JP4910305B2 - A catalyst layer for a polymer electrolyte fuel cell and a polymer electrolyte fuel cell comprising the same. - Google Patents

A catalyst layer for a polymer electrolyte fuel cell and a polymer electrolyte fuel cell comprising the same. Download PDF

Info

Publication number
JP4910305B2
JP4910305B2 JP2005140000A JP2005140000A JP4910305B2 JP 4910305 B2 JP4910305 B2 JP 4910305B2 JP 2005140000 A JP2005140000 A JP 2005140000A JP 2005140000 A JP2005140000 A JP 2005140000A JP 4910305 B2 JP4910305 B2 JP 4910305B2
Authority
JP
Japan
Prior art keywords
catalyst layer
cation exchange
exchange resin
fuel cell
polymer electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005140000A
Other languages
Japanese (ja)
Other versions
JP2006318757A (en
Inventor
好伸 安永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2005140000A priority Critical patent/JP4910305B2/en
Publication of JP2006318757A publication Critical patent/JP2006318757A/en
Application granted granted Critical
Publication of JP4910305B2 publication Critical patent/JP4910305B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Description

本発明は、固体高分子形燃料電池用触媒層およびその触媒層を備える固体高分子形燃料電池に関するものである。   The present invention relates to a catalyst layer for a polymer electrolyte fuel cell and a polymer electrolyte fuel cell including the catalyst layer.

固体高分子形燃料電池(PEFC)は、固体高分子電解質膜の一方の面にアノ−ドを他の面にカソ−ドを接合して構成され、例えば、アノ−ドに燃料として水素、カソ−ドに酸化剤として酸素をそれぞれ供給すると、つぎの電気化学反応によって発電する装置である。   A polymer electrolyte fuel cell (PEFC) is constructed by joining an anode on one side of a solid polymer electrolyte membrane and a cathode on the other side. For example, hydrogen and a cathode are used as fuel for the anode. When oxygen is supplied as an oxidant to the cathode, it generates electricity by the following electrochemical reaction.

アノ−ド:2H→4H+4e
カソ−ド:O+4H+4e→2H
アノ−ドおよびカソ−ドは、いずれもガス拡散層と触媒層とからなり、触媒層が固体高分子電解質膜に接合された構造である。触媒層には白金族金属触媒が含まれ、上記電気化学反応はこの触媒層で進行する。触媒層と接したガス拡散層は、触媒層への反応ガスの供給と集電との機能をもつ。さらに、カソード側での反応によって生成する水は、ガス拡散層を介して排出される。したがって、ガス拡散層は、ガス透過性、導電性および撥水性が要求される。
Anod: 2H 2 → 4H + + 4e
Cathode: O 2 + 4H + + 4e → 2H 2 O
Both the anode and the cathode are composed of a gas diffusion layer and a catalyst layer, and the catalyst layer is bonded to the solid polymer electrolyte membrane. The catalyst layer contains a platinum group metal catalyst, and the electrochemical reaction proceeds in this catalyst layer. The gas diffusion layer in contact with the catalyst layer has functions of supplying a reaction gas to the catalyst layer and collecting current. Furthermore, water produced by the reaction on the cathode side is discharged through the gas diffusion layer. Therefore, the gas diffusion layer is required to have gas permeability, conductivity, and water repellency.

また、触媒層にも反応生成物である水が滞留しないように、撥水性が要求される。特許文献1および特許文献2には、触媒金属の微粒子を担持した導電材により構成される触媒層を有し、この触媒層にはプロトン伝導材、撥水剤、結着剤が含まれ、結着剤としては撥水性を有するフッ素樹脂が好ましく、その例としてポリテトラフルオロエチレン、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体などが記載されている。   Further, water repellency is required so that water as a reaction product does not stay in the catalyst layer. Patent Document 1 and Patent Document 2 have a catalyst layer composed of a conductive material carrying catalyst metal fine particles, and this catalyst layer contains a proton conductive material, a water repellent, and a binder. As the adhesive, a fluororesin having water repellency is preferable. Examples thereof include polytetrafluoroethylene, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, and the like.

特許文献3には、触媒、電子伝導体、イオン伝導体からなる電極触媒層に、結着性を高めるために、イオン伝導体(プロトン交換樹脂)以外のポリマーを含む技術が開示されている。そして、このようなポリマーとしては、フッ素原子を含むポリマーが挙げられ、ポリフッ化ビニル(PVF)、ポリフッ化ビニリデン(PVDF)、ポリヘキサフルオロプロピレン(FEP)、ポリテトラフルオロエチレン、ポリパーフルオロアルキルビニルエーテル(PFA)など、あるいはこれらの共重合体、これらのポリマーを構成するモノマ単位とエチレンやスチレンなどの他のモノマとの共重合体、さらには、ブレンドなども用いることができること、中でも、ポリフッ化ビニリデン(PVDF)、ヘキサフルオロプロピレン−フッ化ビニリデン共重合体が特に好ましいポリマーであることが記載されている。   Patent Document 3 discloses a technique in which a polymer other than an ionic conductor (proton exchange resin) is included in an electrode catalyst layer made of a catalyst, an electronic conductor, and an ionic conductor in order to increase the binding property. Examples of such a polymer include polymers containing fluorine atoms, such as polyvinyl fluoride (PVF), polyvinylidene fluoride (PVDF), polyhexafluoropropylene (FEP), polytetrafluoroethylene, and polyperfluoroalkyl vinyl ether. (PFA) and the like, copolymers thereof, copolymers of monomer units constituting these polymers and other monomers such as ethylene and styrene, and blends can be used. It is described that vinylidene (PVDF) and a hexafluoropropylene-vinylidene fluoride copolymer are particularly preferable polymers.

さらに、特許文献3には、これらポリマーの電極触媒層中の含有量としては、重量比で5〜40%の範囲が好ましいこと、電極触媒層の三次元網目構造の空隙率は10〜95%の範囲であることが好ましいことが記載されている。   Furthermore, in Patent Document 3, the content of these polymers in the electrode catalyst layer is preferably in the range of 5 to 40% by weight, and the porosity of the three-dimensional network structure of the electrode catalyst layer is 10 to 95%. It is described that it is preferable to be in the range.

一方、固体高分子形燃料電池の電極の触媒金属として、カソードには白金を用いることが知られている。この金属を超少量担持する白金担持カーボンの製作方法が特許文献4や特許文献5で開示されている。その具体的な製造方法はつぎのとおりである。まず、陽イオン交換樹脂溶液とカーボンとを混合したのちに吸引濾過し、つづいて乾燥することによって陽イオン交換樹脂で被覆したカーボンを製作する。つぎに、そのカーボンを白金錯体陽イオンを含む水溶液中に浸漬したのちに、その陽イオンをイオン交換反応によってその樹脂のプロトン伝導経路に選択的に吸着する。さらに、その経路に吸着した陽イオンを180℃の水素雰囲気中で還元する。この方法により製作した触媒粉末は、触媒金属が陽イオン交換樹脂のプロトン伝導経路とカーボンの表面との接面に主に担持しているので、この粉末を備えるPEFCは、超少量の触媒金属担持量で優れた分極特性を示す。   On the other hand, it is known that platinum is used for a cathode as a catalyst metal of an electrode of a polymer electrolyte fuel cell. Patent Document 4 and Patent Document 5 disclose a method for producing platinum-supported carbon that supports a very small amount of this metal. The specific manufacturing method is as follows. First, after mixing the cation exchange resin solution and carbon, suction filtration is performed, followed by drying to produce carbon coated with the cation exchange resin. Next, after the carbon is immersed in an aqueous solution containing a platinum complex cation, the cation is selectively adsorbed on the proton conduction path of the resin by an ion exchange reaction. Furthermore, cations adsorbed on the path are reduced in a hydrogen atmosphere at 180 ° C. In the catalyst powder produced by this method, the catalyst metal is mainly supported on the contact surface between the proton conduction path of the cation exchange resin and the surface of the carbon. Therefore, the PEFC equipped with this powder supports an extremely small amount of the catalyst metal. Excellent polarization characteristics in quantity.

特開平07−050170号公報Japanese Patent Application Laid-Open No. 07-050170 特開平06−236762号公報Japanese Patent Laid-Open No. 06-236762 特開2004−273285号公報JP 2004-273285 A 特開2000−173626号公報JP 2000-173626 A 特開2003−257439号公報JP 2003-257439 A

特許文献1や特許文献2に記載されているように、従来の白金担持カーボンを用いた触媒層を備えたPEFCの場合、触媒層内部での水の滞留を抑制するため、触媒層に撥水材料を加えることが知られている。そこで、本発明者が触媒層中の撥水材料の最適な添加量を調査した結果、触媒層中のカーボンの質量に対して10質量%〜25質量%であることが明らかになった。   As described in Patent Document 1 and Patent Document 2, in the case of a PEFC having a catalyst layer using conventional platinum-supported carbon, water repellent is applied to the catalyst layer in order to suppress the retention of water inside the catalyst layer. It is known to add ingredients. Therefore, as a result of investigating the optimum addition amount of the water repellent material in the catalyst layer, the present inventor has found that it is 10% by mass to 25% by mass with respect to the mass of carbon in the catalyst layer.

しかしながら、特許文献4や特許文献5に記載された、陽イオン交換樹脂のプロトン伝導経路とカーボンの表面との接面に触媒金属を主に担持している混合物(超少量触媒金属担持触媒)を用い、この混合物に25質量%の撥水材料を加えて製作した触媒層を備えたPEFCの耐久性能は、ほとんど向上しなかった。   However, the mixture (ultra-small amount catalyst metal-supported catalyst) mainly supporting the catalyst metal on the contact surface between the proton conduction path of the cation exchange resin and the carbon surface described in Patent Document 4 and Patent Document 5 is used. The durability performance of PEFC provided with a catalyst layer produced by adding 25% by mass of a water repellent material to this mixture was hardly improved.

その原因を解明するために、本発明者は、鋭意実験を重ねた結果、超少量触媒金属担持触媒を用いた触媒層を備えたPEFCは、従来の白金担持カーボンを用いたものと比較して、著しく水の滞留の影響を受けることがわかった。   In order to elucidate the cause, the present inventor has conducted extensive experiments, and as a result, the PEFC provided with the catalyst layer using the ultra-small amount of catalyst metal-supported catalyst is compared with the conventional one using platinum-supported carbon. It was found that it was significantly affected by water retention.

すなわち、特許文献4や特許文献5で開示された方法により製作した超少量触媒金属担持触媒粉末を備える固体高分子形燃料電池(PEFC)は、連続運転試験中に出力が低下するという問題があった。この出力低下の原因は、PEFCの連続運転試験中に生成する水が触媒層内部に滞留すること、すなわち「フラッディング現象」によるものと考えられる。   In other words, the polymer electrolyte fuel cell (PEFC) provided with the ultra-small catalyst metal-supported catalyst powder manufactured by the methods disclosed in Patent Document 4 and Patent Document 5 has a problem that the output decreases during the continuous operation test. It was. The cause of this decrease in output is considered to be due to the water generated during the continuous operation test of PEFC staying in the catalyst layer, that is, the “flooding phenomenon”.

なお、特許文献3には、従来の白金担持カーボンを用いた、触媒、電子伝導体、イオン伝導体からなる電極触媒層に、結着性を高めるために、イオン伝導体(プロトン交換樹脂)以外のポリマーを含む技術が開示され、ポリマーとしてはポリフッ化ビニリデン(PVDF)が特に好ましいことが記載されているが、電極触媒層中における電子伝導体とイオン伝導体以外のポリマーとの最適な混合比率については、何ら記載されていない。   In Patent Document 3, other than ion conductors (proton exchange resins) are used in order to enhance the binding property to an electrode catalyst layer composed of a catalyst, an electron conductor, and an ion conductor using conventional platinum-supported carbon. Although a technique including a polymer of the above is disclosed, and it is described that polyvinylidene fluoride (PVDF) is particularly preferable as the polymer, an optimal mixing ratio of the electron conductor and the polymer other than the ionic conductor in the electrode catalyst layer Is not described at all.

そこで、本発明の目的は、陽イオン交換樹脂のプロトン伝導経路とカーボンの表面との接面に触媒金属を主に担持している混合物を含む触媒層を用いた固体高分子形燃料電池(P E F C ) において、触媒層前駆体の乾燥温度と撥水性樹脂の融点および陽イオン交換樹脂の分解温度との関係を求めることにより、耐久性能が著しく改善された固体高分子形燃料電池( P E F C ) を提供することにある。さらに、水の排出性の要因となる触媒中の撥水性樹脂と炭素材料との最適混合範囲を決定することが好ましい。また、触媒層の空孔率の最適範囲を決定することが好ましい。 Accordingly, an object of the present invention is to provide a polymer electrolyte fuel cell (P) using a catalyst layer containing a mixture mainly supporting a catalyst metal on the contact surface between the proton conduction path of the cation exchange resin and the carbon surface. in E F C), the relationship between the decomposition temperature of the melting point and the cation exchange resin of the drying temperature and the water repellent resin of medium layer precursor by determined Mel can touch, the polymer electrolyte fuel that durability is significantly improved The object is to provide a battery (PEFC). Furthermore, it is preferable to determine the optimum mixing range of the water repellent resin and the carbon material in the catalyst, which causes water discharge. Moreover, it is preferable to determine the optimum range of the porosity of the catalyst layer.

発明は、固体高分子形燃料電池用触媒層に関するもので、炭素材料と陽イオン交換樹脂と触媒金属と撥水性樹脂とを含み、前記撥水性樹脂は少なくとも前記陽イオン交換樹脂のプロトン伝導経路に備えられ、前記陽イオン交換樹脂のプロトン伝導経路と前記炭素材料の表面との接面に前記触媒金属が主に担持され、前記撥水性樹脂の融点が前記陽イオン交換樹脂の分解温度よりも低いことを特徴とするものである。 The present invention relates to a catalyst layer for a polymer electrolyte fuel cell, comprising a carbon material, a cation exchange resin, a catalyst metal, and a water repellent resin, wherein the water repellent resin is at least a proton conduction path of the cation exchange resin. provided, the catalytic metal contact surface between the proton conducting path of the cation exchange resin surface of the carbon material is mainly supported, the decomposition temperature of the melting point of the pre woodwasp aqueous resin is the cation exchange resin Is also low.

本発明の固体高分子形燃料電池用触媒層において、前記炭素材料と前記撥水性樹脂の合計質量に対する前記撥水性樹脂の比率が10質量%以上、60質量%以下であることが好ましい。In the catalyst layer for a polymer electrolyte fuel cell of the present invention, the ratio of the water repellent resin to the total mass of the carbon material and the water repellent resin is preferably 10% by mass or more and 60% by mass or less.

本発明の固体高分子形燃料電池用触媒層の製造方法において、陽イオン交換樹脂で被覆された炭素材料に、前記陽イオン交換樹脂の固定イオンに触媒金属の陽イオンを吸着させ、前記触媒金属の陽イオンを化学的に還元させて得られた触媒金属含む粉末と、撥水性樹脂との混合溶液を得る工程と、前記混合液を、前記撥水性樹脂の融点よりも高く、前記陽イオン交換樹脂の分解温度よりも低い温度で乾燥する工程を経ることが好ましい。 In the method for producing a catalyst layer for a polymer electrolyte fuel cell according to the present invention , a cation of a catalyst metal is adsorbed on a fixed ion of the cation exchange resin on a carbon material coated with a cation exchange resin, A step of obtaining a mixed solution of the catalyst metal-containing powder obtained by chemically reducing the cation of the cation and the water-repellent resin, and the mixed solution is higher than the melting point of the water-repellent resin, the cation exchange It is preferable to go through a step of drying at a temperature lower than the decomposition temperature of the resin.

発明は、固体高分子形燃料電池に関するもので、請求項1または2記載の固体高分子電解質形燃料電池触媒を備えることを特徴とするものである。 The present invention relates to a polymer electrolyte fuel cell, comprising the polymer electrolyte fuel cell catalyst according to claim 1 or 2 .

本発明の固体高分子形燃料電池用触媒層は、撥水性樹脂を用いることにより、また、撥水性樹脂の融点が陽イオン交換樹脂の分解温度よりも低いものを用いることにより、撥水性樹脂の融点よりも高く、陽イオン交換樹脂の分解温度よりも低い温度で乾燥して触媒層前駆体を作製することができるため、陽イオン交換樹脂を分解することなく、撥水性樹脂を炭素材料の表面に平均的に存在させることができる。   The catalyst layer for a polymer electrolyte fuel cell of the present invention uses a water repellent resin, and uses a water repellent resin whose melting point is lower than the decomposition temperature of the cation exchange resin. Since the catalyst layer precursor can be produced by drying at a temperature higher than the melting point and lower than the decomposition temperature of the cation exchange resin, the water-repellent resin can be applied to the surface of the carbon material without decomposing the cation exchange resin. Can be present on average.

そのため、撥水性樹脂は陽イオン交換樹脂のプロトン伝導経路に備えられることになり、触媒金属は陽イオン交換樹脂のプロトン伝導経路とカーボンの表面との接面に主に担持されているため、触媒金属と撥水性樹脂との距離はかなり短いか、あるいは接触していることになる。したがって、燃料電池の反応によって触媒金属上で生成した水は、撥水性樹脂によって触媒金属から除去される。すなわち、触媒層の撥水性が向上し、触媒層内部の水の滞留が抑制されるため、触媒層内部でのフラッディングが著しく抑制される。   Therefore, the water repellent resin is provided in the proton conduction path of the cation exchange resin, and the catalyst metal is mainly supported on the contact surface between the proton conduction path of the cation exchange resin and the carbon surface. The distance between the metal and the water repellent resin is quite short or in contact. Accordingly, water generated on the catalyst metal by the reaction of the fuel cell is removed from the catalyst metal by the water repellent resin. In other words, the water repellency of the catalyst layer is improved and the retention of water inside the catalyst layer is suppressed, so that flooding inside the catalyst layer is remarkably suppressed.

さらに、本発明の触媒層では、炭素材料と撥水性樹脂の合計質量に対する撥水性樹脂の比率が10質量%以上、60質量%以下の範囲であるため、触媒層のプロトン伝導性や電子電導性が適度な値に保たれる。   Furthermore, in the catalyst layer of the present invention, the ratio of the water-repellent resin to the total mass of the carbon material and the water-repellent resin is in the range of 10% by mass or more and 60% by mass or less. Is kept at a reasonable value.

なお、本発明の触媒層の空孔率は特に限定されないが、反応ガスの出入りや水の排出が円滑に行われるためには、60%以上、85%以下であることが好ましい。   The porosity of the catalyst layer of the present invention is not particularly limited, but is preferably 60% or more and 85% or less in order to smoothly enter and exit the reaction gas and discharge water.

その結果、本発明の触媒層を備えた固体高分子形燃料電池は、高い出力および優れた耐久性能を示すものである。   As a result, the polymer electrolyte fuel cell provided with the catalyst layer of the present invention exhibits high output and excellent durability performance.

本発明による、炭素材料と陽イオン交換樹脂と触媒金属と撥水性樹脂とを含む固体高分子形燃料電池用触媒層は、撥水性樹脂は少なくとも陽イオン交換樹脂のプロトン伝導経路に備えられ、陽イオン交換樹脂のプロトン伝導経路と炭素材料の表面との接面に触媒金属が主に担持され、炭素材料と撥水性樹脂の合計質量に対する撥水性樹脂の比率が10質量%以上、60質量%以下で、撥水性樹脂の融点が陽イオン交換樹脂の分解温度よりも低いことを特徴とするものである。   The catalyst layer for a polymer electrolyte fuel cell comprising a carbon material, a cation exchange resin, a catalyst metal, and a water repellent resin according to the present invention is provided with the water repellent resin at least in the proton conduction path of the cation exchange resin. The catalytic metal is mainly supported on the contact surface between the proton conduction path of the ion exchange resin and the surface of the carbon material, and the ratio of the water repellent resin to the total mass of the carbon material and the water repellent resin is 10% by mass or more and 60% by mass or less. Thus, the melting point of the water repellent resin is lower than the decomposition temperature of the cation exchange resin.

本発明の固体高分子形燃料電池用触媒層を備える固体高分子形燃料電池の模式図を図1に示す。図1において、11は本発明の固体高分子形燃料電池用触媒層、12は固体高分子電解質膜、13は撥水性を付与した導電性多孔質体、14はガス供給路、15はセパレータ、16はガスケットやOリングなどのシール材、17は固体高分子形燃料電池である。   A schematic view of a polymer electrolyte fuel cell comprising the catalyst layer for polymer electrolyte fuel cell of the present invention is shown in FIG. In FIG. 1, 11 is a catalyst layer for a polymer electrolyte fuel cell of the present invention, 12 is a solid polymer electrolyte membrane, 13 is a conductive porous body imparted with water repellency, 14 is a gas supply path, 15 is a separator, 16 is a sealing material such as a gasket or O-ring, and 17 is a polymer electrolyte fuel cell.

この固体高分子形燃料電池用触媒層11の一方の面が、固体高分子電解質膜12のそれぞれの面に接触するように配置される。これらの固体高分子形燃料電池用触媒層11の他の面には、撥水性を付与した導電性多孔質体13の一方の面が接触するように配置される。さらに、これらの導電性多孔質体13の他の面にはガス供給路14を備えるセパレータ15が接触するように配置される。   One surface of the solid polymer fuel cell catalyst layer 11 is disposed so as to be in contact with each surface of the solid polymer electrolyte membrane 12. The other surface of the catalyst layer 11 for the polymer electrolyte fuel cell is disposed so that one surface of the conductive porous body 13 having water repellency is in contact therewith. Furthermore, the separator 15 provided with the gas supply path 14 is disposed on the other surface of the conductive porous body 13.

図1に示すように、固体高分子形燃料電池17は、一対の触媒層11、一対の導電性多孔質体13および一対のセパレータ15で固体高分子電解質膜12を挟持することによって構成される。これらのセパレータの間に、ガスケットやOリングなどのシール材16を配置することによって、反応ガスの気密が保たれる。   As shown in FIG. 1, the polymer electrolyte fuel cell 17 is configured by sandwiching a polymer electrolyte membrane 12 between a pair of catalyst layers 11, a pair of conductive porous bodies 13 and a pair of separators 15. . By arranging a sealing material 16 such as a gasket or an O-ring between these separators, the reaction gas is kept airtight.

本発明の固体高分子形燃料電池用触媒層11の模式図を図2に示す。図2において、記号11と12は図1と同じものを示し、21は炭素材料、22は陽イオン交換樹脂、23は撥水性樹脂、24は細孔である。   A schematic diagram of the catalyst layer 11 for a polymer electrolyte fuel cell of the present invention is shown in FIG. In FIG. 2, symbols 11 and 12 indicate the same as in FIG. 1, 21 is a carbon material, 22 is a cation exchange resin, 23 is a water repellent resin, and 24 is a pore.

固体高分子形燃料電池用触媒層11は、炭素材料21と陽イオン交換樹脂22と撥水性樹脂23とを含有する。図2に示すように、炭素材料21と陽イオン交換樹脂22と撥水性樹脂23とが混ざり合うことによって、それらが三次元的に分布する。炭素材料21の表面には、図示していないが、触媒金属の微細粒子が担持されている。   The catalyst layer 11 for a polymer electrolyte fuel cell contains a carbon material 21, a cation exchange resin 22, and a water repellent resin 23. As shown in FIG. 2, the carbon material 21, the cation exchange resin 22, and the water repellent resin 23 are mixed, so that they are three-dimensionally distributed. Although not shown, fine particles of catalytic metal are supported on the surface of the carbon material 21.

これらの混合物には、複数の細孔24が形成される。この細孔によって、カソードの酸素還元反応によって生成する水を排出することができる。固体高分子形燃料電池用触媒層11の空孔率が60%以上の場合に、その生成水を円滑に排出することができるので、水の排出の効果が著しく現われる。さらに、空孔率が85%より高くなると、触媒層のプロトン伝導性および電子伝導性が低下する。したがって、固体高分子形燃料電池用触媒層11の空孔率は、60%以上、85%以下であることが好ましい。   A plurality of pores 24 are formed in these mixtures. Through these pores, water generated by the oxygen reduction reaction of the cathode can be discharged. When the porosity of the catalyst layer 11 for the polymer electrolyte fuel cell is 60% or more, the generated water can be discharged smoothly, so that the effect of discharging water is remarkably exhibited. Further, when the porosity is higher than 85%, the proton conductivity and the electron conductivity of the catalyst layer are lowered. Therefore, the porosity of the polymer polymer fuel cell catalyst layer 11 is preferably 60% or more and 85% or less.

炭素材料は特に限定されるものではないが、ファーネスブラック、アセチレンブラック、ランプブラック、サーマルブラック、チャンネルブラックなどのカーボンブラックを用いることができる。炭素材料には、触媒金属の陽イオンを含む化合物の還元に対して高い活性を示すものが好ましく、例えば、デンカブラック、バルカンXC−72、ケッチェンブラックEC、ブラックパール2000等のカーボンブラックが好ましい。   The carbon material is not particularly limited, and carbon black such as furnace black, acetylene black, lamp black, thermal black, channel black, and the like can be used. As the carbon material, those showing high activity for reduction of a compound containing a cation of a catalytic metal are preferable. For example, carbon black such as Denka Black, Vulcan XC-72, Ketjen Black EC, Black Pearl 2000, etc. is preferable. .

陽イオン交換樹脂には、プロトン伝導性を示せばどのようなものでも良いが、化学的に安定で耐試薬特性に優れたパーフルオロカーボンスルフォン酸系のものが好ましい。   Any cation exchange resin may be used as long as it exhibits proton conductivity, but a perfluorocarbon sulfonic acid type that is chemically stable and excellent in reagent resistance is preferable.

撥水性樹脂を均一に触媒層に含有させ、撥水性樹脂を陽イオン交換樹脂のプロトン伝導経路に存在させるためには、溶媒に可溶性の撥水性樹脂を用いることが好ましく、撥水性樹脂の溶液を塗布した後、撥水性樹脂の融点よりも高く、陽イオン交換樹脂の分解温度よりも低くい温度で乾燥する必要がある。そのため、撥水性樹脂の融点は、陽イオン交換樹脂の分解温度よりも低くなければならない。その結果、陽イオン交換樹脂を分解することなく、撥水性樹脂を炭素材料の表面に平均的に存在させることができる。   In order to uniformly contain the water-repellent resin in the catalyst layer and make the water-repellent resin exist in the proton conduction path of the cation exchange resin, it is preferable to use a water-repellent resin that is soluble in a solvent. After coating, it is necessary to dry at a temperature higher than the melting point of the water repellent resin and lower than the decomposition temperature of the cation exchange resin. Therefore, the melting point of the water repellent resin must be lower than the decomposition temperature of the cation exchange resin. As a result, the water repellent resin can be present on the surface of the carbon material on average without decomposing the cation exchange resin.

本発明に用いる撥水性樹脂としては、水に対する接触角が90°以上のものが、触媒層内部のフラッディングが著しく抑制されるので好ましく、例えば、ポリフッ化ビニリデン(PVdF)[融点174℃]、ビニリデンフロライド−ヘキサフルオロプロピレン共重合体(P(VdF−HFP))[融点146〜155℃]等がある。   As the water-repellent resin used in the present invention, those having a contact angle with water of 90 ° or more are preferable because flooding inside the catalyst layer is remarkably suppressed. For example, polyvinylidene fluoride (PVdF) [melting point 174 ° C.], vinylidene Fluoride-hexafluoropropylene copolymer (P (VdF-HFP)) [melting point: 146 to 155 ° C.].

例えば、陽イオン交換樹脂としてNafionを用いた触媒層を乾燥する場合には、Nafionの分解温度が約200℃であるので、200℃よりも低い条件でおこなわなければならない。   For example, when drying a catalyst layer using Nafion as a cation exchange resin, the decomposition temperature of Nafion is about 200 ° C., so it must be performed under a condition lower than 200 ° C.

本発明の固体高分子形燃料電池用触媒層において、炭素材料と撥水性樹脂の合計質量に対する撥水性樹脂の比率は、10質量%以上の場合にフラッディングの抑制効果は現われるが、60質量%より高くなると、撥水性樹脂にはプロトンおよび電子伝導性がないので、触媒層の電流集中によりセルの出力が低下する。したがって、触媒層における炭素材料と撥水性樹脂の合計質量に対する撥水性樹脂の比率は、10質量%以上、60質量%以下とする必要がある。   In the catalyst layer for a polymer electrolyte fuel cell of the present invention, when the ratio of the water repellent resin to the total mass of the carbon material and the water repellent resin is 10% by mass or more, the effect of suppressing flooding appears, but from 60% by mass If it is higher, the water repellent resin does not have proton and electron conductivity, so that the cell output decreases due to current concentration in the catalyst layer. Therefore, the ratio of the water repellent resin to the total mass of the carbon material and the water repellent resin in the catalyst layer needs to be 10% by mass or more and 60% by mass or less.

本発明の固体高分子形燃料電池用触媒層11のカーボンの表面近傍の模式図を図3に示す。図3において、21は炭素材料、25は陽イオン交換樹脂のプロトン伝導経路に存在する撥水性樹脂、26は陽イオン交換樹脂の疎水性領域に存在する撥水性樹脂、31は陽イオン交換樹脂の親水性領域(プロトン伝導経路)、32は陽イオン交換樹脂の疎水性領域、33は触媒金属である。   A schematic view of the vicinity of the carbon surface of the catalyst layer 11 for a polymer electrolyte fuel cell of the present invention is shown in FIG. In FIG. 3, 21 is a carbon material, 25 is a water repellent resin existing in the proton conduction path of the cation exchange resin, 26 is a water repellent resin existing in the hydrophobic region of the cation exchange resin, and 31 is a cation exchange resin. A hydrophilic region (proton conduction path), 32 is a hydrophobic region of the cation exchange resin, and 33 is a catalyst metal.

炭素材料21の表面は、親水性領域であるプロトン伝導経路31と疎水性領域32とからなる陽イオン交換樹脂よって被覆されている。このプロトン伝導経路31とカーボン21の表面との接面に触媒金属33が選択的に担持されている。   The surface of the carbon material 21 is covered with a cation exchange resin composed of a proton conduction path 31 that is a hydrophilic region and a hydrophobic region 32. A catalytic metal 33 is selectively supported on the contact surface between the proton conduction path 31 and the surface of the carbon 21.

そして、撥水性樹脂は、親水性領域であるプロトン伝導経路31に存在するもの(25)と、陽イオン交換樹脂の疎水性領域に存在するもの(26)の2種類がある。触媒金属33の近傍に撥水性樹脂を備えることが、カソードの酸素還元反応により生成する水による触媒の不活性化を抑制するので好ましい。したがって、親水性領域であるプロトン伝導経路31に存在する撥水性樹脂25が多い場合に、触媒上で生成する水を排出し、触媒の不活性化を抑制する効果が大きくなる。なお、陽イオン交換樹脂の疎水性領域に存在する撥水性樹脂26は、水の排出とは無関係である。   There are two types of water-repellent resins: those present in the proton conduction path 31 which is a hydrophilic region (25) and those present in the hydrophobic region of the cation exchange resin (26). It is preferable to provide a water-repellent resin in the vicinity of the catalyst metal 33 because the catalyst is deactivated by water generated by the oxygen reduction reaction of the cathode. Therefore, when the water-repellent resin 25 present in the proton conduction path 31 which is a hydrophilic region is large, the effect of suppressing the inactivation of the catalyst is increased by discharging water generated on the catalyst. The water-repellent resin 26 present in the hydrophobic region of the cation exchange resin is irrelevant to water discharge.

本発明の固体高分子形燃料電池用触媒担持粉末を用いた固体高分子形燃料電池用電極では、触媒金属は、反応に関与するプロトン、水、水素および酸素が主に移動できるプロトン伝導経路経路と炭素材料の表面との接面に主として担持されている。この場所は、電子とプロトンとの授受を同時におこなうことのできる場所であるので、この接面に担持された触媒金属は電極反応に効率的に関与する。したがって、プロトン伝導経路経路と炭素材料の表面との接面に担持された触媒金属の割合を高めることによって、触媒金属の利用率は著しく高くなり、触媒金属の使用量を低減することができる。   In the polymer electrolyte fuel cell electrode using the catalyst-supported powder for polymer electrolyte fuel cell of the present invention, the catalyst metal is a proton conduction path route through which protons, water, hydrogen and oxygen involved in the reaction can mainly move. Is mainly supported on the contact surface between the surface of the carbon material and the surface of the carbon material. Since this place is a place where electrons and protons can be exchanged at the same time, the catalyst metal supported on this contact surface is efficiently involved in the electrode reaction. Therefore, by increasing the proportion of the catalyst metal supported on the contact surface between the proton conduction path and the surface of the carbon material, the utilization rate of the catalyst metal is remarkably increased, and the usage amount of the catalyst metal can be reduced.

本発明の固体高分子形燃料電池用電極の触媒層において、「触媒金属が陽イオン交換樹脂のプロトン伝導経路と炭素材料との接面に主として備えられている」とは、陽イオン交換樹脂のプロトン伝導経路に接するカーボン粒子表面に担持された触媒金属量が全触媒金属担持量の50質量%以上であることを意味する。すなわち、全触媒金属担持量の50質量%以上が、電極反応に対して活性な触媒金属であるため、触媒金属の利用率が著しく高くなる。   In the catalyst layer of the polymer electrolyte fuel cell electrode of the present invention, "the catalytic metal is mainly provided on the contact surface between the proton conduction path of the cation exchange resin and the carbon material" means that the cation exchange resin It means that the amount of catalyst metal supported on the surface of carbon particles in contact with the proton conduction path is 50% by mass or more of the total amount of catalyst metal supported. That is, 50% by mass or more of the total catalytic metal loading is a catalytic metal active for the electrode reaction, so that the utilization rate of the catalytic metal is remarkably increased.

なお、本発明においては、陽イオン交換樹脂のプロトン伝導経路に接するカーボン粒子表面に担持された触媒金属量の全触媒金属担持量に対する割合は高いほど好ましく、特に80質量%を超えていることが好ましい。このようにして、プロトン伝導経路とカーボン粒子との接触面に触媒金属を高率で担持させることによって、電極の高活性化がはかられる。   In the present invention, the ratio of the amount of the catalyst metal supported on the surface of the carbon particles in contact with the proton conduction path of the cation exchange resin to the total amount of the catalyst metal supported is preferably as high as possible, particularly exceeding 80% by mass. preferable. In this way, the electrode is highly activated by supporting the catalytic metal at a high rate on the contact surface between the proton conduction path and the carbon particles.

本発明の触媒担持粉末では、触媒金属が陽イオン交換樹脂のプロトン伝導経路と炭素材料との接面に主として備えられているが、このことは、文献(M.Kohmoto et.al.,GS Yuasa Technical Report,1,48(2004))に記載のように、固体高分子形燃料電池用電極における、触媒である白金の電気化学的活性表面積の経時変化や質量活性の比較から明らかになる。   In the catalyst-supported powder of the present invention, the catalyst metal is mainly provided on the contact surface between the proton conduction path of the cation exchange resin and the carbon material, which is described in the literature (M. Komomoto et.al., GS Yuasa). As described in Technical Report, 1, 48 (2004)), it becomes clear from the change over time in the electrochemically active surface area and the mass activity of platinum as a catalyst in a polymer electrolyte fuel cell electrode.

白金の電気化学的活性表面積の経時変化については、従来の電極では、白金の溶解・析出反応による凝集によって、白金の電気化学的活性表面積は減少するが、本発明の触媒担持粉末を用いた電極では凝集がほとんど起こらない。   Regarding the time-dependent change in the electrochemically active surface area of platinum, in the conventional electrode, the electrochemically active surface area of platinum decreases due to aggregation due to the dissolution / precipitation reaction of platinum, but the electrode using the catalyst-supported powder of the present invention Then almost no aggregation occurs.

固体高分子形燃料電池を低電流密度で運転させる場合には、全ての白金が電気化学反応に使われるが、高電流密度で運転させる場合には、陽イオン交換樹脂のプロトン伝導経路に存在する白金のみが電気化学反応に使われ、疎水性骨格部分に存在する白金は電気化学反応には関与しなくなる。   When the polymer electrolyte fuel cell is operated at a low current density, all platinum is used for the electrochemical reaction, but when it is operated at a high current density, it exists in the proton conduction path of the cation exchange resin. Only platinum is used for the electrochemical reaction, and platinum present in the hydrophobic skeleton part does not participate in the electrochemical reaction.

また、本発明の触媒担持粉末を用いた電極の従来の電極に対する質量活性比は、燃料電池の運転時においては、0.70Vよりも高電圧領域ではほぼ1であり、0.60Vでは2.7となる。一方、陽イオン交換樹脂においては、ポリマー部分に占めるプロトン伝導経路の体積比は約2.5である。このことから、従来の電極では、0.70Vよりも高電圧領域では、陽イオン交換樹脂のプロトン伝導経路の白金も疎水性骨格部分の白金も活性であるが、0.60Vでは陽イオン交換樹脂のプロトン伝導経路の白金のみが活性であることが明らかになる。   In addition, the mass activity ratio of the electrode using the catalyst-supported powder of the present invention to the conventional electrode is approximately 1 in a high voltage region higher than 0.70 V during operation of the fuel cell, and 2. 7 On the other hand, in the cation exchange resin, the volume ratio of the proton conduction path in the polymer portion is about 2.5. Therefore, in the conventional electrode, in the high voltage region above 0.70 V, platinum in the proton conduction path of the cation exchange resin and platinum in the hydrophobic skeleton portion are active, but at 0.60 V, the cation exchange resin. It is clear that only platinum in the proton conduction pathway is active.

なお、質量活性とは、ある電圧における電流密度を、単位面積あたりの触媒金属担持量で除したものである。   The mass activity is obtained by dividing the current density at a certain voltage by the amount of the catalyst metal supported per unit area.

本発明に用いる触媒金属には、酸素の還元反応に対して高い活性を示す金属を含むことが好ましく、その金属としては、白金、ロジウム、ルテニウム、イリジウム、パラジウムなどの白金族金属がある。   The catalyst metal used in the present invention preferably contains a metal exhibiting high activity for oxygen reduction reaction, and examples of the metal include platinum group metals such as platinum, rhodium, ruthenium, iridium and palladium.

本発明の燃料電池用触媒層の第1の製造方法は、つぎの工程を経ることを特徴とする。まず、第1の工程では、陽イオン交換樹脂溶液に炭素材料を分散して分散物を得る。つぎに、第2の工程では、第1の工程で得られた分散物から溶媒を除去して、陽イオン交換樹脂で被覆された炭素材料を得る。この工程では、分散物を噴霧乾燥機で造粒する方法が用いられる。   The first method for producing a fuel cell catalyst layer of the present invention is characterized by passing through the following steps. First, in the first step, a carbon material is dispersed in a cation exchange resin solution to obtain a dispersion. Next, in the second step, the solvent is removed from the dispersion obtained in the first step to obtain a carbon material coated with a cation exchange resin. In this step, a method of granulating the dispersion with a spray dryer is used.

さらに、第3の工程では、第2の工程で得られた陽イオン交換樹脂で被覆された炭素材料の陽イオン交換樹脂の固定イオンに触媒金属の陽イオンを吸着させる。この工程では、陽イオン交換樹脂で被覆された炭素材料を、触媒金属の陽イオンを含む水溶液中に浸漬することにより、触媒金属の陽イオンをイオン交換反応によって陽イオン交換樹脂の固定イオンに吸着させる。この時、陽イオン交換樹脂の固定イオンは、陽イオン交換樹脂のプロトン伝導経路にのみ存在しているため、触媒金属の陽イオンは陽イオン交換樹脂のプロトン伝導経路に選択的に吸着させる。   Further, in the third step, the cation of the catalytic metal is adsorbed on the fixed ions of the cation exchange resin of the carbon material coated with the cation exchange resin obtained in the second step. In this process, the carbon material coated with the cation exchange resin is immersed in an aqueous solution containing the cation of the catalyst metal, so that the cation of the catalyst metal is adsorbed to the fixed ion of the cation exchange resin by an ion exchange reaction. Let At this time, since the fixed ions of the cation exchange resin exist only in the proton conduction path of the cation exchange resin, the cation of the catalyst metal is selectively adsorbed on the proton conduction path of the cation exchange resin.

そして、第4の工程では、触媒金属の陽イオンを化学的に還元して、触媒金属を含む粉末を得る。この工程では、炭素材料の触媒作用によって、触媒金属の陽イオンが還元されるため、第4の工程で得られた粉末においては、触媒金属は、陽イオン交換樹脂のプロトン伝導経路と炭素材料の表面との接面に主に担持される。   In the fourth step, the cation of the catalyst metal is chemically reduced to obtain a powder containing the catalyst metal. In this step, the cation of the catalytic metal is reduced by the catalytic action of the carbon material. Therefore, in the powder obtained in the fourth step, the catalytic metal is separated from the proton conduction path of the cation exchange resin and the carbon material. It is mainly carried on the contact surface with the surface.

つぎに、第5の工程では、第4の工程で得られた触媒金属を含む粉末と、造孔剤と、撥水性樹脂を溶媒に溶解した撥水性樹脂溶液との混合溶液を作製する。さらに、第6の工程では、第5の工程で得られた混合溶液をシート状にして、撥水性樹脂の融点よりも高く、陽イオン交換樹脂の分解温度よりも低い温度で乾燥して、触媒層前駆体を作製する。最後に、触媒層前駆体から造孔剤を除去する第7の工程を経て、本発明の請求項1に記載の固体高分子形燃料電池用触媒層を得ることができる。   Next, in the fifth step, a mixed solution of the powder containing the catalyst metal obtained in the fourth step, the pore forming agent, and the water-repellent resin solution in which the water-repellent resin is dissolved in a solvent is prepared. Further, in the sixth step, the mixed solution obtained in the fifth step is formed into a sheet and dried at a temperature higher than the melting point of the water-repellent resin and lower than the decomposition temperature of the cation exchange resin. A layer precursor is prepared. Finally, the polymer layer fuel cell catalyst layer according to claim 1 of the present invention can be obtained through a seventh step of removing the pore-forming agent from the catalyst layer precursor.

第4の工程において、触媒金属の陽イオンを化学的に還元する場合の還元方法としては、水素ガス、水素を含むガスまたはヒドラジンを含む不活性ガスによって気相還元する方法がある。ここで、水素を含むガスには、水素ガスと窒素、ヘリウムまたはアルゴンなどの不活性ガスとの混合ガスがある。   In the fourth step, as a reduction method in the case of chemically reducing the cation of the catalyst metal, there is a method in which gas phase reduction is performed with hydrogen gas, a gas containing hydrogen, or an inert gas containing hydrazine. Here, the gas containing hydrogen includes a mixed gas of hydrogen gas and an inert gas such as nitrogen, helium, or argon.

第5の工程で、触媒金属を含む粉末と造孔剤と撥水性樹脂とを分散させるための溶媒には、水、ヘキサン、ペンタン、シクロヘキサン、オクタン、ベンゼン、ジクロロメタン、1、1、2−トリクロロ−1、2、2−トリフルオロエタン、メタノール、エタノール、エチレングリコール、グリセリン、アニソール、アセトン、N−メチル−2−ピロリドン(NMP)、ピリジン、ジメチルスルホキシドなどを使用することができる。これらの中でも、NMPは、触媒金属を含む粉末や造孔剤の分散性および撥水性樹脂の溶解性が著しく高くなるので好ましい。   In the fifth step, the solvent for dispersing the powder containing the catalyst metal, the pore former and the water-repellent resin includes water, hexane, pentane, cyclohexane, octane, benzene, dichloromethane, 1,1,2-trichloro. -1,2,2-trifluoroethane, methanol, ethanol, ethylene glycol, glycerin, anisole, acetone, N-methyl-2-pyrrolidone (NMP), pyridine, dimethyl sulfoxide and the like can be used. Among these, NMP is preferable because the dispersibility of the powder containing the catalyst metal and the pore-forming agent and the solubility of the water-repellent resin are remarkably increased.

本発明においては、触媒層に細孔を形成することによって、カソードの酸素還元反応によって生成する水を排出することができる。細孔の形成は、例えば、第5の工程のように、触媒金属を含む粉末と撥水性樹脂とを溶媒に分散させた後、その分散液に造孔剤を加える方法によっておこなわれる。本発明に用いる造孔剤は限定されるものではなく、炭酸カルシウム、ニッケル粉末および塩化ナトリウムなどがある。   In the present invention, by forming pores in the catalyst layer, water generated by the oxygen reduction reaction of the cathode can be discharged. The formation of the pores is performed, for example, by a method in which a powder containing a catalytic metal and a water repellent resin are dispersed in a solvent and then a pore-forming agent is added to the dispersion, as in the fifth step. The pore-forming agent used in the present invention is not limited and includes calcium carbonate, nickel powder, sodium chloride and the like.

さらに、第6の工程で、触媒金属を含む粉末と造孔剤と撥水性樹脂と溶媒との混合物をシート状にして塗布する基材には、耐熱性のものが好ましく、たとえば、FEPフィルムまたはチタンシートがある。この基材を撥水性樹脂の融点よりも高い温度で乾燥させることによって、その撥水性樹脂は融解するので、撥水性樹脂を触媒層に均一に分布させることができる。この融解により触媒層の撥水性は均一になるので、触媒層内部のフラッディングを著しく抑制することができる。したがって、本発明の触媒層を用いたPEFCの耐久性能は高くなる。   Further, in the sixth step, the base material to which the mixture of the powder containing the catalyst metal, the pore forming agent, the water repellent resin and the solvent is applied in the form of a sheet is preferably heat resistant, for example, FEP film or There is a titanium sheet. By drying the substrate at a temperature higher than the melting point of the water-repellent resin, the water-repellent resin melts, so that the water-repellent resin can be uniformly distributed in the catalyst layer. Since the water repellency of the catalyst layer becomes uniform by this melting, flooding inside the catalyst layer can be remarkably suppressed. Therefore, the durability performance of PEFC using the catalyst layer of the present invention is enhanced.

最後に、触媒層前駆体から造孔剤を除去する第7の工程を経て、本発明の請求項1に記載の固体高分子形燃料電池用触媒層を得ることができる。   Finally, the polymer layer fuel cell catalyst layer according to claim 1 of the present invention can be obtained through a seventh step of removing the pore-forming agent from the catalyst layer precursor.

本発明の燃料電池用触媒層の第2の製造方法は、つぎの工程を経ることを特徴とする。まず、第1の工程では、撥水性樹脂を溶媒に溶解した撥水性樹脂溶液と、炭素材料とを混合し、乾燥して、表面に撥水性樹脂を備えた前記炭素材料を得る。つぎに、第2の工程では、第1の工程で得られた前記表面に撥水性樹脂を備えた炭素材料を、陽イオン交換樹脂溶液に分散して、分散物を得る。第3の工程では、第2の工程で得られた分散物から溶媒を除去して、表面に撥水性樹脂を備えた炭素材料の表面を陽イオン交換樹脂で被覆した混合物を得る。   The second method for producing a fuel cell catalyst layer of the present invention is characterized by passing through the following steps. First, in the first step, a water repellent resin solution obtained by dissolving a water repellent resin in a solvent and a carbon material are mixed and dried to obtain the carbon material having a water repellent resin on the surface. Next, in the second step, the carbon material provided with the water-repellent resin on the surface obtained in the first step is dispersed in a cation exchange resin solution to obtain a dispersion. In the third step, the solvent is removed from the dispersion obtained in the second step to obtain a mixture in which the surface of the carbon material provided with a water-repellent resin on the surface is coated with a cation exchange resin.

第4の工程では、第3の工程で得られた混合物を、触媒金属の陽イオンを含む水溶液中に浸漬することにより、触媒金属の陽イオンをイオン交換反応によって、混合物中の陽イオン交換樹脂の固定イオンに吸着させる。そして、第5の工程では、触媒金属の陽イオンを化学的に還元して、触媒金属を含む粉末を得る。   In the fourth step, the mixture obtained in the third step is immersed in an aqueous solution containing a cation of the catalytic metal, whereby the cation of the catalytic metal is subjected to an ion exchange reaction, whereby a cation exchange resin in the mixture is obtained. Adsorbed to fixed ions. In the fifth step, the cation of the catalyst metal is chemically reduced to obtain a powder containing the catalyst metal.

つぎに、第6の工程では、第4の工程で得られた触媒金属を含む粉末と、造孔剤と、撥水性樹脂を溶媒に溶解した撥水性樹脂溶液との混合溶液を作製する。さらに、第7の工程では、第6の工程で得られた混合溶液をシート状にして、撥水性樹脂の融点よりも高く、陽イオン交換樹脂の分解温度よりも低くい温度で乾燥して、触媒層前駆体を作製する。最後に、触媒層前駆体から造孔剤を除去する第8の工程を経て、本発明の請求項1に記載の固体高分子形燃料電池用触媒層を得ることができる。   Next, in the sixth step, a mixed solution of the powder containing the catalyst metal obtained in the fourth step, the pore-forming agent, and the water-repellent resin solution in which the water-repellent resin is dissolved in a solvent is prepared. Further, in the seventh step, the mixed solution obtained in the sixth step is formed into a sheet, and dried at a temperature higher than the melting point of the water-repellent resin and lower than the decomposition temperature of the cation exchange resin, A catalyst layer precursor is prepared. Finally, through the eighth step of removing the pore-forming agent from the catalyst layer precursor, the catalyst layer for a polymer electrolyte fuel cell according to claim 1 of the present invention can be obtained.

なお、本発明の燃料電池用触媒層の第2の製造方法において、触媒金属の陽イオンを化学的に還元する場合の還元方法、触媒金属を含む粉末と造孔剤と撥水性樹脂とを分散させるための溶媒、造孔剤の種類、触媒金属を含む粉末と造孔剤と撥水性樹脂と溶媒との混合物をシート状にして塗布する基材は、第1の製造方法と同じものを用いることができる。   In the second method for producing the catalyst layer for a fuel cell of the present invention, a reduction method in the case of chemically reducing the cation of the catalyst metal, the powder containing the catalyst metal, the pore former and the water repellent resin are dispersed. The same substrate as that used in the first manufacturing method is used as the base material on which the solvent, the kind of pore-forming agent, and the mixture of the powder containing the catalyst metal, the pore-forming agent, the water-repellent resin and the solvent are applied in the form of a sheet. be able to.

以下、本発明を好適な実施例を用いて説明する。   The present invention will be described below with reference to preferred embodiments.

[実施例1〜4および比較例1、実施例10
[実施例1]
まず第1工程では、陽イオン交換樹脂溶液(Nafion5質量%溶液、Aldrich Chemical、Nafion分解温度200℃)108gと、カーボン(Vulcan XC−72、Cabot製)10gとを混合して、混合物を作製した。
[Examples 1-4 and Comparative Examples 1 and 10 ]
[Example 1]
First, in the first step, a cation exchange resin solution (Nafion 5 mass% solution, Aldrich Chemical, Nafion decomposition temperature 200 ° C.) 108 g and carbon (Vulcan XC-72, manufactured by Cabot) 10 g were mixed to prepare a mixture. .

第2工程では、この混合物を噴霧乾燥機で造粒することによって、平均粒度23μmの陽イオン交換樹脂被覆カーボンを作製した。その造粒条件は、乾燥温度150℃および供給速度6g/min.とした。   In the second step, the mixture was granulated with a spray dryer to produce cation exchange resin-coated carbon having an average particle size of 23 μm. The granulation conditions were a drying temperature of 150 ° C. and a supply rate of 6 g / min. It was.

つづいて、第3工程では、陽イオン交換樹脂被覆カーボン12gを、0.05mol/lの濃度の[Pt(NH]Cl水溶液230mlに24時間浸漬し、陽イオン交換樹脂の固定イオン(Nafionの場合は−SO )に[Pt(NH2+イオンを吸着させた。 Subsequently, in the third step, 12 g of cation exchange resin-coated carbon was immersed in 230 ml of an aqueous solution [Pt (NH 3 ) 4 ] Cl 2 having a concentration of 0.05 mol / l for 24 hours to fix the fixed ions of the cation exchange resin. [Pt (NH 3 ) 4 ] 2+ ions were adsorbed on (-SO 3 − in the case of Nafion).

その後、第4工程では、[Pt(NH2+イオンを吸着させた陽イオン交換樹脂被覆カーボンを、精製水で充分洗浄・乾燥後、水素雰囲気中で6時間還元することによって、陽イオン交換樹脂のプロトン伝導経路と炭素材料の表面との接面に主に触媒金属が担持された粉末を製作した。 Thereafter, in the fourth step, the cation exchange resin-coated carbon adsorbed with [Pt (NH 3 ) 4 ] 2+ ions is sufficiently washed and dried with purified water, and then reduced in a hydrogen atmosphere for 6 hours. A powder in which a catalytic metal was supported on the contact surface between the proton conduction path of the ion exchange resin and the surface of the carbon material was manufactured.

つぎに、第5の工程では、粉末3gと、N−メチル−2−ピロリドン(NMP、三菱化学)27gに融点が174℃であるPVdF(平均分子量約200,000、呉羽化学製)0.594gを溶解させたPVdF−NMP溶液と、造孔剤としての炭酸カルシウム(CaCO、NS#200、日東粉化工業製)2.37gとを混合し、ペーストとした。PVdF−NMP溶液は、100mlのポリプロピレン製の容器にNMPおよびPVdFを入れたのちに、その容器をロータリーシェイカーを用いて4時間振とうすることによって製作した。PVdFの添加量は、触媒粉末中のカーボンとPVdFとの合計質量に対して30質量%にした。 Next, in the fifth step, 3 g of powder, 27 g of N-methyl-2-pyrrolidone (NMP, Mitsubishi Chemical) and PVdF (average molecular weight of about 200,000, Kureha Chemical) 0.594 g having a melting point of 174 ° C. And a PVdF-NMP solution in which 2 was dissolved and 2.37 g of calcium carbonate (CaCO 3 , NS # 200, manufactured by Nitto Flour Industries) as a pore-forming agent were mixed to obtain a paste. The PVdF-NMP solution was prepared by placing NMP and PVdF in a 100 ml polypropylene container, and then shaking the container for 4 hours using a rotary shaker. The amount of PVdF added was 30% by mass with respect to the total mass of carbon and PVdF in the catalyst powder.

さらに、第6の工程では、このペーストを金属シート上に塗布したのちに、180℃で2時間真空乾燥することによって、シート状のカソード触媒層前駆体を成形した。このカソード触媒層前駆体と、0.6mg/cmの触媒担持量の白金−ルテニウム担持カーボン(Pt:19.6質量%、Ru:15.2質量%、TEC61V33、田中貴金属工業)を備えるアノード触媒層とを、固体高分子膜(Nafion115、DuPont製)の両側に10MPa、130℃の条件で接合することによって、膜/電極接合体(MEA)を製作した。 Further, in the sixth step, the paste was applied onto a metal sheet and then vacuum-dried at 180 ° C. for 2 hours to form a sheet-like cathode catalyst layer precursor. An anode provided with this cathode catalyst layer precursor and platinum-ruthenium-supported carbon (Pt: 19.6 mass%, Ru: 15.2 mass%, TEC61V33, Tanaka Kikinzoku Kogyo Co., Ltd.) having a catalyst loading of 0.6 mg / cm 2 A membrane / electrode assembly (MEA) was manufactured by bonding the catalyst layer to both sides of a solid polymer membrane (Nafion 115, manufactured by DuPont) under conditions of 10 MPa and 130 ° C.

さらに、第7の工程では、このMEAを80℃、0.5mol/lの硝酸水溶液に浸漬することによって、カソード触媒層に含まれる炭酸カルシウムを溶出させたのちに、カーボンペーパーを両方の触媒層の外側に接合した。またさらに、このMEAの電極部分の外側にガス流路の確保のためにガスフロープレートを配置したのちに、これらをステンレス製のエンドプレートにより12.7MPaの圧力で圧迫し本発明による単セルAを製作した。このカソード触媒層の空孔率は70%であった。   Further, in the seventh step, the MEA is immersed in a 0.5 mol / l nitric acid aqueous solution at 80 ° C. to elute the calcium carbonate contained in the cathode catalyst layer, and then the carbon paper is added to both catalyst layers. Joined outside. Furthermore, after arranging gas flow plates on the outside of the electrode portion of the MEA to secure the gas flow path, these are pressed with a stainless steel end plate at a pressure of 12.7 MPa. Was made. The cathode catalyst layer had a porosity of 70%.

[実施例2]
PVdFの添加量が、触媒粉末中のカーボンとPVdFとの合計質量に対して10質量%にしたことを除いては、実施例1の場合と同様の方法によって、本発明による単セルBを製作した。
[Example 2]
A single cell B according to the present invention was manufactured by the same method as in Example 1 except that the amount of PVdF added was 10% by mass with respect to the total mass of carbon and PVdF in the catalyst powder. did.

[実施例3]
PVdFの添加量が、触媒粉末中のカーボンとPVdFとの合計質量に対して40質量%にしたことを除いては、実施例1の場合と同様の方法によって、本発明による単セルCを製作した。
[Example 3]
A single cell C according to the present invention was produced by the same method as in Example 1 except that the amount of PVdF added was 40% by mass with respect to the total mass of carbon and PVdF in the catalyst powder. did.

[実施例4]
PVdFの添加量が、触媒粉末中のカーボンとPVdFとの合計質量に対して60質量%にしたことを除いては、実施例1の場合と同様の方法によって、本発明による単セルDを製作した。
[Example 4]
A single cell D according to the present invention was manufactured by the same method as in Example 1 except that the amount of PVdF added was 60% by mass with respect to the total mass of carbon and PVdF in the catalyst powder. did.

[比較例1]
PVdFの添加をおこなわなかった(0質量%)ことを除いては、実施例1の場合と同様の方法によって、単セルEを製作した。
[Comparative Example 1]
A single cell E was produced in the same manner as in Example 1 except that PVdF was not added (0% by mass).

実施例10
PVdFの添加量が、触媒粉末中のカーボンとPVdFとの合計質量に対して80質量%にしたことを除いては、実施例1の場合と同様の方法によって、単セルFを製作した。
[ Example 10 ]
A single cell F was produced in the same manner as in Example 1 except that the amount of PVdF added was 80% by mass with respect to the total mass of carbon and PVdF in the catalyst powder.

触媒層へのPVdFの添加が単セルの分極特性におよぼす影響を調査するために、単セルA〜Fの0.7Vにおける電流密度の値を測定した。測定条件は、燃料および酸化剤に水素(ガス利用率80%)および空気(ガス利用率40%)を用いて、セル温度70℃の条件でおこなった。   In order to investigate the influence of the addition of PVdF to the catalyst layer on the polarization characteristics of the single cell, the value of the current density at 0.7 V of the single cells A to F was measured. The measurement conditions were as follows: hydrogen (gas utilization factor 80%) and air (gas utilization factor 40%) were used as the fuel and oxidant, and the cell temperature was 70 ° C.

この測定から得た単セルの電流密度の値とカソード触媒層中のPVdFの割合との関係を図4に示す。図4から、単セルの電流密度の値は、PVdFの添加割合が60質量%以下で一定であること、およびその割合を超える添加量では著しく減少することがわかる。   The relationship between the value of the current density of the single cell obtained from this measurement and the ratio of PVdF in the cathode catalyst layer is shown in FIG. FIG. 4 shows that the value of the current density of the single cell is constant when the addition ratio of PVdF is 60% by mass or less, and significantly decreases when the addition amount exceeds that ratio.

つぎに、PVdFの添加による単セルの分極の増大が見られなかった単セルA〜Eの連続運転試験での1時間当たりのセル電圧の低下の割合(劣化率)とカソード触媒層中のPVdFの割合との関係を図5に示す。試験条件は、燃料および酸化剤に水素(ガス利用率80%)および空気(ガス利用率40%)を用いて、セル温度70℃、作動電流密度300mA/cmの条件でおこなった。 Next, the cell voltage decrease rate (deterioration rate) per hour and the PVdF in the cathode catalyst layer in the continuous operation test of the single cells A to E in which no increase in the polarization of the single cell was observed due to the addition of PVdF. The relationship with the ratio is shown in FIG. The test conditions were as follows: hydrogen (gas utilization factor 80%) and air (gas utilization factor 40%) were used as the fuel and oxidant, and the cell temperature was 70 ° C. and the operating current density was 300 mA / cm 2 .

図5から、10質量%以上のPVdFを添加することによって、その劣化率は、著しく減少することがわかる。この劣化率の減少は、PVdFを添加することによって、カソード触媒層の撥水性が向上するので、酸素還元反応の生成水の滞留に起因するその層のガス拡透過性能の低下が抑制されたことによるものと推察される。これらの結果から、PVdFを10質量%以上、60質量%以下触媒層に備えるPEFCの出力および耐久性能は高いことがわかった。   From FIG. 5, it can be seen that the deterioration rate is remarkably reduced by adding 10% by mass or more of PVdF. This decrease in the deterioration rate is due to the addition of PVdF, which improves the water repellency of the cathode catalyst layer, thereby suppressing the deterioration of the gas spreading and permeation performance of that layer due to the retention of the product water of the oxygen reduction reaction. It is assumed that From these results, it was found that the output and durability performance of PEFC having PVdF in the catalyst layer of 10% by mass or more and 60% by mass or less is high.

[実施例5、6および実施例11〜13
[実施例5]
CaCOの添加量を1.42gとすることによって、カソード触媒層の空孔率を60%にしたことを除いては、実施例1の場合と同様の方法によって、本発明による単セルGを製作した。
[Examples 5 and 6 and Examples 11 to 13 ]
[Example 5]
A single cell G according to the present invention was produced by the same method as in Example 1 except that the amount of CaCO 3 added was 1.42 g and the porosity of the cathode catalyst layer was 60%. Produced.

[実施例6]
CaCOの添加量を3.78gとすることによって、カソード触媒層の空孔率を85%にしたことを除いては、実施例1の場合と同様の方法によって、本発明による単セルHを製作した。
[Example 6]
A single cell H according to the present invention was formed by the same method as in Example 1 except that the amount of CaCO 3 added was 3.78 g and the porosity of the cathode catalyst layer was 85%. Produced.

実施例11
CaCOを添加しないことによって、カソード触媒層の空孔率を45%にしたことを除いては、実施例1の場合と同様の方法によって、単セルIを製作した。
[ Example 11 ]
A single cell I was produced in the same manner as in Example 1 except that the porosity of the cathode catalyst layer was 45% by not adding CaCO 3 .

実施例12
CaCOの添加量を0.48gとすることによって、カソード触媒層の空孔率を50%にしたことを除いては、実施例1の場合と同様の方法によって、単セルJを製作した。
[ Example 12 ]
A single cell J was manufactured in the same manner as in Example 1 except that the amount of CaCO 3 added was 0.48 g and the porosity of the cathode catalyst layer was 50%.

実施例13
CaCOの添加量を4.27gとすることによって、カソード触媒層の空孔率を90%にしたことを除いては、実施例1の場合と同様の方法によって、単セルKを製作した。
[ Example 13 ]
A single cell K was manufactured in the same manner as in Example 1 except that the amount of CaCO 3 added was 4.27 g, and the porosity of the cathode catalyst layer was 90%.

カソード触媒層の空孔率が単セルの分極特性におよぼす影響を調査するために、単セルAおよびG〜Kの0.7Vにおける電流密度の値を測定した。測定条件は、燃料および酸化剤に水素(ガス利用率80%)および空気(ガス利用率40%)をそれぞれ用いて、セル温度70℃でおこなった。   In order to investigate the influence of the porosity of the cathode catalyst layer on the polarization characteristics of the single cell, the value of the current density at 0.7 V of the single cells A and G to K was measured. The measurement conditions were hydrogen (gas utilization rate 80%) and air (gas utilization rate 40%) for the fuel and oxidant, respectively, and a cell temperature of 70 ° C.

この測定から得られた単セルの電流密度の値とカソード触媒層の空孔率との関係を図6に示す。図6から、これらの単セルの0.7Vにおける電流密度の値は、空孔率が45%から60%あたりにかけて急激に増加していることがわかる。この増加は、空孔率の増加に起因するガスの拡散性の向上および水の排出性の向上によるフラッディングの抑制によるものと考えられる。さらに、85%を超える空孔率では、その値は急激に減少することがわかる。この減少は、空孔率の増加に起因する触媒粉末の緻密性の低下によって、触媒層の電子伝導度またはプロトン伝導度の低下によるものと考えられる。これらのことから、単セルの分極は、カソード触媒層の空孔率が60%以上、85%以下の場合に最も小さいことが明らかになった。   FIG. 6 shows the relationship between the current density value of the single cell obtained from this measurement and the porosity of the cathode catalyst layer. From FIG. 6, it can be seen that the value of the current density at 0.7 V of these single cells increases rapidly from 45% to 60% in the porosity. This increase is considered to be due to the suppression of flooding due to the improvement in gas diffusibility and water discharge due to the increase in porosity. Furthermore, it can be seen that at a porosity exceeding 85%, the value decreases rapidly. This decrease is considered to be due to a decrease in the electronic conductivity or proton conductivity of the catalyst layer due to a decrease in the compactness of the catalyst powder due to an increase in porosity. From these facts, it became clear that the polarization of the single cell is the smallest when the porosity of the cathode catalyst layer is 60% or more and 85% or less.

[実施例7および8]
[実施例7]
撥水性樹脂として、PVdFの代わりにビニリデンフロライド−ヘキサフルオロプロピレン共重合体(HFP含有量2〜3質量%、平均分子量約200,000、融点155℃)を用いたことを除いては、実施例1の場合と同様の方法によって、本発明による単セルLを製作した。
[Examples 7 and 8]
[Example 7]
Except that vinylidene fluoride-hexafluoropropylene copolymer (HFP content 2-3 mass%, average molecular weight about 200,000, melting point 155 ° C.) was used as the water repellent resin instead of PVdF. A single cell L according to the present invention was manufactured in the same manner as in Example 1.

[実施例8]
撥水性樹脂として、PVdFの代わりにビニリデンフロライド−ヘキサフルオロプロピレン共重合体(HFP含有量4〜5質量%、平均分子量約200,000、融点146℃)を用いたことを除いては、実施例1の場合と同様の方法によって、本発明による単セルMを製作した。
[Example 8]
Except that vinylidene fluoride-hexafluoropropylene copolymer (HFP content 4-5 mass%, average molecular weight about 200,000, melting point 146 ° C.) was used as the water repellent resin instead of PVdF. A single cell M according to the present invention was manufactured in the same manner as in Example 1.

実施例7および8の単セルL、Mの0.7Vにおける電流密度の値を、実施例1の単セルAの場合と同様の条件で測定した。その結果を表1に示した。   The values of current density at 0.7 V of the single cells L and M of Examples 7 and 8 were measured under the same conditions as in the case of the single cell A of Example 1. The results are shown in Table 1.

Figure 0004910305
Figure 0004910305


表1の結果から、撥水性樹脂としてPVdFの代わりにビニリデンフロライド−ヘキサフルオロプロピレン共重合体を用いた場合にも、同程度の優れた特性が得られることがわかった。

From the results in Table 1, it was found that even when vinylidene fluoride-hexafluoropropylene copolymer was used as the water repellent resin instead of PVdF, the same excellent characteristics were obtained.

[実施例9]
まず第1工程では、N−メチル−2−ピロリドン(NMP、三菱化学)300gに、撥水性樹脂としての融点が174℃であるPVdF(平均分子量約200,000、呉羽化学製)6gを溶解させたPVdF−NMP溶液と、カーボン(Vulcan XC−72、Cabot製)14gとを混合し、この混合物を噴霧乾燥機で造粒することによって、表面にPVdFを備えたカーボンを作製した。造粒条件は、乾燥温度150℃および供給速度6g/min.とした。PVdFの添加量は、カーボンとPVdFとの合計質量に対して30質量%にした。
[Example 9]
First, in the first step, 6 g of PVdF (average molecular weight of about 200,000, Kureha Chemical) having a melting point of 174 ° C. as a water-repellent resin is dissolved in 300 g of N-methyl-2-pyrrolidone (NMP, Mitsubishi Chemical). The PVdF-NMP solution and 14 g of carbon (Vulcan XC-72, manufactured by Cabot) were mixed, and the mixture was granulated with a spray dryer to produce carbon having PVdF on the surface. The granulation conditions were a drying temperature of 150 ° C. and a supply rate of 6 g / min. It was. The amount of PVdF added was 30% by mass with respect to the total mass of carbon and PVdF.

第2工程では、第1工程で得た表面にPVdFを備えたカーボン10gを、陽イオン交換樹脂溶液(Nafion5質量%溶液、Aldrich Chemical、Nafion分解温度200℃)76gに分散させて分散物を作製した。   In the second step, 10 g of carbon having PVdF on the surface obtained in the first step is dispersed in 76 g of a cation exchange resin solution (Nafion 5 mass% solution, Aldrich Chemical, Nafion decomposition temperature 200 ° C.) to produce a dispersion. did.

第3工程では、この分散物を噴霧乾燥機で造粒し、NMPを除去することによって、平均粒度23μmの陽イオン交換樹脂で被覆され、表面にPVdFを備えたカーボンを作製した。造粒条件は、乾燥温度150℃および供給速度6g/min.とした。   In the third step, the dispersion was granulated with a spray drier and NMP was removed to produce carbon coated with a cation exchange resin having an average particle size of 23 μm and having PVdF on the surface. The granulation conditions were a drying temperature of 150 ° C. and a supply rate of 6 g / min. It was.

つづいて、第4工程では、陽イオン交換樹脂で被覆され、表面にPVdFを備えたカーボン13.8gを、0.05mol/lの濃度の[Pt(NH]Cl水溶液230mlに24時間浸漬し、陽イオン交換樹脂の固定イオン(Nafionの場合は−SO )に[Pt(NH2+イオンを吸着させた。 Subsequently, in the fourth step, 13.8 g of carbon coated with a cation exchange resin and provided with PVdF on its surface was added to 230 ml of [Pt (NH 3 ) 4 ] Cl 2 aqueous solution having a concentration of 0.05 mol / l. [Pt (NH 3 ) 4 ] 2+ ions were adsorbed on the fixed ions of the cation exchange resin (-SO 3 − in the case of Nafion).

その後、第5工程では、[Pt(NH2+イオンを吸着させ、陽イオン交換樹脂で被覆され、表面にPVdFを備えたカーボンを、精製水で充分洗浄・乾燥後、水素雰囲気中で6時間還元することによって、陽イオン交換樹脂のプロトン伝導経路と炭素材料の表面との接面に主に触媒金属が担持された粉末を製作した。 Thereafter, in the fifth step, [Pt (NH 3 ) 4 ] 2+ ions are adsorbed, coated with a cation exchange resin, and the surface of the carbon provided with PVdF is thoroughly washed and dried with purified water, and then in a hydrogen atmosphere. For 6 hours to produce a powder in which a catalytic metal is mainly supported on the contact surface between the proton conduction path of the cation exchange resin and the surface of the carbon material.

つぎに、第6の工程では、第5工程で得られた粉末3gと、造孔剤としての炭酸カルシウム(NS#200、日東粉化工業製)2.37gと、NMP30gとを混合し、ペーストとした。さらに、第7の工程では、このペーストを金属シート上に塗布したのちに、180℃で2時間真空乾燥することによって、シート状のカソード触媒層前駆体を成形した。このカソード触媒層前駆体と,0.6mg/cmの触媒担持量の白金−ルテニウム担持カーボン(Pt:19.6質量%、Ru:15.2質量%、TEC61V33、田中貴金属工業)を備えるアノード触媒層とを、固体高分子膜(Nafion115、DuPont製)の両側に10MPa、130℃の条件で接合することによって、膜/電極接合体(MEA)を製作した。 Next, in the sixth step, 3 g of the powder obtained in the fifth step, 2.37 g of calcium carbonate (NS # 200, manufactured by Nitto Flour Industries) as a pore-forming agent, and 30 g of NMP are mixed and paste It was. Further, in the seventh step, the paste was applied onto a metal sheet and then vacuum-dried at 180 ° C. for 2 hours to form a sheet-like cathode catalyst layer precursor. An anode provided with this cathode catalyst layer precursor and platinum-ruthenium-supported carbon (Pt: 19.6 mass%, Ru: 15.2 mass%, TEC61V33, Tanaka Kikinzoku Kogyo Co., Ltd.) having a catalyst loading of 0.6 mg / cm 2 A membrane / electrode assembly (MEA) was manufactured by bonding the catalyst layer to both sides of a solid polymer membrane (Nafion 115, manufactured by DuPont) under conditions of 10 MPa and 130 ° C.

さらに、第8の工程では、このMEAを80℃、0.5mol/lの硝酸水溶液に浸漬することによって、カソード触媒層に含まれる炭酸カルシウムを溶出させたのちに、カーボンペーパーを両方の触媒層の外側に接合した。またさらに、このMEAの電極部分の外側にガス流路の確保のためにガスフロープレートを配置したのちに、これらをステンレス製のエンドプレートにより12.7MPaの圧力で圧迫し、実施例9の単セルNを製作した。このカソード触媒層の空孔率は70%であった。   Further, in the eighth step, the MEA is immersed in a 0.5 mol / l nitric acid aqueous solution at 80 ° C. to elute calcium carbonate contained in the cathode catalyst layer, and then the carbon paper is added to both catalyst layers. Joined outside. Furthermore, after arranging a gas flow plate to secure a gas flow path outside the electrode portion of the MEA, the gas flow plate was pressed with a stainless end plate at a pressure of 12.7 MPa. Cell N was produced. The cathode catalyst layer had a porosity of 70%.

実施例9の単セルNの0.7Vにおける電流密度の値を、実施例1の単セルAの場合と同様の条件で測定した。その結果、151mA/cmが得られ、実施例1の単セルAと同程度の優れた特性が得られた。したがって、実施例1と実施例9の製造方法では、同程度の特性をもつ固体高分子形燃料電池用触媒層が得られることがわかった。 The value of the current density at 0.7 V of the single cell N of Example 9 was measured under the same conditions as in the case of the single cell A of Example 1. As a result, 151 mA / cm 2 was obtained, and excellent characteristics comparable to those of the single cell A of Example 1 were obtained. Therefore, it was found that the polymer layer fuel cell catalyst layer having the same characteristics can be obtained by the production methods of Example 1 and Example 9.

以上のことから、陽イオン交換樹脂のプロトン伝導経路とカーボンの表面との接面に触媒金属を主に担持している触媒粉末およびその樹脂の分解温度よりも融点が低い撥水性樹脂とを含む触媒層を備えるPEFCは、フラッディングが著しく抑制されるので、超少量の触媒担持量で優れた分極特性および耐久性能を示すと考えられる。   From the above, the catalyst powder mainly supporting the catalytic metal on the contact surface between the proton conduction path of the cation exchange resin and the carbon surface and the water repellent resin having a melting point lower than the decomposition temperature of the resin are included. A PEFC having a catalyst layer is considered to exhibit excellent polarization characteristics and durability performance with an extremely small amount of catalyst supported because flooding is remarkably suppressed.

本発明の固体高分子形燃料電池用触媒層を備える固体高分子形燃料電池の模式図。The schematic diagram of a polymer electrolyte fuel cell provided with the catalyst layer for polymer electrolyte fuel cells of this invention. 本発明の固体高分子形燃料電池用触媒層の模式図。The schematic diagram of the catalyst layer for polymer electrolyte fuel cells of this invention. 本発明の固体高分子形燃料電池用触媒層のカーボンの表面近傍の模式図。The schematic diagram of the carbon surface vicinity of the catalyst layer for polymer electrolyte fuel cells of this invention. 作動電圧0.7Vにおける単セルの電流密度の値とカソード触媒層中のPVdFの割合との関係を示す図。The figure which shows the relationship between the value of the current density of the single cell in the operating voltage 0.7V, and the ratio of PVdF in a cathode catalyst layer. 単セルA〜Eの連続運転試験での、1時間当たりのセル電圧の低下の割合(劣化率)とカソード触媒層中のPVdFの割合との関係を示す図。The figure which shows the relationship between the ratio (deterioration rate) of the fall of the cell voltage per hour and the ratio of PVdF in a cathode catalyst layer in the continuous operation test of the single cells A to E. 作動電圧0.7Vにおける単セルの電流密度の値とカソード触媒層の空孔率との関係を示す図。The figure which shows the relationship between the value of the current density of a single cell in the operating voltage of 0.7V, and the porosity of a cathode catalyst layer.

符号の説明Explanation of symbols

11 本発明の固体高分子形燃料電池用触媒層
12 固体高分子電解質膜
13 撥水性を付与した導電性多孔質体
14 ガス供給路
15 セパレータ
16 ガスケットやOリングなどのシール材
17 高分子電解質形燃料電池
21 炭素材料
22 陽イオン交換樹脂
23 撥水性樹脂
24 細孔
25 陽イオン交換樹脂のプロトン伝導経路に存在する撥水性樹脂
26 陽イオン交換樹脂の疎水性領域に存在する撥水性樹脂
31 陽イオン交換樹脂の親水性領域(プロトン伝導経路)
32 陽イオン交換樹脂の疎水性領域
33 触媒金属




























11 Catalyst Layer for Solid Polymer Fuel Cell of the Present Invention 12 Solid Polymer Electrolyte Membrane 13 Conductive Porous Body Provided with Water Repellency 14 Gas Supply Path 15 Separator 16 Sealing Material such as Gasket or O-Ring 17 Polymer Electrolyte Type Fuel Cell 21 Carbon Material 22 Cation Exchange Resin 23 Water Repellent Resin 24 Pore 25 Water Repellent Resin Present in Proton Conduction Path of Cation Exchange Resin 26 Water Repellent Resin Present in Hydrophobic Region of Cation Exchange Resin 31 Cation Hydrophilic region of exchange resin (proton conduction pathway)
32 Hydrophobic region of cation exchange resin 33 Catalytic metal




























Claims (4)

炭素材料と陽イオン交換樹脂と触媒金属と撥水性樹脂とを含む固体高分子形燃料電池用触媒層において、前記撥水性樹脂は少なくとも前記陽イオン交換樹脂のプロトン伝導経路に備えられ、前記陽イオン交換樹脂のプロトン伝導経路と前記炭素材料の表面との接面に前記触媒金属が主に担持され、前記撥水性樹脂の融点が前記陽イオン交換樹脂の分解温度よりも低いことを特徴とする固体高分子形燃料電池用触媒層。 In the catalyst layer for a polymer electrolyte fuel cell comprising a carbon material, a cation exchange resin, a catalyst metal, and a water repellent resin, the water repellent resin is provided at least in a proton conduction path of the cation exchange resin, and the cation said catalyst metal contact surface of the proton conducting path exchange resin and the surface of the carbon material is mainly supported, the melting point of the pre woodwasp aqueous resin is equal to or lower than the decomposition temperature of said cation exchange resin Catalyst layer for polymer electrolyte fuel cell. 前記炭素材料と前記撥水性樹脂の合計質量に対する前記撥水性樹脂の比率が10質量%以上、60質量%以下であることを特徴とする請求項1に記載の固体高分子形燃料電池用触媒層。2. The catalyst layer for a polymer electrolyte fuel cell according to claim 1, wherein a ratio of the water repellent resin to a total mass of the carbon material and the water repellent resin is 10% by mass or more and 60% by mass or less. . 陽イオン交換樹脂で被覆された炭素材料、前記陽イオン交換樹脂の固定イオンに触媒金属の陽イオンを吸着させ前記触媒金属の陽イオンを化学的に還元させて得られた触媒金属含む粉末と、撥水性樹脂との混合溶液を得る工程と、
前記混合液を前記撥水性樹脂の融点よりも高く、前記陽イオン交換樹脂の分解温度よりも低い温度で乾燥する工程を経ることを特徴とする請求項1記載の固体高分子形燃料電池用触媒層の製造方法。
Charcoal material charge coated with a cation exchange resin, the the fixed ions of the cation exchange resin to adsorb the cations of the catalytic metal, including catalytic metal obtained chemically reduced cations of said catalyst metal Obtaining a mixed solution of the powder and the water repellent resin ;
2. The polymer electrolyte fuel cell according to claim 1 , wherein the mixed liquid is dried at a temperature higher than the melting point of the water repellent resin and lower than the decomposition temperature of the cation exchange resin. A method for producing a catalyst layer.
請求項1または2記載の固体高分子電解質形燃料電池触媒を備えることを特徴とする固体高分子形燃料電池。 Polymer electrolyte fuel cell characterized by comprising a solid polymer electrolyte fuel cell catalyst according to claim 1 or 2 wherein.
JP2005140000A 2005-05-12 2005-05-12 A catalyst layer for a polymer electrolyte fuel cell and a polymer electrolyte fuel cell comprising the same. Expired - Fee Related JP4910305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005140000A JP4910305B2 (en) 2005-05-12 2005-05-12 A catalyst layer for a polymer electrolyte fuel cell and a polymer electrolyte fuel cell comprising the same.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005140000A JP4910305B2 (en) 2005-05-12 2005-05-12 A catalyst layer for a polymer electrolyte fuel cell and a polymer electrolyte fuel cell comprising the same.

Publications (2)

Publication Number Publication Date
JP2006318757A JP2006318757A (en) 2006-11-24
JP4910305B2 true JP4910305B2 (en) 2012-04-04

Family

ID=37539245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005140000A Expired - Fee Related JP4910305B2 (en) 2005-05-12 2005-05-12 A catalyst layer for a polymer electrolyte fuel cell and a polymer electrolyte fuel cell comprising the same.

Country Status (1)

Country Link
JP (1) JP4910305B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4661825B2 (en) * 2007-05-09 2011-03-30 トヨタ自動車株式会社 Catalyst powder production method
US20090042091A1 (en) * 2007-08-09 2009-02-12 Matsushita Electric Industrial Co., Ltd. Supported catalyst layers for direct oxidation fuel cells
JP5376217B2 (en) * 2009-02-13 2013-12-25 株式会社Gsユアサ Method for producing particles for electrode material of fuel cell, electrode material for fuel cell and method for producing the same, and method for producing electrode for fuel cell
CA2766279A1 (en) * 2009-06-26 2010-12-29 Nissan Motor Co., Ltd. Hydrophilic porous layer for fuel cells, gas diffusion electrode and manufacturing method thereof, and membrane electrode assembly

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000260435A (en) * 1999-03-08 2000-09-22 Fuji Electric Co Ltd Catalyst electrode layer for fuel cell and its manufacture
JP2001243969A (en) * 2000-02-28 2001-09-07 Mitsubishi Electric Corp Solid polymer fuel cell
JP4403634B2 (en) * 2000-05-12 2010-01-27 株式会社ジーエス・ユアサコーポレーション Composite catalyst for solid polymer electrolyte fuel cell.
JP4691794B2 (en) * 2001-02-09 2011-06-01 ソニー株式会社 Method for manufacturing electrochemical device
JP4064265B2 (en) * 2003-03-10 2008-03-19 本田技研工業株式会社 Fuel cell

Also Published As

Publication number Publication date
JP2006318757A (en) 2006-11-24

Similar Documents

Publication Publication Date Title
JP7190462B2 (en) Membrane electrode assembly
EP2990109A1 (en) Electrode and fuel cell electrode catalyst layer containing same
JP2007250274A (en) Electrode catalyst for fuel cell with enhanced noble metal utilization efficiency, its manufacturing method, and solid polymer fuel cell equipped with this
JP5115193B2 (en) Catalyst-supported powder and method for producing the same
JP2010505222A (en) Structure for gas diffusion electrode
JP2001093531A (en) Solid polymer fuel cell and method for manufacturing electrode catalyst
JP5432443B2 (en) Membrane electrode assembly and fuel cell
JP4910305B2 (en) A catalyst layer for a polymer electrolyte fuel cell and a polymer electrolyte fuel cell comprising the same.
JP5274035B2 (en) Fuel cell
EP2273589B1 (en) Membrane electrode assembly and fuel cell
US20050147868A1 (en) Fuel cell
JP2007027064A (en) Catalyst layer for polymer electrolyte fuel cell and polymer electrolyte fuel cell equipped with the same
JP5092381B2 (en) Catalyst powder for fuel cell, method for producing catalyst powder for fuel cell, and fuel cell
JP2007103175A (en) Electrode for polymeric fuel cell and polymeric fuel cell using the same
KR101265194B1 (en) Membrane electrode assembly for fuel cell, preparing method for same, and fuel cell system comprising same
US9966609B2 (en) Gas diffusion electrode and process for making same
JP2006344441A (en) Manufacturing method for catalyst mixture for polymer electrolyte fuel cell and polymer electrolyte fuel cell using the catalyst mixture obtained by the manufacturing method
JP2006079840A (en) Electrode catalyst for fuel cell, and mea for fuel cell using this
EP4064398A1 (en) Polymer electrolyte membrane and membrane-electrode assembly comprising same
JP2007213947A (en) Manufacturing method of catalyst support powder for polymer electrolyte fuel cell, and polymer electrolyte fuel cell having catalyst support powder provided by same
JP2002373662A (en) Electrode for solid polymer fuel cell
JP2006318758A (en) Manufacturing method of catalyst for polymer electrolyte fuel cell and polymer electrolyte fuel cell using the catalyst
JP2007018906A (en) Manufacturing method for membrane electrode assembly for polymer electrolyte fuel cell and polymer electrolyte fuel cell provided with it
JP2007026952A (en) Method of manufacture for catalyst mixture for polymer electrolyte fuel cell and polymer electrolyte fuel cell using it
KR20230080750A (en) Polymer electrolyte membrane composite comprising patterned metal thin film, and membrane-electrolyte assembly comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080423

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120102

R150 Certificate of patent or registration of utility model

Ref document number: 4910305

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees