JP3264920B2 - Liquid fuel cell - Google Patents

Liquid fuel cell

Info

Publication number
JP3264920B2
JP3264920B2 JP25328090A JP25328090A JP3264920B2 JP 3264920 B2 JP3264920 B2 JP 3264920B2 JP 25328090 A JP25328090 A JP 25328090A JP 25328090 A JP25328090 A JP 25328090A JP 3264920 B2 JP3264920 B2 JP 3264920B2
Authority
JP
Japan
Prior art keywords
electrode
ion exchange
fuel cell
exchange membrane
liquid fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25328090A
Other languages
Japanese (ja)
Other versions
JPH04132168A (en
Inventor
誠 内田
裕子 青山
伸行 柳原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP25328090A priority Critical patent/JP3264920B2/en
Publication of JPH04132168A publication Critical patent/JPH04132168A/en
Application granted granted Critical
Publication of JP3264920B2 publication Critical patent/JP3264920B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、液体燃料としてメタノール、ヒドラジン、
ホルマリン、ギ酸などの還元剤を用い、空気や酸素を酸
化剤とする液体燃料電池の燃料極、空気極及びそれを用
いた液体燃料電池に関するものである。さらに詳しくは
燃料としてメタノールを用いた燃料電池用の電極及びそ
れを用いた液体燃料電池に関するものである。
The present invention relates to a liquid fuel, methanol, hydrazine,
The present invention relates to a fuel electrode and a cathode of a liquid fuel cell using a reducing agent such as formalin or formic acid and using air or oxygen as an oxidant, and a liquid fuel cell using the same. More specifically, the present invention relates to a fuel cell electrode using methanol as a fuel and a liquid fuel cell using the same.

従来の技術 メタノール燃料電池にとって最も重要な課題の1つ
は、燃料極に供給されるメタノール燃料が過剰になると
電解質層を経て空気極に透過し、空気極上で燃料の直接
の酸化反応が起こり、空気極の性能低下を招くことであ
る。そのために、従来のメタノール燃料電池では、両極
間に隔膜としてイオン交換膜を設け、メタノールの透過
を阻止する構成をとっている。このイオン交換膜はプロ
トン透過性を有するので、前述の役割と同時に電解質と
しての役割も合わせ持っている。
2. Description of the Related Art One of the most important issues for a methanol fuel cell is that when an excess amount of methanol fuel is supplied to an anode, the methanol permeates through the electrolyte layer to the cathode, and a direct oxidation reaction of the fuel occurs on the cathode. That is, the performance of the cathode deteriorates. For this purpose, a conventional methanol fuel cell has a configuration in which an ion-exchange membrane is provided as a separator between both electrodes to prevent the permeation of methanol. Since this ion exchange membrane has proton permeability, it has a role as an electrolyte in addition to the above-mentioned role.

発明が解決しようとする課題 しかしながら上記従来の構成では、メタノールの阻止
機能をイオン交換膜にのみ依存しており、空気極自体に
はなんら阻止機能がなかった。しかも現在一般に用いら
れているイオン交換膜では、十分なメタノールの阻止機
能が得られないという欠点を有していた。また、イオン
交換膜と電極との接着性が悪いために、空気極を透過し
た空気の気泡及び、燃料極でメタノールの分解により生
成した炭酸ガスの気泡が溜まって、プロトンの移動の障
害となりオーム損が増加して、電池電圧が降下する原因
となっていた。
Problems to be Solved by the Invention However, in the above-described conventional configuration, the blocking function of methanol relies only on the ion exchange membrane, and the air electrode itself has no blocking function. Moreover, the ion exchange membrane generally used at present has a drawback that a sufficient function of preventing methanol cannot be obtained. In addition, due to poor adhesion between the ion-exchange membrane and the electrode, air bubbles permeating the air electrode and carbon dioxide gas bubbles generated by decomposition of methanol at the fuel electrode accumulate, which hinders the movement of protons and causes an ohm. The loss has increased, causing the battery voltage to drop.

本発明は上記の課題を解決するもので、燃料極から透
過したメタノールによる空気極の特性低下を抑制し、イ
オン交換膜と電極とを密着し、より高性能な液体燃料電
池用電極及びそれを用いた液体燃料電池を提供すること
を目的とする。
The present invention solves the above-mentioned problems, and suppresses the deterioration of the characteristics of the air electrode due to methanol permeated from the fuel electrode, adheres the ion-exchange membrane to the electrode, and provides a higher-performance liquid fuel cell electrode and the same. It is an object to provide a liquid fuel cell used.

課題を解決するための手段 この目的を達成するために本発明の液体燃料電池は、
触媒層と、撥水処理した炭素微粉末からなる撥水層と、
前記撥水層を介して前記触媒層と対向するように設けら
れた金属製のメッシュとで構成された酸化剤極及び燃料
極からなり、両電極がイオン交換膜で隔離されている液
体燃料電池において、両電極のうち、少なくともいずれ
か一方の電極の内部にはイオン交換基を持つ高分子を付
加し、かつ少なくともいずれか一方の電極とイオン交換
膜とをイオン交換基を持つ高分子を用いて接合したこと
を特徴とする。
Means for Solving the Problems In order to achieve this object, a liquid fuel cell according to the present invention comprises:
A catalyst layer, a water-repellent layer made of fine carbon powder subjected to the water-repellent treatment,
A liquid fuel cell comprising an oxidizer electrode and a fuel electrode constituted by a metal mesh provided so as to face the catalyst layer via the water-repellent layer, and both electrodes are separated by an ion exchange membrane In both electrodes, a polymer having an ion-exchange group is added inside at least one of the electrodes, and a polymer having an ion-exchange group is used for at least one of the electrodes and the ion-exchange membrane. It is characterized by being joined.

また、本発明の液体燃料電池は、触媒層と、撥水処理
した炭素微粉末からなる撥水層と、前記撥水層を介して
前記触媒層と対向するように設けられた金属製のメッシ
ュとで構成された酸化剤極及び燃料極からなり、両電極
がイオン交換膜で隔離され、電極とイオン交換膜との間
に電解液層を配した液体燃料電池において、両電極のう
ち、少なくともいずれか一方の電極の内部にはイオン交
換基を持つ高分子を付加したことを特徴とする。
In addition, the liquid fuel cell of the present invention includes a catalyst layer, a water-repellent layer made of water-repellent carbon fine powder, and a metal mesh provided so as to face the catalyst layer via the water-repellent layer. In a liquid fuel cell comprising an oxidizer electrode and a fuel electrode, wherein both electrodes are separated by an ion exchange membrane and an electrolyte layer is disposed between the electrode and the ion exchange membrane, at least It is characterized in that a polymer having an ion exchange group is added inside one of the electrodes.

また、本発明の液体燃料電池は、上記高分子が、テト
ラフルオロエチレンとパーフルオロビニルエーテルとの
共重合体からなると有効である。
Further, in the liquid fuel cell of the present invention, it is effective that the polymer is made of a copolymer of tetrafluoroethylene and perfluorovinyl ether.

また、本発明の液体燃料電池は、上記高分子が、スチ
レンとビニルベンゼンとの共重合体からなると有効であ
る。
Further, in the liquid fuel cell of the present invention, it is effective that the polymer is made of a copolymer of styrene and vinylbenzene.

作用 この構成によって、空気極内部の触媒の表面を従来の
電解質、例えば硫酸に換わって、プロトン供給体の固体
高分子電解質が覆う。従来の液体電解質の場合には、電
解液中に溶解したメタノールが燃料極側から空気極側へ
イオン交換膜を透過した後、空気極内部の電解液中を拡
散して、触媒まで到達する。
Action With this configuration, the surface of the catalyst inside the air electrode is covered with the solid polymer electrolyte of the proton donor in place of the conventional electrolyte, for example, sulfuric acid. In the case of a conventional liquid electrolyte, methanol dissolved in the electrolyte passes through the ion exchange membrane from the fuel electrode side to the air electrode side, and then diffuses in the electrolyte inside the air electrode to reach the catalyst.

空気極では次式(1)の反応が進行しているが、 3/202+6H++6e-=3H2O …(1) 触媒近傍にメタノールが存在すると次式(2)のメタ
ノールの直接の酸化反応が起こり、空気極の電位を低下
させる。
At the air electrode, the reaction of the following formula (1) is proceeding, but 3/20 2 + 6H + + 6e = 3H 2 O (1) If methanol exists near the catalyst, the methanol of the following formula (2) An oxidation reaction occurs, lowering the potential of the air electrode.

CH3OH+3/202=CO2+2H2O …(2) これに対し、本発明の空気極の場合には、空気極内部
の固体高分子電解質が溶解メタノールの拡散を阻止し、
かつ選択的にプロトンを透過する。このためイオン導電
性をそこなわずに、上記(2)式の反応を抑制し、
(1)式の反応を優先的に進行させる。この様に空気極
自身にもメタノール阻止機能が備わることにより、従来
のメタノール燃料電池よりもさらに、メタノール阻止機
能が向上する。
CH 3 OH + 3/20 2 = CO 2 + 2H 2 O (2) On the other hand, in the case of the air electrode of the present invention, the solid polymer electrolyte inside the air electrode prevents diffusion of dissolved methanol,
And selectively permeate protons. Therefore, the reaction of the above formula (2) is suppressed without impairing the ionic conductivity,
The reaction of the formula (1) proceeds preferentially. Since the air electrode itself has the methanol blocking function, the methanol blocking function is further improved as compared with the conventional methanol fuel cell.

