JP4403634B2 - Composite catalyst for solid polymer electrolyte fuel cell. - Google Patents
Composite catalyst for solid polymer electrolyte fuel cell. Download PDFInfo
- Publication number
- JP4403634B2 JP4403634B2 JP2000140483A JP2000140483A JP4403634B2 JP 4403634 B2 JP4403634 B2 JP 4403634B2 JP 2000140483 A JP2000140483 A JP 2000140483A JP 2000140483 A JP2000140483 A JP 2000140483A JP 4403634 B2 JP4403634 B2 JP 4403634B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- ion exchange
- exchange resin
- resin
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Fuel Cell (AREA)
- Inert Electrodes (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、固体高分子電解質型燃料電池用複合触媒に関するものである。
【0002】
【従来の技術】
固体高分子電解質型燃料電池は、固体のイオン交換膜を電解質として、アノードに燃料として例えば水素、カソードに酸化剤として例えば酸素を供給して触媒表面で電気化学的に反応させることによって電力を得る装置である。
【0003】
この場合の各電極における電気化学反応を下記に示す。
【0004】
アノード:H2→2H++2e−
カソード:1/2O2+2H++2e−→H2O
全反応 :H2+1/2O2→H2O
上式に示したようにアノードおよびカソードにおける反応には、酸素および水素のガスの供給、プロトン(H+)および電子(e−)の授受が必要であり、すべての反応は、これらが同時に満たされる固体高分子電解質型燃料電池用電極に含まれる触媒層内の三相界面のみにおいて進行する。
【0005】
よって触媒層には、固体高分子電解質と触媒粒子とが複数の細孔とともに三次元に分布しており、固体高分子電解質により形成されるプロトン伝導経路と、カーボン粒子などの導電剤と触媒粒子とにより形成される電子伝導経路と、細孔により形成されたガス拡散経路とが無数の三相界面を形成している。
【0006】
固体高分子電解質型燃料電池用電極には、上述の触媒層と、集電体の役目を果たす導電性多孔質基材とからなるガス拡散電極を、固体高分子電解質膜の両面にアノードおよびカソードとして接合した膜―電極接合体が用いられる。高出力な燃料電池用電極とするためには、触媒層が高いプロトン伝導性と電子伝導性とガス拡散性とを持つことが必要であり、そのためには触媒層内に上述の各3つの経路を連通して形成することが必要である。
【0007】
また、プロトン伝導体として用いられる固体高分子電解質は、含水状態においてのみ良好なプロトン伝導性を示すために、アノード、カソードに供給するガスを加湿して固体高分子電解質の乾燥を防いでいる。
【0008】
【発明が解決しようとする課題】
前述のように、高出力な固体高分子電解質型燃料電池用電極とするためには、触媒層中に連続したガス流通経路、プロトン伝導経路および電子伝導経路が必要である。
【0009】
ところが、加湿したガスを供給していることや、カソードにおいては反応によっても水が生成するために、固体高分子電解質型燃料電池を高電流密度で運転したときには、触媒層の表面および孔内に水が滞留して、ガス拡散性が阻害されて出力が著しく低下する問題が生じる。
【0010】
一般には、水の生成およびガスの加湿による水の滞留が生じないようにするために、触媒層形成時に撥水性を持ったポリテトラフルオロエチレン(PTFE)粒子を、触媒粒子と共に混入したり、導電性多孔質体の表面へ塗布することによって電極に撥水性を与えている。高電流密度運転時の電極内への水の滞留を防ぐためには、さらにPTFEの混入量を増加させて撥水性を高める必要性があるが、PTFEは強い撥水性があるものの、電子伝導性や、プロトン伝導性はもちろん、ガス拡散性も持たないために、電子伝導経路やプロトン伝導経路およびガス拡散経路を遮断し、かえって燃料電池の出力が低下する問題が生じる。
【0011】
また、触媒層全体へプロトン伝導性を与えるために、触媒層形成時に触媒粒子と固体高分子電解質溶液の混合ペーストを用いたり、触媒層に固体高分子電解質溶液を含浸させて触媒層に固体高分子電解質を含ませている。ところが、ある一定の粘度を有したイオン交換樹脂溶液を電極深部まで均等に分布させることは困難で、電極深部で十分な三相界面が形成されず、触媒利用率が低下するなどの問題が生じる。
【0012】
以上を鑑み、本発明は、上記問題を改善して固体高分子電解質型燃料電池の高性能化を図るものである。
【0013】
【問題を解決するための手段】
請求項1の発明は、固体高分子電解質型燃料電池用複合触媒において、触媒粒子が触媒金属を担持したカーボンであって、その触媒粒子表面に第1の樹脂と第2の樹脂を備え、前記第1の樹脂がイオン交換樹脂で、前記第2の樹脂が有孔性でプロトン伝導性を持たず、前記イオン交換樹脂のプロトン伝導経路に接するカーボン粒子の表面に担持された触媒金属量が全触媒金属担持量の50%を越えることを特徴とする。
【0014】
本発明の固体高分子電解質型燃料電池用複合触媒において、第2の樹脂がフッ素樹脂であることが好ましい。
【0015】
本発明の固体高分子電解質型燃料電池用複合触媒において、イオン交換樹脂が有孔性であることが好ましい。
【0016】
本発明において、イオン交換樹脂の孔中に第2の樹脂を備えることが好ましい。
【0017】
本発明において、第2の樹脂の孔中にイオン交換樹脂を備えることが好ましい。
【0018】
本発明の固体高分子電解質型燃料電池用複合触媒は、触媒粒子の表面に、イオン交換樹脂が溶媒に溶解した溶液を付着させた後にイオン交換樹脂を相分離させる第1の工程により、触媒粒子表面に有孔性イオン交換樹脂を備えた複合体を作製し、続いて前記複合体の表面に第2の樹脂を配する第2の工程を経ることによって製造することができる。
【0019】
本発明の固体高分子電解質型燃料電池用複合触媒は、触媒粒子の表面に、第2の樹脂が溶媒に溶解した溶液を付着させた後に第2の樹脂を相分離させる第1の工程により、触媒粒子表面に有孔性第2の樹脂を備えた複合体を作製し、続いて前記複合体の表面にイオン交換樹脂を配する第2の工程を経ることによって製造することができる。
【0020】
【発明の実施の形態】
以下、本発明に係る固体高分子電解質型燃料電池用複合触媒の構造例を、図面を用いてさらに具体的に説明する。
【0021】
図1〜図5は、本発明に係る、イオン交換樹脂および第2の樹脂を備えた固体高分子電解質型燃料電池用複合触媒の構造例を示した模式図である。図1〜図4は、イオン交換樹脂および第2の樹脂が有孔性である場合の模式図である。また、図5は、触媒金属が、イオン交換樹脂のプロトン伝導経路に接するカーボン粒子表面に主として担持されている状態を示す。
【0022】
また、図1および図3は、イオン交換樹脂と第2の樹脂とが触媒粒子個々の表面に備えられている状態を示し、図2および図4は、イオン交換樹脂と第2の樹脂とが、二次粒子を形成した触媒粒子の表面にわたって備えられている状態を示す。
【0023】
図1〜図5において、31、41、51、61、71は触媒粒子、32、42、52、62、72はイオン交換樹脂、33、43、53、63、73は第2の樹脂、74はイオン交換樹脂のプロトン伝導経路、75は触媒金属である。なお、図1〜図4においては、イオン交換樹脂32、42、52、62および第2の樹脂33、43、53、63は、孔を備えた構造をしている。
【0024】
図1および図2は、触媒粒子表面に有孔性イオン交換樹脂32、42を備え、その孔中および表面に第2の樹脂33、43を備えた複合触媒の構造を示し、図1では有孔性イオン交換樹脂32は個々の触媒粒子31の表面に、また、図2では有孔性イオン交換樹脂42は二次粒子を形成した触媒粒子41の表面にわたって備えている。なお、有孔性イオン交換樹脂32、42の孔中および表面に備えられた第2の樹脂33、43は孔を有しなくてもよいが、高いガス拡散性を得るために有孔性であるのが好ましい。
