 _フエ二レン)、 アルキルスルフォンィ匕ポリベンゾィミダゾールなどの芳香 族縮合系高分子により構成することが好ましい。  Here, from the viewpoint of suppressing crossover, it is preferable that both the solid polymer electrolyte membrane 114 and the second solid polymer electrolyte are made of a material having low permeability to organic liquid fuel. For example, it is preferable to use an aromatic condensed polymer such as sulfonated poly (4-phenoxybenzoyl 1,4-phenylene) and alkyl sulfonidyl polybenzoimidazole.
燃料極 1 0 2および酸化剤極 1 0 8における第一の固体高分子電解質は、 同一 のものであっても異なるものであってもよい。 同様に、 燃料極 1 0 2および酸ィ匕 剤極 1 0 8における第二の固体高分子電解質は、 同一のものであっても異なるも のであってもよい。  The first solid polymer electrolyte in the fuel electrode 102 and the oxidant electrode 108 may be the same or different. Similarly, the second solid polymer electrolytes in the fuel electrode 102 and the oxidizer electrode 108 may be the same or different.
本発明に係る燃料電池の燃料としては、 液体有機燃料や水素含有ガスを用いる ことができる。 このうち、 液体有機燃料を用いる構成とした場合、 有機液体燃料 のクロスオーバ一を抑制しつつ電池効率の向上を図ることができ、 本発明の効果 がより顕著に発揮される。 As the fuel for the fuel cell according to the present invention, a liquid organic fuel or a hydrogen-containing gas is used. be able to. Among them, when the liquid organic fuel is used, the cell efficiency can be improved while suppressing the crossover of the organic liquid fuel, and the effect of the present invention is more remarkably exhibited.
本発明における燃料極 1 0 2および酸化剤極 1 0 8の作製方法は特に制限がな いが、 たとえば以下のようにして作製することができる。  The method for producing the fuel electrode 102 and the oxidant electrode 108 in the present invention is not particularly limited, but can be produced, for example, as follows.
まず燃料極 1 0 2および酸化剤極 1 0 8の触媒の炭素粒子への担持は、 一般的 に用いられている含浸法によって行うことができる。 次に触媒を担持させた炭素 粒子と上記第一および第二の固体高分子電解質粒子を溶媒に分散させ、 ペースト 状とした後、 これを基体に塗布、 乾燥させることによって触媒層 1 0 6および触 媒層 1 1 2がそれぞれ形成された燃料極 1 0 2および酸化剤極 1 0 8を作製する ことができる。ここで、炭素粒子の粒径は、たとえば 0. 0 0 1〜1 mとする。 触媒粒子の粒径は、 たとえば 0. 1 n m〜 1 0 0 n mとする。 また、 第一および 第二の固体高分子電解質粒子の粒径は、 たとえば 0. 0 5〜1 0 0 mとする。 炭素粒子と固体高分子電解質粒子とは、 たとえば、 重量比で 1 : 5〜4 0 : 1の 範囲で用いられる。 また、 ペースト中の水と溶質との重量比は、 たとえば、 1 : 2〜1 0 : 1程度とする。 ペースト中の第二の固体高分子電解質 Z第一の固体高 分子電解質の重量比は、 好ましくは 1 0/ 1〜 1 / 1 0、 より好ましくは 4/ 1 〜1 Z4とすることができる。 基体へのペーストの塗布方法については特に制限 がないが、 たとえば、 刷毛塗り、 スプレー塗布、 およぴスクリーン印刷等の方法 を用いることができる。 ペーストは、 約 1 〃m〜 2 mmの厚さで塗布される。 ぺ 一ストを塗布した後、 使用する第一および第二の固体高分子電解質粒子に応じた 加熱温度および加熱時間で加熱し、 燃料極 1 0 2または酸化剤極 1 0 8が作製さ れる。 加熱温度および加熱時間は、 用いる材料によって適宜に選択されるが、 た とえば、 加熱温度 1 0 0 °C〜 2 5 0 °C、 加熱時間 3 0秒間〜 3 0分とすることが できる。  First, the fuel electrode 102 and the oxidant electrode 108 can be supported on the carbon particles by the catalyst by a commonly used impregnation method. Next, the catalyst-supported carbon particles and the first and second solid polymer electrolyte particles are dispersed in a solvent to form a paste, which is then applied to a substrate and dried to form the catalyst layer 106 and The fuel electrode 102 and the oxidant electrode 108 each having the catalyst layer 112 formed thereon can be produced. Here, the particle size of the carbon particles is, for example, 0.01 to 1 m. The particle size of the catalyst particles is, for example, 0.1 nm to 100 nm. The particle size of the first and second solid polymer electrolyte particles is, for example, 0.05 to 100 m. The carbon particles and the solid polymer electrolyte particles are used, for example, in a weight ratio of 1: 5 to 40: 1. The weight ratio between water and solute in the paste is, for example, about 1: 2 to 10: 1. The weight ratio of the second solid polymer electrolyte Z in the paste to the first solid polymer electrolyte can be preferably 10/1 to 1/10, and more preferably 4/1 to 1Z4. The method for applying the paste to the substrate is not particularly limited, and for example, methods such as brush coating, spray coating, and screen printing can be used. The paste is applied to a thickness of about 1 μm to 2 mm.後 After applying the strike, heating is performed at a heating temperature and a heating time according to the first and second solid polymer electrolyte particles to be used, and a fuel electrode 102 or an oxidizer electrode 108 is produced. The heating temperature and the heating time are appropriately selected depending on the material used. For example, the heating temperature can be 100 ° C. to 250 ° C., and the heating time can be 30 seconds to 30 minutes.
本発明における固体高分子電解質膜 1 1 4は、 用いる材料に応じて適切な方法 を採用して作製することができる。 たとえば固体高分子電解質膜 1 1 4を有機高 分子材料で構成する場合、 有機高分子材料を溶媒に溶解ないし分散した液体を、 ポリテトラフルォロエチレン等の剥離性シート等の上にキャストして乾'燥させる ことにより得ることができる。 The solid polymer electrolyte membrane 114 in the present invention can be produced by employing an appropriate method according to the material to be used. For example, when the solid polymer electrolyte membrane 114 is composed of an organic polymer material, a liquid in which the organic polymer material is dissolved or dispersed in a solvent is cast on a peelable sheet such as polytetrafluoroethylene. Let it dry Can be obtained.
以上のようにして作製した固体高分子電解質膜 114を、 燃料極 102および 酸化剤極 108で挟み、ホットプレスし、電極一電解質接合体を得る。このとき、 両電極の触媒が設けられた面と固体高分子電解質膜 114とが接するようにする。 ホットプレスの条件は、 材料に応じて選択されるが、 固体高分子電解質膜 114 や電極表面の電解質膜を有機高分子で構成する場合、 これらの高分子の軟化温度 やガラス転位温度を超える温度とすることができる。 具体的には、 例えば、 温度 100~250°C、 圧力 1~100kgfZcm2、 時間 10秒〜 300秒とす る。 The solid polymer electrolyte membrane 114 produced as described above is sandwiched between the fuel electrode 102 and the oxidant electrode 108 and hot pressed to obtain an electrode-electrolyte assembly. At this time, the surfaces of both electrodes where the catalyst is provided are in contact with the solid polymer electrolyte membrane 114. The hot pressing conditions are selected according to the material, but when the solid polymer electrolyte membrane 114 and the electrolyte membrane on the electrode surface are composed of organic polymers, the temperature exceeds the softening temperature or glass transition temperature of these polymers. It can be. Specifically, for example, the temperature is 100 to 250 ° C., the pressure is 1 to 100 kgfZcm 2 , and the time is 10 seconds to 300 seconds.
本発明において、 燃料極 102または酸ィヒ剤極 108を構成する第二の固体高 分子電解質は、 固体高分子電解質膜 114の材料と共通するため、 当該第二の固 体高分子電解質を含む電極と固体高分子電解質膜 114との界面が強固に密着す る。 この結果、 界面の剥離により水素イオンの移動が阻害され電池性能が劣化す ることを抑 ljできるほか、 電池の物理的強度が増し、 耐久性が向上する。  In the present invention, since the second solid polymer electrolyte constituting the fuel electrode 102 or the oxygen electrode 108 is common to the material of the solid polymer electrolyte membrane 114, an electrode containing the second solid polymer electrolyte is used. The interface between the polymer electrolyte membrane 114 and the solid polymer electrolyte membrane 114 is firmly adhered. As a result, it is possible to suppress deterioration of battery performance due to hindrance of movement of hydrogen ions due to separation of the interface, as well as to increase physical strength and durability of the battery.
次に、 本発明における第一および第二の固体高分子電解質の好ましい態様につ いて説明する。  Next, preferred embodiments of the first and second solid polymer electrolytes in the present invention will be described.
本発明において、 クロスオーバーを効果的に抑制する観点からは、 第一および 第二の固体高分子電解質、 固体高分子電解質膜 114の構成材料を、 以下のよう に選択することが有効である。  In the present invention, from the viewpoint of effectively suppressing crossover, it is effective to select the constituent materials of the first and second solid polymer electrolytes and the solid polymer electrolyte membrane 114 as follows.
(i) 固体高分子電解質膜 114および第二の固体高分子電解質として、 第一の 固体高分子電解質よりもメタノール透過性の低い材料を選択する。  (i) A material having a lower methanol permeability than the first solid polymer electrolyte is selected as the solid polymer electrolyte membrane 114 and the second solid polymer electrolyte.
(i i) 固体高分子電解質膜 1 14および第二の固体高分子電解質として、 第一 の固体高分子電解質よりも含水率の低い材料を選択する。  (ii) As the solid polymer electrolyte membrane 114 and the second solid polymer electrolyte, a material having a lower moisture content than the first solid polymer electrolyte is selected.
(i i i) 固体高分子電解質膜 114および第二の固体高分子電解質として、 第 一の固体高分子電解質より極性基の含有密度の低い材料を選択する。  (iii) As the solid polymer electrolyte membrane 114 and the second solid polymer electrolyte, a material having a lower polar group content density than the first solid polymer electrolyte is selected.
( i V) 固体高分子電解質膜 114および第二の固体高分子電解質として、 第一 の固体高分子電解質よりもフッ素含有率の低い材料を選択する。  (iV) As the solid polymer electrolyte membrane 114 and the second solid polymer electrolyte, a material having a lower fluorine content than the first solid polymer electrolyte is selected.
こうした手法を採用することにより、 固体高分子電解質膜 114中の有機液体 燃料の透過を抑制でき、 クロスオーバーによる電池性能の低下を抑えることがで きる。 以下、 上記 (i ) 〜 (i v) に示した物性の測定方法について説明する。 メタノール透過性は、以下のように測定することができる。被測定電解質膜(膜 厚 5 0 i/ m、 面積 1 c m2) で隔てられた液体容器に、 片側に 9 9. 5 %メタノ ールを 5 0 c c、 反対側に純水 5 0 c cを注入し、 それぞれの液体が蒸発しない ように密閉する。 純水中に被測定電解質膜を透過してくるメタノールの濃度の時 間変化をガスクロマトグラフで測定してメタノール透過量を決める。 上記 (U の構成を採用した場合、 第二の固体高分子電解質は、 厚さ 5 0 ^ mの膜としたと きの単位面積、 単位時間あたりのメタノール透過量が 3 0 0 m o 1 / c m2/ h以下とすることが好ましい。 このような材料を選択することにより、 メタノー ルが酸化剤へ到達することを抑制することができ、 上記のクロスオーバーの課題 を克服することできる。 By adopting such a method, it is possible to suppress the permeation of the organic liquid fuel in the solid polymer electrolyte membrane 114 and to suppress the deterioration of the battery performance due to the crossover. Wear. Hereinafter, methods for measuring the physical properties shown in the above (i) to (iv) will be described. Methanol permeability can be measured as follows. 50 cc of 99.5% methanol on one side and 50 cc of pure water on the other side in a liquid container separated by the electrolyte membrane to be measured (membrane thickness 50 i / m, area 1 cm 2 ) Inject and seal each liquid so that it does not evaporate. The time change of the concentration of methanol permeating the electrolyte membrane into pure water is measured by gas chromatography to determine the amount of methanol permeated. When the above (U configuration is adopted, the second solid polymer electrolyte has a unit area and a methanol permeation amount of 300 mo 1 / cm per unit time when a membrane having a thickness of 50 ^ m is used. it is preferable that the 2 / h or less. by selecting such a material, it is possible to suppress the methanol reaches the oxidizing agent, it can be overcome the problem of the crossover.
含水率は、 1 0 0 °Cで 2時間乾燥した被験材料の重量を A、 純水に 2 4時間浸 潰した後の当該被験材料の重量を Bとしたときの (B— A) ZAで表される値で ある。  The moisture content is expressed as (B-A) ZA, where A is the weight of the test material dried at 100 ° C for 2 hours, and B is the weight of the test material after immersion in pure water for 24 hours. It is the value represented.
極性基の含有密度は、 官能基の種類に応じ、 所定の方法を用いて測定すること ができる。 スルフォン基の場合、 たとえば、 酸素燃焼フラスコ法等によりスルフ オン基を硫酸イオンに変換した後、 イオンクロマトグラフィーまたは滴定で定量 することができる。 滴定はカルボキシァルセナゾを指示薬とし、 0. 0 1 M過塩 素酸バリウムで滴定し、 青から紫の変色点を求める。  The content density of the polar group can be measured using a predetermined method according to the type of the functional group. In the case of a sulfone group, for example, the sulfonate group can be quantified by ion chromatography or titration after converting the sulfonate group into a sulfate ion by an oxygen combustion flask method or the like. Titration is performed using carboxyl senazo as an indicator and titration with 0.1 M barium perchlorate to determine the color change point from blue to purple.
フッ素含有率は、 蛍光 X線分析等により定量することができる。  The fluorine content can be quantified by X-ray fluorescence analysis or the like.
