JP2000260435A - Catalyst electrode layer for fuel cell and its manufacture - Google Patents

Catalyst electrode layer for fuel cell and its manufacture

Info

Publication number
JP2000260435A
JP2000260435A JP11060629A JP6062999A JP2000260435A JP 2000260435 A JP2000260435 A JP 2000260435A JP 11060629 A JP11060629 A JP 11060629A JP 6062999 A JP6062999 A JP 6062999A JP 2000260435 A JP2000260435 A JP 2000260435A
Authority
JP
Japan
Prior art keywords
catalyst
catalyst electrode
polymer electrolyte
current collector
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11060629A
Other languages
Japanese (ja)
Inventor
Kenji Kunihara
健二 国原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP11060629A priority Critical patent/JP2000260435A/en
Publication of JP2000260435A publication Critical patent/JP2000260435A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst electrode layer and its manufacturing method to form a power generating layer of a solid high polymer fuel cell capable of efficiently and stably materializing a cell output. SOLUTION: Due to a catalyst electrode layer, although a part of catalysts 4 is not utilized for a cell reaction because it is embedded in a sintered body, its majority forms an effective three-phase interface and is efficiently utilized for the cell reaction. The catalyst 4 can be rigidly bonded since it is directly carried by a high polymer electrolyte 9, and a cell output does not get unstable due to changes of the three-phase interface by incoming and outgoing gas caused by the cell reaction. The catalysts 4 are electrically connected each other through carbon corpuscles 7, and a current obtained by the cell reaction is speedily sent to a collector. Since the carbon corpuscle 7 is not very fine, the carbon corpuscles 7 form a network structure by themselves and its thickness is thin, the gas incoming and outgoing through its slender hole to the three-phase interface is not impeded.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、効率よく安定な電
池出力を提供することができる固体高分子型燃料電池の
発電層を形成する触媒電極層およびその製造方法に関
し、さらに詳しくは、高分子電解質微粉末により形成さ
れた多孔質構造の表層部分で触媒が担持され、そして担
持された触媒と電子電導体微粒子とが電気的に接触して
いるネットワーク構造を有する触媒電極を具えた触媒電
極層に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst electrode layer for forming a power generation layer of a polymer electrolyte fuel cell capable of providing a stable and efficient battery output, and a method for producing the same. A catalyst electrode layer having a catalyst electrode having a network structure in which a catalyst is supported on a surface portion of a porous structure formed by electrolyte fine powder, and the supported catalyst and the electronic conductor fine particles are in electrical contact with each other. About.

【0002】[0002]

【従来の技術】固体高分子型燃料電池は、図3の燃料電
池の発電層の模式断面図に示すように、高分子固体電解
質膜1、当該高分子固体電解質膜を挟んで対峙する2つ
の触媒電極2(酸素極21(カソード)、水素極22
(アノード))、および触媒電極2に電気的に接触した
集電体3からなる発電層30を具える。この発電層にお
いて、酸素を主成分として含むガスと水素を主成分とし
て含むガスとをそれぞれの極に供給することにより、次
式(1)及び(2)に示す反応が行われ、その結果とし
て、H2 +(1/2)O2 =H2 Oの化学反応エネルギ
ーから直接電気エネルギーを取り出すことができる。
2. Description of the Related Art As shown in a schematic sectional view of a power generation layer of a fuel cell shown in FIG. 3, a polymer electrolyte fuel cell comprises a polymer solid electrolyte membrane 1 and two opposed polymer electrolyte membranes sandwiching the polymer solid electrolyte membrane. Catalyst electrode 2 (oxygen electrode 21 (cathode), hydrogen electrode 22
(Anode)), and a power generation layer 30 composed of the current collector 3 in electrical contact with the catalyst electrode 2. In this power generation layer, by supplying a gas containing oxygen as a main component and a gas containing hydrogen as a main component to respective poles, reactions shown in the following formulas (1) and (2) are performed, and as a result, , H 2 + (1/2) can be directly taken out electrical energy from the O 2 = H 2 O for chemical reaction energy.

【0003】 酸素極(カソード)2H+ +2e- +(1/2)O2 →H2 O …(1) 水素極(アノード)H2 →2H+ +2e- …(2) したがって、触媒電極はイオン伝導体と電子電導体の両
方の機能を兼ね備えていると考えらる。
Oxygen electrode (cathode) 2H + + 2e + (1 /) O 2 → H 2 O (1) Hydrogen electrode (anode) H 2 → 2H + + 2e (2) It is considered to have both functions of a conductor and an electronic conductor.

【0004】図4は、燃料電池における高分子固体電解
質膜11と触媒41と気相(原料ガス)6との3相界面
5での反応原理を示す模式断面図であり、図4(a)お
よび図4(b)はそれぞれ酸素極(カソード)および水
素極(アノード)の3相界面の模式断面図である。上記
(1),(2)の反応は3相界面、いわゆる3重点でし
か起こりえない。すなわち、高分子固体電解質膜11と
接している触媒41の外周縁部でのみ電池反応が起こっ
ている。
FIG. 4 is a schematic sectional view showing the reaction principle at the three-phase interface 5 between the polymer solid electrolyte membrane 11, the catalyst 41, and the gas phase (source gas) 6 in a fuel cell. FIG. 4B is a schematic cross-sectional view of a three-phase interface between an oxygen electrode (cathode) and a hydrogen electrode (anode), respectively. The reactions (1) and (2) can occur only at the three-phase interface, so-called triple junction. That is, a battery reaction occurs only at the outer peripheral edge of the catalyst 41 in contact with the polymer solid electrolyte membrane 11.

【0005】燃料電池の性能を向上させるためには、燃
料電池反応(1)および(2)を連続かつ円滑に行い、
電気エネルギーを効率よく外部に取り出すことが要求さ
れる。燃料電池反応(1)および(2)の連続性および
円滑性を高めるためには、(1)および(2)の反応速
度を高めると共に、両触媒電極に原料ガスを効率よくす
みやかに供給し、そして生成ガスであるH2 Oを触媒電
極(カソード)から効率よくすみやかに除去することが
重要である。さらに、内部抵抗を小さくすることによっ
ても高効率な燃料電池を提供することができるため、高
分子固体電解質膜および触媒電極の低抵抗化なども重要
となる。
[0005] In order to improve the performance of the fuel cell, the fuel cell reactions (1) and (2) are performed continuously and smoothly.
It is required to efficiently extract electric energy to the outside. In order to improve the continuity and smoothness of the fuel cell reactions (1) and (2), the reaction rates of (1) and (2) are increased, and the raw material gas is supplied promptly and efficiently to both catalyst electrodes. It is important to efficiently and promptly remove H 2 O, which is a generated gas, from the catalyst electrode (cathode). Furthermore, since a highly efficient fuel cell can be provided by reducing the internal resistance, it is also important to reduce the resistance of the polymer solid electrolyte membrane and the catalyst electrode.

【0006】そこで、電池を高性能化するために触媒を
高活性にすることを目的として、平面状の高分子固体電
解質膜に代えて、電子電導体に数nmの小粒径の触媒を
担持させ高分子電解質溶液と混合することにより、表面
積が増加し触媒が高分散した網目状の3次元多孔質構造
体を形成し、結果として3相界面を増加した触媒電極が
開発されている。
Therefore, in order to make the catalyst highly active in order to improve the performance of the battery, a catalyst having a small particle size of several nm is supported on the electron conductor instead of the planar polymer solid electrolyte membrane. By mixing with a polymer electrolyte solution to form a network-like three-dimensional porous structure in which the surface area is increased and the catalyst is highly dispersed, a catalyst electrode having an increased three-phase interface has been developed.

【0007】具体的には、電子電導体であるカーボン微
粒子に白金を担持させた触媒担持カーボン微粒子と高分
子電解質溶液からなる触媒ペーストを作製し、この触媒
ペーストを多孔質カーボン電極基板に塗布し、高分子固
体電解質とホットプレスして接合する触媒電極の製造方
法が、松下テクニカルジャーナル、VOL.44.No
4、Aug.P.468、1998に記載されている。
More specifically, a catalyst paste comprising a catalyst-supporting carbon fine particle in which platinum is supported on carbon fine particles as an electron conductor and a polymer electrolyte solution is prepared, and the catalyst paste is applied to a porous carbon electrode substrate. And a method for manufacturing a catalyst electrode to be joined by hot pressing with a polymer solid electrolyte is disclosed in Matsushita Technical Journal, Vol. 44. No
4, Aug. P. 468, 1998.

【0008】また、触媒を担持したカーボンの細孔構造
を作り込むため、例えば特開平6−36771号公報、
特開平6−203852号公報に示されるように、亜
鉛、アルミニウム、クロムなどの金属あるいはこれらの
金属塩などの無機塩の粉末を造孔剤として用いて触媒を
担持したカーボンを混在するシート状の電極部材を形成
し、この形成した電極部材を溶液に浸漬して内部の造孔
剤を溶出させて除去することにより内部に複数の細孔を
有する電極を製造する方法が提案されている。
Further, in order to create a pore structure of carbon carrying a catalyst, for example, Japanese Patent Application Laid-Open No. 6-36771,
As disclosed in JP-A-6-203852, a sheet-like material mixed with carbon carrying a catalyst by using a powder of a metal such as zinc, aluminum, and chromium or an inorganic salt such as a metal salt thereof as a pore-forming agent. There has been proposed a method of manufacturing an electrode having a plurality of pores therein by forming an electrode member, immersing the formed electrode member in a solution to elute and remove an internal pore-forming agent.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、図2に
示すように、従来の触媒電極の製造方法では触媒41が
電子電導体であるカーボン微粒子71に担持されてい
る。したがって、それに被覆した高分子電解質91との
充分な接合強度が得られず、不安定な3相界面しか形成
されないため、電池反応によるガスの出入りにより3相
界面が変動し、ひいては安定な電池出力を得ることが困
難であった。
However, as shown in FIG. 2, in the conventional method for manufacturing a catalyst electrode, the catalyst 41 is supported on carbon fine particles 71 which are electron conductors. Therefore, a sufficient bonding strength with the polymer electrolyte 91 coated thereon cannot be obtained, and only an unstable three-phase interface is formed, so that the three-phase interface fluctuates due to the inflow and outflow of gas due to the battery reaction, and thus the stable battery output. Was difficult to obtain.

【0010】また触媒41と高分子電解質91との接触
の確率が低い、あるいはカーボン微粒子により形成され
た細孔81内に担持された触媒41は、細孔内に高分子
電解質溶液が浸透しないために全く利用されないなど高
価な白金触媒の利用率が著しく低いという問題がある。
Further, the probability of contact between the catalyst 41 and the polymer electrolyte 91 is low, or the catalyst 41 supported in the fine pores 81 formed of carbon fine particles does not allow the polymer electrolyte solution to penetrate into the fine pores. There is a problem that the utilization rate of an expensive platinum catalyst is remarkably low, for example, it is not used at all.

【0011】さらに、従来の触媒電極における3相界面
の拡大模式断面を示す図5からわかるように、原料ガス
は、高分子電解質91の皮膜のポアーから入り、高分子
電解質91の皮膜とカーボン微粒子71との密着してい
ない隙間を通って3相界面へ到達しなければならず、し
かも細孔としては著しく小さくて長いため、原料ガスの
拡散が起こりにくく、低〜高電流密度の全域において性
能が低い。一方、電池反応により生成された低沸点のH
2 Oガスはその逆の順序で除去されることとなるため凝
縮するなどして、特にガス透過性の影響が大きくなる高
電流密度では電圧の低下が顕著となる。
Further, as can be seen from FIG. 5 showing an enlarged schematic cross section of the three-phase interface in the conventional catalyst electrode, the raw material gas enters through the pores of the polymer electrolyte 91 coating, and the polymer electrolyte 91 coating and the carbon fine particles. It must reach the three-phase interface through a gap that is not in close contact with the base material 71, and since the pores are extremely small and long, diffusion of the raw material gas is unlikely to occur, and the performance is low over the entire range from low to high current density. Is low. On the other hand, low boiling H 2 generated by the battery reaction
Since the 2 O gas is removed in the reverse order, it is condensed and the like, and the voltage is remarkably reduced particularly at a high current density at which the influence of gas permeability becomes large.

【0012】本発明の課題は、効率よく安定な電池出力
を提供することができる固体高分子型燃料電池の発電層
を形成する触媒電極層およびその製造方法を提供するこ
とにある。詳しくは、本発明の課題は、触媒が有効に利
用され、高分子固体電解質と触媒とが強固に接合され、
ガスの出入りも速やかな触媒電極層およびその製造方法
を提供することにある。
An object of the present invention is to provide a catalyst electrode layer forming a power generation layer of a polymer electrolyte fuel cell capable of providing a stable and efficient battery output, and a method for producing the same. Specifically, an object of the present invention is to use a catalyst effectively, and a solid polymer electrolyte and a catalyst are firmly joined,
An object of the present invention is to provide a catalyst electrode layer that allows gas to enter and exit quickly, and a method for producing the same.

【0013】[0013]

【課題を解決するための手段】本発明者は、このような
課題を解決するために、固体高分子型燃料電池の触媒電
極層において、高分子電解質微粉末により形成された多
孔質構造の表層部分において触媒が担持され、そして担
持された触媒と電子電導体微粒子とが電気的に接触して
いるネットワーク構造を有する触媒電極を用いることに
より、効率よく安定な電池出力を提供できることを見出
した。
Means for Solving the Problems In order to solve such problems, the present inventor has proposed a method for forming a surface layer of a porous structure formed of polymer electrolyte fine powder in a catalyst electrode layer of a polymer electrolyte fuel cell. It has been found that a stable battery output can be efficiently provided by using a catalyst electrode having a network structure in which a catalyst is supported in a portion and the supported catalyst and the electronic conductor fine particles are in electrical contact.

【0014】すなわち、本発明の触媒電極と、その触媒
電極を挟んで接合された集電体と高分子固体電解質膜と
を具えた触媒電極層は、触媒電極が、多孔質構造を有す
る高分子電解質の表層部分に担持された触媒、およびそ
の触媒と電気的に接触している電子電導体微粒子のネッ
トワーク構造を具えたことを特徴とする。
That is, the catalyst electrode layer comprising the catalyst electrode of the present invention, a current collector and a polymer solid electrolyte membrane joined with the catalyst electrode interposed therebetween is a polymer electrode having a porous structure. The catalyst is characterized by comprising a catalyst supported on the surface layer of the electrolyte, and a network structure of fine particles of the electronic conductor in electrical contact with the catalyst.

【0015】また、本発明の他の形態である、集電体、
触媒電極および高分子固体電解質膜を具えた固体高分子
型燃料電池の触媒電極層の製造方法は、(1)高分子電
解質微粉末と触媒とから触媒担持高分子電解質を調製す
る工程、(2)得られた触媒担持高分子電解質と電子電
導体微粒子とを溶剤中で混合させることにより触媒電極
ペーストを調製する工程、(3)得られた触媒電極ペー
ストを集電体に塗布乾燥して集電体上に触媒電極を形成
する工程、および(4)集電体に形成された触媒電極に
高分子固体電解質膜を接合する工程、を具えることを特
徴とする。
According to another aspect of the present invention, there is provided a current collector;
A method for producing a catalyst electrode layer of a polymer electrolyte fuel cell including a catalyst electrode and a polymer solid electrolyte membrane includes: (1) a step of preparing a catalyst-supporting polymer electrolyte from a polymer electrolyte fine powder and a catalyst; A) preparing a catalyst electrode paste by mixing the obtained catalyst-carrying polymer electrolyte and electron conductor fine particles in a solvent, and (3) applying the obtained catalyst electrode paste to a current collector, drying and collecting the resultant. A step of forming a catalyst electrode on the current collector; and (4) a step of bonding a polymer solid electrolyte membrane to the catalyst electrode formed on the current collector.

【0016】さらに他の形態は、(1)高分子電解質微
粉末と触媒とから触媒担持高分子電解質を調製する工
程、(2)該触媒担持高分子電解質と電子電導体微粒子
とを溶剤中で混合させた後、さらに造孔剤を混合させる
ことにより触媒電極ペーストを調製するか、または該触
媒担持高分子電解質と電子電導体微粒子と造孔剤とを溶
剤中で一緒に混合させることにより触媒電極ペーストを
調製する工程、(3)該触媒電極ペーストを前記集電体
に塗布乾燥して集電体上に触媒電極を形成する工程、
(4)該集電体上に形成された触媒電極から造孔剤を除
去する工程、および(5)集電体に形成された触媒電極
に前記高分子固体電解質膜を接合する工程、を具えるこ
とを特徴とする。
In still another embodiment, (1) a step of preparing a catalyst-supporting polymer electrolyte from a polymer electrolyte fine powder and a catalyst; and (2) the catalyst-supporting polymer electrolyte and electron conductor fine particles in a solvent. After mixing, a catalyst electrode paste is prepared by further mixing a pore-forming agent, or the catalyst is prepared by mixing the catalyst-supporting polymer electrolyte, the electron conductor fine particles, and the pore-forming agent together in a solvent. Preparing an electrode paste, (3) applying the catalyst electrode paste to the current collector and drying to form a catalyst electrode on the current collector;
(4) a step of removing the pore-forming agent from the catalyst electrode formed on the current collector, and (5) a step of joining the polymer solid electrolyte membrane to the catalyst electrode formed on the current collector. It is characterized by

【0017】さらに他の形態は、(1)高分子電解質微
粉末と触媒とから触媒担持高分子電解質を調製する工
程、(2)該触媒担持高分子電解質と電子電導体微粒子
とを溶剤中で混合させた後、さらに高分子電解質溶液と
造孔剤とを混合させることにより触媒電極ペーストを調
製するか、または該触媒担持高分子電解質、電子電導体
微粒子、高分子電解質溶液、および造孔剤を溶剤中で一
緒に混合させることにより触媒電極ペーストを調製する
工程、(3)該触媒電極ペーストを前記集電体に塗布乾
燥して集電体上に触媒電極を形成する工程、(4)該集
電体上に形成された触媒電極から造孔剤を除去する工
程、および(5)集電体に形成された触媒電極に前記高
分子固体電解質膜を接合する工程、を具えることを特徴
とする。
In still another embodiment, (1) a step of preparing a catalyst-supporting polymer electrolyte from a polymer electrolyte fine powder and a catalyst, and (2) the catalyst-supporting polymer electrolyte and electron conductor fine particles in a solvent. After the mixing, the catalyst electrode paste is prepared by further mixing the polymer electrolyte solution and the pore-forming agent, or the catalyst-carrying polymer electrolyte, the electron conductor fine particles, the polymer electrolyte solution, and the pore-forming agent. To prepare a catalyst electrode paste by mixing together in a solvent; (3) a step of applying the catalyst electrode paste to the current collector and drying to form a catalyst electrode on the current collector; (4) Removing the pore-forming agent from the catalyst electrode formed on the current collector, and (5) joining the polymer solid electrolyte membrane to the catalyst electrode formed on the current collector. Features.

【0018】さらに他の形態は、(1)高分子電解質微
粉末と電子電導体微粒子とを溶剤中で混合させた後、さ
らに高分子電解質溶液と造孔剤とを混合させることによ
り電極ペーストを調製するか、または高分子電解質微粉
末、電子電導体微粒子、高分子電解質溶液、および造孔
剤を溶剤中で一緒に混合させることにより電極ペースト
を調製する工程、(2)該電極ペーストを前記集電体に
塗布乾燥して電極を形成する工程(3)該集電体上に形
成された電極から造孔剤を除去する工程、(4)該電極
に触媒を担持させる工程、および(5)集電体に形成さ
れた触媒電極に前記高分子固体電解質膜を接合する工
程、を具えることを特徴とする。
Still another mode is as follows: (1) After mixing the polymer electrolyte fine powder and the electron conductor fine particles in a solvent, the polymer electrolyte solution and the pore-forming agent are further mixed to form an electrode paste. Preparing an electrode paste by mixing or mixing together a polymer electrolyte fine powder, an electron conductor fine particle, a polymer electrolyte solution, and a pore-forming agent in a solvent; (3) removing the pore-forming agent from the electrode formed on the current collector, (4) supporting the catalyst on the electrode, and (5) A) joining the polymer solid electrolyte membrane to the catalyst electrode formed on the current collector.

【0019】さらに他の形態は、(1)高分子電解質微
粉末と触媒とから触媒担持高分子電解質を調製する工
程、(2)該触媒担持高分子電解質と電子電導体微粒子
とを溶剤中で混合させた後、さらに高分子電解質溶液と
造孔剤とを混合させることにより電極ペーストを調製す
るか、または触媒担持高分子電解質、電子電導体微粒
子、高分子電解質溶液、および造孔剤を溶剤中で一緒に
混合させることにより電極ペーストを調製する工程、
(3)該電極ペーストを前記集電体に塗布乾燥して電極
を形成する工程、(4)該集電体上に形成された電極か
ら造孔剤を除去する工程、(5)該電極に触媒を担持さ
せる工程、および(6)集電体に形成された触媒電極に
前記高分子固体電解質膜を接合する工程、を具えること
を特徴とする。
In still another embodiment, (1) a step of preparing a catalyst-supporting polymer electrolyte from a polymer electrolyte fine powder and a catalyst, and (2) the catalyst-supporting polymer electrolyte and electron conductor fine particles in a solvent. After mixing, an electrode paste is prepared by further mixing the polymer electrolyte solution and the pore-forming agent, or the catalyst-supporting polymer electrolyte, the electron conductor fine particles, the polymer electrolyte solution, and the pore-forming agent are mixed with a solvent. Preparing an electrode paste by mixing together in
(3) a step of applying the electrode paste to the current collector and drying to form an electrode; (4) a step of removing a pore-forming agent from the electrode formed on the current collector; A step of supporting a catalyst; and (6) a step of joining the polymer solid electrolyte membrane to a catalyst electrode formed on a current collector.

【0020】さらにまた、本発明の他の形態は、前記の
触媒電極層または触媒電極層の製造方法において、触媒
が白金を主成分とする貴金属触媒であり、かつ電子電導
体微粒子がカーボン微粒子、白金を主成分とする貴金属
微粒子および酸化物微粒子から成る群から選択されたこ
とを特徴とする。
Still another aspect of the present invention is the above-mentioned catalyst electrode layer or the method for producing a catalyst electrode layer, wherein the catalyst is a noble metal catalyst containing platinum as a main component, and the electron conductor fine particles are carbon fine particles. It is selected from the group consisting of noble metal fine particles containing platinum as a main component and oxide fine particles.

【0021】[0021]

【発明の実施の形態】本発明の固体高分子型燃料電池の
触媒電極層は、触媒電極と、触媒電極を挟んで接合され
た集電体と高分子電解質膜とを具え、そして触媒電極に
おいて、触媒は高分子電解質に担持されている。触媒担
持高分子電解質において高分子電解質は多孔質構造を形
成しており、触媒は高分子電解質からなる多孔質構造の
表層部分にて担持されているため、全ての触媒が効率よ
く利用され安定な3相界面を形成することができる。
DETAILED DESCRIPTION OF THE INVENTION The catalyst electrode layer of the polymer electrolyte fuel cell according to the present invention comprises a catalyst electrode, a current collector and a polymer electrolyte membrane joined to each other with the catalyst electrode interposed therebetween. The catalyst is supported on the polymer electrolyte. In the catalyst-supporting polymer electrolyte, the polymer electrolyte has a porous structure, and the catalyst is supported on the surface layer of the porous structure composed of the polymer electrolyte. A three-phase interface can be formed.

【0022】触媒は、白金を主成分とする貴金属触媒で
あり、ロジウム、パラジウム等の他の貴金属を含有する
こともできる。
The catalyst is a noble metal catalyst containing platinum as a main component, and may contain other noble metals such as rhodium and palladium.

【0023】また、高分子電解質に担持される触媒の量
は、高分子電解質の体積に基づいて1%程度以下であ
る。
The amount of the catalyst supported on the polymer electrolyte is about 1% or less based on the volume of the polymer electrolyte.

【0024】触媒を担持する多孔質構造を有する高分子
電解質は、高分子電解質微粉末から形成される。高分子
電解質微粉末は、パーフルオロカーボンスルホン酸の微
粉末である。触媒電極の多孔質性は、高分子電解質微粉
末の粒径により制御され、その多孔質性は電子電導体微
粒子により阻害されることはない。細孔径を制御するこ
とにより、原料ガスの導入および生成ガスの除去を速や
かに行うことが可能となる。通常、粒径は、0.1〜1
00μmであり、好ましくは0.5〜10μmであり、
さらに好ましくは1〜5μmである。粒径が0.1μm
より小さいと焼成した後に形成される細孔径が小さすぎ
て原料ガスおよび生成ガスの拡散が損なわれ、また水の
凝縮による細孔の目づまりも起こる。一方、100μm
より大きいと抵抗が大きくなりすぎる。
The polymer electrolyte having a porous structure for supporting a catalyst is formed from a polymer electrolyte fine powder. The polymer electrolyte fine powder is a fine powder of perfluorocarbon sulfonic acid. The porosity of the catalyst electrode is controlled by the particle size of the polymer electrolyte fine powder, and the porosity is not hindered by the electron conductor fine particles. By controlling the pore diameter, it becomes possible to quickly introduce the source gas and remove the generated gas. Usually, the particle size is between 0.1 and 1
00 μm, preferably 0.5 to 10 μm,
More preferably, it is 1 to 5 μm. Particle size 0.1 μm
If the diameter is smaller, the diameter of the pores formed after the firing is too small, so that the diffusion of the raw material gas and the produced gas is impaired, and the pores are clogged due to condensation of water. On the other hand, 100 μm
If it is larger, the resistance becomes too large.

【0025】適当な粒径を有するパーフルオロカーボン
スルホン酸微粉末は、従来公知の方法により製造するこ
とができる。例えば、粒径1〜5μmの微粉末は、パー
フルオロカーボンスルホン酸溶液を窒素気流中で噴霧乾
燥器を用いてアルコール溶液に噴霧し乾燥することによ
って得ることができる。また、比較的大きな粒径のパー
フルオロカーボンスルホン酸微粉末は、あらかじめ酢酸
ブチル溶液中にパーフルオロカーボンスルホン酸溶液を
滴下し、パーフルオロカーボンスルホン酸高分子のコロ
イド状分散液を噴霧乾燥することにより得ることができ
る。
The fine powder of perfluorocarbon sulfonic acid having an appropriate particle size can be produced by a conventionally known method. For example, fine powder having a particle size of 1 to 5 μm can be obtained by spraying a perfluorocarbon sulfonic acid solution onto an alcohol solution using a spray dryer in a nitrogen stream and drying. In addition, a perfluorocarbon sulfonic acid fine powder having a relatively large particle size can be obtained by previously dropping a perfluorocarbon sulfonic acid solution into a butyl acetate solution and spray-drying a colloidal dispersion of a perfluorocarbon sulfonic acid polymer. Can be.

【0026】本発明によれば、電子電導体微粒子は、多
孔質構造を有する高分子電解質の表層部分に担持された
触媒と電気的に接触してネットワーク構造を形成してい
る。このため、発電された電気は電子電導体微粒子のネ
ットワーク構造から集電体に流れる。
According to the present invention, the electron conductor fine particles are in electrical contact with the catalyst carried on the surface layer of the polymer electrolyte having a porous structure to form a network structure. For this reason, the generated electricity flows from the network structure of the electron conductor fine particles to the current collector.

【0027】電子電導体微粒子は、導電性カーボン微粒
子、白金黒などの白金を主成分とする貴金属微粒子、L
aMnO3 のような複酸化物の微粒子などであり、白金
黒およびLaMnO3 は触媒作用があるため好ましい
が、経済性という点からは導電性カーボン微粒子が好ま
しい。電子電導体微粒子の粒径は、1μmより小さく、
好ましくは0.1μmより小さく、さらに好ましくは
0.05μmより小さい。1μmより大きいと固体高分
子微粒子間の接触を妨げる。
Electron conductor fine particles include conductive carbon fine particles, noble metal fine particles containing platinum as a main component such as platinum black, and L
These are fine particles of a complex oxide such as aMnO 3 , and platinum black and LaMnO 3 are preferable because of their catalytic action, but conductive carbon fine particles are preferable from the viewpoint of economy. The particle size of the electron conductor fine particles is smaller than 1 μm,
Preferably it is smaller than 0.1 μm, more preferably smaller than 0.05 μm. If it is larger than 1 μm, contact between the solid polymer fine particles is hindered.

【0028】電子電導体微粒子は、触媒担持高分子電解
質と電子電導体微粒子とを併せた体積に基づいて、20
〜80%を占める。体積比が20%より小さいと電子電
導体微粒子間の接触機会が少なく、電子電導体微粒子の
ネットワーク構造体としての電気抵抗値が上昇してしま
う。また、80%より大きいと、電子電導体微粒子のネ
ットワーク構造体としての電気抵抗値は低下するもの
の、高分子電解質同士の接触機会が少なくなって高分子
電解質の抵抗が大きくなってしまう。あるいは、触媒が
電子電導体微粒子によって被覆され、電池反応に利用さ
れない触媒の増加を招くため好ましくない。
The electron conductor fine particles are 20% based on the combined volume of the catalyst-supporting polymer electrolyte and the electron conductor fine particles.
Accounts for ~ 80%. If the volume ratio is less than 20%, the chance of contact between the electronic conductor fine particles is small, and the electric resistance of the electronic conductor fine particles as a network structure increases. If it is more than 80%, the electrical resistance of the electron conductor fine particles as a network structure decreases, but the chance of contact between the polymer electrolytes decreases, and the resistance of the polymer electrolyte increases. Alternatively, the catalyst is undesirably coated with the fine particles of the electron conductor, which increases the amount of the catalyst not used for the battery reaction.

【0029】生成ガスである水の凝縮による細孔の目づ
まりを防止するためには、電子電導体微粒子の一部ある
いは全部をポリ四フッ化エチレンであらかじめコーティ
ングされたものにすることで、撥水性を高めてもよい。
In order to prevent clogging of pores due to condensation of water as a generated gas, a part or all of the electron conductor fine particles are coated in advance with polytetrafluoroethylene to obtain water repellency. May be increased.

【0030】本発明の触媒電極層において、触媒電極に
接合された集電体は、多孔質カーボンである。水の凝縮
による目づまりを防止するために、多孔質カーボンの表
面にポリ四フッ化エチレンでコーティングした炭素繊維
とコーティングしてない炭素繊維との混合物から成る層
を具えた集電体が好ましい。その他、集電体として、ス
ポンジ状のステンレス等の金属を用いることもできる。
In the catalyst electrode layer of the present invention, the current collector joined to the catalyst electrode is porous carbon. To prevent clogging due to condensation of water, a current collector comprising a layer of a mixture of carbon fibers coated on the surface of porous carbon with polytetrafluoroethylene and uncoated carbon fibers is preferred. In addition, a metal such as a sponge-like stainless steel can be used as the current collector.

【0031】また、触媒電極に接合された高分子電解質
膜は、厚さが20〜100μmであるパーフルオロカー
ボンスルホン酸高分子膜であり、例えば、デュポン社製
商品名「ナフィオン」などを挙げることができる。
The polymer electrolyte membrane bonded to the catalyst electrode is a perfluorocarbon sulfonic acid polymer membrane having a thickness of 20 to 100 μm, for example, a product name “Nafion” manufactured by DuPont. it can.

【0032】本発明の固体高分子型燃料電池の触媒電極
層の製造方法においては、まず、高分子電解質微粉末と
触媒とから触媒担持高分子電解質を調製する。具体的に
は、適当な粒径のパーフルオロカーボンスルホン酸微粉
末を塩化白金酸水溶液に懸濁させ、室温で1時間放置
後、真空乾燥機中で50℃、4時間乾燥して塩化白金酸
担持パーフルオロカーボンスルホン酸微粉末を調製し、
得られた微粉末を用いて100〜130℃、加湿水素気
流中で72時間還元処理を行い、白金触媒担持パーフル
オロカーボンスルホン酸微粉末を得ることができる。還
元工程はホルマリンなどを用いた一般に知られた湿式還
元によってもよい。
In the method for producing a catalyst electrode layer of a polymer electrolyte fuel cell according to the present invention, first, a catalyst-supporting polymer electrolyte is prepared from a polymer electrolyte fine powder and a catalyst. Specifically, a perfluorocarbon sulfonic acid fine powder having an appropriate particle size is suspended in an aqueous solution of chloroplatinic acid, left at room temperature for 1 hour, and then dried in a vacuum dryer at 50 ° C. for 4 hours to carry chloroplatinic acid. Prepare perfluorocarbon sulfonic acid fine powder,
The resulting fine powder is subjected to a reduction treatment in a humidified hydrogen stream at 100 to 130 ° C. for 72 hours to obtain a fine powder of perfluorocarbonsulfonic acid carrying a platinum catalyst. The reduction step may be a generally known wet reduction using formalin or the like.

【0033】次に、得られた触媒担持高分子電解質と電
子電導体微粒子とを溶剤中で混合して触媒電極ペースト
を調製する。本発明において用いられる溶剤は、使用す
る電子電導体微粒子が分散するが、反応しないものでな
ければならない。さらに塗布に適当な粘度を有し、比較
的低温で揮発するが、発火しにくい溶剤を用いる。この
ような溶剤としては、具体的には、シクロヘキサノール
等を挙げることができ、使用する溶剤の量は適宜決定さ
れる。
Next, the catalyst-carrying polymer electrolyte and the electron conductor fine particles are mixed in a solvent to prepare a catalyst electrode paste. The solvent used in the present invention must disperse, but do not react, the electron conductor fine particles used. Furthermore, a solvent which has a viscosity suitable for coating and which volatilizes at a relatively low temperature but does not easily ignite is used. Specific examples of such a solvent include cyclohexanol, and the amount of the solvent to be used is appropriately determined.

【0034】触媒担持高分子電解質と電子電導体微粒子
とを溶剤中で混合した後に、または、触媒担持高分子電
解質と電子電導体微粒子とを溶剤中で混合する際に一緒
に、造孔剤を混合してもよく、または造孔剤を高分子電
解質溶液と共に混合してもよい。特に、用いる高分子電
解質の粒径が1μmより小さい場合には、造孔剤を添加
することが好ましい。触媒電極を形成した後に適当な溶
液に浸漬して造孔剤を除去することにより、適当な細孔
径を作りつけることができる。
After mixing the catalyst-supporting polymer electrolyte and the electron conductor fine particles in the solvent, or together with mixing the catalyst-supporting polymer electrolyte and the electron conductor fine particles in the solvent, the pore-forming agent is used. The pore-forming agent may be mixed with the polyelectrolyte solution. In particular, when the particle size of the polymer electrolyte used is smaller than 1 μm, it is preferable to add a pore-forming agent. After forming the catalyst electrode, the porous electrode is immersed in an appropriate solution to remove the pore-forming agent, whereby an appropriate pore diameter can be formed.

【0035】また、後工程でのホットプレス後の接合強
度をさらに向上するという観点からは、触媒電極ペース
トを調製する際に、10%程度までのパーフルオロカー
ボンスルホン酸溶液をさらに混合してもよい。しかしな
がら、混合量を増加させるにつれ強度は増加するが、同
時に触媒が被覆されて電池反応に利用されない触媒を増
加させることになる点に注意する必要がある。
From the viewpoint of further improving the bonding strength after hot pressing in the subsequent step, a perfluorocarbon sulfonic acid solution of up to about 10% may be further mixed when preparing the catalyst electrode paste. . However, it should be noted that as the mixing amount increases, the strength increases, but at the same time increases the amount of catalyst that is coated and not utilized in the cell reaction.

【0036】溶剤中の触媒担持高分子電解質と電子電導
体微粒子との混合は、均一に混合される方法であればど
のようになされてもよいが、超音波を照射して触媒担持
高分子電解質と電子電導体微粒子とを均一に分散するこ
とが好ましい。
The mixing of the catalyst-carrying polymer electrolyte and the electron conductor fine particles in the solvent may be carried out by any method as long as they are uniformly mixed. And the electron conductor fine particles are preferably uniformly dispersed.

【0037】次に、調製された触媒電極ペーストを集電
体に塗布乾燥して集電体上に触媒電極を形成する。ペー
ストの塗布は、印刷あるいはスプレー塗布により行われ
る。具体的には、触媒電極ペーストをドクターブレード
式の印刷装置を用いて集電体上に厚さ20〜500μ
m、好ましくは50〜300μmになるように印刷す
る。そして、印刷物を40〜100℃、好ましくは60
〜80℃で真空乾燥する。真空乾燥により塗布された触
媒電極ペーストの厚さは約〜1/5に薄くなる。真空乾
燥後、集電体上に形成された触媒電極に、ポリ四フッ化
エチレンを染み込ませて細孔の撥水性を向上させてもよ
いが、量が多くなるにつれ触媒がポリ四フッ化エチレン
で被覆されて電池反応に利用されない触媒を増加させる
ことになる点に注意する必要がある。
Next, the prepared catalyst electrode paste is applied to a current collector and dried to form a catalyst electrode on the current collector. The paste is applied by printing or spraying. Specifically, the catalyst electrode paste was coated on the current collector with a thickness of 20 to 500 μm using a doctor blade type printing device.
m, preferably 50 to 300 μm. Then, the printed matter is heated at 40 to 100 ° C., preferably 60 ° C.
Vacuum dry at ~ 80 ° C. The thickness of the catalyst electrode paste applied by vacuum drying is reduced to about 1 /. After vacuum drying, the catalyst electrode formed on the current collector may be impregnated with polytetrafluoroethylene to improve the water repellency of the pores, but as the amount increases, the catalyst becomes polytetrafluoroethylene. It should be noted that this will increase the amount of catalyst that is coated with and not utilized in the battery reaction.

【0038】本発明の製造方法においては、高分子電解
質に触媒を担持させた後に、触媒電極ペーストを調製し
てもよく、また、溶剤中で高分子電解質および電子電導
体微粒子を混合して電極ペーストを調製し、得られた電
極ペーストを集電体に塗布乾燥して電極を形成後、触媒
を担持させて触媒電極としてもよい。具体的には、電極
の表面に例えば塩化白金酸水溶液を含浸させた後、還元
して電極に白金触媒を担持させることができる。
In the production method of the present invention, the catalyst electrode paste may be prepared after the catalyst is supported on the polymer electrolyte, or the polymer electrolyte and the fine particles of the electron conductor are mixed in a solvent to prepare the electrode. A paste may be prepared, and the obtained electrode paste may be applied to a current collector and dried to form an electrode, and then a catalyst may be supported to form a catalyst electrode. Specifically, the surface of the electrode is impregnated with, for example, an aqueous solution of chloroplatinic acid, and then reduced to allow the electrode to carry a platinum catalyst.

【0039】さらに、性能を向上させるために、最初に
高分子電解質微粉末と触媒とから触媒担持高分子電解質
を調製し、さらに、ペーストを集電体に塗布乾燥して電
極を形成した後にも、触媒を担持させて触媒電極を完成
させてもよい。
Further, in order to improve the performance, first, a catalyst-supporting polymer electrolyte is prepared from the polymer electrolyte fine powder and the catalyst, and the paste is applied to a current collector and dried to form an electrode. Alternatively, the catalyst electrode may be completed by carrying a catalyst.

【0040】最後に、集電体に形成された触媒電極に高
分子固体電解質膜を接合する。集電体と高分子固体電解
質膜とで触媒電極を挟み込み、サンドイッチ構造とした
状態で110〜130℃の温度で5MPa〜10MPa
の圧力を適用して接合するホットプレス法によって高分
子固体電解質膜と触媒電極と集電体とを接合する。
Finally, a solid polymer electrolyte membrane is bonded to the catalyst electrode formed on the current collector. 5 MPa to 10 MPa at a temperature of 110 to 130 ° C. in a sandwich structure with the catalyst electrode sandwiched between the current collector and the polymer solid electrolyte membrane
The solid polymer electrolyte membrane, the catalyst electrode, and the current collector are joined by a hot press method of joining by applying the pressure described above.

【0041】[0041]

【実施例】本発明を実施例を挙げて説明するが、本発明
は本実施例にのみ限定されるものではない。
EXAMPLES The present invention will be described with reference to examples, but the present invention is not limited to these examples.

【0042】10重量%のパーフルオロカーボンスルホ
ン酸溶液を窒素気流中で噴霧乾燥器を用いてアルコール
溶液に噴霧し乾燥することによって1〜5μmの粒径の
パーフルオロカーボンスルホン酸微粉末を得た。得られ
たパーフルオロカーボンスルホン酸微粉末を10重量%
の塩化白金酸水溶液に懸濁させ、室温で1時間放置した
後、50℃の真空乾燥機中で4時間乾燥して塩化白金酸
担持パーフルオロカーボンスルホン酸微粉末を得た。次
に、100〜130℃の温度条件下、加湿水素気流中
で、塩化白金酸担持パーフルオロカーボンスルホン酸微
粉末の還元処理を72時間にわたって行い、白金触媒担
持パーフルオロカーボンスルホン酸微粉末を得た。
A 10% by weight perfluorocarbon sulfonic acid solution was sprayed onto an alcohol solution using a spray dryer in a nitrogen stream and dried to obtain a fine powder of perfluorocarbon sulfonic acid having a particle size of 1 to 5 μm. 10% by weight of the obtained fine powder of perfluorocarbon sulfonic acid
Was suspended in an aqueous solution of chloroplatinic acid for 1 hour at room temperature, and then dried in a vacuum dryer at 50 ° C. for 4 hours to obtain fine powder of perfluorocarbonsulfonic acid carrying chloroplatinic acid. Next, a reduction treatment of the chloroplatinic acid-supported perfluorocarbon sulfonic acid fine powder was performed in a humidified hydrogen stream at a temperature of 100 to 130 ° C. for 72 hours to obtain a platinum catalyst-supported perfluorocarbon sulfonic acid fine powder.

【0043】次に、適量のシクロヘキサノール中で、得
られた白金担持パーフルオロカーボンスルホン酸微粉末
と、平均粒径が0.1μmである導電性カーボン微粒子
とを、触媒電極中のカーボン微粒子の体積が、白金担持
パーフルオロカーボンスルホン酸とカーボン微粒子とを
併せた体積に基づいて40%となるように混合し、超音
波を照射して均一分散された触媒電極ペーストを作っ
た。
Next, in an appropriate amount of cyclohexanol, the obtained fine powder of platinum-supported perfluorocarbon sulfonic acid and fine conductive carbon particles having an average particle diameter of 0.1 μm were mixed with the volume of fine carbon particles in the catalyst electrode. Was mixed so as to be 40% based on the combined volume of the platinum-supported perfluorocarbon sulfonic acid and the carbon fine particles, and irradiated with ultrasonic waves to prepare a uniformly dispersed catalyst electrode paste.

【0044】その後、調製したペーストをドクターブレ
ード式の印刷装置を用いて多孔質カーボンよりなる集電
体上に厚さ100μmとなるように印刷し、60〜80
℃で真空乾燥した。真空乾燥により塗布したペーストの
厚さが1/5以下になった触媒電極が形成された。次
に、厚さ50μmのパーフルオロカーボンスルホン酸高
分子膜(デュポン社製商品名「ナフィオン」)を、高分
子膜と触媒電極が接触するように集電体と高分子膜とで
触媒電極を挟み込んだ状態で、温度110〜130℃、
圧力5MPa〜10MPaのホットプレス法によって、
触媒電極に接合した。
Then, the prepared paste was printed on a current collector made of porous carbon to a thickness of 100 μm using a doctor blade type printing device, and the printing was performed at 60 to 80 μm.
Vacuum dried at ℃. A catalyst electrode in which the thickness of the applied paste was reduced to 1/5 or less by vacuum drying was formed. Next, a 50 μm-thick perfluorocarbon sulfonic acid polymer membrane (trade name “Nafion” manufactured by DuPont) was sandwiched between the current collector and the polymer membrane so that the polymer membrane and the catalyst electrode were in contact with each other. Temperature, 110-130 ° C,
By hot press method of pressure 5MPa ~ 10MPa,
It was joined to the catalyst electrode.

【0045】このようにして製造された触媒電極層を図
1に示した。また、比較のため、従来の触媒電極層を図
2に示した。
FIG. 1 shows the thus-produced catalyst electrode layer. For comparison, a conventional catalyst electrode layer is shown in FIG.

【0046】図1では、触媒電極2の多孔質構造のマト
リックスが白金触媒4を担持している高分子電解質9の
焼結体であり、その表層部分にカーボン微粒子7による
ネットワーク構造が形成されているような構造が示され
ているが、図2では、多孔質構造のマトリックスが白金
触媒41を担持しているカーボン微粒子71の焼結体で
あり、その表層部分を高分子電解質91が被覆している
構造が示されている。
In FIG. 1, the matrix of the porous structure of the catalyst electrode 2 is a sintered body of the polymer electrolyte 9 supporting the platinum catalyst 4, and a network structure of carbon fine particles 7 is formed on the surface layer thereof. In FIG. 2, a matrix having a porous structure is a sintered body of carbon fine particles 71 supporting a platinum catalyst 41, and the surface layer is covered with a polymer electrolyte 91 in FIG. The structure is shown.

【0047】図1に示す本発明の触媒電極層によれば、
触媒4の一部は焼結体内部に埋設して電池反応に利用さ
れないものの、大部分は有効な3相界面を形成し、電池
反応に効率よく利用される。また、触媒4は高分子電解
質9に直接担持されているため強固な接合が可能であ
り、電池反応に伴うガスの出入りで3相界面が変動し電
池出力が不安定になることもない。触媒4同志はカーボ
ン微粒子7を介して電気的につながっており、電池反応
により得られる電流は集電体3へ速やかに流れる。カー
ボン微粒子7は緻密ではなく、カーボン微粒子7同志が
ネットワーク構造を形成していて、かつ、厚みも薄いた
めに、その細孔を通しての3相界面へのガスの出入りは
妨げられない。
According to the catalyst electrode layer of the present invention shown in FIG.
Although a part of the catalyst 4 is buried inside the sintered body and is not used for the battery reaction, most forms an effective three-phase interface and is efficiently used for the battery reaction. Further, since the catalyst 4 is directly supported on the polymer electrolyte 9, strong bonding is possible, and the three-phase interface does not fluctuate due to the inflow and outflow of gas accompanying the battery reaction, and the battery output does not become unstable. The catalysts 4 are electrically connected to each other through the carbon fine particles 7, and the current obtained by the battery reaction flows quickly to the current collector 3. Since the carbon microparticles 7 are not dense, the carbon microparticles 7 form a network structure and have a small thickness, gas flow into and out of the three-phase interface through the pores is not hindered.

【0048】本発明の触媒電極層を具えた発電層を用い
た固体高分子型燃料電池において、電流密度と電圧との
関係を調べてみると、低〜高電流密度の全域において性
能の向上が見られた。特にガス透過性の影響が大きくな
る高電流密度では、従来の固体高分子型燃料電池に比べ
顕著な改善が認められる。
In the polymer electrolyte fuel cell using the power generation layer provided with the catalyst electrode layer of the present invention, the relationship between the current density and the voltage was examined, and it was found that the performance was improved over the entire range from low to high current density. Was seen. In particular, at a high current density at which the influence of gas permeability becomes large, a remarkable improvement is recognized as compared with the conventional polymer electrolyte fuel cell.

【0049】[0049]

【発明の効果】本発明の触媒電極層を具えた発電層は、
強固な3相界面の増加、電池反応に伴うガスの速やか出
入りを可能にすることにより、効率よく安定な電池出力
を提供することができる。特にその性能の改善は、ガス
透過性の影響が大きくなる高電流密度において、従来の
燃料電池に比べて顕著である。
The power generation layer provided with the catalyst electrode layer of the present invention comprises:
By enabling a strong increase in the three-phase interface and rapid inflow and outflow of gas accompanying the battery reaction, a stable and stable battery output can be provided. In particular, the improvement of the performance is remarkable as compared with the conventional fuel cell at a high current density where the influence of the gas permeability becomes large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す触媒電極層の模式断面図
である。
FIG. 1 is a schematic sectional view of a catalyst electrode layer showing an example of the present invention.

【図2】従来の触媒電極層の模式断面図である。FIG. 2 is a schematic sectional view of a conventional catalyst electrode layer.

【図3】固体高分子型燃料電池の発電層の模式断面図で
ある。
FIG. 3 is a schematic sectional view of a power generation layer of a polymer electrolyte fuel cell.

【図4】3相界面での反応原理を示す模式断面図であ
り、(a)はカソード、(b)はアノードである。
FIGS. 4A and 4B are schematic cross-sectional views showing a reaction principle at a three-phase interface, where (a) is a cathode and (b) is an anode.

【図5】従来の触媒電極の3相界面の拡大模式断面図で
ある。
FIG. 5 is an enlarged schematic sectional view of a three-phase interface of a conventional catalyst electrode.

【符号の説明】[Explanation of symbols]

1,11 高分子固体電解質膜 2,21 触媒電極 3,31 集電体 4,41 触媒 5 3相界面 6 気相 7,71 カーボン微粒子 8,81 細孔 9,91 高分子電解質 20 触媒電極層 30 発電層 Reference Signs List 1,11 Polymer solid electrolyte membrane 2,21 Catalyst electrode 3,31 Current collector 4,41 Catalyst 5 Three-phase interface 6 Gas phase 7,71 Carbon fine particles 8,81 Pores 9,91 Polymer electrolyte 20 Catalyst electrode layer 30 Power generation layer

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 触媒電極と、該触媒電極を挟んで接合さ
れた集電体と高分子固体電解質膜とを具えた固体高分子
型燃料電池の触媒電極層において、前記触媒電極は、多
孔質構造を有する高分子電解質の表層部分に担持された
触媒、および該触媒と電気的に接触している電子電導体
微粒子のネットワーク構造を具えることを特徴とする燃
料電池の触媒電極層。
1. A catalyst electrode layer of a polymer electrolyte fuel cell comprising a catalyst electrode, a current collector joined with the catalyst electrode interposed therebetween, and a polymer solid electrolyte membrane, wherein the catalyst electrode is porous. A catalyst electrode layer for a fuel cell, comprising: a catalyst supported on a surface layer of a polymer electrolyte having a structure; and a network structure of electron conductor fine particles in electrical contact with the catalyst.
【請求項2】 前記触媒は白金を主成分とする貴金属触
媒であり、かつ前記電子電導体微粒子はカーボン微粒
子、白金を主成分とする貴金属微粒子および酸化物微粒
子から成る群から選択されたことを特徴とする請求項1
記載の燃料電池の触媒電極層。
2. The method according to claim 1, wherein the catalyst is a noble metal catalyst containing platinum as a main component, and the electron conductor fine particles are selected from the group consisting of carbon fine particles, noble metal fine particles containing platinum as a main component, and oxide fine particles. Claim 1.
The catalyst electrode layer of the fuel cell according to the above.
【請求項3】 集電体、触媒電極および高分子固体電解
質膜を具えた固体高分子型燃料電池の触媒電極層の製造
方法において、(1)高分子電解質微粉末と触媒とから
触媒担持高分子電解質を調製する工程、(2)該触媒担
持高分子電解質と電子電導体微粒子とを溶剤中で混合さ
せることにより触媒電極ペーストを調製する工程、
(3)該触媒電極ペーストを前記集電体に塗布乾燥して
集電体上に触媒電極を形成する工程、および(4)集電
体に形成された触媒電極に前記高分子固体電解質膜を接
合する工程、を具えることを特徴とする燃料電池の触媒
電極層の製造方法。
3. A method for producing a catalyst electrode layer of a polymer electrolyte fuel cell comprising a current collector, a catalyst electrode, and a polymer solid electrolyte membrane, comprising: A step of preparing a molecular electrolyte, (2) a step of preparing a catalyst electrode paste by mixing the catalyst-carrying polymer electrolyte and electron conductor fine particles in a solvent,
(3) applying the catalyst electrode paste to the current collector and drying to form a catalyst electrode on the current collector; and (4) applying the polymer solid electrolyte membrane to the catalyst electrode formed on the current collector. A method for producing a catalyst electrode layer of a fuel cell, comprising a step of joining.
【請求項4】 集電体、触媒電極および高分子固体電解
質膜を具えた固体高分子型燃料電池の触媒電極層の製造
方法において、(1)高分子電解質微粉末と触媒とから
触媒担持高分子電解質を調製する工程、(2)該触媒担
持高分子電解質と電子電導体微粒子とを溶剤中で混合さ
せた後、さらに造孔剤を混合させることにより触媒電極
ペーストを調製するか、または該触媒担持高分子電解質
と電子電導体微粒子と造孔剤とを溶剤中で一緒に混合さ
せることにより触媒電極ペーストを調製する工程、
(3)該触媒電極ペーストを前記集電体に塗布乾燥して
集電体上に触媒電極を形成する工程、(4)該集電体上
に形成された触媒電極から造孔剤を除去する工程、およ
び(5)集電体に形成された触媒電極に前記高分子固体
電解質膜を接合する工程、を具えることを特徴とする燃
料電池の触媒電極層の製造方法。
4. A method for producing a catalyst electrode layer of a polymer electrolyte fuel cell comprising a current collector, a catalyst electrode, and a polymer solid electrolyte membrane, comprising: A step of preparing a molecular electrolyte; (2) mixing the catalyst-supporting polymer electrolyte and the fine particles of an electron conductor in a solvent, and further mixing a pore-forming agent to prepare a catalyst electrode paste, or A step of preparing a catalyst electrode paste by mixing together the catalyst-carrying polymer electrolyte, the electron conductor fine particles and the pore-forming agent in a solvent,
(3) applying the catalyst electrode paste to the current collector and drying to form a catalyst electrode on the current collector; and (4) removing the pore-forming agent from the catalyst electrode formed on the current collector. And (5) bonding the polymer solid electrolyte membrane to a catalyst electrode formed on a current collector.
【請求項5】 集電体、触媒電極および高分子固体電解
質膜を具えた固体高分子型燃料電池の触媒電極層の製造
方法において、(1)高分子電解質微粉末と触媒とから
触媒担持高分子電解質を調製する工程、(2)該触媒担
持高分子電解質と電子電導体微粒子とを溶剤中で混合さ
せた後、さらに高分子電解質溶液と造孔剤とを混合させ
ることにより触媒電極ペーストを調製するか、または該
触媒担持高分子電解質、電子電導体微粒子、高分子電解
質溶液、および造孔剤を溶剤中で一緒に混合させること
により触媒電極ペーストを調製する工程、(3)該触媒
電極ペーストを前記集電体に塗布乾燥して集電体上に触
媒電極を形成する工程、(4)該集電体上に形成された
触媒電極から造孔剤を除去する工程、および(5)集電
体に形成された触媒電極に前記高分子固体電解質膜を接
合する工程、を具えることを特徴とする燃料電池の触媒
電極層の製造方法。
5. A method for producing a catalyst electrode layer of a polymer electrolyte fuel cell comprising a current collector, a catalyst electrode, and a polymer solid electrolyte membrane, comprising: (2) mixing the catalyst-carrying polymer electrolyte and the electron conductor fine particles in a solvent, and then further mixing the polymer electrolyte solution and a pore-forming agent to form a catalyst electrode paste. Preparing or preparing a catalyst electrode paste by mixing together the catalyst-carrying polymer electrolyte, the electron conductor fine particles, the polymer electrolyte solution, and the pore-forming agent in a solvent, (3) the catalyst electrode Applying the paste to the current collector and drying to form a catalyst electrode on the current collector; (4) removing the pore-forming agent from the catalyst electrode formed on the current collector; and (5) Catalyst formed on current collector Bonding the solid polymer electrolyte membrane to an electrode. A method for producing a catalyst electrode layer for a fuel cell, comprising:
【請求項6】 集電体、触媒電極および高分子固体電解
質膜を具えた固体高分子型燃料電池の触媒電極層の製造
方法において、(1)高分子電解質微粉末と電子電導体
微粒子とを溶剤中で混合させた後、さらに高分子電解質
溶液と造孔剤とを混合させることにより電極ペーストを
調製するか、または高分子電解質微粉末、電子電導体微
粒子、高分子電解質溶液、および造孔剤を溶剤中で一緒
に混合させることにより電極ペーストを調製する工程、
(2)該電極ペーストを前記集電体に塗布乾燥して電極
を形成する工程(3)該集電体上に形成された電極から
造孔剤を除去する工程、(4)該電極に触媒を担持させ
る工程、および(5)集電体に形成された触媒電極に前
記高分子固体電解質膜を接合する工程、を具えることを
特徴とする燃料電池の触媒電極層の製造方法。
6. A method for producing a catalyst electrode layer of a polymer electrolyte fuel cell comprising a current collector, a catalyst electrode, and a polymer solid electrolyte membrane, wherein (1) polymer electrolyte fine powder and electron conductor fine particles are formed. After mixing in a solvent, an electrode paste is prepared by further mixing a polymer electrolyte solution and a pore forming agent, or a polymer electrolyte fine powder, an electron conductor fine particle, a polymer electrolyte solution, and a pore forming agent. Preparing an electrode paste by mixing the agents together in a solvent,
(2) a step of applying the electrode paste to the current collector and drying to form an electrode; (3) a step of removing a pore-forming agent from the electrode formed on the current collector; and (4) a catalyst applied to the electrode. And (5) joining the polymer solid electrolyte membrane to the catalyst electrode formed on the current collector. A method for producing a catalyst electrode layer for a fuel cell, comprising:
【請求項7】 集電体、触媒電極および高分子固体電解
質膜を具えた固体高分子型燃料電池の触媒電極層の製造
方法において、(1)高分子電解質微粉末と触媒とから
触媒担持高分子電解質を調製する工程、(2)該触媒担
持高分子電解質と電子電導体微粒子とを溶剤中で混合さ
せた後、さらに高分子電解質溶液と造孔剤とを混合させ
ることにより電極ペーストを調製するか、または触媒担
持高分子電解質、電子電導体微粒子、高分子電解質溶
液、および造孔剤を溶剤中で一緒に混合させることによ
り電極ペーストを調製する工程、(3)該電極ペースト
を前記集電体に塗布乾燥して電極を形成する工程、
(4)該集電体上に形成された電極から造孔剤を除去す
る工程、(5)該電極に触媒を担持させる工程、および
(6)集電体に形成された触媒電極に前記高分子固体電
解質膜を接合する工程、を具えることを特徴とする燃料
電池の触媒電極層の製造方法。
7. A method for producing a catalyst electrode layer of a polymer electrolyte fuel cell comprising a current collector, a catalyst electrode, and a polymer solid electrolyte membrane, comprising: A step of preparing a molecular electrolyte, (2) preparing an electrode paste by mixing the catalyst-carrying polymer electrolyte and the fine particles of the electron conductor in a solvent, and then further mixing the polymer electrolyte solution and a pore-forming agent. Or preparing an electrode paste by mixing together a catalyst-supporting polymer electrolyte, electron conductor fine particles, a polymer electrolyte solution, and a pore-forming agent in a solvent; (3) collecting the electrode paste A step of forming an electrode by coating and drying the electric body,
(4) a step of removing a pore-forming agent from an electrode formed on the current collector, (5) a step of supporting a catalyst on the electrode, and (6) a step of: Bonding a molecular solid electrolyte membrane. A method for producing a catalyst electrode layer of a fuel cell, comprising:
【請求項8】 前記触媒は白金を主成分とする貴金属触
媒であり、かつ前記電子電導体微粒子はカーボン微粒
子、白金を主成分とする貴金属微粒子および酸化物微粒
子から成る群から選択されたことを特徴とする請求項3
〜7のいずれかに記載の燃料電池の触媒電極層の製造方
法。
8. The method according to claim 1, wherein the catalyst is a noble metal catalyst containing platinum as a main component, and the electron conductor fine particles are selected from the group consisting of carbon fine particles, noble metal fine particles containing platinum as a main component, and oxide fine particles. Claim 3
8. The method for producing a catalyst electrode layer for a fuel cell according to any one of claims 1 to 7.
JP11060629A 1999-03-08 1999-03-08 Catalyst electrode layer for fuel cell and its manufacture Pending JP2000260435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11060629A JP2000260435A (en) 1999-03-08 1999-03-08 Catalyst electrode layer for fuel cell and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11060629A JP2000260435A (en) 1999-03-08 1999-03-08 Catalyst electrode layer for fuel cell and its manufacture

Publications (1)

Publication Number Publication Date
JP2000260435A true JP2000260435A (en) 2000-09-22

Family

ID=13147799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11060629A Pending JP2000260435A (en) 1999-03-08 1999-03-08 Catalyst electrode layer for fuel cell and its manufacture

Country Status (1)

Country Link
JP (1) JP2000260435A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005085544A (en) * 2003-09-05 2005-03-31 Toyota Central Res & Dev Lab Inc Polyelectrolyte membrane and membrane electrode assembly
JP2005085611A (en) * 2003-09-09 2005-03-31 Toyota Central Res & Dev Lab Inc Electrode for fuel cell
JP2006236757A (en) * 2005-02-24 2006-09-07 Toyobo Co Ltd Polyelectrolyte film for membrane electrode junction and its manufacturing method, membrane electrode junction as well as fuel cell
JP2006318757A (en) * 2005-05-12 2006-11-24 Gs Yuasa Corporation:Kk Catalyst layer for polymer electrolyte fuel cell and polymer electrolyte fuel cell using it
JP2007048960A (en) * 2005-08-10 2007-02-22 Showa Denko Kk Formation method and formation device
JP2010257597A (en) * 2009-04-21 2010-11-11 Toyota Motor Corp Membrane electrode assembly used for fuel cell
US8007957B2 (en) 2004-11-26 2011-08-30 Samsung Sdi Co., Ltd. Electrode for fuel cell, fuel cell system comprising the same, and method for preparing the same
US8017284B2 (en) 2004-09-08 2011-09-13 Samsung Sdi Co., Ltd. Electrode for a fuel cell, and a membrane-electrode assembly and fuel cell system comprising the same
US8057958B2 (en) 2005-07-29 2011-11-15 Samsung Sdi Co., Ltd. Electrode for fuel cell, membrane-electrode assembly comprising same and fuel cell system comprising same
JP2011253788A (en) * 2010-06-04 2011-12-15 Honda Motor Co Ltd Membrane-electrode structure for polymer electrolyte fuel cell
KR101117630B1 (en) 2004-06-23 2012-02-29 삼성에스디아이 주식회사 Membrane-electrode assembly for fuel cell and method for preparating the same
US9346673B2 (en) 2004-06-23 2016-05-24 Samsung Sdi Co., Ltd. Electrode for fuel cell, membrane-electrode assembly for fuel cell comprising the same, fuel cell system comprising the same, and method for preparing the electrode

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005085544A (en) * 2003-09-05 2005-03-31 Toyota Central Res & Dev Lab Inc Polyelectrolyte membrane and membrane electrode assembly
JP4576813B2 (en) * 2003-09-05 2010-11-10 株式会社豊田中央研究所 Polymer electrolyte membrane and membrane electrode assembly
JP2005085611A (en) * 2003-09-09 2005-03-31 Toyota Central Res & Dev Lab Inc Electrode for fuel cell
US9346673B2 (en) 2004-06-23 2016-05-24 Samsung Sdi Co., Ltd. Electrode for fuel cell, membrane-electrode assembly for fuel cell comprising the same, fuel cell system comprising the same, and method for preparing the electrode
KR101117630B1 (en) 2004-06-23 2012-02-29 삼성에스디아이 주식회사 Membrane-electrode assembly for fuel cell and method for preparating the same
US8017284B2 (en) 2004-09-08 2011-09-13 Samsung Sdi Co., Ltd. Electrode for a fuel cell, and a membrane-electrode assembly and fuel cell system comprising the same
US8007957B2 (en) 2004-11-26 2011-08-30 Samsung Sdi Co., Ltd. Electrode for fuel cell, fuel cell system comprising the same, and method for preparing the same
JP2006236757A (en) * 2005-02-24 2006-09-07 Toyobo Co Ltd Polyelectrolyte film for membrane electrode junction and its manufacturing method, membrane electrode junction as well as fuel cell
JP2006318757A (en) * 2005-05-12 2006-11-24 Gs Yuasa Corporation:Kk Catalyst layer for polymer electrolyte fuel cell and polymer electrolyte fuel cell using it
US8057958B2 (en) 2005-07-29 2011-11-15 Samsung Sdi Co., Ltd. Electrode for fuel cell, membrane-electrode assembly comprising same and fuel cell system comprising same
JP2007048960A (en) * 2005-08-10 2007-02-22 Showa Denko Kk Formation method and formation device
JP2010257597A (en) * 2009-04-21 2010-11-11 Toyota Motor Corp Membrane electrode assembly used for fuel cell
JP2011253788A (en) * 2010-06-04 2011-12-15 Honda Motor Co Ltd Membrane-electrode structure for polymer electrolyte fuel cell

Similar Documents

Publication Publication Date Title
JP4550798B2 (en) Solid polymer electrolyte fuel cell and method for producing the same
US5728485A (en) Electrode for polymer electrolyte electrochemical cell and process of preparing same
US8323848B2 (en) Membrane-electrode assembly for fuel cell, preparation method, and fuel cell comprising the same
JP3922451B2 (en) Manufacturing method of membrane-electrode-gasket assembly for fuel cell
CN103280583B (en) Method for preparing catalytic layer structure of proton exchange membrane fuel cell
JP2005537618A (en) Fuel cell electrode
JPH07240204A (en) Porous electrode for fuel cell and its preparation
JP2007307554A (en) Supported catalyst, its manufacturing method, electrode using this, and fuel cell
JPH09199138A (en) Manufacture of electrode for fuel cell or electrode electrolytic film bonding body, and electrode for fuel cell
JP2007250274A (en) Electrode catalyst for fuel cell with enhanced noble metal utilization efficiency, its manufacturing method, and solid polymer fuel cell equipped with this
JPWO2004075322A1 (en) ELECTRODE FOR FUEL CELL, FUEL CELL, AND METHOD FOR PRODUCING THEM
US20110111328A1 (en) Hybrid membrane-electrode assembly with minimal interfacial resistance and preparation method thereof
JPWO2006033253A1 (en) MEMBRANE ELECTRODE COMPLEX, METHOD FOR PRODUCING THE SAME, FUEL CELL, AND ELECTRONIC DEVICE
JP2004006369A (en) Method for manufacturing membrane electrode assembly using membrane coated with catalyst
KR100722093B1 (en) Membrane-electrode assembly for fuel cell, method for manufacturing the same, and fuel cell system comprising the same
CN102104155B (en) Low-platinum cathode catalyst layer used for fuel cell and application thereof
JP2000260435A (en) Catalyst electrode layer for fuel cell and its manufacture
CN112382767A (en) Fuel cell electrode in-situ preparation method based on double-layer ordered structure microporous layer
JP4919005B2 (en) Method for producing electrode for fuel cell
JP5425441B2 (en) FORMING MATERIAL FOR FUEL CELL ELECTRODE LAYER, MEMBRANE ELECTRODE ASSEMBLY FOR FUEL CELL, FUEL CELL, METHOD FOR PRODUCING FORMING MATERIAL FOR ELECTRODE LAYER FOR CELL CELL,
JP4147321B2 (en) Electrode for polymer electrolyte fuel cell
JP2007213988A (en) Electrode catalyst layer for polymer electrolyte fuel cell, its manufacturing method, and polymer electrolyte fuel cell
JP2003059511A (en) Electrolyte film and electrode junction for fuel cell, its manufacturing method and polymer electrolyte fuel cell
JP3649686B2 (en) Method for producing electrode for polymer electrolyte fuel cell
JP2001006699A (en) Solid polymer electrolyte film and electrode joined element for solid polymer fuel cell and manufacture thereof