【0025】
図3および図4は、触媒粒子表面に第2の樹脂52、62を備え、その孔中および表面に有孔性イオン交換樹脂53、63を備えた複合触媒の構造を示し、図3では第2の樹脂52は個々の触媒粒子51の表面に、また、図4では第2の樹脂62は二次粒子を形成した触媒粒子61の表面にわたって備えている。なお、イオン交換樹脂52、62は孔を有しなくてもよいが、高いガス拡散性を得るために有孔性であるのが好ましい。
【0026】
また、有孔性イオン交換樹脂および有孔性第2の樹脂は、多孔性の構造であってもよいし、樹脂が網状に形成された構造であってもよい。さらに、孔が三次元に連通した構造を有してもよい。
【0027】
さらに、図5に示すように本発明に係る触媒金属粒子を陽イオン交換樹脂のプロトン伝導経路に接するカーボン粒子表面に主として担持した複合触媒は、カーボン粒子71の表面にイオン交換樹脂のテフロン(登録商標)骨格72、イオン交換樹脂のプロトン伝導経路75、第2の樹脂73、および触媒金属75を備えた構造をしており、全触媒金属量の50%を越える触媒金属粒子が、カーボン粒子表面のイオン交換樹脂のプロトン伝導経路部に担持されている。
【0028】
ここで、第2の樹脂としては、種々の樹脂の使用が可能であるが、優れた撥水性を得るためには、フッ素樹脂を使用することが好ましい。
【0029】
本発明に係る固体高分子電解質型燃料電池用複合触媒は、触媒粒子表面にプロトン伝導性を与えるイオン交換樹脂と撥水性を与える第2の樹脂とを備えているために、この複合触媒を用いた触媒層は、触媒層の細部わたって均一にプロトン伝導経路を担うイオン交換樹脂と撥水性を持つ第2の樹脂が分布しており、撥水性によって高められたガス拡散性とプロトン伝導性とを与えるばかりでなく、触媒粒子同士の結着剤の役目も果している。
【0030】
また、それらのイオン交換樹脂または第2の樹脂が有孔性である場合には、さらに高いガス拡散性および触媒の電子伝導性を保つことができる。
【0031】
加えて、有孔性イオン交換樹脂の孔中に第2の樹脂を、もしくは有孔性第2の樹脂の孔中にイオン交換樹脂を備えることによって、触媒粒子に十分なプロトン伝導性と撥水性とを与え、併せ持った触媒層を形成する事が可能であり、触媒粒子表面を覆う樹脂が有孔性であるために、触媒粒子間の電子伝導性も保つことができる。
【0032】
このような複合触媒では、触媒粒子表面に多数の孔を備えているために、触媒粒子を完全に覆うことがなく、触媒活性も保つことができる。このために、本発明に係る燃料電池用複合触媒を用いた触媒層は機械的強度が高く、撥水性およびプロトン伝導性に優れるために高出力な燃料電池を提供することができる。
【0033】
なお、本発明における固体高分子電解質型燃料電池用複合触媒の触媒粒子は、白金、ロジウム、ルテニウム、イリジウム、パラジウム、オスミウムなどの白金族金属を含む触媒金属およびその合金をカーボンに担持したものを使用することが好ましい。ただし、触媒金属をイオン交換樹脂のプロトン伝導経路に接するカーボン粒子表面に主として担持した燃料電池用複合触媒を製作する際には、カーボン粒子にイオン交換樹脂備、もしくはイオン交換樹脂と第2の樹脂とを備えた後に、触媒金属をイオン交換樹脂のプロトン伝導経路に接するカーボン粒子表面に担持してもよい。
【0034】
カーボンとしては、アセチレンブラック、ファーネスブラックなどのカーボンブラック、グラファイト粒子、活性炭などが好ましいが、特にカーボンブラックは電子伝導性に優れ、さらに触媒粒子が高分散することから好ましい。
【0035】
本発明に係る固体高分子電解質型燃料電池用複合触媒に備えられたイオン交換樹脂は、プロトン交換樹脂を使用するのが好ましく、その中でもパーフルオロカーボンスルフォン酸またはスチレン-ジビニルベンゼン系のスルフォン酸型の固体高分子電解質を用いることが、プロトン伝導性がよい点から好ましい。
【0036】
また、本発明に係る固体高分子電解質型燃料電池用複合触媒に備えられたフッ素樹脂は、プロトン伝導性を有する必要は無く、例えばポリフッ化ビニリデン(PVdF)、フッ化ビニル重合体(PVF)などの含フッ素ホモポリマーまたは三フッ化塩化エチレン共重合体(PCTFE)、エチレン・四フッ化エチレン共重合体、フッ化ビニリデン・六フッ化プロピレン重合体(P(VdF−HEP))、フッ化ビニリデン・四フッ化エチレン共重合体(P(VdF−TFP))などの含フッ素コポリマーが好ましいし、これらの混合物でもよい。中でも、撥水性に優れたフッ化ビニリデン重合体(PVdF)または柔らかくて取り扱いが容易なフッ化ビニリデン・六フッ化プロピレン共重合体(P(VdF−TFP))が好ましい。
【0037】
ここで、触媒粒子に備えられたイオン交換樹脂は、触媒粒子間の電子伝導性が低下しないように、イオン交換樹脂の多孔度は50%以上、担持量は触媒粒子重量に対して70wt%以下であることが好ましく、さらに好ましくは多孔度は75%以上、担持量は50wt%以下であることがよい。
【0038】
さらに、触媒粒子に備えられたフッ素樹脂は、フッ素樹脂が触媒粒子を覆って触媒の活性が低下しないように、また、触媒粒子間の電子伝導性が低下しないように、フッ素樹脂の多孔度は50%以上、担持量は触媒粒子に対して30wt%以下であることが好ましく、さらに好ましくは多孔度が75%以上、担持量は15wt%以下であることがよい。
【0039】
本発明になる固体高分子電解質型燃料電池用複合触媒の製造方法を以下に述べる。まず、触媒粒子表面にイオン交換樹脂を備えた複合体を作製し、さらにこの複合体の表面に第2の樹脂を備えた複合触媒の作製方法について説明する。
【0040】
第1の工程では、触媒粒子の表面にイオン交換樹脂が溶媒に溶解した溶液を付着させ、触媒粒子表面にイオン交換樹脂を備えた複合体を作製する。この複合体において、触媒粒子表面のイオン交換樹脂が孔を有しない場合には、付着した溶液から溶媒を蒸発等で除去すればよく、イオン交換樹脂を有孔性とするためには、この複合体に付着させた溶液からイオン交換樹脂を相分離させればよい。
【0041】
触媒粒子表面に付着した溶液からイオン交換樹脂を相分離させる方法としては、加熱または冷却によるイオン交換樹脂の溶媒に対する溶解度変化や、溶媒を蒸発させることによる溶液中のイオン交換樹脂の濃度変化を利用する方法、さらには、溶媒抽出法を用いる方法などが挙げられる。
【0042】
これらの相分離法の中でも特に、触媒粒子表面に均一な孔を備えた有孔性イオン交換樹脂を備えさせるためには、溶媒抽出法を用いることが好ましい。この方法は、イオン交換樹脂を第1の溶媒に溶解した溶液が表面に付着した触媒粒子を、イオン交換樹脂が不溶でかつ第1の溶媒と相溶性のある第2の溶媒に浸漬し、溶液中の第1の溶媒を抽出して、触媒粒子の表面に有孔性イオン交換樹脂を備えた複合体を得るものである。
【0043】
第2の工程では、第1の工程で作製した複合体の表面に第2の樹脂が溶媒に溶解した溶液を付着させ、第1の工程で作製した複合体の表面に第2の樹脂を備えた複合触媒を得る。この複合触媒において、第1の工程で得られた複合体表面の第2の樹脂が孔を有しない場合には、付着した溶液から溶媒を蒸発等で除去すればよく、第2の樹脂を有孔性とするためには、第1の工程で作製した複合体の表面に付着させた溶液からイオン交換樹脂を相分離させればよい。
【0044】
相分離法としては、第1の工程で述べた、溶解度変化や濃度変化を利用する方法、さらには溶媒抽出法を用いることができる。
【0045】
さらに、本発明の複合触媒は、触媒粒子表面に第2の樹脂を備えた複合体を作製し、さらにこの複合体の表面にイオン交換樹脂を備える作製方法によっても得ることができる。この方法では、上述の、触媒粒子表面にイオン交換樹脂を備えた複合体を作製し、さらにこの複合体の表面に第2の樹脂を備えた複合触媒の作製方法において、第1の工程ではイオン交換樹脂の代わりに第2の樹脂を、また、第2の工程では第2の樹脂の代わりにイオン交換樹脂を使用すればよい。
【0046】
また、イオン交換樹脂や第2の樹脂を有孔性とするためには、第1の工程で述べたのと同じ、相分離法を用いることができる。
【0047】
このような本発明の複合触媒の製造方法において、第1の工程で触媒粒子表面に備えるイオン交換樹脂または第2の樹脂を有孔性とすることにより、触媒粒子表面に備えたイオン交換樹脂の孔中に第2の樹脂を備えた、あるいは、触媒粒子表面に備えた第2の樹脂の孔中にイオン交換樹脂を備えた、本発明に係る複合触媒を製造することができる。