触媒層 1 0 6および触媒層 1 1 2中において、 第一および第二の固体高分子電 解質粒子は、 均一に分布していても不均一に分布していてもよい。 たとえば、 触 媒層 1 0 6または触媒層 1 1 2が基体 1 0 4または基体 1 1 0と接する側におい て第一の固体高分子電解質粒子を含み、 触媒層 1 0 6または触媒層 1 1 2が固体 高分子電解質膜 1 1 4と接する側において第一の固体高分子電解質粒子を含まな い構成とすることができる。 このとき、 触媒層 1 0 6または触媒層 1 1 2が基体 1 0 4または基体 1 1 0と接する側において第二の固体高分子電解質粒子を含ま ず、 触媒層 1 0 6または触媒層 1 1 2が固体高分子電解質膜 1 1 4と接する側に おいて第二の固体高分子電解質粒子を含む構成とすることもできる。このように、 T JP03/04853 In the catalyst layer 106 and the catalyst layer 112, the first and second solid polymer electrolyte particles may be distributed uniformly or non-uniformly. For example, the catalyst layer 106 or the catalyst layer 112 contains the first solid polymer electrolyte particles on the side in contact with the substrate 104 or the substrate 110, and the catalyst layer 106 or the catalyst layer 111 On the side where 2 is in contact with the solid polymer electrolyte membrane 114, it is possible to adopt a configuration that does not include the first solid polymer electrolyte particles. At this time, the catalyst layer 106 or the catalyst layer 112 does not include the second solid polymer electrolyte particles on the side where the catalyst layer 106 or the catalyst layer 112 contacts the substrate 104 or the substrate 110, and the catalyst layer 106 or the catalyst layer 11 A configuration in which 2 includes second solid polymer electrolyte particles on the side in contact with the solid polymer electrolyte membrane 114 may be employed. in this way, T JP03 / 04853
18 18
基体 1 0 4または基体 1 1 0に近い領域において第一の固体高分子電解質粒子の 含有率を高くし、 固体高分子電解質膜 1 1 4に近い領域において第二の固体高分 子電解質粒子の含有率を高くすることにより、 触媒層 1 0 6およぴ触媒層 1 1 2 における第一の固体高分子電解質粒子の含有率をある程度保ちつつ、 固体電解質 膜 1 1 4との密着性を高めることができる。 第一の固体高分子電解質は、 第二の 固体高分子電解質よりも含水率が高く有機液体燃料および酸素透過性の高い性質 を有するため、 有機液体燃料を効率よく移動させ、 多くの水素イオンを供給する ことが可能となる。 The content of the first solid polymer electrolyte particles is increased in the region near the substrate 104 or the substrate 110, and the content of the second solid polymer electrolyte particles is increased in the region near the solid polymer electrolyte membrane 114. By increasing the content, the adhesion to the solid electrolyte membrane 114 is increased while the content of the first solid polymer electrolyte particles in the catalyst layer 106 and the catalyst layer 112 is maintained to some extent. be able to. The first solid polymer electrolyte has a higher water content than the second solid polymer electrolyte and has a property of high organic liquid fuel and oxygen permeability, so that the organic liquid fuel can be efficiently moved and many hydrogen ions are removed. It can be supplied.
この場合、 触媒層 1 0 6および触媒層 1 1 2は、 以下のようにして形成するこ とができる。 まず、 基体 1 0 4上に第一の固体高分子電解質粒子と触媒を担持さ せた炭素粒子とを溶媒に分散させ、 ペースト状とした塗布液 aを塗布する。 つづ ' いて、 塗布した塗布液 a上に第一および第二の固体高分子電解質、 ならびに触媒 を担持させた炭素粒子を溶媒に分散させ、ペースト状とした塗布液 bを塗布する。 同様にして、 徐々に第二の固体高分子電解質粒子の含有率が高くなるようにして 第一および第二の固体高分子電解質、 ならびに触媒を担持させた炭素粒子を溶媒 に分散させ、 ペースト状とした塗布液を順次塗布して複数の層から構成される触 媒層 1 0 6または 1 1 2を形成する。 これにより、 基体 1 0 4または基体 1 1 0 から遠い領域において第二の固体高分子電解質粒子の含有率が高くなるように構 成された触媒層 1 0 6または 1 1 2を形成することができる。 このようにして形 成した触媒層 1 0 6および触媒層 1 1 2をそれぞれ含む燃料極 1 0 2および酸化 剤極 1 0 8で固体電解質膜 1 1 4を挟み、 ホットプレスすることにより、 電極一 電解質接合体を得ることができる。 以上の工程において、 各層を塗布した後に乾 燥する工程を含むこともできる。  In this case, the catalyst layer 106 and the catalyst layer 112 can be formed as follows. First, the first solid polymer electrolyte particles and the carbon particles carrying the catalyst are dispersed in a solvent on the substrate 104, and a paste-like coating liquid a is applied. Subsequently, the first and second solid polymer electrolytes and the carbon particles carrying the catalyst are dispersed in a solvent on the applied coating liquid a, and a coating liquid b in the form of a paste is applied. Similarly, while gradually increasing the content of the second solid polymer electrolyte particles, the first and second solid polymer electrolytes and the carbon particles carrying the catalyst are dispersed in a solvent, and the paste is formed. The coating liquids described above are sequentially applied to form a catalyst layer 106 or 112 composed of a plurality of layers. This makes it possible to form the catalyst layer 106 or 112 configured to increase the content of the second solid polymer electrolyte particles in the substrate 104 or in a region far from the substrate 110. it can. The solid electrolyte membrane 114 is sandwiched between the fuel electrode 102 and the oxidant electrode 108 containing the catalyst layer 106 and the catalyst layer 112 formed in this manner, and the electrode is formed by hot pressing. (I) An electrolyte conjugate can be obtained. The above steps may include a step of drying after applying each layer.
(実施例)  (Example)
以下に本発明の固体高分子型燃料電池用電極及びそれを用いた燃料電池につい て実施例によって具体的に説明するが、 本発明はこれらに限定されない。  Hereinafter, the electrode for a polymer electrolyte fuel cell of the present invention and the fuel cell using the same will be specifically described with reference to Examples, but the present invention is not limited thereto.
(実施例 1 )  (Example 1)
本実施例では、 第一の固体高分子電解質としてナフイオンを使用し、 第二の固 体高分子電解質としてスルフォン化ポリ (4—フエノキシベンゾィルー 1 , 4— フエ二レン) (以下、 P P B Pという)を使用した実施例について説明する。また、 本実施例においては、 燃料極、 酸化剤極ともに貴金属触媒として白金を用いた。 本実施例に係る燃料電池の作製方法について図 2を参照して説明する。 In this embodiment, naphion is used as the first solid polymer electrolyte, and sulfonated poly (4-phenoxybenzoyl-1,4-) is used as the second solid polymer electrolyte. An example using phenylene) (hereinafter referred to as PPBP) will be described. In this example, platinum was used as a noble metal catalyst for both the fuel electrode and the oxidant electrode. A method for manufacturing a fuel cell according to this example will be described with reference to FIG.
まず燃料極 102および酸化剤極 108において触媒となる白金を 3%含有す るジニトロジァミン白金硝酸溶液 500gにアセチレンブラック 1 Og (デン力 ブラック (登録商標);電気化学工業社製) を混合させて撹拌後、還元剤として 9 8%エタノール 60mlを添加した。 この溶液を約 95 °Cで 8時間攪拌混合し、 触媒物質と白金微粒子をアセチレンブラック粒子に担持させた。 そして、 この溶 液をろ過、 乾燥して触媒担持炭素粒子を得た。 白金の担持量はアセチレンブラッ クの重量に対し 50 %程度であつた。  First, acetylene black 1 Og (Denki Black (registered trademark); manufactured by Denki Kagaku Kogyo Co., Ltd.) is mixed with 500 g of dinitrodiamine platinum nitrate solution containing 3% of platinum serving as a catalyst at the fuel electrode 102 and the oxidizer electrode 108, followed by stirring. Thereafter, 60 ml of 98% ethanol was added as a reducing agent. This solution was stirred and mixed at about 95 ° C. for 8 hours, and the catalyst substance and the platinum fine particles were supported on the acetylene black particles. Then, this solution was filtered and dried to obtain catalyst-carrying carbon particles. The supported amount of platinum was about 50% based on the weight of the acetylene black.
次に、 触媒担持炭素粒子 20 Omgと 5%ナフイオン溶液 (アルコール溶液、 アルドリッチ ·ケミカル社製) 3. 5 m 1とを混合攪拌し、 触媒および炭素粒子 表面にナフイオンを吸着させた。 こうして得られた分散液を 50°Cにて 3時間超 音波分散器で分散することによりペースト状とし、 ペースト Aを得た。  Next, 20 Omg of the catalyst-supporting carbon particles and 3.5 ml of a 5% naphion solution (alcohol solution, manufactured by Aldrich Chemical Co., Ltd.) were mixed and stirred to adsorb the nafion on the surfaces of the catalyst and the carbon particles. The dispersion thus obtained was dispersed in an ultrasonic disperser at 50 ° C. for 3 hours to obtain a paste, and paste A was obtained.
