JPH113724A - Direct type methanol fuel cell having solid polymer electrolyte - Google Patents

Direct type methanol fuel cell having solid polymer electrolyte

Info

Publication number
JPH113724A
JPH113724A JP9168133A JP16813397A JPH113724A JP H113724 A JPH113724 A JP H113724A JP 9168133 A JP9168133 A JP 9168133A JP 16813397 A JP16813397 A JP 16813397A JP H113724 A JPH113724 A JP H113724A
Authority
JP
Japan
Prior art keywords
aqueous solution
polymer electrolyte
solid polymer
acidic aqueous
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9168133A
Other languages
Japanese (ja)
Other versions
JP3844022B2 (en
Inventor
Satoru Saito
哲 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP16813397A priority Critical patent/JP3844022B2/en
Publication of JPH113724A publication Critical patent/JPH113724A/en
Application granted granted Critical
Publication of JP3844022B2 publication Critical patent/JP3844022B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1053Polymer electrolyte composites, mixtures or blends consisting of layers of polymers with at least one layer being ionically conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce a crossover of methanol and to improve a discharge characteristic by using a three-layer electrolyte layer, arranging an acidic aqueous solution layer between two slid polymer electrolyte layers, and fluidizing the acidic aqueous solution layer. SOLUTION: An electrolyte layer consists of three layers formed, by arranging an acidic aqueous solution layer between two solid polymer electrolyte layers, and the acidic aqueous solution layer is fluidized. As the solid polymer electrolyte, ion exchange film resin, such as perfluorocarbon sulfonate-based resin or styrene-divinyl benzene copolymer-based resin is used, and as the acidic aqueous solution, an aqueous solution of an acid, such as sulfuric acid or hydrochloric acid is used. Nafion (R) 112 films 1, 2 which serve as the solid polymer electrolyte are interposed between a positive electrode and a negative electrode, so that the surface of a catalyst on the electrode is faced to the Nafion film, and they are pressed with a hot press to form an electrode/electrolyte film joined body. Air is supplied to the positive electrode, and a methanol - containing aqueous solution is supplied to the negative electrode, catalytic activity of the positive electrode is maintained, and deterioration in a battery characteristic is prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、メタノールを負極
に供給し、負極で直接電気化学反応させて電力を得る、
直接型メタノール燃料電池に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a method for supplying methanol to a negative electrode and performing an electrochemical reaction directly at the negative electrode to obtain electric power.
The present invention relates to a direct methanol fuel cell.

【0002】[0002]

【従来の技術】燃料電池は、イオン導電体である電解質
の両側に2つの電極を備え、一方の電極に酸素や空気な
どの酸化ガス(酸化剤)を供給し、他方の電極に水素や
炭化水素などの燃料(還元剤)を供給し、電気化学反応
を起こさせて電気を発生させる電池である。
2. Description of the Related Art A fuel cell has two electrodes on both sides of an electrolyte which is an ion conductor, supplies an oxidizing gas (oxidizing agent) such as oxygen or air to one electrode, and supplies hydrogen or carbonized gas to the other electrode. A battery that supplies fuel (reducing agent) such as hydrogen and causes an electrochemical reaction to generate electricity.

【0003】燃料電池にはいくつもの種類があるが、直
接型メタノール燃料電池(DMFCと略す)は、燃料で
あるメタノールを直接負極に供給するもので、多くの燃
料電池が燃料としては水素、あるいは炭化水素を改質し
た水素を使用しているのと比較して、装置が簡単なだけ
でなく、燃料そのものの輸送や貯蔵も容易であり、しか
も100℃以下の温度で作動できる可能性があるため
に、小型・可搬用に最も適していると考えられており、
将来の自動車用動力源として有力視されている。
There are many types of fuel cells. A direct methanol fuel cell (abbreviated as DMFC) directly supplies methanol, which is a fuel, to a negative electrode. Many fuel cells use hydrogen or hydrogen as a fuel. Compared to using hydrocarbon reformed hydrogen, the equipment is not only simpler, but also easier to transport and store the fuel itself, and may be able to operate at temperatures below 100 ° C Therefore, it is considered to be most suitable for small size and portable use,
It is regarded as a promising power source for future vehicles.

【0004】直接型メタノール燃料電池の電解質として
は、初期のアルカリ型から酸型へと変化し、最近では多
くの場合固体高分子電解質が使用されている。固体高分
子電解質を使用することにより、作動温度を液体電解質
の場合よりも高くすることができ、直接型メタノール燃
料電池の性能は初期のものよりかなり改善された。
[0004] As an electrolyte of a direct methanol fuel cell, an alkaline type is changed from an initial type to an acid type, and in recent years, a solid polymer electrolyte is often used. By using solid polymer electrolytes, the operating temperature could be higher than with liquid electrolytes, and the performance of direct methanol fuel cells was significantly improved over the earlier ones.

【0005】固体高分子電解質を使用した直接型メタノ
ール燃料電池(PEM−DMFC)は、Du Pont
社製のナフィオンのようなプロトン導電性固体高分子電
解質の両側を、触媒を取り付けた2つの多孔性電極では
さんだ構造を持ち、負極にメタノールを直接供給し、正
極に酸素または空気を供給するものである。負極では、
メタノールと水が反応して二酸化炭素とプロトンと電子
が発生し、電子は外部回路を通って仕事をした後正極に
達する。また、プロトンは高分子固体電解質中を通って
正極に達する。正極では、酸素とプロトンと電子が反応
して水が生成する。したがって、直接型メタノール燃料
電池の全反応は、メタノールと酸素とから水と二酸化炭
素が生成する反応である。これらの反応は電極中の触媒
の助けを借りて進行する。この反応の理論電圧は1.1
8Vであるが、実際の電池においては、IRドロップな
どのために、この値よりも低い電圧となる。
A direct methanol fuel cell (PEM-DMFC) using a solid polymer electrolyte is a Du Pont
It has a structure in which both sides of a proton-conductive solid polymer electrolyte such as Nafion manufactured by the company are sandwiched between two porous electrodes with a catalyst attached, methanol is directly supplied to the negative electrode, and oxygen or air is supplied to the positive electrode. It is. At the negative electrode,
Methanol and water react to generate carbon dioxide, protons, and electrons, which work through an external circuit before reaching the positive electrode. Further, protons reach the positive electrode through the solid polymer electrolyte. At the positive electrode, oxygen, protons, and electrons react to generate water. Therefore, the entire reaction of the direct methanol fuel cell is a reaction in which water and carbon dioxide are generated from methanol and oxygen. These reactions proceed with the aid of a catalyst in the electrode. The theoretical voltage for this reaction is 1.1
The voltage is 8 V, but in an actual battery, the voltage is lower than this value due to IR drop and the like.

【0006】直接型メタノール燃料電池はその特性はか
なり改善されたとはいえ、その他の燃料電池と比較して
電池の出力と効率が低い、という欠点をもっている。そ
の原因は、メタノールを酸化する触媒の活性が低いこと
と、メタノールが電解質中を拡散して陽極に達し、そこ
で正極の触媒上で酸化剤と直接反応するという短絡現象
(この現象は「クロスオーバー」と呼ばれている)の2
つであることが明らかになっている[M.P.Hoga
rth and H.A.Hards Platinu
m Metals Rev.40 (4) 150
(1996)]。
[0006] Although the characteristics of direct methanol fuel cells have been considerably improved, they have the disadvantage that the output and efficiency of the cells are lower than those of other fuel cells. This is due to the low activity of the catalyst that oxidizes methanol, and the short-circuit phenomenon in which methanol diffuses through the electrolyte to reach the anode, where it reacts directly with the oxidant on the catalyst of the cathode (this phenomenon is called “crossover” 2)
[M. P. Hoga
rth and H.R. A. Hards Platinu
m Metals Rev. 40 (4) 150
(1996)].

【0007】直接型メタノール燃料電池においては、正
極・負極とも触媒が必要であるが、特に負極の触媒が問
題である。すなわち、メタノールが白金触媒上で酸化さ
れる時、白金に吸着した一酸化炭素が生じ、これが白金
を被毒して触媒活性を低下させる[R.Parsons
and T.Vandernoot J.Elect
roanal.Chem.,257 9(1988)]
と考えられている。白金の表面から一酸化炭素をすみや
かに除去するために、二次金属の添加が検討され、現在
では白金−ルテニウム系が最も高活性触媒であることが
知られている。
[0007] In the direct methanol fuel cell, a catalyst is required for both the positive electrode and the negative electrode, and the catalyst of the negative electrode is particularly problematic. That is, when methanol is oxidized on a platinum catalyst, carbon monoxide adsorbed on the platinum is generated, which poisons the platinum and reduces the catalytic activity [R. Parsons
and T. Vandernote J .; Elect
roanal. Chem. , 257 9 (1988)]
It is believed that. In order to quickly remove carbon monoxide from the surface of platinum, the addition of a secondary metal has been studied. At present, it is known that a platinum-ruthenium system is the most highly active catalyst.

【0008】固体高分子電解質としてのイオン交換樹脂
膜は、乾燥状態では全く導電性を示さないが、通常は水
で膨潤させることによって高い導電性を示すようにな
る。
The ion exchange resin membrane as a solid polymer electrolyte does not show any conductivity in a dry state, but usually shows high conductivity by swelling with water.

【0009】固体高分子電解質として最も良く知られて
いるDu Pont社のナフィオン膜の構造は、主鎖で
ある撥水性のポリフルオロエチレン[−(CF2
n −]骨格部分と、側鎖に結合した親水性のイオン交換
基であるスルフォン酸基(−SO3 H)の部分からな
る。この膜が水を吸収した場合、親水性のイオン交換基
の部分が集合し、球状のクラスターを形成し、このクラ
スターがポリフルオロエチレンのマトリックス中に分散
しているというモデルが有力であり、このモデルでは、
水はクラスター部分に含有され、これらのクラスターが
細い通路で結ばれている、と考えられている[竹中 大
工試季報 36 81(1985)]。その他の固体高
分子電解質の場合も、同じような構造をしているものと
推定される。
The structure of the Nafion membrane of Du Pont, which is best known as a solid polymer electrolyte, has a water-repellent polyfluoroethylene [-(CF 2 ) main chain.
n -] and skeletal portion, consisting of the portion of the sulfonic acid group is a hydrophilic ion exchange groups attached to side chains (-SO 3 H). When this membrane absorbs water, the model in which hydrophilic ion exchange groups are aggregated to form spherical clusters, and the clusters are dispersed in a polyfluoroethylene matrix, is a powerful model. In the model,
Water is contained in the cluster portion, these clusters are connected by a narrow passage, believed to [Takenaka carpenter試季Report 36 81 (1985)]. It is presumed that other solid polymer electrolytes have a similar structure.

【0010】[0010]

【発明が解決しようとする課題】水を吸収した高分子固
体電解質にメタノールが接触すると、メタノールは水に
溶けやすいため、高分子固体電解質内のクラスター中の
水に溶解し、その中を通って正極に達し、正極の触媒上
で酸化されることになる。
When methanol comes into contact with a solid polymer electrolyte that has absorbed water, methanol easily dissolves in water. Therefore, the methanol dissolves in water in clusters in the solid polymer electrolyte and passes through it. The positive electrode is reached and oxidized on the positive electrode catalyst.

【0011】一方、正極においては、触媒としての貴金
属が、負極から電解質中を通ってきたメタノールを電気
化学的に酸化するために、 正極の特性が著しく悪くな
る。メタノールが電解質中を通って正極に達する現象、
いわゆるクロスオーバーを少しでも減少させる方法とし
て、酸素あるいは空気の圧力を高くする方法と、電池の
作動温度を100℃以上まで上げる方法が検討され、特
性はかなり改善されてきたが、実用的に十分な特性は得
られていない。また、酸素または空気の圧力を高くする
ため及び電池の作動温度を上げるためには、そのための
装置が必要になり、電池全体としては複雑になる。
On the other hand, in the positive electrode, the noble metal as a catalyst electrochemically oxidizes methanol passing through the electrolyte from the negative electrode, so that the characteristics of the positive electrode are significantly deteriorated. The phenomenon that methanol reaches the positive electrode through the electrolyte,
As a method of reducing the so-called crossover even slightly, a method of increasing the pressure of oxygen or air and a method of increasing the operating temperature of the battery to 100 ° C. or higher have been studied, and the characteristics have been considerably improved. Properties have not been obtained. In addition, in order to increase the pressure of oxygen or air and to raise the operating temperature of the battery, a device for this is required, and the whole battery becomes complicated.

【0012】直接型メタノール燃料電池の特性を改善す
るためには、燃料であるメタノールが固体高分子電解質
を通って正極側に達すること、すなわち、メタノールの
クロスオーバーを、できるだけ小さくするか、なくす必
要があり、そのための具体的な手段が求められていた。
In order to improve the characteristics of a direct methanol fuel cell, it is necessary that the fuel, methanol, reaches the cathode through the solid polymer electrolyte, that is, the crossover of methanol must be minimized or eliminated. There was a need for specific means for that.

【0013】[0013]

【課題を解決するための手段】本発明は、直接型メタノ
ール燃料電池において、二枚の固体高分子電解質層の間
に酸性水溶液層を備えた三層の電解質層を使用するもの
であり、さらに、酸性電解液層を流動させるものであ
る。
According to the present invention, there is provided a direct methanol fuel cell comprising three electrolyte layers each having an acidic aqueous solution layer between two solid polymer electrolyte layers. , To make the acidic electrolyte layer flow.

【0014】[0014]

【発明の実施の形態】本発明になる固体高分子電解質を
使用した直接型メタノール燃料電池は、プロトン導電性
固体高分子電解質の両側に、触媒層を取り付けた多孔性
電極を接合し、負極にメタノールと水の混合物を、正極
には酸素あるいは空気を供給し、電気を取り出すもので
ある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In a direct methanol fuel cell using a solid polymer electrolyte according to the present invention, a porous electrode having a catalyst layer attached to both sides of a proton conductive solid polymer electrolyte is joined to a negative electrode. A mixture of methanol and water is supplied to the positive electrode with oxygen or air to extract electricity.

【0015】多孔性電極の基体としては、正・負極と
も、カーボンペーパー、カーボンの成形体、カーボンの
焼結体、焼結金属、発泡金属などの多孔性基体を撥水処
理して使用することができ、撥水剤としてはポリテトラ
フルオロエチレン等を使用することができる。
As the substrate of the porous electrode, for both the positive and negative electrodes, a porous substrate such as carbon paper, a molded carbon article, a sintered carbon article, a sintered metal, or a foamed metal is used after being subjected to a water-repellent treatment. Polytetrafluoroethylene or the like can be used as the water repellent.

【0016】貴金属触媒としては、正極用には白金、白
金合金、金、金合金、パラジウム、パラジウム合金な
ど、負極用には白金あるいは白金とルテニウム、金、レ
ニウムなどの合金が使用でき、これら貴金属の微粉末あ
るいは貴金属を担持したカーボン粉末を使用することが
できる。
As the noble metal catalyst, platinum, platinum alloy, gold, gold alloy, palladium, palladium alloy and the like can be used for the positive electrode, and platinum or an alloy of platinum and ruthenium, gold and rhenium can be used for the negative electrode. Fine powder or a carbon powder supporting a noble metal can be used.

【0017】本発明になる多孔性電極は、撥水処理をし
た電極の表面に、触媒分散溶液を塗布して作製される。
触媒分散溶液は、白金ブラックなどの触媒の微粒子ある
いは触媒を担持したカーボン粉末と、ポリテトラフルオ
ロエチレン等の撥水剤と、アルコールなどに溶解した固
体高分子電解質を、適当な溶媒中で均一に混合すること
によつて作製する。
The porous electrode according to the present invention is produced by applying a catalyst dispersion solution to the surface of a water-repellent electrode.
The catalyst dispersion solution is obtained by uniformly mixing fine particles of a catalyst such as platinum black or a carbon powder carrying the catalyst, a water repellent such as polytetrafluoroethylene, and a solid polymer electrolyte dissolved in an alcohol or the like in an appropriate solvent. It is prepared by mixing.

【0018】本発明になる直接型メタノール燃料電池の
電解質層は、二枚の固体高分子電解質層の間に酸性水溶
液層を備えた三層からなっており、酸性水溶液を流動さ
せるものである。酸性水溶液を流動させる方法として
は、次に二つが考えられる。
The electrolyte layer of the direct methanol fuel cell according to the present invention is composed of three layers having an acidic aqueous solution layer between two solid polymer electrolyte layers, and allows the acidic aqueous solution to flow. The following two methods can be considered for flowing the acidic aqueous solution.

【0019】第一は、直接型メタノール燃料電池が小型
で、自動車などの移動体に搭載する場合には、酸性水溶
液はあらかじめタンクに貯蔵しておき、これを燃料電池
に供給して二枚の固体高分子電解質層の間を通した後、
電池外部に取り出す。二枚の固体高分子電解質層の間を
通ってきた酸性水溶液には、負極側固体高分子電解質層
の中に含まれるメタノールを少量含むことになる。この
メタノールを含んだ酸性水溶液を固体高分子電解質層の
間に循環させると、酸性水溶液中のメタノールの濃度が
高くなり、固体高分子電解質層の間を通る時に、メタノ
ールは正極側固体高分子電解質層に移動し、さらに正極
に達して、クロスオーバーの原因となるため、別のタン
クに貯蔵しておき、移動体が停止後、取り出して、別の
装置で酸性水溶液とメタノールを分離すればよい。
First, when the direct methanol fuel cell is small and is to be mounted on a mobile body such as an automobile, the acidic aqueous solution is stored in a tank in advance, and is supplied to the fuel cell to supply two fuel cells. After passing between the solid polymer electrolyte layers,
Take it out of the battery. The acidic aqueous solution that has passed between the two solid polymer electrolyte layers contains a small amount of methanol contained in the negative electrode side solid polymer electrolyte layer. When this acidic aqueous solution containing methanol is circulated between the solid polymer electrolyte layers, the concentration of methanol in the acidic aqueous solution increases, and when passing between the solid polymer electrolyte layers, methanol is removed from the positive-electrode side solid polymer electrolyte. It moves to the layer, further reaches the positive electrode, and causes crossover, so it is stored in another tank, and after the moving body is stopped, it is taken out, and the acidic aqueous solution and methanol may be separated by another device. .

【0020】第二の方法は、直接型メタノール燃料電池
が大型で、据え置き型として使用する場合、燃料電池の
二枚の固体高分子電解質層の間を通ってきたメタノール
を少量含んだ酸性水溶液を、燃料電池に併設した酸性水
溶液とメタノールを分離する装置で処理をしてメタノー
ルを除去した後、酸性水溶液を循環すればよい。
The second method is that when a direct methanol fuel cell is large and used as a stationary type, an acidic aqueous solution containing a small amount of methanol that has passed between two solid polymer electrolyte layers of the fuel cell is used. The treatment may be carried out by a device provided in the fuel cell for separating the acidic aqueous solution and methanol to remove the methanol, and then the acidic aqueous solution may be circulated.

【0021】なお、直接型メタノール燃料電池に使用す
る固体高分子電解質としては、パーフルオロカーボンス
ルフォン酸系樹脂やスチレン−ジビニルベンゼン共重合
体系樹脂等の、各種イオン交換膜樹脂を使用することが
できる。
As the solid polymer electrolyte used in the direct methanol fuel cell, various ion exchange membrane resins such as a perfluorocarbon sulfonic acid resin and a styrene-divinylbenzene copolymer resin can be used.

【0022】また、酸性水溶液としては、硫酸、塩酸な
ど、あらゆる酸の水溶液を使用することができる。
As the acidic aqueous solution, an aqueous solution of any acid such as sulfuric acid or hydrochloric acid can be used.

【0023】[0023]

【実施例】本発明になる直接型メタノール燃料電池の構
造と特性を、好適な実施例を用いて詳述する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure and characteristics of a direct methanol fuel cell according to the present invention will be described in detail using preferred embodiments.

【0024】[実施例1]二枚の固体高分子電解質層の
間に希硫酸層を備えた三層の電解質層を備え、希硫酸層
を流動させた、直接型メタノール燃料電池を作製した。
Example 1 A direct methanol fuel cell was prepared in which three electrolyte layers having a dilute sulfuric acid layer were provided between two solid polymer electrolyte layers, and the dilute sulfuric acid layer was flowed.

【0025】まず、空隙率75%、厚み0.40mmの
カーボンペーパーを50mm×50mmの大きさに切
り、2−プロパノールで洗浄し、乾燥したものを、ポリ
テトラフルオロエチレンを20重量パーセント含むディ
スパージョンポリテトラフルオロエチレン水溶液中に数
秒間浸漬し、取り出して自然乾燥した後、アルゴンガス
雰囲気下で300℃、10分間焼成する。得られた撥水
処理済みカーボンペーパーには約3mg/cm2 のポリ
テトラフルオロエチレンがとりつけられている。
First, a carbon paper having a porosity of 75% and a thickness of 0.40 mm was cut into a size of 50 mm × 50 mm, washed with 2-propanol, and dried to obtain a dispersion containing 20% by weight of polytetrafluoroethylene. It is immersed in a polytetrafluoroethylene aqueous solution for several seconds, taken out and air-dried, and then fired at 300 ° C. for 10 minutes in an argon gas atmosphere. About 3 mg / cm 2 of polytetrafluoroethylene is attached to the obtained water-repellent carbon paper.

【0026】つぎに、触媒分散溶液を作製した。まず、
ステンレス製ビーカーに、白金を10重量%含む白金担
持カーボンを5g入れ、水80mlを加えて撹拌し、さ
らに2−プロパノール80mlを加えて1時間撹拌す
る。つぎに、ポリテトラフルオロエチレンを20重量パ
ーセント含むディスパージョンポリテトラフルオロエチ
レン水溶液2ml加え、撹拌し、さらに市販のナフィオ
ン溶液(ナフィオン5重量%含む、アルドリッチケミカ
ル製)10ml加え、超音波を照射しながら撹拌機で1
時間撹拌して、正極用触媒分散溶液を作製した。
Next, a catalyst dispersion solution was prepared. First,
5 g of platinum-supported carbon containing 10% by weight of platinum is put into a stainless steel beaker, 80 ml of water is added and stirred, and 80 ml of 2-propanol is further added and stirred for 1 hour. Next, 2 ml of an aqueous dispersion of polytetrafluoroethylene containing 20% by weight of polytetrafluoroethylene was added, stirred, and 10 ml of a commercially available Nafion solution (containing 5% by weight of Nafion, manufactured by Aldrich Chemical) was added. 1 with a stirrer
After stirring for an hour, a catalyst dispersion solution for a positive electrode was prepared.

【0027】別に、白金10重量%とルテニウム10重
量%を含む白金−ルテニウム担持カーボンを10gを使
用し、その他は正極用と同様の手順で、負極用触媒分散
溶液を作製した。
Separately, a catalyst-dispersed solution for a negative electrode was prepared in the same procedure as for the positive electrode except that 10 g of platinum-ruthenium-supported carbon containing 10% by weight of platinum and 10% by weight of ruthenium was used.

【0028】正極及び負極とも、撥水処理済みのカーボ
ンペーパーの表面に、それぞれ触媒分散溶液を塗布し、
自然乾燥した。さらに、再度塗布、自然乾燥の後、11
0℃で1時間乾燥して、片面に触媒層が取り付けられ
た、直接型メタノール燃料電池用電極を得た。なお、正
極用電極の触媒層の厚みは約0.05mm、電極表面の
白金量は約1.0mg/cm2 とし、負極用電極の触媒
層の厚みは約0.08mm、電極表面の白金量は約2.
0mg/cm2 とた。
For both the positive electrode and the negative electrode, a catalyst dispersion solution was applied to the surface of the water-repellent carbon paper, respectively.
Naturally dried. Further, after applying again and drying naturally, 11
After drying at 0 ° C. for 1 hour, an electrode for a direct methanol fuel cell having a catalyst layer attached to one surface was obtained. The thickness of the catalyst layer of the positive electrode was about 0.05 mm, the amount of platinum on the electrode surface was about 1.0 mg / cm 2 , the thickness of the catalyst layer of the negative electrode was about 0.08 mm, and the amount of platinum on the electrode surface was about 0.08 mm / cm 2. Is about 2.
It was 0 mg / cm 2 .

【0029】このようにして得られた正極用電極と固体
高分子電解質としてのナフィオン112膜を、電極の触
媒を取り付けた面がナフィオン側になるようにして挟
み、140℃、3分間ホットプレスして接合し、正極用
電極/電解質膜接合体を作製した。同様にして、負極用
電極と固体高分子電解質としてのナフィオン112膜を
ホットプレスして接合し、負極用電極/電解質膜接合体
を作製した。
The positive electrode thus obtained and the Nafion 112 membrane as a solid polymer electrolyte are sandwiched such that the surface of the electrode on which the catalyst is attached is on the Nafion side, and hot pressed at 140 ° C. for 3 minutes. To form a positive electrode / electrolyte membrane assembly. Similarly, the negative electrode and the Nafion 112 film as the solid polymer electrolyte were hot-pressed and joined to produce a negative electrode / electrolyte membrane assembly.

【0030】つぎに、正極用電極/電解質膜接合体と負
極用電極/電解質膜接合体とを、固体高分子電解質膜を
互いに向かい合わせ、その間に厚み約0.5mmの希硫
酸(1mol/l硫酸水溶液)層をとりつける。希硫酸
は燃料電池の外部から供給し、燃料電池の二枚の固体高
分子電解質層の間を通って、燃料電池の外部に流出する
ようになっている。希硫酸は、燃料電池の上部から下部
へ自然に流れるようにしてもよいし、ポンプを使用して
強制的に流してもよい。
Next, the positive electrode / electrolyte membrane assembly and the negative electrode / electrolyte membrane assembly were placed with the solid polymer electrolyte membranes facing each other, and a dilute sulfuric acid (1 mol / l) having a thickness of about 0.5 mm was interposed therebetween. Attach the (sulfuric acid aqueous solution) layer. The dilute sulfuric acid is supplied from outside the fuel cell, passes between the two solid polymer electrolyte layers of the fuel cell, and flows out of the fuel cell. Dilute sulfuric acid may flow naturally from the upper part to the lower part of the fuel cell, or may be forced to flow using a pump.

【0031】図1は、本発明になる直接型メタノール燃
料電池の断面構造を示したもので、図1において、1は
負極側固体高分子電解質としてのナフィオン112膜、
2は正極側固体高分子電解質としてのナフィオン112
膜、3は希硫酸層、4は希硫酸入り口、5は希硫酸出口
であり、希硫酸3は希硫酸入口4から電池に供給され、
希硫酸出口5から電池外部に流出する。6は負極触媒
層、7は負極用多孔性集電体としてのカーボンペーパー
であり、8は燃料であるメタノール水溶液の供給口、9
は負極の反応生成物の二酸化炭素と未反応のメタノール
および溶媒としての水の排出口である。10は正極触媒
層、11は正極用多孔性集電体としてのカーボンペーパ
ーであり、12は空気あるいは酸素の供給口、13は余
分の空気あるいは酸素および反応生成物の水の排出口で
ある。14は負極端子、15は正極端子、16は燃料電
池の枠体である。
FIG. 1 shows a cross-sectional structure of a direct methanol fuel cell according to the present invention. In FIG. 1, reference numeral 1 denotes a Nafion 112 membrane as a negative-side solid polymer electrolyte;
2 is Nafion 112 as a solid polymer electrolyte on the positive electrode side
The membrane 3, 3 is a diluted sulfuric acid layer, 4 is a diluted sulfuric acid inlet, 5 is a diluted sulfuric acid outlet, and the diluted sulfuric acid 3 is supplied to the battery from the diluted sulfuric acid inlet 4.
It flows out of the dilute sulfuric acid outlet 5 to the outside of the battery. Reference numeral 6 denotes a negative electrode catalyst layer, 7 denotes carbon paper as a negative electrode porous current collector, 8 denotes a supply port of an aqueous methanol solution as a fuel, 9 denotes
Denotes an outlet for methanol which has not reacted with carbon dioxide as a reaction product of the negative electrode and water as a solvent. Reference numeral 10 denotes a positive electrode catalyst layer, 11 denotes carbon paper as a porous current collector for the positive electrode, 12 denotes a supply port for air or oxygen, and 13 denotes a discharge port for excess air or oxygen and water for reaction products. Reference numeral 14 denotes a negative terminal, 15 denotes a positive terminal, and 16 denotes a fuel cell frame.

【0032】本発明になる直接型メタノール燃料電池
(電池Aとする)では、あらかじめ二枚のナフィオン膜
の間に希硫酸を50ml/minの速度で流しておく。
一方、比較用の直接型メタノール燃料電池(電池Bとす
る)は、負極側のナフィオン膜と正極側ナフィオン膜の
間に希硫酸層を設けて電池内部にとどめ、流動させなか
った。
In the direct methanol fuel cell (cell A) according to the present invention, dilute sulfuric acid is flowed at a rate of 50 ml / min between two Nafion membranes in advance.
On the other hand, in a direct methanol fuel cell for comparison (referred to as battery B), a dilute sulfuric acid layer was provided between the Nafion film on the negative electrode side and the Nafion film on the positive electrode side, and was kept inside the cell, and was not allowed to flow.

【0033】次に、正極に60℃の水蒸気で加湿した空
気を2l/minの速度で供給し、負極にメタノールを
lmol/l含む60℃の水溶液を供給して、直接型メ
タノール燃料電池の特性を測定した。図2はi−V曲線
を示したもので、硫酸層を流動しない比較電池Bにくら
べ、本発明になる電池Aの特性はかなり優れたものとな
った。
Next, air humidified with steam at 60 ° C. was supplied to the positive electrode at a rate of 2 l / min, and an aqueous solution at 60 ° C. containing 1 mol / l of methanol was supplied to the negative electrode to obtain characteristics of the direct methanol fuel cell. Was measured. FIG. 2 shows an iV curve, and the characteristics of the battery A according to the present invention were considerably superior to those of the comparative battery B in which the sulfuric acid layer did not flow.

【0034】[実施例2]二枚の固体高分子電解質の間
に流す酸性水溶液に1mol/lの塩酸水溶液を使用
し、その他の条件は実施例1と同様の直接型メタノール
燃料電池(電池Cとする)を作製した。電池Cの特性を
実施例1と同様の条件で測定した結果、そのi−V曲線
は電池Aの特性とほぼ同じであった。
Example 2 A direct-type methanol fuel cell (Cell C) similar to that of Example 1 was used except that a 1 mol / l aqueous hydrochloric acid solution was used as an acidic aqueous solution flowing between two solid polymer electrolytes. ). As a result of measuring the characteristics of Battery C under the same conditions as in Example 1, the iV curve was almost the same as the characteristics of Battery A.

【0035】[0035]

【発明の効果】従来の直接型メタノール燃料電池におい
ては、負極に燃料としてのメタノールを溶かした水溶液
を供給するが、メタノールが水を吸収した高分子固体電
解質と接触した場合、メタノールは速やかに高分子固体
電解質中の水と混合し、高分子固体電解質中に含まれる
水の中を拡散して正極に達し、正極の触媒上で反応する
ことになる。その結果、正極の触媒活性が低下し、電池
の特性が悪化する。
In the conventional direct methanol fuel cell, an aqueous solution in which methanol as a fuel is dissolved is supplied to the negative electrode. However, when the methanol comes into contact with the solid polymer electrolyte that has absorbed water, the methanol is rapidly increased. It mixes with the water in the solid polymer electrolyte, diffuses in the water contained in the solid polymer electrolyte, reaches the positive electrode, and reacts on the catalyst of the positive electrode. As a result, the catalytic activity of the positive electrode decreases, and the characteristics of the battery deteriorate.

【0036】しかし、本発明の直接型メタノール燃料電
池では、電解質層が二枚の固体高分子電解質層の間に酸
性水溶液を備えた三層となっており、しかも酸性水溶液
を流動させているため、メタノールが負極から負極側固
体高分子電解質層を通って酸性水溶液に拡散した場合、
メタノールを含んだ酸性水溶液は燃料電池の外部に取り
出され、メタノールは正極側固体高分子電解質層へはほ
とんど移動しない。その結果、正極の触媒活性は元の状
態に保たれ、電池特性の劣化を防ぐことができる。ま
た、本発明においては、燃料電池の反応に使われなかっ
たメタノールは、回収して再使用することができる。
However, in the direct methanol fuel cell of the present invention, the electrolyte layer is a three-layer structure provided with an acidic aqueous solution between two solid polymer electrolyte layers, and the acidic aqueous solution is flown. When methanol is diffused from the negative electrode through the negative electrode side solid polymer electrolyte layer into the acidic aqueous solution,
The acidic aqueous solution containing methanol is taken out of the fuel cell, and methanol hardly moves to the solid polymer electrolyte layer on the positive electrode side. As a result, the catalytic activity of the positive electrode is maintained in the original state, and deterioration of battery characteristics can be prevented. Further, in the present invention, methanol not used in the reaction of the fuel cell can be recovered and reused.

【0037】なお、酸性水溶液は、その濃度にもよる
が、イオン電導度は通常は固体高分子電解質よりも大き
いために、酸性水溶液層を備えた場合も、燃料電池の放
電特性が悪くなることはない。また、実施例では酸性水
溶液として硫酸と塩酸を使用したが、本発明において使
用する酸性水溶液としては、その他の酸性水溶液を使用
した場合も同様の効果が得られるものである。
Although the acidic aqueous solution depends on its concentration, the ionic conductivity is usually higher than that of the solid polymer electrolyte. Therefore, even when the acidic aqueous solution layer is provided, the discharge characteristics of the fuel cell may deteriorate. There is no. In the examples, sulfuric acid and hydrochloric acid were used as the acidic aqueous solution. However, the same effect can be obtained when another acidic aqueous solution is used as the acidic aqueous solution used in the present invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明になる直接型メタノール燃料電池の断面
構造を示す図
FIG. 1 is a diagram showing a cross-sectional structure of a direct methanol fuel cell according to the present invention.

【図2】本発明になる直接型メタノール燃料電池Aと比
較電池Bの特性を比較した図
FIG. 2 is a diagram comparing the characteristics of a direct methanol fuel cell A according to the present invention and a comparative cell B.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 二枚の固体高分子電解質層の間に酸性水
溶液を備え、該酸性水溶液を流動させることを特徴とす
る、固体高分子電解質を備えた直接型メタノール燃料電
池。
1. A direct methanol fuel cell provided with a solid polymer electrolyte, wherein an acidic aqueous solution is provided between two solid polymer electrolyte layers, and the acidic aqueous solution is caused to flow.
【請求項2】 酸性水溶液が電池の外部から供給され、
二枚の固体高分子電解質層の間を通った後、電池外部に
放出される構成としたことを特徴とする、請求項1記載
の固体高分子電解質を備えた直接型メタノール燃料電
池。
2. An acidic aqueous solution is supplied from outside the battery,
2. The direct methanol fuel cell provided with a solid polymer electrolyte according to claim 1, wherein the fuel cell is discharged outside the cell after passing between two solid polymer electrolyte layers.
【請求項3】 酸性水溶液が、二枚の固体高分子電解質
層の間と、電池外部に備えた酸性水溶液中に含まれるメ
タノールの含有量を減少さる装置との間を循環する構成
としたことを特徴とする、請求項1記載の固体高分子電
解質を備えた直接型メタノール燃料電池。
3. A configuration in which an acidic aqueous solution circulates between two solid polymer electrolyte layers and a device for reducing the content of methanol contained in the acidic aqueous solution provided outside the battery. A direct methanol fuel cell provided with the solid polymer electrolyte according to claim 1.
【請求項4】 酸性水溶液が硫酸水溶液であることを特
徴とする、請求項1あるいは2または3記載の固体高分
子電解質を備えた直接型メタノール燃料電池。
4. The direct methanol fuel cell provided with the solid polymer electrolyte according to claim 1, wherein the acidic aqueous solution is a sulfuric acid aqueous solution.
【請求項5】 酸性水溶液が塩酸水溶液であることを特
徴とする、請求項1あるいは2または3記載の固体高分
子電解質を備えた直接型メタノール燃料電池。
5. The direct methanol fuel cell provided with a solid polymer electrolyte according to claim 1, wherein the acidic aqueous solution is an aqueous hydrochloric acid solution.
JP16813397A 1997-06-09 1997-06-09 Direct methanol fuel cell with solid polymer electrolyte Expired - Fee Related JP3844022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16813397A JP3844022B2 (en) 1997-06-09 1997-06-09 Direct methanol fuel cell with solid polymer electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16813397A JP3844022B2 (en) 1997-06-09 1997-06-09 Direct methanol fuel cell with solid polymer electrolyte

Publications (2)

Publication Number Publication Date
JPH113724A true JPH113724A (en) 1999-01-06
JP3844022B2 JP3844022B2 (en) 2006-11-08

Family

ID=15862453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16813397A Expired - Fee Related JP3844022B2 (en) 1997-06-09 1997-06-09 Direct methanol fuel cell with solid polymer electrolyte

Country Status (1)

Country Link
JP (1) JP3844022B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001039307A3 (en) * 1999-11-23 2001-11-29 Energy Ventures Inc Canada Direct methanol cell with circulating electrolyte
WO2004057695A3 (en) * 2002-12-23 2005-01-27 Alberta Res Council Tubular direct methanol fuel cell
JP2008077851A (en) * 2006-09-19 2008-04-03 Sony Corp Fuel cell, fuel cell system, and electronic device
JP2009037915A (en) * 2007-08-02 2009-02-19 Sony Corp Fuel cell stack system and electronic equipment
JP2009048953A (en) * 2007-08-22 2009-03-05 Sony Corp Fuel cell, electrode, and electronic equipment
CN101809793A (en) * 2007-10-02 2010-08-18 索尼公司 Electrolysis solution and electrochemical device
JP4768261B2 (en) * 2002-04-23 2011-09-07 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Basic fuel cell element to limit methanol passing through the electrolyte layer
US8871403B2 (en) 2007-08-02 2014-10-28 Sony Corporation Fuel cell stack system, channel structure, fuel cell, electrode and electronic device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001039307A3 (en) * 1999-11-23 2001-11-29 Energy Ventures Inc Canada Direct methanol cell with circulating electrolyte
JP4768261B2 (en) * 2002-04-23 2011-09-07 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Basic fuel cell element to limit methanol passing through the electrolyte layer
WO2004057695A3 (en) * 2002-12-23 2005-01-27 Alberta Res Council Tubular direct methanol fuel cell
JP2008077851A (en) * 2006-09-19 2008-04-03 Sony Corp Fuel cell, fuel cell system, and electronic device
JP2009037915A (en) * 2007-08-02 2009-02-19 Sony Corp Fuel cell stack system and electronic equipment
US8871403B2 (en) 2007-08-02 2014-10-28 Sony Corporation Fuel cell stack system, channel structure, fuel cell, electrode and electronic device
JP2009048953A (en) * 2007-08-22 2009-03-05 Sony Corp Fuel cell, electrode, and electronic equipment
CN101809793A (en) * 2007-10-02 2010-08-18 索尼公司 Electrolysis solution and electrochemical device
US8338328B2 (en) 2007-10-02 2012-12-25 Sony Corporation Electrolytic solution and electrochemical device

Also Published As

Publication number Publication date
JP3844022B2 (en) 2006-11-08

Similar Documents

Publication Publication Date Title
CN110504472B (en) Direct methanol fuel cell membrane electrode for improving catalyst utilization rate and preparation method thereof
Livshits et al. Progress in the development of a high-power, direct ethylene glycol fuel cell (DEGFC)
US6187464B1 (en) Method for activating fuel cell
JP2004006306A (en) Fuel cell, electrode for fuel cell and manufacturing method of these
KR101113377B1 (en) Membrane-electrode unit for direct methanol fuel cells and method for the production thereof
JP5510181B2 (en) Electrocatalyst layer production method and polymer electrolyte fuel cell
US7700211B2 (en) Fuel cell, fuel cell electrode and method for fabricating the same
US20090042091A1 (en) Supported catalyst layers for direct oxidation fuel cells
JP2003317735A (en) Solid high polymer electrolyte fuel cell, method for manufacturing solid high polymer electrolyte film for fuel cell and fuel cell
Song et al. Investigation of direct methanol fuel cell performance of sulfonated polyimide membrane
JP3844022B2 (en) Direct methanol fuel cell with solid polymer electrolyte
US11515555B2 (en) Reversible shunts for overcharge protection in polymer electrolyte membrane fuel cells
US20050147868A1 (en) Fuel cell
JP2001338667A (en) Fuel cell control system
KR100719095B1 (en) A direct methanol fuel cell having less crossover phenomenon of methanol comprising a layer of material for controlling diffusion rate of fuel
JP3774898B2 (en) Direct methanol fuel cell with solid polymer electrolyte
JP3608564B2 (en) Fuel cell and manufacturing method thereof
Lobato et al. Application of Sterion® membrane as a polymer electrolyte for DMFCs
JPH113725A (en) Direct type methanol fuel cell having solid polymer electrolyte
Moreira et al. Dependence of PEM fuel cell performance on the configuration of the gas diffusion electrodes
US20090239114A1 (en) Polymer electrolyte fuel cell
JPH1116587A (en) Direct methanol fuel cell having solid high polymer electrolyte and its manufacture
JP2003323896A (en) Solid electrolyte fuel cell
JP2005174827A (en) Solid polymer electrolyte membrane, fuel cell using the same, and manufacturing method of them
JP5609475B2 (en) Electrode catalyst layer, method for producing electrode catalyst layer, and polymer electrolyte fuel cell using the electrode catalyst layer

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040601

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040601

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060808

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees