JP2005209361A - Polyelectrolyte film, its manufacturing method, film-electrode connector for fuel cell and fuel cell - Google Patents

Polyelectrolyte film, its manufacturing method, film-electrode connector for fuel cell and fuel cell Download PDF

Info

Publication number
JP2005209361A
JP2005209361A JP2004011529A JP2004011529A JP2005209361A JP 2005209361 A JP2005209361 A JP 2005209361A JP 2004011529 A JP2004011529 A JP 2004011529A JP 2004011529 A JP2004011529 A JP 2004011529A JP 2005209361 A JP2005209361 A JP 2005209361A
Authority
JP
Japan
Prior art keywords
polymer
fuel cell
membrane
electrolyte
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004011529A
Other languages
Japanese (ja)
Inventor
Nobuo Oya
修生 大矢
Hiroshi Harada
浩志 原田
Takehisa Yamaguchi
猛央 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2004011529A priority Critical patent/JP2005209361A/en
Publication of JP2005209361A publication Critical patent/JP2005209361A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polyelectrolyte film which has little swelling by water, methanol, etc. and a method of manufacturing the same and to provide a film-electrode connector for a fuel cell showing good fuel cell characteristics and the fuel cell. <P>SOLUTION: The polyelectrolyte film is formed by filling up an electrolyte polymer with the state of a polymer in pores of a polyimide porous membrane, and has a proton conductivity with 60°C, a relative humidity of 95% of 4.0×10<SP>-2</SP>S/cm to 1.0 S/cm. The method of manufacturing the polyelectrolyte includes a step of immersing the polyimide porous membrane into the liquid-like article of the electrolyte polymer having a proton conduction function, a step of performing a pressure reducing operation in the immersed state, and a step of filling up the electrolyte polymer into the pores of the polyimide porous membrane. The film-electrode connector, a solid polymer type fuel cell and a direct methanol type fuel cell each uses the polyelectrolyte film. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、高分子電解質膜、その製造方法、燃料電池用膜−電極接合体、固体高分子形燃料電池及び直接メタノ−ル形燃料電池に関するものである。   The present invention relates to a polymer electrolyte membrane, a production method thereof, a membrane-electrode assembly for a fuel cell, a solid polymer fuel cell, and a direct methanol fuel cell.

燃料電池用電解質膜として、パ−フロロスルホン酸膜や炭化水素系高分子電解質膜が多く検討されている。しかし、耐熱性、燃料バリア性、力学的強度、価格、環境などの点から、まだ多くの問題を有している。
高分子電解質膜の耐熱性や強度を高め、また、燃料の透過性を調節する方法として、多孔基材に高分子電解質を充填する方法は有用である。
Many perfluorosulfonic acid membranes and hydrocarbon polymer electrolyte membranes have been studied as electrolyte membranes for fuel cells. However, it still has many problems in terms of heat resistance, fuel barrier properties, mechanical strength, price, environment, and the like.
As a method for increasing the heat resistance and strength of the polymer electrolyte membrane and adjusting the fuel permeability, a method of filling a porous substrate with a polymer electrolyte is useful.

例えば、オレフィン多孔基材に高分子電解質が充填されたもの(特許文献1)や、フッ素系多孔基材に高分子電解質が充填されたものが知られている(特許文献2、特許文献3)。しかし、これらの多孔基材は、耐熱性や燃料透過性が不十分であり、フッ素系多孔基材では、その製造時あるいは廃棄時に環境負荷が大きい問題もある。耐熱性炭化水素系高分子からなる多孔基材を用いた高分子電解質膜として、例えば、芳香族ポリアミド系多孔基材にパ−フルオロスルホン酸系電解質を充填したものが知られている(特許文献4)が、フッ素系電解質の使用は、前述したように価格や環境などに問題がある。   For example, one in which a polymer electrolyte is filled in an olefin porous substrate (Patent Document 1) and one in which a polymer electrolyte is filled in a fluorine-based porous substrate are known (Patent Document 2, Patent Document 3). . However, these porous substrates are insufficient in heat resistance and fuel permeability, and the fluorine-based porous substrate has a problem that the environmental load is large at the time of production or disposal. As a polymer electrolyte membrane using a porous substrate made of a heat-resistant hydrocarbon polymer, for example, an aromatic polyamide porous substrate filled with a perfluorosulfonic acid electrolyte is known (patent document) 4) However, the use of a fluorine-based electrolyte has problems in price and environment as described above.

また、芳香族ポリイミド系多孔基材に、主にビニル系ポリマ−電解質を充填したものが知られている(特許文献5)が、ビニル系ポリマ−電解質は、耐熱性が低く、耐ラジカル性にも乏しい。また種々の多孔膜にスルホン化されたポリマ−を充填したものが知られている(特許文献6、特許文献7)。しかし、浸透させる高分子電解質溶液はその溶液の粘度が高い、耐熱性高分子多孔基材との親和性が乏しいなどの原因により、簡単に耐熱性高分子多孔基材に高分子電解質を充填することができず、得られる電解質膜のプロトン伝導率が概して低い。また、均質に高分子電解質を充填することが難しく、工業的に大きな課題である。   In addition, it is known that an aromatic polyimide-based porous substrate is mainly filled with a vinyl polymer electrolyte (Patent Document 5). However, the vinyl polymer electrolyte has low heat resistance and is resistant to radicals. Is also scarce. Also, various porous membranes filled with sulfonated polymers are known (Patent Documents 6 and 7). However, the polymer electrolyte solution to be permeated easily fills the heat-resistant polymer porous substrate with the polymer electrolyte due to the high viscosity of the solution or poor affinity with the heat-resistant polymer porous substrate. And the proton conductivity of the resulting electrolyte membrane is generally low. In addition, it is difficult to uniformly fill the polymer electrolyte, which is a big industrial issue.

そして、燃料電池、特に固体高分子形燃料電池、直接メタノ−ル形燃料電池において、長期使用の際に問題となる電解質膜の水やメタノ−ル等のアルコ−ル類による膨潤あるいは水素やメタノ−ル燃料のアノ−ドからカソ−ドへの透過は起電力の低下や燃料効率の低下をもたらし問題である。   In fuel cells, particularly solid polymer fuel cells and direct methanol fuel cells, electrolyte membranes that pose a problem during long-term use, such as swelling with alcohols such as water and methanol, or hydrogen and methanol. -Permeation of fuel fuel from anode to cathode is problematic because it causes a decrease in electromotive force and a decrease in fuel efficiency.

特開平1−22932号公報JP-A-1-22932 特開平6−29032号公報JP-A-6-29032 特開平9−194609号公報JP-A-9-194609 特開2002−358979号公報JP 2002-358879 A 特開2002−083612号公報JP 2002-083612 A 特表2001−514431号公報JP-T-2001-514431 米国特許第6248469号明細書US Pat. No. 6,248,469

本発明の目的は、耐熱性のある多孔基材に耐熱性のある高分子電解質が充填されてプロトン伝導率が高く水などにより膨潤の少ない高分子電解質膜、その製造方法、良好な燃料電池特性を示す燃料電池用膜−電極接合体、固体高分子形燃料電池及び直接メタノ−ル形燃料電池を提供することを目的とする。   An object of the present invention is to provide a polymer electrolyte membrane in which a heat-resistant porous substrate is filled with a heat-resistant polymer electrolyte and has a high proton conductivity and is less swollen by water, a production method thereof, and good fuel cell characteristics. It is an object of the present invention to provide a fuel cell membrane-electrode assembly, a polymer electrolyte fuel cell, and a direct methanol fuel cell.

この発明は、ポリイミド多孔質膜の細孔内にプロトン伝導機能を有する電解質ポリマ−がポリマ−の状態で充填されてなり、60℃、相対湿度95%でのプロトン伝導率が4.0×10−2S/cm以上1.0S/cm以下である高分子電解質膜に関する。 In the present invention, an electrolyte polymer having a proton conduction function is filled in the pores of a polyimide porous membrane in a polymer state, and the proton conductivity at 60 ° C. and a relative humidity of 95% is 4.0 × 10. -2 relates to a polymer electrolyte membrane having a S / cm or more and 1.0 S / cm or less.

また、この発明は、プロトン伝導機能を有する電解質ポリマ−の液状物中にポリイミド多孔質膜を浸漬し、浸漬した状態で減圧操作を行って電解質ポリマ−をポリイミド多孔質膜の細孔内に充填する60℃、相対湿度95%でのプロトン伝導率が4.0×10−2S/cm以上1.0S/cm以下である高分子電解質膜の製造方法に関する。 Also, the present invention immerses the polyimide porous membrane in a liquid electrolyte polymer having a proton conducting function, and performs the decompression operation in the immersed state to fill the pores of the polyimide porous membrane with the electrolyte polymer. The present invention relates to a method for producing a polymer electrolyte membrane having a proton conductivity of 4.0 × 10 −2 S / cm to 1.0 S / cm at 60 ° C. and a relative humidity of 95%.

さらに、この発明は、上記の高分子電解質膜に燃料電池用電極を接合してなる燃料電池用膜−電極接合体に関する。
さらに、この発明は、上記の燃料電池用膜−電極接合体を構成要素とする固体高分子形燃料電池及び上記の燃料電池用膜−電極接合体を構成要素とする直接メタノ−ル径燃料電池に関する。
Furthermore, the present invention relates to a fuel cell membrane-electrode assembly formed by joining a fuel cell electrode to the above polymer electrolyte membrane.
Furthermore, the present invention provides a solid polymer fuel cell having the fuel cell membrane-electrode assembly as a constituent element and a direct methanol fuel cell having the fuel cell membrane-electrode assembly constituent element. About.

この発明によれば、プロトン伝導率(イオン伝導率ということもある。)が高く水などによる膨潤の少ない高分子電解質膜、良好な燃料電池特性を示す燃料電池用膜−電極接合体、固体高分子形燃料電池及び直接メタノ−ル形燃料電池を得ることができる。
また、この発明によれば、前記の特長を有する高分子電解質膜を容易に得ることができる。
According to the present invention, a polymer electrolyte membrane having a high proton conductivity (sometimes referred to as an ionic conductivity) and less swollen by water or the like, a fuel cell membrane-electrode assembly exhibiting good fuel cell characteristics, a solid high Molecular fuel cells and direct methanol fuel cells can be obtained.
Moreover, according to this invention, the polymer electrolyte membrane which has the said characteristics can be obtained easily.

以下にこの発明の好ましい態様を列記する。
1)プロトン伝導機能を有する電解質ポリマ−が、スルホン化ポリエ−テルスルホンである前記の高分子電解質膜。
2)さらに、少なくともその片面に電解質層を有する前記の高分子電解質膜。
3)ポリイミド多孔質膜が、3,3’,4,4’−ビフェニルテトラカルボン酸成分を主なテトラカルボン酸成分とする化学構造を有する前記の高分子電解質膜。
4)プロトン伝導機能を有する電解質ポリマ−の液状物が、プロトン伝導機能を有する電解質ポリマ−の溶融物または溶液であって応力とせん断速度の関係においてニュ−トン粘性を示す前記の高分子電解質膜の製造方法。
5)上記の製造方法によって得られる前記の高分子電解質膜。
The preferred embodiments of the present invention are listed below.
1) The polymer electrolyte membrane as described above, wherein the electrolyte polymer having a proton conduction function is sulfonated polyethersulfone.
2) Further, the polymer electrolyte membrane having an electrolyte layer on at least one surface thereof.
3) The polymer electrolyte membrane as described above, wherein the polyimide porous membrane has a chemical structure having a 3,3 ′, 4,4′-biphenyltetracarboxylic acid component as a main tetracarboxylic acid component.
4) The polymer electrolyte membrane as described above, wherein the electrolyte polymer liquid having a proton conduction function is a melt or solution of an electrolyte polymer having a proton conduction function and exhibits a Newtonian viscosity in the relationship between stress and shear rate. Manufacturing method.
5) The polymer electrolyte membrane obtained by the above production method.

この発明においては、ポリイミド多孔質膜を多孔質基材として使用する。多孔質基材としてポリイミド多孔質膜を使用することによって水やアルコ−ル類、例えばメタノ−ルによる寸法変化を効果的に抑制することが可能となり、電解質膜のこれらによる膨潤を防止ないしは抑制することができる。
前記のポリイミド多孔質膜とは芳香族ポリイミドを基材とする多孔質膜をいう。
In this invention, a polyimide porous membrane is used as the porous substrate. By using a polyimide porous membrane as a porous substrate, it becomes possible to effectively suppress dimensional changes due to water and alcohols such as methanol, and prevent or suppress swelling of the electrolyte membrane due to these. be able to.
The said polyimide porous membrane means the porous membrane which uses an aromatic polyimide as a base material.

前記のポリイミド多孔質膜としては、テトラカルボン酸成分、例えば3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、ピロメリット酸二無水物などの芳香族テトラカルボン酸二無水物とジアミン成分、例えばオキシジアニリン、ジアミノジフエニルメタン、パラフエニレンジアミンなどの芳香族ジアミンとをN−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミドなどの有機溶媒中で重合して得られたポリアミック酸溶液を多孔質化する方法、例えばポリアミック酸溶液を平坦な基板上に流延して溶媒置換速度調整材と接触させた後に水などの凝固液中に浸漬する方法によって、あるいはポリイミドの前駆体のポリマ−溶液を基板の上に流延し、流延物上に可溶性溶媒もしくは非溶媒からなる保護溶媒層、例えばメタノ−ル、エタノ−ル、プロパノ−ル、N−メチルピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、ジメチルスルホキシド、ジグライム、トリグライムまたはそのいずれかの混合物を主成分とする溶媒からなる保護層を積層し、ポリマ−溶液と保護溶媒層とが完全には混じり合わずに濃度勾配を有する状態を保ちつつ、流延物上に保護溶媒層を積層した後0.5秒以上600秒以内に積層溶液物を凝固液に浸漬する方法など種々の方法によってポリイミド前駆体多孔質フィルムとした後、ポリイミド前駆体多孔質フィルムの両端を固定して大気中で280〜500℃で5〜60分間加熱することによって得ることができる。前記の芳香族テトラカルボン酸二無水物の一部(10モル%以下)をトリメリット酸無水物で置き換えてもよい。
前記のポリイミド前駆体としては、極限粘度が2.0以上、特に2.7以上8.0以下であるものが好ましい。
Examples of the polyimide porous membrane include tetracarboxylic acid components such as aromatic tetracarboxylic dianhydrides such as 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, pyromellitic dianhydride, and the like. Diamine component, for example, aromatic diamine such as oxydianiline, diaminodiphenylmethane, paraphenylenediamine, etc. in organic solvent such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide A method of making a polyamic acid solution obtained by polymerization in a porous manner, for example, casting a polyamic acid solution on a flat substrate and bringing it into contact with a solvent displacement rate adjusting material, followed by immersion in a coagulating liquid such as water The polymer solution of the polyimide precursor is cast on a substrate by a method, and a soluble solvent or non-solvent is formed on the cast. Mainly a protective solvent layer, for example methanol, ethanol, propanol, N-methylpyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide, diglyme, triglyme or any mixture thereof After a protective layer made of a solvent as a component is laminated, the protective layer is laminated on the casting while maintaining a state in which the polymer solution and the protective solvent layer are not completely mixed and have a concentration gradient. After the polyimide precursor porous film is formed by various methods such as a method of immersing the laminated solution in the coagulating liquid within 5 seconds to 600 seconds, both ends of the polyimide precursor porous film are fixed in the atmosphere at 280 to It can be obtained by heating at 500 ° C. for 5 to 60 minutes. A part (10 mol% or less) of the aromatic tetracarboxylic dianhydride may be replaced with trimellitic anhydride.
As the polyimide precursor, those having an intrinsic viscosity of 2.0 or more, particularly 2.7 or more and 8.0 or less are preferable.

前記のポリイミド多孔質膜としては、膜(フィルム)の両面間でガスおよび液体(例えばアルコ−ルなど)が透過できる通路を有するもので、空孔率が好適には5〜95%、好ましくは10〜90%、より好ましくは10%〜80%、最も好ましくは20〜80%であるのがよい。
また、平均細孔径が0.001〜100μm、好ましくは0.01〜10μm、より好ましくは0.01μm〜1μm、特に0.05〜1μmの範囲内にあるのがよい。さらに、膜の厚さが5〜300μm、特に5〜100μm、さらに10〜80μmであるのがよい。多孔膜の空孔率、平均細孔径、及び膜厚は、得られる膜の強度、応用する際の特性、例えば電解質膜として用いる際の特性などの点から、設計するのがよい。
The polyimide porous membrane has a passage through which gas and liquid (for example, alcohol) can pass between both surfaces of the membrane (film), and the porosity is preferably 5 to 95%, preferably It should be 10 to 90%, more preferably 10% to 80%, and most preferably 20 to 80%.
The average pore diameter is preferably 0.001 to 100 μm, preferably 0.01 to 10 μm, more preferably 0.01 μm to 1 μm, and particularly preferably 0.05 to 1 μm. Further, the thickness of the film is preferably 5 to 300 μm, particularly 5 to 100 μm, and more preferably 10 to 80 μm. The porosity, average pore diameter, and film thickness of the porous membrane are preferably designed from the viewpoint of the strength of the obtained membrane and the characteristics when applied, for example, the characteristics when used as an electrolyte membrane.

この発明におけるプロトン伝導機能を有する電解質ポリマ−としては、スルホン酸基などの極性基を有するプロトン伝導性ポリマ−が挙げられる。
前記のプロトン伝導性能を有する電解質ポリマ−としては、スルホン酸基と芳香族環を有するポリマ−、好適にはスルホン化ポリエ−テルスルホンを挙げることができる。
Examples of the electrolyte polymer having a proton conducting function in the present invention include proton conducting polymers having polar groups such as sulfonic acid groups.
Examples of the electrolyte polymer having proton conductivity include a polymer having a sulfonic acid group and an aromatic ring, preferably a sulfonated ether sulfone.

前記のスルホン化ポリエ−テルスルホンは、例えば特公昭42−7799号公報、特公昭45−21318号公報、特開昭48−19700号公報などに記載の方法で製造できる。すなわち、有機極性溶媒中、アルカリ金属化合物の存在下にビス(ハロゲノフェニル)スルホン化合物と二価フェノ−ル化合物とを重縮合させる、あるいは、あらかじめ合成した二価フェノ−ルのアルカリ金属二塩とビス(ハロゲノフェニル)スルホン化合物とを重縮合させることにより製造することができる。 The sulfonated polyethersulfone can be produced, for example, by the method described in JP-B-42-7799, JP-B-45-21318, JP-A-48-19700, and the like. That is, in an organic polar solvent, a bis (halogenophenyl) sulfone compound and a divalent phenol compound are polycondensed in the presence of an alkali metal compound, or an alkali metal disalt of a divalent phenol synthesized in advance. It can be produced by polycondensation with a bis (halogenophenyl) sulfone compound.

前記の有機極性溶媒としては、重縮合温度において生成重合体を溶解すれば特に制限はない。例えば、ジメチルスルホキシド、ジエチルスルホキシドなどのスルホキシド系溶媒、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドなどのアミド系溶媒、N-メチル-2-ピロリドン、N-ビニル-2-ピロリドンなどのピロリドン系溶媒、N-メチル-2-ピペリドンなどのピペリドン系溶媒、1,3-ジメチル-2-イミダゾリノン、1,3-ジエチル-2-イミダゾリノンなどの2-イミダゾリノン系溶媒、ヘキサメチレンスルホキシド、γ−ブチロラクトン、スルホラン、ジフェニルエ−テル、ジフェニルスルホンなどのジフェニル化合物が挙げられる。   The organic polar solvent is not particularly limited as long as the produced polymer is dissolved at the polycondensation temperature. For example, sulfoxide solvents such as dimethyl sulfoxide and diethyl sulfoxide, amide solvents such as N, N-dimethylformamide and N, N-dimethylacetamide, pyrrolidones such as N-methyl-2-pyrrolidone and N-vinyl-2-pyrrolidone Solvents, piperidone solvents such as N-methyl-2-piperidone, 1,3-dimethyl-2-imidazolinone, 2-imidazolinone solvents such as 1,3-diethyl-2-imidazolinone, hexamethylene sulfoxide, Examples thereof include diphenyl compounds such as γ-butyrolactone, sulfolane, diphenyl ether, and diphenyl sulfone.

前記のアルカリ金属化合物としては、アルカリ金属、アルカリ金属炭酸塩、アルカリ金属水酸化物、アルカリ金属水素化物、あるいはアルカリ金属アルコキシドなどが挙げられる。特に炭酸カリウム、炭酸ナトリウムなどのアルカリ金属炭酸塩が好ましい。アルカリ金属化合物は、重縮合反応前に、あらかじめ窒素ガス等の不活性ガス中、60〜500℃で、常圧あるいは減圧下、1分間以上加熱処理したもの、N,N-ジメチルアセトアミド及び共沸溶媒中に分散したものを使用してもよい。   Examples of the alkali metal compound include alkali metals, alkali metal carbonates, alkali metal hydroxides, alkali metal hydrides, and alkali metal alkoxides. In particular, alkali metal carbonates such as potassium carbonate and sodium carbonate are preferred. Prior to polycondensation reaction, the alkali metal compound is pre-heated in an inert gas such as nitrogen gas at 60 to 500 ° C. under normal pressure or reduced pressure for 1 minute or more, N, N-dimethylacetamide and azeotrope What was disperse | distributed in the solvent may be used.

前記のビス(ハロゲノフェニル)スルホン化合物としては、ビス(ハロゲノフェニル)スルホン、例えば、ビス(4−クロルフェニル)スルホン、ビス(4−フルオロフェニル)スルホンなどのビス(ハロゲノフェニル)スルホン類、1,4-ビス(4-クロルフェニルスルホニル)ベンゼン、1,4-ビス(4-フルオロフェニルスルホニル)ベンゼンなどのビス(ハロゲノフェニルスルホニル)ベンゼン類、4,4'-ビス(4-クロルフェニルスルホニル)ビフェニル、4,4'-ビス(4-フルオロフェニルスルホニル)ビフェニルなどのビス(ハロゲノフェニルスルホニル)ビフェニル類、などが挙げられる。特に、ビス(4−クロルフェニル)スルホン、ビス(4−フルオロフェニル)スルホンなどのビス(ハロゲノフェニル)スルホン類が好ましい。上記のビス(ハロゲノフェニル)化合物は、二種類以上混合して用いることができる。   Examples of the bis (halogenophenyl) sulfone compound include bis (halogenophenyl) sulfone, for example, bis (halogenophenyl) sulfones such as bis (4-chlorophenyl) sulfone and bis (4-fluorophenyl) sulfone, Bis (halogenophenylsulfonyl) benzenes such as 4-bis (4-chlorophenylsulfonyl) benzene and 1,4-bis (4-fluorophenylsulfonyl) benzene, 4,4'-bis (4-chlorophenylsulfonyl) biphenyl Bis (halogenophenylsulfonyl) biphenyls such as 4,4′-bis (4-fluorophenylsulfonyl) biphenyl, and the like. In particular, bis (halogenophenyl) sulfones such as bis (4-chlorophenyl) sulfone and bis (4-fluorophenyl) sulfone are preferred. The above bis (halogenophenyl) compounds can be used in combination of two or more.

前記の二価フェノ−ル化合物としては、ハイドロキノン、カテコ−ル、レゾルシン、4,4'-ビフェノ−ルの他に、2,2-ビス(4-ヒドロキシフェニル)プロパン、ビス(4-ヒドロキシフェニル)メタンなどのビス(ヒドロキシフェニル)アルカン類、4,4'-ジヒドロキシジフェニルスルホンなどのジヒドロキシジフェニルスルホン類、ジヒドロキシジフェニルエーテル類、ジヒドロキシジフェニルシクロアルカン類、あるいはそれらのベンゼン環の水素の少なくとも一つが、メチル基、エチル基、プロピル基などの低級アルキル基、メトキシ基、エトキシ基などの低級アルコキシ基、あるいは、塩素、臭素、フッ素などのハロゲンで置換されたものが挙げられる。特に、ハイドロキノン、4,4'−ビフェノ−ル、2,2'−ビス(4−ヒドロキシフェニル)プロパン、4,4'−ジヒドロキシジフェニルスルホンが好ましい。上記の二価フェノ−ル合物は、二種類以上混合して用いることができる。   Examples of the divalent phenol compounds include hydroquinone, catechol, resorcin, 4,4′-biphenol, 2,2-bis (4-hydroxyphenyl) propane, and bis (4-hydroxyphenyl). ) Bis (hydroxyphenyl) alkanes such as methane, dihydroxydiphenyl sulfones such as 4,4'-dihydroxydiphenylsulfone, dihydroxydiphenyl ethers, dihydroxydiphenylcycloalkanes, or at least one hydrogen of the benzene ring is methyl Groups, lower alkyl groups such as ethyl group and propyl group, lower alkoxy groups such as methoxy group and ethoxy group, or those substituted with halogen such as chlorine, bromine and fluorine. In particular, hydroquinone, 4,4′-biphenol, 2,2′-bis (4-hydroxyphenyl) propane, and 4,4′-dihydroxydiphenyl sulfone are preferable. Two or more kinds of the above divalent phenol compounds can be mixed and used.

前記の各成分の使用量は特に制限はないが、アルカリ金属化合物の使用量は、二価フェノ−化合物のヒドロキシ基の1モル当量に対して、アルカリ金属1モル当量以上、特に1.1モル当量以上が好ましい。二価フェノ−の使用量は、ジハロゲノジフェニル化合物1モルに対して、1モル以上、特に1.1モル以上が好ましい。重合温度は、通常140〜340℃が好ましい。反応中に副生する水は不活性ガス気流と共に、あるいは、共沸脱水剤と共に系外に流去させることが好ましい。共沸脱水剤の例としては、ベンゼン、トルエン、キシレン、芳香族ハロゲン化合物が挙げられる。   The amount of each of the above components is not particularly limited, but the amount of the alkali metal compound used is 1 mol equivalent or more, especially 1.1 mol of the alkali metal with respect to 1 mol equivalent of the hydroxy group of the divalent pheno-compound. More than equivalent is preferable. The amount of divalent pheno- used is preferably 1 mol or more, particularly 1.1 mol or more, per 1 mol of the dihalogenodiphenyl compound. The polymerization temperature is usually preferably 140 to 340 ° C. Water produced as a by-product during the reaction is preferably washed out of the system together with an inert gas stream or with an azeotropic dehydrating agent. Examples of the azeotropic dehydrating agent include benzene, toluene, xylene, and aromatic halogen compounds.

ハロゲノジフェニル化合物と二価フェノ−とを重縮合して得られるスルホン化ポリエテ−スルホンの還元粘度は、好ましくは0.15以上、特に好ましくは0.2以上のものである。   The reduced viscosity of the sulfonated polyether-sulfone obtained by polycondensation of a halogenodiphenyl compound and divalent pheno- is preferably 0.15 or more, particularly preferably 0.2 or more.

また、前記のスルホン化ポリエ−テルスルホンとしては、特開2003−31232号公報に記載されているスルホン酸基を含有する親水性セグメントとスルホン酸基を含有しない疎水性セグメントとから疎水性セグメントの質量分率W1と親水性セグメントの質量分率W2との比が0.6<W2/W1<2.0の範囲にある芳香族ポリエ−テルスルホンブロック共重合体も挙げられる。該共重合体は、疎水性セグメント部位により耐久性、プロトン伝導性に対する湿度及び温度の影響が少ない点で優れており、好適に使用することができる。   Further, as the sulfonated polyethersulfone, the mass of the hydrophobic segment from the hydrophilic segment containing a sulfonic acid group and the hydrophobic segment not containing a sulfonic acid group described in JP-A-2003-32322 Aromatic polyethersulfone block copolymers in which the ratio of the fraction W1 to the mass fraction W2 of the hydrophilic segment is in the range of 0.6 <W2 / W1 <2.0 are also included. The copolymer is excellent in that it has less influence of humidity and temperature on durability and proton conductivity due to the hydrophobic segment site, and can be suitably used.

この発明の方法においては、スルホン化ポリエテ−スルホンなどのプロトン伝導機能を有する電解質ポリマ−とポリイミド多孔質膜とを組み合わせて使用すること及び電解質ポリマ−の液状物中にポリイミド多孔質膜を浸漬し、浸漬した状態で減圧操作を行った後、そのまま溶媒を揮発させて電解質ポリマ−をポリイミド多孔質膜の細孔内に充填することが必要であり、これによってプロトン伝導率が4.0×10−2S/cm以上1.0S/cm以下である高分子電解質膜を得ることができる。 In the method of the present invention, an electrolyte polymer having a proton conducting function such as sulfonated polyether sulfone and a polyimide porous membrane are used in combination, and the polyimide porous membrane is immersed in a liquid material of the electrolyte polymer. Then, after performing the pressure-reducing operation in the immersed state, it is necessary to volatilize the solvent as it is and to fill the electrolyte polymer into the pores of the polyimide porous membrane, whereby the proton conductivity is 4.0 × 10 × 10. A polymer electrolyte membrane having a density of −2 S / cm to 1.0 S / cm can be obtained.

前記のプロトン伝導機能を有する電解質ポリマ−を液状に保つには、プロトン伝導機能を有する電解質ポリマ−の溶融物または前記の極性有機溶媒に溶解した溶液のいずれであってもよい。これらの液状物は、応力とせん断速度の関係においてニュ−トン粘性を示すことが好ましい。ポリマ−の溶融物または溶液が非ニュ−トン性を示す領域では、ポリマ−の分子同士が絡み合うなどの種々の相互作用を発現しているために、ニュ−トン性を示す領域と比べ、濃度に対する溶液粘度の増加が著しくなること、ポリマ−分子の慣性半径の2倍より大きな細孔であっても分子が入りにくくなるなど、プロセス上不利益な現象が多々発生するため、細孔内へのポリマ−の均質充填が困難となる。 In order to keep the electrolyte polymer having the proton conduction function in a liquid state, it may be either a melt of the electrolyte polymer having the proton conduction function or a solution dissolved in the polar organic solvent. These liquid materials preferably exhibit Newtonian viscosity in the relationship between stress and shear rate. In the region where the polymer melt or solution exhibits non-Newtonian properties, the polymer molecules exhibit various interactions such as entanglement between the molecules. As the viscosity of the solution increases significantly, it is difficult to enter even if the pore is larger than twice the radius of inertia of the polymer molecule. It becomes difficult to uniformly fill the polymer.

電解質ポリマ−の溶液がニュ−トン性を示すかどうかは種々の因子によるために一該に論ずることはできないが、溶液濃度が小さければ小さい程、また分子量が小さければ小さい程、溶液はニュ−トン性を帯びる。従って、充填する電解質ポリマ−が予め決っている場合は、種々の種類によってもこの臨界濃度は変化するので、諸事情をあわせて考えて溶媒種と濃度とを決定することが好ましい。
さらに、電解質ポリマ−の分子量が小さければ小さいほど臨界濃度は高くなるので、より濃度の高い溶液を用いて充填を行いたい場合は、分子量の小さい電解質ポリマ−を用いればよい。
Whether the electrolyte polymer solution exhibits Newtonian properties depends on various factors, and cannot be discussed at all. However, the smaller the solution concentration and the smaller the molecular weight, the more the solution becomes newer. Ton characteristics. Accordingly, when the electrolyte polymer to be filled is determined in advance, the critical concentration varies depending on various types. Therefore, it is preferable to determine the solvent type and concentration in consideration of various circumstances.
Further, the smaller the molecular weight of the electrolyte polymer, the higher the critical concentration. Therefore, when filling with a higher concentration solution, an electrolyte polymer having a lower molecular weight may be used.

ポリイミド多孔質膜の細孔内に電解質ポリマ−を充填する方法は特に制限は無いが、電解質ポリマ−溶液を用いて充填を行う際には、最終形状においては溶媒は揮発等によって除くか、その分の体積収縮が起こる事を考慮することが必要である。すなわち、溶液で細孔を完全に埋めたとしても、そこから溶媒が除去されれば空間が生まれるということである。該電解質膜では電解質ポリマ−はプロトン伝導性を発現する為に膨潤を伴いながらある程度の水を吸収する必要があるので、電解質ポリマ−の膨潤しろとして細孔中に空間が必要であるが、空間が大きすぎるとその空間を伝わって燃料ガスである水素分子や酸素分子、また直接メタノ−ル形燃料電池においてはメタノ−ルがクロスオ−バ−してしまう。   The method of filling the electrolyte polymer in the pores of the polyimide porous membrane is not particularly limited. However, when filling with the electrolyte polymer solution, the solvent is removed by volatilization or the like in the final shape. It is necessary to consider the fact that minute volume shrinkage occurs. That is, even if the pores are completely filled with the solution, a space is created if the solvent is removed therefrom. In the electrolyte membrane, since the electrolyte polymer needs to absorb a certain amount of water with swelling in order to exhibit proton conductivity, a space is required in the pores as a margin for swelling of the electrolyte polymer. Is too large, hydrogen molecules and oxygen molecules, which are fuel gases, and methanol in the direct methanol fuel cell will cross over.

このため、例えば電解質ポリマ−溶液の中に多孔質膜を浸漬し、浸漬した状態で減圧操作を行って電解質ポリマ−をポリイミド多孔質膜の細孔内に充填する方法を採用することが好ましい。この方法に拠れば、溶媒は電解質ポリマ−溶液と最上部の表面から優先的に気化していくために、結果的に細孔内に電解質ポリマ−が凝集されていくことになるので、均質で高い充填率を達成することが出来る。また仕込みの電解質ポリマ−の量を調整すれば、多孔質膜両表面に所望の厚みの電解質ポリマ−層を形成することが可能である。   For this reason, for example, it is preferable to employ a method of immersing the porous membrane in an electrolyte polymer solution and performing a decompression operation in the immersed state to fill the electrolyte polymer into the pores of the polyimide porous membrane. According to this method, since the solvent is preferentially vaporized from the electrolyte polymer solution and the uppermost surface, the electrolyte polymer is agglomerated in the pores. A high filling rate can be achieved. Further, by adjusting the amount of charged electrolyte polymer, it is possible to form an electrolyte polymer layer having a desired thickness on both surfaces of the porous membrane.

また、以下のような方法によっても均質で高い充填率を達成することが出来る。以下、模式図である図1を用いて具体的に説明する。
1)平滑で平行が取れている基板2上に所定の厚みでプロトン伝導機能を有する電解質ポリマ−の液状物1を流延する。
2)その上に、基材である多孔質膜3を覆い被せる。
3)次いで、被せた多孔質膜内部に電解質ポリマ−の液状物が毛管現象により滲入し、多孔質膜が自発的に含浸される。この際、多孔質膜の上部が開口になっているので下部から電解質ポリマ−液状物が滲入していくのを妨げずに多孔質膜細孔内の空気が上部から抵抗無く膜の系外へ逃げ出すことが可能である。この段階で必要があれば減圧操作を加えて、概ね膜厚みの半分以上、好ましくは70%以上、より好ましくは85%以上まで電解質ポリマ−の液状物を細孔内部に滲入させる。必要であれば熱処理等を加えて一時的に電解質ポリマ−を固定化してもよい。
In addition, a uniform and high filling rate can be achieved by the following method. Hereinafter, it will be specifically described with reference to FIG.
1) An electrolyte polymer liquid 1 having a proton conduction function is cast on a smooth and parallel substrate 2 with a predetermined thickness.
2) The porous film 3 as a base material is covered thereon.
3) Next, the electrolyte polymer liquid is infiltrated into the covered porous membrane by capillary action, and the porous membrane is spontaneously impregnated. At this time, since the upper part of the porous membrane is an opening, the air in the pores of the porous membrane can be removed from the upper part of the membrane without resistance without preventing the electrolyte polymer liquid from infiltrating from the lower part. It is possible to escape. If necessary at this stage, a decompression operation is performed, and the electrolyte polymer liquid is infiltrated into the pores to approximately more than half of the film thickness, preferably 70% or more, more preferably 85% or more. If necessary, heat treatment or the like may be applied to temporarily fix the electrolyte polymer.

4)次いで、膜の上部からプロトン伝導機能を有する電解質ポリマ−の液状物4を一定の厚みで流延して多孔質膜を完全に被覆する。流延長の際、スペ−サ−やドクタ−ナイフ、コ−タ−を用いて行う。このプロセス段階においては、必要に応じて減圧操作を加えても良い。
以上の工程からなる方法によって、多孔質膜中へ電解質ポリマ−を均質に充填することも可能である。前記の方法において、多孔質膜の細孔内に電解質ポリマ−を充填した後に、熱プレスにより作製した膜の平滑性を向上させることが好ましい。
4) Next, the electrolyte polymer liquid 4 having a proton conduction function is cast from the upper part of the membrane with a certain thickness to completely cover the porous membrane. When the flow is extended, a spacer, doctor knife or coater is used. In this process step, a decompression operation may be added as necessary.
It is also possible to uniformly fill the porous membrane with the electrolyte polymer by the method comprising the above steps. In the above method, it is preferable to improve the smoothness of the membrane produced by hot pressing after the electrolyte polymer is filled in the pores of the porous membrane.

また、電極と接合することを考え合わせると、電解質ポリマ−を充填した多孔質膜の両表面に電解質ポリマ−層が形成されていることが好ましい。プロトン伝導性を有さない剛直な多孔質基材が表面に現れていると、電極との接着性、触媒利用効率、耐久性の面から不利である。本発明の手法に拠れば、後からコ−ティング等の操作を施さずに細孔内の電解質と界面フリ−な連続層として電解質ポリマ−層を多孔質基材の両表面に形成することが出来るので、膜の特性上及び工業プロセス的に有利である。   In consideration of joining with the electrode, it is preferable that an electrolyte polymer layer is formed on both surfaces of the porous film filled with the electrolyte polymer. If a rigid porous substrate having no proton conductivity appears on the surface, it is disadvantageous in terms of adhesion to electrodes, catalyst utilization efficiency, and durability. According to the method of the present invention, an electrolyte polymer layer can be formed on both surfaces of a porous substrate as an interface-free continuous layer with the electrolyte in the pores without any subsequent operation such as coating. This is advantageous in terms of film characteristics and industrial processes.

この発明の電解質膜は、好適には25℃におけるメタノ−ルの透過係数の逆数が0.01mh/kgμm以上10.0mh/kgμm以下である。特に、25℃における乾燥状態と湿潤状態での面積変化率が10%以下(0〜10%ということ)である。
前記の電解質膜の面積変化率は、その値が大きいと膜と電極との界面に損傷を及ぼす要因であるため、電池のオン−オフによる性能安定性、耐久性などの面で電池性能を大きく左右するもので、0%以上で小さい程好ましい。
前記のプロトン伝導率、メタノ−ルの透過係数の逆数および乾燥状態と湿潤状態での面積変化率が前記範囲外であると、燃料電池用電解質膜として好ましくない。
前記の電解質膜は、カソ−ド極およびアノ−ド極で挟んで構成して、固体高分子形燃料電池及び直接メタノ−ル形型燃料電池とする。
In the electrolyte membrane of the present invention, the reciprocal of the methanol permeability coefficient at 25 ° C. is preferably 0.01 m 2 h / kg μm or more and 10.0 m 2 h / kg μm or less. In particular, the area change rate in a dry state and a wet state at 25 ° C. is 10% or less (0 to 10%).
Since the area change rate of the electrolyte membrane is a factor that damages the interface between the membrane and the electrode when the value is large, the battery performance is greatly improved in terms of performance stability and durability due to on / off of the battery. It is important, and is preferably as small as 0% or more.
When the proton conductivity, the reciprocal of the methanol permeability coefficient, and the area change rate between the dry state and the wet state are out of the above ranges, it is not preferable as an electrolyte membrane for a fuel cell.
The electrolyte membrane is sandwiched between a cathode electrode and an anode electrode to form a solid polymer fuel cell and a direct methanol fuel cell.

この発明の電解質膜を構成要素とする電解質膜−電極接合体は、前記の電解質膜の両面に貴金属を含む触媒層を形成して得られる。
前記の貴金属としては、パラジウム、白金、ロジウム、ルテニウムおよびイリジウムよりなる群から選ばれる1種、及びこれらの物質の合金、各々の組合せ又は他の遷移金属との組合せのいずれかが挙げられる。
The electrolyte membrane-electrode assembly having the electrolyte membrane of the present invention as a constituent element is obtained by forming a catalyst layer containing a noble metal on both surfaces of the electrolyte membrane.
Examples of the noble metal include one selected from the group consisting of palladium, platinum, rhodium, ruthenium, and iridium, and alloys of these substances, combinations of each, or combinations with other transition metals.

前記貴金属粒子をカ−ボンブラック等の炭素微粒子に担持したものが触媒として使用される。
前記の貴金属微粒子が担持され炭素微粒子は、貴金属を10質量%〜60質量%を含むものが好適である。
電極触媒を導電性材料に担持する方法として、電極触媒成分の金属の酸化物、複合酸化物などのコロイド粒子を含む水溶液や、塩化物、硝酸塩、硫酸塩等の塩を含む水溶液に導電性材料を浸漬して、これらの金属成分を導電性材料に担持させる方法が挙げられる。担持後は、必要に応じて、水素、ホルムアルデヒド、ヒドラジン、ギ酸塩、水素化ホウ素ナトリウム等の還元剤を用いて還元処理を行ってもよい。また、導電性材料の親水性官能基がスルホン酸基などの酸性基である場合には、上記の金属塩の水溶液に導電性材料を浸漬して、イオン交換により導電性材料に金属成分を取り込んだ後、上記の還元剤を用いて還元処理を行ってもよい。
また、貴金属微粒子が担持された炭素微粒子とともに高分子電解質および/またはオリゴマ−電解質(イオノマ−)を併用することが好ましい。
A catalyst in which the noble metal particles are supported on carbon fine particles such as carbon black is used.
The carbon fine particles on which the noble metal fine particles are supported preferably include 10% by mass to 60% by mass of the noble metal.
As a method for supporting an electrode catalyst on a conductive material, the conductive material can be used in an aqueous solution containing colloidal particles such as metal oxide or composite oxide of an electrode catalyst component, or an aqueous solution containing a salt such as chloride, nitrate or sulfate. And a method in which these metal components are supported on a conductive material. After the loading, if necessary, reduction treatment may be performed using a reducing agent such as hydrogen, formaldehyde, hydrazine, formate, sodium borohydride or the like. In addition, when the hydrophilic functional group of the conductive material is an acidic group such as a sulfonic acid group, the conductive material is immersed in an aqueous solution of the above metal salt, and the metal component is taken into the conductive material by ion exchange. Thereafter, the reduction treatment may be performed using the above reducing agent.
Further, it is preferable to use a polymer electrolyte and / or an oligomer electrolyte (ionomer) together with the carbon fine particles on which the noble metal fine particles are supported.

また、電解質膜−電極接合体(MEA)は、前記の貴金属微粒子が担持され炭素微粒子および場合により高分子電解質あるいはオリゴマ−電解質(イオノマ−)を溶媒に均一分散させた触媒層形成用ペ−ストを使用して、電解質膜の両面全面あるいは所定形状に触媒層を形成する方法によって得られる。
前記の高分子電解質あるいはオリゴマ−電解質としては、プロトン伝導率をもつ任意のポリマ−又はオリゴマ−、又は酸又は塩基と反応してプロトン伝導率をもつポリマ−又はオリゴマ−を生ずる任意のポリマ−又はオリゴマ−を挙げることができる。
The electrolyte membrane-electrode assembly (MEA) is a paste for forming a catalyst layer in which the above-mentioned noble metal fine particles are supported and carbon fine particles and optionally a polymer electrolyte or an oligomer electrolyte (ionomer) are uniformly dispersed in a solvent. Is used to form the catalyst layer on the entire surface of the electrolyte membrane or in a predetermined shape.
The polyelectrolyte or oligomer electrolyte may be any polymer or oligomer having proton conductivity, or any polymer or oligomer that reacts with an acid or base to produce a polymer or oligomer having proton conductivity. There may be mentioned oligomers.

適当な高分子電解質あるいはオリゴマ−電解質としては、プロトン又は塩の形態でスルホン酸基等のペンダントイオン交換基を持つフルオロポリマ−、例えばスルホン酸フルオロポリマ−例えばナフィオン(デュポン社登録商標)、スルホン酸フルオロオリゴマ−やスルホン化ポリイミド、スルホン化オリゴマ−等が挙げられる。
前記の高分子電解質あるいはオリゴマ−電解質は100℃以下の温度で実質的に水に不溶性であることが必要である。
前記の触媒層形成用ペ−ストとしては前記の触媒粒子と液状高分子電解質とを混合して触媒粒子表面を高分子電解質で被覆し、さらにフッ素樹脂を混合したものが好適である。
Suitable polyelectrolytes or oligomer electrolytes include fluoropolymers having pendant ion exchange groups such as sulfonic acid groups in the form of protons or salts, such as sulfonic acid fluoropolymers such as Nafion (registered trademark of DuPont), sulfonic acid Examples thereof include fluoro oligomers, sulfonated polyimides, and sulfonated oligomers.
The polymer electrolyte or oligomer electrolyte needs to be substantially insoluble in water at a temperature of 100 ° C. or lower.
The paste for forming the catalyst layer is preferably a mixture obtained by mixing the catalyst particles and the liquid polymer electrolyte, covering the surfaces of the catalyst particles with the polymer electrolyte, and further mixing a fluororesin.

前記の触媒組成物インクの製造に使用される適当な溶媒としては、炭素数1−6のアルコ−ル、グリセリン、エチレンカ−ボネ−ト、プロピレンカ−ボネ−ト、ブチルカ−ボネ−ト、エチレンカルバメ−ト、プロピレンカルバメ−ト、ブチレンカルバメ−ト、アセトン、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、1−メチル−2−ピロリドン及びスルホラン等の極性溶媒が挙げられる。有機溶媒は単独で使用してもよくまた水との混合液として使用してもよい。   Suitable solvents for use in the preparation of the catalyst composition ink include alcohols having 1 to 6 carbon atoms, glycerin, ethylene carbonate, propylene carbonate, butyl carbonate, and ethylene. Examples thereof include polar solvents such as carbamate, propylene carbamate, butylene carbamate, acetone, acetonitrile, dimethylformamide, dimethylacetamide, 1-methyl-2-pyrrolidone and sulfolane. The organic solvent may be used alone or as a mixed solution with water.

前記のようにして得られる触媒層形成用ペ−ストを高分子電解質膜の片面側に、好適にはスクリ−ン印刷、ロ−ルコ−タ−、コンマコ−タ−などを用いて1回以上、好適には1〜5回程度塗布し、次いで他面側に、同様にして塗布し、乾燥することによって、あるいは前記触媒層形成用ペ−ストから形成される触媒シ−ト(フィルム)を加熱圧着して、高分子電解質膜の両面に触媒層を形成することによって電極を作製し、電解質膜−電極接合体を得ることができる。
また、東レ社製カ−ボンペ−パ−などのガス拡散層基材の上に、スクリ−ン印刷、ロ−ルコ−タ−等を使用して触媒層を形成した後、熱プレス等を用いて電解質膜と接合してもよい。
The paste for forming the catalyst layer obtained as described above is applied to one side of the polymer electrolyte membrane, preferably once or more using screen printing, a roll coater, a comma coater, or the like. The catalyst sheet (film) formed by applying the catalyst layer-forming paste is preferably applied about 1 to 5 times and then applied to the other side in the same manner and dried. An electrode can be produced by thermocompression bonding to form a catalyst layer on both sides of the polymer electrolyte membrane, thereby obtaining an electrolyte membrane-electrode assembly.
In addition, after forming a catalyst layer on the gas diffusion layer base material such as a carbon paper manufactured by Toray Industries, Inc. using screen printing, a roll coater, etc., a hot press or the like is used. And may be joined to the electrolyte membrane.

前記の電解質膜は、簡単な操作で多孔質膜の細孔内に電解質が充填され、寸法精度が高く水やメタノ−ルによって実質的に膨潤せず、固体高分子形燃料電池および直接メタノ−ル形燃料電池の構造体として好適なものである。
この発明の固体高分子形燃料電池あるいは直接メタノ−ル形燃料電池は、前記の電解質膜−電極接合体を構成要素することによって得られる。
また、導電性多孔基材上に、上記の触媒層形成用ペ−ストを用いて触媒層を形成することで電極を作製し、この電極を電解質膜とホットプレスを用いて接合する方法によっても、電解質膜−電極接合体を得ることができる。
The electrolyte membrane is filled with electrolyte in the pores of the porous membrane by a simple operation, has high dimensional accuracy, and does not substantially swell with water or methanol. This is suitable as a structure of a fuel cell.
The polymer electrolyte fuel cell or direct methanol fuel cell of the present invention can be obtained by constituting the electrolyte membrane-electrode assembly.
Also, an electrode is produced by forming a catalyst layer on the conductive porous substrate using the catalyst layer forming paste described above, and this electrode is joined to the electrolyte membrane using a hot press. An electrolyte membrane-electrode assembly can be obtained.

この発明においては、ポリイミド多孔質膜中の細孔内にプロトン伝導機能を有する電解質ポリマ−を高充填度で充填することが可能であり、メタノ−ルクロスオ−バ−を効果的に抑制することができしかも高いプロトン伝導率を達成することが可能である。この膜においては電解質の周辺が剛性の高い多孔質膜、特にポリイミド基材で拘束されていることにより、電解質の過剰な自由水による膨潤を抑制し、メタノ−ルのクロスオ−バ−をナフィオンなどの従来の電解質膜と比べて大幅に低減することができる。また電解質中の水またはメタノ−ル水溶液の凍結に伴う体積膨張を抑制するので、凍結が起こりにくい効果も期待できる。   In the present invention, it is possible to fill the pores in the polyimide porous membrane with an electrolyte polymer having a proton conduction function at a high filling degree, and to effectively suppress the methanol crossover. In addition, high proton conductivity can be achieved. In this membrane, the periphery of the electrolyte is constrained by a highly rigid porous membrane, especially a polyimide base material, so that swelling of the electrolyte due to excessive free water is suppressed, and methanol crossover is made Nafion, etc. As compared with the conventional electrolyte membrane, it can be greatly reduced. Moreover, since the volume expansion accompanying freezing of the water or methanol aqueous solution in electrolyte is suppressed, the effect that freezing does not occur easily can be expected.

以下、この発明を実施例および比較例により更に詳しく説明するが、この発明の範囲がこれらの例により限定されるものではない。
用いた多孔質膜の透気度、平均細孔径、及び得られた電解質膜のメタノ−ル透過性、プロトン伝導性および面積変化率は以下のように評価した。
Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples, but the scope of the present invention is not limited to these examples.
The air permeability, average pore diameter, and methanol permeability, proton conductivity, and area change rate of the obtained electrolyte membrane were evaluated as follows.

<透気性>
JIS P8117に準じて測定した。測定装置としてB型ガ−レ−デンソメ−タ−(東洋精機社製)を使用した。試料の膜を直径28.6mm、面積645mm2の円孔に締付け、内筒重量567gにより、筒内の空気を試験円孔部から筒外へ通過させる。空気100ccが通過する時間を測定し、透気度(ガ−レ−値)とした。
<平均細孔径>
バブルポイント法(ASTM F316、JISK3832)に基いて多孔質膜を評価した。PMI社のパ−ムポロメ−タ−を用いて、バブルポイント法による多孔質膜の貫通パス分布の測定を行った。また、平均細孔径は平均流量から逆算して求めた。
<Air permeability>
It measured according to JIS P8117. A B-type Galley densometer (manufactured by Toyo Seiki Co., Ltd.) was used as a measuring device. The sample membrane is clamped in a circular hole having a diameter of 28.6 mm and an area of 645 mm 2 , and air in the cylinder is passed from the test hole to the outside of the cylinder with an inner cylinder weight of 567 g. The time required for 100 cc of air to pass through was measured and used as the air permeability (Gurley value).
<Average pore diameter>
The porous membrane was evaluated based on the bubble point method (ASTM F316, JISK3832). Using a palm porometer from PMI, the penetration path distribution of the porous film was measured by the bubble point method. Further, the average pore diameter was obtained by calculating back from the average flow rate.

<メタノ−ル透過性>
拡散セルにより透過試験(液/液系)を行い、メタノ−ルの透過性を評価した。まず、イオン交換水中に測定する膜を浸漬し膨潤させた後にセルをセットする。メタノ−ル透過側と供給側にそれぞれイオン交換水を入れ、1時間ほど恒温槽中で安定させる。次に、供給側にメタノ−ルを加え10重量%のメタノ−ル水溶液とすることで試験を開始する。所定時間ごとに透過側の溶液をサンプリングしガスクロマトグラフ分析によりメタノ−ルの濃度を求めることで濃度変化を追跡し、メタノ−ルの透過流速、透過係数、拡散係数を算出した。測定は25℃で行って、メタノ−ル透過性を評価した。
<Methanol permeability>
A permeation test (liquid / liquid system) was conducted using a diffusion cell to evaluate the permeability of methanol. First, the cell is set after the membrane to be measured is immersed and swollen in ion-exchanged water. Ion exchange water is added to the methanol permeation side and the supply side, respectively, and stabilized in a thermostatic bath for about 1 hour. Next, the test is started by adding methanol to the supply side to obtain a 10% by weight aqueous methanol solution. The permeation side solution was sampled every predetermined time and the concentration change was traced by obtaining the concentration of methanol by gas chromatographic analysis, and the permeation flow rate, permeation coefficient, and diffusion coefficient of methanol were calculated. The measurement was performed at 25 ° C. to evaluate the methanol permeability.

