JP2001273907A - Gas diffusion electrode and its manufacturing method - Google Patents

Gas diffusion electrode and its manufacturing method

Info

Publication number
JP2001273907A
JP2001273907A JP2000089418A JP2000089418A JP2001273907A JP 2001273907 A JP2001273907 A JP 2001273907A JP 2000089418 A JP2000089418 A JP 2000089418A JP 2000089418 A JP2000089418 A JP 2000089418A JP 2001273907 A JP2001273907 A JP 2001273907A
Authority
JP
Japan
Prior art keywords
gas diffusion
resin
solvent
diffusion electrode
catalyst layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000089418A
Other languages
Japanese (ja)
Inventor
Shunsuke Mizutani
水谷  俊介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2000089418A priority Critical patent/JP2001273907A/en
Publication of JP2001273907A publication Critical patent/JP2001273907A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To prevent a stay of water, and obtain a gas diffusion electrode which is superior in gas diffusion property without cutting off a proton conduction path between a catalyst layer and a proton electro-conductive solid polyelectrolyte membrane, and between the electronic conduction path between the catalyst layer and a gas diffusion layer. SOLUTION: In the gas diffusion electrode, a porous resin having a communicating hole in the catalyst layer and gas diffusion layer is equipped, and the porous resin equipped in the catalyst layer and the porous resin equipped in the gas diffusion layer are successively continued.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガス拡散電極およ
びその製造方法に関する。
The present invention relates to a gas diffusion electrode and a method for manufacturing the same.

【0002】[0002]

【従来の技術】固体高分子電解質型燃料電池は、固体の
イオン交換膜を電解質として、アノードに燃料として例
えば水素、カソードに酸化剤として例えば酸素を供給し
て電気化学的に反応させることによって電力を得る装置
である。
2. Description of the Related Art A solid polymer electrolyte fuel cell uses a solid ion exchange membrane as an electrolyte and supplies, for example, hydrogen as a fuel to an anode and oxygen, for example, as an oxidant to a cathode to perform an electrochemical reaction. Is a device for obtaining

【0003】この場合の各電極における電気化学反応を
下記に示す。
The electrochemical reaction at each electrode in this case is shown below.

【0004】 アノード:H2→2H++2e- カソード:1/2O2+2H++2e-→ H2O 全反応 :H2+1/2O2→H2O 上式に示したようにアノードおよびカソードにおける反
応には、酸素および水素のガスの供給、プロトン
(H+)および電子(e-)の授受が必要であり、反応は
これらが同時に満たされる電極内の三相界面すなわち反
応ガス、触媒、固体電解質の界面のみにおいて進行す
る。よって燃料電池には、触媒層表面から三相界面まで
のガス供給経路、アノードの三相界面から固体電解質膜
を通してカソードの三相界面までのプロトン伝導経路、
三相界面から集電体までの電子伝導経路が形成されてい
る必要がある。
Anode: H 2 → 2H + + 2e Cathode: 1 / 2O 2 + 2H + + 2e → H 2 O Total reaction: H 2 + 1 / 2O 2 → H 2 O As shown in the above formula, at the anode and cathode The reaction requires the supply of oxygen and hydrogen gases, the transfer of protons (H + ) and electrons (e ), and the reaction takes place at the three-phase interface in the electrode where they are simultaneously filled, ie, the reaction gas, the catalyst, and the solid. It proceeds only at the electrolyte interface. Therefore, in the fuel cell, a gas supply path from the catalyst layer surface to the three-phase interface, a proton conduction path from the three-phase interface of the anode to the three-phase interface of the cathode through the solid electrolyte membrane,
An electron conduction path from the three-phase interface to the current collector needs to be formed.

【0005】そこで、触媒層とガス拡散層とからなるガ
ス拡散電極を、固体高分子電解質膜の両面にアノードお
よびカソードとして接合した膜―電極接合体が用いられ
る。ここで、触媒層には触媒を担持したカーボンなどの
触媒粒子が含まれており、また、ガス拡散層はカーボン
ペーパ等の導電性多孔体からなる。
Therefore, a membrane-electrode assembly is used in which a gas diffusion electrode composed of a catalyst layer and a gas diffusion layer is bonded to both surfaces of a solid polymer electrolyte membrane as an anode and a cathode. Here, the catalyst layer contains catalyst particles such as carbon carrying a catalyst, and the gas diffusion layer is made of a conductive porous material such as carbon paper.

【0006】なお、触媒層は触媒粒子と固体高分子電解
質と必要に応じてポリテトラフルオロエチレン(PTF
E)等の撥水剤とを混合したもので、電極反応がおこな
われる場所であり、また、ガス拡散層は導電性多孔体に
PTFE等を塗布して撥水性を付与したものである。
The catalyst layer is composed of catalyst particles, a solid polymer electrolyte and, if necessary, polytetrafluoroethylene (PTF).
E) is a place where an electrode reaction is performed, and the gas diffusion layer is formed by applying PTFE or the like to a conductive porous body to impart water repellency.

【0007】[0007]

【発明が解決しようとする課題】前述のように、燃料電
池において反応を進めるためには、触媒層中に連続した
ガス流通経路、プロトン伝導経路および電子伝導経路が
必要である。ところが、加湿されたガスを供給している
ことや、カソードにおいては反応によっても水が生成す
るために、燃料電池を高電流密度で運転したときには、
触媒層の表面および孔内に水が滞留し、ガス拡散性が阻
害されて出力が著しく低下する問題が生じる。
As described above, in order to promote the reaction in a fuel cell, a continuous gas flow path, a proton conduction path, and an electron conduction path are required in the catalyst layer. However, when the fuel cell is operated at a high current density, because the humidified gas is supplied, and water is generated by the reaction at the cathode,
Water accumulates on the surface and in the pores of the catalyst layer, which causes a problem that gas diffusivity is hindered and output is significantly reduced.

【0008】一般には、水の生成、移動による水の滞留
が起こらないようにするために、触媒層内にPTFE粒
子を混入したり、導電性多孔質体の表面へPTFEを塗
布することによって撥水性を与えている。高電流密度運
転時の電極内への水の滞留を防ぐためには、PTFEの
混入量を増やして撥水性を高める必要性が考えられる
が、PTFEは強い撥水性があるものの、粒子自体が大
きく、ガス拡散性がないために、撥水性を高めるために
PTFEの混入割合を増加させると、プロトン伝導経
路、電子伝導経路およびガス拡散経路を遮断し、かえっ
て燃料電池の出力が低下する問題が生じる。
[0008] Generally, in order to prevent stagnation of water due to generation and movement of water, PTFE particles are mixed in the catalyst layer or PTFE is applied to the surface of the conductive porous body by applying PTFE. Gives water. In order to prevent water from staying in the electrode during high current density operation, it is necessary to increase the amount of PTFE mixed to increase water repellency, but PTFE has strong water repellency, but the particles themselves are large, Since there is no gas diffusion property, if the mixing ratio of PTFE is increased in order to increase water repellency, the proton conduction path, the electron conduction path, and the gas diffusion path are cut off, and the output of the fuel cell is rather lowered.