次に、 微粉末化したポリ (4一フエノキシベンゾィルー 1, 4一フエ二レン) 10 gを 95%硫酸 10 Om 1に懸濁させ、 200時間撹拌することによりスル フォン化処理を行った。 こうして得られた PPBPを、 十分な蒸留水で洗浄し、 乾燥 ·粉砕し、 これをジメチルホルムアミ ド溶液に溶解させた。 キャスト法によ り大きさ 10 cmx 10 cm、 厚さ 30 mの固体高分子電解質膜 114を得た。 また、 上記で得られた PP BPの微粒子化したジメチルホルムアミド溶液 0. 15mlをペースト Aに混合して、 ペースト Bとした。 このペースト Bを、 カー ボンペーパー (東レ社製: TGP— H— 120) である基体 104および基体 1 10にスクリーン印刷法で塗布した後、 100 °Cにて加熱乾燥して燃料極 102 およぴ酸化剤極 108を得た。 得られた電極表面の白金量は 0. 1〜 0. 4 m g Z cm2となった。 Next, 10 g of finely powdered poly (4-phenoxybenzoyl-1,4-phenylene) was suspended in 95% sulfuric acid (10 Om1) and stirred for 200 hours to perform sulfonation treatment. went. The PPBP thus obtained was washed with sufficient distilled water, dried and pulverized, and dissolved in a dimethylformamide solution. A solid polymer electrolyte membrane 114 having a size of 10 cm × 10 cm and a thickness of 30 m was obtained by a casting method. In addition, 0.15 ml of the dimethylformamide solution of the above-obtained PP BP in the form of fine particles was mixed with paste A to obtain paste B. This paste B is applied to the bases 104 and 110 which are carbon paper (manufactured by Toray Co., Ltd .: TGP-H-120) by a screen printing method, and then heated and dried at 100 ° C. to form the fuel electrodes 102 andぴ Oxidant electrode 108 was obtained. The amount of platinum on the obtained electrode surface was 0.1 to 0.4 mg Zcm 2 .
これらの電極で固体高分子電解質膜 114を挟み、 温度 150°C、 圧力 10 k gf/cm2l 0秒間の条件でホットプレスすることにより電極一電解質接合体 を作製した。 さらに、 この電極一電解質接合体を燃料電池の単セル測定用装置に セットして単セルを作製した。 この単セルに、 10wt%メタノール水溶液および酸素 (1. 1気圧、 25°C) を燃料としてセルの電流電圧特性を測定した。 その結果、 開放電圧 0. 54V、 短絡電流 0. 21 A/cm2が持続的に観測された。 A solid polymer electrolyte membrane 114 was sandwiched between these electrodes, and hot-pressed at a temperature of 150 ° C. and a pressure of 10 kgf / cm 2 for 10 seconds to produce an electrode-electrolyte assembly. Further, this electrode-electrolyte assembly was set in an apparatus for measuring a single cell of a fuel cell to produce a single cell. The current-voltage characteristics of the single cell were measured using a 10 wt% methanol aqueous solution and oxygen (1.1 atm, 25 ° C) as fuel. As a result, an open circuit voltage of 0.54 V and a short circuit current of 0.21 A / cm 2 were continuously observed.
燃料極 102および酸化剤極 108は、 固体高分子電解質膜 114に対する良 好な接合性を示しており、 メタノールを燃料とするダイレクトメタノール燃料電 池として有効に機能することが確認された。  The fuel electrode 102 and the oxidizer electrode 108 showed good bonding properties to the solid polymer electrolyte membrane 114, and it was confirmed that the fuel electrode 102 and the oxidant electrode 108 function effectively as a direct methanol fuel cell using methanol as a fuel.
図 3は本実施例の燃料電池の燃料極 102と固体高分子電解質膜 114とを模 式的に示した図である。 燃料極 102は、 PP BPからなる第二の固体高分子電 解質 160、 ナフイオンからなる第一の固体高分子電解質 150および触媒を担 持した炭素粒子 140が混合されてなる触媒層をカーボンペーパーである基体 1 04上に備えている。 ここで、 第二の固体高分子電解質 160と固体高分子電解 質膜 114とは共に PPBPから構成されている。 そのため、 第二の固体高分子 電解質 160のうち固体高分子電解質膜 114と接しているものが、 固体高分子 電解質膜 114と燃料極 102との間の界面においてバインダの役目を果たして いる。 そのため、 固体高分子電解質膜 114と燃料極 102との接合性は良好で あり、 このことが本実施例における燃料電池の良好な動作に寄与しているものと 考えられる。  FIG. 3 is a diagram schematically showing the fuel electrode 102 and the solid polymer electrolyte membrane 114 of the fuel cell according to the present embodiment. The fuel electrode 102 comprises a catalyst layer formed by mixing a second solid polymer electrolyte 160 made of PP BP, a first solid polymer electrolyte 150 made of naphion, and carbon particles 140 carrying a catalyst. Is provided on the substrate 104. Here, the second solid polymer electrolyte 160 and the solid polymer electrolyte membrane 114 are both made of PPBP. Therefore, of the second solid polymer electrolyte 160, the one in contact with the solid polymer electrolyte membrane 114 serves as a binder at the interface between the solid polymer electrolyte membrane 114 and the fuel electrode 102. Therefore, the bonding property between the solid polymer electrolyte membrane 114 and the fuel electrode 102 is good, and this is considered to contribute to the good operation of the fuel cell in this embodiment.
ここで、 PPBPおよびナフイオンのメタノ一ル透過率および含水率の値を表 1に示す。  Here, Table 1 shows the values of methanol permeability and water content of PPBP and naphion.
[表 1]  [table 1]
Figure imgf000022_0001
Figure imgf000022_0001
本実施例においては、 固体高分子電解質膜 114および第二の固体高分子電解 質 160として、 第一の固体高分子電解質 150よりもメタノール透過性および 含水率の低い材料を選択していることから、 固体高分子電解質膜 114中のメタ ノ一ル透過が抑制されている。 このことからクロスオーバーによる電池性能の低 下が抑制され、 良好な電池特性を有する燃料電池が得られたと考えられる。 (実施例 2) In the present embodiment, as the solid polymer electrolyte membrane 114 and the second solid polymer electrolyte 160, materials having lower methanol permeability and water content than the first solid polymer electrolyte 150 are selected. However, methanol permeation in the solid polymer electrolyte membrane 114 is suppressed. This suggests that a decrease in cell performance due to crossover was suppressed, and a fuel cell with good cell characteristics was obtained. (Example 2)
本実施例でも、 第一の固体高分子電解質としてナフイオンを使用し、 第二の固 体高分子電解質として PP BPを使用した。 本実施例でも、 触媒としては、 燃料 極、 酸化剤極ともに白金を用いた。  Also in this example, naphion was used as the first solid polymer electrolyte, and PP BP was used as the second solid polymer electrolyte. Also in this example, platinum was used as the catalyst for both the fuel electrode and the oxidant electrode.
燃料極 102、 酸化剤極 108、 および固体電解質膜 1 14は実施例 1と同様 に作製した。 実施例 1と同様の方法で得られた PPBPの微粒子ィ匕したジメチル ホルムアミド溶液 0. 1mlを実施例 1と同様の方法で得られたナフイオンのぺ 一スト Aに混合しぺ一スト Cを得た。 また、 この PPBPの微粒子ィ匕したジメチ ルホルムアミド溶液 0. 15m 1をペースト Aに混合しペースト Dを得た。  The fuel electrode 102, the oxidizer electrode 108, and the solid electrolyte membrane 114 were produced in the same manner as in Example 1. 0.1 ml of a dimethylformamide solution of PPBP obtained by the same method as in Example 1 and fine particles of PPBP mixed therein was mixed with the first A of the naphion obtained by the same method as in Example 1 to obtain the first C. Was. Further, 0.15 ml of a dimethylformamide solution prepared by adding PPPP fine particles to paste A was mixed with paste A to obtain paste D.
まず、 ペースト Cを刷毛塗り法で基体 104および基体 1 10に塗布し、 塗布 後、 乾燥させた。 次いで、 ペースト Dを刷毛塗り法でペースト C上に塗布し、 塗 布後、 乾燥させた。 これにより、 基体 104および基体 110上にペースト Cお よびペースト Dにより構成された触媒層 106および触媒層 112を形成した。 これを用いて、 実施例 1と同様にホットプレスすることにより、 電極一電解質接 合体を作製した。 この電極一電解質接合体を燃料電池の単セル測定用装置にセッ トして単セルを作製した。  First, paste C was applied to the substrate 104 and the substrate 110 by a brush coating method, and dried after application. Next, paste D was applied onto paste C by a brush coating method, and after coating, dried. As a result, a catalyst layer 106 and a catalyst layer 112 composed of the paste C and the paste D were formed on the base 104 and the base 110. Using this, hot pressing was performed in the same manner as in Example 1 to produce an electrode-electrolyte assembly. This electrode-electrolyte assembly was set in an apparatus for measuring a single cell of a fuel cell to produce a single cell.
この単セルに、 1 Owt%メタノール水溶液および酸素 (1. 1気圧、 25°C) を燃料としてセルの電流電圧特性を測定した。 その結果、 開放電圧 0. 54V、 短絡電流 0. 19 A/ cm2が持続的に観測された。 The current-voltage characteristics of the single cell were measured using a 1 Owt% methanol aqueous solution and oxygen (1.1 atm, 25 ° C) as fuel. As a result, an open circuit voltage of 0.54 V and a short circuit current of 0.19 A / cm 2 were continuously observed.
(比較例 1 )  (Comparative Example 1)
固体高分子電解質膜は上記実施例と同様の方法で作製した。 また、 燃料極およ び酸化剤極は、 上記実施例 1におけるペースト Aをカーボンペーパー上にスクリ ーン印刷法で塗布した後、 加熱乾燥して作製した。  The solid polymer electrolyte membrane was produced in the same manner as in the above example. The fuel electrode and the oxidizer electrode were prepared by applying paste A in Example 1 on a carbon paper by a screen printing method, and then heating and drying the paste.
これらの電極で上記固体高分子電解質膜を挟み、 温度 150°C、 圧力 10 k g f /cm2l 0秒間の条件でホットプレスすることにより電極一電解質接合体を 作製した。 The above-mentioned solid polymer electrolyte membrane was sandwiched between these electrodes, and hot-pressed under the conditions of a temperature of 150 ° C. and a pressure of 10 kgf / cm 2 10 seconds, thereby producing an electrode-electrolyte assembly.
さらに、これらを燃料電池の単セル測定用装置にセットして単セルを作製した。 上記実施例と同様の放電試験を行つたが、放電を確認することはできなかつた。 図 4は本比較例の燃料電池における燃料極 301および固体高分子電解質膜 1 1 4を模式的に示した図である。 実施例と同様に、 基体 1 0 4上には触媒を担持 した炭素粒子 1 4 0およびナフイオンからなる第一の固体高分子電解質 1 5 0が 存在するが、 上記実施例と異なる点は、 固体高分子電解質膜 1 1 4と同じ材料か らなる固体高分子電解質が燃料極 3 0 1には存在しないことである。 そのため、 燃料極 3 0 1と固体高分子電解質膜 1 1 4と界面においてバインダの役目を果た す固体高分子電解質が存在しないため、両者の接合性が確保できない。そのため、 燃料極から酸化剤極への水素イオンの移動が生じず、 電池として機能しなかった ものと推察される。 Further, these were set in an apparatus for measuring a single cell of a fuel cell to produce a single cell. A discharge test similar to that of the above example was performed, but no discharge could be confirmed. Fig. 4 shows the fuel electrode 301 and the solid polymer electrolyte membrane 1 in the fuel cell of this comparative example. FIG. 14 is a diagram schematically showing a numeral 14. As in the example, there is a carbon particle 140 supporting a catalyst and a first solid polymer electrolyte 150 composed of naphion on a substrate 104. That is, a solid polymer electrolyte made of the same material as the polymer electrolyte membrane 114 does not exist in the fuel electrode 301. Therefore, since there is no solid polymer electrolyte serving as a binder at the interface between the fuel electrode 301 and the solid polymer electrolyte membrane 114, it is not possible to ensure the bondability between the two. Therefore, it is probable that hydrogen ions did not move from the fuel electrode to the oxidizer electrode, and did not function as a battery.
(比較例 2 )  (Comparative Example 2)
比較例 1においては、 電極中の固体高分子電解質としてナフイオンのみが使用 されて例を示した。 本比較例においては、 電極中の固体高分子電解質として P P B Pのみを使用し、 その他の電池の構成は上記実施例および比較例 1と同様とし た。  In Comparative Example 1, an example was shown in which only naphion was used as the solid polymer electrolyte in the electrode. In this comparative example, only PPPBP was used as the solid polymer electrolyte in the electrode, and the other configurations of the battery were the same as those in the above example and comparative example 1.
固体高分子電解質膜は上記実施例と同様の方法で作製した。  The solid polymer electrolyte membrane was produced in the same manner as in the above example.
上記実施例に記載した手法により調製した P P B Pを微粉ィ匕したジメチルホル ムアミド溶液 ( 5 w t %溶液) を 5 gに、 上記実施例に記載した手法により調製 した触媒担持炭素粒子 0. 5 gおよび蒸留水 0. 3 gを添加することにより、 こ れらの炭素粒子の表面にコロイ ドを吸着させた。 こうして得られた分散液を 5 0 °Cにて 3時間超音波分散器で分散することによりペースト状とし、 ペースト。 を得た。このペースト Cをカーボンぺーパ一上にスクリーン印刷法で塗布した後、 加熱乾燥して燃料極および酸化剤極を作製した。  5 g of a dimethylformamide solution (5 wt% solution) obtained by finely pulverizing PPBP prepared by the method described in the above example was added to 0.5 g of the catalyst-supporting carbon particles prepared by the method described in the above example, and distillation was performed. Colloid was adsorbed on the surface of these carbon particles by adding 0.3 g of water. The dispersion thus obtained was dispersed in an ultrasonic disperser at 50 ° C. for 3 hours to obtain a paste. I got This paste C was applied on a carbon paper by a screen printing method, and then heated and dried to produce a fuel electrode and an oxidizer electrode.
上記の燃料極、 酸化剤極および固体高分子電解質膜を上記実施例と同様の方法 により電極一電解質接合体、 単セルを作製し、 放電試験を行った。 その結果、 開 放電圧 0. 5 8 V、 短絡電流 0. 1 6 A/ c m2が観測された。 An electrode-electrolyte assembly and a single cell were prepared from the above fuel electrode, oxidizer electrode and solid polymer electrolyte membrane in the same manner as in the above example, and a discharge test was performed. As a result, an open-circuit voltage of 0.58 V and a short-circuit current of 0.16 A / cm 2 were observed.