<プロトン伝導率>
60℃、相対湿度95%の状態の電解質膜の表裏に電極を接触させ、耐熱性樹脂(ポリテトラフルオロエチレン)板により挟み会わせることにより膜を固定しプロトン伝導率を測定した。
測定に供する膜を1規定の塩酸水溶液中で5分間超音波洗浄し、次にイオン交換水中で3回、各々5分間超音波洗浄を行い、その後イオン交換水中で静置した。水中で膨潤させた膜を耐熱性樹脂(ポリテトラフルオロエチレン)板上に取り出し、白金板電極を膜の表と裏に接触させ、その外側から耐熱性樹脂(ポリテトラフルオロエチレン)板で挟み4本のネジで固定した。インピ−ダンスアナライザ(ヒュ−レットパッカ−ド社製、インピ−ダンスアナライザ−HP4194A)により交流インピ−ダンスを測定し、コ−ルコ−ルプロットから抵抗値を読み取り、プロトン伝導率を算出した。
<Proton conductivity>
The electrodes were brought into contact with the front and back surfaces of the electrolyte membrane at 60 ° C. and 95% relative humidity, and sandwiched between heat resistant resin (polytetrafluoroethylene) plates to fix the membrane and measure proton conductivity.
The membrane used for the measurement was ultrasonically washed in a 1N aqueous hydrochloric acid solution for 5 minutes, then ultrasonically washed three times in ion-exchanged water for 5 minutes each, and then left in ion-exchanged water. The film swollen in water is taken out on a heat-resistant resin (polytetrafluoroethylene) plate, the platinum plate electrode is brought into contact with the front and back of the film, and sandwiched between the heat-resistant resin (polytetrafluoroethylene) plate from the outside 4 Fixed with two screws. The AC impedance was measured by an impedance analyzer (Impedance Analyzer-HP4194A, manufactured by Hewlett-Packard Company), the resistance value was read from the call call plot, and the proton conductivity was calculated.

<寸法および面積変化率>
作製した電解質膜については、以下によって寸法変化率および面積変化率を測定した。
電解質ポリマ−の膨潤・収縮に伴う電解質膜の膜面積変化率を測定するために、先ず50℃の乾燥機中で十分乾燥を行った電解質膜膜のx方向、y方向の長さを定規により測定した(条件1)。次に、電解質膜を純水中で完全膨潤状態に保持しながら電解質膜のxおよびy方向の長さを測定した(条件2)。以上の測定結果を用いて寸法変化率を求め、面積をxXyで求めて以下により面積変化率を算出した。
電解質膜の乾燥時と湿潤時の面積変化率:A
A=[面積(条件2)−面積(条件1)]X100/面積(条件2)
<Dimension and area change rate>
About the produced electrolyte membrane, the dimensional change rate and the area change rate were measured by the following.
In order to measure the rate of change of the membrane area of the electrolyte membrane accompanying the swelling / shrinkage of the electrolyte polymer, first, the lengths in the x and y directions of the electrolyte membrane sufficiently dried in a dryer at 50 ° C. were determined using a ruler. Measured (condition 1). Next, the length of the electrolyte membrane in the x and y directions was measured while maintaining the electrolyte membrane in a completely swollen state in pure water (Condition 2). The dimensional change rate was calculated | required using the above measurement result, the area was calculated | required by xXy, and the area change rate was computed by the following.
Rate of area change between dry and wet electrolyte membrane: A
A = [Area (Condition 2) −Area (Condition 1)] X100 / Area (Condition 2)

参考例1
ポリイミド多孔質膜の作製
3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、少量の3,3’,4,4’−ビフェニルテトラカルボン酸とオキシジアニリンとを芳香族テトラカルボン酸成分とジアミン成分とのモル比が大凡1.0でかつ該モノマ−成分の合計重量が8.0重量%となるポリイミド前駆体NMP溶液を、鏡面研磨したSUS板上に一定の厚みで流延し、その上に、ポリイミド前駆体溶液液面に対して100μmの間隔を持つドクタ−ナイフを用いて、保護溶媒層としてメタノ−ルを均一に塗布し1分間静置した後に、メタノ−ル浴中に基板全体を投入した。その間、ポリマ−溶液と保護溶媒層とが完全には混じり合あわずに厚み方向で濃度勾配を保ちかつポリマ−が溶解している状態を保っていた。投入後、5分間静置し、基板上にポリアミック酸を析出させた。基板を取りだし、水中に5分間漬けた後、基板上に析出したポリアミック酸膜を剥離し、ポリアミック酸膜を得た。このポリアミック酸膜を室温で乾燥させた後、ピンテンタ−に張りつけ340℃で熱処理を行い、ポリイミド多孔質膜を得た。
Reference example 1
Preparation of polyimide porous membrane 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride, a small amount of 3,3', 4,4'-biphenyltetracarboxylic acid and oxydianiline A polyimide precursor NMP solution in which the molar ratio of the acid component to the diamine component is approximately 1.0 and the total weight of the monomer components is 8.0% by weight is flowed at a constant thickness onto a mirror-polished SUS plate. Then, using a doctor knife having an interval of 100 μm with respect to the liquid surface of the polyimide precursor solution, methanol was uniformly applied as a protective solvent layer and allowed to stand for 1 minute, and then methanol. The entire substrate was put into the bath. In the meantime, the polymer solution and the protective solvent layer were not completely mixed, but the concentration gradient was maintained in the thickness direction, and the polymer was dissolved. After the addition, the mixture was allowed to stand for 5 minutes to precipitate polyamic acid on the substrate. The substrate was taken out and immersed in water for 5 minutes, and then the polyamic acid film deposited on the substrate was peeled off to obtain a polyamic acid film. After this polyamic acid film was dried at room temperature, it was attached to a pin tenter and heat-treated at 340 ° C. to obtain a polyimide porous film.

得られたポリイミド多孔質膜は、保護層積層面側においてはポリイミドがネットワ−ク状に連なった構造を有しており、表面開口率が78%で、ガ−レ−値が53秒/100ccであり、高い気体透過性を有していた。
また、膜の厚みは27μm,重量から算出した空孔率は47%であった。また、ある面から他面への貫通パスの平均孔径が0.145μmであり、0.6μm以上の粗大貫通パスは8cm角の試料で検出されなかった。
The obtained polyimide porous membrane has a structure in which polyimide is connected in a network shape on the protective layer lamination surface side, the surface opening ratio is 78%, and the Gurley value is 53 seconds / 100 cc. And had high gas permeability.
The membrane thickness was 27 μm, and the porosity calculated from the weight was 47%. Moreover, the average hole diameter of the through-pass from one surface to the other surface was 0.145 μm, and a coarse through-pass of 0.6 μm or more was not detected in the 8 cm square sample.

参考例2
ビス(4−フルオロフェニル)スルホンとビス(4−ヒドロキシフェニル)スルホンと炭酸カリウムとをN,N−ジメチルアセトアミドとトルエン中で加熱、攪拌してプレポリマ−PES−1溶液を得た。
また、ビス(4−フルオロフェニル)スルホンと4,4’−ビフェノ−ルと炭酸カリウムとをN,N−ジメチルアセトアミドとトルエン中で加熱、攪拌してプレポリマ−PBP−1溶液を得た。
別に、PES−1溶液および炭酸カリウムより、PES−1のカリウム塩溶液を調製し、PES−1のカリウム塩溶液をPBP−1溶液に添加し、反応させ、コポリマ−PES−b−PBPを得た。さらに、98%硫酸処理を行い、スルホン化ポリエ−テルポリマ−(BPS)を得た。
Reference example 2
Bis (4-fluorophenyl) sulfone, bis (4-hydroxyphenyl) sulfone, and potassium carbonate were heated and stirred in N, N-dimethylacetamide and toluene to obtain a prepolymer-PES-1 solution.
Further, bis (4-fluorophenyl) sulfone, 4,4′-biphenol and potassium carbonate were heated and stirred in N, N-dimethylacetamide and toluene to obtain a prepolymer-PBP-1 solution.
Separately, prepare a potassium salt solution of PES-1 from PES-1 solution and potassium carbonate, add the potassium salt solution of PES-1 to the PBP-1 solution, and react to obtain copolymer-PES-b-PBP. It was. Further, 98% sulfuric acid treatment was carried out to obtain a sulfonated polymer (BPS).

スルホン化ポリエ−テルスルホンポリマ−(BPS)をN,N−ジメチルアセトアミドに15.5質量%の濃度で溶解し電解質ポリマ−溶液を得た。この溶液の動的粘弾性および定常流粘度測定を行った結果、ニュ−トン粘性を示すことがわかった。この溶液を所望の電解質膜厚みから逆算した所定量をガラスシャ−レ内に取り分け、その中に参考例1のポリイミド多孔質膜を浸漬し、減圧雰囲気下で含浸溶媒がほとんど揮発するまで保持し、その後、ガラス板に配置し、その上からコ−タ−を用いてBPS溶液を一定量塗布した後に、60℃で2時間、さらに150℃で2時間、真空乾燥した。その後膜をガラスシャ−レから剥離し、フィルムの4辺を拘束した状態で150℃で1時間、更に続けて200℃で30分間熱処理を行った。その後イオン交換処理を行って、高分子電解質膜を得た。
この高分子電解質膜は、60℃、相対湿度95%のプロトン伝導率が8.5×10−2S/cm、メタノ−ル透過係数の逆数が0.16mh/kgμm、電解質膜の乾燥時と湿潤時の面積変化率:A=6(%)であった。
また、乾燥時の膜厚みは45μmであった。
A sulfonated polyethersulfone polymer (BPS) was dissolved in N, N-dimethylacetamide at a concentration of 15.5% by mass to obtain an electrolyte polymer solution. As a result of measuring the dynamic viscoelasticity and steady flow viscosity of this solution, it was found that it exhibited Newtonian viscosity. A predetermined amount of this solution calculated backward from the desired electrolyte membrane thickness was placed in a glass dish, the polyimide porous membrane of Reference Example 1 was immersed therein, and held under reduced pressure until the impregnating solvent was almost volatilized, Then, after arrange | positioning to a glass plate and apply | coating a fixed quantity of BPS solutions using the coater from the top, it vacuum-dried at 60 degreeC for 2 hours, and also at 150 degreeC for 2 hours. Thereafter, the film was peeled off from the glass dish, and heat treatment was performed at 150 ° C. for 1 hour and then at 200 ° C. for 30 minutes with the four sides of the film being restrained. Thereafter, ion exchange treatment was performed to obtain a polymer electrolyte membrane.
This polymer electrolyte membrane has a proton conductivity of 8.5 × 10 −2 S / cm at 60 ° C. and a relative humidity of 95%, a reciprocal of the methanol permeability coefficient of 0.16 m 2 h / kg μm, and a dry electrolyte membrane. The rate of change in area between time and wetness was A = 6 (%).
Moreover, the film thickness at the time of drying was 45 micrometers.

実施例1で得られた高分子電解質膜の両表面及び凍結破砕した断面を走査型電子顕微鏡(SEM)で観察した結果を図2(両表面とも実質的に同じものであり図面としては片方のみを示す)、図3、図4に示す。
両表面ともBPS層で覆われていることが確認された。また、断面観察から、細孔中にプロトン伝導機能を有する電解質ポリマ−であるBPSが充填されていることが確認された。
The results of observing both surfaces of the polymer electrolyte membrane obtained in Example 1 and the frozen and crushed cross-section with a scanning electron microscope (SEM) are shown in FIG. 3 and FIG.
It was confirmed that both surfaces were covered with the BPS layer. Further, from cross-sectional observation, it was confirmed that BPS, which is an electrolyte polymer having a proton conduction function, was filled in the pores.

スルホン化ポリエ−テルスルホンポリマ−(BPS)をN,N−ジメチルアセトアミドに15.5質量%の濃度で溶解した。その溶液を所望の電解質膜厚みから逆算した所定量の半分をガラスシャ−レ内に取り分け、その中に参考例1で得られたポリイミド多孔質膜を浸漬し、減圧雰囲気下で含浸し溶媒がほとんど揮発するまで保持し、その後、60℃で2時間、さらに150℃で2時間、真空乾燥した。その後、膜をガラスシャ−レから剥離し、ガラス板上にフィルムの4辺を拘束した状態で、その上からコ−タ−を用いてBPS溶液を一定量塗布した後に、150℃で1時間、更に続けて200℃で30分間熱処理を行った。その後イオン交換処理を行って、高分子電解質膜を得た。
この高分子電解質膜は、60℃、相対湿度95%のプロトン伝導率が6.1×10−2S/cm、メタノ−ル透過係数の逆数が0.13mh/kgμm、電解質膜の乾燥時と湿潤時の面積変化率:A=4(%)であった。
また、乾燥時の膜厚みは37μmであった。
SEMで断面観察を行ったところ、膜の両表面に3〜4μmのスルホン化ポリエ−テルスルホンポリマ−(BPS)層が形成され、多孔質基材部分にはスルホン化ポリエ−テルスルホンポリマ−(BPS)が充填されていた。
Sulfonated polyethersulfone polymer (BPS) was dissolved in N, N-dimethylacetamide at a concentration of 15.5% by mass. Half of a predetermined amount of the solution calculated back from the desired electrolyte membrane thickness is placed in a glass dish, and the polyimide porous membrane obtained in Reference Example 1 is immersed therein and impregnated in a reduced-pressure atmosphere so that most of the solvent is present. It was kept until it volatilized, and then vacuum-dried at 60 ° C. for 2 hours and further at 150 ° C. for 2 hours. Thereafter, the film was peeled off from the glass dish, and after applying a certain amount of the BPS solution using a coater on the glass plate in a state where the four sides of the film were constrained on the glass plate, at 150 ° C. for 1 hour, Subsequently, heat treatment was performed at 200 ° C. for 30 minutes. Thereafter, ion exchange treatment was performed to obtain a polymer electrolyte membrane.
This polymer electrolyte membrane has a proton conductivity of 6.1 × 10 −2 S / cm at 60 ° C., a relative humidity of 95%, a reciprocal of the methanol permeability coefficient of 0.13 m 2 h / kg μm, and a dry electrolyte membrane. The rate of change in area between time and wetness was A = 4 (%).
Moreover, the film thickness at the time of drying was 37 micrometers.
As a result of cross-sectional observation by SEM, 3-4 μm sulfonated polyethersulfone polymer (BPS) layers were formed on both surfaces of the membrane, and the sulfonated polyethersulfone polymer ( BPS).

比較例1
市販のパ−フルオロエチレン系電解質膜であるナフィオン117(デュポン社製)の乾燥時と湿潤時の面積変化率を測定したところ、A=17(%)であった。また、湿潤状態から再び乾燥すると、膜は平滑性を失ってしまった。
Comparative Example 1
When the area change rate during drying and wetting of Nafion 117 (manufactured by DuPont), which is a commercially available perfluoroethylene electrolyte membrane, was measured, it was A = 17 (%). Further, when the film was dried again from the wet state, the film lost smoothness.

膜−電極接合体(MEA)の作製
1)拡散層の作製
酸素極に用いる電極にのみ、以下の操作によりカ−ボンペ−パ−上に拡散層を形成した。
メノウ乳鉢ですりつぶしたXC−72の0.37gにイソプロパノ−ル(IPA)4.0gを加え、攪拌と超音波により十分分散させた。その後市販のポリテトラフルオロエチレン(PTFE)分散液を0.14g加え、約1分間の攪拌を行ない拡散層作製用のペ−ストとした。
その後、東レ社製のカ−ボンペ−パ−上にスクリ−ン印刷法によりペ−ストを3回にわけ塗布し、自然乾燥させた後、350℃で2時間焼成した。
Preparation of Membrane-Electrode Assembly (MEA) 1) Preparation of Diffusion Layer A diffusion layer was formed on the carbon paper by the following operation only for the electrode used for the oxygen electrode.
4.0 g of isopropanol (IPA) was added to 0.37 g of XC-72 ground with an agate mortar, and the mixture was sufficiently dispersed by stirring and ultrasonic waves. Thereafter, 0.14 g of a commercially available polytetrafluoroethylene (PTFE) dispersion was added and stirred for about 1 minute to obtain a paste for producing a diffusion layer.
Thereafter, the paste was applied to a carbon paper manufactured by Toray Industries, Inc. by screen printing three times, allowed to dry naturally, and then fired at 350 ° C. for 2 hours.

2)酸素極電極の触媒層の作製
46.1質量%の白金を担持したカ−ボンブラック(田中貴金属社製TEC10E50E)と同量のイオン交換水を混合し、その後市販の5%Nafion溶液を加え、攪拌・超音波を10分間繰り返した。その後、適量のPTFE分散液を加え攪拌することで触媒層形成用のペ−ストを得た。スクリ−ン印刷法により、前段で作製した拡散層付カ−ボンペ−パ−上にスクリ−ン印刷機によりペ−ストを3回にわけ塗布し自然乾燥する操作を3回繰り返すことにより、酸素極に用いるガス拡散電極を得た。
2) Preparation of catalyst layer for oxygen electrode 46.1% by weight of carbon black (TEC10E50E manufactured by Tanaka Kikinzoku Co., Ltd.) loaded with platinum is mixed with the same amount of ion-exchanged water, and then a commercially available 5% Nafion solution is added. In addition, stirring and ultrasonic waves were repeated for 10 minutes. Thereafter, an appropriate amount of PTFE dispersion was added and stirred to obtain a paste for forming a catalyst layer. By screen printing, the paste was applied three times on the carbon paper with diffusion layer prepared in the previous stage using a screen printer and air-dried three times. A gas diffusion electrode used for the electrode was obtained.

3)メタノ−ル極電極の触媒層の作製
32.7質量%の白金及び16.9質量%のルテニウムが担持したカ−ボンブラック(田中貴金属社製TEC66E50)と同量のイオン交換水を混合し、その後市販の5%Nafion溶液を加え、攪拌・超音波を10分間繰り返した。その後、適量のPTFE分散液を加え攪拌することで触媒層形成用のペ−ストを得た。スクリ−ン印刷法により、前段で作製した拡散層付カ−ボンペ−パ−上にスクリ−ン印刷機によりペ−ストを3回にわけ塗布し自然乾燥するまでの操作を4回繰り返し、メタノ−ル極に用いるガス拡散電極を得た。
3) Preparation of methanol electrode electrode catalyst layer Carbon black (TEC66E50, Tanaka Kikinzoku Co., Ltd.) carrying 32.7% by mass of platinum and 16.9% by mass of ruthenium was mixed with the same amount of ion-exchanged water. Thereafter, a commercially available 5% Nafion solution was added, and stirring and ultrasonic waves were repeated for 10 minutes. Thereafter, an appropriate amount of PTFE dispersion was added and stirred to obtain a paste for forming a catalyst layer. Using the screen printing method, the paste was applied three times with a screen printing machine onto the carbon paper with a diffusion layer prepared in the previous stage, and the operation was repeated four times until it was naturally dried. -A gas diffusion electrode used for the electrode was obtained.

4)MEAの作製
上記方法で作成した電極と、実施例1で作製した電解質膜を、ホットプレスを用いて(条件:150℃、8MPa、3分間)接合しMEAを作製した。電極に担持した触媒量は、Anodeで1.6mg/cm、Cathodeで1.00mg−Pt/cmであった。
4) Production of MEA The electrode produced by the above method and the electrolyte membrane produced in Example 1 were joined using a hot press (conditions: 150 ° C., 8 MPa, 3 minutes) to produce an MEA. The amount of catalyst supported on the electrode was 1.6 mg / cm 2 for Anode and 1.00 mg-Pt / cm 2 for Cathode.

得られたMEAの膜と電極との接着性をみるために、3モル/Lのメタノ−ル水溶液中に浸漬して1時間保持した後に取出し乾燥して観察した。電極と電解質膜との接着性は目視で保たれており、またMEA全体の平滑性も保持されていた。 In order to observe the adhesiveness between the obtained MEA film and the electrode, it was immersed in a 3 mol / L methanol aqueous solution and held for 1 hour, then taken out, dried and observed. The adhesion between the electrode and the electrolyte membrane was maintained visually, and the smoothness of the entire MEA was also maintained.

5)燃料電池の作製および燃料電池発電試験
前記の4)で作製したMEAを米国エレクトロケム社製の電極面積5cmの燃料電池に組み込み直接メタノ−ル形燃料電池を得て、電池試験を行った。発電条件は、セル温50℃で、Anodeには1及び3モル/Lのメタノ−ル水溶液を10mL/分の流速で、Cathodeには乾燥酸素を100mL/分の流速で流した。発電試験の結果を図5に示す。
6)前記の4)で作製したMEAを米国エレクトロケム社製の電極面積5cmの燃料電池に組み込み燃料電池を得て、水素−酸素形燃料電池発電試験を行った。発電条件は、セル温度80℃、Anodeには水素ガスを3mL/分の流速で、Cathodeには乾燥酸素を100mL/分の流速で流した。発電試験の結果を図6に示す。
5) Fabrication of fuel cell and fuel cell power generation test The MEA fabricated in 4) above was incorporated into a fuel cell with an electrode area of 5 cm 2 manufactured by Electrochem Inc. to obtain a direct methanol fuel cell, and a cell test was conducted. It was. The power generation conditions were a cell temperature of 50 ° C., 1 and 3 mol / L methanol aqueous solution at Anode at a flow rate of 10 mL / min, and dry oxygen at 100 mL / min at Cathode. The results of the power generation test are shown in FIG.
6) The MEA produced in 4) above was incorporated into a fuel cell having an electrode area of 5 cm 2 manufactured by Electrochem Inc., USA, and a fuel cell was obtained. The power generation conditions were a cell temperature of 80 ° C., Anode with hydrogen gas at a flow rate of 3 mL / min, and Cathode with dry oxygen at a flow rate of 100 mL / min. The result of the power generation test is shown in FIG.

比較例2
電解質膜としてナフィオン112(デュポン社製)を使用した他は実施例3と同様にしてMEAを得た。得られたMEAについて膜と電極との接着性を見るためにMEAを3モル/Lのメタノ−ル水溶液中に浸漬すると、電解質膜が平滑性を保たず波打つ状態になった。そのまま1時間保持した後に取出し乾燥を行ったところ、電極と電解質膜との接着界面の剥離が目視で数箇所確認された。また、MEA全体も大きく歪んでしまい、そのまま燃料電池に組み込もうとするとさらに電極の剥離や破壊が起こってしまった。
Comparative Example 2
An MEA was obtained in the same manner as in Example 3 except that Nafion 112 (manufactured by DuPont) was used as the electrolyte membrane. When the MEA obtained was immersed in a 3 mol / L methanol aqueous solution in order to see the adhesion between the membrane and the electrode, the electrolyte membrane was in a wavy state without maintaining smoothness. When it was kept as it was for 1 hour and then taken out and dried, peeling of the adhesion interface between the electrode and the electrolyte membrane was visually confirmed in several places. Further, the MEA as a whole was greatly distorted, and peeling and destruction of the electrodes occurred when it was incorporated into the fuel cell as it was.

図1は、この発明の電解質膜の製造方法の一例を示す多孔質膜にプロトン伝導機能を有する電解質ポリマ−を充填する方法を模式的に示すものである。FIG. 1 schematically shows a method of filling a porous membrane with an electrolyte polymer having a proton conduction function, which is an example of a method for producing an electrolyte membrane of the present invention. 図2は、実施例1で得られた高分子電解質膜の表面を走査型電子顕微鏡で観察した結果である。FIG. 2 shows the results of observation of the surface of the polymer electrolyte membrane obtained in Example 1 with a scanning electron microscope. 図3は、実施例1で得られた高分子電解質膜を凍結破砕した断面を走査型電子顕微鏡で観察した結果である。FIG. 3 is a result of observing a cross section obtained by freezing and crushing the polymer electrolyte membrane obtained in Example 1 with a scanning electron microscope. 図4は、図3の中心部分(多孔質膜の部分)の拡大図である。FIG. 4 is an enlarged view of the central portion (portion of the porous membrane) in FIG. 図5は、実施例3における直接メタノ−ル形燃料電池の発電特性を示すものである。FIG. 5 shows the power generation characteristics of the direct methanol fuel cell in Example 3. 図6は、実施例3における水素−酸素形燃料電池の発電特性を示すものである。FIG. 6 shows the power generation characteristics of the hydrogen-oxygen fuel cell in Example 3.

符号の説明Explanation of symbols

1 プロトン伝導機能を有する電解質ポリマ−の液状物
2 基板
3 多孔質膜
4 プロトン伝導機能を有する電解質ポリマ−の液状物
DESCRIPTION OF SYMBOLS 1 Liquid substance of electrolyte polymer which has proton conduction function 2 Substrate 3 Porous membrane 4 Liquid substance of electrolyte polymer which has proton conduction function

Claims (9)

ポリイミド多孔質膜の細孔内にプロトン伝導機能を有する電解質ポリマ−がポリマ−の状態で充填されてなり、60℃、相対湿度95%でのイオン伝導率が4.0×10−2S/cm以上1.0S/cm以下である高分子電解質膜。 An electrolyte polymer having a proton conduction function is filled in the pores of the polyimide porous membrane in a polymer state, and the ionic conductivity at 60 ° C. and a relative humidity of 95% is 4.0 × 10 −2 S / A polymer electrolyte membrane having a density of cm to 1.0 S / cm. プロトン伝導機能を有する電解質ポリマ−が、スルホン化ポリエ−テルスルホンである請求項1に記載の高分子電解質膜。 2. The polymer electrolyte membrane according to claim 1, wherein the electrolyte polymer having a proton conducting function is sulfonated polyethersulfone. さらに、少なくともその片面に電解質層を有する請求項1あるいは2に記載の高分子電解質膜。 The polymer electrolyte membrane according to claim 1 or 2, further comprising an electrolyte layer on at least one surface thereof. ポリイミド多孔質膜が、3,3’,4,4’−ビフェニルテトラカルボン酸成分を主なテトラカルボン酸成分とする化学構造を有する請求項1〜3のいずれかに記載の高分子電解質膜。 The polymer electrolyte membrane according to any one of claims 1 to 3, wherein the polyimide porous membrane has a chemical structure in which a 3,3 ', 4,4'-biphenyltetracarboxylic acid component is a main tetracarboxylic acid component. プロトン伝導機能を有する電解質ポリマ−の液状物中にポリイミド多孔質膜を浸漬し、浸漬した状態で減圧操作を行って電解質ポリマ−をポリイミド多孔質膜の細孔内に充填する60℃、相対湿度95%でのイオン伝導率が4.0×10−2S/cm以上1.0S/cm以下である高分子電解質膜の製造方法。 A polyimide porous membrane is immersed in a liquid electrolyte polymer having a proton conduction function, and the electrolyte polymer is filled in the pores of the polyimide porous membrane by performing a pressure reduction operation in the immersed state. A method for producing a polymer electrolyte membrane having an ionic conductivity at 95% of 4.0 × 10 −2 S / cm or more and 1.0 S / cm or less. 請求項1〜4のいずれかに記載の高分子電解質膜に燃料電池用電極を接合してなる燃料電池用膜−電極接合体。 5. A fuel cell membrane-electrode assembly obtained by joining a fuel cell electrode to the polymer electrolyte membrane according to claim 1. 請求項5に記載の製造方法によって得られる高分子電解質膜に燃料電池用電極を接合してなる燃料電池用膜−電極接合体。 A fuel cell membrane-electrode assembly obtained by joining a fuel cell electrode to a polymer electrolyte membrane obtained by the production method according to claim 5. 請求項6あるいは7に記載の燃料電池用膜−電極接合体を構成要素とする固体高分子形燃料電池。 A polymer electrolyte fuel cell comprising the membrane-electrode assembly for a fuel cell according to claim 6 or 7 as a constituent element. 請求項6あるいは7に記載の燃料電池用膜−電極接合体を構成要素とする直接メタノ−ル形燃料電池。 A direct methanol fuel cell comprising the fuel cell membrane-electrode assembly according to claim 6 or 7 as a constituent element.
JP2004011529A 2004-01-20 2004-01-20 Polyelectrolyte film, its manufacturing method, film-electrode connector for fuel cell and fuel cell Pending JP2005209361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004011529A JP2005209361A (en) 2004-01-20 2004-01-20 Polyelectrolyte film, its manufacturing method, film-electrode connector for fuel cell and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004011529A JP2005209361A (en) 2004-01-20 2004-01-20 Polyelectrolyte film, its manufacturing method, film-electrode connector for fuel cell and fuel cell

Publications (1)

Publication Number Publication Date
JP2005209361A true JP2005209361A (en) 2005-08-04

Family

ID=34898194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004011529A Pending JP2005209361A (en) 2004-01-20 2004-01-20 Polyelectrolyte film, its manufacturing method, film-electrode connector for fuel cell and fuel cell

Country Status (1)

Country Link
JP (1) JP2005209361A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013503436A (en) * 2009-08-25 2013-01-31 コーロン インダストリーズ インク POLYMER ELECTROLYTE MEMBRANE FOR FUEL CELL AND METHOD FOR PRODUCING THE SAME

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313363A (en) * 2001-04-13 2002-10-25 Mitsubishi Heavy Ind Ltd Solid polymer electrolyte film and its manufacturing method
JP2003123792A (en) * 2001-10-09 2003-04-25 Toray Ind Inc Polymer electrolyte film, its manufacturing method, and solid polymer fuel cell using the same
JP2003173799A (en) * 2001-04-04 2003-06-20 Sumitomo Chem Co Ltd Polymer electrolyte and its manufacturing method
JP2003203648A (en) * 2002-01-07 2003-07-18 Hitachi Ltd Solid polymer electrolyte compound membrane, membrane /electrode joint body, solid polymer fuel cell using the sam

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003173799A (en) * 2001-04-04 2003-06-20 Sumitomo Chem Co Ltd Polymer electrolyte and its manufacturing method
JP2002313363A (en) * 2001-04-13 2002-10-25 Mitsubishi Heavy Ind Ltd Solid polymer electrolyte film and its manufacturing method
JP2003123792A (en) * 2001-10-09 2003-04-25 Toray Ind Inc Polymer electrolyte film, its manufacturing method, and solid polymer fuel cell using the same
JP2003203648A (en) * 2002-01-07 2003-07-18 Hitachi Ltd Solid polymer electrolyte compound membrane, membrane /electrode joint body, solid polymer fuel cell using the sam

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013503436A (en) * 2009-08-25 2013-01-31 コーロン インダストリーズ インク POLYMER ELECTROLYTE MEMBRANE FOR FUEL CELL AND METHOD FOR PRODUCING THE SAME

Similar Documents

Publication Publication Date Title
Wang et al. A polytetrafluoroethylene-quaternary 1, 4-diazabicyclo-[2.2. 2]-octane polysulfone composite membrane for alkaline anion exchange membrane fuel cells
Zarrin et al. High performance porous polybenzimidazole membrane for alkaline fuel cells
Yamaguchi et al. A pore-filling electrolyte membrane-electrode integrated system for a direct methanol fuel cell application
WO2004051776A1 (en) Solid polymer electrolytic film, solid polymer fuel cell employing it, and process for producing the same
KR102262297B1 (en) Electrolyte membrane and manufacturing method thereof
WO2005000949A1 (en) Polymer electrolyte membrane with high durability and method for producing same
JP2012519929A (en) Improved membrane electrode assembly
JP5008272B2 (en) Composite proton exchange membrane
JP6707519B2 (en) film
WO2003081706A1 (en) Electrolyte film and solid polymer fuel cell using the same
Park et al. Mechanical stability of H3PO4-doped PBI/hydrophilic-pretreated PTFE membranes for high temperature PEMFCs
JP2013520779A (en) Membrane
Alwin et al. Modified-pore-filled-PVDF-membrane electrolytes for direct methanol fuel cells
KR20120128905A (en) Multi layer reinfored electrolyte membrane for solid polymer fuel cell, manufacturing method thereof, membrane-electrode assembly having the same and fuel cell having them
JP4684678B2 (en) Membrane-electrode structure for polymer electrolyte fuel cell and polymer electrolyte fuel cell
Oh et al. Engineered membrane–electrode interface for hydrocarbon-based polymer-electrolyte-membrane fuel cells via solvent-vapor-annealed deposition
Noh et al. Multilayered hydrocarbon ionomer/PTFE composite electrolytes with enhanced performance for energy conversion devices
JP2004247182A (en) Electrolyte film for fuel cell, electrolyte film/electrode junction, fuel cell, and manufacturing method of electrolyte film for fuel cell
US20070214962A1 (en) Fluorination of a porous hydrocarbon-based polymer for use as composite membrane
JP4836438B2 (en) Polymer electrolyte laminate film
JP2006269266A (en) Compound solid polyelectrolyte membrane having reinforcement material
JP2005209465A (en) Method of manufacturing polyelectrolyte film, polyelectrolyte film, film-electrode connector for fuel cell and fuel cell
Pedicini et al. Study on sulphonated polysulphone/polyurethane blend membranes for fuel cell applications
US20110127161A1 (en) Novel proton exchange composite membrane with low resistance and preparation thereof
JP2006073235A (en) Multilayered electrolyte membrane and production method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081020

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090421