【0009】本発明者は、強い撥水性を与えるために触
媒層中にPTFEを十分に配した電極を製作したが、プ
ロトン伝導性および電子伝導性を良好に保ったまま強い
撥水性を与えることはできず、十分な性能が得られない
ことを確認した。
The present inventor has manufactured an electrode in which PTFE is sufficiently arranged in the catalyst layer in order to impart strong water repellency. However, it is necessary to provide strong water repellency while maintaining good proton conductivity and electron conductivity. It was confirmed that sufficient performance could not be obtained.

【0010】以上を鑑み、本発明は触媒層とプロトン導
電性固体高分子電解質膜間のプロトン伝導経路および、
触媒層とガス拡散層との間の電子伝導経路を遮断するこ
となく、水の滞留を防ぎ、ガス拡散性に優れたガス拡散
電極を得ることを目的とする。
In view of the above, the present invention provides a proton conduction path between a catalyst layer and a proton conductive solid polymer electrolyte membrane,
An object of the present invention is to obtain a gas diffusion electrode having excellent gas diffusivity by preventing water from staying without interrupting an electron conduction path between a catalyst layer and a gas diffusion layer.

【0011】なお、本発明のガス拡散電極は主に固体高
分子電解質型燃料電池に使用されるが、その他の燃料電
池、電池、センサ等にも使用可能である。
The gas diffusion electrode of the present invention is mainly used for a solid polymer electrolyte fuel cell, but can also be used for other fuel cells, batteries, sensors and the like.

【0012】[0012]

【課題を解決するための手段】請求項1の発明になるガ
ス拡散電極は、触媒層とガス拡散層とに連通孔を有する
有孔性樹脂を備え、触媒層に備えた有孔性樹脂とガス拡
散層に備えた有孔性樹脂が連続していることを特徴とす
る。
According to a first aspect of the present invention, there is provided a gas diffusion electrode comprising a porous resin having a communication hole between a catalyst layer and a gas diffusion layer. The porous resin provided in the gas diffusion layer is continuous.

【0013】請求項2の発明は、前記ガス拡散電極にお
いて、有孔性樹脂の多孔度が30%以上95%以下であ
ることを特徴とする。
According to a second aspect of the present invention, in the gas diffusion electrode, the porosity of the porous resin is 30% or more and 95% or less.

【0014】請求項3の発明は、前記ガス拡散電極にお
いて、有孔性樹脂の平均孔径が50nm以上5μm以下
であることを特徴とする。
According to a third aspect of the present invention, in the gas diffusion electrode, the porous resin has an average pore diameter of 50 nm or more and 5 μm or less.

【0015】請求項4の発明は、前記ガス拡散電極の有
孔性樹脂の製造方法に関するもので、樹脂を溶媒に溶解
させた溶液から樹脂を相分離させることを特徴とする。
The invention of claim 4 relates to a method for producing a porous resin for the gas diffusion electrode, wherein the resin is phase-separated from a solution in which the resin is dissolved in a solvent.

【0016】請求項5の発明は、前記ガス拡散電極の有
孔性樹脂の製造方法に関するもので、樹脂を第1の溶媒
に溶解させた溶液を、樹脂に対して不溶でかつ第1の溶
媒と相溶性のある第2の溶媒を用いて、第1の溶媒を第
2の溶媒で置換して樹脂を相分離させ、その後第2の溶
媒を除去する工程を経ることを特徴とする。
A fifth aspect of the present invention relates to a method for producing a porous resin for the gas diffusion electrode, wherein a solution obtained by dissolving a resin in a first solvent is insoluble in the resin and the first solvent is dissolved in the first solvent. The method is characterized in that a step of removing the second solvent is performed by replacing the first solvent with the second solvent to cause the resin to undergo phase separation using a second solvent compatible with the second solvent.

【0017】請求項6の発明は、前記ガス拡散電極の製
造方法において、触媒層とガス拡散層とを備えたガス拡
散電極に、樹脂を溶媒に溶解させた溶液を含ませた後、
この溶液から樹脂を相分離させる工程を経ることを特徴
とする。
According to a sixth aspect of the present invention, in the method for manufacturing a gas diffusion electrode, after the gas diffusion electrode including the catalyst layer and the gas diffusion layer contains a solution obtained by dissolving a resin in a solvent,
It is characterized by passing through a step of phase-separating the resin from this solution.

【0018】請求項7の発明は、前記ガス拡散電極の製
造方法において、固体高分子電解質膜の少なくとも一方
に触媒層とガス拡散層とを含むガス拡散電極を接合した
膜―電極接合体に、樹脂を溶媒に溶解させた溶液を含ま
せた後、この溶液から樹脂を相分離させる工程を経るこ
とを特徴とする。
According to a seventh aspect of the present invention, in the method for manufacturing a gas diffusion electrode, a membrane-electrode assembly in which a gas diffusion electrode including a catalyst layer and a gas diffusion layer is joined to at least one of the solid polymer electrolyte membranes, After a solution in which the resin is dissolved in a solvent is included, a step of phase-separating the resin from the solution is performed.

【0019】請求項8の発明は、前記ガス拡散電極の製
造方法において、触媒層とガス拡散層とを含むガス拡散
電極に、樹脂を溶媒に溶解させた溶液を含ませる配する
工程が、減圧下でおこなわれることを特徴とする。
The invention according to claim 8 is the method for manufacturing a gas diffusion electrode, wherein the step of disposing the gas diffusion electrode including the catalyst layer and the gas diffusion layer with a solution in which a resin is dissolved in a solvent is performed. It is characterized by being performed below.

【0020】[0020]

【発明の実施の形態】以下、本発明に係るガス拡散電極
の構造例を、図面を用いてさらに具体的に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a structural example of a gas diffusion electrode according to the present invention will be described more specifically with reference to the drawings.

【0021】図1は本発明になるガス拡散電極の構造を
示す模式図、図2はガス拡散層を構成する導電性多孔質
体の表面および触媒層内にPTFEを配した従来のガス
拡散電極の構造を示す模式図である。図1および図2に
おいて、1は触媒層、2はガス拡散層、3は有孔性樹
脂、4は固体高分子電解質、5はPTFE粒子である。
FIG. 1 is a schematic view showing the structure of a gas diffusion electrode according to the present invention, and FIG. 2 is a conventional gas diffusion electrode in which PTFE is arranged on the surface of a conductive porous material constituting a gas diffusion layer and in a catalyst layer. It is a schematic diagram which shows the structure of. 1 and 2, 1 is a catalyst layer, 2 is a gas diffusion layer, 3 is a porous resin, 4 is a solid polymer electrolyte, and 5 is PTFE particles.

【0022】図1に示したように、本発明におけるガス
拡散電極は、多孔質な触媒層1とガス拡散層2とに、連
通孔を有する有孔性樹脂3を備えており、触媒層1に備
えた有孔性樹脂3とガス拡散層2に備えた有孔性樹脂3
が連続しており、良好なプロトン伝導性および高いガス
拡散性を併せ持つ新規な電極である。なお、ガス拡散層
は導電性多孔質体を含み、触媒層は触媒粒子を含んでい
る。
As shown in FIG. 1, the gas diffusion electrode of the present invention comprises a porous catalyst layer 1 and a gas diffusion layer 2 provided with a porous resin 3 having communication holes. Resin 3 provided for the gas diffusion layer 2 and porous resin 3 provided for the gas diffusion layer 2
Is a novel electrode having both good proton conductivity and high gas diffusivity. The gas diffusion layer contains a conductive porous body, and the catalyst layer contains catalyst particles.

【0023】すなわち、本発明になるガス拡散電極は、
触媒層の孔内および表層に連通した孔を持つ有孔性樹脂
を備え、同時にガス拡散層にも連通した孔を持つ有孔性
樹脂を備えており、この触媒層の有孔性樹脂とガス拡散
層の有孔性樹脂とが連続しているため、触媒層の有孔性
樹脂の孔とガス拡散層の有孔性樹脂の孔とが連続してい
ることになる。
That is, the gas diffusion electrode according to the present invention comprises:
A porous resin having pores communicating with the pores of the catalyst layer and the surface layer is provided, and a porous resin having pores communicating with the gas diffusion layer is also provided. Since the porous resin of the diffusion layer is continuous, the pores of the porous resin of the catalyst layer and the pores of the porous resin of the gas diffusion layer are continuous.

【0024】このような構造のガス拡散電極とすること
により、触媒層の孔内と表層およびガス拡散層内へのガ
ス拡散性が阻害されることを防止することができる。そ
して、触媒層孔内および表層に水が滞留することが防が
れ、反応ガスが三相界面まで十分に供給され、高い電流
密度に置いても高活性なガス拡散電極が得られる。
With the gas diffusion electrode having such a structure, it is possible to prevent gas diffusibility into the pores of the catalyst layer, the surface layer, and the gas diffusion layer from being impaired. Then, water is prevented from staying in the pores of the catalyst layer and in the surface layer, the reaction gas is sufficiently supplied to the three-phase interface, and a highly active gas diffusion electrode can be obtained even at a high current density.

【0025】ここで、触媒層へガスがスムーズに供給さ
れ、また、触媒層から水がスムースに排出されるために
は、ガス拡散電極に配される連通孔を持った有孔性樹脂
の細孔径は、平均孔径5nm以上5μm以下、さらに好
ましくは1μm以下であることが好ましい。
Here, in order for the gas to be smoothly supplied to the catalyst layer and for the water to be smoothly discharged from the catalyst layer, it is necessary to use a porous resin having communication holes arranged in the gas diffusion electrode. The pore diameter is preferably 5 nm or more and 5 μm or less, more preferably 1 μm or less.

【0026】また、有孔性樹脂の多孔度は30%以上9
5%以下であることが好ましく、とくにガスの拡散が十
分におこなわれるためには、50%以上95%以下であ
ることが好ましい。
The porosity of the porous resin is 30% or more and 9% or more.
It is preferably 5% or less, and particularly preferably 50% or more and 95% or less in order to sufficiently diffuse gas.

【0027】なお、これらの平均孔径および多孔度は、
電子顕微鏡による解析または水銀細孔計で測定すること
ができる。
The average pore size and porosity are as follows:
It can be analyzed by an electron microscope or measured by a mercury porosimeter.

【0028】触媒層に含まれる触媒粒子としては、白
金、ロジウム、ルテニウム、イリジウム、パラジウム、
オスミウムなどの白金族金属およびその合金粒子、もし
くはこれらの触媒を担持した触媒担持カーボンを使用す
ることが適している。
The catalyst particles contained in the catalyst layer include platinum, rhodium, ruthenium, iridium, palladium,
It is suitable to use platinum group metals such as osmium and alloy particles thereof, or catalyst-supporting carbon carrying these catalysts.

【0029】また、固体高分子電解質としては、陽イオ
ン交換樹脂を使用するが、その中でもパーフルオロカー
ボンスルフォン酸またはスチレン−ジビニルベンゼン系
のスルフォン酸型陽イオン交換樹脂を使用することが好
ましい。
As the solid polymer electrolyte, a cation exchange resin is used. Among them, it is preferable to use a perfluorocarbon sulfonic acid or a styrene-divinylbenzene sulfonic acid type cation exchange resin.

【0030】さらに、本発明に用いる有孔性樹脂は、ポ
リ塩化ビニル、ポリアクリロニトリル、ポリエチレンオ
キシド、ポリプロピレンオキシド等のポリエーテル、ポ
リアクリロニトリル、フッ化ビニリデン重合体、ポリ塩
化ビニリデン、ポリメチルメタクリレート、ポリメチル
アクリレート、ポリビニルアルコール、ポリメタクリロ
ニトリル、ポリビニルアセテート、ポリビニルピロリド
ン、ポリエチレンイミン、ポリブタジエン、ポリスチレ
ン、ポリイソプレン、もしくはこれらの誘導体を、単独
で、あるいは混合してもよく、また、上記樹脂を構成す
る各種モノマーを共重合させた樹脂を用いてもよいが、
好ましくは撥水性の高いフッ素樹脂、たとえば三フッ化
塩化エチレン共重合体(PCTFE)、フッ化ビニリデ
ン重合体(PVdF)、フッ化ビニル重合体(PVF)
などの含フッ素ホモポリマーまたは、エチレン・四フッ
化エチレン共重合体などの含フッ素コポリマーが好まし
いし、これらの混合物でもよい。
Further, the porous resin used in the present invention includes polyethers such as polyvinyl chloride, polyacrylonitrile, polyethylene oxide, and polypropylene oxide, polyacrylonitrile, vinylidene fluoride polymer, polyvinylidene chloride, polymethyl methacrylate, and polymethyl methacrylate. Methyl acrylate, polyvinyl alcohol, polymethacrylonitrile, polyvinyl acetate, polyvinylpyrrolidone, polyethyleneimine, polybutadiene, polystyrene, polyisoprene, or derivatives thereof may be used alone or in combination, and also constitute the above resin. Although a resin obtained by copolymerizing various monomers may be used,
Preferably, a fluororesin having high water repellency, for example, ethylene trifluoride chloride copolymer (PCTFE), vinylidene fluoride polymer (PVdF), vinyl fluoride polymer (PVF)
Or a fluorine-containing copolymer such as an ethylene / tetrafluoroethylene copolymer, or a mixture thereof.

【0031】また、本発明に用いられるガス拡散層は、
発泡ニッケル、チタン繊維焼結体でもよいが、耐酸性
や、電子伝導性などの面で、炭素繊維などの焼結体であ
る炭素材料からなる導電性多孔質体を用いることが望ま
しい。
The gas diffusion layer used in the present invention is:
Although a foamed nickel or titanium fiber sintered body may be used, it is preferable to use a conductive porous body made of a carbon material that is a sintered body such as carbon fiber in terms of acid resistance and electron conductivity.

【0032】本発明のガス拡散電極の製造方法におい
て、有孔性樹脂をガス拡散電極に含ませる方法としては
相分離を用いることが好ましい。なお、「相分離」と
は、一般的には「完全に混じり合っている2成分溶液あ
るいは固溶体において、温度の変化などにつれて溶解度
が低下し、2相の液相あるいは固相に分離する現象をい
う(化学辞典、東京化学同人(株)、1994年発
行)。」と定義されているが、ここで「相分離」とは、
樹脂を溶媒に溶解した溶液から樹脂を分離する方法を意
味する。
In the method for producing a gas diffusion electrode of the present invention, it is preferable to use a phase separation as a method of including a porous resin in the gas diffusion electrode. The term “phase separation” generally refers to a phenomenon in which, in a completely mixed two-component solution or solid solution, the solubility decreases as the temperature changes, and the two-phase solution or solid solution separates into two liquid or solid phases. (Chemistry Dictionary, Tokyo Chemical Doujin Co., Ltd., issued in 1994). "
It means a method of separating a resin from a solution in which the resin is dissolved in a solvent.

【0033】相分離の具体的な方法としては、溶媒抽出
法と濃度変化を利用する方法があり、濃度変化を利用す
る方法としては、温度による溶解度変化を利用する方法
や溶媒蒸発による方法がある。本発明においては、有孔
性樹脂を得るために、これらの相分離法を使用すること
ができる。
As a specific method of phase separation, there are a solvent extraction method and a method using a change in concentration, and as a method using a change in concentration, there are a method using a change in solubility with temperature and a method using evaporation of a solvent. . In the present invention, these phase separation methods can be used to obtain a porous resin.

【0034】これらの相分離法の中では、緻密で連続し
た孔が形成されることから、溶媒抽出法を用いることが
好ましい。溶媒抽出法による相分離とは、樹脂を第1の
溶媒に溶解させた溶液から、樹脂に対して不溶性でかつ
第1の溶媒と相溶性のある第2の溶媒を用いて、第1の
溶媒を第2の溶媒で置換することによって樹脂が分離す
る現象をさす。そして樹脂が相分離を起こした後に第2
の溶媒を除去することによって有孔性樹脂が得られるも
のである。
Among these phase separation methods, it is preferable to use a solvent extraction method since dense and continuous pores are formed. The phase separation by the solvent extraction method means that a first solvent is dissolved from a solution in which a resin is dissolved in a first solvent by using a second solvent which is insoluble in the resin and compatible with the first solvent. Is replaced with a second solvent to separate the resin. After the resin undergoes phase separation, the second
By removing the solvent, a porous resin can be obtained.

【0035】また、温度による溶解度変化を利用する相
分離法とは、低温において樹脂が溶解しにくく、温度を
上昇させた場合に溶解しやすいような溶媒と樹脂との組
み合わせにおいて、温度を上昇させて樹脂を溶媒に完全
に溶解した溶液を作製し、その後溶液の温度を下げてい
くと溶媒の樹脂に対する溶解度が低下し、溶液中で樹脂
が分離する現象をさす。このような相分離をおこした樹
脂と溶媒との溶液から溶媒を除去することによって有孔
性樹脂が得られるものである。
The phase separation method utilizing the change in solubility with temperature refers to a method of increasing the temperature in a combination of a solvent and a resin in which the resin is hardly dissolved at a low temperature and easily dissolved when the temperature is increased. When a solution is prepared by completely dissolving the resin in the solvent, and then the temperature of the solution is lowered, the solubility of the solvent in the resin decreases, and the resin is separated in the solution. The porous resin can be obtained by removing the solvent from the solution of the resin and the solvent having undergone such phase separation.

【0036】さらに、溶媒蒸発を利用する相分離法と
は、樹脂を溶媒に完全に溶解した溶液を作製し、その後
溶液から溶媒を蒸発させて、溶液中で樹脂が分離する現
象をさす。このような相分離をおこした樹脂と溶媒との
溶液から、さらに溶媒を除去することによっても有孔性
樹脂が得られる場合もあるが、この方法では必ず有孔性
樹脂が得られるとは限らない。
Further, the phase separation method using solvent evaporation refers to a phenomenon in which a solution in which a resin is completely dissolved in a solvent is prepared, and then the solvent is evaporated from the solution to separate the resin in the solution. In some cases, a porous resin can be obtained by further removing the solvent from a solution of the resin and the solvent that has undergone such phase separation, but this method does not always result in a porous resin. Absent.

【0037】そして、相分離による有孔性樹脂製造の際
に使用する樹脂としては、微細で均一な孔が得られるこ
とにより、PVdFホモポリマー、フッ化ビニリデン・
六フッ化プロピレン重合体(P(VdF−HEP))ま
たは、フッ化ビニリデン・四フッ化エチレン共重合体
(P(VdF−TFP))などのポリフッ化ビニリデン
(PVdF)系樹脂が好ましい。中でも、撥水性に優れ
たフッ化ビニリデン重合体(PVdF)または柔らかく
て取り扱いが容易なフッ化ビニリデン・六フッ化プロピ
レン共重合体(P(VdF−HFP))が好ましい。
As a resin used in the production of a porous resin by phase separation, fine and uniform pores are obtained, so that a PVdF homopolymer, vinylidene fluoride.
Polyvinylidene fluoride (PVdF) resin such as propylene hexafluoride polymer (P (VdF-HEP)) or vinylidene fluoride / tetrafluoroethylene copolymer (P (VdF-TFP)) is preferable. Among them, a vinylidene fluoride polymer (PVdF) excellent in water repellency or a vinylidene fluoride-propylene hexafluoride copolymer (P (VdF-HFP)) which is soft and easy to handle is preferable.

【0038】濃度変化を利用する相分離に使用する樹脂
を溶解する溶媒または溶媒抽出法による相分離に使用す
る第1の溶媒としては、樹脂を溶解する溶媒であればよ
く、メチルエチルケトン、アセトンなどのケトン、プロ
ピレンカーボネート、エチレンカーボネート、ジメチル
カーボネート、ジエチルカーボネート、エチルメチルカ
ーボネートなどの炭酸エステル、ジメチルエーテル、ジ
エチルエーテル、エチルメチルエーテル、テトラヒドロ
フランなどのエーテル、ジメチルホルムアミド、ジメチ
ルアセトアミド、1−メチルーピロリジノン、n−メチ
ル−ピロリドン等が挙げられる。
The solvent for dissolving the resin used for phase separation utilizing the change in concentration or the first solvent used for phase separation by the solvent extraction method may be any solvent that dissolves the resin, such as methyl ethyl ketone and acetone. Ketone, propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, carbonates such as ethyl methyl carbonate, dimethyl ether, diethyl ether, ethyl methyl ether, ethers such as tetrahydrofuran, dimethylformamide, dimethylacetamide, 1-methyl-pyrrolidinone, n- Methyl-pyrrolidone and the like.

【0039】前述の溶媒抽出法を用いた相分離におい
て、樹脂を溶解する第1の溶媒としては、たとえばn−
メチル−ピロリドン(NMP)を用いると、微細で均一
な孔が得られることより好ましい。また、第1の溶媒と
相溶性のある第2の溶媒としては、水または水とアルコ
ールの混合溶液が安価で好ましい。
In the phase separation using the solvent extraction method described above, the first solvent for dissolving the resin may be, for example, n-
Use of methyl-pyrrolidone (NMP) is more preferable because fine and uniform pores can be obtained. In addition, as the second solvent compatible with the first solvent, water or a mixed solution of water and alcohol is preferable at a low cost.

【0040】また、前述の濃度変化を利用した相分離に
よる有孔性樹脂の製造方法において、樹脂を溶解する溶
媒としては、低温において樹脂が溶媒に溶解しにくく、
温度を上昇させた場合に溶解しやすいような溶媒が好ま
しい。
In the above-described method for producing a porous resin by phase separation utilizing a change in concentration, the solvent that dissolves the resin is such that the resin is unlikely to dissolve in the solvent at low temperatures.
Solvents that readily dissolve when the temperature is raised are preferred.

【0041】本発明におけるガス拡散電極において、触
媒層に備えた有孔性樹脂とガス拡散層に備えた有孔性樹
脂とを連続させるためには、あらかじめ触媒層とガス拡
散層を一体化したガス拡散電極に樹脂を含ませる工程を
経ることが好ましい。
In the gas diffusion electrode of the present invention, the catalyst layer and the gas diffusion layer were previously integrated in order to make the porous resin provided in the catalyst layer and the porous resin provided in the gas diffusion layer continuous. It is preferable to go through a step of including a resin in the gas diffusion electrode.

【0042】さらに好ましくは、固体高分子電解質膜の
少なくとも一方に、触媒層とガス拡散層とを含むガス拡
散電極を接合した膜―電極接合体のガス拡散電極部に樹
脂を備える工程を経ることがよい。
More preferably, a step of providing a resin in a gas diffusion electrode portion of a membrane-electrode assembly in which a gas diffusion electrode including a catalyst layer and a gas diffusion layer is bonded to at least one of the solid polymer electrolyte membranes. Is good.

【0043】この方法によって製造されたガス拡散電極
は、連通孔を持つ有孔性樹脂による高い撥水性を持つだ
けでなく、触媒層とガス拡散層との電子伝導ネットワー
クを形成した後に樹脂が配されるために、高いガス拡散
性と高い電子伝導性とを併せ持つことができる。特に、
固体高分子電解質膜の少なくとも一方に、触媒層とガス
拡散層とを含むガス拡散電極を接合した膜―電極接合体
のガス拡散電極部に樹脂を備える工程を経て製造された
ガス拡散電極は、触媒層と固体高分子電解質膜との間に
十分なプロトン伝導ネットワークが形成されている。
The gas diffusion electrode manufactured by this method has not only high water repellency due to a porous resin having communication holes, but also the resin distribution after forming an electron conduction network between the catalyst layer and the gas diffusion layer. Therefore, both high gas diffusivity and high electron conductivity can be obtained. In particular,
At least one of the solid polymer electrolyte membrane, a membrane in which a gas diffusion electrode including a catalyst layer and a gas diffusion layer is bonded-a gas diffusion electrode manufactured through a step of providing a resin in a gas diffusion electrode portion of an electrode assembly, A sufficient proton conduction network is formed between the catalyst layer and the solid polymer electrolyte membrane.

【0044】なお、触媒層とガス拡散層とを備えたガス
拡散電極に有孔性樹脂を備える方法としては、ガス拡散
電極に、樹脂を溶媒に溶解させた溶液を含ませた後、樹
脂を層分離させる工程を経る製造方法がある。
As a method of providing a porous resin in a gas diffusion electrode provided with a catalyst layer and a gas diffusion layer, a method in which a solution in which a resin is dissolved in a solvent is added to the gas diffusion electrode, and then the resin is added There is a manufacturing method through a step of separating layers.

【0045】さらに、触媒層とガス拡散層とを備えたガ
ス拡散電極に有孔性樹脂を備える方法としては、溶媒抽
出法がある。この方法は、樹脂を第1の溶媒に溶解させ
た溶液をガス拡散電極に含ませ、樹脂が不溶でかつ第1
の溶媒と相溶性のある第2の溶媒を用いて第1の溶媒を
第2の溶媒で置換し、樹脂を相分離させ、その後第2の
溶媒を除去する工程を経ることが好ましい。
Further, as a method of providing a porous resin in a gas diffusion electrode having a catalyst layer and a gas diffusion layer, there is a solvent extraction method. In this method, a solution in which a resin is dissolved in a first solvent is included in a gas diffusion electrode, and the resin is insoluble and the first
It is preferable that the first solvent is replaced with the second solvent using a second solvent compatible with the above-mentioned solvent, the resin is subjected to phase separation, and then a step of removing the second solvent is performed.

【0046】さらに、触媒層とガス拡散層とを備えたガ
ス拡散電極に有孔性樹脂を備える方法において、樹脂を
溶媒に溶解させた溶液を含ませる工程が50Torr以
下、さらに好ましくは1Torr以下の減圧下で行なわ
れるのがよい。
Further, in the method in which the gas diffusion electrode having the catalyst layer and the gas diffusion layer is provided with a porous resin, the step of including a solution obtained by dissolving the resin in a solvent is performed at 50 Torr or less, more preferably 1 Torr or less. It is preferably performed under reduced pressure.

【0047】本発明においては、ガス拡散電極に有孔性
樹脂を備える方法としては、たとえば、ポリフッ化ビニ
リデン(PVdF)をn−メチルピロリドン(NMP)
に溶解させたものを、減圧下でガス拡散電極に配し、水
でNMPを置換したものが撥水性、孔径の均一性などの
面で好ましい。
In the present invention, as a method for providing the gas diffusion electrode with a porous resin, for example, polyvinylidene fluoride (PVdF) is replaced with n-methylpyrrolidone (NMP).
Is preferably placed on a gas diffusion electrode under reduced pressure, and NMP is replaced with water, from the viewpoints of water repellency, uniformity of pore size, and the like.

【0048】このように、本発明におけるガス拡散電極
を製造するためには、たとえば、触媒担持カーボン粒子
と固体高分子電解質溶液および必要に応じてはPTFE
粒子分散溶液を加えた触媒のペーストを高分子フィルム
などの基板上に製膜した後に、加熱乾燥する方法等によ
り製作された従来の触媒層、または、白金担持カーボン
および必要に応じてPTFE粒子分散溶液を加えた触媒
のペーストを高分子フィルムなどの基板上に製膜して乾
燥した後に、固体高分子電解質溶液をこの上から塗布、
配する方法により製作された触媒層を、ガス拡散層に転
写したガス拡散電極、もしくはそのガス拡散電極と固体
高分子電解質膜とを接合した膜―電極接合体に、樹脂を
溶媒に溶解した溶液を配した後に樹脂を相分離させる方
法によって有孔性樹脂を配したガス拡散電極が得られ
る。
As described above, in order to manufacture the gas diffusion electrode of the present invention, for example, the catalyst-supporting carbon particles and the solid polymer electrolyte solution and, if necessary, PTFE
A conventional catalyst layer manufactured by a method such as heating and drying after forming a catalyst paste containing a particle dispersion solution on a substrate such as a polymer film, or a dispersion of platinum-supported carbon and PTFE particles as required. After forming the catalyst paste containing the solution on a substrate such as a polymer film and drying, apply a solid polymer electrolyte solution from above,
A solution in which a resin is dissolved in a solvent in a gas diffusion electrode in which the catalyst layer manufactured by the method of disposing is transferred to a gas diffusion layer, or a membrane-electrode assembly in which the gas diffusion electrode is bonded to a solid polymer electrolyte membrane. The gas diffusion electrode provided with the porous resin is obtained by a method in which the resin is phase-separated after disposing.

【0049】また、本発明におけるガス拡散電極を製造
するためには、たとえば、カーボン粒子と固体高分子電
解質溶液および必要に応じてはPTFE粒子分散溶液を
加えたペーストを高分子フィルムなどの基板上に製膜し
た後に、加熱乾燥する方法等により製作されたものと、
ガス拡散層としての導電性多孔質体とを一体化させたガ
ス拡散電極に、上記の方法によって有孔性樹脂を配した
後に触媒粒子を担持させる方法によってもガス拡散電極
を製作する事ができる。
In order to manufacture the gas diffusion electrode of the present invention, for example, a paste containing carbon particles and a solid polymer electrolyte solution and, if necessary, a PTFE particle dispersion solution is added to a substrate such as a polymer film. After being formed into a film, one manufactured by a method of heating and drying,
A gas diffusion electrode can also be manufactured by a method in which a porous resin is disposed on a gas diffusion electrode obtained by integrating a conductive porous body as a gas diffusion layer with a porous resin by the above-described method, and then catalyst particles are supported. .

【0050】これらの方法を用いて製作したガス拡散層
には、触媒層微細孔深部まで有孔性樹脂があり、触媒層
内部への水の滞留を防ぐことができ、さらに有孔性樹脂
の孔が触媒層からガス拡散層に渡って連通しているため
に、良好なガス拡散性を与えることができる。
The gas diffusion layer manufactured by using these methods contains a porous resin up to the deep portion of the fine pores of the catalyst layer. Since the holes communicate from the catalyst layer to the gas diffusion layer, good gas diffusivity can be provided.

【0051】[0051]

【実施例】以下、本発明を好適な実施例を用いて説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to preferred embodiments.

【0052】まず、本発明の実施例について説明する。
最初に、白金担持カーボン(田中貴金属製、TEC−1
0V−30E:Valcan XC−72に白金を30
wt%担持)と固体高分子電解質溶液(アルドリッチ社
製、ナフィオン5wt%溶液)よりなる触媒ペーストを
調製した。
First, an embodiment of the present invention will be described.
First, platinum supported carbon (Tanaka Kikinzoku, TEC-1
0V-30E: 30 platinum on Valcan XC-72
wt.%) and a solid polymer electrolyte solution (5% by weight of Nafion, manufactured by Aldrich) were prepared.

【0053】つぎに、その触媒ペーストを高分子フィル
ム(FEPフィルム:テトラフロロエチレン−ヘキサフ
ロロプロピレン共重合体シート、ダイキン工業(株)製:
厚さ25μm)上に300メッシュのステンレススクリ
ーンを使用して塗布し、室温で約1時間自然乾燥して得
た触媒層を、ホットプレス(95℃)にて固体高分子電
解質膜(デュポン社製、ナフィオン、厚さ150μm)
の両面に接合し、さらにその両面にガス拡散層(カーボ
ンペーパ:厚さ0.5mm)をホットプレス(135
℃)にて接合し、膜―電極接合体を得た。
Next, the catalyst paste was applied to a polymer film (FEP film: tetrafluoroethylene-hexafluoropropylene copolymer sheet, manufactured by Daikin Industries, Ltd.).
A catalyst layer obtained by applying a 300-mesh stainless screen on a 25-μm-thick stainless steel screen and naturally drying at room temperature for about 1 hour was subjected to hot pressing (95 ° C.) using a solid polymer electrolyte membrane (manufactured by DuPont). , Nafion, thickness 150μm)
And a gas diffusion layer (carbon paper: 0.5 mm thick) is hot-pressed (135
° C) to obtain a membrane-electrode assembly.

【0054】得られた膜―電極接合体を、乾燥による固
体高分子電解質膜の収縮を防ぐための治具で固定し、7
0℃で30分乾燥した。その後、PVdF/NMP溶液
を(PVdF濃度6wt%)1Torrの減圧下で含浸
し、直ちに余分なPVdF/NMP溶液を除去し、水の
中に10分間浸漬した後に取り出し、洗浄し、ガス拡散
電極Aを得た。ガス拡散電極Aは、触媒層孔内部からガ
ス拡散層にわたって連続して有孔性樹脂が備えられた構
造であった。
The obtained membrane-electrode assembly was fixed with a jig for preventing contraction of the solid polymer electrolyte membrane due to drying.
Dried at 0 ° C. for 30 minutes. Thereafter, the PVdF / NMP solution was impregnated under a reduced pressure of 1 Torr (PVdF concentration: 6 wt%). Immediately, the excess PVdF / NMP solution was removed. I got The gas diffusion electrode A had a structure in which a porous resin was continuously provided from inside the catalyst layer hole to the gas diffusion layer.

【0055】ガス拡散電極Aの白金量は、約1.0mg
/cm2となるように、ペースト製作時の白金担持カー
ボン量を調整した。得られたガス拡散電極Aを燃料電池
の単セルに組み込んでセルAを得た。
The platinum amount of the gas diffusion electrode A is about 1.0 mg.
/ Cm 2 , the amount of platinum-supported carbon during paste production was adjusted. The obtained gas diffusion electrode A was incorporated into a single cell of a fuel cell to obtain a cell A.

【0056】さらに、比較例について説明する。最初
に、白金担持カーボン(田中貴金属製、TEC−10V
−30E:Valcan XC−72に白金を30wt
%担持)と固体高分子電解質溶液(アルドリッチ社製、
ナフィオン5wt%溶液)および、PTFE粒子分散溶
液(三井デュポンフロロケミカル社製、テフロン30
J)よりなる触媒ペーストを調製した。
Further, a comparative example will be described. First, platinum supported carbon (Tanaka Kikinzoku, TEC-10V
-30E: 30 wt% platinum on Valcan XC-72
% Supported) and a solid polymer electrolyte solution (manufactured by Aldrich,
Nafion 5 wt% solution) and PTFE particle dispersion solution (manufactured by DuPont-Mitsui Fluorochemicals, Teflon 30)
A catalyst paste consisting of J) was prepared.

【0057】つぎに、その触媒ペーストを高分子フィル
ム(FEPフィルム:テトラフロロエチレン−ヘキサフ
ロロプロピレン共重合体シート、ダイキン工業(株)製:
厚さ25μm)上に塗布し、室温で約1時間自然乾燥して
得た触媒層を、ホットプレス(95℃)にて固体高分子
電解質膜(デュポン社製、ナフィオン、厚さ150μ
m)の両面に接合し、さらにその両面にガス拡散層(カ
ーボンペーパ:厚さ0.5mm)をホットプレス(13
5℃)にて接合し、ガス拡散電極Bを得た。
Next, the catalyst paste was applied to a polymer film (FEP film: tetrafluoroethylene-hexafluoropropylene copolymer sheet, manufactured by Daikin Industries, Ltd.):
The catalyst layer obtained by applying the solution on a film having a thickness of 25 μm and naturally drying at room temperature for about 1 hour was subjected to hot pressing (95 ° C.) using a solid polymer electrolyte membrane (Dupont, Nafion, 150 μm thick).
m), and a gas diffusion layer (carbon paper: 0.5 mm thick) is hot-pressed (13
(5 ° C.) to obtain a gas diffusion electrode B.

【0058】ガス拡散電極Bの白金量は、約1.0mg
/cm2となるように、ペースト製作時の白金担持カー
ボン量を調整した。そして、そのガス拡散電極Bを燃料
電池の単セルに組み込んでセルBを得た。
The platinum amount of the gas diffusion electrode B is about 1.0 mg
/ Cm 2 , the amount of platinum-supported carbon during paste production was adjusted. Then, the gas diffusion electrode B was incorporated into a single cell of a fuel cell to obtain a cell B.

【0059】これらのセルの、アノード側供給ガスとし
て水素、カソード側供給ガスとして酸素を用いた際の電
流―電圧特性を図3に、アノード側供給ガスとして水
素、カソード側供給ガスとして空気を用いた際の電流―
電圧特性を図4に示す。運転条件は、供給ガス圧は1気
圧で、それぞれ70℃の密閉水槽中でバブリングするこ
とによって加湿した。そしてセルの運転温度は60℃と
し、各電流値での測定時の保持時間は2分とした。
FIG. 3 shows the current-voltage characteristics of these cells when hydrogen was used as the anode-side supply gas and oxygen was used as the cathode-side supply gas, and hydrogen was used as the anode-side supply gas and air was used as the cathode-side supply gas. Current when
FIG. 4 shows the voltage characteristics. The operating conditions were as follows: the supply gas pressure was 1 atm, and each was humidified by bubbling in a closed water tank at 70 ° C. The operating temperature of the cell was set to 60 ° C., and the holding time at the time of measurement at each current value was set to 2 minutes.

【0060】図3および図4において、記号(●)はセ
ルAの特性、又記号(▲)はセルBの特性を示した。図
3および図4から明らかなように、本発明による実施例
のセルAは、比較例のセルBと比べて、各電流密度にお
いて、高い出力電圧が得られた。特に図4に見られるよ
うに、カソード側供給ガスとして空気を用いた場合には
その差が顕著であった。
In FIGS. 3 and 4, the symbol (記号) indicates the characteristic of the cell A, and the symbol (▲) indicates the characteristic of the cell B. As is clear from FIGS. 3 and 4, the cell A of the example according to the present invention obtained a higher output voltage at each current density than the cell B of the comparative example. In particular, as shown in FIG. 4, the difference was remarkable when air was used as the cathode-side supply gas.

【0061】[0061]

【発明の効果】本発明のガス拡散電極によれば、触媒層
とガス拡散層とに連続して、連通孔を有する有孔性樹脂
を備えているために、高いガス拡散性とともに樹脂の撥
水性によって水の滞留が防がれ、触媒層内部まで高いガ
ス拡散性が確保されている。
According to the gas diffusion electrode of the present invention, since the porous resin having the communication hole is provided continuously with the catalyst layer and the gas diffusion layer, the resin has high gas diffusion and repellency of the resin. The retention of water is prevented by the aqueous solution, and high gas diffusivity is ensured even inside the catalyst layer.

【0062】さらに、ガス拡散層と触媒層と固体高分子
電解質膜とを一体化した後に有孔性樹脂を配することに
より、高い電子伝導性およびプロトン伝導性をも併せ持
っているために、酸素分圧の低い空気使用時にも孔内部
まで酸素の供給が可能となり、従来の電極に比べて大幅
に出力し、電流密度の高い領域においても高性能な燃料
電池の製造が可能となる。
Further, by disposing the porous resin after integrating the gas diffusion layer, the catalyst layer, and the solid polymer electrolyte membrane, it has high electron conductivity and proton conductivity. Oxygen can be supplied to the inside of the hole even when air with a low partial pressure is used, so that the output is greatly increased as compared with a conventional electrode, and a high-performance fuel cell can be manufactured even in a region with a high current density.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明になるガス拡散電極の構造を示す模式
図。
FIG. 1 is a schematic view showing the structure of a gas diffusion electrode according to the present invention.

【図2】従来のガス拡散電極の構造を示す模式図。FIG. 2 is a schematic view showing the structure of a conventional gas diffusion electrode.

【図3】アノードに水素を、カソードに酸素を用いた場
合のセルの電流―電圧特性を示す図。
FIG. 3 is a diagram showing current-voltage characteristics of a cell when hydrogen is used for an anode and oxygen is used for a cathode.

【図4】アノードに水素を、カソードに空気を用いた場
合のセルの電流―電圧特性を示す図。
FIG. 4 is a diagram showing current-voltage characteristics of a cell when hydrogen is used for an anode and air is used for a cathode.

【符号の説明】[Explanation of symbols]

1 触媒層 2 ガス拡散層 3 有孔性樹脂 4 固体高分子電解質膜 5 PTFE粒子 REFERENCE SIGNS LIST 1 catalyst layer 2 gas diffusion layer 3 porous resin 4 solid polymer electrolyte membrane 5 PTFE particles

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 8/10 H01M 8/10 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01M 8/10 H01M 8/10