本比較例においては、 電極中の固体高分子電解質と固体高分子電解質膜とは、 共に P P B Pからなつていることから、 電極と固体高分子電解質膜との接合は保 たれていると考えられる。 それにも関わらず良好な電池特性が得られなかったの は、 燃料極におけるメタノール透過性および水素イオン透過性が不足しているこ とから、 燃料極における電極反応が十分に生じなかったことに起因すると推察さ 4853 In this comparative example, since the solid polymer electrolyte and the solid polymer electrolyte membrane in the electrode are both made of PPBP, it is considered that the bonding between the electrode and the solid polymer electrolyte membrane is maintained. Nevertheless, good cell characteristics could not be obtained because of insufficient electrode permeability at the fuel electrode due to insufficient methanol permeability and hydrogen ion permeability at the fuel electrode. Then inferred 4853
23 twenty three
れる。 It is.
以上の実施例において、 酸化剤極 1 0 8の貴金属触媒として白金一ルテニウム 触媒を用いた場合、 各実施例において、 さらに安定的な電池特性を有することが 示された。 産業上の利用可能性  In the above examples, when a platinum-ruthenium catalyst was used as the noble metal catalyst of the oxidant electrode 108, it was shown that each example had more stable battery characteristics. Industrial applicability
以上説明したように本発明によれば、 触媒電極に有機液体燃料透過性の低い固 体高分子電解質を含有させることにより、 有機液体燃料透過性の低い固体高分子 電解質からなる固体高分子電解質膜と当該電極との良好な接合性が得られる。 そ のため、 電池特性の向上および電池の信頼性の向上を実現することができる。 ま た、 触媒電極における水素ィォン伝導性や有機液体燃料の透過性等を良好に維持 しつつ有機液体燃料のクロスオーバーを抑制することが可能となる。  As described above, according to the present invention, by including a solid polymer electrolyte having low organic liquid fuel permeability in a catalyst electrode, a solid polymer electrolyte membrane made of a solid polymer electrolyte having low organic liquid fuel permeability can be obtained. Good bondability with the electrode is obtained. Therefore, improvement in battery characteristics and improvement in battery reliability can be realized. In addition, it is possible to suppress the crossover of the organic liquid fuel while maintaining the hydrogen ion conductivity and the permeability of the organic liquid fuel at the catalyst electrode in a good condition.

Claims

請求の範囲 The scope of the claims
1 . 固体高分子電解質膜と、 該固体高分子電解質膜に配された触媒電極と を備え、 前記触媒電極は、 触媒物質と、 第一の固体高分子電解質と、 前記第一の 固体高分子電解質よりも前記固体高分子電解質膜に対する密着性の高い第二の固 体高分子電解質とを含む触媒層を備えることを特徴とする燃料電池。 1. A solid polymer electrolyte membrane, comprising: a catalyst electrode disposed on the solid polymer electrolyte membrane, wherein the catalyst electrode comprises a catalyst substance, a first solid polymer electrolyte, and the first solid polymer. A fuel cell, comprising: a catalyst layer including a second solid polymer electrolyte having higher adhesion to the solid polymer electrolyte membrane than an electrolyte.
2. 固体高分子電解質膜と、 該固体高分子電解質膜に配された触媒電極と を備え、 前記触媒電極は、 触媒物質と、 第一の固体高分子電解質と、 前記第一の 固体高分子電解質とは異なる高分子ィヒ合物からなり、 前記固体高分子電解質膜を 構成する高分子化合物またはその誘導体からなる第二の固体高分子電解質とを含 む触媒層を備えることを特徴とする燃料電池。  2. A solid polymer electrolyte membrane, and a catalyst electrode disposed on the solid polymer electrolyte membrane, wherein the catalyst electrode comprises a catalyst substance, a first solid polymer electrolyte, and the first solid polymer. A catalyst layer comprising a polymer compound different from an electrolyte, and a second solid polymer electrolyte comprising a polymer compound or a derivative thereof constituting the solid polymer electrolyte membrane; Fuel cell.
3. 請求項 1または 2に記載の燃料電池において、 前記触媒電極は、 多孔 質基材を含み、 前記触媒層は、 該多孔質基材に接して形成されたことを特徴とす る燃料電池。  3. The fuel cell according to claim 1, wherein the catalyst electrode includes a porous base material, and the catalyst layer is formed in contact with the porous base material. .
4. 請求項 3に記載の燃料電池において、 前記触媒層の前記多孔質基材に 接する面における前記第二の固体高分子電解質の含有率が、 当該多孔質基材と接 する面とは反対の面における前記第二の固体高分子電解質の含有率よりも低いこ とを特徴とする燃料電池。  4. The fuel cell according to claim 3, wherein a content of the second solid polymer electrolyte in a surface of the catalyst layer in contact with the porous substrate is opposite to a surface in contact with the porous substrate. A fuel cell, wherein the content of the second solid polymer electrolyte is lower than the content of the second solid polymer electrolyte.
5. 請求項 3または 4に記載の燃料電池において、 前記触媒層の前記多孔 質基材に接する面における前記触媒物質の含有率が、 当該多孔質基材と接する面 とは反対の面における前記触媒物質の含有率よりも高いことを特徴とする燃料電 池。  5. The fuel cell according to claim 3, wherein a content of the catalyst substance in a surface of the catalyst layer in contact with the porous substrate is the same as that in a surface opposite to a surface in contact with the porous substrate. A fuel cell characterized by having a higher content of a catalytic substance.
6. 請求項 1乃至 5いずれかに記載の燃料電池において、 前記触媒層が前 記固体高分子電解質膜に接して設けられたことを特徴とする燃料電池。  6. The fuel cell according to claim 1, wherein the catalyst layer is provided in contact with the solid polymer electrolyte membrane.
7. 請求項 1乃至 6いずれかに記載の燃料電池において、 前記触媒電極に 有機液体燃料が供給されることを特徴とする燃料電池。  7. The fuel cell according to claim 1, wherein an organic liquid fuel is supplied to the catalyst electrode.
8. 請求項 1乃至 7いずれかに記載の燃料電池において、 前記第二の固体 高分子電解質は、 前記第一の固体高分子電解質よりも前記有機液体燃料の透過性 が低いことを特徴とする燃料電池。 8. The fuel cell according to any one of claims 1 to 7, wherein the second solid polymer electrolyte has a lower permeability of the organic liquid fuel than the first solid polymer electrolyte. Fuel cell.
9. 請求項 1乃至 8いずれかに記載の燃料電池において、 前記第二の固体 高分子電解質は、 前記第一の固体高分子電解質よりも含水率が低いことを特徴と する燃料電池。 9. The fuel cell according to any one of claims 1 to 8, wherein the second solid polymer electrolyte has a lower moisture content than the first solid polymer electrolyte.
1 0. 請求項 1乃至 9いずれかに記載の燃料電池において、 前記第一の固 体高分子電解質および前記第二の固体高分子電解質が、 いずれも、 プロトン酸基 を含むことを特徴とする燃料電池。  10. The fuel cell according to any one of claims 1 to 9, wherein the first solid polymer electrolyte and the second solid polymer electrolyte each include a proton acid group. battery.
1 1 . 請求項 1乃至 1 0いずれかに記載の燃料電池において、 前記第一の 固体高分子電解質は、 フッ素を含有する高分子からなることを特徴とする燃料電 池。  11. The fuel cell according to any one of claims 1 to 10, wherein the first solid polymer electrolyte is made of a polymer containing fluorine.
1 2. 請求項 1乃至 1 1いずれかに記載の燃料電池において、 前記第二の 固体高分子電解質は、 フッ素を含まない高分子からなることを特徴とする燃料電 池。  12. The fuel cell according to claim 1, wherein the second solid polymer electrolyte is made of a polymer containing no fluorine.
1 3. 請求項 1乃至 1 2いずれかに記載の燃料電池において、 前記第二の 固体高分子電解質は、 芳香族を含有する高分子からなることを特徴とする燃料電 池。  13. The fuel cell according to claim 1, wherein the second solid polymer electrolyte is made of an aromatic-containing polymer.
