JP2003203648A - Solid polymer electrolyte compound membrane, membrane /electrode joint body, solid polymer fuel cell using the sam - Google Patents

Solid polymer electrolyte compound membrane, membrane /electrode joint body, solid polymer fuel cell using the sam

Info

Publication number
JP2003203648A
JP2003203648A JP2002000769A JP2002000769A JP2003203648A JP 2003203648 A JP2003203648 A JP 2003203648A JP 2002000769 A JP2002000769 A JP 2002000769A JP 2002000769 A JP2002000769 A JP 2002000769A JP 2003203648 A JP2003203648 A JP 2003203648A
Authority
JP
Japan
Prior art keywords
membrane
polymer electrolyte
solid polymer
electrolyte
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002000769A
Other languages
Japanese (ja)
Inventor
Toru Koyama
小山  徹
Shin Morishima
森島  慎
Toshiyuki Kobayashi
稔幸 小林
Yuichi Kamo
友一 加茂
Kazuhisa Higashiyama
和寿 東山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002000769A priority Critical patent/JP2003203648A/en
Publication of JP2003203648A publication Critical patent/JP2003203648A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid polymer electrolyte compound membrane that has superior ion conductivity and mechanical property. <P>SOLUTION: This is a solid polymer electrolyte compound membrane that has reinforced to the inside the ion conductive polymer electrolyte with a sulfonized ion conductive polymer porous body. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、固体高分子電解質
複合膜,膜/電極接合体及びそれを用いた固体高分子型
燃料電池(以下、PEFCと略す)に関する。
TECHNICAL FIELD The present invention relates to a solid polymer electrolyte composite membrane, a membrane / electrode assembly, and a solid polymer fuel cell (hereinafter abbreviated as PEFC) using the same.

【0002】[0002]

【従来の技術】近年、低公害性と高効率性と云う特徴に
より、燃料電池が注目されている。燃料電池とは、水
素,プロパン,天然ガス,メタノール等の燃料を酸素ま
たは空気を用いて電気化学的に酸化することにより、燃
料の化学エネルギーを電気エネルギーに変換して取り出
すものである。このような燃料電池は、用いる電解質の
種類によって、リン酸型,溶融炭酸塩型,固体酸化物型
および固体高分子電解質型等に分類される。このうち、
イオン交換膜を電解質膜として用いるPEFCは、低温
で作動し、出力密度が高く、小型化が可能であることか
ら、最近、特に注目され、家庭用分散電源,業務用分散
電源,自動車用移動電源等に適用すべく、開発が急ピッ
チで進められている。
2. Description of the Related Art In recent years, fuel cells have been attracting attention due to their characteristics of low pollution and high efficiency. The fuel cell is a cell in which a fuel such as hydrogen, propane, natural gas, or methanol is electrochemically oxidized by using oxygen or air to convert the chemical energy of the fuel into electric energy and take it out. Such fuel cells are classified into a phosphoric acid type, a molten carbonate type, a solid oxide type, a solid polymer electrolyte type, etc., depending on the type of electrolyte used. this house,
PEFCs that use ion exchange membranes as electrolyte membranes have recently received special attention because they operate at low temperatures, have high output density, and can be miniaturized. They are household distributed power sources, commercial distributed power sources, and mobile power sources for automobiles. Development is proceeding at a rapid pace to be applied to the above.

【0003】固体高分子型燃料電池用電解質膜としてポ
リパーフロロカーボンスルホン酸電解質膜が市販されて
おり、その代表的なものとしてNafion(登録商
標:米国Dupont社製)、Aciplex(登録商
標:旭化成工業株式会社製)、Flemion(登録商
標:旭硝子株式会社製)等がある。
Polyperfluorocarbon sulfonic acid electrolyte membranes are commercially available as electrolyte membranes for polymer electrolyte fuel cells, and typical examples thereof include Nafion (registered trademark: manufactured by Dupont, USA) and Aciplex (registered trademark: Asahi Kasei Corporation). Manufactured by Asahi Glass Co., Ltd., and the like.

【0004】PEFCの本格的な普及を図るためには、
格段の性能向上、長寿命化及び低コスト化が必須であ
る。前記ポリパーフロロカーボンスルホン酸電解質膜は
フッ素化学プロセスが必須であり、用途が食塩電解や燃
料電池応用に限られたスーパーファインケミカル材料で
あるために、大幅な低コスト化は困難である。
In order to spread PEFC in earnest,
Significant performance improvement, long life, and cost reduction are essential. The polyperfluorocarbon sulfonic acid electrolyte membrane requires a fluorine chemical process and is a superfine chemical material whose use is limited to salt electrolysis and fuel cell applications, so that it is difficult to significantly reduce the cost.

【0005】低コスト化を目的に部分フッ素化膜(米国
特許第4,012,303号、米国特許第4,605,68
5号、特開平9−102322号公報、特開平9−10
2322号公報)やスルホン化ポリエーテルエーテルケ
トン(特開平6−93114号公報)、スルホン化ポリ
エーテルスルホン(特開平9−245818号公報、特
開平11−111116679号公報)、スルホン化ポ
リスルフィッド(特表平11−510198号公報)、
スルホン化ポリフェニレン(特表平11−515550
40号公報)等の汎用エンジニアプラスチック系電解質
膜が提案されている。
A partially fluorinated film (US Pat. No. 4,012,303, US Pat. No. 4,605,68) for the purpose of cost reduction.
5, JP-A-9-102322, JP-A-9-10
2322), sulfonated polyether ether ketone (JP-A-6-93114), sulfonated polyether sulfone (JP-A-9-245818, JP-A-11-111116679), sulfonated polysulfide (Special Table). No. 11-510198),
Sulfonated polyphenylene (Special table 11-515550
A general-purpose engineered plastic electrolyte membrane such as that disclosed in Japanese Patent No. 40) has been proposed.

【0006】PEFCの高効率化,高出力密度化等によ
る性能向上を図るためには、固体高分子電解質膜のイオ
ン伝導抵抗を減少させイオン伝導度を向上させる必要が
ある。
In order to improve the performance of PEFC by increasing the efficiency and the output density, it is necessary to reduce the ionic conductivity resistance of the solid polymer electrolyte membrane and improve the ionic conductivity.

【0007】固体高分子電解質膜のイオン伝導抵抗を低
減する方法としては、スルホン酸基濃度の増加によるイ
オン伝導性の向上と、膜厚低減の二つの方法がある。ス
ルホン酸基の濃度を増加させると膜の靭性が低下する上
に、水に溶解する様になるなどの問題点が生じる。
There are two methods for reducing the ionic conductivity resistance of the solid polymer electrolyte membrane: improving the ionic conductivity by increasing the concentration of sulfonic acid groups and reducing the film thickness. When the concentration of the sulfonic acid group is increased, the toughness of the film is lowered, and in addition, it becomes soluble in water, which causes problems.

【0008】一方、膜厚の低減は膜の機械強度の低下,
加工性・取扱性の低下等の問題が生じる。
On the other hand, reducing the film thickness lowers the mechanical strength of the film,
This causes problems such as reduced workability and handleability.

【0009】前記問題を解決するため、補強材により電
解質膜を補強する試みが種々なされてきた。例えば、ポ
リテトラフロロエチレン(PTFE)などの含フッ素重
合体からなる織布又は不織布などの高分子多孔体による
補強方法(特開昭53−56192号公報、特開昭58
−37186号公報、特開昭58−37187号公報、
特開平6−231779号公報等)、多孔性フィルムに
官能基を有する含フッ素重合体の溶液を含浸させた後、
乾燥,熱処理する補強方法(特開平6−342666号
公報)、PTFEのフィブリルをスルホン酸基またはカ
ルボン酸基を有する含フッ素陽イオン交換樹脂に混合す
る補強方法(特開昭53−14988号公報、特開昭5
4−1283号公報、特開昭54−107479号公
報、特開昭54−157777号公報、特開2001−
35508号公報)等が試みられている。
In order to solve the above problems, various attempts have been made to reinforce the electrolyte membrane with a reinforcing material. For example, a reinforcing method using a polymeric porous material such as a woven cloth or a non-woven cloth made of a fluoropolymer such as polytetrafluoroethylene (PTFE) (JP-A-53-56192 and JP-A-58).
-37186, JP-A-58-37187,
JP-A-6-231779, etc.), after impregnating a porous film with a solution of a fluoropolymer having a functional group,
Reinforcing method of drying and heat treatment (JP-A-6-342666), reinforcement method of mixing PTFE fibrils with a fluorine-containing cation exchange resin having a sulfonic acid group or a carboxylic acid group (JP-A-53-14988). JP-A-5
4-1283, JP-A-54-107479, JP-A-54-157777, and JP-A-2001-2001.
No. 35508) has been tried.

【0010】また、スルホン酸基またはその前駆体とカ
ルボン酸基またはその前駆体を有するフッ素重合体を機
械的に混合する試み(特公昭62−7217号公報、特
公昭60−17034号公報、特開昭62−53341
号公報、特公昭59−15934号公報)がなされてい
る。
Attempts to mechanically mix a fluoropolymer having a sulfonic acid group or its precursor with a carboxylic acid group or its precursor (Japanese Patent Publication No. 62-7217, Japanese Patent Publication No. 60-17034, Kaisho 62-53341
Japanese Patent Publication No. 59-15934).

【0011】補強材とスルホン酸基またはカルボン酸基
を有する固体高分子電解質との接着を強固にし、更に、
機械強度を向上させる目的で補強材の界面活性剤による
処理(特開平6−231779号公報)、放射線、放
電、薬品又はグラフト重合法による補強材表面の改質処
理(特開平2000−231928号公報)が試みられ
ている。
Strengthening the adhesion between the reinforcing material and the solid polymer electrolyte having a sulfonic acid group or a carboxylic acid group,
Treatment of the reinforcing material with a surfactant for the purpose of improving mechanical strength (JP-A-6-231779), modification of the surface of the reinforcing material by radiation, discharge, chemicals or graft polymerization method (JP-A-2000-231928). ) Is being tried.

【0012】前記補強材による補強で電解質膜の機械強
度は向上する。しかし、補強材自身のイオン伝導度が低
いため、補強された電解質膜のイオン伝導度が低くな
り、膜厚の低減によるイオン伝導抵抗の低減効果は少な
かった。そこで、イオン伝導度の低下を少ない補強方法
の出現が強く望まれていた。
The reinforcement of the reinforcing material improves the mechanical strength of the electrolyte membrane. However, since the reinforcing material itself has a low ionic conductivity, the reinforced electrolyte membrane has a low ionic conductivity, and the effect of reducing the ionic conduction resistance due to the reduction in the film thickness is small. Therefore, the advent of a reinforcing method that reduces the decrease in ionic conductivity has been strongly desired.

【0013】また、酸性官能基または該前駆体を有する
2種以上の含フッ素重合体が溶融状態で相溶、温度を下
げることによりミクロ相分離構造を形成する補強方法
(特開2000−222938号公報、特開2000−
294034号公報)が検討されている。しかし、この
方法は機械強度の向上が不十分であり、強度向上とイオ
ン伝導抵抗の保持、或いは、低減を同時に達成する手段
が望まれていた。
Further, a reinforcing method for forming a microphase-separated structure by compatibilizing two or more kinds of fluoropolymers having an acidic functional group or the precursor in a molten state and lowering the temperature (JP-A-2000-222938). Japanese Patent Laid-Open No. 2000-
No. 294034) has been studied. However, this method does not sufficiently improve the mechanical strength, and a means for simultaneously achieving the strength improvement and the retention or reduction of the ionic conduction resistance has been desired.

【0014】[0014]

【発明が解決しようとする課題】本発明の目的は、高強
度薄膜で、かつ、イオン伝導抵抗が低い固体高分子電解
質複合膜、該膜/電極接合体、及び、それを用いた長期
にわたって出力密度が高い固体高分子型燃料電池を提供
することにある。
DISCLOSURE OF THE INVENTION An object of the present invention is to provide a solid polymer electrolyte composite membrane which is a high-strength thin film and has a low ionic conduction resistance, the membrane / electrode assembly, and a long-term output using the same It is to provide a polymer electrolyte fuel cell having a high density.

【0015】[0015]

【課題を解決するための手段】前記の状況に鑑み、本発
明者らは補強材を内部までイオン伝導性付与化すること
を検討した結果、本発明に至った。
In view of the above situation, the present inventors have made the present invention as a result of investigating that the reinforcing material is provided with ion conductivity to the inside.

【0016】本発明は、イオン伝導性付与化された織
布,不織布,フィブリル,多孔性フィルム,スポンジ
状,粒状,ウイスカ状などの高分子多孔体で補強された
薄膜高強度で、かつ、イオン伝導抵抗の低い固体高分子
電解質複合膜、該膜/電極接合体、及び、それを用いた
長期にわたって出力密度が高い固体高分子型燃料電池を
得ることができた。
The present invention is a thin film reinforced with a polymeric porous material such as woven cloth, nonwoven cloth, fibril, porous film, sponge-like, granular, whisker-like, etc., which has been imparted with ion conductivity. It was possible to obtain a solid polymer electrolyte composite membrane having a low conduction resistance, the membrane / electrode assembly, and a solid polymer fuel cell using the same and having a high output density for a long period of time.

【0017】本発明において、補強材として用いられる
高分子多孔体は電解質膜を補強し、イオン伝導性を有
し、燃料電池の使用温度以上の融点を有する高分子多孔
体であれば特に制限は無い。
In the present invention, the polymeric porous material used as a reinforcing material is not particularly limited as long as it is a polymeric porous material that reinforces the electrolyte membrane, has ion conductivity, and has a melting point higher than the operating temperature of the fuel cell. There is no.

【0018】このような高分子多孔体の材質としてポリ
フロロカーボン、ポリエチレン、ポリプロピレン、ポリ
イソブチレン、ポリ脂環式オレフィン、ポリオキシメチ
レン、ポリスルホン、ポリエーテルスルホン、ポリエー
テルエーテルスルホン、ポリフェニレンスルフィッド、
ポリエーテルエーテルケトン、ポリパラフェニレンベン
ズビスチアゾール、ポリパラフェニレンベンズビスオキ
サゾール、ポリベンズイミダゾール、ポリパラアミド、
ポリメタアミド、フェノール樹脂等の高分子にイオン導
電性を付与した材料がある。ポリフロロカーボンにイオ
ン導電性を付与した高分子としては、テトラフロロエチ
レン、ヘキサフロロプロピレン、クロロトリフロロエチ
レン、パーフロロアルコキシビニルエーテルの如きパー
フロロオレフィンの単独又は共重合体のスルホン化物等
が例示される。
As the material for such a polymer porous material, polyfluorocarbon, polyethylene, polypropylene, polyisobutylene, polyalicyclic olefin, polyoxymethylene, polysulfone, polyether sulfone, polyether ether sulfone, polyphenylene sulfide,
Polyetheretherketone, polyparaphenylenebenzbisthiazole, polyparaphenylenebenzbisoxazole, polybenzimidazole, polyparaamide,
There are materials obtained by imparting ionic conductivity to polymers such as polymethamide and phenol resin. Examples of the polymer having ionic conductivity added to polyfluorocarbon include tetrafluoroethylene, hexafluoropropylene, chlorotrifluoroethylene, and perfluoroolefin homopolymers such as perfluoroalkoxy vinyl ether, and sulfonates of copolymers. .

【0019】その具体例としてはポリテトラフロロエチ
レン(PTFE)、ポリテトラフロロエチレン−ヘキサ
フロロプロピレン(FEP)、ポリテトラフロロエチレ
ン−パーフロロプロピルビニルエーテル(PFA)、ポ
リクロロトリフロロエチレン、ポリテトラフロロエチレ
ン−パーフロロ−2,2−ジメチル−1,3−ジオキソー
ル、ポリパーフロロブテニルビニルエーテルなどのスル
ホン化物等が挙げられる。
Specific examples thereof include polytetrafluoroethylene (PTFE), polytetrafluoroethylene-hexafluoropropylene (FEP), polytetrafluoroethylene-perfluoropropyl vinyl ether (PFA), polychlorotrifluoroethylene and polytetrafluoroethylene. Examples thereof include sulfonated products such as ethylene-perfluoro-2,2-dimethyl-1,3-dioxole and polyperfluorobutenyl vinyl ether.

【0020】かかるスルホン化高分子多孔体のスルホン
酸当量、即ち、イオン交換容量としては0.2〜1.5ミ
リ当量/g乾燥樹脂、更には、0.5〜1.2ミリ当量/
g乾燥樹脂の範囲が好ましい。
The sulfonic acid equivalent of the sulfonated polymer, that is, the ion exchange capacity is 0.2 to 1.5 meq / g dry resin, and further 0.5 to 1.2 meq / g.
A range of g dry resin is preferred.

【0021】スルホン酸当量がこの範囲より低い場合に
はイオン伝導抵抗が大きくなり、高い場合には水に溶解
し易くなり好ましくない。
When the sulfonic acid equivalent is lower than this range, the ionic conduction resistance becomes large, and when it is high, it is easily dissolved in water, which is not preferable.

【0022】電解質材料と補強材は同系統の材料である
ことが、両者の接着性等の相性や寿命の観点から好まし
い。即ち、ポリパーフロロカーボンスルホン酸電解質に
対してはPTFE、FEP又はPFAなどのパーフロロ
カーボン重合体のスルホン化物が特性上好ましい。芳香
族炭化水素系電解質膜に対してはポリスルホン、ポリエ
ーテルスルホン、ポリエーテルエーテルスルホン、ポリ
フェニレンスルフィッド、ポリエーテルエーテルケト
ン、ポリパラフェニレンベンズビスチアゾール、ポリパ
ラフェニレンベンズビスオキサゾール、ポリベンズイミ
ダゾールのスルホン化物が特性上好ましい。
It is preferable that the electrolyte material and the reinforcing material are materials of the same system, from the viewpoint of compatibility such as adhesiveness between the two and life. That is, a sulfonated product of a perfluorocarbon polymer such as PTFE, FEP or PFA is preferable for the polyperfluorocarbon sulfonic acid electrolyte in terms of characteristics. For aromatic hydrocarbon electrolyte membranes, polysulfone, polyether sulfone, polyether ether sulfone, polyphenylene sulfide, polyether ether ketone, polyparaphenylene benzbis thiazole, polyparaphenylene benzbisoxazole, polybenzimidazole Sulfonates are preferable in terms of properties.

【0023】かかる材質からなる高分子多孔体は電解質
材料と複合化できる形状であれ特に制限は無い。そのよ
うな形状としては、例えば、フィルム状,フィブリル
状,織布状,不織布状,スポンジ状,粒状,ウイスカ状
がある。
The polymer porous body made of such a material is not particularly limited as long as it has a shape capable of being combined with an electrolyte material. Examples of such shapes include a film shape, a fibril shape, a woven cloth shape, a non-woven cloth shape, a sponge shape, a granular shape, and a whisker shape.

【0024】高分子多孔体と電解質材料を複合化する方
法として、電解質膜材料の溶液、又は分散液を高分子多
孔体に含浸させた後、乾燥,成膜を行うキャスティング
法や、電解質膜と高分子多孔体を熱溶融により成形する
方法、具体的には平板プレス,真空プレス等のバッチ法
や連続ロールプレス法等による連続法、陽イオン交換膜
を構成する電解質膜材料と高分子多孔体を混合した後、
押出し成膜する方法等が挙げられる。
As a method for compositing the polymer porous material and the electrolyte material, a casting method of impregnating the polymer porous material with a solution or dispersion of an electrolyte membrane material, followed by drying and film formation, or a method of forming an electrolyte membrane A method of molding a polymer porous body by heat melting, specifically, a continuous method such as a batch method such as a flat plate press or a vacuum press or a continuous roll pressing method, an electrolyte membrane material forming a cation exchange membrane, and a polymer porous body. After mixing
Examples include a method of extrusion film formation.

【0025】補強材にイオン伝導性を付与する方法は無
水硫酸,発煙硫酸,発煙硫酸/リン酸トリエチル錯体,
クロル硫酸,硫酸等で処理する方法が挙げられる。補強
材の中までイオン伝導性を付与するため、加熱してもよ
い。
The method for imparting ionic conductivity to the reinforcing material is sulfuric anhydride, fuming sulfuric acid, fuming sulfuric acid / triethyl phosphate complex,
A method of treating with chlorosulfuric acid, sulfuric acid, etc. may be mentioned. It may be heated to impart ionic conductivity to the inside of the reinforcing material.

【0026】電解質溶液に隣接する部分の補強材のイオ
ン伝導性が高いと、その部分が水に溶解し易くなるため
好ましくない。補強材の電解質溶液に隣接する部分と遠
い部分のイオン伝導性を、できるだけ均一にすることが
重要である。
If the reinforcing material in the portion adjacent to the electrolyte solution has high ionic conductivity, that portion is likely to dissolve in water, which is not preferable. It is important to make the ionic conductivity of the part of the reinforcing material adjacent to the electrolyte solution and the part far from the electrolyte solution as uniform as possible.

【0027】高分子多孔体の形状にする前に、補強材に
イオン伝導性を付与する方法と高分子多孔体の形状にし
てから補強材にイオン伝導性を付与する方法とがある。
後者の方が、汎用の高分子多孔体を使用できるためコス
ト的に有利である。
There are a method of imparting ion conductivity to the reinforcing material before forming the shape of the porous polymer body and a method of imparting ion conductivity to the reinforcing material after forming the shape of the porous polymer body.
The latter is more cost effective because a general-purpose polymer porous material can be used.

【0028】本発明に用いられる電解質膜材料として
は、イオン伝導性を有する電解質であれば特に制限は無
い。そのような材料としては、例えば、ふっ素系電解質
膜材料,部分ふっ素系電解質膜材料,炭化水素系電解質
膜材料等がある。
The electrolyte membrane material used in the present invention is not particularly limited as long as it is an electrolyte having ion conductivity. Examples of such a material include a fluorine-based electrolyte membrane material, a partial fluorine-based electrolyte membrane material, and a hydrocarbon-based electrolyte membrane material.

【0029】本発明に用いられるふっ素系電解質膜材料
としては、従来から公知の重合体が広く採用される。一
般式CF2=CF−(OCF2CFX)m−Oq−(CF2)n
A(式中m=0〜3、n=0〜12、q=0又は1、X
=F又はCF3、A=スルホン酸型官能基)で表される
フロロビニル化合物とテトラフロロエチレン,ヘキサフ
ロロプロピレン,クロロトリフロロエチレン又はパーフ
ロロアルコキシビニルエーテルの如きパーフロロレフィ
ンとの共重合体が挙げられる。
As the fluorine-based electrolyte membrane material used in the present invention, conventionally known polymers are widely adopted. Formula CF 2 = CF- (OCF 2 CFX ) m -O q - (CF 2) n -
A (in the formula, m = 0 to 3, n = 0 to 12, q = 0 or 1, X
= F or CF 3 , A = sulfonic acid type functional group), and a copolymer of a fluorovinyl compound represented by the formula: tetrafluoroethylene, hexafluoropropylene, chlorotrifluoroethylene, or perfluorolefin such as perfluoroalkoxy vinyl ether. To be

【0030】前記フロロビニル化合物の好ましい例とし
ては、例えば、以下のものが挙げられる。 〔化1〕 CF2=CFO(CF2)aSO2F CF2=CFOCF2CF(CF3)O(CF2)aSO2F CF2=CF(CF2)bSO2F CF2=CF(OCF2CF(CF3))cO(CF2) 2SO2
F (但し、aは1〜8、bは0〜8、cは1〜5の整数を
示す)。
Preferred examples of the fluorovinyl compound include the following. [Chemical Formula 1] CF 2 ═CFO (CF 2 ) a SO 2 F CF 2 ═CFOCF 2 CF (CF 3 ) O (CF 2 ) a SO 2 F CF 2 ═CF (CF 2 ) b SO 2 F CF 2 CF (OCF 2 CF (CF 3 )) cO (CF 2) 2 SO 2
F (however, a shows 1-8, b shows 0-8, c shows the integer of 1-5).

【0031】本発明に用いられる炭化水素系電解質膜材
料としてスルホン化ポリエーテルエーテルケトン、スル
ホン化ポリエーテルスルホン、スルホン化ポリエーテル
ポリエーテルスルホン、スルホン化ポリスルホン、スル
ホン化ポリスルフィッド、スルホン化ポリフェニレン等
のスルホン化エンジニアプラスチック系電解質膜、スル
ホアルキル化ポリエーテルエーテルケトン、スルホアル
キル化ポリエーテルスルホン、スルホアルキル化ポリエ
ーテルエーテルスルホン、スルホアルキル化ポリスルホ
ン、スルホアルキル化ポリスルフィッド、スルホアルキ
ル化ポリフェニレン等のスルホアルキル化エンジニアプ
ラスチック系電解質膜等がある。
As the hydrocarbon-based electrolyte membrane material used in the present invention, sulfone such as sulfonated polyether ether ketone, sulfonated polyether sulfone, sulfonated polyether polyether sulfone, sulfonated polysulfone, sulfonated polysulfide, sulfonated polyphenylene, etc. Engineered sulfoalkylated plastic electrolyte membrane, sulfoalkylated polyetheretherketone, sulfoalkylated polyethersulfone, sulfoalkylated polyetherethersulfone, sulfoalkylated polysulfone, sulfoalkylated polysulfide, sulfoalkylated polyphenylene, etc. Examples include plastic electrolyte membranes.

【0032】かかる電解質膜材料のスルホン酸当量とし
ては0.5〜2.0ミリ当量/g乾燥樹脂、更には0.7
〜1.6ミリ当量/g乾燥樹脂の範囲が好ましい。スル
ホン酸当量がこの範囲より低い場合には膜のイオン伝導
抵抗が大きくなり、高い場合には水に溶解し易くなり好
ましくない。
The sulfonic acid equivalent of the electrolyte membrane material is 0.5 to 2.0 meq / g dry resin, and further 0.7.
A range of up to 1.6 meq / g dry resin is preferred. When the sulfonic acid equivalent is lower than this range, the ionic conduction resistance of the membrane becomes large, and when it is high, it is easily dissolved in water, which is not preferable.

【0033】燃料用電池として用いる際の膜/電極接合
体に使用されるガス拡散電極は、触媒金属の微粒子を担
持した導電材により構成されるものであり、必要に応じ
て撥水剤や結着剤が含まれていてもよい。
The gas diffusion electrode used in the membrane / electrode assembly when used as a fuel cell is composed of a conductive material carrying fine particles of a catalytic metal and, if necessary, a water repellent or a binder. A binder may be included.

【0034】また、触媒を担持していない導電材と必要
に応じて含まれる撥水剤や結着剤とからなる層を、触媒
層の外側に形成してもよい。このガス拡散電極に使用さ
れる触媒金属としては、水素の酸化反応および酸素の還
元反応を促進する金属であればいずれのものでもよく、
例えば、白金,金,銀,パラジウム,イリジウム,ロジ
ウム,ルテニウム,鉄,コバルト,ニッケル,クロム,
タングステン,マンガン,バナジウム、或いは、これら
の合金が挙げられる。
Further, a layer composed of a conductive material which does not carry a catalyst and a water repellent or a binder which is contained as necessary may be formed outside the catalyst layer. The catalyst metal used for this gas diffusion electrode may be any metal as long as it promotes the oxidation reaction of hydrogen and the reduction reaction of oxygen,
For example, platinum, gold, silver, palladium, iridium, rhodium, ruthenium, iron, cobalt, nickel, chromium,
Examples thereof include tungsten, manganese, vanadium, and alloys of these.

【0035】このような触媒の中で、特に白金が多くの
場合用いられる。触媒となる金属の粒径は、通常は10
〜300オングストロームである。これらの触媒はカー
ボン等の担体に付着させた方が、触媒の使用量が少なく
コスト的に有利である。触媒の担持量は電極が成形され
た状態で0.01〜10mg/cm2が好ましい。
Of these catalysts, platinum is often used. The particle size of the catalyst metal is usually 10
~ 300 Angstroms. It is more cost effective to attach these catalysts to a carrier such as carbon because the amount of the catalyst used is small. The supported amount of the catalyst is preferably 0.01 to 10 mg / cm 2 when the electrode is molded.

【0036】導電材としては、電子導伝性物質であれば
いずれのものでも良く、例えば、各種金属や炭素材料な
どが挙げられる。炭素材料としては、例えば、ファーネ
スブラック,チャンネルブラックおよびアセチレンブラ
ック等のカーボンブラック,活性炭,黒鉛等が挙げら
れ、これらを単独或いは混合して使用できる。
The conductive material may be any material as long as it is an electron conductive material, and examples thereof include various metals and carbon materials. Examples of the carbon material include carbon black such as furnace black, channel black and acetylene black, activated carbon, graphite and the like, and these can be used alone or in combination.

【0037】撥水剤としては、例えば、ふっ素化カーボ
ン等が使用でき、バインダーとしては、本発明の電解質
複合膜の溶液をそのまま用いることが接着性の観点から
好ましいが、他の各種樹脂を用いても差し支えない。
As the water repellent, for example, fluorinated carbon can be used, and as the binder, it is preferable to use the solution of the electrolyte composite membrane of the present invention as it is from the viewpoint of adhesiveness, but various other resins are used. It doesn't matter.

【0038】また、撥水性を有する含ふっ素樹脂、例え
ば、ポリテトラフロロエチレン、テトラフロロエチレン
−パーフロロアルキルビニルエーテル共重合体、又は、
テトラフロロエチレン−ヘキサフロロプロピレン共重合
体を加えてもよい。
Further, a fluorine-containing resin having water repellency, for example, polytetrafluoroethylene, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, or
A tetrafluoroethylene-hexafluoropropylene copolymer may be added.

【0039】燃料用電池として用いる際の電解質複合膜
と電極接合法についても特に制限はなく、公知の方法を
適用することができる。
There is no particular limitation on the method of joining the electrolyte composite membrane and the electrode when it is used as a fuel cell, and known methods can be applied.

【0040】膜/電極接合体の製法として、例えば、カ
ーボンに担持させたPt触媒紛をポリテトラフロロエチ
レン懸濁液と混ぜ、カーボンペーパーに塗布、熱処理し
て触媒層を形成する。次いで、電解質複合膜と同一の電
解質溶液を触媒層に塗布し、電解質膜とホットプレスで
一体化する方法がある。この他、電解質複合膜と同一の
電解質溶液を、予めPt触媒紛にコーテイングする方
法、触媒ペーストを電解質複合膜の方に塗布する方法、
電解質複合膜に電極を無電解鍍金する方法、電解質複合
膜に白金族の金属錯イオンを吸着させた後、還元する方
法等がある。
As a method for producing the membrane / electrode assembly, for example, Pt catalyst powder supported on carbon is mixed with a polytetrafluoroethylene suspension, coated on carbon paper and heat-treated to form a catalyst layer. Then, there is a method in which the same electrolyte solution as that of the electrolyte composite membrane is applied to the catalyst layer and the electrolyte membrane is integrated with the hot press. In addition, a method of coating the same electrolyte solution as the electrolyte composite membrane on Pt catalyst powder in advance, a method of applying a catalyst paste to the electrolyte composite membrane,
There are a method of electroless plating an electrode on an electrolyte composite membrane, a method of adsorbing a platinum group metal complex ion on the electrolyte composite membrane, and then reducing it.

【0041】固体高分子型燃料電池は、以上のように形
成された電解質複合膜と、ガス拡散電極との接合体の外
側に、燃料流路と酸化剤流路を形成する溝付きの集電体
としての燃料配流板(セパレータ)と、酸化剤配流板
(セパレータ)とを配したものを単セルとし、この単セ
ルを複数個、冷却板等を介して積層することにより構成
される。
A solid polymer electrolyte fuel cell is a current collector with a groove for forming a fuel flow path and an oxidant flow path, which is provided outside a joined body of an electrolyte composite membrane formed as described above and a gas diffusion electrode. The fuel distribution plate (separator) as a body and the oxidant distribution plate (separator) are arranged to form a single cell, and a plurality of the single cells are laminated via a cooling plate or the like.

【0042】燃料電池は、高い温度で動作させる方が、
電極の触媒活性が上がり電極過電圧が減少するため望ま
しいが、電解質複合膜は水分がないと機能しないため、
水分管理が可能な温度で作動させる必要がある。燃料電
池の作動温度の好ましい範囲は室温〜100℃である。
It is better to operate the fuel cell at high temperature.
It is desirable because the catalytic activity of the electrode increases and the electrode overvoltage decreases, but since the electrolyte composite membrane does not function without water,
It must be operated at a temperature that allows water management. The preferable operating temperature range of the fuel cell is room temperature to 100 ° C.

【0043】[0043]

【発明の実施の形態】本発明を実施例に基づき説明す
る。各物性の測定条件は次の通りである。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described based on examples. The measurement conditions for each physical property are as follows.

【0044】(1)スルホン酸当量 供試スルホン化物を密閉可能なガラス容器中に精秤
(a:グラム)し、そこに過剰量の塩化カルシウム水溶
液を添加して一晩撹拌した。系内に発生した塩化水素を
0.1Nの水酸化ナトリウム標準水溶液(f:力価f)
で、指示薬にフェノールフタレインを用いて滴定(b:
ml)した。スルホン酸当量(当量/g)は式〔1〕よ
り求めた。 〔数1〕 スルホン酸当量=(0.1×b×f)/a …〔1〕 (2)引張強度 電解質膜又は電解質複合膜を幅10mmの短冊状に裁断
し、3%過酸化水素水中で1時間煮沸,蒸留水中で1時
間煮沸し、さらに、1モル硫酸水溶液中で1時間煮沸,
蒸留水中で1時間煮沸の前処理を行った。含水状態のま
まJIS K7127に準拠し、幅10mmの短冊状試
験片で、チャック間距離50mmにてオートグラフを用
いて引張強度を測定した。
(1) Sulfonic Acid Equivalent The sulfonated sample was precisely weighed (a: gram) in a glass container capable of being sealed, an excess amount of calcium chloride aqueous solution was added thereto, and the mixture was stirred overnight. Hydrogen chloride generated in the system was adjusted to 0.1N sodium hydroxide standard aqueous solution (f: titer f)
Then, titrate with phenolphthalein as an indicator (b:
ml). The sulfonic acid equivalent (equivalent / g) was calculated from the formula [1]. [Equation 1] Sulfonic acid equivalent = (0.1 × b × f) / a ... [1] (2) Tensile strength An electrolyte membrane or an electrolyte composite membrane is cut into a strip shape with a width of 10 mm, and is cut into 3% hydrogen peroxide solution. Boil for 1 hour, in distilled water for 1 hour, and then in a 1 molar aqueous solution of sulfuric acid for 1 hour,
A pretreatment of boiling for 1 hour was performed in distilled water. According to JIS K7127, the tensile strength was measured using an autograph with a chuck-to-chuck distance of 50 mm in conformity with JIS K7127 in the water-containing state.

【0045】評価試験片膜に作用する応力S(kg/m
2)は、負荷荷重をW(kg),荷重を負荷する前の
断面積をA0(mm2)とし、次式〔2〕より求めた。 〔数2〕 S(kg/mm2)=W/A0 …〔2〕 (3)寸法安定性 電解質膜又は電解質複合膜を上記(2)と同様にして前
処理をした。この電解質膜又は電解質複合膜を10cm
角に裁断して試験片とした。この試料片を25℃,50
%RHの条件に24時間保持した後、所定の位置の膜寸
法(L0)を測定した。
Evaluation test piece Stress S acting on the film (kg / m
m 2 ) was obtained from the following equation [2], where W (kg) is the applied load and A 0 (mm 2 ) is the cross-sectional area before applying the applied load. [Equation 2] S (kg / mm 2 ) = W / A 0 (2) (3) Dimensionally stable electrolyte membrane or electrolyte composite membrane was pretreated in the same manner as (2) above. 10 cm of this electrolyte membrane or electrolyte composite membrane
A test piece was cut into a corner. This sample piece at 25 ℃, 50
After being kept under the condition of% RH for 24 hours, the film size (L 0 ) at a predetermined position was measured.

【0046】次に、この試料片を80℃のイオン交換水
中24時間浸漬し、前記と同じ位置の膜寸法(L1)を
測定し、寸法変化率(ΔL)を次式〔3〕により算出し
た。 〔数3〕 ΔL(%)=(L1−L0)/L1×100 …〔3〕 (4)クリープ特性 電解質膜又は電解質複合膜を前記(2)と同様にして前
処理をした。この電解質膜又は電解質複合膜を幅10m
mの短冊状に裁断し、JIS K 7115に準拠し引
張クリープ試験機を用いてチャック間距離50mm、荷
重0.5kg/mm2及び0.21kg/mm2を負荷しな
がら、変位量の経時変化を連続的に測定した。なお、燃
料電池の作動状態を模擬して80℃,95%RHの条件
下にて実験した。
Next, this sample piece was immersed in ion-exchanged water at 80 ° C. for 24 hours, the membrane size (L 1 ) at the same position as above was measured, and the dimensional change rate (ΔL) was calculated by the following formula [3]. did. [Equation 3] ΔL (%) = (L 1 −L 0 ) / L 1 × 100 (3) (4) Creep characteristics The electrolyte membrane or the electrolyte composite membrane was pretreated in the same manner as in the above (2). Width of this electrolyte membrane or electrolyte composite membrane is 10 m
was cut into m strip, distance between chucks 50mm using the creep tensile tester conforming to JIS K 7115, with a load 0.5 kg / mm 2 and 0.21 kg / mm 2, the amount of displacement of the aging Was measured continuously. In addition, the operation state of the fuel cell was simulated, and the experiment was performed under the conditions of 80 ° C. and 95% RH.

【0047】(5)燃料電池単セル出力性能評価 電極を接合した電解質複合膜を評価セルに組み込み、燃
料電池出力性能を評価した。反応ガスには、水素/酸素
を用い、共に1気圧の圧力にて、23℃の水バブラーを
通して加湿後、評価セルに供給した。ガス流量は水素6
0ml/min、酸素40ml/min、セル温度は7
0℃とした。電池出力性能は、H201B充放電装置
(北斗電工社製)により評価した。
(5) Evaluation of Fuel Cell Single Cell Output Performance An electrolyte composite membrane having electrodes bonded thereto was incorporated into an evaluation cell to evaluate the fuel cell output performance. Hydrogen / oxygen was used as a reaction gas, and both were pressurized at a pressure of 1 atm through a water bubbler at 23 ° C and then supplied to an evaluation cell. Gas flow rate is hydrogen 6
0 ml / min, oxygen 40 ml / min, cell temperature is 7
It was set to 0 ° C. The battery output performance was evaluated by a H201B charging / discharging device (manufactured by Hokuto Denko KK).

【0048】〔実施例 1〕 (1)電解質複合膜の作製 膜厚20μm、空孔率95%のポリテトラフロロエチレ
ン多孔質フィルムを100℃,100%無水硫酸ガス中
に24時間保持してスルホン化した。得られたフィルム
を煮沸蒸留水で3回洗浄した後、スルホン酸当量を測定
した。その結果、スルホン酸当量は0.7ミリ当量/g
であった。ESCA(Electron Spectroscopy for C
hemical Analysis)によりスパッタ法を用いて厚み方
向の硫黄原子Sを測定したところ、中心部まで硫黄原子
の吸収が認められた。
Example 1 (1) Preparation of Electrolyte Composite Membrane A porous polytetrafluoroethylene film having a thickness of 20 μm and a porosity of 95% was kept in 100% anhydrous sulfuric acid gas at 100 ° C. for 24 hours to perform sulfone. Turned into The obtained film was washed 3 times with boiling distilled water, and then the sulfonic acid equivalent was measured. As a result, the sulfonic acid equivalent is 0.7 meq / g
Met. ESCA (Electron Spectroscopy for C
When the sulfur atom S in the thickness direction was measured by a sputtering method by chemical analysis, absorption of the sulfur atom was recognized up to the central portion.

【0049】前記スルホン化ポリテトラフロロエチレン
多孔質フィルムに、5重量%パーフロロカーボンスルホ
ン酸(スルホン酸当量0.9ミリ当量/g)のイソプロ
ピルアルコール水溶液(アルドリッチ・ケミカル社製)
を含浸し、60℃で乾燥させた。次いで、140℃で5
分間、膜を熱処理した。これをピンホールが無くなるま
で、即ち、6回の含浸,乾燥,熱処理を繰り返した。
On the sulfonated polytetrafluoroethylene porous film, an aqueous solution of 5 wt% perfluorocarbon sulfonic acid (sulfonic acid equivalent 0.9 meq / g) in isopropyl alcohol (manufactured by Aldrich Chemical Co.)
Was impregnated and dried at 60 ° C. Then 5 at 140 ℃
The film was heat treated for minutes. This was repeated until the pinholes disappeared, that is, impregnation, drying and heat treatment were repeated 6 times.

【0050】その後、1N硫酸中に60〜70℃で1時
間浸漬、純水中に60〜70℃で1時間浸漬して電解質
側鎖の末端基を−SO3Hに変換した。得られた電解質
複合膜Iのイオン伝導率は0.15S/cm、引張強度
は3.5kg/mm2であった。
Then, it was immersed in 1N sulfuric acid at 60 to 70 ° C. for 1 hour and in pure water at 60 to 70 ° C. for 1 hour to convert the terminal groups of the side chains of the electrolyte into —SO 3 H. The obtained electrolyte composite membrane I had an ionic conductivity of 0.15 S / cm and a tensile strength of 3.5 kg / mm 2 .

【0051】本実施例の電解質複合膜Iのイオン伝導
率、引張強度は、後述のスルホン化処理しないポリテト
ラフロロエチレン多孔質フィルムで補強した比較例1の
電解質複合膜I’や、補強していない電解質膜と比較し
て大幅に優れている。
The ionic conductivity and the tensile strength of the electrolyte composite membrane I of this example are the same as those of the electrolyte composite membrane I'of Comparative Example 1 reinforced by a polytetrafluoroethylene porous film which is not subjected to the sulfonation treatment described later. Significantly superior to no electrolyte membrane.

【0052】電解質複合膜Iの周囲をSUS製金枠で固
定し、80℃,95%RHでの1.5時間保持と、25
℃,50%RHでの1.5時間保持の、高温湿潤状態と
室温乾燥状態の燃料電池環境を模擬した環境サイクルを
500回加えた。環境試験サイクル後の電解質複合膜I
の引張強度は初期と変わらなかった。
The periphery of the electrolyte composite membrane I was fixed with a SUS metal frame and kept at 80 ° C. and 95% RH for 1.5 hours.
An environmental cycle simulating a fuel cell environment in a high temperature wet condition and a room temperature dry condition, which was maintained at 50 ° C and 50% RH for 1.5 hours, was added 500 times. Electrolyte composite membrane I after environmental testing cycle I
The tensile strength of was the same as the initial one.

【0053】一方、後述する様にスルホン化処理しない
ポリテトラフロロエチレン多孔質フィルムで補強した比
較例1の電解質複合膜I’と補強していない電解質膜
は、環境試験サイクル後、それぞれ初期の1/3、1/
10に低下していた。このことからも電解質複合膜Iは
比較例1の電解質複合膜I’や補強していない電解質膜
より優れていることは明白である。
On the other hand, as described below, the electrolyte composite membrane I'of Comparative Example 1 reinforced with the polytetrafluoroethylene porous film which was not subjected to the sulfonation treatment and the electrolyte membrane which was not reinforced were each at the initial 1 after the environmental test cycle. / 3, 1 /
It had dropped to 10. From this, it is clear that the electrolyte composite membrane I is superior to the electrolyte composite membrane I ′ of Comparative Example 1 and the electrolyte membrane without reinforcement.

【0054】25℃,50%RHに24時間保持した電
解質複合膜Iを、80℃のイオン交換水中に24時間浸
漬したときの平面方向の寸法変化率は1.5%であっ
た。一方、後述する様に、スルホン化処理しないポリテ
トラフロロエチレンフィルムで補強した比較例1の電解
質複合膜I’の寸法変化率は2.0%、補強しない電解
質膜の寸法変化率は14%であった。このことからも電
解質複合膜Iは比較例1の電解質複合膜I’や、補強し
ていない電解質膜より優れていることは明白である。
When the electrolyte composite membrane I kept at 25 ° C. and 50% RH for 24 hours was immersed in ion exchange water at 80 ° C. for 24 hours, the dimensional change rate in the plane direction was 1.5%. On the other hand, as described later, the dimensional change rate of the electrolyte composite membrane I ′ of Comparative Example 1 reinforced with the non-sulfonation-treated polytetrafluoroethylene film was 2.0%, and the dimensional change rate of the non-reinforced electrolyte membrane was 14%. there were. From this, it is clear that the electrolyte composite membrane I is superior to the electrolyte composite membrane I ′ of Comparative Example 1 and the electrolyte membrane that is not reinforced.

【0055】また、燃料電池の作動状態に模擬して80
℃,95%RHの条件下で負荷荷重0.5kg/mm2
50時間加えたときのクリープ歪は15%で、後述のス
ルホン化処理しないポリテトラフロロエチレンフィルム
で補強した比較例1の1/2、補強していない電解質膜
の1/12と小さく優れている。
In addition, the fuel cell operating state is simulated to 80
The creep strain when a load of 0.5 kg / mm 2 was applied for 50 hours under the conditions of ℃ and 95% RH was 15%, and 1 of Comparative Example 1 reinforced with a non-sulfonation-treated polytetrafluoroethylene film described later. / 2, which is as small as 1/12 of the unreinforced electrolyte membrane, which is excellent.

【0056】以上のことから、電解質膜をスルホン化し
ていない高分子多孔質体で補強すると引張強度,寸法変
化率及び耐クリープ性は向上するが、イオン伝導率が低
下することが明白で、機械特性とイオン伝導率の両立が
大きな課題である。
From the above, it is clear that when the electrolyte membrane is reinforced with a non-sulfonated polymer porous body, the tensile strength, the dimensional change rate and the creep resistance are improved, but the ionic conductivity is lowered. A major issue is to achieve both good characteristics and ionic conductivity.

【0057】内部までスルホン化した高分子多孔質体で
補強すると、スルホン化していない高分子多孔質体で達
し得なかった機械強度,寸法安定性,耐クリープ特性等
の機械特性と、イオン伝導率が両立することが明白であ
る。
When reinforced to the inside with a sulfonated polymer porous material, mechanical properties such as mechanical strength, dimensional stability, and creep resistance, which cannot be achieved with a non-sulfonated polymer porous material, and ionic conductivity. It is clear that both are compatible.

【0058】(2)膜/電極接合体の作製 40重量%の白金担持カーボンをイソプロパノール溶液
に分散させた後、5重量%パーフロロカーボンスルホン
酸(スルホン酸当量0.9ミリ当量/g)のイソプロピ
ルアルコール水溶液(アルドリッチ・ケミカル社製)
を、白金触媒と高分子電解質との重量比が2:1となる
ように添加し、超音波で均一に分散させてペースト(電
極触媒被覆溶液)を調製した。この電極触媒被覆溶液を
前記(1)で得られた電解質複合膜Iの両側に塗布後、
乾燥して白金担持量0.25mg/cm2の膜/電極接合
体Iを作製した。
(2) Preparation of membrane / electrode assembly 40% by weight of platinum-supported carbon was dispersed in an isopropanol solution, and then 5% by weight of perfluorocarbon sulfonic acid (sulfonic acid equivalent: 0.9 meq / g) isopropyl. Alcohol aqueous solution (Aldrich Chemical Co.)
Was added so that the weight ratio of the platinum catalyst and the polymer electrolyte was 2: 1 and was uniformly dispersed by ultrasonic waves to prepare a paste (electrode catalyst coating solution). After applying this electrode catalyst coating solution on both sides of the electrolyte composite membrane I obtained in (1) above,
After drying, a membrane / electrode assembly I having a platinum loading of 0.25 mg / cm 2 was prepared.

【0059】膜/電極接合体Iの周囲をSUS製金枠で
固定し、80℃,95%RHで1.5時間保持と、25
℃,50%RHの1.5時間保持と云う高温湿潤状態と
室温乾燥状態の環境サイクルを500回加えた。環境試
験サイクル後の膜/電極接合体Iには初期と同様剥離は
認められなかった。
The periphery of the membrane / electrode assembly I was fixed with a SUS metal frame and kept at 80 ° C. and 95% RH for 1.5 hours.
An environmental cycle of a high temperature wet state and a room temperature dry state, in which the temperature was kept at 50% RH for 1.5 hours, was added 500 times. No peeling was observed in the membrane / electrode assembly I after the environmental test cycle as in the initial stage.

【0060】一方、後述の比較例1の膜/電極接合体
I’は環境試験サイクル後、剥離が認められた。このこ
とからも本発明の膜/電極接合体Iは比較例1の膜/電
極接合体I’より優れていることは明白である。
On the other hand, peeling was observed in the membrane / electrode assembly I'of Comparative Example 1 described later after the environmental test cycle. From this, it is clear that the membrane / electrode assembly I of the present invention is superior to the membrane / electrode assembly I ′ of Comparative Example 1.

【0061】(3)燃料電池単セルの耐久性試験 前記膜/電極接合体Iを沸騰した脱イオン水中に2時間
浸漬することにより吸水させた。得られた膜/電極接合
体を評価セルに組込み、燃料電池出力性能を評価した。
即ち、電解質膜1,酸素極2及び水素極3からなる実施
例1の膜/電極接合体4の両電極に、薄いカーボンペー
パーのパッキング材からなる支持集電体5を密着させ、
その両側から極室分離と電極へのガス供給通路の役割を
兼ねた導電性のセパレータ(バイポーラプレート)6か
らなる、図1に示す固体高分子型燃料電池単セルを作製
した。
(3) Durability Test of Fuel Cell Single Cell The membrane / electrode assembly I was immersed in boiling deionized water for 2 hours to absorb water. The obtained membrane / electrode assembly was incorporated into an evaluation cell and the fuel cell output performance was evaluated.
That is, the support current collector 5 made of a packing material of thin carbon paper is brought into close contact with both electrodes of the membrane / electrode assembly 4 of Example 1 which is composed of the electrolyte membrane 1, the oxygen electrode 2 and the hydrogen electrode 3.
A solid polymer electrolyte fuel cell single cell shown in FIG. 1 was prepared, which was composed of a conductive separator (bipolar plate) 6 that also functions as a gas supply passage to the electrode from both sides of the electrode chamber separation.

【0062】上記燃料電池単セルを電流密度300mA
/cm2の条件で長時間稼動試験を行った。その結果を
図2に示す。なお、図2中の12は、本願発明の膜/電
極接合体Iを用いた燃料電池単セルの耐久性試験結果
で、図2中の13は、膜/電極接合体Iを用いた燃料電
池単セルの耐久性試験結果である。
A current density of 300 mA was applied to the above fuel cell single cell.
A long-term operation test was performed under the condition of / cm 2 . The result is shown in FIG. In addition, 12 in FIG. 2 is the durability test result of the fuel cell single cell using the membrane / electrode assembly I of the present invention, and 13 in FIG. 2 is the fuel cell using the membrane / electrode assembly I. It is a durability test result of a single cell.

【0063】本実施例の膜/電極接合体Iを用いた固体
高分子型燃料電池は、比較例1の膜/電極接合体I’を
用いた固体高分子型燃料電池より安定性に優れている。
The polymer electrolyte fuel cell using the membrane / electrode assembly I of this example is more stable than the polymer electrolyte fuel cell using the membrane / electrode assembly I ′ of Comparative Example 1. There is.

【0064】(4)燃料電池の作製 前記(3)で作製した単電池セルを36層積層し、固体
高分子型燃料電池を作製したところ、1kWの出力を示
した。
(4) Preparation of Fuel Cell When a solid polymer fuel cell was prepared by stacking 36 layers of the single cell prepared in (3) above, an output of 1 kW was shown.

【0065】〔比較例 1〕 (1)電解質複合膜の作製 膜厚20μm、空孔率95%のポリテトラフロロエチレ
ン多孔質フィルムに実施例1(1)と同様にして、5重
量%パーフロロカーボンスルホン酸(スルホン酸当量
0.9ミリ当量/g)のイソプロピルアルコール水溶液
を含浸,乾燥,熱処理を繰り返した後、1N硫酸中に6
0〜70℃で1時間浸漬、純水中に60〜70℃で1時
間浸漬して電解質側鎖の末端基を−SO3Hに変換し
た。
Comparative Example 1 (1) Preparation of Electrolyte Composite Membrane A polytetrafluoroethylene porous film having a film thickness of 20 μm and a porosity of 95% was formed in the same manner as in Example 1 (1) with 5% by weight of perfluorocarbon. After impregnating with isopropyl alcohol aqueous solution of sulfonic acid (sulfonic acid equivalent 0.9 milliequivalent / g), drying, and heat treatment were repeated, 6% in 1N sulfuric acid
It was immersed at 0 to 70 ° C. for 1 hour and then immersed in pure water at 60 to 70 ° C. for 1 hour to convert the terminal group of the electrolyte side chain into —SO 3 H.

【0066】得られた電解質複合膜I’のイオン伝導率
は0.04S/cm、引張強度は3.0kg/mm2であ
った。また、同じ厚さ、同じスルホン酸当量で補強して
いない電解質膜のイオン伝導率、引張強度はそれぞれ
0.12S/cm、1.2kg/mm2であった。
The obtained electrolyte composite membrane I'has an ionic conductivity of 0.04 S / cm and a tensile strength of 3.0 kg / mm 2 . The ionic conductivity and tensile strength of the electrolyte membrane not reinforced with the same thickness and the same sulfonic acid equivalent were 0.12 S / cm and 1.2 kg / mm 2 , respectively.

【0067】また、電解質複合膜I’、又は補強してい
ない電解質膜の周囲をSUS製金枠で固定し、80℃,
95%RHでの1.5時間保持と、25℃,50%RH
での1.5時間保持との高温湿潤状態と室温乾燥状態の
環境サイクルを500回加えた。環境試験サイクル後の
電解質複合膜I’及び補強していない電解質膜の引張強
度は、それぞれ初期の1/3、1/10に低下してい
た。
Further, the periphery of the electrolyte composite membrane I'or the non-reinforced electrolyte membrane was fixed with a SUS metal frame,
Hold at 95% RH for 1.5 hours, 25 ℃, 50% RH
An environmental cycle of high temperature wet condition and room temperature dry condition, which was held for 1.5 hours, was added 500 times. The tensile strengths of the electrolyte composite membrane I ′ and the non-reinforced electrolyte membrane after the environmental test cycle were reduced to 1/3 and 1/10 of the initial values, respectively.

【0068】25℃,50%RHに24時間保持した電
解質複合膜I’及び補強していない電解質膜を、80℃
のイオン交換水中で24時間浸漬したときの平面方向の
寸法変化率は、それぞれ2.0%、14%であった。
The electrolyte composite membrane I'and the non-reinforced electrolyte membrane kept at 25 ° C. and 50% RH for 24 hours were heated to 80 ° C.
The dimensional change rates in the plane direction when immersed in ion exchange water for 24 hours were 2.0% and 14%, respectively.

【0069】燃料電池の作動状態に模擬して80℃,9
5%RHの条件下で、負荷荷重0.5kg/mm2を50
時間加えたときの電解質複合膜I’と、補強していない
電解質膜のクリープ歪は、それぞれ30%、180%で
あった。
Simulate the operating state of the fuel cell at 80 ° C., 9
Under the condition of 5% RH, load load 0.5 kg / mm 2 50
The creep strains of the electrolyte composite membrane I ′ and the electrolyte membrane that were not reinforced when added for 30 hours were 30% and 180%, respectively.

【0070】以上のことから、電解質膜をスルホン化し
ていない高分子多孔質体で補強すると引張強度,寸法変
化率及び耐クリープ性は向上するが、イオン伝導率が低
下することが明白となり、機械特性とイオン伝導率の両
立が大きな課題であることが分る。
From the above, it is clear that when the electrolyte membrane is reinforced with a non-sulfonated polymer porous body, the tensile strength, the dimensional change rate and the creep resistance are improved, but the ionic conductivity is lowered, and It can be seen that compatibility between characteristics and ionic conductivity is a major issue.

【0071】(2)電極触媒被覆溶液及び膜/電極接合
体の作製 40重量%の白金担持カーボンをイソプロパノールに分
散後、5重量%パーフロロカーボンスルホン酸(スルホ
ン酸当量0.9ミリ当量/g)のイソプロピルアルコー
ル水溶液を、白金触媒と高分子電解質との重量比が2:
1となるように添加し、超音波で均一に分散させてペー
スト(電極触媒被覆溶液)を調製した。
(2) Preparation of Electrode Catalyst Coating Solution and Membrane / Electrode Assembly 40% by weight of platinum-supported carbon was dispersed in isopropanol, and then 5% by weight of perfluorocarbon sulfonic acid (sulfonic acid equivalent 0.9 meq / g). In the isopropyl alcohol aqueous solution, the weight ratio of platinum catalyst to polymer electrolyte is 2:
It was added so that it became 1 and was uniformly dispersed by ultrasonic waves to prepare a paste (electrode catalyst coating solution).

【0072】この電極触媒被覆溶液を、前記(1)で得
られた電解質複合膜I’の両側に塗布,乾燥して、白金
担持量0.25mg/cm2の膜/電極接合体I’を作製
した。
This electrode catalyst coating solution was applied to both sides of the electrolyte composite membrane I'obtained in (1) above and dried to obtain a membrane / electrode assembly I'having a platinum loading of 0.25 mg / cm 2. It was made.

【0073】膜/電極接合体I’の周囲をSUS製金枠
で固定し、80℃,95%RHで1.5時間保持と、2
5℃,50%RHの1.5時間保持と云う高温湿潤状態
と室温乾燥状態の環境サイクルを500回加えた。環境
試験サイクル後の膜/電極接合体I’は、初期と異なり
剥離が認められた。
The periphery of the membrane / electrode assembly I'was fixed with a SUS metal frame and kept at 80 ° C and 95% RH for 1.5 hours.
An environmental cycle of a high temperature wet state and a room temperature dry state, in which 5 hours and 50% RH were kept for 1.5 hours, was added 500 times. In the membrane / electrode assembly I ′ after the environmental test cycle, peeling was observed unlike the initial stage.

【0074】(3)燃料電池単セルの耐久性試験 前記膜/電極接合体I’の両側に薄いカーボンペーパー
のパッキング材(支持集電体)を密着させて、その両側
から極室分離と電極へのガス供給通路の役割を兼ねた導
電性のセパレータ(バイポーラプレート)からなる固体
高分子型燃料電池単セルを作製し、電流密度300mA
/cm2の条件で長時間稼動試験を行った。その結果、
図2の13に示すように出力電圧は稼動時間3000時
間後から低下する傾向が認められた。
(3) Durability Test of Fuel Cell Single Cell A thin carbon paper packing material (supporting current collector) is adhered to both sides of the membrane / electrode assembly I ', and polar chamber separation and electrodes are performed from both sides. A polymer electrolyte fuel cell unit cell composed of a conductive separator (bipolar plate) that also serves as a gas supply passage to the
A long-term operation test was performed under the condition of / cm 2 . as a result,
As shown in 13 of FIG. 2, the output voltage tended to decrease after 3000 hours of operation.

【0075】〔実施例 2〕 (1)電解質複合膜の作製 200デニールのポリテトラフロロエチレンマルチフィ
ラメントを横糸と縦糸にして、25メッシュに絡み織り
した補強用織布を、100℃,100%無水硫酸ガス中
24時間保持し、スルホン化ポリテトラフロロエチレン
系補強用織布を得た。
Example 2 (1) Preparation of Electrolyte Composite Membrane A reinforcing woven fabric in which 200 denier polytetrafluoroethylene multifilaments were woven and entangled in 25 mesh with weft and warp, was dried at 100 ° C. and 100% anhydrous. The fabric was kept in sulfuric acid gas for 24 hours to obtain a sulfonated polytetrafluoroethylene-based reinforcing woven fabric.

【0076】この織布を煮沸蒸留水で3回洗浄した後、
スルホン酸当量を測定した。本実施例の補強用織布のス
ルホン酸当量は0.8ミリ当量/gであった。ESCA
によりスパッタ法を用いて、厚み方向の硫黄原子Sを測
定したところ、中心部まで硫黄原子の吸収が認められ
た。
After washing this woven fabric three times with boiling distilled water,
The sulfonic acid equivalent was measured. The reinforcing woven fabric of this example had a sulfonic acid equivalent of 0.8 meq / g. ESCA
When the sulfur atom S in the thickness direction was measured by using the sputtering method, absorption of the sulfur atom was recognized up to the central portion.

【0077】前記スルホン化ポリテトラフロロエチレン
系補強用織布を、実施例1(1)と同様に、5重量%パ
ーフロロカーボンスルホン酸(スルホン酸当量0.9ミ
リ当量/g)のイソプロピルアルコール水溶液を用い
て、含浸,乾燥,熱処理を繰り返した。その後、実施例
1(1)と同じ条件で1N硫酸を用いて電解質側鎖の末
端基を−SO3Hに変換した。
The sulfonated polytetrafluoroethylene-based reinforcing woven fabric was treated with 5% by weight of perfluorocarbon sulfonic acid (sulfonic acid equivalent: 0.9 meq / g) in isopropyl alcohol as in Example 1 (1). Using, the impregnation, drying and heat treatment were repeated. Then, the terminal group of the electrolyte side chain was converted to —SO 3 H using 1N sulfuric acid under the same conditions as in Example 1 (1).

【0078】得られた電解質複合膜IIのイオン伝導率は
0.17S/cm、引張強度は3.5kg/mm2であっ
た。本実施例の電解質複合膜IIのイオン伝導率,引張強
度は、後述のスルホン化処理しないポリテトラフロロエ
チレンフィルムで補強した比較例2の電解質複合膜II’
や、補強していない電解質膜と比較して大幅に優れてい
る。
The obtained electrolyte composite membrane II had an ionic conductivity of 0.17 S / cm and a tensile strength of 3.5 kg / mm 2 . The ionic conductivity and tensile strength of the electrolyte composite membrane II of the present example are the same as those of the electrolyte composite membrane II 'of Comparative Example 2 reinforced by a polytetrafluoroethylene film not subjected to the sulfonation treatment described later.
Or significantly better than the unreinforced electrolyte membrane.

【0079】また、電解質複合膜IIの周囲をSUS製金
枠で固定し、80℃,95%RHでの1.5時間保持
と、25℃,50%RHでの1.5時間保持との高温湿
潤状態と室温乾燥状態の燃料電池環境を模擬した環境サ
イクルを500回加えた。環境試験サイクル後の電解質
複合膜IIの引張強度は初期と変わらなかった。
Further, the periphery of the electrolyte composite membrane II was fixed with a SUS metal frame and held at 80 ° C. and 95% RH for 1.5 hours and at 25 ° C. and 50% RH for 1.5 hours. An environmental cycle simulating a fuel cell environment in a high temperature wet state and a room temperature dry state was added 500 times. The tensile strength of the electrolyte composite membrane II after the environmental test cycle was the same as the initial one.

【0080】一方、後述のスルホン化処理しないポリテ
トラフロロエチレンフィルムで補強した比較例2の電解
質複合膜II’と、補強していない電解質膜は環境試験サ
イクル後、それぞれ初期の1/4、1/10に低下して
いた。このことからも電解質複合膜IIは比較例2の電解
質複合膜II’や補強していない電解質膜より優れている
ことは明白である。
On the other hand, the electrolyte composite membrane II 'of Comparative Example 2 reinforced by the polytetrafluoroethylene film which is not subjected to the sulfonation treatment described later and the electrolyte membrane which is not reinforced are 1/4 and 1 of the initial values after the environmental test cycle, respectively. It had fallen to / 10. From this, too, it is clear that the electrolyte composite membrane II is superior to the electrolyte composite membrane II ′ of Comparative Example 2 and the non-reinforced electrolyte membrane.

【0081】25℃,50%RHに24時間保持した電
解質複合膜IIを、80℃のイオン交換水中で24時間浸
漬したときの平面方向の寸法変化率は2.0%であっ
た。一方、後述のスルホン化処理しない高分子多孔質体
で補強した比較例2の電解質複合膜II’の寸法変化率は
2.5%、補強しない電解質膜の寸法変化率は14%で
あった。このことからも電解質複合膜IIは比較例2の電
解質複合膜II’や補強していない電解質膜より優れてい
ることは明白である。
When the electrolyte composite membrane II kept at 25 ° C. and 50% RH for 24 hours was immersed in ion-exchanged water at 80 ° C. for 24 hours, the dimensional change rate in the plane direction was 2.0%. On the other hand, the dimensional change rate of the electrolyte composite membrane II ′ of Comparative Example 2 reinforced with the polymer porous body not subjected to sulfonation described later was 2.5%, and the dimensional change rate of the non-reinforced electrolyte membrane was 14%. From this, too, it is clear that the electrolyte composite membrane II is superior to the electrolyte composite membrane II ′ of Comparative Example 2 and the non-reinforced electrolyte membrane.

【0082】また、燃料電池の作動状態に模擬して80
℃,95%RHの条件下で、負荷荷重0.5kg/mm2
を50時間加えたときのクリープ歪は15%で、後述の
比較例2のスルホン化処理しない高分子多孔質体で補強
した電解質複合膜II’の1/2、補強していない電解質
膜の1/12と小さく優れている。
Further, the operation state of the fuel cell is simulated to 80
Load load 0.5 kg / mm 2 under conditions of ℃ and 95% RH
The creep strain when applied for 50 hours is 15%, which is 1/2 of the electrolyte composite membrane II 'reinforced by the polymer porous body not subjected to the sulfonation treatment of Comparative Example 2 described later, and 1 of the non-reinforced electrolyte membrane. It is as small as / 12 and excellent.

【0083】以上から、内部までスルホン化した高分子
多孔質体で補強すると、スルホン化していない高分子多
孔質体では達し得なかった機械強度,寸法安定性,耐ク
リープ特性等の機械特性と、イオン伝導率とが両立する
ことが明白である。
From the above, when the inside is reinforced with the sulfonated polymer porous body, the mechanical properties such as mechanical strength, dimensional stability, and creep resistance, which cannot be achieved by the non-sulfonated polymer porous body, It is clearly compatible with ionic conductivity.

【0084】(2)膜/電極接合体の作製 40重量%の白金担持カーボンをイソプロパノール溶液
に分散させた後、5重量%パーフロロカーボンスルホン
酸(スルホン酸当量0.9ミリ当量/g)のイソプロピ
ルアルコール水溶液を、白金触媒と高分子電解質との重
量比が2:1となるように添加し、超音波で均一に分散
させてペースト(電極触媒被覆溶液)を調製した。この
電極触媒被覆溶液を前記(1)で得られた電解質複合膜
IIの両側に塗布した後、乾燥して白金担持量0.25m
g/cm2の膜/電極接合体IIを作製した。
(2) Preparation of Membrane / Electrode Assembly 40% by weight of platinum-supported carbon was dispersed in an isopropanol solution, and then 5% by weight of perfluorocarbon sulfonic acid (sulfonic acid equivalent 0.9 meq / g) isopropyl An alcohol aqueous solution was added so that the weight ratio of the platinum catalyst and the polymer electrolyte was 2: 1, and the mixture was ultrasonically dispersed to prepare a paste (electrode catalyst coating solution). This electrode catalyst coating solution is applied to the electrolyte composite membrane obtained in (1) above.
After applying to both sides of II, it is dried and the amount of platinum carried is 0.25m.
A membrane / electrode assembly II of g / cm 2 was prepared.

【0085】膜/電極接合体IIの周囲をSUS製金枠で
固定し、80℃,95%RHで1.5時間保持と25
℃,50%RHの1.5時間保持と云う高温湿潤状態と
室温乾燥状態の環境サイクルを500回加えた。環境試
験サイクル後の膜/電極接合体IIに初期と同様剥離は認
められなかった。一方、後述の比較例2の膜/電極接合
体IIは環境試験サイクル後、剥離が認められた。このこ
とからも本発明の膜/電極接合体IIは比較例2の膜/電
極接合体II’より優れていることは明白である。
The periphery of the membrane / electrode assembly II was fixed with a SUS metal frame and kept at 80 ° C. and 95% RH for 1.5 hours and 25 hours.
An environmental cycle of a high temperature wet state and a room temperature dry state, in which the temperature was kept at 50% RH for 1.5 hours, was added 500 times. No peeling was observed in the membrane / electrode assembly II after the environmental test cycle as in the initial stage. On the other hand, peeling of the membrane / electrode assembly II of Comparative Example 2 described later was observed after the environmental test cycle. From this, it is clear that the membrane / electrode assembly II of the present invention is superior to the membrane / electrode assembly II ′ of Comparative Example 2.

【0086】(3)燃料電池単セルの耐久性試験 膜/電極接合体IIの両側に薄いカーボンペーパーのパッ
キング材(支持集電体)を密着させて、その両側から極
室分離と電極へのガス供給通路の役割を兼ねた導電性の
セパレータ(バイポーラプレート)からなる固体高分子
型燃料電池単セルを作製し、電流密度300mA/cm
2の条件で長時間稼動試験を行った。その結果を図3に
示す。
(3) Durability Test of Fuel Cell Single Cell A thin carbon paper packing material (supporting current collector) is closely adhered to both sides of the membrane / electrode assembly II to separate the polar chamber and the electrode from both sides. A polymer electrolyte fuel cell unit cell composed of a conductive separator (bipolar plate) that also serves as a gas supply passage was manufactured, and the current density was 300 mA / cm.
A long-term operation test was performed under the condition of 2 . The result is shown in FIG.

【0087】図3中の14は本実施例の膜/電極接合体
IIを用いた燃料電池単セルの耐久性試験結果で、図3中
の15は膜/電極接合体II’を用いた燃料電池単セルの
耐久性試験結果である。
Reference numeral 14 in FIG. 3 denotes the membrane / electrode assembly of this embodiment.
The result of the durability test of the fuel cell single cell using II, 15 in FIG. 3 is the result of the durability test of the fuel cell single cell using the membrane / electrode assembly II ′.

【0088】本実施例の膜/電極接合体IIを用いた固体
高分子型燃料電池は、比較例2の膜/電極接合体II’を
用いたものよりも安定性に優れている。
The polymer electrolyte fuel cell using the membrane / electrode assembly II of this example is more stable than the one using the membrane / electrode assembly II ′ of Comparative Example 2.

【0089】(4)燃料電池の作製 上記(3)で作製した単電池セルを36層積層し、固体
高分子型燃料電池を作製したところ、1kWの出力を示
した。
(4) Production of Fuel Cell A solid polymer fuel cell was produced by stacking 36 layers of the single cell produced in (3) above, and showed an output of 1 kW.

【0090】〔比較例 2〕 (1)電解質複合膜の作製 200デニールのポリテトラフロロエチレンマルチフィ
ラメントを横糸と縦糸にして、25メッシュに絡み織り
した補強用織布に5重量%パーフロロカーボンスルホン
酸(スルホン酸当量0.9ミリ当量/g)のイソプロピ
ルアルコール・水溶液(アルドリッチ・ケミカル社製)
を含浸、60℃で乾燥させた。
Comparative Example 2 (1) Preparation of Electrolyte Composite Membrane 5% by weight perfluorocarbon sulfonic acid was added to a reinforcing woven fabric in which 200 denier polytetrafluoroethylene multifilaments were woven and woven in 25 mesh as weft and warp. (Sulfonic acid equivalent 0.9 milliequivalent / g) isopropyl alcohol / water solution (manufactured by Aldrich Chemical Co.)
Was impregnated and dried at 60 ° C.

【0091】次いで、140℃で5分間膜を熱処理し
た。ピンホールが無くなるまで、即ち、5回、含浸,乾
燥,熱処理を繰り返した。その後、1N硫酸中に60〜
70℃で1時間浸漬し、純水中に60〜70℃で1時間
浸漬して電解質側鎖の末端基を−SO3Hに変換した。
得られた電解質複合膜II’のイオン伝導率は0.01S
/cm、引張強度は3.1kg/mm2であった。同じ厚
さで同じスルホン酸当量の補強していない電解質膜のイ
オン伝導率,引張強度は、それぞれ0.12S/cm、
1.2kg/mm2であった。
Next, the film was heat-treated at 140 ° C. for 5 minutes. The impregnation, drying, and heat treatment were repeated until pinholes disappeared, that is, five times. Then, 60 ~ in 1N sulfuric acid
It was immersed at 70 ° C. for 1 hour and then immersed in pure water at 60 to 70 ° C. for 1 hour to convert the terminal groups of the electrolyte side chains into —SO 3 H.
The ionic conductivity of the obtained electrolyte composite membrane II 'was 0.01S.
/ Cm, and the tensile strength was 3.1 kg / mm 2 . The ionic conductivity and tensile strength of an unreinforced electrolyte membrane having the same thickness and the same sulfonic acid equivalent were 0.12 S / cm and
It was 1.2 kg / mm 2 .