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 触媒層とガス拡散層とに連通孔を有する
有孔性樹脂を備え、触媒層に備えた有孔性樹脂とガス拡
散層に備えた有孔性樹脂が連続していることを特徴とす
るガス拡散電極。
1. A porous resin having communication holes between a catalyst layer and a gas diffusion layer, wherein the porous resin provided in the catalyst layer and the porous resin provided in the gas diffusion layer are continuous. A gas diffusion electrode.
【請求項2】 有孔性樹脂の多孔度が30%以上95%
以下であることを特徴とする請求項1記載のガス拡散電
極。
2. The porosity of the porous resin is 30% or more and 95% or more.
The gas diffusion electrode according to claim 1, wherein:
【請求項3】 有孔性樹脂の平均孔径が50nm以上5
μm以下であることを特徴とする請求項1または2記載
のガス拡散電極。
3. The porous resin has an average pore diameter of 50 nm or more.
3. The gas diffusion electrode according to claim 1, wherein the diameter is not more than μm.
【請求項4】 樹脂を溶媒に溶解させた溶液から樹脂を
相分離させることを特徴とする請求項1、2または3記
載の有孔性樹脂の製造方法。
4. The method for producing a porous resin according to claim 1, wherein the resin is phase-separated from a solution in which the resin is dissolved in a solvent.
【請求項5】 樹脂を第1の溶媒に溶解させた溶液か
ら、樹脂が不溶でかつ第1の溶媒と相溶性のある第2の
溶媒を用いて、第1の溶媒を第2の溶媒で置換して樹脂
を相分離させ、その後第2の溶媒を除去することを特徴
とする請求項1、2、3または4記載の有孔性樹脂の製
造方法。
5. A method of dissolving a resin in a first solvent, using a second solvent in which the resin is insoluble and compatible with the first solvent, and converting the first solvent into a second solvent. The method for producing a porous resin according to claim 1, wherein the second solvent is removed after the resin is subjected to phase separation by substitution.
【請求項6】 触媒層とガス拡散層とを備えたガス拡散
電極に、樹脂を溶媒に溶解させた溶液を含ませた後、樹
脂を相分離させる工程を経ることを特徴とする請求項
1、2または3記載のガス拡散電極の製造方法。
6. The method according to claim 1, further comprising a step of causing a gas diffusion electrode provided with a catalyst layer and a gas diffusion layer to contain a solution obtained by dissolving the resin in a solvent and then phase-separating the resin. 4. The method for producing a gas diffusion electrode according to 2 or 3.
【請求項7】 固体高分子電解質膜の少なくとも一方に
触媒層とガス拡散層とを含むガス拡散電極を接合した膜
―電極接合体のガス拡散電極部に、樹脂を溶媒に溶解さ
せた溶液を含ませた後、樹脂を相分離させる工程を経る
ことを特徴とする請求項1、2または3記載のガス拡散
電極の製造方法。
7. A solution obtained by dissolving a resin in a solvent is applied to a gas diffusion electrode portion of a membrane-electrode assembly in which a gas diffusion electrode including a catalyst layer and a gas diffusion layer is bonded to at least one of solid polymer electrolyte membranes. 4. The method for producing a gas diffusion electrode according to claim 1, further comprising a step of phase-separating the resin after being included.
【請求項8】 触媒層とガス拡散層とを含むガス拡散電
極に、樹脂を溶媒に溶解させた溶液を含ませる工程が減
圧下でおこなわれることを特徴とする請求項6または7
記載のガス拡散電極の製造方法。
8. The method according to claim 6, wherein the step of including a solution obtained by dissolving the resin in the solvent in the gas diffusion electrode including the catalyst layer and the gas diffusion layer is performed under reduced pressure.
A method for producing the gas diffusion electrode according to the above.
JP2000089418A 2000-03-28 2000-03-28 Gas diffusion electrode and its manufacturing method Pending JP2001273907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000089418A JP2001273907A (en) 2000-03-28 2000-03-28 Gas diffusion electrode and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000089418A JP2001273907A (en) 2000-03-28 2000-03-28 Gas diffusion electrode and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2001273907A true JP2001273907A (en) 2001-10-05

Family

ID=18605185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000089418A Pending JP2001273907A (en) 2000-03-28 2000-03-28 Gas diffusion electrode and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2001273907A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004054021A3 (en) * 2002-12-10 2005-02-03 3M Innovative Properties Co Catalyst ink
JP2013536541A (en) * 2010-06-29 2013-09-19 ヴィート エヌブイ Gas diffusion electrode, manufacturing method thereof, membrane electrode assembly including the same, and method of manufacturing membrane electrode assembly including the same
CN114717587A (en) * 2022-05-12 2022-07-08 清华大学 Diffusion layer, preparation method thereof and proton exchange membrane electrolytic cell

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004054021A3 (en) * 2002-12-10 2005-02-03 3M Innovative Properties Co Catalyst ink
CN100380723C (en) * 2002-12-10 2008-04-09 3M创新有限公司 Catalyst ink
US7855160B2 (en) 2002-12-10 2010-12-21 3M Innovative Properties Company Catalyst ink
JP2013536541A (en) * 2010-06-29 2013-09-19 ヴィート エヌブイ Gas diffusion electrode, manufacturing method thereof, membrane electrode assembly including the same, and method of manufacturing membrane electrode assembly including the same
JP2017037849A (en) * 2010-06-29 2017-02-16 ヴィート エヌブイ Gas diffusion electrode, method of producing the same, membrane electrode assembly comprising the same and method of producing membrane electrode assembly comprising the same
CN114717587A (en) * 2022-05-12 2022-07-08 清华大学 Diffusion layer, preparation method thereof and proton exchange membrane electrolytic cell
CN114717587B (en) * 2022-05-12 2023-01-31 清华大学 Proton exchange membrane electrolytic cell

Similar Documents

Publication Publication Date Title
US8323848B2 (en) Membrane-electrode assembly for fuel cell, preparation method, and fuel cell comprising the same
US6733915B2 (en) Gas diffusion backing for fuel cells
US9537156B2 (en) Method for making membrane-electrode assembly for fuel cell and method for making fuel cell system comprising the same
JP4607708B2 (en) Fuel cell electrode, fuel cell, and fuel cell manufacturing method
JP2001345106A (en) Electrode for fuel cell and manufacturing method
EP1721355B1 (en) Membrane electrode unit
JP4612569B2 (en) Membrane electrode structure for polymer electrolyte fuel cell
JP2002100372A (en) Gas diffusion electrode for fuel cell and its manufacturing method
JP2006019300A (en) Electrode for fuel cell, fuel cell, and manufacturing method therefor
JP2008010173A (en) Membrane/electrode assembly for fuel cell
JP4870360B2 (en) FUEL CELL ELECTRODE, FUEL CELL, AND METHOD FOR PRODUCING FUEL CELL ELECTRODE
KR101936549B1 (en) polymer electrolytic membrane having low hydrogen permeablility, and membrane electrode assembly using the same
JP4433552B2 (en) Composite catalyst and production method thereof
JP5023591B2 (en) Membrane / electrode assembly for fuel cells
JP4403634B2 (en) Composite catalyst for solid polymer electrolyte fuel cell.
JP2001273907A (en) Gas diffusion electrode and its manufacturing method
JP2001283864A (en) Manufacturing method of gas diffusion electrode
JP4815651B2 (en) Gas diffusion electrode for polymer electrolyte fuel cell
KR100570769B1 (en) A electrode for fuel cell and a fuel cell comprising the same
JP2001283866A (en) Gas diffusion electrode for fuel cell and its manufacturing method
JP2003303595A (en) Gas diffusion electrode for fuel cell
JP2006318790A (en) Solid polymer type fuel cell, gas diffusion electrode therefor, and its manufacturing method
JP4320482B2 (en) Fuel cell electrode and manufacturing method thereof
KR100599811B1 (en) Membrane/electrode for fuel cell and fuel cell system comprising same
KR101073014B1 (en) A membrane electrode assembly for fuel cell and a fuel cell comprising the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213