1 4. 触媒物質と、 第一の固体高分子電解質と、 該第一の固体高分子電解 質とは異なる高分子からなる第二の固体高分子電解質とを含む触媒層を備えるこ とを特徴とする燃料電池用電極。  1 4. A catalyst layer comprising a catalyst substance, a first solid polymer electrolyte, and a second solid polymer electrolyte made of a polymer different from the first solid polymer electrolyte. Electrode for a fuel cell.
1 5. 請求項 1 4に記載の燃料電池用電極において、 多孔質基材をさらに 含み、 前記触媒層は、 該多孔質基材に接して形成されたことを特徴とする燃料電 池。  15. The fuel cell electrode according to claim 14, further comprising a porous substrate, wherein the catalyst layer is formed in contact with the porous substrate.
1 6. 請求項 1 5に記載の燃料電池用電極において、 前記触媒層の前記多 孔質基材に接する面における前記第二の固体高分子電解質の含有率が、 当該多孔 質基材と接する面とは反対の面における前記第二の固体高分子電解質の含有率よ りも低いことを特徴とする燃料電池用電極。  16. The fuel cell electrode according to claim 15, wherein a content of the second solid polymer electrolyte on a surface of the catalyst layer in contact with the porous substrate is in contact with the porous substrate. An electrode for a fuel cell, wherein the content of the second solid polymer electrolyte is lower than the content of the second solid polymer electrolyte on the surface opposite to the surface.
1 7. 請求項 1 5または 1 6に記載の燃料電池用電極において、 前記触媒 層の前記多孔質基材に接する面における前記触媒物質の含有率が、 当該多孔質基 材と接する面とは反対の面における前記触媒物質の含有率よりも高いことを特徴 とする燃料電池用電極。 17.The fuel cell electrode according to claim 15, wherein the content of the catalyst substance on a surface of the catalyst layer in contact with the porous substrate is different from a surface of the catalyst layer in contact with the porous substrate. An electrode for a fuel cell, wherein the content of the catalyst material is higher than the content of the catalyst material on the opposite surface.
1 8. 請求項 1 4乃至 1 7いずれかに記載の燃料電池用電極において、 前 記第二の固体高分子電解質は、 前記第一の固体高分子電解質よりもメタノール透 過性が低いことを特徴とする燃料電池用電極。 1 8. The fuel cell electrode according to any one of claims 14 to 17, wherein the second solid polymer electrolyte has a lower methanol permeability than the first solid polymer electrolyte. Characteristic electrode for fuel cells.
1 9. 請求項 1 4または 1 8 V、ずれかに記載の燃料電池用電極において、 前記第二の固体高分子電解質は、 前記第一の固体高分子電解質よりも含水率が低 いことを特徴とする燃料電池用電極。  1 9. The fuel cell electrode according to claim 14 or 18 V, wherein the second solid polymer electrolyte has a lower moisture content than the first solid polymer electrolyte. Characteristic electrode for fuel cells.
2 0. 請求項 1 4乃至 2 0いずれかに記載の燃料電池用電極において、 前 記第一の固体高分子電解質および前記第二の固体高分子電解質が、 いずれも、 プ 口トン酸基を含むことを特徴とする燃料電池用電極。  20. The fuel cell electrode according to any one of claims 14 to 20, wherein the first solid polymer electrolyte and the second solid polymer electrolyte each have a protonic acid group. An electrode for a fuel cell, comprising:
2 1 . 請求項 1 4乃至 2 1いずれかに記載の燃料電池用電極において、 前 記第一の固体高分子電解質は、 フッ素を含有する高分子からなることを特徴とす る燃料電池用電極。  21. The fuel cell electrode according to any one of claims 14 to 21, wherein the first solid polymer electrolyte is made of a polymer containing fluorine. .
2 2. 請求項 1 4乃至 2 1いずれかに記載の燃料電池用電極において、 前 記第二の固体高分子電解質は、 フッ素を含まない高分子からなることを特徴とす る燃料電池用電極。  2 2. The fuel cell electrode according to any one of claims 14 to 21, wherein the second solid polymer electrolyte is made of a fluorine-free polymer. .
2 3. 請求項 1 4乃至 2 2いずれかに記載の燃料電池用電極において、 前 記第二の固体高分子電解質は、 芳香族を含有する高分子からなることを特徴とす る燃料電池用電極。  23. The fuel cell electrode according to any one of claims 14 to 22, wherein the second solid polymer electrolyte comprises an aromatic-containing polymer. electrode.
2 4. 基体上に触媒層が設けられた燃料電池用電極の製造方法であって、 触媒金属を担持した導電粒子と、 第一の固体高分子電解質を含む粒子と、 前記第 一の固体高分子電解質とは異なる高分子からなる第二の固体高分子電解質を含む 粒子とを含有する塗布液を基体上に塗布して前記触媒層を形成する工程を含むこ とを特徴とする燃料電池用電極の製造方法。  2 4. A method for manufacturing a fuel cell electrode having a catalyst layer provided on a substrate, comprising: conductive particles supporting a catalyst metal; particles including a first solid polymer electrolyte; A step of applying a coating solution containing particles containing a second solid polymer electrolyte made of a polymer different from the molecular electrolyte onto a substrate to form the catalyst layer. Manufacturing method of electrode.
2 5. 請求項 2 4に記載の燃料電池用電極の製造方法において、 前記触媒 層を形成する工程は、 前記第二の固体高分子電解質を含む粒子の含有率の異なる 複数の塗布液を塗布する工程を含むことを特徴とする燃料電池用電極の製造方法。  25. The method for producing an electrode for a fuel cell according to claim 24, wherein the step of forming the catalyst layer comprises applying a plurality of coating liquids having different content rates of particles including the second solid polymer electrolyte. A method for producing an electrode for a fuel cell, comprising:
2 6. 請求項 2 4または 2 5に記載の燃料電池用電極の製造方法において、 前記触媒層を形成する工程は、 前記触媒金属を担持した導電粒子の含有率の異な る複数の塗布液を塗布する工程を含むことを特徴とする燃料電池用電極の製造方 法。 26. In the method for producing an electrode for a fuel cell according to claim 24 or 25, the step of forming the catalyst layer comprises: applying a plurality of coating liquids having different contents of the conductive particles supporting the catalyst metal. A method of manufacturing an electrode for a fuel cell, comprising a step of coating. Law.
2 7. 請求項 2 4乃至 2 6いずれかに記載の燃料電池用電極の製造方法に おいて、 前記第二の固体高分子電解質は、 前記第一の固体高分子電解質よりもメ 夕ノール透過性が低いことを特徴とする燃料電池用電極の製造方法。  27. The method of manufacturing an electrode for a fuel cell according to any one of claims 24 to 26, wherein the second solid polymer electrolyte is more permeable to methanol than the first solid polymer electrolyte. A method for producing an electrode for a fuel cell, wherein the electrode has low performance.
2 8. 請求項 2 4乃至 2 7いずれかに記載の燃料電池用電極の製造方法に おいて、 前記第二の固体高分子電解質は、 前記第一の固体高分子電解質よりも含 水率が低いことを特徴とする燃料電池用電極の製造方法。  28. The method for producing an electrode for a fuel cell according to any one of claims 24 to 27, wherein the second solid polymer electrolyte has a higher water content than the first solid polymer electrolyte. A method for producing an electrode for a fuel cell, wherein the electrode is low.
2 9. 請求項 2 4乃至 2 8いずれかに記載の燃料電池用電極の製造方法に おいて、 前記第一の固体高分子電解質および前記第二の固体高分子電解質が、 い ずれも、 プロトン酸基を含むことを特徴とする燃料電池用電極の製造方法。  29. The method for manufacturing an electrode for a fuel cell according to claim 24, wherein the first solid polymer electrolyte and the second solid polymer electrolyte are each a proton. A method for producing an electrode for a fuel cell, comprising an acid group.