【0092】また、電解質複合膜II’の周囲をSUS製
金枠で固定し、80℃,95%RHで1.5時間保持
と、25℃,50%RHで1.5時間保持との、高温湿
潤状態と室温乾燥状態の環境サイクルを500回加え
た。環境試験サイクル後の電解質複合膜II’及び補強し
ていない電解質膜の引張強度は、それぞれ初期の1/
4,1/10に低下していた。
Further, the periphery of the electrolyte composite membrane II 'was fixed with a SUS metal frame and held at 80 ° C. and 95% RH for 1.5 hours and at 25 ° C. and 50% RH for 1.5 hours. An environmental cycle of high temperature wet condition and room temperature dry condition was added 500 times. The tensile strengths of the electrolyte composite membrane II ′ and the non-reinforced electrolyte membrane after the environmental test cycle were 1 / initial
It fell to 4, 1/10.

【0093】25℃,50%RHに24時間保持した電
解質複合膜II’及び補強していない電解質膜を、80℃
のイオン交換水中24時間浸漬したときの平面方向の寸
法変化率は、それぞれ3.0%,14%であった。
The electrolyte composite membrane II 'and the non-reinforced electrolyte membrane kept at 25 ° C. and 50% RH for 24 hours were treated at 80 ° C.
The dimensional change rates in the plane direction when immersed in ion-exchanged water for 24 hours were 3.0% and 14%, respectively.

【0094】燃料電池の作動状態に模擬して80℃,9
5%RHの条件下で、負荷荷重0.5kg/mm2を50
時間加えたときの電解質複合膜II’と、補強していない
電解質膜のクリープ歪はそれぞれ33%,180%であ
った。
Simulate the operating state of the fuel cell at 80 ° C., 9
Under the condition of 5% RH, load load 0.5 kg / mm 2 50
The creep strains of the electrolyte composite membrane II ′ and the non-reinforced electrolyte membrane when added over time were 33% and 180%, respectively.

【0095】上記から電解質膜をスルホン化していない
高分子多孔質体で補強すると引張強度,寸法変化率及び
耐クリープ性は向上するが、イオン伝導率が低下するこ
とが明白で、機械特性とイオン伝導率の両立が大きな課
題であることが分る。
From the above, when the electrolyte membrane is reinforced with a non-sulfonated polymer porous material, the tensile strength, the dimensional change rate and the creep resistance are improved, but it is clear that the ionic conductivity is lowered. It can be seen that compatibility of conductivity is a major issue.

【0096】(2)膜/電極接合体の作製 40重量%の白金担持カーボンをイソプロパノールに分
散させた後、5重量%パーフロロカーボンスルホン酸
(スルホン酸当量0.9ミリ当量/g)のイソプロピル
アルコール水溶液を、白金触媒と高分子電解質との重量
比が2:1となるように添加し、超音波で均一に分散さ
せてペースト(電極触媒被覆溶液)を調製した。
(2) Preparation of Membrane / Electrode Assembly 40% by weight of platinum-supported carbon was dispersed in isopropanol, and then 5% by weight of perfluorocarbon sulfonic acid (sulfonic acid equivalent 0.9 meq / g) isopropyl alcohol. The aqueous solution was added so that the weight ratio of the platinum catalyst to the polymer electrolyte was 2: 1, and the mixture was ultrasonically uniformly dispersed to prepare a paste (electrode catalyst coating solution).

【0097】この電極触媒被覆溶液を前記(1)で得ら
れた電解質複合膜II’の両側に塗布後,乾燥して、白金
担持量0.25mg/cm2の膜/電極接合体II’を作製
した。
This electrode catalyst coating solution was applied to both sides of the electrolyte composite membrane II ′ obtained in (1) above and dried to obtain a membrane / electrode assembly II ′ having a platinum loading of 0.25 mg / cm 2. It was made.

【0098】膜/電極接合体II’の周囲をSUS製金枠
で固定し、80℃,95%RHで1.5時間保持と、2
5℃,50%RHの1.5時間保持と云う高温湿潤状態
と室温乾燥状態の環境サイクルを500回加えた。環境
試験サイクル後の膜/電極接合体II’は、初期と異なり
剥離が認められた。
The periphery of the membrane / electrode assembly II 'was fixed with a SUS metal frame and kept at 80 ° C and 95% RH for 1.5 hours.
An environmental cycle of a high temperature wet state and a room temperature dry state, in which 5 hours and 50% RH were kept for 1.5 hours, was added 500 times. In the membrane / electrode assembly II ′ after the environmental test cycle, peeling was observed unlike the initial stage.

【0099】(3)燃料電池単セルの耐久性試験 前記膜/電極接合体II’の両側に薄いカーボンペーパー
のパッキング材(支持集電体)を密着させて、その両側
から極室分離と電極へのガス供給通路の役割を兼ねた導
電性のセパレータ(バイポーラプレート)からなる固体
高分子型燃料電池単セルを作製し、電流密度300mA
/cm2の条件で長時間稼動試験を行った。その結果、
図3の15に示すように、出力電圧は稼動時間3000
時間後から低下する傾向が認められた。
(3) Durability Test of Fuel Cell Single Cell A thin carbon paper packing material (supporting current collector) was adhered to both sides of the membrane / electrode assembly II ', and the polar chamber separation and the electrode were performed from both sides. A polymer electrolyte fuel cell unit cell composed of a conductive separator (bipolar plate) that also serves as a gas supply passage to the
A long-term operation test was performed under the condition of / cm 2 . as a result,
As shown at 15 in FIG. 3, the output voltage has an operating time of 3000
A tendency of decreasing after hours was observed.

【0100】〔実施例 3〕 (1)電解質複合膜の作製 ポリテトラフロロエチレンのフィブリルを100℃,1
00%無水硫酸ガス中24時間保持し、スルホン化し
た。
Example 3 (1) Preparation of Electrolyte Composite Membrane Polytetrafluoroethylene fibrils were heated at 100 ° C. for 1 hour.
The mixture was kept in 00% sulfuric acid gas for 24 hours for sulfonation.

【0101】このフィブリルを煮沸蒸留水で3回洗浄し
た後、スルホン酸当量を測定した。その値は0.8ミリ
当量/gであった。ESCAによりスパッタ法を用いて
厚み方向の硫黄原子Sを測定したところ、中心部まで硫
黄原子の吸収が認められた。
After washing the fibrils 3 times with boiling distilled water, the sulfonic acid equivalent was measured. The value was 0.8 meq / g. When the sulfur atom S in the thickness direction was measured by ESCA using the sputtering method, absorption of the sulfur atom was recognized up to the central portion.

【0102】前記スルホン化ポリテトラフロロエチレン
フィブリルを実施例1(1)と同様に、5重量%パーフ
ロロカーボンスルホン酸のイソプロピルアルコール水溶
液を用いて、含浸,乾燥,熱処理を繰り返した。その
後、実施例1(1)と同じ条件で1N硫酸を用いて電解
質側鎖の末端基を−SO3Hに変換した。
The sulfonated polytetrafluoroethylene fibrils were subjected to the same impregnation, drying and heat treatment as in Example 1 (1) using an aqueous isopropyl alcohol solution containing 5% by weight of perfluorocarbon sulfonic acid. Then, the terminal group of the electrolyte side chain was converted to —SO 3 H using 1N sulfuric acid under the same conditions as in Example 1 (1).

【0103】得られた電解質複合膜IIIのイオン伝導率
は0.17S/cm、引張強度は3.8kg/mm2であ
った。
The electrolyte composite membrane III thus obtained had an ionic conductivity of 0.17 S / cm and a tensile strength of 3.8 kg / mm 2 .

【0104】本発明の電解質複合膜IIIのイオン伝導
率,引張強度は、後述のスルホン化処理しないポリテト
ラフロロエチレンフィブリルで補強した比較例3の電解
質複合膜III’や、補強していない電解質膜と比較して
大幅に優れている。
The ionic conductivity and the tensile strength of the electrolyte composite membrane III of the present invention are the same as those of the electrolyte composite membrane III 'of Comparative Example 3 reinforced with polytetrafluoroethylene fibril which is not subjected to the sulfonation treatment described later and the electrolyte membrane which is not reinforced. Significantly better than

【0105】また、電解質複合膜IIIの周囲をSUS製
金枠で固定し、80℃,95%RHでの1.5時間保持
と、25℃,50%RHでの1.5時間保持の、高温湿
潤状態と室温乾燥状態の燃料電池環境を模擬した環境サ
イクルを500回加えた。環境試験サイクル後の電解質
複合膜IIIの引張強度は初期と変わらなかった。
Further, the periphery of the electrolyte composite membrane III was fixed with a SUS metal frame and held at 80 ° C. and 95% RH for 1.5 hours and at 25 ° C. and 50% RH for 1.5 hours. An environmental cycle simulating a fuel cell environment in a high temperature wet state and a room temperature dry state was added 500 times. The tensile strength of the electrolyte composite membrane III after the environmental test cycle was the same as the initial one.

【0106】一方、後述のスルホン化処理しないポリテ
トラフロロエチレンフィブリルで補強した比較例3の電
解質複合膜III’と補強していない電解質膜は、環境試
験サイクル後、それぞれ初期の2/5,1/10に低下
していた。このことからも電解質複合膜IIIは、補強し
ていない電解質膜や、比較例3の電解質複合膜III’よ
り優れていることは明白である。
On the other hand, the electrolyte composite membrane III 'of Comparative Example 3 reinforced with polytetrafluoroethylene fibril which is not subjected to the sulfonation treatment described later and the electrolyte membrane which is not reinforced are respectively 2/5, 1 of the initial stage after the environmental test cycle. It had fallen to / 10. From this, it is clear that the electrolyte composite membrane III is superior to the electrolyte membrane not reinforced and the electrolyte composite membrane III ′ of Comparative Example 3.

【0107】25℃,50%RHに24時間保持した電
解質複合膜IIIを、80℃のイオン交換水中24時間浸
漬したときの平面方向の寸法変化率は2.5%であっ
た。一方、後述のスルホン化処理しないポリテトラフロ
ロエチレンフィブリルで補強した比較例3の電解質複合
膜III’の寸法変化率は4.0%、補強しない電解質膜の
寸法変化率は14%であった。このことからも電解質複
合膜IIIは、比較例3の電解質複合膜III’や補強してい
ない電解質膜より優れていることは明白である。
When the electrolyte composite membrane III kept at 25 ° C. and 50% RH for 24 hours was immersed in ion-exchanged water at 80 ° C. for 24 hours, the dimensional change in the plane direction was 2.5%. On the other hand, the dimensional change rate of the electrolyte composite membrane III 'of Comparative Example 3 reinforced with polytetrafluoroethylene fibril which was not sulfonated as described later was 4.0%, and the dimensional change rate of the non-reinforced electrolyte membrane was 14%. From this, it is clear that the electrolyte composite membrane III is superior to the electrolyte composite membrane III ′ of Comparative Example 3 and the non-reinforced electrolyte membrane.

【0108】また、燃料電池の作動状態に模擬して80
℃,95%RHの条件下で負荷荷重0.5kg/mm2
50時間加えたときのクリープ歪は18%で、後述のス
ルホン化処理しないポリテトラフロロエチレンフィブリ
ルで補強した比較例3の1/2、補強していない電解質
膜の1/10と小さく優れている。
Moreover, the fuel cell is operated in a simulated state of 80
The creep strain when a load of 0.5 kg / mm 2 was applied for 50 hours under the conditions of ° C and 95% RH was 18%, and 1 of Comparative Example 3 reinforced with polytetrafluoroethylene fibrils not subjected to sulfonation treatment described later. / 2, which is as small as 1/10 of the unreinforced electrolyte membrane, which is excellent.

【0109】以上のことから電解質膜をスルホン化して
いない高分子多孔質体で補強すると引張強度,寸法変化
率及び耐クリープ性は向上するが、イオン伝導率が低下
することが明白で、機械特性とイオン伝導率の両立が大
きな課題である。内部までスルホン化した高分子多孔質
体で補強すると、スルホン化していない高分子多孔質体
で達し得なかった機械強度,寸法安定性,耐クリープ特
性等の機械特性とイオン伝導率が両立することが明白で
ある。
From the above, tensile strength, dimensional change rate and creep resistance are improved when the electrolyte membrane is reinforced with a non-sulfonated polymer porous material, but it is clear that the ionic conductivity is lowered, and the mechanical properties A major issue is to achieve both ionic conductivity and ionic conductivity. When reinforced with a sulfonated polymer porous material, mechanical properties such as mechanical strength, dimensional stability, and creep resistance, which could not be achieved with a non-sulfonated polymer porous material, and ionic conductivity are compatible. Is clear.

【0110】(2)膜/電極接合体の作製 40重量%の白金担持カーボンをイソプロパノールに分
散させた後、5重量%パーフロロカーボンスルホン酸
(スルホン酸当量0.9ミリ当量/g)のイソプロピル
アルコール水溶液を、白金触媒と高分子電解質との重量
比が2:1となるように添加し、超音波で均一に分散さ
せてペースト(電極触媒被覆溶液)を調製した。
(2) Preparation of Membrane / Electrode Assembly 40% by weight of platinum-supported carbon was dispersed in isopropanol, and then 5% by weight of perfluorocarbon sulfonic acid (sulfonic acid equivalent 0.9 meq / g) isopropyl alcohol. The aqueous solution was added so that the weight ratio of the platinum catalyst to the polymer electrolyte was 2: 1, and the mixture was ultrasonically uniformly dispersed to prepare a paste (electrode catalyst coating solution).

【0111】この電極触媒被覆溶液を、前記(1)で得
られた電解質複合膜IIIの両側に塗布した後、乾燥して
白金担持量0.25mg/cm2の膜/電極接合体IIIを
作製した。
This electrode catalyst coating solution was applied to both sides of the electrolyte composite membrane III obtained in the above (1) and dried to prepare a membrane / electrode assembly III having a platinum loading of 0.25 mg / cm 2. did.

【0112】膜/電極接合体IIIの周囲をSUS製金枠
で固定し、80℃,95%RHで1.5時間保持と、2
5℃,50%RHの1.5時間保持の、高温湿潤状態と
室温乾燥状態の環境サイクルを500回加えた。環境試
験サイクル後の膜/電極接合体IIIに初期と同様剥離は
認められなかった。
The periphery of the membrane / electrode assembly III was fixed with a SUS metal frame and kept at 80 ° C. and 95% RH for 1.5 hours.
500 cycles of a high temperature wet condition and a room temperature dry condition, which were maintained at 5 ° C. and 50% RH for 1.5 hours, were added. No peeling was observed in the membrane / electrode assembly III after the environmental test cycle as in the initial stage.

【0113】一方、後述の比較例3の膜/電極接合体II
I’は環境試験サイクル後、剥離が認められた。このこ
とからも本実施例の膜/電極接合体IIIは、比較例3の
膜/電極接合体III’より優れていることは明白であ
る。
On the other hand, the membrane / electrode assembly II of Comparative Example 3 described later.
For I ', peeling was observed after the environmental test cycle. From this, it is clear that the membrane / electrode assembly III of this example is superior to the membrane / electrode assembly III ′ of Comparative Example 3.

【0114】(3)燃料電池単セルの耐久性試験 膜/電極接合体IIIの両側に薄いカーボンペーパーのパ
ッキング材(支持集電体)を密着させて、その両側から
極室分離と電極へのガス供給通路の役割を兼ねた導電性
のセパレータ(バイポーラプレート)からなる固体高分
子型燃料電池単セルを作製し、電流密度300mA/c
2の条件で長時間稼動試験を行った。その結果を図4
に示す。
(3) Durability Test of Fuel Cell Single Cell A thin carbon paper packing material (supporting current collector) is closely adhered to both sides of the membrane / electrode assembly III, and both sides are separated into polar chambers and electrodes. A polymer electrolyte fuel cell unit cell composed of a conductive separator (bipolar plate) that also serves as a gas supply passage was manufactured, and the current density was 300 mA / c.
A long-term operation test was conducted under the condition of m 2 . The result is shown in Figure 4.
Shown in.

【0115】図4中の16は本実施例の膜/電極接合体
IIIを用いた燃料電池単セルの耐久性試験結果である。
また、図4中の17は比較例3の膜/電極接合体III’
を用いた燃料電池単セルの耐久性試験結果である。膜/
電極接合体IIIを用いた固体高分子型燃料電池は、膜/
電極接合体III’を用いた固体高分子型燃料電池より安
定性に優れている。
16 in FIG. 4 is the membrane / electrode assembly of this embodiment.
It is a durability test result of the fuel cell single cell using III.
Further, 17 in FIG. 4 is a membrane / electrode assembly III ′ of Comparative Example 3.
3 is a result of a durability test of a fuel cell single cell using. film/
The polymer electrolyte fuel cell using the electrode assembly III has a membrane /
It is more stable than the polymer electrolyte fuel cell using the electrode assembly III '.

【0116】(4)燃料電池の作製 前記(3)で作製した単電池セルを36層積層し、固体
高分子型燃料電池を作製したところ、1kWの出力を示
した。
(4) Production of Fuel Cell A solid polymer electrolyte fuel cell was produced by stacking 36 layers of the single cell produced in (3) above, and showed an output of 1 kW.

【0117】〔比較例 3〕 (1)電解質複合膜の作製 ポリテトラフロロエチレンフィブリルに5重量%パーフ
ロロカーボンスルホン酸(スルホン酸当量0.9ミリ当
量/g)のイソプロピルアルコール水溶液を含浸、60
℃で乾燥させた。次いで、140℃で5分間、膜を熱処
理した。ピンホールが無くなるまで、即ち、5回、含
浸,乾燥,熱処理を繰り返した。その後、1N硫酸中に
60〜70℃で1時間浸漬、純水中に60〜70℃で1
時間浸漬して電解質側鎖の末端基を−SO3Hに変換し
た。得られた電解質複合膜III’のイオン伝導率は0.
015S/cm、引張強度は3.5kg/mm2であっ
た。
Comparative Example 3 (1) Preparation of Electrolyte Composite Membrane Polytetrafluoroethylene fibrils were impregnated with an aqueous isopropyl alcohol solution containing 5% by weight of perfluorocarbon sulfonic acid (sulfonic acid equivalent 0.9 meq / g), 60
It was dried at ° C. The film was then heat treated at 140 ° C. for 5 minutes. The impregnation, drying, and heat treatment were repeated until pinholes disappeared, that is, five times. Then, it is immersed in 1N sulfuric acid at 60 to 70 ° C for 1 hour, and then immersed in pure water at 60 to 70 ° C for 1 hour.
After immersion for a period of time, the end groups of the side chains of the electrolyte were converted to —SO 3 H. The ionic conductivity of the obtained electrolyte composite membrane III 'was 0.
The tensile strength was 015 S / cm and the tensile strength was 3.5 kg / mm 2 .

【0118】同じ厚さ、同じスルホン酸当量の補強して
いない電解質膜のイオン伝導率、引張強度はそれぞれ
0.12S/cm,1.2kg/mm2であった。
The ionic conductivity and tensile strength of the unreinforced electrolyte membrane having the same thickness and the same sulfonic acid equivalent were 0.12 S / cm and 1.2 kg / mm 2 , respectively.

【0119】また、電解質複合膜III’、又は、補強し
ていない電解質膜の周囲をSUS製金枠で固定し、80
℃,95%RHでの1.5時間保持と25℃,50%R
Hでの1.5時間保持の高温湿潤状態と室温乾燥状態の
環境サイクルを500回加えた。環境試験サイクル後の
電解質複合膜III’及び補強していない電解質膜の引張
強度は、それぞれ初期の2/5,1/10に低下してい
た。
Further, the periphery of the electrolyte composite membrane III 'or the non-reinforced electrolyte membrane is fixed with a SUS metal frame,
Hold at ℃, 95% RH for 1.5 hours and 25 ℃, 50% R
500 cycles of high temperature wet and room temperature dry environmental cycles of 1.5 hour hold in H were added. The tensile strengths of the electrolyte composite membrane III ′ and the non-reinforced electrolyte membrane after the environmental test cycle were reduced to 2/5 and 1/10 of the initial values, respectively.

【0120】25℃,50%RHに24時間保持した電
解質複合膜III’及び補強していない電解質膜を、80
℃のイオン交換水中24時間浸漬したときの平面方向の
寸法変化率は、それぞれ4.0%,14%であった。
The electrolyte composite membrane III ′ and the non-reinforced electrolyte membrane, which were kept at 25 ° C. and 50% RH for 24 hours, were
The dimensional change rates in the plane direction when immersed in ion-exchanged water at ℃ for 24 hours were 4.0% and 14%, respectively.

【0121】燃料電池の作動状態に模擬して80℃,9
5%RHの条件下で、負荷荷重0.5kg/mm2を50
時間加えたときの電解質複合膜III’と、補強していな
い電解質膜のクリープ歪は、それぞれ35%,180%
であった。
Simulate the operating state of the fuel cell at 80 ° C., 9
Under the condition of 5% RH, load load 0.5 kg / mm 2 50
The creep strains of the electrolyte composite membrane III ′ and the non-reinforced electrolyte membrane when added for time are 35% and 180%, respectively.
Met.

【0122】以上から、電解質膜をスルホン化していな
い高分子多孔質体で補強すると引張強度,寸法変化率及
び耐クリープ性は向上するが、イオン伝導率が低下する
ことが明白で、機械特性とイオン伝導率の両立が大きな
課題であることが分る。
From the above, it is clear that reinforcing the electrolyte membrane with a non-sulfonated polymer porous body improves the tensile strength, dimensional change rate and creep resistance, but decreases the ionic conductivity, and It turns out that compatibility of ionic conductivity is a major issue.

【0123】(2)膜/電極接合体の作製 40重量%の白金担持カーボンをイソプロパノールに分
散させた後、5重量%パーフロロカーボンスルホン酸
(スルホン酸当量0.9ミリ当量/g)のイソプロピル
アルコール水溶液を、白金触媒と高分子電解質との重量
比が2:1となるように添加し、超音波で均一に分散さ
せてペースト(電極触媒被覆溶液)を調製した。この電
極触媒被覆溶液を前記(1)で得られた電解質複合膜II
I’の両側に塗布した後、乾燥して白金担持量0.25m
g/cm2の膜/電極接合体III’を作製した。
(2) Preparation of Membrane / Electrode Assembly 40% by weight of platinum-supported carbon was dispersed in isopropanol, and then 5% by weight of perfluorocarbon sulfonic acid (sulfonic acid equivalent 0.9 meq / g) isopropyl alcohol. The aqueous solution was added so that the weight ratio of the platinum catalyst to the polymer electrolyte was 2: 1, and the mixture was ultrasonically uniformly dispersed to prepare a paste (electrode catalyst coating solution). This electrode catalyst coating solution was applied to the electrolyte composite membrane II obtained in (1) above.
After being applied to both sides of I ', it is dried and the amount of platinum carried is 0.25m.
A membrane / electrode assembly III ′ of g / cm 2 was prepared.

【0124】膜/電極接合体III’の周囲をSUS製金
枠で固定し、80℃,95%RHで1.5時間保持と、
25℃,50%RHの1.5時間保持の高温湿潤状態と
室温乾燥状態の環境サイクルを500回加えた。環境試
験サイクル後の膜/電極接合体III’は環境試験サイク
ル後、初期と異なり剥離が認められた。
The periphery of the membrane / electrode assembly III 'was fixed with a SUS metal frame and kept at 80 ° C. and 95% RH for 1.5 hours.
An environmental cycle of a high temperature wet condition and a room temperature dry condition of keeping at 25 ° C. and 50% RH for 1.5 hours was added 500 times. After the environmental test cycle, the membrane / electrode assembly III ′ was peeled off after the environmental test cycle, unlike the initial stage.

【0125】(3)燃料電池単セルの耐久性試験 前記膜/電極接合体III’の両側に薄いカーボンペーパ
ーのパッキング材(支持集電体)を密着させて、その両
側から極室分離と電極へのガス供給通路の役割を兼ねた
導電性のセパレータ(バイポーラプレート)からなる固
体高分子型燃料電池単セルを作製し、電流密度300m
A/cm2の条件で長時間稼動試験を行った。その結
果、図4の17に示すように、出力電圧は稼動時間30
00時間後から低下する傾向が認められた。
(3) Durability Test of Fuel Cell Single Cell A thin carbon paper packing material (supporting current collector) was adhered to both sides of the membrane / electrode assembly III ', and the polar chamber separation and the electrode were performed from both sides. A polymer electrolyte fuel cell unit cell composed of a conductive separator (bipolar plate) that also serves as a gas supply passage to the
A long-term operation test was performed under the condition of A / cm 2 . As a result, as shown in 17 of FIG.
A tendency to decrease after 00 hours was recognized.

【0126】〔実施例 4〕 (1)電解質複合膜の作製 膜厚20μm、空孔率95%であるポリテトラフロロエ
チレン不織布を100℃,100%無水硫酸ガス中に2
4時間保持し、スルホン化ポリテトラフロロエチレン不
織布を得た。この不織布を煮沸蒸留水で3回洗浄後、ス
ルホン酸当量を測定した。その値は0.7ミリ当量/g
であった。ESCAによりスパッタ法を用いて、厚み方
向の硫黄原子Sを測定したところ、中心部まで硫黄原子
の吸収が認められた。
Example 4 (1) Preparation of Electrolyte Composite Membrane A polytetrafluoroethylene non-woven fabric having a thickness of 20 μm and a porosity of 95% was dried in 100% anhydrous sulfuric acid gas at 2 ° C.
After holding for 4 hours, a sulfonated polytetrafluoroethylene nonwoven fabric was obtained. This non-woven fabric was washed three times with boiling distilled water, and the sulfonic acid equivalent was measured. The value is 0.7 meq / g
Met. When the sulfur atom S in the thickness direction was measured by ESCA using the sputtering method, absorption of the sulfur atom was recognized up to the central portion.

【0127】前記スルホン化ポリテトラフロロエチレン
不織布に5重量%パーフロロカーボンスルホン酸(スル
ホン酸当量0.9ミリ当量/g)のイソプロピルアルコ
ール水溶液を含浸、60℃で乾燥させた。次いで、14
0℃で5分間、膜を熱処理した。ピンホールが無くなる
まで、即ち、5回、含浸,乾燥,熱処理を繰り返した。
その後、1N硫酸中に60〜70℃で1時間浸漬、純水
中に60〜70℃で1時間浸漬して電解質側鎖の末端基
を−SO3Hに変換した。この電解質複合膜IVのイオン
伝導率,引張強度はそれぞれ0.16S/cm,4.1k
g/mm2であった。
The sulfonated polytetrafluoroethylene nonwoven fabric was impregnated with an aqueous isopropyl alcohol solution containing 5% by weight of perfluorocarbon sulfonic acid (sulfonic acid equivalent: 0.9 meq / g) and dried at 60 ° C. Then 14
The film was heat treated at 0 ° C. for 5 minutes. The impregnation, drying, and heat treatment were repeated until pinholes disappeared, that is, five times.
Then, it was immersed in 1N sulfuric acid at 60 to 70 ° C. for 1 hour and in pure water at 60 to 70 ° C. for 1 hour to convert the terminal groups of the side chains of the electrolyte into —SO 3 H. The ionic conductivity and tensile strength of this electrolyte composite membrane IV are 0.16 S / cm and 4.1 k, respectively.
It was g / mm 2 .

【0128】本実施例の電解質複合膜IVのイオン伝導
率,引張強度は、後述のスルホン化処理しないポリテト
ラフロロエチレン不織布で補強した比較例4の電解質複
合膜IV’や補強していない電解質膜と比較して大幅に
優れている。
The ionic conductivity and tensile strength of the electrolyte composite membrane IV of this example are as follows: the electrolyte composite membrane IV 'of Comparative Example 4 reinforced with a non-sulfonation-treated polytetrafluoroethylene non-woven fabric and the non-reinforced electrolyte membrane. Significantly better than

【0129】また、電解質複合膜IVの周囲をSUS製
金枠で固定し、80℃,95%RHでの1.5時間保持
と、25℃,50%RHでの1.5時間保持の高温湿潤
状態と室温乾燥状態との、燃料電池環境を模擬した環境
サイクルを500回加えた。環境試験サイクル後の電解
質複合膜IVの引張強度は初期と変わらなかった。
Further, the periphery of the electrolyte composite membrane IV was fixed with a SUS metal frame and kept at 80 ° C. and 95% RH for 1.5 hours and at 25 ° C. and 50% RH for 1.5 hours. An environmental cycle simulating the fuel cell environment was applied 500 times in a wet state and a room temperature dry state. The tensile strength of the electrolyte composite membrane IV after the environmental test cycle was unchanged from the initial value.

【0130】一方、後述のスルホン化処理しないポリテ
トラフロロエチレン不織布で補強した比較例4の電解質
複合膜IV’と、補強していない電解質膜は環境試験サ
イクル後、それぞれ初期の1/4,1/10に低下して
いた。このことからも電解質複合膜IVは比較例4の電
解質複合膜IVや補強していない電解質膜より優れてい
ることは明白である。
On the other hand, the electrolyte composite membrane IV 'of Comparative Example 4 reinforced with a non-sulfonation-treated polytetrafluoroethylene non-woven fabric and the non-reinforced electrolyte membrane were each 1/4, 1 of the initial after the environmental test cycle. It had fallen to / 10. From this, it is clear that the electrolyte composite membrane IV is superior to the electrolyte composite membrane IV of Comparative Example 4 and the non-reinforced electrolyte membrane.

【0131】25℃,50%RHに24時間保持した電
解質複合膜IVを、80℃のイオン交換水中24時間浸
漬したときの平面方向の寸法変化率は1.5%であっ
た。
When the electrolyte composite membrane IV kept at 25 ° C. and 50% RH for 24 hours was immersed in ion-exchanged water at 80 ° C. for 24 hours, the dimensional change rate in the plane direction was 1.5%.

【0132】一方、スルホン化処理しないポリテトラフ
ロロエチレンフィルムで補強した比較例4の電解質複合
膜IV’の寸法変化率は2.0%、補強しない電解質膜の
寸法変化率は14%であった。これからも電解質複合膜
IVは、電解質複合膜IV’や、補強していない電解質膜
より優れていることは明白である。
On the other hand, the dimensional change rate of the electrolyte composite membrane IV ′ of Comparative Example 4 reinforced with the non-sulfonation-treated polytetrafluoroethylene film was 2.0%, and the dimensional change rate of the non-reinforced electrolyte membrane was 14%. . Electrolyte composite membrane
It is clear that IV is superior to electrolyte composite membrane IV 'and unreinforced electrolyte membrane.

【0133】また、燃料電池の作動状態に模擬して80
℃,95%RHの条件下で負荷荷重0.5kg/mm
2を、50時間加えたときのクリープ歪は15%で、ス
ルホン化処理しないポリテトラフロロエチレン不織布で
補強した比較例4の1/2,補強していない電解質膜の
1/12と小さく優れている。
Also, the fuel cell operating condition is simulated to 80
Load load 0.5 kg / mm under conditions of ℃ and 95% RH
The creep strain when 2 was applied for 50 hours was 15%, which was as small as 1/2 of Comparative Example 4 reinforced with a non-sulfonation-treated polytetrafluoroethylene non-woven fabric and 1/12 of the unreinforced electrolyte membrane, which were small and excellent. There is.

【0134】以上から電解質膜をスルホン化していない
高分子多孔質体で補強すると引張強度,寸法変化率及び
耐クリープ性は向上するが、イオン伝導率が低下するこ
とが明白で、機械特性とイオン伝導率の両立が大きな課
題である。
From the above, when the electrolyte membrane is reinforced with a non-sulfonated polymer porous material, the tensile strength, the dimensional change rate and the creep resistance are improved, but it is clear that the ionic conductivity is lowered, and the mechanical properties and ionic Compatibility of conductivity is a major issue.

【0135】内部までスルホン化した高分子多孔質体で
補強すると、スルホン化していない高分子多孔質体で達
し得なかった機械強度,寸法安定性,耐クリープ特性等
の機械特性と、イオン伝導率とが両立することが明白で
ある。
When reinforced with a sulfonated polymer porous body, mechanical strength, dimensional stability, creep resistance, and other mechanical properties unattainable with a non-sulfonated polymer porous body, and ionic conductivity It is clear that and are compatible.

【0136】(2)膜/電極接合体の作製 40重量%の白金担持カーボンをイソプロパノールに分
散させた後、5重量%パーフロロカーボンスルホン酸
(スルホン酸当量0.9ミリ当量/g)のイソプロピル
アルコール水溶液を、白金触媒と高分子電解質との重量
比が2:1となるように添加し、超音波で均一に分散さ
せてペースト(電極触媒被覆溶液)を調製した。この電
極触媒被覆溶液を前記(1)で得られた電解質複合膜I
Vの両側に塗布した後、乾燥して白金担持量0.25m
g/cm2の膜/電極接合体IVを作製した。
(2) Preparation of Membrane / Electrode Assembly 40% by weight of platinum-supported carbon was dispersed in isopropanol, and then 5% by weight of perfluorocarbon sulfonic acid (sulfonic acid equivalent 0.9 meq / g) isopropyl alcohol. The aqueous solution was added so that the weight ratio of the platinum catalyst to the polymer electrolyte was 2: 1, and the mixture was ultrasonically uniformly dispersed to prepare a paste (electrode catalyst coating solution). This solution of the electrode catalyst coating was applied to the electrolyte composite membrane I obtained in (1) above.
After coating on both sides of V, it is dried and the amount of platinum carried is 0.25m
A membrane / electrode assembly IV of g / cm 2 was prepared.

【0137】膜/電極接合体IVの周囲をSUS製金枠
で固定し、80℃,95%RHで1.5時間保持と、2
5℃,50%RHの1.5時間保持との、高温湿潤状態
と室温乾燥状態の環境サイクルを500回加えた。環境
試験サイクル後の膜/電極接合体IVには初期と同様剥
離は認められなかった。
The periphery of the membrane / electrode assembly IV was fixed with a SUS metal frame and kept at 80 ° C. and 95% RH for 1.5 hours.
500 cycles of high temperature wet condition and room temperature dry condition environmental cycles of 5 ° C. and 50% RH for 1.5 hours were added. No peeling was observed in the membrane / electrode assembly IV after the environmental test cycle as in the initial stage.

【0138】一方、後述の比較例4の膜/電極接合体I
V’は環境試験サイクル後、剥離が認められた。これか
らも本実施例の膜/電極接合体IVは比較例4の膜/電
極接合体IV’より優れていることは明白である。
On the other hand, the membrane / electrode assembly I of Comparative Example 4 described later
Peeling of V'was observed after the environmental test cycle. From this as well, it is clear that the membrane / electrode assembly IV of this example is superior to the membrane / electrode assembly IV ′ of Comparative Example 4.

【0139】(3)燃料電池単セルの耐久性試験 膜/電極接合体IVの両側に薄いカーボンペーパーのパ
ッキング材(支持集電体)を密着し、その両側から極室
分離と電極へのガス供給通路の役割を兼ねた導電性のセ
パレータ(バイポーラプレート)からなる固体高分子型
燃料電池単セルを作製し、電流密度300mA/cm2
の条件で長時間稼動試験を行った。その結果を図5に示
す。
(3) Durability test of fuel cell single cell A thin carbon paper packing material (supporting current collector) is adhered on both sides of the membrane / electrode assembly IV, and the polar chamber separation and the gas to the electrode from both sides. A polymer electrolyte fuel cell unit cell composed of a conductive separator (bipolar plate) that also serves as a supply passage was manufactured, and the current density was 300 mA / cm 2.
A long-term operation test was carried out under the conditions. The result is shown in FIG.

【0140】図5中の18は本実施例の膜/電極接合体
IVを用いた燃料電池単セルの耐久性試験結果である。
図5中の19は膜/電極接合体IV’を用いた燃料電池
単セルの耐久性試験結果である。本実施例の膜/電極接
合体IVを用いた固体高分子型燃料電池は、比較例4の
膜/電極接合体IV’を用いた固体高分子型燃料電池よ
り安定性に優れている。
18 in FIG. 5 is the membrane / electrode assembly of this embodiment.
It is a durability test result of the fuel cell single cell using IV.
Reference numeral 19 in FIG. 5 is the result of the durability test of the fuel cell single cell using the membrane / electrode assembly IV ′. The polymer electrolyte fuel cell using the membrane / electrode assembly IV of this example is more stable than the polymer electrolyte fuel cell using the membrane / electrode assembly IV 'of Comparative Example 4.

【0141】(4)燃料電池の作製 前記(3)で作製した単電池セルを36層積層し、固体
高分子型燃料電池を作製したところ、1kWの出力を示
した。
(4) Production of Fuel Cell A solid polymer electrolyte fuel cell was produced by stacking 36 layers of the single cell produced in (3) above, and showed an output of 1 kW.

【0142】〔比較例 4〕 (1)電解質複合膜の作製 膜厚20μm、空孔率95%であるポリテトラフロロエ
チレン不織布に5重量%パーフロロカーボンスルホン酸
(スルホン酸当量0.9ミリ当量/g)のイソプロピル
アルコール水溶液を含浸、60℃で乾燥させた。次い
で、140℃で5分間、膜を熱処理した。ピンホールが
無くなるまで、即ち、5回、含浸,乾燥,熱処理を繰り
返した。その後、1N硫酸中に60〜70℃で1時間浸
漬、純水中に60〜70℃で1時間浸漬して電解質側鎖
の末端基を−SO3Hに変換した。この電解質複合膜I
V’のイオン伝導率は0.03S/cmであった。引張
強度は3.2kg/cmであった。また、同じ厚さ、同
じスルホン酸当量の補強していない電解質膜のイオン伝
導率、引張強度はそれぞれ0.12S/cm、1.2kg
/mm2であった。
Comparative Example 4 (1) Preparation of Electrolyte Composite Membrane 5% by weight perfluorocarbon sulfonic acid (sulfonic acid equivalent 0.9 meq / It was impregnated with the isopropyl alcohol aqueous solution of g) and dried at 60 ° C. The film was then heat treated at 140 ° C. for 5 minutes. The impregnation, drying, and heat treatment were repeated until pinholes disappeared, that is, five times. Then, it was immersed in 1N sulfuric acid at 60 to 70 ° C. for 1 hour and in pure water at 60 to 70 ° C. for 1 hour to convert the terminal groups of the side chains of the electrolyte into —SO 3 H. This electrolyte composite membrane I
The ionic conductivity of V'was 0.03 S / cm. The tensile strength was 3.2 kg / cm. In addition, the ionic conductivity and tensile strength of an unreinforced electrolyte membrane having the same thickness and the same sulfonic acid equivalent are 0.12 S / cm and 1.2 kg, respectively.
/ Mm 2 .

【0143】電解質複合膜IV’又は補強していない電
解質膜の周囲をSUS製金枠で固定し、80℃,95%
RHでの1.5時間保持と、25℃,50%RHでの1.
5時間保持との、高温湿潤状態と室温乾燥状態の環境サ
イクルを500回加えた。環境試験サイクル後の電解質
複合膜IV’及び補強していない電解質膜の引張強度は
それぞれ初期の1/4,1/10に低下していた。
The periphery of the electrolyte composite membrane IV 'or the non-reinforced electrolyte membrane was fixed with a SUS metal frame, and the temperature was 80 ° C. and 95%.
Hold at RH for 1.5 hours and at 25 ° C, 50% RH for 1.
An environmental cycle of a high temperature wet state and a room temperature dry state, which was maintained for 5 hours, was added 500 times. The tensile strengths of the electrolyte composite membrane IV ′ and the non-reinforced electrolyte membrane after the environmental test cycle were reduced to 1/4 and 1/10 of the initial values, respectively.

【0144】25℃,50%RHに24時間保持した電
解質複合膜IV’及び補強していない電解質膜を、80
℃のイオン交換水中24時間浸漬したときの平面方向の
寸法変化率はそれぞれ2.0%,14%であった。
The electrolyte composite membrane IV ′ and the non-reinforced electrolyte membrane, which were kept at 25 ° C. and 50% RH for 24 hours, were
The dimensional change rates in the plane direction when immersed in ion-exchanged water at ℃ for 24 hours were 2.0% and 14%, respectively.

【0145】燃料電池の作動状態に模擬して80℃,9
5%RHの条件下で負荷荷重0.5kg/mm2を50時
間加えたときの電解質複合膜IV’,補強していない電
解質膜のクリープ歪は、それぞれ30%,180%であ
った。
Simulate the operating state of the fuel cell at 80 ° C., 9
The creep strains of the electrolyte composite membrane IV ′ and the non-reinforced electrolyte membrane when a load of 0.5 kg / mm 2 was applied for 50 hours under the condition of 5% RH were 30% and 180%, respectively.

【0146】前記から電解質膜をスルホン化していない
高分子多孔質体で補強すると引張強度,寸法変化率及び
耐クリープ性は向上するが、イオン伝導率が低下するこ
とが明白で、機械特性とイオン伝導率の両立が大きな課
題であることが分る。
From the above, it is clear that when the electrolyte membrane is reinforced with a non-sulfonated polymer porous body, the tensile strength, the dimensional change rate and the creep resistance are improved, but the ionic conductivity is lowered, and the mechanical properties and ionic It can be seen that compatibility of conductivity is a major issue.

【0147】(2)膜/電極接合体の作製 40重量%の白金担持カーボンをイソプロパノールに分
散させた後、5重量%パーフロロカーボンスルホン酸
(スルホン酸当量0.9ミリ当量/g)のイソプロピル
アルコール水溶液を、白金触媒と高分子電解質との重量
比が2:1となるように添加し、超音波で均一に分散さ
せてペースト(電極触媒被覆溶液)を調製した。この電
極触媒被覆溶液を前記(1)で得られた電解質複合膜I
V’の両側に塗布した後、乾燥して白金担持量0.25
mg/cm2の膜/電極接合体IV’を作製した。
(2) Preparation of Membrane / Electrode Assembly 40% by weight of platinum-supported carbon was dispersed in isopropanol, and then 5% by weight of perfluorocarbon sulfonic acid (sulfonic acid equivalent 0.9 meq / g) isopropyl alcohol. The aqueous solution was added so that the weight ratio of the platinum catalyst to the polymer electrolyte was 2: 1, and the mixture was ultrasonically uniformly dispersed to prepare a paste (electrode catalyst coating solution). This solution of the electrode catalyst coating was applied to the electrolyte composite membrane I obtained in (1) above.
After coating on both sides of V ', it is dried and the amount of platinum carried is 0.25.
A mg / cm 2 membrane / electrode assembly IV ′ was prepared.

【0148】膜/電極接合体IV’の周囲をSUS製金
枠で固定し、80℃,95%RHで1.5時間保持と、
25℃,50%RHの1.5時間保持との、高温湿潤状
態と室温乾燥状態の環境サイクルを500回加えた。環
境試験サイクル後の膜/電極接合体IV’は、環境試験
サイクル後、初期と異なり剥離が認められた。
The periphery of the membrane / electrode assembly IV ′ was fixed with a SUS metal frame and kept at 80 ° C. and 95% RH for 1.5 hours.
500 cycles of high temperature wet and room temperature dry environmental cycles of 25 ° C. and 50% RH hold for 1.5 hours were added. In the membrane / electrode assembly IV 'after the environmental test cycle, peeling was observed after the environmental test cycle, unlike the initial stage.

【0149】(3)燃料電池単セルの耐久性試験 前記膜/電極接合体IV’の両側に薄いカーボンペーパ
ーのパッキング材(支持集電体)を密着し、その両側か
ら極室分離と電極へのガス供給通路の役割を兼ねた導電
性のセパレータ(バイポーラプレート)からなる固体高
分子型燃料電池単セルを作製し、電流密度300mA/
cm2の条件で長時間稼動試験を行った。その結果、図
5の19に示すように出力電圧は、稼動時間3000時
間後から低下する傾向が認められた。
(3) Durability Test of Fuel Cell Single Cell A thin carbon paper packing material (supporting current collector) was adhered to both sides of the membrane / electrode assembly IV ′, and both sides were connected to the polar chamber and the electrode. A single polymer electrolyte fuel cell unit made of a conductive separator (bipolar plate) that also serves as the gas supply passage of
A long-term operation test was conducted under the condition of cm 2 . As a result, as shown by 19 in FIG. 5, the output voltage tended to decrease after 3000 hours of operation.

【0150】〔実施例 5〕 (1)スルホン化ポリエーテルスルホン系フィルム状多
孔質膜の作製 撹拌機,温度計,塩化カルシウム管を接続した還流冷却
器を付けた500mlの四つ口丸底フラスコの内部を窒
素置換後、25gのポリエーテルスルホン(PES)と
濃硫酸125mlを入れた。窒素気流下,室温で一晩撹
拌して均一溶液とした。
Example 5 (1) Preparation of Sulfonated Polyethersulfone-based Film-like Porous Membrane A 500 ml four-neck round bottom flask equipped with a stirrer, a thermometer, and a reflux condenser connected to a calcium chloride tube. After purging the inside of the reactor with nitrogen, 25 g of polyether sulfone (PES) and 125 ml of concentrated sulfuric acid were added. A uniform solution was obtained by stirring overnight at room temperature under a nitrogen stream.

【0151】この溶液に、窒素気流下、撹拌しながら滴
下漏斗より48mlのクロロ硫酸を滴下した。滴下開始
後、しばらくクロロ硫酸が濃硫酸中の水分と激しく反応
して発泡するため、ゆっくりと滴下し、発泡が穏やかに
なった後は5分以内に滴下を終了させた。滴下終了後の
反応溶液を25℃,40分撹拌してスルホン化した。
To this solution, 48 ml of chlorosulfuric acid was added dropwise from a dropping funnel while stirring under a nitrogen stream. Since chlorosulfuric acid violently reacts with water in concentrated sulfuric acid to foam for a while after the start of dropping, dropping was slowly performed, and the dropping was completed within 5 minutes after the bubbling became moderate. The reaction solution after the dropping was stirred at 25 ° C. for 40 minutes to be sulfonated.

【0152】次いで、反応溶液を15リットルの脱イオ
ン水にゆっくりと滴下し、スルホン化ポリエーテルスル
ホンを析出させ、濾過回収した。析出した沈澱をミキサ
ーによる脱イオン水洗浄と吸引濾過による回収操作を、
濾液が中性になるまで繰り返した後、80℃で一晩減圧
乾燥した。得られたスルホン化ポリエーテルスルホン電
解質Vのスルホン酸当量は0.5ミリ当量/gであっ
た。
Then, the reaction solution was slowly added dropwise to 15 liters of deionized water to precipitate sulfonated polyether sulfone, which was collected by filtration. The deposited precipitate was washed with deionized water using a mixer and collected by suction filtration.
After repeating until the filtrate became neutral, it was dried under reduced pressure at 80 ° C. overnight. The sulfonic acid equivalent of the obtained sulfonated polyether sulfone electrolyte V was 0.5 meq / g.

【0153】前記スルホン化ポリエーテルスルホン電解
質Vの7部をγ−ブチロラクトンの93部に溶解し、電
解質溶液を作製した。フィルム作製用アプリケータを用
いてこの溶液をガラス板上に流延し、電解質溶液の薄膜
状物を形成させた。次いで、25℃の水に浸漬して電解
質溶液を凝固させた。80℃の温水に浸漬することによ
り残存溶媒を除去後、60℃で1時間熱風乾燥してフィ
ルム状多孔質膜Vを得た。
An electrolyte solution was prepared by dissolving 7 parts of the sulfonated polyether sulfone electrolyte V in 93 parts of γ-butyrolactone. This solution was cast on a glass plate using a film-making applicator to form a thin film of the electrolyte solution. Then, it was immersed in water at 25 ° C. to solidify the electrolyte solution. The residual solvent was removed by immersing in hot water at 80 ° C., and then dried with hot air at 60 ° C. for 1 hour to obtain a film-like porous film V.

【0154】(2)スルホン化ポリエーテルスルホン電
解質複合膜の作製 撹拌機,温度計,塩化カルシウム管を接続した還流冷却
器をつけ、500mlの四つ口丸底フラスコの内部を窒
素置換後、25gのポリエーテルスルホン(PES)と
濃硫酸125mlを入れた。窒素気流下,室温で一晩撹
拌して均一溶液とした。この溶液に、窒素気流下、撹拌
しながら滴下漏斗より48mlのクロロ硫酸を滴下し
た。滴下開始後、しばらくクロロ硫酸が濃硫酸中の水分
と激しく反応して発泡するため、ゆっくりと滴下し、発
泡が穏やかになった後は5分以内に滴下を終了させた。
滴下終了後の反応溶液を25℃,4時間撹拌してスルホ
ン化した。
(2) Preparation of Sulfonated Polyethersulfone Electrolyte Composite Membrane A stirrer, a thermometer, and a reflux condenser connected to a calcium chloride tube were attached, and after replacing the inside of a 500 ml four-neck round bottom flask with nitrogen, 25 g Polyether sulfone (PES) and 125 ml of concentrated sulfuric acid were added. A uniform solution was obtained by stirring overnight at room temperature under a nitrogen stream. To this solution, 48 ml of chlorosulfuric acid was added dropwise from a dropping funnel while stirring under a nitrogen stream. Since chlorosulfuric acid violently reacts with water in concentrated sulfuric acid to foam for a while after the start of dropping, dropping was slowly performed, and the dropping was completed within 5 minutes after the bubbling became moderate.
The reaction solution after the dropping was stirred at 25 ° C. for 4 hours to be sulfonated.

【0155】次いで、反応溶液を15リットルの脱イオ
ン水にゆっくりと滴下し、スルホン化ポリエーテルスル
ホンを析出させ、濾過回収した。析出した沈澱をミキサ
ーによる脱イオン水洗浄と、吸引濾過による回収操作を
濾液が中性になるまで繰り返した後、80℃で一晩減圧
乾燥した。得られたスルホン化ポリエーテルスルホン電
解質Vのスルホン酸当量は1.25ミリ当量/gであっ
た。
Then, the reaction solution was slowly added dropwise to 15 liters of deionized water to precipitate sulfonated polyether sulfone, which was collected by filtration. The deposited precipitate was washed with deionized water using a mixer and collected by suction filtration until the filtrate became neutral, and then dried under reduced pressure at 80 ° C. overnight. The sulfonic acid equivalent of the obtained sulfonated polyether sulfone electrolyte V was 1.25 meq / g.

【0156】前記電解質Vをイソプロピルアルコール/
水に溶解し、濃度30wt%の電解質溶液Vを作製し
た。該電解質溶液Vを前記フィルム状多孔質膜Vに真空
含浸,真空乾燥して、25μmのスルホン化ポリエーテ
ルスルホン電解質複合膜Vを得た。この電解質複合膜V
のイオン伝導率は0.2S/cm、引張強度は4.6kg
/mm2であった。
The electrolyte V is isopropyl alcohol /
An electrolyte solution V having a concentration of 30 wt% was prepared by dissolving in water. The electrolyte solution V was vacuum impregnated into the film-like porous membrane V and vacuum dried to obtain a 25 μm sulfonated polyethersulfone electrolyte composite membrane V. This electrolyte composite membrane V
Has an ionic conductivity of 0.2 S / cm and a tensile strength of 4.6 kg.
/ Mm 2 .

【0157】本実施例の電解質複合膜Vのイオン伝導
率,引張強度は、後述のスルホン化処理しないスルホン
化ポリエーテルスルホン多孔質フィルムで補強した比較
例5の電解質複合膜V’や、補強していないスルホン化
ポリエーテルスルホン電解質膜と比較して大幅に優れて
いる。
The ionic conductivity and tensile strength of the electrolyte composite membrane V of the present example are the same as those of the electrolyte composite membrane V ′ of Comparative Example 5 reinforced with a sulfonated polyethersulfone porous film which is not subjected to the sulfonation treatment described later, and the reinforced. Significantly superior to non-sulfonated polyethersulfone electrolyte membranes.

【0158】また、電解質複合膜Vの周囲をSUS製金
枠で固定し、80℃,95%RHでの1.5時間保持
と、25℃,50%RHでの1.5時間保持との、高温
湿潤状態と室温乾燥状態の燃料電池環境を模擬した環境
サイクルを500回加えた。環境試験サイクル後の電解
質複合膜Vの引張強度は初期と変わらなかった。
Further, the periphery of the electrolyte composite membrane V was fixed with a SUS metal frame and held at 80 ° C. and 95% RH for 1.5 hours and at 25 ° C. and 50% RH for 1.5 hours. An environmental cycle simulating a fuel cell environment in a high temperature wet state and a room temperature dry state was added 500 times. The tensile strength of the electrolyte composite membrane V after the environmental test cycle did not change from the initial value.

【0159】一方、スルホン化処理しないポリエーテル
スルホン多孔質フィルムで補強した比較例5の電解質複
合膜V’と、補強していない電解質膜は環境試験サイク
ル後、それぞれ初期の1/3,1/12に低下してい
た。このことからも電解質複合膜Vは比較例5の電解質
複合膜Vや補強していない電解質膜より優れていること
は明白である。
On the other hand, the electrolyte composite membrane V'of Comparative Example 5 reinforced with the polyethersulfone porous film not subjected to the sulfonation treatment and the electrolyte membrane not reinforced were respectively 1/3 and 1 / the initial values after the environmental test cycle. It had dropped to 12. From this, it is clear that the electrolyte composite membrane V is superior to the electrolyte composite membrane V of Comparative Example 5 and the non-reinforced electrolyte membrane.

【0160】25℃,50%RHに24時間保持した電
解質複合膜Vを、80℃のイオン交換水中24時間浸漬
したときの平面方向の寸法変化率は1.8%であった。
When the electrolyte composite membrane V kept at 25 ° C. and 50% RH for 24 hours was immersed in ion-exchanged water at 80 ° C. for 24 hours, the dimensional change rate in the plane direction was 1.8%.

【0161】一方、スルホン化処理しない高分子多孔質
体で補強した比較例5の電解質複合膜V’の寸法変化率
は3.0%、補強しない電解質膜の寸法変化率は28%
であった。
On the other hand, the dimensional change rate of the electrolyte composite membrane V'of Comparative Example 5 reinforced with the non-sulfonation-treated polymer porous body was 3.0%, and the dimensional change rate of the non-reinforced electrolyte membrane was 28%.
Met.

【0162】このことからも電解質複合膜Vは比較例5
の電解質複合膜Vや補強していない電解質膜より優れて
いることは明白である。
From this also, the electrolyte composite membrane V was compared with Comparative Example 5
It is clearly superior to the electrolyte composite membrane V and the non-reinforced electrolyte membrane.

【0163】また、燃料電池の作動状態に模擬して80
℃,95%RHの条件下で負荷荷重0.5kg/mm
2を、50時間加えたときのクリープ歪は15%で、ス
ルホン化処理しない高分子多孔質体で補強した比較例1
の1/2.3、補強していない電解質膜の1/12.5と
小さく優れている。
Further, the operation state of the fuel cell is simulated to 80
Load load 0.5 kg / mm under conditions of ℃ and 95% RH
The creep strain when 2 was added for 50 hours was 15%, and Comparative Example 1 reinforced with a porous polymer body not subjected to sulfonation treatment
It is as small as 1 / 2.3, which is 1 / 12.5 that of the unreinforced electrolyte membrane.

【0164】以上から電解質膜をスルホン化していない
高分子多孔質体で補強すると引張強度,寸法変化率及び
耐クリープ性は向上するが、イオン伝導率が低下するこ
とが明白で、機械特性とイオン伝導率の両立が大きな課
題である。内部までスルホン化した高分子多孔質体で補
強すると、スルホン化していない高分子多孔質体で達し
得なかった機械強度,寸法安定性,耐クリープ特性等の
機械特性とイオン伝導率が両立することが明白である。
From the above, when the electrolyte membrane is reinforced with a non-sulfonated polymer porous body, the tensile strength, the dimensional change rate and the creep resistance are improved, but it is clear that the ionic conductivity is lowered, and the mechanical properties and ionic Compatibility of conductivity is a major issue. When reinforced with a sulfonated polymer porous material, mechanical properties such as mechanical strength, dimensional stability, and creep resistance, which could not be achieved with a non-sulfonated polymer porous material, and ionic conductivity are compatible. Is clear.

【0165】(3)膜/電極接合体の作製 40重量%の白金担持カーボンをイソプロパノールに分
散させた後、5重量%パーフロロカーボンスルホン酸
(スルホン酸当量0.9ミリ当量/g)のイソプロピル
アルコール水溶液を、白金触媒と高分子電解質との重量
比が2:1となるように添加し、超音波で均一に分散さ
せてペースト(電極触媒被覆溶液)を調製した。この電
極触媒被覆溶液を前記(2)で得られた電解質複合膜V
の両側に塗布,乾燥して、白金担持量0.25mg/c
2の膜/電極接合体V−1を作製した。
(3) Preparation of Membrane / Electrode Assembly 40% by weight of platinum-supported carbon was dispersed in isopropanol, and then 5% by weight of perfluorocarbon sulfonic acid (sulfonic acid equivalent 0.9 meq / g) isopropyl alcohol. The aqueous solution was added so that the weight ratio of the platinum catalyst to the polymer electrolyte was 2: 1, and the mixture was ultrasonically uniformly dispersed to prepare a paste (electrode catalyst coating solution). This electrode catalyst coating solution was applied to the electrolyte composite membrane V obtained in (2) above.
Coated on both sides of the coating and dried to support platinum of 0.25mg / c
An m 2 membrane / electrode assembly V-1 was prepared.

【0166】40重量%の白金担持カーボンをイソプロ
パノールに分散後、前記スルホン酸当量は1.25ミリ
当量/gのスルホン化ポリエーテルスルホン電解質Vの
イソプロピルアルコール5重量%溶液を、白金触媒と高
分子電解質との重量比が2:1となるように添加し、超
音波で均一に分散させてペースト(電極触媒被覆溶液)
を調製した。この電極触媒被覆溶液を前記(2)で得ら
れた電解質複合膜Vの両側に塗布した後、乾燥して白金
担持量0.25mg/cm2の膜/電極接合体V−2を作
製した。
After 40% by weight of platinum-supported carbon was dispersed in isopropanol, a 5% by weight solution of sulfonated polyethersulfone electrolyte V in isopropyl alcohol having a sulfonic acid equivalent of 1.25 meq / g was added to a platinum catalyst and a polymer. Add it so that the weight ratio with the electrolyte is 2: 1 and disperse it evenly with ultrasonic waves to paste (electrode catalyst coating solution).
Was prepared. This electrode catalyst coating solution was applied on both sides of the electrolyte composite membrane V obtained in (2) above and dried to prepare a membrane / electrode assembly V-2 having a platinum loading of 0.25 mg / cm 2 .

【0167】膜/電極接合体V−1又はV−2の周囲を
SUS製金枠で固定し、80℃,95%RHで1.5時
間保持と、25℃,50%RHの1.5時間保持との、
高温湿潤状態と室温乾燥状態の環境サイクルを500回
加えた。環境試験サイクル後の膜/電極接合体V−1及
びV−2共に、初期と同様剥離は認められなかった。
The periphery of the membrane / electrode assembly V-1 or V-2 was fixed with a SUS metal frame, kept at 80 ° C. and 95% RH for 1.5 hours, and kept at 25 ° C. and 50% RH for 1.5 hours. With time retention,
An environmental cycle of high temperature wet condition and room temperature dry condition was added 500 times. No peeling was observed in both the membrane / electrode assemblies V-1 and V-2 after the environmental test cycle as in the initial stage.

【0168】一方、比較例5の膜/電極接合体V’は環
境試験サイクル後、剥離が認められた。このことからも
本実施例の膜/電極接合体V−1及びV−2共に比較例
5の膜/電極接合体V’より優れていることは明白であ
る。
On the other hand, peeling of the membrane / electrode assembly V'of Comparative Example 5 was observed after the environmental test cycle. From this, it is clear that both the membrane / electrode assembly V-1 and V-2 of this example are superior to the membrane / electrode assembly V'of Comparative Example 5.

【0169】(4)燃料電池単セルの耐久性試験 膜/電極接合体V−1又はV−2の両側に、薄いカーボ
ンペーパーのパッキング材(支持集電体)を密着し、そ
の両側から極室分離と電極へのガス供給通路の役割を兼
ねた導電性のセパレータ(バイポーラプレート)からな
る固体高分子型燃料電池単セルを作製し、電流密度30
0mA/cm2の条件で長時間稼動試験を行った。その
結果を図6に示す。
(4) Durability Test of Fuel Cell Single Cell A thin carbon paper packing material (supporting current collector) is adhered to both sides of the membrane / electrode assembly V-1 or V-2, and a pole is applied from both sides. A polymer electrolyte fuel cell unit cell composed of an electrically conductive separator (bipolar plate) that also serves as a chamber separation and a gas supply passage to the electrode was prepared, and a current density of 30
A long-term operation test was performed under the condition of 0 mA / cm 2 . The result is shown in FIG.

【0170】図6中の20,21は、それぞれ本実施例
の膜/電極接合体V−1又はV−2を用いた燃料電池単
セルの耐久性試験結果である。また、図6中の22、2
3はそれぞれ膜/電極接合体V’−1又はV’−2を用
いた燃料電池単セルの耐久性試験結果である。
Reference numerals 20 and 21 in FIG. 6 are the results of the durability test of the fuel cell single cell using the membrane / electrode assembly V-1 or V-2 of this example, respectively. Also, 22 and 2 in FIG.
3 is the durability test result of the fuel cell single cell using the membrane / electrode assembly V′-1 or V′-2, respectively.

【0171】本実施例の膜/電極接合体V−1又はV−
2を用いた固体高分子型燃料電池は、比較例5の膜/電
極接合体V’−1、V’−2を用いた固体高分子型燃料
電池より安定性に優れている。
Membrane / electrode assembly V-1 or V- of this example
The polymer electrolyte fuel cell using 2 is more stable than the polymer electrolyte fuel cell using the membrane / electrode assemblies V′-1 and V′-2 of Comparative Example 5.

【0172】(5)燃料電池の作製 前記(4)で作製した単電池セルを36層積層し、固体
高分子型燃料電池を作製したところ、1kWの出力を示
した。
(5) Production of Fuel Cell A solid polymer fuel cell was produced by stacking 36 layers of the single cell produced in (4) above, and showed an output of 1 kW.

【0173】〔比較例 5〕 (1)電解質複合膜の作製 膜厚20μm、空孔率95%であるポリエーテルスルホ
ンフィルムに実施例5の(2)で得られたスルホン酸当
量1.25ミリ当量/gのスルホン化ポリエーテルスル
ホン電解質30wt%濃度の電解質溶液Vを真空含浸、
真空乾燥して25μmのスルホン化ポリエーテルスルホ
ン電解質複合膜V’を得た。
Comparative Example 5 (1) Preparation of Electrolyte Composite Membrane A sulfonic acid equivalent of 1.25 mm obtained in (2) of Example 5 was applied to a polyether sulfone film having a thickness of 20 μm and a porosity of 95%. Vacuum impregnation of an equivalent / g sulfonated polyether sulfone electrolyte with an electrolyte solution V having a concentration of 30 wt%,
After vacuum drying, a 25 μm sulfonated polyethersulfone electrolyte composite membrane V ′ was obtained.

【0174】この電解質複合膜V’のイオン伝導率、引
張強度はそれぞれ0.02S/cm、3.5kg/mm2
であった。また、同じ厚さ、同じスルホン酸当量の補強
していない電解質膜のイオン伝導率、引張強度はそれぞ
れ0.12S/cm、1.0kg/mm2であった。
The ionic conductivity and tensile strength of this electrolyte composite membrane V ′ were 0.02 S / cm and 3.5 kg / mm 2 , respectively.
Met. Further, the ionic conductivity and tensile strength of the unreinforced electrolyte membrane having the same thickness and the same sulfonic acid equivalent were 0.12 S / cm and 1.0 kg / mm 2 , respectively.

【0175】また、電解質複合膜V’又は補強していな
い電解質膜の周囲をSUS製金枠で固定し、80℃,9
5%RHでの1.5時間保持と、25℃,50%RHで
の1.5時間保持との、高温湿潤状態と室温乾燥状態の
環境サイクルを500回加えた。環境試験サイクル後の
電解質複合膜V’及び補強していない電解質膜の引張強
度はそれぞれ初期の1/3,1/10に低下していた。
Further, the periphery of the electrolyte composite membrane V ′ or the non-reinforced electrolyte membrane was fixed with a SUS metal frame, and the temperature was kept at 80 ° C. for 9 minutes.
500 cycles of a high temperature wet condition and a room temperature dry condition, which consisted of 1.5 hours of holding at 5% RH and 1.5 hours of holding at 25 ° C. and 50% RH, were applied. The tensile strengths of the electrolyte composite membrane V ′ and the non-reinforced electrolyte membrane after the environmental test cycle were reduced to 1/3 and 1/10 of the initial values, respectively.

【0176】25℃,50%RHに24時間保持した電
解質複合膜V’及び補強していない電解質膜を、80℃
のイオン交換水中24時間浸漬したときの平面方向の寸
法変化率は、それぞれ2.0%,14%であった。
The electrolyte composite membrane V ′ and the non-reinforced electrolyte membrane kept at 25 ° C. and 50% RH for 24 hours were heated to 80 ° C.
The dimensional change rates in the plane direction when immersed in ion exchange water for 24 hours were 2.0% and 14%, respectively.

【0177】燃料電池の作動状態に模擬して80℃,9
5%RHの条件下で、負荷荷重0.5kg/mm2を50
時間加えたときの電解質複合膜Vと、補強していない電
解質膜のクリープ歪はそれぞれ45%,250%であっ
た。
Simulating the operating state of the fuel cell,
Under the condition of 5% RH, load load 0.5 kg / mm 2 50
The creep strains of the electrolyte composite membrane V and the electrolyte membrane not reinforced when added for a time were 45% and 250%, respectively.

【0178】前記から電解質膜をスルホン化していない
高分子多孔質体で補強すると引張強度,寸法変化率及び
耐クリープ性は向上するが、イオン伝導率が低下するこ
とが明白で、機械特性とイオン伝導率の両立が大きな課
題であることが分る。
From the above, when the electrolyte membrane is reinforced with a non-sulfonated polymer porous body, the tensile strength, the dimensional change rate and the creep resistance are improved, but it is clear that the ionic conductivity is lowered, and the mechanical properties and ionic It can be seen that compatibility of conductivity is a major issue.

【0179】(2)膜/電極接合体の作製 40重量%の白金担持カーボンをイソプロパノールに分
散させた後、5重量%パーフロロカーボンスルホン酸
(スルホン酸当量0.9ミリ当量/g)のイソプロピル
アルコール水溶液を、白金触媒と高分子電解質との重量
比が2:1となるように添加し、超音波で均一に分散さ
せてペースト(電極触媒被覆溶液)を調製した。この電
極触媒被覆溶液を前記(1)で得られた電解質複合膜
V’の両側に塗布,乾燥して、白金担持量0.25mg
/cm2の膜/電極接合体V’−1を作製した。
(2) Preparation of Membrane / Electrode Assembly 40% by weight of platinum-supported carbon was dispersed in isopropanol, and then 5% by weight of perfluorocarbon sulfonic acid (sulfonic acid equivalent 0.9 meq / g) isopropyl alcohol. The aqueous solution was added so that the weight ratio of the platinum catalyst to the polymer electrolyte was 2: 1, and the mixture was ultrasonically uniformly dispersed to prepare a paste (electrode catalyst coating solution). This electrode catalyst coating solution was applied to both sides of the electrolyte composite membrane V ′ obtained in (1) above and dried to give a platinum loading of 0.25 mg.
/ Cm 2 of membrane / electrode assembly V′-1 was prepared.

【0180】又、40重量%の白金担持カーボンをイソ
プロパノールに分散後、前記スルホン酸当量は1.25
ミリ当量/gのスルホン化ポリエーテルスルホン電解質
Vのイソプロピルアルコール5重量%溶液を、白金触媒
と高分子電解質との重量比が2:1となるように添加
し、超音波で均一に分散させてペースト(電極触媒被覆
溶液)を調製した。この電極触媒被覆溶液を前記(1)
で得られた電解質複合膜V’の両側に塗布,乾燥して、
白金担持量0.25mg/cm2の膜/電極接合体V’−
2を作製した。
After dispersing 40% by weight of platinum-supported carbon in isopropanol, the sulfonic acid equivalent was 1.25.
A 5 wt% isopropyl alcohol 5 wt% solution of sulfonated polyether sulfone electrolyte V in milliequivalent / g was added so that the weight ratio of the platinum catalyst and the polymer electrolyte was 2: 1, and the mixture was uniformly dispersed by ultrasonic waves. A paste (electrode catalyst coating solution) was prepared. This electrode catalyst coating solution was added to the above (1)
Applied on both sides of the electrolyte composite membrane V ′ obtained in
Of membrane / electrode assembly platinum content 0.25 mg / cm 2 the V'-
2 was produced.

【0181】膜/電極接合体V’−1又はV’−2周囲
をSUS製金枠で固定し、80℃,95%RHで1.5
時間保持と、25℃,50%RHの1.5時間保持と
の、高温湿潤状態と室温乾燥状態の環境サイクルを50
0回加えた。環境試験サイクル後の膜/電極接合体V’
−1及びV’−2は、共に初期と異なり、剥離が認めら
れた。
The periphery of the membrane / electrode assembly V'-1 or V'-2 was fixed with a SUS metal frame, and the temperature was kept at 80 ° C. and 95% RH for 1.5.
50 cycles of high-temperature wet state and room-temperature dry state of time holding and holding at 25 ° C, 50% RH for 1.5 hours
Added 0 times. Membrane / electrode assembly V'after environmental test cycle
In both -1 and V'-2, peeling was recognized unlike the initial stage.

【0182】(3)燃料電池単セルの耐久性試験 膜/電極接合体V’−1又はV’−2の両側に薄いカー
ボンペーパーのパッキング材(支持集電体)を密着し、
その両側から極室分離と電極へのガス供給通路の役割を
兼ねた導電性のセパレータ(バイポーラプレート)から
なる固体高分子型燃料電池単セルを作製し、電流密度3
00mA/cm2の条件で長時間稼動試験を行った。そ
の結果、図6の22,23に示すように、出力電圧は稼
動時間3000時間後から低下する傾向を示した。
(3) Durability Test of Fuel Cell Single Cell A thin carbon paper packing material (support current collector) was adhered to both sides of the membrane / electrode assembly V'-1 or V'-2,
A polymer electrolyte fuel cell unit cell composed of a conductive separator (bipolar plate) that also functions as a gas supply passage to the electrode and a polar chamber separation from both sides of the cell was prepared, and the current density was 3
A long-term operation test was conducted under the condition of 00 mA / cm 2 . As a result, as shown by 22 and 23 in FIG. 6, the output voltage tended to decrease after 3000 hours of operation.

【0183】〔実施例 6〕 (1)電解質複合膜の作製 径が12μmのフィラメントを9本撚った10デニール
のポリエチレン繊維を用いて縦糸、横糸共に密度が80
本/インチの織布を織った。該織布を100℃にて加圧
プレスして扁平化し、厚さ20μmとした。
Example 6 (1) Preparation of Electrolyte Composite Membrane Using 10 denier polyethylene fibers obtained by twisting 9 filaments having a diameter of 12 μm, the density of warp and weft was 80
Books / inch woven fabric was woven. The woven fabric was flattened by pressing at 100 ° C. to a thickness of 20 μm.

【0184】上記織布を30℃,8%発煙硫酸ガス中1
時間保持し、スルホン化ポリエチレン織布を得た。この
織布を煮沸蒸留水で3回洗浄した後、スルホン酸当量を
測定した。その値は1.3ミリ当量/gであった。ES
CAによりスパッタ法を用いて厚み方向の硫黄原子Sを
測定したところ、中心部まで硫黄原子の吸収が認められ
た。
The above woven fabric was treated with 1% in 30%, 8% fuming sulfuric acid gas.
After holding for a time, a sulfonated polyethylene woven fabric was obtained. This woven fabric was washed three times with boiling distilled water, and then the sulfonic acid equivalent was measured. The value was 1.3 meq / g. ES
When the sulfur atom S in the thickness direction was measured by CA using the sputtering method, absorption of the sulfur atom was recognized up to the central portion.

【0185】前記スルホン化ポリエチレン織布に5重量
%パーフロロカーボンスルホン酸(スルホン酸当量0.
9ミリ当量/g)のイソプロピルアルコール水溶液を含
浸させ、60℃で乾燥させた。次いで、140℃で5分
間、膜を熱処理した。ピンホールが無くなるまで、即
ち、8回、含浸,乾燥,熱処理を繰り返した。その後、
1N硫酸中に60〜70℃で1時間浸漬し、純水中に6
0〜70℃で1時間浸漬して電解質側鎖の末端基を−S
3Hに変換した。得られた電解質複合膜VIのイオン伝
導率は0.3S/cm、引張強度は3.9kg/mm2
あった。
5% by weight of perfluorocarbon sulfonic acid (sulfonic acid equivalent of 0.
It was impregnated with an aqueous solution of isopropyl alcohol (9 meq / g) and dried at 60 ° C. The film was then heat treated at 140 ° C. for 5 minutes. The impregnation, drying, and heat treatment were repeated until the pinholes disappeared, that is, eight times. afterwards,
Immerse in 1N sulfuric acid at 60 to 70 ° C for 1 hour, and then soak in pure water for 6 hours.
Immerse at 0-70 ° C for 1 hour to remove the end groups of the electrolyte side chain by -S
Converted to O 3 H. The obtained electrolyte composite membrane VI had an ionic conductivity of 0.3 S / cm and a tensile strength of 3.9 kg / mm 2 .

【0186】本実施例の電解質複合膜VIのイオン伝導
率、引張強度は、後述の表面のみスルホン化処理したポ
リエチレン織布で補強した比較例6の電解質複合膜VI
や補強していない電解質膜と比較して大幅に優れてい
る。
The ionic conductivity and tensile strength of the electrolyte composite membrane VI of the present example were as follows: the electrolyte composite membrane VI of Comparative Example 6 reinforced with a polyethylene woven fabric whose surface was sulfonated only as described below.
Significantly superior to non-reinforced electrolyte membranes.

【0187】また、電解質複合膜VIの周囲をSUS製
金枠で固定し、80℃,95%RHでの1.5時間保持
と、25℃,50%RHでの1.5時間保持との、高温
湿潤状態と室温乾燥状態の燃料電池環境を模擬した環境
サイクルを500回加えた。環境試験サイクル後の電解
質複合膜VIの引張強度は初期と変わらなかった。
[0187] Further, the periphery of the electrolyte composite membrane VI was fixed with a SUS metal frame and held at 80 ° C and 95% RH for 1.5 hours and at 25 ° C and 50% RH for 1.5 hours. An environmental cycle simulating a fuel cell environment in a high temperature wet state and a room temperature dry state was added 500 times. The tensile strength of the electrolyte composite membrane VI after the environmental test cycle did not change from the initial value.

【0188】一方、後述の表面のみスルホン化処理した
ポリエチレン織布で補強した比較例6の電解質複合膜V
I’と、補強していない電解質膜は環境試験サイクル
後、それぞれ初期の3/4,1/15に低下していた。
このことからも電解質複合膜VIは比較例6の電解質複
合膜VI’や補強していない電解質膜より優れているこ
とは明白である。
On the other hand, the electrolyte composite membrane V of Comparative Example 6 reinforced with a polyethylene woven fabric whose surface is sulfonated only as described below.
After the environmental test cycle, I'and the electrolyte membrane not reinforced were lowered to the initial 3/4 and 1/15, respectively.
From this, it is clear that the electrolyte composite membrane VI is superior to the electrolyte composite membrane VI ′ of Comparative Example 6 and the non-reinforced electrolyte membrane.

【0189】25℃,50%RHに24時間保持した電
解質複合膜VIを80℃のイオン交換水中24時間浸漬
したときの平面方向の寸法変化率は2.0%であった。
When the electrolyte composite membrane VI kept at 25 ° C. and 50% RH for 24 hours was immersed in ion-exchanged water at 80 ° C. for 24 hours, the dimensional change rate in the plane direction was 2.0%.

【0190】一方、表面のみスルホン化処理したポリエ
チレン織布で補強した比較例6の電解質複合膜VI’の
寸法変化率は3.0%、補強しない電解質膜の寸法変化
率は14%であった。
On the other hand, the dimensional change rate of the electrolyte composite membrane VI ′ of Comparative Example 6 reinforced with the polyethylene woven fabric having only the surface sulfonated was 3.0%, and that of the non-reinforced electrolyte membrane was 14%. .

【0191】このことからも電解質複合膜VIは、比較
例6の電解質複合膜VI’や補強していない電解質膜よ
り優れていることは明白である。
From this, it is clear that the electrolyte composite membrane VI is superior to the electrolyte composite membrane VI 'of Comparative Example 6 and the non-reinforced electrolyte membrane.

【0192】また、燃料電池の作動状態に模擬して80
℃,95%RHの条件下で、負荷荷重0.5kg/mm2
を50時間加えたときのクリープ歪は20%で、表面の
みスルホン化処理した高分子多孔体で補強した比較例6
の1/1.5、補強していない電解質膜の1/6と小さ
く優れている。
Also, the fuel cell operating state is simulated to 80
Load load 0.5 kg / mm 2 under conditions of ℃ and 95% RH
Of which the creep strain when 50 hours was applied for 20 hours was 20% and only the surface was reinforced with the sulfonation-treated polymer porous body, Comparative Example 6
It is as small as 1 / 1.5 of that of the non-reinforced electrolyte membrane and excellent.

【0193】以上のことから電解質膜を表面のみスルホ
ン化処理した高分子多孔体で補強すると引張強度,寸法
変化率及び耐クリープ性は向上するが、イオン伝導率が
低下することが明白で、機械特性とイオン伝導率の両立
が大きな課題である。内部までスルホン化した高分子多
孔体で補強すると、表面のみスルホン化処理した高分子
多孔質体で達し得なかった機械強度,寸法安定性,耐ク
リープ特性等の機械特性とイオン伝導率が両立すること
が明白である。
From the above, it is clear that when the electrolyte membrane is reinforced with a sulfonation-treated polymer porous body, the tensile strength, dimensional change rate and creep resistance are improved, but the ionic conductivity is reduced. A major issue is to achieve both good characteristics and ionic conductivity. When reinforced with a porous polymer that is sulfonated inside, mechanical properties such as mechanical strength, dimensional stability, and creep resistance, which could not be achieved by a porous polymer with sulfonation only on the surface, are compatible with ionic conductivity. It is clear.

【0194】(2)膜/電極接合体の作製 40重量%の白金担持カーボンをイソプロパノールに分
散させた後、5重量%パーフロロカーボンスルホン酸
(スルホン酸当量0.9ミリ当量/g)のイソプロピル
アルコール水溶液を、白金触媒と高分子電解質との重量
比が2:1となるように添加し、超音波で均一に分散さ
せてペースト(電極触媒被覆溶液)を調製した。この電
極触媒被覆溶液を前記(1)で得られた電解質複合膜V
Iの両側に塗布した後、乾燥して白金担持量0.25mg
/cm2の膜/電極接合体VIを作製した。
(2) Preparation of Membrane / Electrode Assembly 40% by weight of platinum-supported carbon was dispersed in isopropanol, and then 5% by weight of perfluorocarbon sulfonic acid (sulfonic acid equivalent 0.9 meq / g) isopropyl alcohol. The aqueous solution was added so that the weight ratio of the platinum catalyst to the polymer electrolyte was 2: 1, and the mixture was ultrasonically uniformly dispersed to prepare a paste (electrode catalyst coating solution). This electrode catalyst coating solution was applied to the electrolyte composite membrane V obtained in (1) above.
After being applied to both sides of I, it is dried and the amount of platinum carried is 0.25 mg.
/ Cm 2 of membrane / electrode assembly VI was prepared.

【0195】膜/電極接合体VIの周囲をSUS製金枠
で固定し、80℃,95%RHで1.5時間保持と、2
5℃,50%RHの1.5時間保持との、高温湿潤状態
と室温乾燥状態の環境サイクルを500回加えた。環境
試験サイクル後の膜/電極接合体VIに初期と同様剥離
は認められなかった。
The periphery of the membrane / electrode assembly VI was fixed with a SUS metal frame and kept at 80 ° C. and 95% RH for 1.5 hours.
500 cycles of high temperature wet condition and room temperature dry condition environmental cycles of 5 ° C. and 50% RH for 1.5 hours were added. No peeling was observed in the membrane / electrode assembly VI after the environmental test cycle as in the initial stage.

【0196】一方、比較例6の膜/電極接合体VI’は
環境試験サイクル後、剥離が認められた。このことから
も本実施例の膜/電極接合体VIは比較例6の膜/電極
接合体VI’より優れていることは明白である。
On the other hand, the membrane / electrode assembly VI 'of Comparative Example 6 was peeled off after the environmental test cycle. From this, it is clear that the membrane / electrode assembly VI of this example is superior to the membrane / electrode assembly VI ′ of Comparative Example 6.

【0197】〔比較例 6〕 (1)電解質複合膜の作製 実施例6の(1)で作製した厚さ20μmのポリエチレ
ン織布に30℃,10%のクロロ硫酸のテトラクロロエ
タン溶液中に1時間保持し、ポリエチレン織布の表面の
みをスルホン化した。この織布を煮沸蒸留水で3回洗浄
した後、スルホン酸当量を測定した。スルホン酸当量は
0.1ミリ当量/gであった。ESCAによりスパッタ
法を用いて厚み方向の硫黄原子Sを測定したところ、硫
黄原子の吸収は表面のみ認められた。
Comparative Example 6 (1) Preparation of Electrolyte Composite Membrane The 20 μm-thick polyethylene woven fabric prepared in (1) of Example 6 was immersed in a 10% tetrachloroethane solution of chlorosulfuric acid at 30 ° C. for 1 hour. It was held and only the surface of the polyethylene woven fabric was sulfonated. This woven fabric was washed three times with boiling distilled water, and then the sulfonic acid equivalent was measured. The sulfonic acid equivalent was 0.1 meq / g. When the sulfur atom S in the thickness direction was measured by ESCA using the sputtering method, absorption of the sulfur atom was recognized only on the surface.

【0198】前記表面のみをスルホン化したポリエチレ
ン織布に5重量%パーフロロカーボンスルホン酸(スル
ホン酸当量0.9ミリ当量/g)のイソプロピルアルコ
ール水溶液を含浸させ、60℃で乾燥させた。次いで、
140℃で5分間、膜を熱処理した。ピンホールが無く
なるまで、即ち、8回、含浸,乾燥,熱処理を繰り返し
た。その後、1N硫酸中に60〜70℃で1時間浸漬
し、純水中に60〜70℃で1時間浸漬して電解質側鎖
の末端基を−SO3Hに変換した。この電解質複合膜V
I’のイオン伝導率は0.01S/cm,引張強度は7.
6kg/cmであった。
[0198] The woven polyethylene cloth having only the surface thereof was impregnated with an aqueous isopropyl alcohol solution containing 5% by weight of perfluorocarbon sulfonic acid (sulfonic acid equivalent: 0.9 meq / g) and dried at 60 ° C. Then
The film was heat treated at 140 ° C. for 5 minutes. The impregnation, drying, and heat treatment were repeated until the pinholes disappeared, that is, eight times. Then, it was immersed in 1N sulfuric acid at 60 to 70 ° C. for 1 hour and then immersed in pure water at 60 to 70 ° C. for 1 hour to convert the terminal groups of the side chains of the electrolyte into —SO 3 H. This electrolyte composite membrane V
I'has an ionic conductivity of 0.01 S / cm and a tensile strength of 7.
It was 6 kg / cm.

【0199】また、同じ厚さ、同じスルホン酸当量の補
強していない電解質膜のイオン伝導率、引張強度はそれ
ぞれ0.12S/cm、1.2kg/mm2であった。
The ionic conductivity and tensile strength of the unreinforced electrolyte membrane having the same thickness and the same sulfonic acid equivalent were 0.12 S / cm and 1.2 kg / mm 2 , respectively.

【0200】電解質複合膜VI’及び補強していない電
解質膜の周囲をSUS製金枠で固定し、80℃,95%
RHでの1.5時間保持と、25℃,50%RHでの1.
5時間保持との、高温湿潤状態と室温乾燥状態の環境サ
イクルを500回加えた。環境試験サイクル後の電解質
複合膜VI’及び補強していない電解質膜の引張強度は
それぞれ初期の3/4,1/15に低下していた。
The periphery of the electrolyte composite membrane VI ′ and the non-reinforced electrolyte membrane was fixed with a SUS metal frame, and the temperature was 80 ° C. and 95%.
Hold at RH for 1.5 hours and at 25 ° C, 50% RH for 1.
An environmental cycle of a high temperature wet state and a room temperature dry state, which was maintained for 5 hours, was added 500 times. The tensile strengths of the electrolyte composite membrane VI ′ and the non-reinforced electrolyte membrane after the environmental test cycle were lowered to 3/4 and 1/15 of the initial values, respectively.

【0201】25℃,50%RHに24時間保持した電
解質複合膜IV’及び補強していない電解質膜を80℃
のイオン交換水中24時間浸漬したときの平面方向の寸
法変化率は、それぞれ3.0%,14%であった。
The electrolyte composite membrane IV ′ held at 25 ° C. and 50% RH for 24 hours and the unreinforced electrolyte membrane were heated to 80 ° C.
The dimensional change rates in the plane direction when immersed in ion-exchanged water for 24 hours were 3.0% and 14%, respectively.

【0202】燃料電池の作動状態に模擬して80℃,9
5%RHの条件下で負荷荷重0.5kg/mm2を50時
間加えたときの電解質複合膜IV’、補強していない電
解質膜のクリープ歪は、それぞれ30%,180%であ
った。
Simulating the operating condition of the fuel cell,
The creep strains of the electrolyte composite membrane IV ′ and the non-reinforced electrolyte membrane when a load of 0.5 kg / mm 2 was applied for 50 hours under the condition of 5% RH were 30% and 180%, respectively.

【0203】(2)膜/電極接合体の作製 40重量%の白金担持カーボンをイソプロパノールに分
散させた後、5重量%パーフロロカーボンスルホン酸
(スルホン酸当量0.9ミリ当量/g)のイソプロピル
アルコール水溶液を、白金触媒と高分子電解質との重量
比が2:1となるように添加し、超音波で均一に分散さ
せてペースト(電極触媒被覆溶液)を調製した。この電
極触媒被覆溶液を前記(1)で得られた電解質複合膜V
I’の両側に塗布した後、乾燥して白金担持量0.25m
g/cm2の膜/電極接合体VI’を作製した。
(2) Preparation of Membrane / Electrode Assembly 40% by weight of platinum-supported carbon was dispersed in isopropanol, and then 5% by weight of perfluorocarbon sulfonic acid (sulfonic acid equivalent: 0.9 meq / g) isopropyl alcohol. The aqueous solution was added so that the weight ratio of the platinum catalyst to the polymer electrolyte was 2: 1, and the mixture was ultrasonically uniformly dispersed to prepare a paste (electrode catalyst coating solution). This electrode catalyst coating solution was applied to the electrolyte composite membrane V obtained in (1) above.
After being applied to both sides of I ', it is dried and the amount of platinum carried is 0.25m.
A membrane / electrode assembly VI ′ of g / cm 2 was prepared.

【0204】膜/電極接合体VI’の周囲をSUS製金
枠で固定し、80℃95%RHで1.5時間保持と、2
5℃,50%RHの1.5時間保持との、高温湿潤状態
と室温乾燥状態の環境サイクルを500回加えた。環境
試験サイクル後の膜/電極接合体VI’は環境試験サイ
クル後、初期と異なり剥離が認められた。
The periphery of the membrane / electrode assembly VI ′ was fixed with a SUS metal frame and kept at 80 ° C. and 95% RH for 1.5 hours.
500 cycles of high temperature wet condition and room temperature dry condition environmental cycles of 5 ° C. and 50% RH for 1.5 hours were added. After the environmental test cycle, the membrane / electrode assembly VI ′ was peeled off after the environmental test cycle, unlike the initial stage.

【0205】〔実施例 7〜26〕 (1)電解質複合膜の作製 膜厚約25μm、空孔率95%のポリテトラフロロエチ
レン多孔質フィルム,ポリクロロトリフロロエチレン多
孔質フィルム,ポリエチレン多孔質フィルム,ポリプロ
ピレン多孔質フィルム,ポリ脂環式オレフィン多孔質フ
ィルム,ポリエーテルエーテルケトン多孔質フィルム,
ポリエーテルエーテルスルホン多孔質フィルム,ポリエ
ーテルスルホン多孔質フィルム,ポリスルホン多孔質フ
ィルム,ポリフェニレンスルフィッド多孔質フィルム,
ポリフェニレン多孔質フィルムの高分子多孔体を、表1
〜5に記載のスルホン化剤を用い、表1〜5のスルホン
化条件でスルホン化した。
[Examples 7 to 26] (1) Preparation of electrolyte composite membrane Polytetrafluoroethylene porous film, polychlorotrifluoroethylene porous film, polyethylene porous film having a film thickness of about 25 µm and a porosity of 95% , Polypropylene porous film, polyalicyclic olefin porous film, polyetheretherketone porous film,
Polyether ether sulfone porous film, polyether sulfone porous film, polysulfone porous film, polyphenylene sulfide porous film,
The polymer porous body of the polyphenylene porous film is shown in Table 1.
Sulfonating was performed under the sulfonation conditions shown in Tables 1 to 5 using the sulfonating agents described in Nos.

【0206】得られたフィルムを煮沸蒸留水で3回洗浄
し、スルホン酸当量を測定した。スルホン酸当量は表1
〜5に示した様に0.7〜1.4である。又、ESCAに
よりスパッタ法を用いて厚み方向の硫黄原子Sを測定し
たところ、いずれも中心部まで硫黄原子の吸収が認めら
れた。即ち、中心部までスルホン化されている。なお、
空孔率0%の前記材質と同じフィルムを用いて、同一条
件でスルホン化した場合、いずれも中心部まで硫黄原子
の吸収が認められた。
The obtained film was washed 3 times with boiling distilled water, and the sulfonic acid equivalent was measured. The sulfonic acid equivalents are shown in Table 1.
.About.5, and is 0.7 to 1.4. Further, when the sulfur atom S in the thickness direction was measured by ESCA using the sputtering method, absorption of the sulfur atom was recognized up to the central portion in all cases. That is, it is sulfonated to the center. In addition,
When sulfonation was carried out under the same conditions using the same film as the above-mentioned material having a porosity of 0%, absorption of sulfur atoms was recognized up to the central part.

【0207】前記スルホン化高分子多孔体に、表1〜5
のスルホン酸当量の電解質を溶解した電解質溶液を含浸
させ、60℃で乾燥させた。次いで、140℃で5分
間、膜を熱処理した。ピンホールが無くなるまで、即
ち、5〜8回、含浸,乾燥,熱処理を繰り返した。その
後、1N硫酸中に60〜70℃で1時間浸漬、純水中に
60〜70℃で1時間浸漬した。
The above sulfonated polymer porous materials are shown in Tables 1-5.
Was impregnated with an electrolyte solution in which an electrolyte having an equivalent sulfonic acid of was dissolved and dried at 60 ° C. The film was then heat treated at 140 ° C. for 5 minutes. The impregnation, drying, and heat treatment were repeated until pinholes disappeared, that is, 5 to 8 times. Then, it was immersed in 1N sulfuric acid at 60 to 70 ° C. for 1 hour and in pure water at 60 to 70 ° C. for 1 hour.

【0208】得られた電解質複合膜のイオン伝導率及び
引張強度は表1〜5に示す様に、それぞれ0.15〜0.
7S/cm,3.9〜5.1kg/mm2であった。いず
れも比較のために作成したスルホン化していない高分子
多孔体で補強した電解質複合膜と比べ、イオン伝導率及
び引張強度が優れていた。
The ionic conductivity and tensile strength of the obtained electrolyte composite membrane are, as shown in Tables 1 to 5, 0.15 to 0.1, respectively.
The values were 7 S / cm and 3.9 to 5.1 kg / mm 2 . In both cases, the ionic conductivity and tensile strength were superior to those of the electrolyte composite membrane reinforced with the non-sulfonated polymer porous body prepared for comparison.

【0209】また、表1〜5の電解質複合膜の周囲をS
US製金枠で固定し、80℃,95%RHでの1.5時
間保持と、25℃,50%RHでの1.5時間保持と
の、高温湿潤状態と室温乾燥状態の電池条件を模擬した
環境サイクルを500回加えた。環境試験サイクル後の
電解質複合膜の引張強度値は、いずれの場合でも初期と
変わらなかった。
[0209] Further, the circumference of the electrolyte composite membranes in Tables 1 to 5 was S
Fix with a US metal frame, and keep the battery conditions of high temperature wet condition and room temperature dry condition of 1.5 hours holding at 80 ° C and 95% RH and 1.5 hours holding at 25 ° C and 50% RH. The simulated environmental cycle was added 500 times. The tensile strength values of the electrolyte composite membrane after the environmental test cycle did not change from the initial values in any cases.

【0210】一方、比較のため作成し、実験したスルホ
ン化していない高分子多孔体で補強した電解質複合膜の
引張強度値は、環境試験サイクル後、初期の1/3〜1
/5に低下していた。このことからも表1〜5の本発明
の電解質複合膜は、スルホン化していない高分子多孔体
で補強した電解質複合膜より優れていることは明白であ
る。
On the other hand, the tensile strength value of the electrolyte composite membrane reinforced by the non-sulfonated polymer porous body prepared and tested for comparison was 1/3 to 1 of the initial value after the environmental test cycle.
It had fallen to / 5. From this, it is apparent that the electrolyte composite membranes of the present invention in Tables 1 to 5 are superior to the electrolyte composite membranes reinforced with the non-sulfonated polymer porous body.

【0211】25℃,50%RHに24時間保持した電
解質複合膜を、80℃のイオン交換水中24時間浸漬し
たときの平面方向の寸法変化率は、表1〜5の様に、い
ずれも1.1〜2.0%である。
When the electrolyte composite membrane kept at 25 ° C. and 50% RH for 24 hours was immersed in 80 ° C. ion-exchanged water for 24 hours, the dimensional change rate in the plane direction was 1 as shown in Tables 1 to 5. It is 0.1 to 2.0%.

【0212】一方、25℃,50%RHに24時間保持
後の、比較例のスルホン化していない高分子多孔体で補
強した電解質複合膜を、80℃のイオン交換水中24時
間浸漬したときの平面方向の寸法変化率は3.0〜5.0
%、25℃,50%RHに24時間保持した高分子多孔
体で補強していない電解質膜を、80℃のイオン交換水
中24時間浸漬したときの平面方向の寸法変化率は14
〜30%あった。
On the other hand, the electrolyte composite membrane reinforced with the non-sulfonated polymer porous body of Comparative Example after being kept at 25 ° C. and 50% RH for 24 hours was immersed in ion-exchanged water at 80 ° C. for 24 hours to obtain a flat surface. Directional dimensional change rate is 3.0 to 5.0
%, 25 ° C., 50% RH for 24 hours, the electrolyte membrane not reinforced with the porous polymer was immersed in 80 ° C. ion-exchanged water for 24 hours.
There was ~ 30%.

【0213】寸法変化率は、スルホン化処理しない高分
子多孔体で補強した電解質複合膜、或いは、補強してい
ない電解質膜の寸法変化率より小さく優れている。
The rate of dimensional change is smaller than the rate of dimensional change of the electrolyte composite membrane reinforced by the polymer porous body not subjected to sulfonation treatment or the electrolyte membrane not reinforced, and is excellent.

【0214】また、燃料電池の作動状態に模擬して80
℃,95%RHの条件下で負荷荷重0.5kg/mm
2を、50時間加えたときのクリープ歪を表1〜5に示
す。いずれも10〜20%で、スルホン化処理しない高
分子多孔体で補強した電解質複合膜、或いは、補強して
いない電解質膜の寸法変化率より小さく優れている。
Further, the operation state of the fuel cell is simulated to 80
Load load 0.5 kg / mm under conditions of ℃ and 95% RH
The creep strains when 2 is applied for 50 hours are shown in Tables 1-5. Each of them is 10 to 20%, which is smaller than the dimensional change rate of the electrolyte composite membrane reinforced by the polymer porous body not subjected to the sulfonation treatment or the electrolyte membrane not reinforced, and is excellent.

【0215】以上から内部までスルホン化した高分子多
孔体で補強した電解質複合膜は、スルホン化していない
高分子多孔質体での補強した電解質複合膜或いは補強無
の電解質膜では達し得なかった機械強度,寸法安定性,
耐クリープ特性等の機械特性とイオン伝導率が両立する
ことが分る。
The electrolyte composite membrane reinforced by the above-mentioned sulfonated polymer porous material is a machine which cannot be achieved by the electrolyte composite membrane reinforced by the non-sulfonated polymer porous material or the electrolyte membrane without reinforcement. Strength, dimensional stability,
It can be seen that mechanical characteristics such as creep resistance and ionic conductivity are compatible.

【0216】(2)膜/電極接合体の作製 40重量%の白金担持カーボンをイソプロパノール等の
溶液に分散させた後、表1〜5のスルホン酸当量の電解
質を溶解した電解質溶液を、白金触媒と高分子電解質と
の重量比が2:1となるように添加し、超音波で均一に
分散させてペースト(電極触媒被覆溶液)を調製した。
この電極触媒被覆溶液を前記(1)で得られた電解質複
合膜の両側に塗布,乾燥して、白金担持量0.25mg
/cm2の膜/電極接合体を作製した。
(2) Preparation of Membrane / Electrode Assembly After 40% by weight of platinum-supported carbon was dispersed in a solution such as isopropanol, an electrolyte solution containing sulfonic acid equivalents in Tables 1 to 5 was dissolved in a platinum catalyst. And a polymer electrolyte were added at a weight ratio of 2: 1 and dispersed uniformly by ultrasonic waves to prepare a paste (electrode catalyst coating solution).
This electrode catalyst coating solution was applied to both sides of the electrolyte composite membrane obtained in (1) above and dried to give a platinum loading of 0.25 mg.
A membrane / electrode assembly of / cm 2 was prepared.

【0217】(3)燃料電池単セルの耐久性試験 前記膜/電極接合体を沸騰した脱イオン水中に2時間浸
漬することにより吸水させた。得られた膜/電極接合体
を評価セルに組みこみ、燃料電池出力性能を評価した。
単電池セルの初期と5000時間後の出力電圧を表1〜
5に示す。
(3) Durability Test of Fuel Cell Single Cell The membrane / electrode assembly was immersed in boiling deionized water for 2 hours to absorb water. The obtained membrane / electrode assembly was incorporated into an evaluation cell, and the fuel cell output performance was evaluated.
Table 1 shows the output voltage of the single battery cell at the beginning and after 5000 hours.
5 shows.

【0218】[0218]

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 [Table 3]

【表4】 [Table 4]

【表5】 イオン伝導度の大きい電解質複合膜を用いた燃料電池の
方が、より出力電圧が高く、優れている。スルホン化し
ていない多孔質フィルムで補強した膜/電極接合体を用
いた単電池セルは、5000時間後で劣化が認められた
が、本発明の膜/電極接合体を用いた単電池セルは、表
1〜5から分るように殆ど劣化せず、優れている。
[Table 5] A fuel cell using an electrolyte composite membrane having a high ionic conductivity has a higher output voltage and is superior. Although the unit cell using the membrane / electrode assembly reinforced with the non-sulfonated porous film was observed to deteriorate after 5000 hours, the unit cell using the membrane / electrode assembly of the present invention was As shown in Tables 1 to 5, it is excellent in that it hardly deteriorates.

【0219】[0219]

【発明の効果】本発明によれば、内部までイオン伝導性
を付与した高分子多孔体で補強された電解質複合膜は、
イオン伝導性を付与していない高分子多孔体で補強され
た電解質複合膜と比べ、イオン伝導度,引張強度,寸法
安定性,耐クリープ特性に優れ、耐環境サイクル特性も
優れている。
EFFECTS OF THE INVENTION According to the present invention, an electrolyte composite membrane reinforced by a polymer porous body having ion conductivity even inside is
Compared with an electrolyte composite membrane reinforced with a porous polymer that does not impart ionic conductivity, it has superior ionic conductivity, tensile strength, dimensional stability, creep resistance, and environmental cycle resistance.

【0220】また、本発明の電解質複合膜,膜/電極接
合体,燃料電池は実用上十分な電池特性と高耐久性を得
ることができる。
The electrolyte composite membrane, membrane / electrode assembly and fuel cell of the present invention can have practically sufficient cell characteristics and high durability.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の固体高分子型燃料電池用電池単セル
の構造を示す斜視図。
FIG. 1 is a perspective view showing the structure of a battery cell for polymer electrolyte fuel cells of Example 1. FIG.

【図2】実施例1の固体高分子型燃料電池用電池単セル
の耐久性試験結果のグラフ。
FIG. 2 is a graph showing the durability test results of the single cell for polymer electrolyte fuel cell of Example 1.

【図3】実施例2の固体高分子型燃料電池用電池単セル
の耐久性試験結果のグラフ。
FIG. 3 is a graph showing the durability test results of the single cell for polymer electrolyte fuel cell of Example 2.

【図4】実施例3の固体高分子型燃料電池用電池単セル
の耐久性試験結果のグラフ。
FIG. 4 is a graph of durability test results of a single cell for polymer electrolyte fuel cells of Example 3.

【図5】実施例4の固体高分子型燃料電池用電池単セル
の耐久性試験結果のグラフ。
FIG. 5 is a graph showing the durability test results of the single cell for polymer electrolyte fuel cell of Example 4.

【図6】実施例5の固体高分子型燃料電池用電池単セル
の耐久性試験結果のグラフ。
FIG. 6 is a graph of the durability test results of the single cell for polymer electrolyte fuel cell of Example 5.

【符号の説明】[Explanation of symbols]

1…固体高分子電解質複合膜、2…空気極、3…酸素
極、4…膜/電極接合体、5…支持集電体、6…セパレ
ータ、7…空気、8…空気+水、9…水素+水、10…
残留水素、11…水。
1 ... Solid polymer electrolyte composite membrane, 2 ... Air electrode, 3 ... Oxygen electrode, 4 ... Membrane / electrode assembly, 5 ... Support current collector, 6 ... Separator, 7 ... Air, 8 ... Air + water, 9 ... Hydrogen + water, 10 ...
Residual hydrogen, 11 ... Water.

フロントページの続き (72)発明者 小林 稔幸 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 加茂 友一 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 東山 和寿 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 Fターム(参考) 5H026 AA06 BB03 CX05 EE18 HH00 HH03 Continued front page    (72) Inventor Toshiyuki Kobayashi             7-1-1, Omika-cho, Hitachi-shi, Ibaraki Prefecture             Inside the Hitachi Research Laboratory, Hitachi Ltd. (72) Inventor Yuichi Kamo             7-1-1, Omika-cho, Hitachi-shi, Ibaraki Prefecture             Inside the Hitachi Research Laboratory, Hitachi Ltd. (72) Inventor Kazutoshi Higashiyama             7-1-1, Omika-cho, Hitachi-shi, Ibaraki Prefecture             Inside the Hitachi Research Laboratory, Hitachi Ltd. F-term (reference) 5H026 AA06 BB03 CX05 EE18 HH00                       HH03

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 高分子多孔体がスルホン化されている膜
を用いて構成されていることを特徴とする固体高分子電
解質複合膜。
1. A solid polymer electrolyte composite membrane, wherein the polymer porous body is constituted by using a sulfonated membrane.
【請求項2】 前記高分子多孔体が多孔質エンジニアリ
ングプラスチックである請求項1に記載の固体高分子電
解質複合膜。
2. The solid polymer electrolyte composite membrane according to claim 1, wherein the polymer porous body is a porous engineering plastic.
【請求項3】 前記高分子多孔体がその空隙部に高分子
固体電解質を充填したものである請求項1に記載の固体
高分子電解質複合膜。
3. The solid polymer electrolyte composite membrane according to claim 1, wherein the polymer porous body has voids filled with a polymer solid electrolyte.
【請求項4】 前記固体高分子電解質が、スルホアルキ
ル化芳香族炭化水素系高分子電解質である請求項3に記
載の固体高分子電解質複合膜。
4. The solid polymer electrolyte composite membrane according to claim 3, wherein the solid polymer electrolyte is a sulfoalkylated aromatic hydrocarbon-based polymer electrolyte.
【請求項5】 イオン伝導度が0.15〜0.7S/cm
で、かつ、25℃,50%RHに24時間保持後、80
℃のイオン交換水中に24時間浸漬したときの平面方向
の寸法変化率が1.1〜2.0%、または、引張強度が
3.5〜5.2kg/mm2である請求項1に記載の固体高
分子電解質複合膜。
5. The ionic conductivity is 0.15 to 0.7 S / cm.
And after holding at 25 ° C and 50% RH for 24 hours,
The dimensional change rate in the plane direction when immersed in ion-exchanged water at ℃ for 24 hours is 1.1 to 2.0%, or the tensile strength is 3.5 to 5.2 kg / mm 2. Solid polymer electrolyte composite membrane.
【請求項6】 固体高分子電解質膜と、これに接合され
たガス電極を有する固体高分子型燃料電池用膜/電極接
合体において、前記固体高分子電解質膜が請求項1〜5
のいずれかに記載の固体高分子電解質複合膜であること
を特徴とする固体高分子型燃料電池用膜/電極接合体。
6. A solid polymer electrolyte membrane and a membrane / electrode assembly for a solid polymer fuel cell having a gas electrode joined to the solid polymer electrolyte membrane, wherein the solid polymer electrolyte membrane is one of claims 1 to 5.
A membrane / electrode assembly for a polymer electrolyte fuel cell, which is the solid polymer electrolyte composite membrane according to any one of items 1 to 5.
【請求項7】 固体高分子電解質膜と、これに接合され
たガス電極を有する固体高分子型燃料電池用膜/電極接
合体において、前記固体高分子電解質膜が請求項1〜5
のいずれかに記載の固体高分子電解質複合膜であり、電
極触媒被覆溶液がパーフロロカーボンスルホン酸溶液で
あることを特徴とする固体高分子型燃料電池用膜/電極
接合体。
7. A solid polymer electrolyte membrane and a membrane / electrode assembly for a solid polymer fuel cell having a gas electrode joined to the solid polymer electrolyte membrane, wherein the solid polymer electrolyte membrane is one of claims 1 to 5.
2. The membrane / electrode assembly for a polymer electrolyte fuel cell, which is the solid polymer electrolyte composite membrane according to any one of claims 1 to 3, wherein the electrode catalyst coating solution is a perfluorocarbon sulfonic acid solution.
【請求項8】 固体高分子電解質膜とその両側にカソー
ド電極及びアノード電極からなる一対のガス拡散電極が
配置され、該ガス拡散電極を挟むようガス不透過性の一
対のセパレータを有し、前記固体高分子電解質膜及び前
記セパレータに挟まれ、かつ、前記ガス電極の外周部に
接するように一対のシール材が配置された固体高分子型
燃料電池において、前記固体高分子電解質膜が請求項1
〜5のいずれかに記載の固体高分子電解質複合膜である
ことを特徴とする固体高分子型燃料電池。
8. A solid polymer electrolyte membrane and a pair of gas diffusion electrodes consisting of a cathode electrode and an anode electrode on both sides of the solid polymer electrolyte membrane, and a pair of gas impermeable separators sandwiching the gas diffusion electrodes, In a solid polymer electrolyte fuel cell in which a pair of sealing materials are arranged so as to be sandwiched between a solid polymer electrolyte membrane and the separator, and in contact with an outer peripheral portion of the gas electrode, the solid polymer electrolyte membrane may be formed.
5. A solid polymer electrolyte fuel cell, which is the solid polymer electrolyte composite membrane according to any one of items 1 to 5.
【請求項9】 固体高分子電解質膜とその両側にカソー
ド電極及びアノード電極からなる一対のガス拡散電極が
配置され、該ガス拡散電極を挟むようにガス不透過性の
一対のセパレータを有し、前記固体高分子電解質膜及び
前記セパレータに挟まれ、かつ、前記ガス電極の外周部
に接するように一対のシール材が配置された固体高分子
型燃料電池において、前記固体高分子電解質膜とその両
側にカソード電極及びアノード電極からなる一対のガス
拡散電極が請求項6又は7に記載の固体高分子型燃料電
池用膜/電極接合体であることを特徴とする固体高分子
型燃料電池。
9. A solid polymer electrolyte membrane and a pair of gas diffusion electrodes composed of a cathode electrode and an anode electrode on both sides of the solid polymer electrolyte membrane, and a pair of gas impermeable separators sandwiching the gas diffusion electrodes, In a solid polymer electrolyte fuel cell sandwiched between the solid polymer electrolyte membrane and the separator, and a pair of sealing materials arranged so as to contact the outer peripheral portion of the gas electrode, the solid polymer electrolyte membrane and both sides thereof. A pair of gas diffusion electrodes consisting of a cathode electrode and an anode electrode is the membrane / electrode assembly for a polymer electrolyte fuel cell according to claim 6 or 7, wherein the polymer electrolyte fuel cell is a polymer electrolyte fuel cell.
JP2002000769A 2002-01-07 2002-01-07 Solid polymer electrolyte compound membrane, membrane /electrode joint body, solid polymer fuel cell using the sam Pending JP2003203648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002000769A JP2003203648A (en) 2002-01-07 2002-01-07 Solid polymer electrolyte compound membrane, membrane /electrode joint body, solid polymer fuel cell using the sam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002000769A JP2003203648A (en) 2002-01-07 2002-01-07 Solid polymer electrolyte compound membrane, membrane /electrode joint body, solid polymer fuel cell using the sam

Publications (1)

Publication Number Publication Date
JP2003203648A true JP2003203648A (en) 2003-07-18

Family

ID=27641063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002000769A Pending JP2003203648A (en) 2002-01-07 2002-01-07 Solid polymer electrolyte compound membrane, membrane /electrode joint body, solid polymer fuel cell using the sam

Country Status (1)

Country Link
JP (1) JP2003203648A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005209361A (en) * 2004-01-20 2005-08-04 Ube Ind Ltd Polyelectrolyte film, its manufacturing method, film-electrode connector for fuel cell and fuel cell
JP2005276747A (en) * 2004-03-26 2005-10-06 Hitachi Ltd Solid polymer electrolyte composite film, solid polymer electrolyte composite film/electrode junction, and fuel cell using the same
WO2006028190A1 (en) * 2004-09-09 2006-03-16 Asahi Kasei Chemicals Corporation Solid polymer electrolyte membrane and method for producing same
DE112009000971T5 (en) 2008-03-26 2011-02-03 National University Corporation Shizuoka University, Shizuoka-shi Fuel cell electrolyte membrane
JP2011113703A (en) * 2009-11-25 2011-06-09 Hitachi Ltd Solid polymer fuel cell
KR101125651B1 (en) * 2004-06-30 2012-03-27 삼성에스디아이 주식회사 A membrane/electrode assembly for fuel cell and a fuel cell comprising the same
WO2013051189A1 (en) * 2011-10-07 2013-04-11 パナソニック株式会社 Electrolyte membrane for solid polymer-type fuel cell, method for producing same, and solid polymer-type fuel cell
KR101579001B1 (en) * 2013-04-29 2015-12-18 주식회사 엘지화학 Polymer electrolyte membrane, membrane electrode assembly comprising the polymer electrolyte membrane and fuel cell comprising the membrane electrode assembly
CN105580180A (en) * 2013-09-30 2016-05-11 可隆工业株式会社 Polymer electrolyte membrane, method for fabricating same, and membrane-electrode assembly comprising same
JP2018195543A (en) * 2017-05-22 2018-12-06 旭化成株式会社 Polymer electrolyte membrane, electrode catalyst layer, membrane-electrode assembly, and solid polymer fuel cell
WO2019088299A1 (en) * 2017-11-06 2019-05-09 Agc株式会社 Solid polymer electrolyte film, membrane electrode assembly and electrolyzer
EP3808798A4 (en) * 2018-06-15 2022-03-09 Agc Inc. Methods respectively for producing ion exchange membrane and dried ion exchange membrane
US11286337B2 (en) 2014-11-18 2022-03-29 Rensselaer Polytechnic Institute Polymers and methods for their manufacture
CN114730901A (en) * 2019-12-26 2022-07-08 可隆工业株式会社 Polymer electrolyte membrane, membrane-electrode assembly including the same, and method of measuring durability thereof
US11465139B2 (en) 2020-03-20 2022-10-11 Rensselaer Polytechnic Institute Thermally stable hydrocarbon-based anion exchange membrane and ionomers
WO2023085400A1 (en) * 2021-11-12 2023-05-19 国立大学法人東京工業大学 Membrane, composite membrane, membrane electrode assembly, and water electrolysis device
US11826746B2 (en) 2017-07-06 2023-11-28 Rensselaer Polytechnic Institute Ionic functionalization of aromatic polymers for ion exchange membranes
US11987664B2 (en) 2014-11-18 2024-05-21 Rensselaer Polytechnic Institute Polymers and methods for their manufacture

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005209361A (en) * 2004-01-20 2005-08-04 Ube Ind Ltd Polyelectrolyte film, its manufacturing method, film-electrode connector for fuel cell and fuel cell
JP4672992B2 (en) * 2004-03-26 2011-04-20 株式会社日立製作所 Solid polymer electrolyte composite membrane, solid electrolyte composite membrane / electrode assembly, and fuel cell using the same
JP2005276747A (en) * 2004-03-26 2005-10-06 Hitachi Ltd Solid polymer electrolyte composite film, solid polymer electrolyte composite film/electrode junction, and fuel cell using the same
KR101125651B1 (en) * 2004-06-30 2012-03-27 삼성에스디아이 주식회사 A membrane/electrode assembly for fuel cell and a fuel cell comprising the same
US8465856B2 (en) 2004-09-09 2013-06-18 Asahi Kasei Chemicals Corporation Solid polymer electrolyte membrane and production method of the same
US7799452B2 (en) 2004-09-09 2010-09-21 Asahi Kasei Chemicals Corporation Solid polymer electrolyte membrane and production method of the same
WO2006028190A1 (en) * 2004-09-09 2006-03-16 Asahi Kasei Chemicals Corporation Solid polymer electrolyte membrane and method for producing same
DE112009000971T5 (en) 2008-03-26 2011-02-03 National University Corporation Shizuoka University, Shizuoka-shi Fuel cell electrolyte membrane
JP2011113703A (en) * 2009-11-25 2011-06-09 Hitachi Ltd Solid polymer fuel cell
WO2013051189A1 (en) * 2011-10-07 2013-04-11 パナソニック株式会社 Electrolyte membrane for solid polymer-type fuel cell, method for producing same, and solid polymer-type fuel cell
JP5362144B2 (en) * 2011-10-07 2013-12-11 パナソニック株式会社 ELECTROLYTE MEMBRANE FOR SOLID POLYMER FUEL CELL, METHOD FOR PRODUCING THE SAME, AND SOLID POLYMER FUEL CELL
US9368822B2 (en) 2011-10-07 2016-06-14 Panasonic Intellectual Property Management Co., Ltd. Electrolyte membrane for solid polymer-type fuel cell, method for producing same, and solid polymer-type fuel cell
US10050294B2 (en) 2013-04-29 2018-08-14 Lg Chem, Ltd. Polymer electrolyte membrane, membrane electrode assembly comprising polymer electrolyte membrane and fuel cell comprising membrane electrode assembly
KR101579001B1 (en) * 2013-04-29 2015-12-18 주식회사 엘지화학 Polymer electrolyte membrane, membrane electrode assembly comprising the polymer electrolyte membrane and fuel cell comprising the membrane electrode assembly
CN105580180A (en) * 2013-09-30 2016-05-11 可隆工业株式会社 Polymer electrolyte membrane, method for fabricating same, and membrane-electrode assembly comprising same
JP2016539452A (en) * 2013-09-30 2016-12-15 コーロン インダストリーズ インク POLYMER ELECTROLYTE MEMBRANE, MANUFACTURING METHOD THEREOF, AND MEMBRANE-ELECTRODE ASSEMBLY CONTAINING THE SAME
US11286337B2 (en) 2014-11-18 2022-03-29 Rensselaer Polytechnic Institute Polymers and methods for their manufacture
US11834550B2 (en) 2014-11-18 2023-12-05 Rensselaer Polytechnic Institute Polymers and methods for their manufacture
US11987664B2 (en) 2014-11-18 2024-05-21 Rensselaer Polytechnic Institute Polymers and methods for their manufacture
JP2018195543A (en) * 2017-05-22 2018-12-06 旭化成株式会社 Polymer electrolyte membrane, electrode catalyst layer, membrane-electrode assembly, and solid polymer fuel cell
US11826746B2 (en) 2017-07-06 2023-11-28 Rensselaer Polytechnic Institute Ionic functionalization of aromatic polymers for ion exchange membranes
WO2019088299A1 (en) * 2017-11-06 2019-05-09 Agc株式会社 Solid polymer electrolyte film, membrane electrode assembly and electrolyzer
EP3808798A4 (en) * 2018-06-15 2022-03-09 Agc Inc. Methods respectively for producing ion exchange membrane and dried ion exchange membrane
CN114730901A (en) * 2019-12-26 2022-07-08 可隆工业株式会社 Polymer electrolyte membrane, membrane-electrode assembly including the same, and method of measuring durability thereof
US11465139B2 (en) 2020-03-20 2022-10-11 Rensselaer Polytechnic Institute Thermally stable hydrocarbon-based anion exchange membrane and ionomers
WO2023085400A1 (en) * 2021-11-12 2023-05-19 国立大学法人東京工業大学 Membrane, composite membrane, membrane electrode assembly, and water electrolysis device

Similar Documents

Publication Publication Date Title
JP3607862B2 (en) Fuel cell
KR101767267B1 (en) Reinforced solid polymer electrolyte composite membrane, membrane electrode assembly for solid polymer fuel cell, and solid polymer fuel cell
JP4023903B2 (en) Membrane / electrode assembly for polymer electrolyte fuel cells
JP4728208B2 (en) POLYMER ELECTROLYTE MEMBRANE FOR FUEL CELL AND FUEL CELL SYSTEM INCLUDING THE SAME
JP3970390B2 (en) Membrane-electrode assembly for solid polymer fuel cell
JP2003203648A (en) Solid polymer electrolyte compound membrane, membrane /electrode joint body, solid polymer fuel cell using the sam
JP2009540125A (en) Ion conductive membrane
US20080317945A1 (en) Electrolyte membranes for use in fuel cells
JP4090108B2 (en) Membrane / electrode assembly for polymer electrolyte fuel cells
JP2006252967A (en) Solid polymer electrolyte membrane for fuel cell, and fuel cell using the same
JP3714766B2 (en) Electrode and membrane / electrode assembly for polymer electrolyte fuel cell
CA2591671A1 (en) Proton exchange fuel cell
JP4857789B2 (en) Fuel cell, polymer electrolyte and ion-exchange resin used therefor
WO2006059485A1 (en) Electrode catalyst for fuel cell, electrode for fuel cell and fuel cell
JP3442741B2 (en) Composite polymer electrolyte membrane and method for producing the same
US9631105B2 (en) PPS electrode reinforcing material/crack mitigant
JPH06342667A (en) High molecular type fuel cell
JPH06203840A (en) Solid polyelectrolyte fuel cell
JP5129778B2 (en) Solid polymer electrolyte, membrane thereof, membrane / electrode assembly using the same, and fuel cell
JP3931027B2 (en) Solid polymer electrolyte, solid polymer electrolyte membrane using the same, electrode catalyst coating solution, membrane / electrode assembly, and fuel cell
JP2003142124A (en) Electrolyte film and solid high polymer type fuel cell using the same
JP3911120B2 (en) Solid polymer electrolyte, membrane thereof, electrode catalyst coating solution, membrane / electrode assembly using the same, and fuel cell
JPH06342666A (en) Solid high molecular type fuel cell
JP4324518B2 (en) Solid polymer electrolyte for fuel cell and membrane / electrode assembly for fuel cell using the same
JP4591029B2 (en) Method for producing electrode catalyst for fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060515

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060515

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071016