また、酸化剤極または燃料極とイオン交換膜とをそれ
ぞれイオン交換基を含む高分子を用いて接合することに
よって、イオン交換膜と、接合に用いたイオン交換基を
持つ高分子と、酸化剤極、燃料極のそれぞれの電極中の
イオン交換基を持つ高分子とがそれぞれ強固に結合す
る。このため、イオン交換膜と酸化剤極及び燃料極が密
着し、電極とイオン交換膜間に空気及び炭酸ガスの気泡
が溜まるのを防止できる。さらに、両極間の距離が短く
なることに加えて、電極、接着剤、イオン交換膜のすべ
てにイオン交換基が含まれるためにプロトン導電性が保
たれ、オーム損を著しく減少させることができる。
In addition, by bonding the oxidizer electrode or the fuel electrode and the ion exchange membrane using polymers each containing an ion exchange group, the ion exchange membrane, the polymer having the ion exchange group used for bonding, The polymer having an ion exchange group in each of the electrode and the fuel electrode is firmly bonded to each other. For this reason, the ion exchange membrane and the oxidant electrode and the fuel electrode are in close contact with each other, and it is possible to prevent the accumulation of air and carbon dioxide gas bubbles between the electrode and the ion exchange membrane. Further, in addition to shortening the distance between the two electrodes, since the electrodes, the adhesive, and the ion-exchange membrane all include ion-exchange groups, proton conductivity is maintained, and ohmic loss can be significantly reduced.

実施例 以下本発明の実施例について、図面を参照しながら説
明する。
Embodiment Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

(実施例1) 第1図は、本発明の第1の実施例におけるメタノール
燃料電池の単セルの断面図を示すものである。第1図に
おいて、10は陽イオン交換膜を示し、本発明ではテトラ
フルオロエチレンとパーフルオロビニルエーテルとの共
重合体からなる膜として、米国デュポン社製のNafion41
7を用いた。11は酸化剤極である正極、12は燃料極であ
る負極を示し、ともに白金系触媒を担持したカーボン製
の多孔電極板を用いた。空気を空気室13に、メタノール
燃料を燃料室14に、それぞれ導入した。15及び16は電極
とイオン交換膜とを接合している接着剤を示す。
Embodiment 1 FIG. 1 shows a sectional view of a single cell of a methanol fuel cell according to a first embodiment of the present invention. In FIG. 1, reference numeral 10 denotes a cation exchange membrane. In the present invention, Nafion 41 manufactured by DuPont USA is used as a membrane made of a copolymer of tetrafluoroethylene and perfluorovinyl ether.
7 was used. Reference numeral 11 denotes a positive electrode serving as an oxidant electrode, and 12 denotes a negative electrode serving as a fuel electrode, both of which used a carbon porous electrode plate carrying a platinum-based catalyst. Air was introduced into the air chamber 13, and methanol fuel was introduced into the fuel chamber 14. Reference numerals 15 and 16 denote adhesives joining the electrode and the ion exchange membrane.

第2図は、第1図中の正極11または負極12の断面を模
式的に拡大して表した図である。電極は撥水層22と触媒
層21との2層構造を成している。撥水層はポリテトラフ
ルオロエチレン(PTFE)で撥水処理した炭素微粉末から
なり、完全に撥水性の多孔体であるため、正極ならば空
気室から触媒層内部へ空気を供給する役割をし、負極な
らば燃料室からメタノール蒸気を供給する役割をする。
触媒層はPTFE25で撥水処理した炭素微粉末26と白金系触
媒27を担持させた炭素微粉末からなる。撥水性の部分26
がガスのネットワークを形成し、触媒に空気及びメタノ
ール蒸気を供給する。本発明の空気極の場合には、この
触媒層内部にイオン交換基を持つ高分子電解質20を備
え、イオン交換膜さらにイオン交換基を持つ高分子から
なる接着剤28から供給されたプロトンを触媒粒子まで伝
える構成になっている。一方、本発明の燃料極であるメ
タノール極の場合には、この触媒層の内部にイオン交換
基を持つ高分子電解質20を備え、触媒粒子上で生成した
プロトンをイオン交換基を持つ高分子からなる接着剤2
8、さらにイオン交換膜に伝える構成になっている。
FIG. 2 is a diagram schematically showing an enlarged cross section of the positive electrode 11 or the negative electrode 12 in FIG. The electrode has a two-layer structure of a water-repellent layer 22 and a catalyst layer 21. The water-repellent layer is made of fine carbon powder treated with water-repellent polytetrafluoroethylene (PTFE), and is a completely water-repellent porous body. If it is a positive electrode, it serves to supply air from the air chamber to the inside of the catalyst layer. In the case of a negative electrode, it serves to supply methanol vapor from the fuel chamber.
The catalyst layer is composed of carbon fine powder 26 that has been subjected to a water-repellent treatment with PTFE 25 and carbon fine powder that supports a platinum-based catalyst 27. Water repellent part 26
Form a gas network and supply air and methanol vapor to the catalyst. In the case of the air electrode of the present invention, a polymer electrolyte 20 having an ion exchange group is provided inside the catalyst layer, and a proton supplied from an ion exchange membrane and an adhesive 28 made of a polymer having an ion exchange group is used as a catalyst. It is configured to transmit even particles. On the other hand, in the case of the methanol electrode, which is the fuel electrode of the present invention, a polymer electrolyte 20 having an ion exchange group is provided inside the catalyst layer, and protons generated on the catalyst particles are converted from a polymer having an ion exchange group. Adhesive 2
8. It is configured so that it is transmitted to the ion exchange membrane.

本実施例の場合は上記の高分子電解質に米国アルドリッ
チ・ケミカル社製のNafionの過フッ化イオン交換粉末を
用いた。
In the case of this example, a perfluorinated ion exchange powder of Nafion manufactured by Aldrich Chemical Company, USA was used as the polymer electrolyte.

上記の電極は以下に述べる方法で作成した。まず、触
媒を25wt%担持させた炭素微粉末に上記の高分子電解質
のブタノール溶液を10〜50wt%を含浸させ、ペースト状
に混練した後、このペーストを110℃で乾燥させてブタ
ノール溶媒を除去する。この乾燥後の試料を粉砕し、高
分子電解質付きの触媒担持炭素微粉末とする。空気極
は、この触媒粉末とPTFEで撥水処理した炭素微粉末とを
混合した粉末を、チタン製のメッシュに圧着された撥水
層の上に予備成型した後、360℃でホットプレスして作
成した。
The above electrodes were prepared by the method described below. First, a carbon fine powder carrying 25 wt% of a catalyst is impregnated with 10 to 50 wt% of a butanol solution of the above-mentioned polymer electrolyte, kneaded into a paste, and then dried at 110 ° C. to remove the butanol solvent. I do. The dried sample is pulverized to obtain a fine catalyst-supporting carbon powder with a polymer electrolyte. The air electrode was pre-molded on a water-repellent layer pressed on a titanium mesh after mixing this catalyst powder and carbon fine powder water-repellent with PTFE, followed by hot pressing at 360 ° C. Created.

電極とイオン交換膜とは以下に述べる方法で接合し
た。上記のように作成した電極の触媒層上に、接着剤と
して上記の高分子電解質に用いた溶液と同じ過フッ化イ
オン交換粉末を1cm2当たり1〜10mg塗布し、イオン交換
膜をこの両極間に挟み、室温で乾燥した後、150℃に加
熱しながら1cm2当たり1〜20kgで1〜5分の間加圧保持
し、空気中で室温まで冷却し、電極とイオン交換膜を一
体化する。
The electrode and the ion exchange membrane were joined by the method described below. On the catalyst layer of electrodes prepared as described above, the same perfluorinated ion-exchange powder and solutions used in the above polymer electrolyte as an adhesive 1 cm 2 per then 1~10mg applied between the two electrodes of the ion-exchange membrane After drying at room temperature, pressurize and hold at 1-20 kg / cm 2 for 1-5 minutes while heating to 150 ° C, cool to room temperature in air, and integrate the electrode and ion exchange membrane .

この電極を用いたメタノール燃料電池の特性は第1図
に示した単セルを用いて行った。供給したメタノール燃
料は2M/lの水溶液とした。測定温度は、60℃で行った。
The characteristics of the methanol fuel cell using this electrode were measured using the single cell shown in FIG. The supplied methanol fuel was a 2 M / l aqueous solution. The measurement was performed at 60 ° C.

(実施例2) イオン交換膜にスチレンとビニルベンゼンとの共重合
体からなる膜として、旭硝子社製のセレミオンCMVを用
い、イオン交換膜と電極との接着剤及び電極中に付加す
る高分子としてスチレンとビニルベンゼンとの共重合体
からなる高分子を用いた。
(Example 2) As a membrane made of a copolymer of styrene and vinylbenzene for the ion exchange membrane, Selemion CMV manufactured by Asahi Glass Co., Ltd. was used as an adhesive between the ion exchange membrane and the electrode and as a polymer added to the electrode. A polymer composed of a copolymer of styrene and vinylbenzene was used.

電極への高分子電解質の付加は、次の方法で行なっ
た。スチレンスルホン酸ナトリウムと架橋剤のヘキサエ
チレングリコールジメタクリレートと重合促進剤の過硫
酸アンモニウムとを混合した水溶液に触媒を担持させた
炭素微粉末を含浸させ、ペースト状に混練した後、この
ペーストを60℃で2時間加熱して重合させる。この試料
を水洗、乾燥後、粉砕し、高分子電解質付きの触媒担持
炭素微粉末とする。この触媒微粉末を用いて実施例1と
同様の方法で電極を作成する。この電極を約3M/lの硫酸
に浸漬して、高分子電解質のスルホン酸基のナトリウム
イオンをプロトンに置き換える。
The addition of the polymer electrolyte to the electrode was performed by the following method. An aqueous solution of sodium styrenesulfonate, hexaethylene glycol dimethacrylate as a cross-linking agent, and ammonium persulfate as a polymerization accelerator is impregnated with fine carbon powder supporting a catalyst, and the mixture is kneaded into a paste. For 2 hours to polymerize. This sample is washed with water, dried, and pulverized to obtain a fine catalyst-supporting carbon powder with a polymer electrolyte. An electrode is formed using the catalyst fine powder in the same manner as in Example 1. This electrode is immersed in sulfuric acid of about 3 M / l to replace the sodium ion of the sulfonic acid group of the polymer electrolyte with a proton.

電極とイオン交換膜との接合は、次の方法で行なっ
た。スチレンスルホン酸ナトリウムと架橋剤のヘキサエ
チレングリコールジメタクリレートと重合促進剤の過硫
酸アンモニウムとを混合した水溶液を電極の触媒層上に
1cm2当たり1〜10mg塗布し、イオン交換膜をこの両極間
に挟み、60℃で1時間、加圧保持し、水洗して電極とイ
オン交換膜を一体化する。このイオン交換膜と一体化し
た電極は、約3M/lの硫酸に浸漬して、高分子電解質のス
ルホン酸基のナトリウムイオンをプロトンに置き換え
る。
The bonding between the electrode and the ion exchange membrane was performed by the following method. An aqueous solution containing a mixture of sodium styrenesulfonate, hexaethylene glycol dimethacrylate as a cross-linking agent, and ammonium persulfate as a polymerization accelerator is applied on the catalyst layer of the electrode.
1 to 10 mg is applied per 1 cm 2 , the ion exchange membrane is sandwiched between the two electrodes, and the pressure is maintained at 60 ° C. for 1 hour, washed with water, and the electrode and the ion exchange membrane are integrated. The electrode integrated with the ion exchange membrane is immersed in sulfuric acid of about 3 M / l to replace sodium ions of sulfonic acid groups of the polymer electrolyte with protons.

単電池構成、測定方法その他は実施例1と全く同じと
した。
The configuration of the cell, the measurement method, and the like were exactly the same as those in Example 1.

(実施例3) 実施例1において、電極とイオン交換膜との高分子電
解質による接合を行わずに第1図の15、16部分に電解質
である1.5M/l硫酸を注入し電解液層とした他は実施例1
と全く同じとした。
Example 3 In Example 1, 1.5 M / l sulfuric acid as an electrolyte was injected into portions 15 and 16 of FIG. 1 without joining the electrode and the ion exchange membrane with a polymer electrolyte, and Example 1 other than
And exactly the same.

(比較例1) 実施例1において、電極とイオン交換膜とをイオン交
換膜の基体であるポリテトラフルオロエチレン微粒子を
用いて接合した他は実施例1と全く同じとした。接合方
法は以下に記述する。電極の触媒層上に、接着剤として
ポリテトラフルオロエチレン微粒子を1cm2当たり0.5〜2
mg塗布し、イオン交換膜をこの両極間に挟み、室温で乾
燥した後、150℃に加熱しながら1cm2当たり1〜20kgで
1〜5分の間加圧保持し、空気中で室温まで冷却し、電
極とイオン交換膜を一体化する。
(Comparative Example 1) The procedure was the same as in Example 1 except that the electrode and the ion-exchange membrane were joined using polytetrafluoroethylene fine particles as a base of the ion-exchange membrane. The joining method is described below. On the catalyst layer of the electrode, polytetrafluoroethylene fine particles were used as an adhesive in an amount of 0.5 to 2 per cm2.
mg, coat the ion-exchange membrane between the two electrodes, dry at room temperature, hold at 1-20 kg per cm 2 for 1-5 minutes while heating to 150 ° C, and cool to room temperature in air Then, the electrode and the ion exchange membrane are integrated.

(比較例2) 実施例1において、電極とイオン交換膜との高分子電
解質による接合を行わずに第1図の15、16部分に電解質
である1.5M/l硫酸を注入して電解液層とし、高分子電解
質を添加しない電極を用いた他は実施例1と全く同じと
した。
(Comparative Example 2) In Example 1, 1.5 M / l sulfuric acid as an electrolyte was injected into portions 15 and 16 of FIG. 1 without joining the electrode and the ion exchange membrane with a polymer electrolyte, and an electrolyte layer was formed. Except for using an electrode to which no polymer electrolyte was added, the procedure was exactly the same as in Example 1.

第3図に、本発明の実施例1、実施例2、実施例3及
び、比較例1、比較例2に係わる構造のメタノール燃料
電池の電圧−電流特性を示す。本発明の実施例1の燃料
電池の特性(曲線A)は、電流密度60mA/cm2における電
池電圧は0.45Vを示し、実施例2の燃料電池の特性(曲
線B)も、ほとんど同様の特性を示した。また、実施例
3のイオン交換膜と電極との接合を行なわず、電極内へ
の高分子電解質の添加のみを行なった電池の特性(曲線
C)は、電流密度60mA/cm2における電池電圧は0.43Vを
示した。一方、イオン交換膜と電極との接着剤に、イオ
ン交換基を持たない高分子材料を用いた比較例1の電池
(曲線D)は、電流密度60mA/cm2における電池電圧は0.
34Vを示した。また、電極とイオン交換膜との高分子電
解質による接合を行なわず1.5M/l硫酸を注入し、高分子
電解質を添加しない電極を用いた比較例2の電池(曲線
E)では、電流密度60mA/cm2における電池電圧は0.30で
あった。
FIG. 3 shows the voltage-current characteristics of the methanol fuel cells having the structures according to Examples 1, 2, and 3 of the present invention, and Comparative Examples 1 and 2. The characteristics (curve A) of the fuel cell of Example 1 of the present invention show that the cell voltage at a current density of 60 mA / cm 2 is 0.45 V, and the characteristics (curve B) of the fuel cell of Example 2 are almost the same. showed that. In addition, the characteristics (curve C) of the battery of Example 3 in which the ion exchange membrane was not joined to the electrode but only the addition of the polymer electrolyte into the electrode was performed, and the battery voltage at a current density of 60 mA / cm 2 was as follows. It showed 0.43V. On the other hand, the battery of Comparative Example 1 (curve D) in which a polymer material having no ion-exchange group was used for the adhesive between the ion-exchange membrane and the electrode (curve D) had a battery voltage of 0,0 at a current density of 60 mA / cm 2 .
Showed 34V. Also, in the battery of Comparative Example 2 (curve E) in which 1.5 M / l sulfuric acid was injected without joining the electrode and the ion exchange membrane with the polymer electrolyte and the polymer electrolyte was not added, the current density was 60 mA. The battery voltage at / cm 2 was 0.30.

以上のように、本発明燃料電池は実施例3と比較例2
との比較より、従来のメタノールの阻止機能を持たない
電極を用いた燃料電池よりも高い電池電圧が得られるこ
とが明かとなった。また、実施例1と比較例1との比較
より、イオン交換膜と電極とをイオン交換基を持つ高分
子で接合することによって、プロトン導電性が保たれ、
電池電圧が向上することが明かとなった。
As described above, the fuel cell of the present invention is different from those of Example 3 and Comparative Example 2.
It was clarified from the comparison with that that a higher cell voltage could be obtained than with a conventional fuel cell using an electrode having no methanol blocking function. From the comparison between Example 1 and Comparative Example 1, the proton conductivity was maintained by joining the ion exchange membrane and the electrode with a polymer having an ion exchange group,
It became clear that the battery voltage improved.

なお、本実施例では正極、負極の両方の電極の内部に
イオン交換基を持つ高分子を付加させ、両方の電極とイ
オン交換膜とそれぞれイオン交換基を持つ高分子を用い
て接合した場合について記述したが、少なくともどちら
か一方の電極について、または電極とイオン交換膜との
接合ついて同様の処理を行なった場合にも、従来よりも
よい性能を示した。従って、少なくともどちらか一方の
電極および接合部について本発明の処置行なった場合
も、十分な効果が得られる。
In this example, a polymer having an ion-exchange group was added inside both the positive electrode and the negative electrode, and both electrodes were bonded to the ion-exchange membrane using a polymer having an ion-exchange group. As described above, even when at least one of the electrodes or the same treatment is performed on the bonding between the electrode and the ion exchange membrane, the performance was better than that of the conventional one. Therefore, even when the treatment of the present invention is performed on at least one of the electrodes and the joint, a sufficient effect can be obtained.

さらに、本実施例では、液体燃料電池の一例としてメ
タノール燃料電池を取り上げたが、ヒドラジン、ホルマ
リンなどを燃料とする燃料電池に適用することも可能で
ある。
Further, in the present embodiment, a methanol fuel cell is taken as an example of the liquid fuel cell, but the present invention can also be applied to a fuel cell using hydrazine, formalin or the like as a fuel.

発明の効果 以上のように本発明は、電極内部にイオン交換基を持
つ高分子を付加することによって、燃料極から透過した
メタノールによる空気極の特性低下を抑制することがで
きる高性能な液体燃料電池用電極及びそれを用いた液体
燃料電池を実現できるものである。また、電極とイオン
交換膜とをイオン交換基を持つ高分子材料を用いて接合
することによって両者の密着性が向上し、気泡の滞留の
ない低抵抗な液体燃料電池を実現できるものである。
Effect of the Invention As described above, the present invention provides a high-performance liquid fuel capable of suppressing the deterioration of the characteristics of the air electrode due to methanol permeating from the fuel electrode by adding a polymer having an ion exchange group inside the electrode. An electrode for a battery and a liquid fuel cell using the same can be realized. In addition, by bonding the electrode and the ion exchange membrane using a polymer material having an ion exchange group, the adhesion between the two is improved, and a low-resistance liquid fuel cell free of air bubbles can be realized.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例1の電極を用いたメタノール燃
料電池の構成図、第2図は本発明の実施例1の電極の断
面概略図、第3図は本発明の実施例及び比較例の電極を
用いたメタノール燃料電池の電圧−電流特性の図であ
る。 10……陽イオン交換膜、11……正極、 12……負極、13……空気室、14……燃料室、 15……正極接着剤、16……負極接着剤、 20……高分子電解質、21……触媒層、 22……撥水層、23……空気室または燃料室、 24……電解質室、 25……ポリテトラフルオロエチレン、 26……炭素微粉末、27……白金系触媒。
FIG. 1 is a configuration diagram of a methanol fuel cell using the electrode of Example 1 of the present invention, FIG. 2 is a schematic cross-sectional view of the electrode of Example 1 of the present invention, and FIG. It is a figure of the voltage-current characteristic of the methanol fuel cell using the electrode of the example. 10 cation exchange membrane, 11 positive electrode, 12 negative electrode, 13 air chamber, 14 fuel chamber, 15 positive electrode adhesive, 16 negative electrode adhesive, 20 polymer electrolyte , 21 ... catalyst layer, 22 ... water repellent layer, 23 ... air chamber or fuel chamber, 24 ... electrolyte chamber, 25 ... polytetrafluoroethylene, 26 ... carbon fine powder, 27 ... platinum-based catalyst .

───────────────────────────────────────────────────── フロントページの続き (72)発明者 柳原 伸行 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 昭59−209278(JP,A) 特開 昭62−195855(JP,A) 特開 昭59−157963(JP,A) 特開 昭61−273865(JP,A) 特開 昭62−17953(JP,A) 特開 平1−154467(JP,A) 特開 昭61−24149(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/86 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Nobuyuki Yanagihara 1006 Kazuma Kadoma, Kadoma-shi, Osaka Matsushita Electric Industrial Co., Ltd. (56) References JP-A-59-209278 (JP, A) JP-A-62- 195855 (JP, A) JP-A-59-157963 (JP, A) JP-A-61-273865 (JP, A) JP-A-62-17953 (JP, A) JP-A-1-154467 (JP, A) JP-A-61-24149 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/86

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】触媒層と、撥水処理した炭素微粉末からな
る撥水層と、前記撥水層を介して前記触媒層と対向する
ように設けられた金属製のメッシュとで構成された酸化
剤極及び燃料極からなり、両電極がイオン交換膜で隔離
されている液体燃料電池において、両電極のうち、少な
くともいずれか一方の電極の内部にはイオン交換基を持
つ高分子を付加し、かつ少なくともいずれか一方の電極
とイオン交換膜とをイオン交換基を持つ高分子を用いて
接合したことを特徴とする液体燃料電池。
1. A catalyst layer, a water-repellent layer made of fine carbon powder subjected to a water-repellent treatment, and a metal mesh provided so as to face the catalyst layer via the water-repellent layer. In a liquid fuel cell comprising an oxidizer electrode and a fuel electrode, and both electrodes are separated by an ion exchange membrane, a polymer having an ion exchange group is added to at least one of the two electrodes. A liquid fuel cell, wherein at least one of the electrodes and the ion exchange membrane are joined using a polymer having an ion exchange group.
【請求項2】触媒層と、撥水処理した炭素微粉末からな
る撥水層と、前記撥水層を介して前記触媒層と対向する
ように設けられた金属製のメッシュとで構成された酸化
剤極及び燃料極からなり、両電極がイオン交換膜で隔離
され、電極とイオン交換膜との間に電解液層を配した液
体燃料電池において、両電極のうち、少なくともいずれ
か一方の電極の内部にはイオン交換基を持つ高分子を付
加したことを特徴とする液体燃料電池。
2. A catalyst layer, a water-repellent layer made of water-repellent carbon fine powder, and a metal mesh provided so as to face the catalyst layer via the water-repellent layer. In a liquid fuel cell comprising an oxidizer electrode and a fuel electrode, both electrodes being separated by an ion exchange membrane and an electrolyte layer disposed between the electrode and the ion exchange membrane, at least one of the two electrodes A liquid fuel cell, characterized in that a polymer having an ion exchange group is added to the inside of the liquid fuel cell.
【請求項3】上記高分子が、テトラフルオロエチレンと
パーフルオロビニルエーテルとの共重合体からなる特許
請求の範囲第1項あるいは第2項記載の液体燃料電池。
3. The liquid fuel cell according to claim 1, wherein said polymer comprises a copolymer of tetrafluoroethylene and perfluorovinyl ether.
【請求項4】上記高分子が、スチレンとビニルベンゼン
との共重合体からなる特許請求の範囲第1項あるいは第
2項記載の液体燃料電池。
4. The liquid fuel cell according to claim 1, wherein said polymer comprises a copolymer of styrene and vinylbenzene.
JP25328090A 1990-09-21 1990-09-21 Liquid fuel cell Expired - Lifetime JP3264920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25328090A JP3264920B2 (en) 1990-09-21 1990-09-21 Liquid fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25328090A JP3264920B2 (en) 1990-09-21 1990-09-21 Liquid fuel cell

Publications (2)

Publication Number Publication Date
JPH04132168A JPH04132168A (en) 1992-05-06
JP3264920B2 true JP3264920B2 (en) 2002-03-11

Family

ID=17249089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25328090A Expired - Lifetime JP3264920B2 (en) 1990-09-21 1990-09-21 Liquid fuel cell

Country Status (1)

Country Link
JP (1) JP3264920B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006092914A1 (en) * 2005-02-28 2006-09-08 Toagosei Co., Ltd. Membrane electrode joined product, process for producing the same, and direct methanol-type fuel cell

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997050141A1 (en) * 1996-06-26 1997-12-31 Siemens Aktiengesellschaft Anode for a direct methanol fuel cell
JP3826867B2 (en) * 2002-09-24 2006-09-27 日本電気株式会社 Catalyst supporting particle for fuel cell and method for producing catalyst electrode for fuel cell
EP2424019B1 (en) 2004-12-07 2013-06-12 Toray Industries, Inc. Fuel cell membrane electrode assembly
WO2006064594A1 (en) * 2004-12-17 2006-06-22 Nec Corporation Solid polymer type fuel cell
JP5122837B2 (en) * 2007-03-01 2013-01-16 シャープ株式会社 Fuel cells and electronics

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006092914A1 (en) * 2005-02-28 2006-09-08 Toagosei Co., Ltd. Membrane electrode joined product, process for producing the same, and direct methanol-type fuel cell
JPWO2006092914A1 (en) * 2005-02-28 2008-08-07 東亞合成株式会社 Membrane electrode assembly, method for producing the same, and direct methanol fuel cell

Also Published As

Publication number Publication date
JPH04132168A (en) 1992-05-06

Similar Documents

Publication Publication Date Title
US6416898B1 (en) Fuel cell comprising an inorganic glass layer
JP3795920B2 (en) Organic fuel cell
JPH05144444A (en) Fuel cell and electrode manufacturing method
JP2003515894A (en) Direct methanol battery with circulating electrolyte
KR20070100693A (en) Membrane and membrane electrode assembly with adhesion promotion layer
US6638659B1 (en) Membrane electrode assemblies using ionic composite membranes
JP4090108B2 (en) Membrane / electrode assembly for polymer electrolyte fuel cells
JP2836275B2 (en) Method for producing catalyst for liquid fuel cell and method for producing electrode thereof
JP2009199988A (en) Anode electrode for direct methanol fuel cell and direct methanol type fuel cell using the same
JP3264920B2 (en) Liquid fuel cell
JP4870360B2 (en) FUEL CELL ELECTRODE, FUEL CELL, AND METHOD FOR PRODUCING FUEL CELL ELECTRODE
JPH11135136A (en) Solid poly electrolyte type fuel cell
KR101312262B1 (en) Polymer membrane, a method for preparing the polymer membrane and a fuel cell employing the same
JPH06251779A (en) Formation of joined body of solid polymer electrolyte layer and electrode for fuel cell
WO2006085619A1 (en) Fuel cell
JP2000195527A (en) Fuel cell
JP4403634B2 (en) Composite catalyst for solid polymer electrolyte fuel cell.
JP2003059507A (en) Electrolyte film and electrode junction for fuel cell, its manufacturing method and polymer electrolyte fuel cell
JPH113724A (en) Direct type methanol fuel cell having solid polymer electrolyte
KR102318540B1 (en) Membrane-electrode assembly for fuel cell and fuel cell system comprising the same
JP3965666B2 (en) Gas diffusion electrode and manufacturing method thereof
JP4815651B2 (en) Gas diffusion electrode for polymer electrolyte fuel cell
JPH06150937A (en) Solid high polymer type fuel cell
US20060177720A1 (en) Reinforced composite ionic conductive polymer membrane, fuel cell adopting the same, and method of making the same
JP2006179298A (en) Solid polymer electrolyte membrane-electrode joining body and polymer electrolyte fuel cell using it

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071228

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081228

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091228

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091228

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 9

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 9