3 0. 請求項 2 4乃至 2 9いずれかに記載の燃料電池用電極の製造方法に おいて、 前記第一の固体高分子電解質は、 フッ素を含有する高分子からなること を特徴とする燃料電池用電極の製造方法。  30. The method for producing a fuel cell electrode according to any one of claims 24 to 29, wherein the first solid polymer electrolyte is made of a polymer containing fluorine. A method for manufacturing a battery electrode.
3 1 . 請求項 2 4乃至 3 0いずれかに記載の燃料電池用電極の製造方法に おいて、 前記第二の固体高分子電解質は、 フッ素を含まない高分子からなること を特徴とする燃料電池用電極の製造方法。  31. The method for producing an electrode for a fuel cell according to any one of claims 24 to 30, wherein the second solid polymer electrolyte is made of a polymer containing no fluorine. A method for manufacturing a battery electrode.
3 2. 請求項 2 4乃至 3 1いずれかに記載の燃料電池用電極の製造方法に おいて、 前記第二の固体高分子電解質は、 芳香族を含有する高分子からなること を特徴とする燃料電池用電極の製造方法。  3 2. The method for producing an electrode for a fuel cell according to any one of claims 24 to 31, wherein the second solid polymer electrolyte comprises an aromatic-containing polymer. A method for manufacturing a fuel cell electrode.
3 3. 請求項 2 4乃至 3 2いずれかに記載の燃料電池用電極の製造方法に よって触媒電極を得た後、 前記触媒層と固体高分子電解質膜とを当接させた状態 で前記触媒電極と固体高分子電解質膜とを熱圧着する工程を含むことを特徴とす る燃料電池の製造方法。  3 3. After obtaining a catalyst electrode by the method for producing an electrode for a fuel cell according to any one of claims 24 to 32, the catalyst in a state where the catalyst layer and the solid polymer electrolyte membrane are in contact with each other. A method for producing a fuel cell, comprising a step of thermocompression bonding an electrode and a solid polymer electrolyte membrane.
PCT/JP2003/004853 2002-04-17 2003-04-16 Fuel cell, electrode for fuel cell, and method for manufacturing them WO2003088386A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002114303 2002-04-17
JP2002-114303 2002-04-17

Publications (1)

Publication Number Publication Date
WO2003088386A1 true WO2003088386A1 (en) 2003-10-23

Family

ID=29243379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/004853 WO2003088386A1 (en) 2002-04-17 2003-04-16 Fuel cell, electrode for fuel cell, and method for manufacturing them

Country Status (1)

Country Link
WO (1) WO2003088386A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07254419A (en) * 1994-03-15 1995-10-03 Tanaka Kikinzoku Kogyo Kk Electrode for polyelectrolyte type electrochemical cell and its manufacture
JPH08148151A (en) * 1994-11-17 1996-06-07 Tokyo Gas Co Ltd Fuel cell electrode and manufacture thereof
JPH10284087A (en) * 1997-04-04 1998-10-23 Asahi Chem Ind Co Ltd Electrode and membrane-electrode joining body for solid polymer fuel cell
JPH11288727A (en) * 1998-04-02 1999-10-19 Asahi Chem Ind Co Ltd Solid high polymer fuel cell film/electrode junction body
JP2000235859A (en) * 1999-02-15 2000-08-29 Japan Storage Battery Co Ltd Gas diffusing electrode and fuel cell provided with the same
JP2000311694A (en) * 1999-04-12 2000-11-07 General Motors Corp <Gm> Laminated electrode for electrochemical battery
JP2002008440A (en) * 2000-06-20 2002-01-11 Jsr Corp Proton conductive film
JP2002015743A (en) * 2000-06-30 2002-01-18 Asahi Glass Co Ltd Solid polymer fuel cell
JP2003086191A (en) * 2001-09-11 2003-03-20 Matsushita Electric Ind Co Ltd Solid polymer fuel cell and its manufacturing method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07254419A (en) * 1994-03-15 1995-10-03 Tanaka Kikinzoku Kogyo Kk Electrode for polyelectrolyte type electrochemical cell and its manufacture
JPH08148151A (en) * 1994-11-17 1996-06-07 Tokyo Gas Co Ltd Fuel cell electrode and manufacture thereof
JPH10284087A (en) * 1997-04-04 1998-10-23 Asahi Chem Ind Co Ltd Electrode and membrane-electrode joining body for solid polymer fuel cell
JPH11288727A (en) * 1998-04-02 1999-10-19 Asahi Chem Ind Co Ltd Solid high polymer fuel cell film/electrode junction body
JP2000235859A (en) * 1999-02-15 2000-08-29 Japan Storage Battery Co Ltd Gas diffusing electrode and fuel cell provided with the same
JP2000311694A (en) * 1999-04-12 2000-11-07 General Motors Corp <Gm> Laminated electrode for electrochemical battery
JP2002008440A (en) * 2000-06-20 2002-01-11 Jsr Corp Proton conductive film
JP2002015743A (en) * 2000-06-30 2002-01-18 Asahi Glass Co Ltd Solid polymer fuel cell
JP2003086191A (en) * 2001-09-11 2003-03-20 Matsushita Electric Ind Co Ltd Solid polymer fuel cell and its manufacturing method

Similar Documents

Publication Publication Date Title
JP3608565B2 (en) Fuel cell and manufacturing method thereof
JP3587199B2 (en) Fuel cell catalyst-carrying particles, composite electrolytes using the same, catalyst electrodes, fuel cells, and methods for producing them
US6638659B1 (en) Membrane electrode assemblies using ionic composite membranes
US7700211B2 (en) Fuel cell, fuel cell electrode and method for fabricating the same
US6946214B2 (en) Manufacturing method of fuel cell electrode and fuel cell using thereof
JP2003317735A (en) Solid high polymer electrolyte fuel cell, method for manufacturing solid high polymer electrolyte film for fuel cell and fuel cell
JP3608564B2 (en) Fuel cell and manufacturing method thereof
JP2003317737A (en) Fuel cell, catalyst electrode using it and solid electrolyte film
JP4534590B2 (en) Solid oxide fuel cell
JP4214918B2 (en) Fuel cell
JP5535773B2 (en) Membrane-electrode structure for polymer electrolyte fuel cell
JP2006261043A (en) Polymer membrane electrode assembly and polyelectrolyte type fuel cell using this
JP2008004402A (en) Anode for direct methanol fuel cell, and direct methanol fuel cell using it
JP3575477B2 (en) Fuel cell
JP2002015746A (en) Fuel cell and fuel cell electrode member
JP2004253399A (en) Fuel cell and its manufacturing method
WO2003088397A1 (en) Fuel cell, electrode for fuel cell, and method for preparing the same
WO2003088386A1 (en) Fuel cell, electrode for fuel cell, and method for manufacturing them
WO2004004050A1 (en) Fuel for solid electrolyte fuel cell, solid electrolyte fuel cell and method of use thereof
US20090239114A1 (en) Polymer electrolyte fuel cell
JP5313569B2 (en) Solid polymer electrolyte membrane and method for producing solid polymer electrolyte membrane
KR102426573B1 (en) Membrane electrode assembly comprising carbon layer on catalyst layer and fuel cell comprising the same
JP2003323896A (en) Solid electrolyte fuel cell
JP2003317736A (en) Fuel cell, solid electrolyte film for fuel cell and catalyst electrode for fuel cell
JP2018073457A (en) Catalyst ink for fuel cell, electrode for fuel cell, membrane-electrode assembly, and fuel cell, and method for manufacturing catalyst ink for fuel cell

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT RO SE SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase