JPH06251779A - Formation of joined body of solid polymer electrolyte layer and electrode for fuel cell - Google Patents

Formation of joined body of solid polymer electrolyte layer and electrode for fuel cell

Info

Publication number
JPH06251779A
JPH06251779A JP5035241A JP3524193A JPH06251779A JP H06251779 A JPH06251779 A JP H06251779A JP 5035241 A JP5035241 A JP 5035241A JP 3524193 A JP3524193 A JP 3524193A JP H06251779 A JPH06251779 A JP H06251779A
Authority
JP
Japan
Prior art keywords
layer
electrode
polymer electrolyte
solid polymer
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5035241A
Other languages
Japanese (ja)
Inventor
Yasuhide Noaki
康秀 野秋
Saburo Okamoto
三郎 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP5035241A priority Critical patent/JPH06251779A/en
Publication of JPH06251779A publication Critical patent/JPH06251779A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To provide a forming method of a joined body having low electric resistance such as a joined interface or a solid polymer electrolyte layer by which formation becomes simple by forming the first layer by heat treatment after fluorine type polymer solution is applied and dried on the side surface having electrode catalyst. CONSTITUTION:When a joined body is formed, after fluorine type polymer solution being a polymer electrolyte is applied and dried on the surface of an electrode catalyst layer 3 of a gas diffusing electrode 1, the first layer 4 of solid polymer electrolyte is formed by heat treatment. The second layer 5 and the third layer 6 of solid polymer electrolyte are formed by applying fluorine type polymer solution on the first layer 4. An electrode catalyst layer 3 has a pore 9, and gas is supplied to an electrode catalyst particulate 8 by this pore 9. Thereby, the first electrolyte layer 4 requires a thickness in a degree that the pore 9 is not blocked and a gas flow is not hindered, and when the solution is applied on and after the second electrolyte layer 5, a phenomenon that the first layer 4 is dissolved or this pore is reduced or belocked up can be prevented by a method in the present invention.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、燃料電池を構成する燃
料電池用固体高分子電解質と電極との接合体の作成方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a joined body of a solid polymer electrolyte for a fuel cell and an electrode constituting a fuel cell.

【0002】[0002]

【従来の技術】燃料電池用固体高分子電解質層と電極と
の接合体として必要な要素の中で特に重要なことは、電
極と固体高分子電解質との接合面での電気抵抗が低いこ
と、固体高分子電解質自身の電気抵抗が低いこと、高分
子電解質が過剰なガス透過性を有しないこと、長期間の
使用に対して化学的耐久性や安定性に優れていること及
び物理的な強度が強いこと等が上げられる。
2. Description of the Related Art Among the elements required as a joined body of a solid polymer electrolyte layer for a fuel cell and an electrode, particularly important is a low electric resistance at a joint surface between the electrode and the solid polymer electrolyte, The solid polymer electrolyte itself has low electrical resistance, the polymer electrolyte does not have excessive gas permeability, it has excellent chemical durability and stability for long-term use, and its physical strength. Can be raised.

【0003】上記の要素の中で現在特に問題となってい
るのは、燃料電池用固体高分子電解質自体の電気抵抗が
まだ高く燃料電池出力ロスの大きな部分を占めている事
である。近年、燃料電池はクリーンな電気エネルギー供
給源として注目されており、特にその中で、燃料電池用
固体高分子電解質層としてイオン交換膜を用いた固体高
分子電解質燃料電池は、作動温度が100℃以下と低く
ても、そのエネルギー密度が高いことから、移動用の電
源として例えば電気自動車の電源や、簡易補助電源等と
して期待されている。
[0003] Among the above-mentioned factors, the current problem is that the solid polymer electrolyte for a fuel cell itself has a still high electric resistance and accounts for a large portion of the fuel cell output loss. In recent years, fuel cells have been attracting attention as a clean electric energy supply source, and among them, a solid polymer electrolyte fuel cell using an ion exchange membrane as a solid polymer electrolyte layer for a fuel cell has an operating temperature of 100 ° C. Since it has a high energy density even if it is lower than the following, it is expected to be used as a power source for transportation, for example, as a power source for an electric vehicle or a simple auxiliary power source.

【0004】固体高分子電解質燃料電池は、一般に固体
高分子電解質を膜状に成形したいわゆるイオン交換膜を
はさんでその両側に電極が接合されており、ガス拡散電
極の一方には燃料(例えば水素)が供給され、もう一方
には酸化体(例えば酸素又は空気)が供給されることに
より電極反応を生ずる構造になっている。燃料電池内で
は、電極触媒により、供給された燃料が酸化されプロト
ン即ち水素イオンを発生し、イオン交換膜内をイオン伝
導によりもう一方の電極に到達し、酸化体により水を生
成する反応が起こっている。
A solid polymer electrolyte fuel cell generally has a so-called ion exchange membrane formed by molding a solid polymer electrolyte in a membrane shape, and electrodes are bonded to both sides of the so-called ion exchange membrane. Hydrogen) is supplied, and an oxidant (for example, oxygen or air) is supplied to the other, so that an electrode reaction occurs. In the fuel cell, the supplied fuel is oxidized by the electrode catalyst to generate protons, that is, hydrogen ions, and reaches the other electrode by ion conduction in the ion exchange membrane, and a reaction occurs to generate water by the oxidant. ing.

【0005】イオン交換膜は燃料電池の電極と密接に接
合されており、実質的に電極と一体構造に形成されて用
いられている。したがって、イオン交換膜は燃料電池内
において、水素イオンを伝導するための電解質としての
役割と、燃料と酸化体が加圧下においても直接混合しな
いための隔膜としての役割の両方を備える必要がある。
The ion exchange membrane is in intimate contact with the electrode of the fuel cell, and is used by being formed integrally with the electrode. Therefore, the ion exchange membrane must have both a role as an electrolyte for conducting hydrogen ions in the fuel cell and a role as a diaphragm for preventing the fuel and the oxidant from directly mixing even under pressure.

【0006】このような燃料電池に用いられるイオン交
換膜は、ポリマー主鎖に化学的に結合した複数の酸官能
基を備えたプロトン交換型ポリマーフィルムであり、例
えばスルホン化ポリスチレンであってもよく、実質的に
フッ素化されたスルホン酸ポリマーであっても良い。し
かし耐久性の面から、フッ素化されたスルホン酸ポリマ
ーが使われる場合が多い。
The ion exchange membrane used in such a fuel cell is a proton exchange type polymer film having a plurality of acid functional groups chemically bonded to the polymer main chain, and may be, for example, sulfonated polystyrene. It may be a substantially fluorinated sulfonic acid polymer. However, in terms of durability, fluorinated sulfonic acid polymers are often used.

【0007】しかし、現状ではまだ実用的な電極とイオ
ン交換膜との接合方法は確立されておらず、そのため性
能も一定していない。更に、イオン交換膜自体の電気抵
抗も十分低いとは言えず燃料電池出力のロスの大きな原
因ともなっている。現在用いられている燃料電池用のフ
ッ素系のイオン交換膜は、イオン交換膜法クロルアルカ
リ電解で大量に使用されているものとポリマー構造は類
似のものであり、例えばデュポン社製のナフィオン(登
録商標)等の酸型のものがよく用いられている。しかし
イオン交換膜は、一般的には100μm以上の厚みがあ
り、電気抵抗を低減するために厚みを小さくしようとし
ても、膜を製造する際に大きな困難が伴う他、使用する
際にも強度が弱くなる等の不都合が生じる傾向があっ
た。
However, at present, a practical method for joining the electrode and the ion exchange membrane has not been established yet, and therefore the performance is not constant. Further, the electric resistance of the ion exchange membrane itself cannot be said to be sufficiently low, which is also a major cause of loss of fuel cell output. Fluorine-based ion exchange membranes currently used for fuel cells have polymer structures similar to those used in large quantities in ion exchange membrane chloralkali electrolysis, such as Nafion (registered trademark) manufactured by DuPont. Acid type such as trademark) is often used. However, the ion exchange membrane generally has a thickness of 100 μm or more, and even if an attempt is made to reduce the thickness in order to reduce the electric resistance, there are great difficulties in manufacturing the membrane, and the strength is high when used. Inconveniences such as weakening tended to occur.

【0008】イオン交換膜の抵抗を低くしようとすれ
ば、最も簡単な方法としてイオン交換膜の厚みを薄くす
ることである。しかしイオン交換膜の厚みは製造上限界
があることや、厚みを薄くすることによって強度が低下
し、電極との接合の際破損する等の問題が生じる危険性
が有った。又現在、イオン交換膜とガス拡散電極を接合
する際には、あらかじめイオン交換膜と類似のイオン交
換樹脂成分の溶液を電極の触媒面に一定量塗布し乾燥さ
せた上で熱プレスにより一体に接合している。イオン交
換樹脂成分の溶液は、例えばデュポン社製のナフィオン
(登録商標)等の酸型のイオン交換樹脂を水とプロパノ
ールやエチルアルコールと言った水と混合可能な有機溶
剤の混合液に約5%溶解したものがよく用いられてい
る。
To reduce the resistance of the ion exchange membrane, the simplest method is to reduce the thickness of the ion exchange membrane. However, there is a risk that the thickness of the ion-exchange membrane is limited in manufacturing, and that the strength is reduced by reducing the thickness, and there is a problem that the ion-exchange membrane may be damaged during joining with the electrode. At present, when joining an ion exchange membrane and a gas diffusion electrode, a certain amount of a solution of an ion exchange resin component similar to that of the ion exchange membrane is previously applied to the catalyst surface of the electrode, dried, and then integrated by hot pressing. It is joined. The solution of the ion exchange resin component is, for example, about 5% in a mixed solution of water and an organic solvent such as propanol or ethyl alcohol, which is an acid type ion exchange resin such as Nafion (registered trademark) manufactured by DuPont. A dissolved product is often used.

【0009】しかし、ガス拡散電極にイオン交換樹脂成
分を含んだ溶液を塗布する際の、塗布量や、イオン交換
樹脂成分を含んだ溶液の粘度や濃度、皮膜を形成する際
の乾燥条件等により、電極とイオン交換膜の接合体の燃
料電池作動時の性能にバラツキが生じやすく再現性のあ
る結果は得にくい状況にある。以上の点から、密着性に
優れた電気抵抗の低い燃料電池用固体高分子電解質と電
極の接合体を製作することは非常に難しかった。
However, when the solution containing the ion exchange resin component is applied to the gas diffusion electrode, the coating amount, the viscosity and concentration of the solution containing the ion exchange resin component, the drying conditions for forming the film, etc. However, the performance of the assembly of the electrode and the ion exchange membrane during the operation of the fuel cell is likely to vary, and it is difficult to obtain reproducible results. From the above points, it was very difficult to manufacture a bonded body of a solid polymer electrolyte for a fuel cell and an electrode, which has excellent adhesion and low electric resistance.

【0010】特開平4−264367号公報に提案され
ている燃料電池では、固体高分子電解質型燃料電池にお
けるイオン交換膜の薄膜化を可能にし、電気抵抗を低減
しようとしている。しかしこの公報に開示されている方
法でもまだ不十分であり、また実際には電極触媒層に多
量に固体高分子電解質成分がしみこみ、電極の細孔を閉
塞して性能を低下させたり、固体高分子電解質層の厚み
を制御しにくい等の問題点もあった。
In the fuel cell proposed in Japanese Unexamined Patent Publication No. 4-264367, it is attempted to make the ion exchange membrane in a solid polymer electrolyte fuel cell thin and to reduce the electric resistance. However, the method disclosed in this publication is still inadequate, and in reality, a large amount of solid polymer electrolyte component permeates the electrode catalyst layer, clogging the pores of the electrode and deteriorating the performance, There is also a problem that it is difficult to control the thickness of the molecular electrolyte layer.

【0011】[0011]

【発明が解決しようとする課題】本発明は、燃料電池用
のガス拡散電極と固体高分子電解質との接合体を作成す
る際、作成が簡単で、かつ接合界面や固体高分子電解質
層の電気抵抗の低い燃料電池用固体高分子電解質と電極
の接合体の作成方法を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention is simple in the production of a joined body of a gas diffusion electrode for a fuel cell and a solid polymer electrolyte, and the electrical properties of the joint interface and the solid polymer electrolyte layer. An object of the present invention is to provide a method for producing a joined body of a solid polymer electrolyte for a fuel cell and an electrode having low resistance.

【0012】[0012]

【課題を解決するための手段】本発明者等は製作しやす
く電極とイオン交換膜との密着性の優れた電気抵抗の低
い接合体を製作する方法を種々検討した結果、本発明を
完成させたものである。すなわち、本発明は、燃料電池
用固体高分子電解質層と電極との接合体を作成するに際
し、該電極の電極触媒を有する側表面に高分子電解質と
なるスルホン酸基を含むフッ素系ポリマーの溶液を塗布
し乾燥させた後、熱処理することにより第一層を形成
し、更に該第一層上に、スルホン酸基を含むフッ素系ポ
リマー溶液を塗布し乾燥させた後、熱処理する工程を少
なくとも1回行うことにより、第二層以降の層を形成す
ることを特徴とする燃料電池用固体高分子電解質層と電
極との接合体の作成方法である。
Means for Solving the Problems The inventors of the present invention have conducted various studies on various methods of manufacturing a bonded body which is easy to manufacture and has excellent adhesion between an electrode and an ion exchange membrane, and has completed the present invention. It is a thing. That is, the present invention is a solution of a fluorinated polymer containing a sulfonic acid group which becomes a polymer electrolyte on the side surface having an electrode catalyst of the electrode when producing a joined body of a solid polymer electrolyte layer for a fuel cell and an electrode. Is applied and dried, and then heat-treated to form a first layer, and a fluoropolymer solution containing a sulfonic acid group is further applied onto the first layer, dried, and then heat-treated at least 1. This is a method for producing a joined body of a solid polymer electrolyte layer for a fuel cell and an electrode, which is characterized in that a layer after the second layer is formed by repeating the process.

【0013】燃料電池は、電池に供給される燃料の酸化
により化学的エネルギーを直接電気エネルギーに変換す
る電気化学装置であり、その構造によりいくつかの種類
があるが、本発明が利用できるのは、電解質として固体
高分子電解質、特にフッ素系プロトン交換型樹脂層を有
する燃料電池である。燃料電池に用いられるガス拡散電
極は、ガスが透過可能な微細孔を有しており、一般的に
は活性炭のようなカーボン粒子に微細な白金粒子を担持
させたものと、テトラフルオロエチレン粉末を混合し熱
プレス成形したものが用いられている。このタイプのガ
ス拡散電極のとしてE−TEK社製の電極が多く使用さ
れている。
A fuel cell is an electrochemical device that directly converts chemical energy into electric energy by oxidizing a fuel supplied to the cell. Although there are several types depending on its structure, the present invention can be used. A fuel cell having a solid polymer electrolyte as an electrolyte, particularly a fluorine-based proton exchange type resin layer. A gas diffusion electrode used in a fuel cell has fine pores through which a gas can permeate. Generally, fine platinum particles are supported on carbon particles such as activated carbon and tetrafluoroethylene powder. What is mixed and hot pressed is used. Electrodes manufactured by E-TEK are often used as this type of gas diffusion electrode.

【0014】本発明においては、まずガス拡散電極の触
媒層上にスルホン酸基を含むフッ素系ポリマーの溶液を
塗布し100℃以下で乾燥させ、十分に溶媒が蒸発し乾
燥した後に120℃以上で熱処理をすることにより第一
層を形成し、第一層上に再度スルホン酸基を含むフッ素
系ポリマー(以下、イオン交換樹脂成分という。)の溶
液で第二層を塗布し乾燥させる。このようにすると第二
層を塗布しても塗布溶液が電極内部にしみ込まず必要な
厚みの塗膜が得られるのである。
In the present invention, first, a solution of a fluorinated polymer containing a sulfonic acid group is applied on the catalyst layer of the gas diffusion electrode and dried at 100 ° C. or lower, and the solvent is sufficiently evaporated and dried, and then at 120 ° C. or higher. The first layer is formed by heat treatment, and the second layer is coated again on the first layer with a solution of a fluorinated polymer containing a sulfonic acid group (hereinafter referred to as an ion exchange resin component) and dried. In this way, even if the second layer is applied, the coating solution does not penetrate into the inside of the electrode and a coating film having a required thickness can be obtained.

【0015】ガス拡散電極の触媒層上にイオン交換樹脂
成分の溶液を塗布すると、その溶液は電極内にしみ込ん
でゆく。その際電極内の細孔中の触媒は溶液で覆われそ
の結果乾燥後には触媒表面は電解質でもあるイオン交換
樹脂成分の薄膜に覆われることになる。しかし、あまり
塗布する溶液の量が多すぎると、電極内の細孔をイオン
交換樹脂成分で塞いでしまい、ガスの透過が阻害され、
逆に少な過ぎると、触媒粒子の表面に電解質がなく電極
反応が進行しなくなる。したがって適度な量のイオン交
換樹脂成分が電極触媒層には必要である。
When the solution of the ion exchange resin component is applied on the catalyst layer of the gas diffusion electrode, the solution penetrates into the electrode. At that time, the catalyst in the pores in the electrode is covered with the solution, and as a result, after drying, the catalyst surface is covered with the thin film of the ion exchange resin component which is also the electrolyte. However, if the amount of the solution to be applied is too large, the pores in the electrode will be blocked with the ion exchange resin component, and gas permeation will be hindered.
On the other hand, if the amount is too small, there is no electrolyte on the surface of the catalyst particles and the electrode reaction does not proceed. Therefore, an appropriate amount of ion exchange resin component is required for the electrode catalyst layer.

【0016】このため従来は、電極触媒層上塗布する最
適な量を経験的に決めておき、あらかじめその量を塗布
しておいて、イオン交換膜と接合する方法をとらざるを
得なかった。しかし本発明の場合は、第一層を120℃
以上の温度で熱処理しているので、第一層上に新たにイ
オン交換樹脂成分を含む溶液を塗布しても電極内部まで
しみ込まず、第二層は任意の厚みで塗布することができ
る利点がある。第二層以降は従来の概念で言えばイオン
交換膜に相当する部分でありこの部分の厚みを任意にコ
ントロールできると、イオン交換膜を事実上どのような
厚みにでもできることを意味する。したがって、イオン
交換膜の抵抗を低下させることや、その他燃料電池にと
っては重要な要素となっているイオン交換膜内の水分の
拡散量もある程度制御できることにもなる。
For this reason, conventionally, it has been unavoidable to empirically determine the optimum amount to be applied on the electrode catalyst layer, apply the amount in advance, and bond it to the ion exchange membrane. However, in the case of the present invention, the first layer is 120 ° C.
Since the heat treatment is performed at the above temperature, even if a solution containing an ion exchange resin component is newly applied onto the first layer, it does not soak into the inside of the electrode, and the second layer can be applied with an arbitrary thickness. is there. The second and subsequent layers are portions corresponding to the ion exchange membrane in the conventional concept, and if the thickness of this portion can be controlled arbitrarily, it means that the ion exchange membrane can have virtually any thickness. Therefore, it is possible to reduce the resistance of the ion exchange membrane and to control the diffusion amount of water in the ion exchange membrane, which is another important factor for the fuel cell, to some extent.

【0017】本発明において、第一層の乾燥温度として
はイオン交換樹脂成分の溶媒があまり急速に蒸発しない
程度の温度が望ましい。そのためには100℃以下20
℃以上であることが好ましく、更に好ましくは80℃以
下、特に好ましくは60℃以下で乾燥することである。
又、第一層目のイオン交換樹脂層を塗布して乾燥したの
ち、熱処理する場合の温度は120℃以上が好ましく、
更に好ましくは130℃以上、特に好ましくは140℃
以上が適当である。このような温度で処理しなければな
らない理由は明確ではないが、塗布し乾燥されたイオン
交換樹脂層は、まだポリマー分子どうしの配列がみだれ
ており、ポリマーを溶解しうる溶媒があれば非常に溶解
しやすい構造となっているのに対し、120℃以上の高
温で処理すると熱の影響でポリマーどうしが複雑にから
みあい容易には溶媒に溶けない状態に変わるものと推定
している。
In the present invention, the drying temperature of the first layer is preferably a temperature at which the solvent of the ion exchange resin component does not evaporate too rapidly. For that, 100 ℃ or less 20
The temperature is preferably not lower than 0 ° C, more preferably not higher than 80 ° C, particularly preferably not higher than 60 ° C.
In addition, the temperature for heat treatment after coating the first layer of the ion exchange resin layer and drying is preferably 120 ° C. or higher,
More preferably 130 ° C or higher, particularly preferably 140 ° C
The above is appropriate. The reason why it is necessary to treat at such a temperature is not clear, but the coated and dried ion exchange resin layer still has an array of polymer molecules, and if there is a solvent capable of dissolving the polymer, it is very difficult. Although it has a structure in which it is easily dissolved, it is presumed that when it is treated at a high temperature of 120 ° C. or higher, the polymers are complicatedly entangled with each other due to the influence of heat and the polymer is easily dissolved in a solvent.

【0018】熱処理する際の温度の上限は、事実上ポリ
マーが変質することがなければどんな温度でもよいが、
実際には250℃以下、好ましくは200℃以下がポリ
マーに影響を与えることが少ないので望ましい。第一層
の厚みは、ガス拡散電極の種類によっても異なるので経
験的に決められる場合が多い。又、溶液が電極内にしみ
込むため、厚みとして一義的に決められない面もある。
しかし、電極触媒にガスの拡散が十分になされる厚みで
ある必要があり、通常は電極触媒表面で5μm以下、好
ましくは1μm以下であることが望ましい。
The upper limit of the temperature during the heat treatment may be virtually any temperature as long as the polymer does not deteriorate.
Actually, 250 ° C. or lower, preferably 200 ° C. or lower is desirable because it has little influence on the polymer. The thickness of the first layer varies depending on the type of gas diffusion electrode and is often empirically determined. Further, since the solution permeates into the electrode, there is a surface where the thickness cannot be uniquely determined.
However, it is necessary that the thickness is such that the gas can be sufficiently diffused into the electrode catalyst, and it is usually 5 μm or less, preferably 1 μm or less on the surface of the electrode catalyst.

【0019】第二層以降を塗布する場合、単純に第一層
上にイオン交換樹脂成分を含む溶液を塗布するだけでも
よい。しかし、任意の厚みを塗布しようとする場合、何
度も塗り重ねる必要がある。その場合、第一層上に一定
量の溶液を塗布し100℃以下で乾燥させ、次に120
℃以上で熱処理した後、更にその上に同様な方法で塗り
重ねてゆき、第二層以降が任意の厚みになるまで繰り返
す方法が好ましい。又第二層以降は、第一層と異なる交
換容量を持つイオン交換樹脂成分を塗布することもでき
る。
When the second and subsequent layers are applied, the solution containing the ion exchange resin component may simply be applied on the first layer. However, when it is desired to apply an arbitrary thickness, it is necessary to repeat the application. In that case, a certain amount of the solution is applied on the first layer and dried at 100 ° C. or below, then 120
A method is preferable in which after heat treatment at a temperature of not less than 0 ° C., coating is further applied thereon in the same manner and repeated until the second and subsequent layers have an arbitrary thickness. Further, an ion exchange resin component having an exchange capacity different from that of the first layer can be applied to the second and subsequent layers.

【0020】第一層以外の厚みは、イオン交換樹脂層の
電気抵抗を削減する意味では薄ければ薄い程良いが、燃
料電池を構成する際の強度面や、通電時に電極どうしが
ショートする危険がないようにすること等を考慮して決
定する必要がある。このようなことに配慮した場合、第
二層以降の合計厚みとしては、5μm以上は必要であ
り、10μm以上が更に好ましい。
The thickness of layers other than the first layer is preferably as thin as possible in order to reduce the electric resistance of the ion exchange resin layer, but the strength of the fuel cell and the risk of short circuit between electrodes during energization. It is necessary to make a decision in consideration of the fact that there is no In consideration of this, the total thickness of the second and subsequent layers needs to be 5 μm or more, and more preferably 10 μm or more.

【0021】本発明に用いられる、イオン交換樹脂成分
を含む溶液としては、フッ素系イオン交換樹脂成分を含
むものであれば何でもよいが、例えば次の化学式を持つ
ポリマーであることが好ましい。
The solution containing the ion exchange resin component used in the present invention may be any solution containing the fluorine ion exchange resin component, but for example, a polymer having the following chemical formula is preferable.

【0022】[0022]

【化1】 [Chemical 1]

【0023】イオン交換樹脂成分の当量重量は、電気抵
抗面からは小さい程良いが、余りに小さすぎると強度が
弱くなる等の問題があるので、実用的には1100g/
eq〜600g/eqが好ましい。イオン交換樹脂成分
を含む溶液の溶媒は、特に限定されないが、例えばイソ
プロパノール、プロパノール、エタノール、メタノール
等に水を加えた混合溶媒を用いることができる。
The equivalent weight of the ion exchange resin component is preferably as small as possible from the viewpoint of electric resistance, but if it is too small, there is a problem that the strength is weakened, and so practically 1100 g /
eq-600 g / eq is preferable. The solvent of the solution containing the ion exchange resin component is not particularly limited, but for example, a mixed solvent obtained by adding water to isopropanol, propanol, ethanol, methanol or the like can be used.

【0024】図1は本発明の接合体を模式化して示した
ものである。図1において、ガス拡散電極1は、疎水化
層2と電極触媒層3からなっており、電極触媒層3の内
部から表面までに固体高分子電解質層第一層4が形成さ
れている。固体高分子電解質層第一層4上には固体高分
子電解質層第二層5が形成され、更にその上に固体高分
子層第三層6が形成されている。電極触媒層3にはカー
ボン7上に担持された電極触媒微粒子8があり、その上
に固体高分子電解質層第一層4がコーティングされてい
る。
FIG. 1 schematically shows the joined body of the present invention. In FIG. 1, the gas diffusion electrode 1 is composed of a hydrophobic layer 2 and an electrode catalyst layer 3, and a solid polymer electrolyte layer first layer 4 is formed from the inside of the electrode catalyst layer 3 to the surface thereof. A solid polymer electrolyte layer second layer 5 is formed on the solid polymer electrolyte layer first layer 4, and a solid polymer layer third layer 6 is further formed thereon. The electrode catalyst layer 3 has electrode catalyst fine particles 8 supported on carbon 7, and a solid polymer electrolyte layer first layer 4 is coated thereon.

【0025】固体高分子層第一層は、電極触媒層3内に
一部がしみこみ電極触媒微粒子8が担持されたカーボン
7上も覆っている。電極触媒層3には空孔9があり、こ
の空孔9によりガスが電極触媒8に供給される。固体高
分子電解質層第一層4は、電極触媒層3内にある空孔9
を閉塞しガスの流通を阻害しない程度の厚さである必要
がある。このため、固体高分子電解質層第二層以降を塗
布する際は、固体高分子電解質層第一層が再度溶解した
り或は第一層を通して固体高分子電解質成分がしみこ
み、この空孔を小さくしたり閉塞しないようにすること
が肝心である。本発明の方法により第一層を形成する
と、このようなことは起こらないので高性能な燃料電池
を構成できる。
The first layer of the solid polymer layer also covers the carbon 7 on which the electrode catalyst fine particles 8 are partially impregnated in the electrode catalyst layer 3. The electrode catalyst layer 3 has holes 9, and gas is supplied to the electrode catalyst 8 through the holes 9. The solid polymer electrolyte layer first layer 4 has pores 9 in the electrode catalyst layer 3.
The thickness must be such that it does not block the gas flow and obstruct the flow of gas. Therefore, when applying the second and subsequent layers of the solid polymer electrolyte layer, the first layer of the solid polymer electrolyte layer is dissolved again or the solid polymer electrolyte component permeates through the first layer, and the pores are reduced. It is important not to block or block it. When the first layer is formed by the method of the present invention, such a phenomenon does not occur, so that a high performance fuel cell can be constructed.

【0026】図1のような固体高分子電解質層と電極と
の接合体を用いて燃料電池を構成する際には、二層以上
の固体高分子電解質層を有する電極ともう一方は第一層
のみを有する電極とを、固体高分子電解質の層を有する
側どうしを密着させ、熱プレス接合する方法や、二層以
上の固体高分子電解質層を持つ電極どうしを同様に接合
する方法が好ましい。一方の電極には二層以上の固体高
分子電解質層を有する電極とこのような層を持たない電
極との接合は、電極との密着性が悪くなり、電気抵抗が
高くなる傾向があり好ましくない。
When a fuel cell is constructed by using a joined body of a solid polymer electrolyte layer and an electrode as shown in FIG. 1, an electrode having two or more solid polymer electrolyte layers and the other one is the first layer. A method in which an electrode having only a solid polymer electrolyte layer and a side having a solid polymer electrolyte layer are brought into close contact with each other and hot press bonding is performed, or a method in which electrodes having two or more solid polymer electrolyte layers are similarly bonded is preferable. Bonding of an electrode having two or more solid polymer electrolyte layers to one electrode and an electrode not having such a layer is not preferable because the adhesion with the electrode becomes poor and the electric resistance tends to increase. .

【0027】固体高分子電解質層を有する電極を接合す
る際の温度は、固体高分子電解質がある程度やわらかく
なる温度であることが好ましく、通常120℃以上、良
好な接着を得るには140℃以上が好ましい。接合する
際の圧力は、接合温度に対し良好な接着の得やすい圧力
に決めればよく、特に限定されない。このようにして、
本発明の作成方法で得られた固体高分子電解質層と電極
との接合体を用いて燃料電池を構成し、酸素ガス及び水
素ガスを原料に電気を取り出すと、従来の電極とイオン
交換膜接合体を用いた場合より高い燃料電池出力が得ら
れ、その安定性も従来のものと変わらない。
The temperature at which the electrodes having the solid polymer electrolyte layer are joined is preferably a temperature at which the solid polymer electrolyte becomes soft to some extent, usually 120 ° C. or higher, and 140 ° C. or higher to obtain good adhesion. preferable. The pressure at the time of joining is not particularly limited as long as it is determined to a pressure at which good adhesion can be easily obtained with respect to the joining temperature. In this way
A fuel cell is constructed by using the joined body of the solid polymer electrolyte layer and the electrode obtained by the production method of the present invention, and when electricity is taken out from oxygen gas and hydrogen gas as raw materials, conventional electrode and ion exchange membrane bonding The fuel cell output is higher than when the body is used, and the stability is the same as that of the conventional one.

【0028】かくして、本発明は燃料電池用固体高分子
電解質と電極との接合体を作成する際、電極上に高分子
電解質となる層をスルホン酸基を含むフッ素系ポリマー
の溶液を電極触媒を有する側に塗布し熱処理することに
より第一層を形成し、更に第一層上にスルホン酸基を含
むフッ素系ポリマー溶液を塗布することにより、第二層
以降の層を形成させることにより形成されるので、固体
高分子電解質の層を薄くでき、接合界面や固体高分子電
解質層の電気抵抗、物質移動抵抗が小さい密着性のすぐ
れており、出力の大きい燃料電池を構成できる。
Thus, according to the present invention, when a joined body of a solid polymer electrolyte for a fuel cell and an electrode is prepared, a layer of the polymer electrolyte on the electrode is treated with a solution of a fluorinated polymer containing a sulfonic acid group as an electrode catalyst. Formed by forming a first layer by coating on the side having and heat treatment, and by further coating a fluoropolymer solution containing a sulfonic acid group on the first layer to form the second and subsequent layers. Therefore, the solid polymer electrolyte layer can be made thin, and the junction interface and the solid polymer electrolyte layer have low electric resistance and mass transfer resistance with excellent adhesion, and a fuel cell with high output can be constructed.

【0029】次に本発明を実施例により説明するが、こ
れに限定されるものではない。
Next, the present invention will be described with reference to examples, but the present invention is not limited thereto.

【0030】[0030]

【実施例】【Example】

【0031】[0031]

【実施例1】下記化2に示される当量重量1000g/
eqの固体高分子電解質であるイオン交換樹脂成分5重
量%を含む溶液Aを準備した。
Example 1 Equivalent weight 1000 g /
A solution A containing 5% by weight of an ion exchange resin component which is a solid polymer electrolyte of eq was prepared.

【0032】[0032]

【化2】 [Chemical 2]

【0033】溶液Aの組成は、プロピルアルコール85
部、水10部、イオン交換樹脂成分5部を含むものとし
た。燃料電池用ガス拡散電極としては、サイズ3cm×
3cmのE−TEK社製で白金触媒が0.35mg/c
2 であるもの2枚を準備した。この2枚の電極の触媒
面に、溶液Aを117mgづつ塗布し40℃の温度で約
1時間乾燥させた。その後さらに温度140℃の熱風乾
燥機内で10分間熱処理し、第一層を形成した。第一層
を形成させた後、二枚の電極の第一層上に、117mg
の溶液Aを塗布し、40℃で1時間乾燥させ、更に14
0℃の熱風乾燥機内で10分間熱処理し第二層を形成さ
せた。第二層を形成させた後、第三層、第四層、第五層
迄を第二層と同様な方法で形成した。
The composition of solution A was propyl alcohol 85.
Part, water 10 parts, and ion exchange resin component 5 parts. As a gas diffusion electrode for fuel cells, size 3 cm x
3cm E-TEK company made platinum catalyst 0.35mg / c
Two sheets of m 2 were prepared. 117 mg of the solution A was applied on the catalyst surfaces of the two electrodes and dried at a temperature of 40 ° C. for about 1 hour. Then, it was further heat-treated in a hot air dryer at a temperature of 140 ° C. for 10 minutes to form a first layer. After forming the first layer, 117 mg on the first layer of the two electrodes
Solution A is applied and dried at 40 ° C. for 1 hour.
It heat-processed for 10 minutes in a 0 degreeC hot air dryer, and formed the 2nd layer. After forming the second layer, the third layer, the fourth layer, and the fifth layer were formed in the same manner as the second layer.

【0034】次に、この二枚の電極の塗布層側どうしを
密着させ熱プレス装置で、145℃、60kg/cm2
の条件で90秒間熱プレスし、接合体Bを得た。このよ
うにして作成された接合体Bは、固体高分子電解質層の
厚みは約20μmで、接合状態も強固で簡単に剥離しな
かった。この接合体Bをその両側に電気を取り出すため
の給電体を密着させてガスの取り入れ口及び抜き出し口
がある内寸2cm×2cm、外寸3cm×3cmフラン
ジの間に装着して燃料電池本体を構成した。燃料電池を
外部負荷に接続し、一方に水素ガス、もう一方に酸素ガ
スを供給しつつ55℃、1atmの条件で出力電流と出
力電圧を測定した。その結果を図2に示す。
Next, the coated layers of the two electrodes were brought into close contact with each other, and were heat-pressed at 145 ° C. and 60 kg / cm 2.
The bonded body B was obtained by hot pressing for 90 seconds under the above condition. In the joined body B thus produced, the thickness of the solid polymer electrolyte layer was about 20 μm, the joined state was strong, and peeling did not occur easily. The fuel cell main body is mounted by attaching this joined body B to both sides of a power feeding body for taking out electricity and mounting it between the flanges having an inner size of 2 cm × 2 cm and an outer size of 3 cm × 3 cm, which have a gas inlet and outlet. Configured. The fuel cell was connected to an external load, and the output current and the output voltage were measured under the conditions of 55 ° C. and 1 atm while supplying hydrogen gas to one side and oxygen gas to the other side. The result is shown in FIG.

【0035】[0035]

【比較例1】実施例1と全く同様の溶液A及びガス拡散
電極を準備した。又イオン交換膜としてフッ素系のスル
ホン酸型のイオン交換膜であるDuPont社のナフィ
オン117も合わせて準備した。実施例1と同一の電極
二枚を準備し、140℃で熱処理を行なわない以外は実
施例1と全く同様な条件で第一層を形成した。
Comparative Example 1 Solution A and a gas diffusion electrode exactly the same as in Example 1 were prepared. Nafion 117 manufactured by DuPont, which is a fluorinated sulfonic acid type ion exchange membrane, was also prepared as an ion exchange membrane. The same two electrodes as in Example 1 were prepared, and the first layer was formed under the same conditions as in Example 1 except that heat treatment was not performed at 140 ° C.

【0036】イオン交換膜は、あらかじめ8%硫酸2時
間100℃で処理し、その後純水で洗浄したのち約1時
間沸騰した純水中に浸漬しておいた。イオン交換膜の表
面の水滴をふきとった後、二枚の電極の塗布面をイオン
交換膜側に向けて密着させ、熱プレス装置で、145
℃、60kg/cm2 の条件で90秒間熱プレスし、接
合体Cを得た。
The ion exchange membrane was previously treated with 8% sulfuric acid for 2 hours at 100 ° C., washed with pure water, and then immersed in boiling pure water for about 1 hour. After wiping off the water droplets on the surface of the ion exchange membrane, the coated surfaces of the two electrodes are brought into close contact with each other so that the ion exchange membrane side is brought into contact, and a heat press device is used to remove the 145
The bonded body C was obtained by hot pressing for 90 seconds at 60 ° C. and 60 kg / cm 2 .

【0037】この接合体Cを実施例1と全く同様に、燃
料電池を構成して性能を測定した。結果を図2に示す。
本発明方法で作成された燃料電池用固体高分子電解質層
と電極との接合体は、燃料電池性能が良いことが明白で
ある。
A fuel cell was constructed from this joined body C in exactly the same manner as in Example 1, and the performance was measured. The results are shown in Figure 2.
It is apparent that the joined body of the solid polymer electrolyte layer for a fuel cell and the electrode prepared by the method of the present invention has good fuel cell performance.

【0038】[0038]

【発明の効果】本発明の製作方法によって、燃料電池用
固体高分子電解質と電極との接合体を製作する際、固体
高分子電解質層を薄く形成できるので、固体高分子電解
質層の電気抵抗、物質移動抵抗が小さい密着性のすぐれ
た、出力の大きい燃料電池を構成できる。
According to the manufacturing method of the present invention, when a solid polymer electrolyte for a fuel cell and an electrode are manufactured, the solid polymer electrolyte layer can be formed thin, so that the electric resistance of the solid polymer electrolyte layer can be improved. It is possible to construct a fuel cell that has a small mass transfer resistance, excellent adhesion, and a large output.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の固体高分子電解質と電極との接合体を
模式化して示した断面図、及びその部分拡大図である。
FIG. 1 is a cross-sectional view schematically showing a joined body of a solid polymer electrolyte of the present invention and an electrode, and a partially enlarged view thereof.

【図2】本発明の実施例1及び比較例1の固体高分子電
解質燃料電池の出力電流と出力電圧の特性を示したグラ
フ図である。
FIG. 2 is a graph showing the output current and output voltage characteristics of the solid polymer electrolyte fuel cells of Example 1 and Comparative Example 1 of the present invention.

【符号の説明】[Explanation of symbols]

1 ガス拡散電極 2 疎水化層 3 電極触媒層 4 固体高分子電解質層第一層 5 固体高分子電解質層第二層 6 固体高分子電解質層第三層 7 カーボン 8 電極触媒微粒子 9 空孔 1 Gas Diffusion Electrode 2 Hydrophobic Layer 3 Electrocatalyst Layer 4 Solid Polymer Electrolyte Layer First Layer 5 Solid Polymer Electrolyte Layer Second Layer 6 Solid Polymer Electrolyte Layer Third Layer 7 Carbon 8 Electrocatalyst Fine Particles 9 Voids

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 燃料電池用固体高分子電解質層と電極と
の接合体を作成するに際し、該電極の電極触媒を有する
側表面に高分子電解質となるスルホン酸基を含むフッ素
系ポリマーの溶液を塗布し乾燥させた後、熱処理するこ
とにより第一層を形成し、更に該第一層上に、スルホン
酸基を含むフッ素系ポリマー溶液を塗布し乾燥させた
後、熱処理する工程を少なくとも1回行うことにより、
第二層以降の層を形成することを特徴とする燃料電池用
固体高分子電解質層と電極との接合体の作成方法。
1. When preparing a joined body of a solid polymer electrolyte layer for a fuel cell and an electrode, a solution of a fluorinated polymer containing a sulfonic acid group which becomes a polymer electrolyte is formed on the surface of the electrode having an electrode catalyst. After coating and drying, a first layer is formed by heat treatment, and a fluoropolymer solution containing a sulfonic acid group is further coated on the first layer, dried, and then heat treated at least once. By doing
A method for producing a joined body of a solid polymer electrolyte layer for a fuel cell and an electrode, which comprises forming the second and subsequent layers.
JP5035241A 1993-02-24 1993-02-24 Formation of joined body of solid polymer electrolyte layer and electrode for fuel cell Withdrawn JPH06251779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5035241A JPH06251779A (en) 1993-02-24 1993-02-24 Formation of joined body of solid polymer electrolyte layer and electrode for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5035241A JPH06251779A (en) 1993-02-24 1993-02-24 Formation of joined body of solid polymer electrolyte layer and electrode for fuel cell

Publications (1)

Publication Number Publication Date
JPH06251779A true JPH06251779A (en) 1994-09-09

Family

ID=12436348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5035241A Withdrawn JPH06251779A (en) 1993-02-24 1993-02-24 Formation of joined body of solid polymer electrolyte layer and electrode for fuel cell

Country Status (1)

Country Link
JP (1) JPH06251779A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10284087A (en) * 1997-04-04 1998-10-23 Asahi Chem Ind Co Ltd Electrode and membrane-electrode joining body for solid polymer fuel cell
JPH10334923A (en) * 1997-04-04 1998-12-18 Asahi Chem Ind Co Ltd Solid high polymer fuel cell film/electrode connecting body
EP0755576A4 (en) * 1994-10-18 1999-11-03 Univ Southern California Organic fuel cell, and methods of operation thereof and manufacture of electrode therefor
US6248460B1 (en) 1993-10-12 2001-06-19 California Institute Of Technology Organic fuel cell methods and apparatus
WO2002005371A1 (en) * 2000-07-06 2002-01-17 Matsushita Electric Industrial Co., Ltd. Method for producing film electrode jointed product and method for producing solid polymer type fuel cell
WO2002037585A1 (en) 2000-10-31 2002-05-10 Asahi Kasei Kabushiki Kaisha Electrode for solid polymer type fuel cell
WO2002058178A1 (en) * 2001-01-19 2002-07-25 Matsushita Electric Industrial Co., Ltd. Method for manufacturing fuel cell elecrolyte film-electrode bond
EP1450426A1 (en) * 2001-11-30 2004-08-25 Honda Giken Kogyo Kabushiki Kaisha Method for manufacturing electrode for fuel cell
JP2007179852A (en) * 2005-12-27 2007-07-12 Nissan Motor Co Ltd Highly durable fuel cell
JP2013020816A (en) * 2011-07-11 2013-01-31 Jx Nippon Oil & Energy Corp Membrane electrode assembly and manufacturing method therefor, and fuel cell

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6740434B2 (en) 1993-10-12 2004-05-25 California Institute Of Technology Organic fuel cell methods and apparatus
US6248460B1 (en) 1993-10-12 2001-06-19 California Institute Of Technology Organic fuel cell methods and apparatus
US6821659B2 (en) 1993-10-12 2004-11-23 California Institute Of Technology Organic fuel cell methods and apparatus
EP0755576A4 (en) * 1994-10-18 1999-11-03 Univ Southern California Organic fuel cell, and methods of operation thereof and manufacture of electrode therefor
EP1291950A3 (en) * 1994-10-18 2005-07-20 University Of Southern California Organic fuel cell and methods of operation thereof
JPH10334923A (en) * 1997-04-04 1998-12-18 Asahi Chem Ind Co Ltd Solid high polymer fuel cell film/electrode connecting body
JPH10284087A (en) * 1997-04-04 1998-10-23 Asahi Chem Ind Co Ltd Electrode and membrane-electrode joining body for solid polymer fuel cell
WO2002005371A1 (en) * 2000-07-06 2002-01-17 Matsushita Electric Industrial Co., Ltd. Method for producing film electrode jointed product and method for producing solid polymer type fuel cell
US6855178B2 (en) 2000-07-06 2005-02-15 Matsushita Electric Industrial Co., Ltd. Method for producing film electrode jointed product and method for producing solid polymer type fuel cell
JP3668478B2 (en) * 2000-07-06 2005-07-06 松下電器産業株式会社 Method for producing membrane electrode assembly and method for producing polymer electrolyte fuel cell
WO2002037585A1 (en) 2000-10-31 2002-05-10 Asahi Kasei Kabushiki Kaisha Electrode for solid polymer type fuel cell
US7846614B2 (en) 2000-10-31 2010-12-07 Asahi Kasei Kabushiki Kaisha Electrode for solid polymer electrolyte fuel cell
WO2002058178A1 (en) * 2001-01-19 2002-07-25 Matsushita Electric Industrial Co., Ltd. Method for manufacturing fuel cell elecrolyte film-electrode bond
US6977234B2 (en) 2001-01-19 2005-12-20 Matsushita Electric Industrial Co., Ltd. Method for manufacturing fuel cell electrolyte film-electrode bond
USRE41651E1 (en) * 2001-01-19 2010-09-07 Panasonic Corporation Method for manufacturing fuel cell electrolyte film-electrode bond
EP1450426A1 (en) * 2001-11-30 2004-08-25 Honda Giken Kogyo Kabushiki Kaisha Method for manufacturing electrode for fuel cell
EP1450426A4 (en) * 2001-11-30 2008-05-07 Honda Motor Co Ltd Method for manufacturing electrode for fuel cell
JP2007179852A (en) * 2005-12-27 2007-07-12 Nissan Motor Co Ltd Highly durable fuel cell
JP2013020816A (en) * 2011-07-11 2013-01-31 Jx Nippon Oil & Energy Corp Membrane electrode assembly and manufacturing method therefor, and fuel cell

Similar Documents

Publication Publication Date Title
US6723464B2 (en) Membrane-electrode-assembly with solid polymer electrolyte
JP4327732B2 (en) Solid polymer fuel cell and manufacturing method thereof
US7803495B2 (en) Polymer electrolyte membrane for fuel cell, method for preparing the same, and fuel cell system comprising the same
WO2005088749A1 (en) Membrane electrode assembly, method for producing the same, and solid state polymer fuel cell
KR101877753B1 (en) Composite electrolyte membrane for fuel cell, membrane-electrode assembly including thereof, fuel cell including thereof, and manufacturing method thereof
JP2009505364A (en) Method for producing catalyst-coated membrane
KR20110001022A (en) Polymer electrolyte membrane for fuel cell and method of manufacturing the same
JP2003515894A (en) Direct methanol battery with circulating electrolyte
JPH08162132A (en) Polymer solid electrolyte-electrode joined body
JP2003346835A (en) Method of manufacturing membrane electrode structural body
KR100614100B1 (en) Method for preparing the membrane-electrode assembly for fuel cell using membrane on electrode method before the dry-out of nafion ionomer solution and membrane-electrode assembly for fuel cell prepared by the method
JPH06251779A (en) Formation of joined body of solid polymer electrolyte layer and electrode for fuel cell
JP2008521168A (en) Preconditioning of fuel cell membrane electrode assembly
JP2008041371A (en) Manufacturing method of membrane electrode assembly for fuel cell
JP2005108770A (en) Manufacturing method of electrolyte membrane electrode joint body
JP4228643B2 (en) Method for producing membrane electrode assembly of polymer electrolyte fuel cell
KR101877755B1 (en) Composite electrolyte membrane for fuel cell, membrane-electrode assembly including thereof, fuel cell including thereof, and manufacturing method thereof
KR101312971B1 (en) Hydrocarbon based polyelectrolyte separation membrane surface-treated with fluorinated ionomer, membrane electrode assembly, and fuel cell
JP2007250468A (en) Electrolyte film
KR100884959B1 (en) Preparation of Membrane Electrode AssemblyMEA for Polymer Electrolyte Fuel Cell Using Hydrocarbon Based Polymers
JP2003059507A (en) Electrolyte film and electrode junction for fuel cell, its manufacturing method and polymer electrolyte fuel cell
JPH06295728A (en) Electrode for solid high polymer type fuel cell and fuel cell using it
KR20090092592A (en) Method of preparing a membrane electrode assembly for fuel cell, Membrane electrode assembly prepared by the same and Fuel cell to which the method is applied
JP2008198437A (en) Membrane electrode assembly for fuel cell, its manufacturing method, and fuel cell using it
JP3264920B2 (en) Liquid fuel cell

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000509