【0048】
なお、触媒粒子表面や第1の工程で得られた複合体の表面に、イオン交換樹脂が溶解した溶液または第2の樹脂を溶解した溶液を付着させる方法としては、例えば、触媒粒子や複合体を溶液に浸漬することにより、または触媒粒子や複合体に溶液をスプレーなどで吹き付けることによりなされる。
【0049】
その中でも特に、触媒粒子の孔中や、触媒粒子の二次粒子間の孔中にも溶液を含ませるために、50Torr以下、さらに好ましくは1Torr以下の減圧下において触媒粒子を溶液に浸漬させる方法がこのましい。
【0050】
本発明イオン交換樹脂を溶解する溶媒としては、アルコールまたはアルコールと水の混合溶媒を使用することができる。この溶液としては特に、粒子の分散性が良く適度な粘度を持った、パーフルオロカーボンスルホン酸樹脂をアルコールに溶解したものが好ましい。
【0051】
また、本発明複合触媒の製造方法の溶媒抽出法において、第2の溶媒として用いるアルコール性水酸基以外の極性基を有する溶媒としては、分子内にアルコキシカルボニル基を有する炭素鎖の炭素数が1〜7の有機溶媒、たとえば、ギ酸プロピル、ギ酸ブチル、ギ酸イソブチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸アリル、酢酸ブチル、酢酸イソブチル、酢酸ペンチル、酢酸イソペンチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、アクリル酸メチル、アクリル酸ブチル、アクリル酸イソブチル、酪酸メチル、イソ酪酸メチル、酪酸エチル、イソ酪酸エチル、メタクリル酸メチル、酪酸プロピル、イソ酪酸イソプロピル、酢酸2-エトキシエチル、酢酸2−(2エトキシエトキシ)エチル等の単独、もしくは混合物、を用いるのが好ましい。
【0052】
また、本発明の複合触媒の製造方法において、第2の樹脂を溶解するのに用いる溶媒としては、メチルエチルケトン(MEK)、アセトンなどのケトン、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートなどの炭酸エステル、ジメチルエーテル、ジエチルエーテル、エチルメチルエーテル、テトラヒドロフラン(THF)などのエーテル、ジメチルホルムアミド、ジメチルアセトアミド、1−メチルーピロリジノン、n−メチル-ピロリドン(NMP)、ジメチルホルムアミド(DMF)、ジメチルスルフォキシド(DMSO)等が挙げられる。
【0053】
特に、溶解度変化を利用した相分離による有孔性樹脂の製造方法において、第2の樹脂としてフッ素樹脂を使用する場合、フッ素樹脂を溶解する溶媒としてはMEKやアセトン等のケトンが好ましい。
【0054】
また、前述の溶媒抽出法を用いた相分離による有孔性樹脂の製造方法において、第2の樹脂としてフッ素樹脂を使用する場合、フッ素樹脂を溶解する第1の溶媒としては、たとえばNMP、DMF、DMSOが好ましく、その中でもNMPが微細で均一な孔が得られることから好ましい。すなわち、本発明に用いられるフッ素樹脂を溶媒に溶解した溶液として、たとえばPVdFをNMPに溶解したものを用いると、均一で微細な孔を持った有孔性フッ素樹脂を製作することができる。ここで、第1の溶媒と相溶性のある第2の溶媒としては、水または水とアルコールの混合溶液が安価で好ましい。
【0055】
ここで、これらの固体高分子電解質型燃料電池用複合触媒の製造方法における触媒粒子とは、触媒金属を担持したカーボン粒子を指すが、陽イオン交換樹脂のプロトン伝導経路に接するカーボン粒子の表面に担持された触媒金属量が全触媒金属担持量の50%を越える燃料電池用複合触媒を製作する際には、触媒金属を担持していないカーボン粒子にイオン交換樹脂または/およびフッ素樹脂を配した後に、触媒粒子を担持する工程を経ることが好ましい。
【0056】
本発明の製造方法を用いて製造した、イオン交換樹脂と第2の樹脂とを備えた燃料電池用の触媒粒子は、イオン交換樹脂によってプロトン伝導性が、また、フッ素樹脂によって撥水性が、すべての粒子に与えられており、細部にわたって優れたプロトン伝導性と撥水性を兼ね備えた触媒粒子であり、触媒粒子表面に水が滞留することを防いでガス拡散性を高めているばかりでなく、それらの樹脂は触媒粒子同士の結着剤の役目を果たしており、触媒粒子の脱離を防いでいる。また、そのイオン交換樹脂7やフッ素樹脂が有孔性である場合には、触媒粒子表面を覆ってしまうことがなく、電子伝導性およびさらに高いガス拡散性を確保している。
【0057】
【実施例】
以下、本発明を好適な実施例を用いて説明する。
【0058】
[実施例1]
まず、カーボン粒子(Valcan XC−72)を減圧状態に保持した状態で、イオン交換樹脂溶液(アルドリッチ社製、ナフィオン5wt%溶液)中に浸漬した後、この混合物から余分なイオン交換樹脂溶液を吸引濾過によって除去した。
【0059】
続いてイオン交換樹脂溶液が付着したカーボン粒子を、酢酸ブチルに浸漬してイオン交換樹脂を相分離させた後に、吸引濾過によって酢酸ブチルを取り除き、70℃で乾燥して有孔性イオン交換樹脂で表面が被覆されたカーボン粒子を製作した。
【0060】
この工程後、イオン交換樹脂を備えたカーボン粒子重量を測定して陽イオン交換樹脂のカーボンに対する担持量(wt%)を求めた。そして、イオン交換樹脂の担持量が35wt%となるように、工程を繰り返した。
【0061】
ひきつづき、上記イオン交換樹脂を備えたカーボン粒子の混合体を50mmol/lの[Pt(NH3)4]Cl2水溶液中に2日間浸漬し、イオン交換反応によりイオン交換樹脂のプロトン伝導経路に[Pt(NH3)4]2+を優先的に吸着させた後、精製水で充分洗浄・乾燥後、1気圧、180℃の水素雰囲気中で約4時間還元して、カーボン粒子に備えられた白金を陽イオン交換樹脂のプロトン伝導経路に接するカーボン粒子表面に優先的に担持した。
【0062】
つぎに、それを0.2mol/lの硫酸に3時間浸漬して、還元工程で還元されなかった不要な[Pt(NH3)4]2+を溶出して、イオン交換樹脂のプロトン伝導経路に接するカーボン粒子の表面に担持された白金量が全白金担持量の50%を越えたカーボン粒子を得た。
【0063】
次に、この有孔性イオン交換樹脂と白金粒子とを備えたカーボン粒子を減圧状態に保持した状態で、NMP95wt%にPVdF5wt%を溶解したPVdF―NMP溶液中に浸漬した後、この混合物から余分なPVdF―NMP溶液を吸引濾過によって除去した。
【0064】
続いて有孔性イオン交換樹脂の孔中にPVdF―NMP溶液が付着した白金担持カーボン粒子を、水に浸漬してPVdFを相分離させた後に、吸引濾過によって水を取り除き、さらに100℃で乾燥を行い、カーボン粒子表面に有孔性イオン交換樹脂を備え、有孔性イオン交換樹脂のプロトン伝導経路に接するカーボン粒子の表面に担持された白金量が全白金担持量の50%を越え、さらにイオン交換樹脂の孔中にPVdFを備えた複合触媒Cを得た。
【0065】
得られた複合触媒Cをイオン交換樹脂膜(デュポン社製、ナフィオン、膜厚150μm)の両面にホットプレス(95℃)することによって接合し、さらにガス拡散層としてのカーボンペーパを接合し、膜―電極接合体Cを得た。そしてその膜―電極接合体Cを燃料電池の単セルに組み込んでセルCを得た。膜―電極接合体Cの白金量は、別途行った分析により、約0.04mg/cm2であることが確認されている。
【0066】
[比較例]
白金担持カーボン(田中貴金属製、TEC−10V−30E:ValcanXC−72に白金を30wt%担持)とイオン交換樹脂溶液(アルドリッチ社製、ナフィオン5wt%溶液)およびPTFE粒子分散溶液(三井デュポンフロロケミカル社製、テフロン30J)よりなるペーストを調製し、そのペーストを高分子フィルム(FEPフィルム:テトラフロロエチレン−ヘキサフロロプロピレン共重合体シート、ダイキン工業(株)製:25μm)上に塗布し、室温で約1時間自然乾燥した。
【0067】
このようにして得た触媒層を、ホットプレス(95℃)によって固体高分子電解質膜(デュポン社製、ナフィオン、膜厚150μm)の両面に接合し、さらにその両面にPTFE分散溶液を塗布、乾燥して撥水性を付与した導電性多孔質体(カーボンペーパ:0.5mm)をホットプレス(135℃)によって接合し、膜―電極接合体Dを得た。
【0068】
膜―電極接合体Dは、固体高分子電解質膜の両面にガス拡散電極Dが接合された構造をしている。また、膜―電極接合体Dの白金量は、約1.0mg/cm2となるように、ペースト製作時の白金担持カーボン量を調整した。得られた膜―電極接合体Dを燃料電池の単セルに組み込んでセルDを得た。
【0069】
これらのセルを用いて、アノード側供給ガスとして水素、カソード側供給ガスとして酸素を用いた際の電流―電圧特性を
1234162772359_0.aspx?svno=0&sno=49482&iv=0#ZU8
に、アノード側供給ガスとして水素、カソード側供給ガスとして空気を用いた際の電流―電圧特性を
1234162772359_1.aspx?svno=0&sno=49482&iv=0#ZU9
に示した。それぞれの供給ガス圧は1気圧で、70℃の密閉水槽中でバブリングすることによって加湿した。そしてセルの運転温度は60℃とし、各電流値での測定時の保持時間は2分とした。
【0070】
1234162772359_2.aspx?svno=0&sno=49482&iv=0#ZU8
および
1234162772359_3.aspx?svno=0&sno=49482&iv=0#ZU9
から明らかなように、本発明によるセルCは、従来のセルDと比べて、各電流密度において高い出力電圧が得られた。特に
1234162772359_4.aspx?svno=0&sno=49482&iv=0#ZU9
に見られるように、カソード側供給ガスとして空気を用いた場合にはその差が顕著であった。また、セルCは触媒担持量が著しく少ないにも関わらず、出力の低下が見られなかった。
【0071】
これは、従来のガス拡散電極Dは、触媒層内およびガス拡散層内に多量のPTFE粒子を含むために、撥水性はあるものの、電子伝導経路およびガス拡散経路が寸断されて出力が低下しているのに対し、本発明に係る燃料電池用複合触媒を用いたガス拡散電極Cは、良好な電子伝導性およびプロトン伝導性を保ったまま、ガス拡散電極内への水の滞留を無くし、ガス拡散性が向上したために、酸素分圧の低い空気使用時にも孔内部まで酸素の供給が可能となり、従来の電極に比べて大幅に出力が向上したことによる。
【0072】
また、ガス拡散電極Cに用いられた複合触媒Cは、高いガス拡散性およびプロトン伝導性を兼ね備えるだけでなく、白金粒子が電極の三相界面に確実に担持されているために、白金の利用率が飛躍的に高く、少ない白金担持量でも従来以上の高性能な電極が得られたものである。
【0073】
【発明の効果】
本発明による固体高分子電解質型燃料電池用複合触媒は、触媒粒子表面にイオン交換樹脂および有孔性でプロトン伝導性を持たない第2の樹脂を備え、イオン交換樹脂のプロトン伝導経路に接するカーボン粒子の表面に担持された触媒金属量が全触媒金属担持量の50%を越えることにより、特にイオン交換樹脂を有孔性とすることにより、プロトン伝導性と撥水性を兼ね備え、多数の孔の存在によって触媒活性および電子伝導性も保たれた、高活性な触媒が得られるものである。
【0074】
この複合触媒を固体高分子電解質型燃料電池用触媒として用いることによって、与えられた撥水性によって水の滞留を防いで触媒層内部まで高いガス拡散性を確保しているために、酸素分圧の低い空気を供給する燃料電池においても、高い性能を得ることができる。
【図面の簡単な説明】
【図1】本発明の燃料電池用複合触媒の表面状態を示す模式図。
【図2】本発明の燃料電池用複合触媒の表面状態を示す模式図。
【図3】本発明の燃料電池用複合触媒の表面状態を示す模式図。
【図4】本発明の燃料電池用複合触媒の表面状態を示す模式図。
【図5】本発明の燃料電池用複合触媒の表面状態を示す模式図。
【図6】アノードに水素を、カソードに酸素を用いた場合のセルの電流―電圧特性を示す図。
【図7】アノードに水素を、カソードに空気を用いた場合のセルの電流―電圧特性を示す図。
【符号の説明】
31、41、51、61、71 触媒粒子
32、42、52、62、72 イオン交換樹脂
33、43、53、63、73 第2の樹脂
74 イオン交換樹脂のプロトン伝導経路
75 触媒金属[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solid polymer electrolyte fuel cell.Composite catalystIt is about.
[0002]
[Prior art]
A solid polymer electrolyte fuel cell uses a solid ion-exchange membrane as an electrolyte, supplies hydrogen by supplying, for example, hydrogen as a fuel to the anode, and supplying oxygen as an oxidant, for example, to the cathode, and reacts electrochemically on the catalyst surface. Device.
[0003]
The electrochemical reaction at each electrode in this case is shown below.
[0004]
Anode: H2→ 2H++ 2e−
Cathode: 1 / 2O2+ 2H++ 2e−→ H2O
Total reaction: H2+ 1 / 2O2→ H2O
As shown in the above equation, the reaction at the anode and cathode involves supplying oxygen and hydrogen gases, protons (H+) And electrons (e−), And all reactions proceed only at the three-phase interface in the catalyst layer included in the electrode for the solid polymer electrolyte fuel cell in which they are simultaneously filled.
[0005]
Therefore, in the catalyst layer, the solid polymer electrolyte and the catalyst particles are three-dimensionally distributed with a plurality of pores, the proton conduction path formed by the solid polymer electrolyte, the conductive agent such as carbon particles, and the catalyst particles. And the gas diffusion path formed by the pores form innumerable three-phase interfaces.
[0006]
A solid polymer electrolyte fuel cell electrode includes a gas diffusion electrode composed of the above-described catalyst layer and a conductive porous substrate serving as a current collector, and an anode and a cathode on both sides of the solid polymer electrolyte membrane. A membrane-electrode assembly bonded as follows is used. In order to obtain a high-power electrode for a fuel cell, the catalyst layer needs to have high proton conductivity, electron conductivity, and gas diffusivity. For this purpose, each of the three paths described above is provided in the catalyst layer. It is necessary to form in communication.
[0007]
Further, since the solid polymer electrolyte used as the proton conductor exhibits good proton conductivity only in a water-containing state, the gas supplied to the anode and cathode is humidified to prevent the solid polymer electrolyte from drying.
[0008]
[Problems to be solved by the invention]
As described above, a continuous gas flow path, proton conduction path, and electron conduction path are required in the catalyst layer in order to obtain a high output electrode for a solid polymer electrolyte fuel cell.
[0009]
However, since humidified gas is supplied and water is also generated by reaction at the cathode, when the solid polymer electrolyte fuel cell is operated at a high current density, the surface of the catalyst layer and the pores are formed. There is a problem that the water is stagnated, the gas diffusibility is inhibited, and the output is significantly reduced.
[0010]
In general, in order to prevent generation of water and retention of water due to gas humidification, polytetrafluoroethylene (PTFE) particles having water repellency at the time of forming a catalyst layer are mixed together with catalyst particles, The electrode is applied to the surface of the porous porous body to impart water repellency to the electrode. In order to prevent retention of water in the electrode during high current density operation, it is necessary to further increase the water repellency by increasing the amount of PTFE mixed, but although PTFE has strong water repellency, In addition, since it does not have proton diffusivity as well as proton conductivity, the electron conduction path, proton conduction path, and gas diffusion path are blocked, and the output of the fuel cell is reduced.
[0011]
In addition, in order to give proton conductivity to the entire catalyst layer, a mixed paste of catalyst particles and a solid polymer electrolyte solution is used at the time of forming the catalyst layer, or the catalyst layer is impregnated with a solid polymer electrolyte solution, The molecular electrolyte is included. However, it is difficult to evenly distribute the ion exchange resin solution having a certain viscosity to the deep part of the electrode, and a sufficient three-phase interface is not formed in the deep part of the electrode, causing problems such as a decrease in catalyst utilization. .
[0012]
In view of the above, the present invention is to improve the above problems and to improve the performance of a solid polymer electrolyte fuel cell.
[0013]
[Means for solving problems]
Claim 1In the composite catalyst for a solid polymer electrolyte fuel cell, the invention comprises a catalyst particle comprising carbon carrying a catalyst metal, the catalyst particle surface comprising a first resin and a second resin,SaidThe first resin is an ion exchange resin,SaidThe second resin is porousThe amount of catalyst metal supported on the surface of the carbon particles that do not have proton conductivity and is in contact with the proton conduction path of the ion exchange resin exceeds 50% of the total amount of catalyst metal supported.It is characterized by that.
[0014]
Of the present inventionIn the composite catalyst for a solid polymer electrolyte fuel cell, the second resin is a fluororesinIs preferred.
[0015]
Of the present inventionIn the composite catalyst for solid polymer electrolyte fuel cell, the ion exchange resin must be porous.Is preferred.
[0016]
The present inventionA second resin is provided in the hole of the ion exchange resinIs preferred.
[0017]
The present inventionAn ion exchange resin in the hole of the second resinIs preferred.
[0018]
Of the present inventionComposite catalyst for solid polymer electrolyte fuel cellIsThe composite having the porous ion exchange resin on the surface of the catalyst particles is obtained by the first step of phase-separating the ion exchange resin after the solution in which the ion exchange resin is dissolved in the solvent is attached to the surface of the catalyst particles. Fabricate, and then go through a second step of arranging a second resin on the surface of the compositeCan be manufactured by.
[0019]
The present inventionComposite catalysts for solid polymer electrolyte fuel cellsIsA porous second resin is provided on the surface of the catalyst particles by the first step of phase-separating the second resin after adhering a solution in which the second resin is dissolved in the solvent to the surface of the catalyst particles. Producing a composite, followed by a second step of disposing an ion exchange resin on the surface of the compositeCan be manufactured by.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, structural examples of the composite catalyst for a solid polymer electrolyte fuel cell according to the present invention will be described more specifically with reference to the drawings.
[0021]
1 ~FIG.These are the schematic diagrams which showed the structural example of the composite catalyst for solid polymer electrolyte type fuel cells provided with the ion exchange resin and 2nd resin based on this invention.1 to 4These are schematic diagrams when the ion exchange resin and the second resin are porous. Also,FIG.Indicates a state in which the catalytic metal is mainly supported on the surface of the carbon particles in contact with the proton conduction path of the ion exchange resin.
[0022]
Also,1 and 3Shows a state where the ion exchange resin and the second resin are provided on the surface of each catalyst particle,2 and 4These show the state with which the ion exchange resin and 2nd resin are equipped over the surface of the catalyst particle which formed the secondary particle.
[0023]
1 ~FIG.In, 31, 41, 51, 61, 71 are catalyst particles, 3242, 52, 62 and 72 are ion exchange resins, 3343, 53, 63, 73 are second resins, 74 is a proton conduction path of the ion exchange resin, and 75 is a catalyst metal. In addition,1 to 4The ion exchange resins 32, 42, 52, 62 and the second resins 33, 43, 53, 63 have a structure with holes.
[0024]
1 and 2Shows the structure of a composite catalyst comprising porous ion exchange resins 32, 42 on the catalyst particle surface and second resins 33, 43 in the pores and on the surface,FIG.Then, the porous ion exchange resin 32 is formed on the surface of each catalyst particle 31, andFIG.Then, the porous ion exchange resin 42 is provided over the surface of the catalyst particle 41 which formed the secondary particle. The second resins 33 and 43 provided in and on the surfaces of the porous ion exchange resins 32 and 42 do not have to have holes, but are porous to obtain high gas diffusibility. Preferably there is.
[0025]
3 and 4Shows the structure of a composite catalyst comprising the second resin 52, 62 on the surface of the catalyst particles, and the porous ion exchange resins 53, 63 in the pores and on the surface,FIG.Then, the second resin 52 is formed on the surfaces of the individual catalyst particles 51, andFIG.Then, the 2nd resin 62 is provided over the surface of the catalyst particle 61 which formed the secondary particle. The ion exchange resins 52 and 62 need not have pores, but are preferably porous in order to obtain high gas diffusibility.
[0026]
The porous ion exchange resin and the porous second resin may have a porous structure or a structure in which the resin is formed in a net shape. Furthermore, you may have the structure where the hole communicated in three dimensions.
[0027]
further,FIG.As shown in FIG. 3, the composite catalyst in which the catalytic metal particles according to the present invention are mainly supported on the surface of the carbon particles in contact with the proton conduction path of the cation exchange resin is the Teflon skeleton 72 of the ion exchange resin on the surface of the carbon particles 71. The ion-exchange resin proton conduction path 75, the second resin 73, and the catalyst metal 75 have a structure, and the catalyst metal particles exceeding 50% of the total catalyst metal amount are the ion-exchange resin on the surface of the carbon particles. Is supported on the proton conduction path.
[0028]
Here, various resins can be used as the second resin, but in order to obtain excellent water repellency, it is preferable to use a fluororesin.
[0029]
The composite catalyst for a solid polymer electrolyte fuel cell according to the present invention includes an ion exchange resin that imparts proton conductivity and a second resin that imparts water repellency to the catalyst particle surface. In the catalyst layer, the ion exchange resin that bears the proton conduction path and the second resin having water repellency are distributed uniformly throughout the details of the catalyst layer, and the gas diffusivity and proton conductivity enhanced by the water repellency are It also serves as a binder between the catalyst particles.
[0030]
In addition, when the ion exchange resin or the second resin is porous, it is possible to maintain higher gas diffusibility and electronic conductivity of the catalyst.
[0031]
In addition, by providing the second resin in the pores of the porous ion exchange resin or the ion exchange resin in the pores of the porous second resin, sufficient proton conductivity and water repellency are provided for the catalyst particles. The catalyst layer can be formed together, and the resin covering the surface of the catalyst particles is porous, so that the electron conductivity between the catalyst particles can be maintained.
[0032]
In such a composite catalyst, since the catalyst particle surface has a large number of holes, the catalyst particle is not completely covered, and the catalytic activity can be maintained. For this reason, since the catalyst layer using the composite catalyst for fuel cells according to the present invention has high mechanical strength and is excellent in water repellency and proton conductivity, a high-power fuel cell can be provided.
[0033]
The catalyst particles of the composite catalyst for a solid polymer electrolyte fuel cell according to the present invention are those in which a catalyst metal containing a platinum group metal such as platinum, rhodium, ruthenium, iridium, palladium, osmium, or an alloy thereof is supported on carbon. It is preferable to use it. However, when producing a composite catalyst for a fuel cell in which a catalytic metal is mainly supported on the carbon particle surface in contact with the proton conduction path of the ion exchange resin, the carbon particles are provided with an ion exchange resin, or an ion exchange resin and a second resin. Then, the catalyst metal may be supported on the surface of the carbon particles in contact with the proton conduction path of the ion exchange resin.
[0034]
As carbon, carbon black such as acetylene black and furnace black, graphite particles, activated carbon and the like are preferable, and carbon black is particularly preferable because of excellent electron conductivity and high dispersion of catalyst particles.
[0035]
The ion exchange resin provided in the composite catalyst for a solid polymer electrolyte fuel cell according to the present invention preferably uses a proton exchange resin, and among them, a perfluorocarbon sulfonic acid or a styrene-divinylbenzene sulfonic acid type. It is preferable to use a solid polymer electrolyte from the viewpoint of good proton conductivity.
[0036]
Further, the fluororesin provided in the composite catalyst for a solid polymer electrolyte fuel cell according to the present invention does not need to have proton conductivity, such as polyvinylidene fluoride (PVdF), vinyl fluoride polymer (PVF), etc. Fluorine-containing homopolymer or ethylene trifluoride chloride copolymer (PCTFE), ethylene / tetrafluoroethylene copolymer, vinylidene fluoride / hexafluoropropylene polymer (P (VdF-HEP)), vinylidene fluoride A fluorine-containing copolymer such as a tetrafluoroethylene copolymer (P (VdF-TFP)) is preferable, or a mixture thereof may be used. Among them, a vinylidene fluoride polymer (PVdF) excellent in water repellency or a vinylidene fluoride / hexafluoropropylene copolymer (P (VdF-TFP)) that is soft and easy to handle is preferable.
[0037]
Here, in the ion exchange resin provided in the catalyst particles, the porosity of the ion exchange resin is 50% or more and the supported amount is 70 wt% or less with respect to the weight of the catalyst particles so that the electron conductivity between the catalyst particles does not decrease. More preferably, the porosity is 75% or more and the loading is 50 wt% or less.
[0038]
Furthermore, the porosity of the fluororesin provided in the catalyst particles is such that the fluororesin covers the catalyst particles so that the activity of the catalyst does not decrease, and the electron conductivity between the catalyst particles does not decrease. The supported amount is preferably 50% or more and 30 wt% or less with respect to the catalyst particles, and more preferably the porosity is 75% or more and the supported amount is 15 wt% or less.
[0039]
A method for producing a composite catalyst for a solid polymer electrolyte fuel cell according to the present invention will be described below. First, a method for producing a composite having an ion exchange resin on the catalyst particle surface and further having a second resin on the surface of the composite will be described.
[0040]
In the first step, a solution in which an ion exchange resin is dissolved in a solvent is attached to the surface of the catalyst particles to produce a composite having the ion exchange resin on the surface of the catalyst particles. In this composite, if the ion exchange resin on the surface of the catalyst particles does not have pores, the solvent can be removed from the attached solution by evaporation, etc. In order to make the ion exchange resin porous, this composite What is necessary is just to phase-separate ion-exchange resin from the solution adhered to the body.
[0041]
Phase separation of the ion exchange resin from the solution adhering to the catalyst particle surface utilizes changes in the solubility of the ion exchange resin in the solvent by heating or cooling, and changes in the concentration of the ion exchange resin in the solution by evaporating the solvent. And a method using a solvent extraction method.
[0042]
Among these phase separation methods, in order to provide a porous ion exchange resin having uniform pores on the surface of the catalyst particles, it is preferable to use a solvent extraction method. In this method, a catalyst particle having a solution obtained by dissolving an ion exchange resin in a first solvent adhered to the surface is immersed in a second solvent in which the ion exchange resin is insoluble and compatible with the first solvent, The first solvent is extracted to obtain a composite having a porous ion exchange resin on the surface of the catalyst particles.
[0043]
In the second step, a solution in which the second resin is dissolved in a solvent is attached to the surface of the composite prepared in the first step, and the second resin is provided on the surface of the composite prepared in the first step. A composite catalyst is obtained. In this composite catalyst, when the second resin on the surface of the composite obtained in the first step does not have pores, the solvent may be removed from the attached solution by evaporation or the like. In order to achieve porosity, the ion exchange resin may be phase-separated from the solution attached to the surface of the composite prepared in the first step.
[0044]
As the phase separation method, the method using the change in solubility and the concentration as described in the first step, and the solvent extraction method can be used.
[0045]
Furthermore, the composite catalyst of the present invention can also be obtained by a preparation method in which a composite having the second resin on the surface of the catalyst particles is prepared, and an ion exchange resin is provided on the surface of the composite. In this method, in the above-described method for producing a composite catalyst having an ion exchange resin on the surface of catalyst particles and further having a second resin on the surface of the composite, in the first step, an ion is used in the first step. A second resin is used instead of the exchange resin, and an ion exchange resin is used instead of the second resin in the second step.usedo it.
[0046]
In order to make the ion exchange resin or the second resin porous, the same phase separation method as described in the first step can be used.
[0047]
In such a method for producing a composite catalyst of the present invention, the ion exchange resin or the second resin provided on the catalyst particle surface in the first step is made porous, so that the ion exchange resin provided on the catalyst particle surface is made porous. The composite catalyst according to the present invention can be produced in which the second resin is provided in the holes or the ion exchange resin is provided in the holes of the second resin provided on the surface of the catalyst particles.
[0048]
In addition, as a method of attaching the solution in which the ion exchange resin is dissolved or the solution in which the second resin is dissolved to the surface of the catalyst particle or the composite obtained in the first step, for example, the catalyst particle or the composite is used. Is immersed in the solution, or the solution is sprayed on the catalyst particles or the composite by spraying or the like.
[0049]
In particular, a method of immersing the catalyst particles in the solution under a reduced pressure of 50 Torr or less, more preferably 1 Torr or less in order to include the solution in the pores of the catalyst particles or in the pores between the secondary particles of the catalyst particles. Is this.
[0050]
As the solvent for dissolving the ion exchange resin of the present invention, alcohol or a mixed solvent of alcohol and water can be used. This solution is particularly preferably a solution obtained by dissolving a perfluorocarbon sulfonic acid resin in alcohol with good dispersibility of particles and appropriate viscosity.
[0051]
In the solvent extraction method of the method for producing a composite catalyst of the present invention, the solvent having a polar group other than the alcoholic hydroxyl group used as the second solvent has a carbon chain having an alkoxycarbonyl group in the molecule having a carbon number of 1 to 1. 7 organic solvents such as propyl formate, butyl formate, isobutyl formate, ethyl acetate, propyl acetate, isopropyl acetate, allyl acetate, butyl acetate, isobutyl acetate, pentyl acetate, isopentyl acetate, methyl propionate, ethyl propionate, propionic acid Propyl, methyl acrylate, butyl acrylate, isobutyl acrylate, methyl butyrate, methyl isobutyrate, ethyl butyrate, ethyl isobutyrate, methyl methacrylate, propyl butyrate, isopropyl isobutyrate, 2-ethoxyethyl acetate, 2- (2 acetate Ethoxyethoxy) ethyl alone, Mixture properly, it is preferable to use.
[0052]
In the method for producing a composite catalyst of the present invention, the solvent used for dissolving the second resin includes methyl ethyl ketone (MEK), ketones such as acetone, propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl. Carbonates such as carbonate, ethers such as dimethyl ether, diethyl ether, ethyl methyl ether, tetrahydrofuran (THF), dimethylformamide, dimethylacetamide, 1-methyl-pyrrolidinone, n-methyl-pyrrolidone (NMP), dimethylformamide (DMF), Examples thereof include dimethyl sulfoxide (DMSO).
[0053]
In particular, when a fluororesin is used as the second resin in the method for producing a porous resin by phase separation utilizing the change in solubility, ketones such as MEK and acetone are preferable as the solvent for dissolving the fluororesin.
[0054]
In the method for producing a porous resin by phase separation using the solvent extraction method described above, when a fluororesin is used as the second resin, examples of the first solvent for dissolving the fluororesin include NMP and DMF. DMSO is preferable, and among them, NMP is preferable because fine and uniform pores can be obtained. That is, when a solution obtained by dissolving PVdF in NMP is used as a solution in which the fluororesin used in the present invention is dissolved in a solvent, a porous fluororesin having uniform and fine pores can be produced. Here, as the second solvent compatible with the first solvent, water or a mixed solution of water and alcohol is preferable because it is inexpensive.
[0055]
Here, the catalyst particle in the method for producing a composite catalyst for a solid polymer electrolyte fuel cell refers to a carbon particle carrying a catalyst metal, and is on the surface of the carbon particle in contact with the proton conduction path of the cation exchange resin. When producing a composite catalyst for a fuel cell in which the amount of supported catalyst metal exceeds 50% of the total amount of supported catalyst metal, an ion exchange resin and / or a fluorine resin is disposed on carbon particles not supporting the catalyst metal. It is preferable to go through a step of supporting catalyst particles later.
[0056]
The catalyst particles for a fuel cell comprising an ion exchange resin and a second resin produced using the production method of the present invention are all proton-conductive by ion exchange resin and water repellency by fluororesin. Is a catalyst particle that combines excellent proton conductivity and water repellency in every detail, preventing water from staying on the surface of the catalyst particle and improving gas diffusivity. This resin serves as a binder between the catalyst particles, and prevents the catalyst particles from being detached. Further, when the ion exchange resin 7 or the fluororesin is porous, the surface of the catalyst particles is not covered, and the electron conductivity and higher gas diffusibility are ensured.
[0057]
【Example】
The present invention will be described below with reference to preferred embodiments.
[0058]
[Example1]
First, carbon particles (Valcan XC-72) are immersed in an ion exchange resin solution (manufactured by Aldrich, Nafion 5 wt% solution) in a state where the carbon particles (Valcan XC-72) are kept under reduced pressure, and then an excess ion exchange resin solution is sucked from the mixture. Removed by filtration.
[0059]
Subsequently, the carbon particles with the ion exchange resin solution attached are immersed in butyl acetate to phase separate the ion exchange resin, and then the butyl acetate is removed by suction filtration and dried at 70 ° C. with a porous ion exchange resin. Carbon particles with a coated surface were produced.
[0060]
After this step, the weight of the carbon particles provided with the ion exchange resin was measured to determine the amount of the cation exchange resin supported on the carbon (wt%). And the process was repeated so that the load of ion exchange resin might be 35 wt%.
[0061]
Subsequently, a mixture of the carbon particles provided with the ion exchange resin was mixed with 50 mmol / l [Pt (NH3)4] Cl2It is immersed in an aqueous solution for 2 days, and [Pt (NH3)4]2+Is preferentially adsorbed, washed thoroughly with purified water and dried, then reduced in a hydrogen atmosphere at 1 atm and 180 ° C. for about 4 hours, and the platinum provided in the carbon particles is proton-conducted by the cation exchange resin. Preferentially supported on the surface of the carbon particles in contact with the path.
[0062]
Next, it is immersed in 0.2 mol / l sulfuric acid for 3 hours, and unnecessary [Pt (NH3)4]2+Was eluted to obtain carbon particles in which the amount of platinum supported on the surface of the carbon particles in contact with the proton conduction path of the ion exchange resin exceeded 50% of the total amount of platinum supported.
[0063]
Next, the carbon particles including the porous ion exchange resin and the platinum particles are kept in a reduced pressure state and immersed in a PVdF-NMP solution in which 5 wt% of PVdF is dissolved in 95 wt% of NMP. The PVdF-NMP solution was removed by suction filtration.
[0064]
Subsequently, after the platinum-supported carbon particles with the PVdF-NMP solution adhering in the pores of the porous ion exchange resin were immersed in water to separate the PVdF, the water was removed by suction filtration and further dried at 100 ° C. A porous ion exchange resin is provided on the surface of the carbon particles, and the amount of platinum supported on the surface of the carbon particles in contact with the proton conduction path of the porous ion exchange resin exceeds 50% of the total amount of platinum supported. A composite catalyst C having PVdF in the pores of the ion exchange resin was obtained.
[0065]
The obtained composite catalyst C was joined by hot pressing (95 ° C.) on both surfaces of an ion exchange resin membrane (manufactured by DuPont, Nafion, film thickness 150 μm), and carbon paper as a gas diffusion layer was further joined. -Electrode assembly C was obtained. Then, the membrane-electrode assembly C was incorporated into a single cell of a fuel cell to obtain a cell C. The amount of platinum in the membrane-electrode assembly C was about 0.04 mg / cm2 according to a separate analysis.2It has been confirmed that.
[0066]
[Comparative example]
Platinum-supported carbon (manufactured by Tanaka Kikinzoku, TEC-10V-30E: ValcanXC-72 with 30 wt% platinum supported), ion-exchange resin solution (manufactured by Aldrich, Nafion 5 wt% solution) and PTFE particle dispersion solution (Mitsui DuPont Fluorochemicals) A paste made of Teflon 30J) is prepared, and the paste is applied on a polymer film (FEP film: tetrafluoroethylene-hexafluoropropylene copolymer sheet, manufactured by Daikin Industries, Ltd .: 25 μm) at room temperature. Air dried for about 1 hour.
[0067]
in this wayThe catalyst layer thus obtained was bonded to both sides of a solid polymer electrolyte membrane (manufactured by DuPont, Nafion, film thickness 150 μm) by hot pressing (95 ° C.), and a PTFE dispersion solution was further applied to both sides and dried. A conductive porous body (carbon paper: 0.5 mm) imparted with water repellency was joined by hot pressing (135 ° C.) to obtain a membrane-electrode assembly D.
[0068]
The membrane-electrode assembly D has a structure in which the gas diffusion electrode D is bonded to both surfaces of the solid polymer electrolyte membrane. The platinum amount of the membrane-electrode assembly D is about 1.0 mg / cm.2Thus, the amount of platinum-supported carbon during paste production was adjusted. The obtained membrane-electrode assembly D was incorporated into a single cell of a fuel cell to obtain a cell D.
[0069]
Using these cells, the current-voltage characteristics when using hydrogen as the anode supply gas and oxygen as the cathode supply gas are shown.
1234162772359_0.aspx? Svno = 0 & sno = 49482 & iv = 0 # ZU8
The current-voltage characteristics when using hydrogen as the anode supply gas and air as the cathode supply gas
1234162772359_1.aspx? Svno = 0 & sno = 49482 & iv = 0 # ZU9
It was shown to. Each feed gas pressure was 1 atm and was humidified by bubbling in a 70 ° C. closed water bath. The cell operating temperature was 60 ° C., and the holding time during measurement at each current value was 2 minutes.
[0070]
1234162772359_2.aspx? Svno = 0 & sno = 49482 & iv = 0 # ZU8
and
1234162772359_3.aspx? Svno = 0 & sno = 49482 & iv = 0 # ZU9
As is apparent from the present inventionCell CCompared with the conventional cell D, a high output voltage was obtained at each current density. In particular
1234162772359_4.aspx? Svno = 0 & sno = 49482 & iv = 0 # ZU9
As can be seen, the difference was remarkable when air was used as the cathode side supply gas. Cell C has a very small amount of catalyst supported.,outputThere was no decrease in
[0071]
This is because the conventional gas diffusion electrode D includes a large amount of PTFE particles in the catalyst layer and the gas diffusion layer, but has water repellency, but the electron conduction path and the gas diffusion path are cut off and the output is reduced. In contrast, a gas diffusion electrode using the composite catalyst for a fuel cell according to the present inventionCHas improved the gas diffusibility by eliminating the retention of water in the gas diffusion electrode while maintaining good electron conductivity and proton conductivity. This is because the output is significantly improved compared to the conventional electrodes.
[0072]
Further, the composite catalyst C used for the gas diffusion electrode C not only has high gas diffusibility and proton conductivity, but also because platinum particles are reliably supported on the three-phase interface of the electrode. The rate is remarkably high, and a higher performance electrode than before can be obtained even with a small amount of platinum supported.
[0073]
【The invention's effect】
The composite catalyst for a solid polymer electrolyte fuel cell according to the present invention comprises an ion exchange resin and a catalyst particle on the surface of the catalyst particles.Porous and not proton conductiveA second resin,The amount of catalyst metal supported on the surface of the carbon particles in contact with the proton conduction path of the ion exchange resin exceeds 50% of the total amount of catalyst metal supported.Especially by ion exchangeResinBy making it porous, it is possible to obtain a highly active catalyst having both proton conductivity and water repellency, and also having catalytic activity and electron conductivity due to the presence of many pores.
[0074]
By using this composite catalyst as a catalyst for a solid polymer electrolyte fuel cell, water retention is prevented by the provided water repellency and high gas diffusibility is secured to the inside of the catalyst layer. Even in a fuel cell that supplies low air, high performance can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic view showing the surface state of a composite catalyst for a fuel cell of the present invention.
FIG. 2 is a schematic view showing the surface state of the composite catalyst for a fuel cell of the present invention.
FIG. 3 is a schematic view showing the surface state of the composite catalyst for a fuel cell of the present invention.
FIG. 4 is a schematic view showing the surface state of the composite catalyst for a fuel cell of the present invention.
[Figure 5]The schematic diagram which shows the surface state of the composite catalyst for fuel cells of this invention.
[Fig. 6]The figure which shows the electric current-voltage characteristic of a cell at the time of using hydrogen for an anode and oxygen for a cathode.
[Fig. 7]The figure which shows the electric current-voltage characteristic of a cell at the time of using hydrogen for an anode and air for a cathode.
[Explanation of symbols]
31, 41, 51, 61, 71 Catalyst particles
32, 42, 52, 62, 72 Ion exchange resin
33, 43, 53, 63, 73 Second resin
74 Proton Conduction Path of Ion Exchange Resin
75 catalytic metal
Claims (1)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000140483A JP4403634B2 (en) | 2000-05-12 | 2000-05-12 | Composite catalyst for solid polymer electrolyte fuel cell. |
US09/808,032 US6492295B2 (en) | 2000-03-15 | 2001-03-15 | Composite catalyst for solid polymer electrolyte type fuel cell and processes for producing the same |
DE10112585A DE10112585A1 (en) | 2000-03-15 | 2001-03-15 | Composite catalyst, useful for production of fuel cell electrodes, comprises catalyst particles and porous or network forming cation exchange resin or hydrophobic polymer on catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000140483A JP4403634B2 (en) | 2000-05-12 | 2000-05-12 | Composite catalyst for solid polymer electrolyte fuel cell. |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2001319660A JP2001319660A (en) | 2001-11-16 |
JP2001319660A5 JP2001319660A5 (en) | 2007-06-14 |
JP4403634B2 true JP4403634B2 (en) | 2010-01-27 |
Family
ID=18647767
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000140483A Expired - Fee Related JP4403634B2 (en) | 2000-03-15 | 2000-05-12 | Composite catalyst for solid polymer electrolyte fuel cell. |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4403634B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004032999A1 (en) * | 2004-07-08 | 2007-05-10 | Sartorius Ag | Gas diffusion electrodes, methods of making gas diffusion electrodes and fuel cells using such gas diffusion electrodes |
JP2006286564A (en) * | 2005-04-05 | 2006-10-19 | Gs Yuasa Corporation:Kk | Catalyst layer for polymer electrolyte fuel cell and polymer electrolyte fuel cell using the catalyst layer |
JP4910305B2 (en) * | 2005-05-12 | 2012-04-04 | 株式会社Gsユアサ | A catalyst layer for a polymer electrolyte fuel cell and a polymer electrolyte fuel cell comprising the same. |
WO2006129629A1 (en) * | 2005-05-31 | 2006-12-07 | Konica Minolta Holdings, Inc. | Fuel cell electrode and fuel cell |
JP5510181B2 (en) * | 2010-08-18 | 2014-06-04 | 凸版印刷株式会社 | Electrocatalyst layer production method and polymer electrolyte fuel cell |
CN106133070A (en) * | 2014-02-20 | 2016-11-16 | 默克专利股份有限公司 | Stable catalyst ink preparaton, the method using such ink in fiber preparaton, and comprise the goods of such fiber |
KR102347745B1 (en) * | 2017-05-17 | 2022-01-05 | 현대자동차주식회사 | Air electrode for all-solid lithium air battery and method for producing thereof |
-
2000
- 2000-05-12 JP JP2000140483A patent/JP4403634B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001319660A (en) | 2001-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6492295B2 (en) | Composite catalyst for solid polymer electrolyte type fuel cell and processes for producing the same | |
JP5118372B2 (en) | Direct methanol fuel cell | |
US8338059B2 (en) | Hybrid membrane-electrode assembly with minimal interfacial resistance and preparation method thereof | |
US6391487B1 (en) | Gas diffusion electrode, method for manufacturing the same, and fuel cell with such electrode | |
JP2001345106A (en) | Electrode for fuel cell and manufacturing method | |
CN101000963A (en) | Manufacturing method of membrane electrode of fuel cell | |
WO2004019435A2 (en) | Conductive carbon, electrode catalyst for fuel cell using the same and fuel cell | |
KR20070098136A (en) | Membrane-electrode assembly for fuel cell and fuel cell system comprising same | |
JP4403634B2 (en) | Composite catalyst for solid polymer electrolyte fuel cell. | |
US20090042091A1 (en) | Supported catalyst layers for direct oxidation fuel cells | |
JP4433552B2 (en) | Composite catalyst and production method thereof | |
JP2001300324A (en) | Composite catalyst and manufacturing method and method of manufacturing electrode for fuel cell using the same | |
JP4117430B2 (en) | Gas diffusion electrode and fuel cell having the same | |
JP3965666B2 (en) | Gas diffusion electrode and manufacturing method thereof | |
CN113437338A (en) | Fuel cell membrane electrode and preparation method thereof | |
JP5605048B2 (en) | Method for producing composite catalyst and method for producing electrode for fuel cell using the composite catalyst | |
JP4815651B2 (en) | Gas diffusion electrode for polymer electrolyte fuel cell | |
JP2001283864A (en) | Manufacturing method of gas diffusion electrode | |
JP4320482B2 (en) | Fuel cell electrode and manufacturing method thereof | |
KR101035620B1 (en) | Electrode for fuel cell, fuel cell comprising the same, and method for preparing the electrode | |
JP4529345B2 (en) | Method for producing polymer electrolyte fuel cell | |
JP2001273907A (en) | Gas diffusion electrode and its manufacturing method | |
JP2001283866A (en) | Gas diffusion electrode for fuel cell and its manufacturing method | |
JP2000228206A (en) | Electrode for fuel cell and manufacture thereof | |
KR20140132165A (en) | Anode catalyst for fuel cell, method of manufacturing the same, anode including the same for fuel cell, assembly for fuel cell and fuel cell system comprising the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20051213 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070425 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070425 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081208 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081218 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090209 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091013 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091026 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121113 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121113 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121113 Year of fee payment: 3 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121113 Year of fee payment: 3 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121113 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131113 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |