JP2006190627A - Solid polyelectrolyte membrane having reinforcement material - Google Patents

Solid polyelectrolyte membrane having reinforcement material Download PDF

Info

Publication number
JP2006190627A
JP2006190627A JP2005003036A JP2005003036A JP2006190627A JP 2006190627 A JP2006190627 A JP 2006190627A JP 2005003036 A JP2005003036 A JP 2005003036A JP 2005003036 A JP2005003036 A JP 2005003036A JP 2006190627 A JP2006190627 A JP 2006190627A
Authority
JP
Japan
Prior art keywords
polymer
solid electrolyte
electrolyte membrane
polymer solid
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005003036A
Other languages
Japanese (ja)
Other versions
JP4771702B2 (en
Inventor
Kohei Kita
孝平 北
Takahiko Murai
隆彦 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2005003036A priority Critical patent/JP4771702B2/en
Publication of JP2006190627A publication Critical patent/JP2006190627A/en
Application granted granted Critical
Publication of JP4771702B2 publication Critical patent/JP4771702B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polymer solid electrolyte membrane for a fuel cell which does not have cross leak even if operated for a long period at a temperature of 90°C or more, and is superior in mechanical characteristics from a viewpoint of a practical use of the solid polymer fuel cell, and has scarce dimensional changes between a humid state and a dry state. <P>SOLUTION: This is a polymer solid membrane of which porosity is 40 to 45%, and a gap is filled by the polymer solid electrolyte and has an aromatic liquid crystal non-woven fabric as a reinforcement material, and the polymer solid electrolyte fuel cell uses a membrane electrode assembly containing this polymer solid electrolyte membrane. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、燃料電池用電解質膜として有用な高分子固体電解質膜に関する。   The present invention relates to a polymer solid electrolyte membrane useful as an electrolyte membrane for fuel cells.

近年、電解質として高分子固体電解質膜を用いた燃料電池が、小型軽量化が可能であり、かつ比較的低温でも高い出力密度が得られることから注目され、特に自動車用途に向けた開発が加速されている。
このような目的に用いられる高分子固体電解質膜材料には、優れたプロトン伝導度、適度な保水性、また水素ガス、酸素ガス等に対するガスバリア性などが要求される。このような要件を満たす材料として、スルホン酸基やホスホン酸基を主鎖、あるいは側鎖の末端に有する高分子が種々検討され、例えばスルホン化ポリスチレンなど多くの材料が提案されてきている。
In recent years, fuel cells using solid polymer electrolyte membranes as electrolytes have attracted attention because they can be reduced in size and weight, and high power density can be obtained even at relatively low temperatures, and development for automotive applications in particular has been accelerated. ing.
The polymer solid electrolyte membrane material used for such purposes is required to have excellent proton conductivity, appropriate water retention, gas barrier properties against hydrogen gas, oxygen gas, and the like. As materials satisfying such requirements, various polymers having a sulfonic acid group or a phosphonic acid group at the main chain or side chain end have been studied, and many materials such as sulfonated polystyrene have been proposed.

しかし、実際の燃料電池運転条件下では、電極において高い酸化力を有する活性酸素種が発生し、特に長期に渡り燃料電池を安定に運転させるためには、このような過酷な酸化雰囲気下での耐久性が要求される。現在までに提案されている多くの炭化水素系材料は、燃料電池の運転の初期特性に関しては優れた特性を示すものが多いが、長期運転に関しては充分な耐性が示せない。
現在、実用化に向けた検討では、下記一般式(1)で表されるパーフルオロカーボンスルホン酸ポリマーが主に用いられている。
However, under actual fuel cell operating conditions, active oxygen species with high oxidizing power are generated at the electrode, and in order to operate the fuel cell stably over a long period of time, it is necessary to operate under such a harsh oxidizing atmosphere. Durability is required. Many of the hydrocarbon-based materials that have been proposed so far often exhibit excellent characteristics with respect to the initial characteristics of the fuel cell operation, but do not exhibit sufficient resistance for long-term operation.
Currently, perfluorocarbon sulfonic acid polymers represented by the following general formula (1) are mainly used in studies for practical use.

Figure 2006190627
(式中、0≦a<1、0<g≦1、a+g=1、0≦b≦3、1≦f≦8である。)
これらのパーフルオロカーボンスルホン酸ポリマー膜は、骨格が全フッ素化されているために化学的に極めて高い耐久性を示し、先述の炭化水素系膜に比べ、より過酷な運転条件でも使用することが可能である。しかし、これらのパーフルオロカーボンスルホン酸ポリマーは、ガラス転移点が約120℃で、実使用温度域に近いことが良く知られ、この結果、室温程度での運転では充分な物理強度をもつが、80℃以上の温度領域では物理強度が不十分である。
従って、パーフルオロカーボンスルホン酸ポリマー膜として良く用いられるものに、Nafion(デュポン社製 登録商標)やFlemion(旭硝子社製 登録商標)などがあるが、これらの膜は例えばホットプレス法により電解質膜と電極を接合する際に膜が破損しガスのリークを生じたり、電極内の短絡が生じやすいという問題があった。また実際の運転時においても充分な加湿環境の下で長期における耐久性を発揮することができなかった。この耐久性については、高分子固体電解質膜の乾燥時に対する含水時の寸法の変化が大きく局所的な歪が高分子膜の劣化や破壊の基点となるからである。
Figure 2006190627
(Where 0 ≦ a <1, 0 <g ≦ 1, a + g = 1, 0 ≦ b ≦ 3, 1 ≦ f ≦ 8)
These perfluorocarbon sulfonic acid polymer membranes exhibit extremely high chemical durability due to the fully fluorinated skeleton, and can be used even in harsh operating conditions compared to the hydrocarbon membranes described above. It is. However, it is well known that these perfluorocarbon sulfonic acid polymers have a glass transition point of about 120 ° C. and are close to the actual use temperature range. As a result, the perfluorocarbon sulfonic acid polymer has sufficient physical strength when operated at about room temperature. The physical strength is insufficient in the temperature range of ℃ or higher.
Accordingly, Nafion (registered trademark manufactured by DuPont) and Flemion (registered trademark manufactured by Asahi Glass Co., Ltd.) and the like are often used as perfluorocarbon sulfonic acid polymer membranes. When joining the films, there was a problem that the film was broken to cause gas leakage or a short circuit in the electrode. Further, even during actual operation, long-term durability could not be exhibited in a sufficiently humidified environment. This durability is because the dimensional change at the time of moisture content with respect to the time of drying of the polymer solid electrolyte membrane is large, and local strain becomes a base point of deterioration or breakage of the polymer membrane.

これに対して、補強材を用いることが検討されている。補強材としては一般にPTFEやPFA(テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体)、PVDF(ポリビニリデンフルオライド)、FEP(テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体)等のフッ素系高分子またはPE(ポリエチレン)やPP(ポリプロピレン)等の熱可塑性樹脂、またPI(ポリイミド)、PSF(ポリスルホン)、PES(ポリエーテルスルホン)、PEEK(ポリエーテルエーテルケトン)、PPSS(ポリフェニレンスルフィドスルフォン)、PPO(ポリフェニレンオキシド)、PEK(ポリエーテルケトン)、PBI(ポリベンズイミダゾール)、PPS(ポリフェニレンスルフィド)、PPP(ポリパラフェニレン)、PPQ(ポリフェニルキノキサリン)、ポリベンゾオキサゾール(PBO)、ポリベンゾチアゾール(PBT)、ポリパラフェニレンテレフタルアミド(PPTA)等のエンジニアリングプラスチックからなる均質な多孔質膜を挙げることができるが、その孔径がおよそ0.01〜1μmと小さい場合にはパーフルオロカーボンスルホン酸ポリマーの充填が十分には行なえず空孔が残るという問題があった。また孔径がおよそ1〜10μmというより大きなものも存在するが、この場合には空孔率を本発明のように40%以上とした場合には補強材の強度が十分ではなく、特に60μm以下の薄膜としては実用には供さなかった(特許文献1,3,4,9,10,11,12,13)。即ち、均一の多孔質膜では、充分な耐久性を確保することができていないのである。   On the other hand, use of a reinforcing material has been studied. As the reinforcing material, generally, a fluorine-based polymer such as PTFE, PFA (tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer), PVDF (polyvinylidene fluoride), FEP (tetrafluoroethylene-hexafluoropropylene copolymer), or the like Thermoplastic resins such as PE (polyethylene) and PP (polypropylene), PI (polyimide), PSF (polysulfone), PES (polyethersulfone), PEEK (polyetheretherketone), PPSS (polyphenylene sulfide sulfone), PPO ( Polyphenylene oxide), PEK (polyetherketone), PBI (polybenzimidazole), PPS (polyphenylene sulfide), PPP (polyparaphenylene), PPQ (polyphenylquinoxaline) A homogeneous porous film made of engineering plastics such as polybenzoxazole (PBO), polybenzothiazole (PBT), polyparaphenylene terephthalamide (PPTA) can be mentioned, and the pore diameter is about 0.01 to 1 μm. If it is small, there is a problem that the perfluorocarbon sulfonic acid polymer cannot be sufficiently filled and vacancies remain. There are also larger pore diameters of about 1 to 10 μm, but in this case, when the porosity is 40% or more as in the present invention, the strength of the reinforcing material is not sufficient, especially 60 μm or less. As a thin film, it was not put into practical use (Patent Documents 1, 3, 4, 9, 10, 11, 12, 13). That is, sufficient durability cannot be ensured with a uniform porous membrane.

加えて均一の多孔質膜の補強材にパーフルオロカーボンスルホン酸ポリマーを含浸させたものは複合固体高分子電解質膜としての強度を十分に発揮させるためには少なくとも140℃以上の加熱が必要であるため、補強材の材質によってはこのような加熱をするともともとあった補強材の穴が閉塞してしまい電解質膜として使用するには至らなかった(特許文献2)。
一方、均質な多孔質膜ではなく各種の繊維からなる不織布、織布、または紙様のシートを補強材とする電解質膜も検討されている。
例えばアラミド繊維やポリフェニレンサルファイド繊維よりなる不織布が用いられているが、本発明と同様の複合高分子固体電解質膜とした場合には十分な耐久性が得られない(特許文献5,6,8,14)。これは恐らくアラミドやポリフェニレンスルフィドが耐加水分解性に劣り、吸水性が高いために、これを補強材として用いた場合には複合固体高分子電解質膜としての化学的な耐久性が劣るのではないかと推測される。そのためアラミド繊維の表面をフッ素コーティングする等の方法が検討されているが充分な耐久性を得るにはいたっていない。
In addition, a material in which a uniform porous membrane reinforcing material is impregnated with a perfluorocarbon sulfonic acid polymer needs to be heated to at least 140 ° C. in order to sufficiently exert the strength as a composite solid polymer electrolyte membrane. Depending on the material of the reinforcing material, when such heating is performed, the hole of the originally reinforcing material is blocked and cannot be used as an electrolyte membrane (Patent Document 2).
On the other hand, an electrolyte membrane using a nonwoven fabric, a woven fabric, or a paper-like sheet made of various fibers instead of a homogeneous porous membrane as a reinforcing material has been studied.
For example, a nonwoven fabric made of aramid fiber or polyphenylene sulfide fiber is used, but sufficient durability cannot be obtained when the composite polymer solid electrolyte membrane is the same as the present invention (Patent Documents 5, 6, 8, 14). This is probably because aramid and polyphenylene sulfide are inferior in hydrolysis resistance and have high water absorption, so when used as a reinforcing material, chemical durability as a composite solid polymer electrolyte membrane is not inferior. I guess that. For this reason, methods such as fluorine coating on the surface of aramid fibers have been studied, but sufficient durability has not been achieved.

特許文献7にはフィブリル状、織布状、不織布状のパーフルオロカーボン重合体で補強された陽イオン交換膜が提案されているが含水時の寸法変化を抑える効果が十分ではなかった。
このように特に90℃以上の温度での長時間運転を行ってもクロスリークが発生せず、なおかつ固体高分子型燃料電池の実用化の観点から機械特性が優れ、また乾燥時に対する含水時の寸法変化が少ないという耐久性を有するものはなかった。
特開平9−120827号公報 特開平11−335473号公報 特開2003−297393号公報 特開2001−514431号公報 特開2000−149965号公報 特開20001−113141号公報 特開平6−231779号公報 特開平9−302115号公報 特開2003−123792号公報 特開2004−139836号公報 特開2004−139837号公報 特表2001−514431号公報 特表2003−528420号公報 特開2003−77494号公報
Patent Document 7 proposes a cation exchange membrane reinforced with a perfluorocarbon polymer in the form of a fibril, a woven fabric, or a non-woven fabric. However, the effect of suppressing the dimensional change when containing water is not sufficient.
In this way, even if the operation is performed at a temperature of 90 ° C. or more for a long time, cross leak does not occur, the mechanical properties are excellent from the viewpoint of practical use of the polymer electrolyte fuel cell, and when the water content is higher than the dry time. None had the durability that the dimensional change was small.
Japanese Patent Laid-Open No. 9-120827 JP-A-11-335473 JP 2003-297393 A JP 2001-514431 A JP 2000-149965 A JP 20001-1113141 A Japanese Patent Laid-Open No. 6-231777 JP-A-9-302115 JP 2003-123792 A Japanese Patent Application Laid-Open No. 2004-139836 JP 2004-139837 A JP-T-2001-514431 Special table 2003-528420 gazette JP 2003-77494 A

即ち、本発明は70〜80℃という温度はいうまでもなく、さらには90℃以上の温度での長時間運転を行ってもクロスリークが発生せず、なおかつ固体高分子型燃料電池の実用化の観点から機械特性が優れ、また乾燥時に対する含水時の寸法の変化が少ないという耐久性の高い燃料電池用の高分子固体電解質膜を提供するものである。   That is, in the present invention, it goes without saying that the temperature is 70 to 80 ° C. Furthermore, even if the operation is performed for a long time at a temperature of 90 ° C. or more, cross leak does not occur, and the solid polymer fuel cell is put to practical use. In view of the above, the present invention provides a solid polymer electrolyte membrane for a fuel cell that is excellent in mechanical properties and has a high durability with little change in dimensions when wet with respect to dryness.

本発明者は上記課題を解決すべく鋭意検討した結果、芳香族液晶ポリエステル不織布を補強材に有する複合固体高分子電解質膜とすることで乾燥時に対する含水時の寸法の変化が極めて小さく、70〜80℃さらには90℃以上の温度での長時間の運転を行ってもクロスリークが発生せずまた機械特性が優れた耐久性の高い燃料電池用の高分子固体電解質膜を作りうることを見いだし本発明に至った。
すなわち本発明は
1、 芳香族液晶ポリエステルからなる不織布を有することを特徴とする高分子固体電解質膜。
2、 該不織布の空隙率が40〜95%であって、かつ、空隙が該高分子固体電解質で充填されていることを特徴とする1に記載の高分子固体電解質膜。
3、 該高分子固体電解質が下記式(1)で示されるパーフルオロカーボンスルホン酸ポリマーからなるイオン交換樹脂であることを特徴とする1又は2に記載の高分子固体電解質膜。
[CFCFa−[CF−CF(−O−CF−CF(CF))−O−(CF−SOH)](1)
(式中、0≦a<1、0<g≦1,a+g=1,0≦b≦3、1≦f≦8である。)
4、 該高分子固体電解質が下記式(2)で示されるパーフルオロカーボンスルホン酸ポリマーからなるイオン交換樹脂であることを特徴とする1又は2に記載の高分子固体電解質膜。
[CFCFa−[CF−CF(−O−CF−CF(CF))−O−(CF−SOH)](2)
(式中、0≦a<1、0<g≦1,a+g=1,0≦b<1、1≦f≦8である。)
5、 該高分子固体電解質膜が、少なくとも高分子固体電解質(a)と、塩基性重合体(b)とを含有し、該(a)と該(b)の間に、該(a)の含有率((a)/((a)+(b))×100)が50.00〜99.999質量%、該(b)の含有率((b)/((a)+(b))×100)が0.001〜50.00質量%なる関係を有することを特徴とする1〜4の何れかに記載の高分子固体電解質膜。
6、 1〜5のいずれかに記載の高分子固体電解質膜を介してアノードとカソードが対向してなる膜/電極接合体。
7、 6に記載の膜/電極接合体を包含してなることを特徴とする高分子固体電解質型燃料電池。
As a result of intensive studies to solve the above-mentioned problems, the present inventor made a composite solid polymer electrolyte membrane having an aromatic liquid crystal polyester nonwoven fabric as a reinforcing material, so that the change in dimensions when wet with respect to dryness was extremely small. It has been found that cross-leakage does not occur even when operated for a long time at a temperature of 80 ° C. or even 90 ° C. or higher, and that a solid polymer electrolyte membrane for fuel cells with excellent mechanical properties can be made. The present invention has been reached.
That is, the present invention is 1. A polymer solid electrolyte membrane comprising a nonwoven fabric made of an aromatic liquid crystalline polyester.
2. The polymer solid electrolyte membrane according to 1, wherein the non-woven fabric has a porosity of 40 to 95%, and the voids are filled with the polymer solid electrolyte.
3. The polymer solid electrolyte membrane according to 1 or 2, wherein the polymer solid electrolyte is an ion exchange resin made of a perfluorocarbon sulfonic acid polymer represented by the following formula (1).
[CF 2 CF 2] a - [CF 2 -CF (-O-CF 2 -CF (CF 3)) b -O- (CF 2) f -SO 3 H)] g (1)
(Where 0 ≦ a <1, 0 <g ≦ 1, a + g = 1, 0 ≦ b ≦ 3, 1 ≦ f ≦ 8)
4. The polymer solid electrolyte membrane according to 1 or 2, wherein the polymer solid electrolyte is an ion exchange resin made of a perfluorocarbon sulfonic acid polymer represented by the following formula (2).
[CF 2 CF 2] a - [CF 2 -CF (-O-CF 2 -CF (CF 3)) b -O- (CF 2) f -SO 3 H)] g (2)
(Where 0 ≦ a <1, 0 <g ≦ 1, a + g = 1, 0 ≦ b <1, 1 ≦ f ≦ 8)
5. The polymer solid electrolyte membrane contains at least a polymer solid electrolyte (a) and a basic polymer (b), and between (a) and (b), Content ((a) / ((a) + (b)) × 100) is 50.00 to 99.999 mass%, content of (b) ((b) / ((a) + (b) ) × 100) has a relationship of 0.001 to 50.00% by mass. 5. The polymer solid electrolyte membrane according to any one of 1 to 4, wherein
6. A membrane / electrode assembly in which an anode and a cathode face each other through the polymer solid electrolyte membrane according to any one of 1 to 5.
7. A solid polymer electrolyte fuel cell comprising the membrane / electrode assembly according to 7 or 6.

本発明の高分子固体電解質膜は、機械特性が優れ、また乾燥時に対する含水時の寸法の変化が少なく、燃料電池の高分子固体電解質膜に用いた場合の90℃以上での長時間運転を行ってもクロスリークが発生しないため、耐久性の高い燃料電池用の高分子固体電解質膜となりうる。   The polymer solid electrolyte membrane of the present invention is excellent in mechanical properties, has little change in dimensions when wet with respect to dryness, and can be operated for a long time at 90 ° C. or higher when used in a polymer solid electrolyte membrane of a fuel cell. Since no cross-leak occurs even if it is performed, it can be a highly durable polymer solid electrolyte membrane for fuel cells.

以下に本発明を詳細に説明する。
本発明の高分子固体電解質膜に芳香族液晶ポリエステルの不織布は補強材として作用する。具体的には下記一般式(3)に示す構造単位からなる重合体であり、サーモトロピック液晶ポリエステルに分類される。
The present invention is described in detail below.
The nonwoven fabric of aromatic liquid crystal polyester functions as a reinforcing material in the polymer solid electrolyte membrane of the present invention. Specifically, it is a polymer composed of a structural unit represented by the following general formula (3), and is classified as a thermotropic liquid crystal polyester.

Figure 2006190627
(式中mとnの比は任意であり、どちらかの単独重合体であっても、共重合体であっても良い。またランダムに重合されていてもブロック重合されていても良い)
一般式(3)に示す構造単位のみからなる重合体が最も好ましいが、本発明の趣旨に反さない範囲で(4)に例示されるような構造単位を含む形の共重合体としても何ら問題がない。
Figure 2006190627
(In the formula, the ratio of m and n is arbitrary, and either a homopolymer or a copolymer may be used. Random polymerization or block polymerization may be used.)
A polymer consisting only of the structural unit represented by the general formula (3) is most preferable, but any copolymer having a structural unit as exemplified in (4) may be used without departing from the spirit of the present invention. there is no problem.

Figure 2006190627
本発明の特徴は芳香族液晶ポリエステルからなる繊維より得られる不織布を補強材とし、この補強材の空隙は高分子固体電解質で充填されている。
芳香族液晶ポリエステルは吸水率が特に少なく、かつ機械的強度並びに寸法精度が優れており、これを不織布にしたものを補強材として有する複合高分子固体電解質膜は固体高分子型燃料電池に用いた場合には極めて良好な耐久性および性能を有する。
芳香族液晶ポリエステルは当業者に知られている通常の方法により溶融紡糸することにより繊維が得られる。芳香族液晶ポリエステルより得られる繊維は高度に配向しているため、紡糸しただけで十分高い強度を有しているが、紡糸繊維を高温で一定時間熱処理を行うことにより更に強度が増大するので、熱処理したあとの繊維を用いることも好ましい。
得られた芳香族液晶ポリエステル繊維は常法により不織布にすることにより本発明の燃料電池用複合高分子固体電解質膜の補強材として用いることができる。
Figure 2006190627
A feature of the present invention is that a nonwoven fabric obtained from a fiber made of aromatic liquid crystalline polyester is used as a reinforcing material, and voids in the reinforcing material are filled with a polymer solid electrolyte.
Aromatic liquid crystalline polyester has a particularly low water absorption and excellent mechanical strength and dimensional accuracy. A composite polymer solid electrolyte membrane having a non-woven fabric as a reinforcing material was used for a polymer electrolyte fuel cell. In some cases it has very good durability and performance.
Aromatic liquid crystalline polyester can be obtained by melt spinning by a conventional method known to those skilled in the art. Since the fiber obtained from the aromatic liquid crystal polyester is highly oriented, it has a sufficiently high strength just by spinning, but the strength is further increased by heat treating the spun fiber at a high temperature for a certain time, It is also preferable to use the fiber after heat treatment.
The obtained aromatic liquid crystal polyester fiber can be used as a reinforcing material for the composite polymer solid electrolyte membrane for fuel cells of the present invention by forming a nonwoven fabric by a conventional method.

本発明の燃料電池用固体高分子電解質膜の補強材としては芳香族液晶ポリエステル繊維から得られる不織布を用いるが、本発明の趣旨に反しない範囲でPET繊維、ガラス繊維等を混合しても良いが、本来の目的である燃料電池用固体高分子電解質膜の補強材としての耐久性を十分に発揮するためには90%以上が芳香族液晶ポリエステルからなることが望ましい。また芳香族液晶ポリエステルは本発明の趣旨に反しない範囲で若干の脂肪族構造を主鎖、または側鎖に含んでも良いが本来の目的である燃料電池用固体高分子電解質膜の補強材としての耐久性を十分に発揮するためには90%以上が芳香族液晶ポリエステルからなることが望ましい。
本発明の高分子固体電解質膜は補強材として上記の芳香族液晶ポリエステルの不織布を含有した複合体を形成しており、補強材が高分子固体電解質膜中に包埋されていることが好ましい。
As a reinforcing material for the solid polymer electrolyte membrane for a fuel cell of the present invention, a nonwoven fabric obtained from aromatic liquid crystal polyester fiber is used, but PET fiber, glass fiber, etc. may be mixed within the range not departing from the gist of the present invention. However, 90% or more of the liquid crystal polyester is desirably composed of aromatic liquid crystalline polyester in order to fully exhibit the durability as a reinforcing material for the solid polymer electrolyte membrane for fuel cells, which is the original purpose. In addition, the aromatic liquid crystalline polyester may contain some aliphatic structure in the main chain or side chain as long as it does not contradict the gist of the present invention, but as a reinforcing material for the solid polymer electrolyte membrane for fuel cells, which is the original purpose. In order to sufficiently exhibit durability, it is desirable that 90% or more is made of an aromatic liquid crystal polyester.
The polymer solid electrolyte membrane of the present invention forms a composite containing the above-mentioned aromatic liquid crystal polyester nonwoven fabric as a reinforcing material, and the reinforcing material is preferably embedded in the polymer solid electrolyte membrane.

補強材として用いる芳香族液晶ポリエステル不織布の厚みは、5μm以上、60μm以下であり、より好ましくは10μm以上、50μm以下である。厚みが5μmよりも薄いと高分子固体電解質を含浸等する工程中で破損等の不良が生じ、また含浸後の高分子固体電解質膜の機械特性が十分ではない。一方、厚みが60μmよりも厚いと、電気抵抗が大きくなり燃料電池としての特性は悪くなる。
また本発明で用いることができる補強材としての不織布の空孔率は40〜95%が好ましく、より好ましくは50〜90%である。40%よりも空孔率が低いと固体電解質膜としてのプロトン伝導性が低下し、一方で95%よりも空孔率が高くなると不織布の本来の強度が保てなくなるので好ましくない。
本発明の高分子固体電解質膜に補強材として用いられる芳香族液晶ポリエステル不織布は表面処理を行うこともできる。この処理を行うとその後の高分子固体電解質の含浸を好適に行うことができる。このような表面処理の一例としては、コロナ放電処理、紫外線照射処理、プラズマ処理が挙げることができる。
The thickness of the aromatic liquid crystal polyester nonwoven fabric used as the reinforcing material is 5 μm or more and 60 μm or less, more preferably 10 μm or more and 50 μm or less. If the thickness is less than 5 μm, defects such as breakage occur in the process of impregnating the polymer solid electrolyte, and the mechanical properties of the polymer solid electrolyte membrane after impregnation are not sufficient. On the other hand, if the thickness is greater than 60 μm, the electrical resistance increases and the characteristics as a fuel cell deteriorate.
The porosity of the nonwoven fabric as a reinforcing material that can be used in the present invention is preferably 40 to 95%, more preferably 50 to 90%. If the porosity is lower than 40%, the proton conductivity as the solid electrolyte membrane is lowered. On the other hand, if the porosity is higher than 95%, the original strength of the nonwoven fabric cannot be maintained, which is not preferable.
The aromatic liquid crystal polyester nonwoven fabric used as a reinforcing material for the polymer solid electrolyte membrane of the present invention can be subjected to surface treatment. When this treatment is performed, the subsequent impregnation of the polymer solid electrolyte can be suitably performed. Examples of such surface treatments include corona discharge treatment, ultraviolet irradiation treatment, and plasma treatment.

次に、本発明の高分子固体電解質膜の電解質成分である高分子固体電解質について説明する。
本発明で用いられる高分子固体電解質は、イオン交換性を有する樹脂であれば構わないが、フッ素系イオン交換樹脂であることが好ましく、中でもパーフルオロカーボンスルホン酸ポリマーであることがより好ましい。
パーフルオロカーボンスルホン酸ポリマーは具体的には、下記一般式(1)で表される。
Next, the polymer solid electrolyte that is the electrolyte component of the polymer solid electrolyte membrane of the present invention will be described.
The solid polymer electrolyte used in the present invention may be any resin having ion exchange properties, but is preferably a fluorine ion exchange resin, and more preferably a perfluorocarbon sulfonic acid polymer.
The perfluorocarbon sulfonic acid polymer is specifically represented by the following general formula (1).

Figure 2006190627
(式中、0≦a<1、0<g≦1、a+g=1、0≦b≦3、1≦f≦8である。)
一般式(1)中、bの範囲が代わると高分子固体電解質膜のガラス転移点が変わる。1≦b≦3の範囲でガラス転移点がおよそ120℃以下であるが、bが1以下、0に近づくにつれてガラス転移点がおよそ140℃を超える。従って、bはより好ましくは0≦b<1である。
このポリマーは、通常、パーフルオロビニルエーテルモノマーとテトラフルオロエチレン(TFE)を共重合して得られる熱可塑性の下記一般式(5)で表されるパーフルオロカーボンスルホニルフルオライドポリマーを加水分解反応を施すことによって得られる。
Figure 2006190627
(Where 0 ≦ a <1, 0 <g ≦ 1, a + g = 1, 0 ≦ b ≦ 3, 1 ≦ f ≦ 8)
In the general formula (1), when the range of b is changed, the glass transition point of the polymer solid electrolyte membrane is changed. In the range of 1 ≦ b ≦ 3, the glass transition point is approximately 120 ° C. or less, but as b approaches 1 or less and 0, the glass transition point exceeds approximately 140 ° C. Therefore, b is more preferably 0 ≦ b <1.
This polymer is usually obtained by subjecting a thermoplastic perfluorocarbonsulfonyl fluoride polymer represented by the following general formula (5) obtained by copolymerizing a perfluorovinyl ether monomer and tetrafluoroethylene (TFE) to a hydrolysis reaction. Obtained by.

Figure 2006190627
(式中、0≦a<1、0<g≦1、a+g=1、0≦b≦3、1≦f≦8である。)
次に高分子固体電解質膜に含まれる添加剤としての塩基性重合体について説明する。
本発明の高分子固体電解質膜では、特に塩基性重合体を高分子固体電解質成分に添加剤として含有させることによって耐久性が飛躍的に向上する。塩基性重合体としては窒素含有脂肪族塩基性重合体や窒素含有芳香族塩基性重合体が挙げられる。
窒素含有脂肪族塩基性重合体の例としては、ポリエチレンイミンが挙げられる。窒素含有芳香族塩基性重合体の例としては、ポリアニリン、及び複素環式化合物であるポリベンズイミダゾール、ポリピリジン、ポリピリミジン、ポリビニルピリジン、ポリイミダゾール、ポリピロリジン、ポリビニルイミダゾール等が挙げられる。この中でもポリベンズイミダゾールは耐熱性が高いことから特に好ましい。
ポリベンズイミダゾールとしては、一般式(6)、一般式(7)に表される化合物、一般式(8)で表されるポリ2,5−ベンズイミダゾール等が挙げられる。
Figure 2006190627
(Where 0 ≦ a <1, 0 <g ≦ 1, a + g = 1, 0 ≦ b ≦ 3, 1 ≦ f ≦ 8)
Next, the basic polymer as an additive contained in the polymer solid electrolyte membrane will be described.
In the solid polymer electrolyte membrane of the present invention, durability is dramatically improved by incorporating a basic polymer as an additive in the solid polymer electrolyte component. Examples of the basic polymer include a nitrogen-containing aliphatic basic polymer and a nitrogen-containing aromatic basic polymer.
Examples of nitrogen-containing aliphatic basic polymers include polyethyleneimine. Examples of the nitrogen-containing aromatic basic polymer include polyaniline and heterocyclic compounds such as polybenzimidazole, polypyridine, polypyrimidine, polyvinylpyridine, polyimidazole, polypyrrolidine, and polyvinylimidazole. Among these, polybenzimidazole is particularly preferable because of its high heat resistance.
Examples of the polybenzimidazole include compounds represented by general formula (6) and general formula (7), and poly 2,5-benzimidazole represented by general formula (8).

Figure 2006190627
Figure 2006190627

Figure 2006190627
(7)式中Rはそれぞれ独立に水素原子、アルキル、フェニル、またはピリジルで
ある。Rは一般式(6)で定義したものと同じである。
Figure 2006190627
(7) In the formula, each R 1 is independently a hydrogen atom, alkyl, phenyl, or pyridyl. R is the same as defined in the general formula (6).

Figure 2006190627
(8)式中Rは一般式(7)で定義したものと同じで、それぞれ独立に水素原子、アルキル、フェニル、またはピリジルである。
以上のようなポリベンズイミダゾールの中でも、下記化学式(9)で表されるポリ[2、2’−(m−フェニレン)−5,5’−ビベンゾイミダゾール]が特に好ましい。
Figure 2006190627
(8) In the formula, R 1 is the same as defined in the general formula (7), and each independently represents a hydrogen atom, alkyl, phenyl, or pyridyl.
Among the polybenzimidazoles as described above, poly [2,2 ′-(m-phenylene) -5,5′-bibenzimidazole] represented by the following chemical formula (9) is particularly preferable.

Figure 2006190627
本発明の高分子固体電解質膜は、高分子固体電解質(a)と、添加剤としての塩基性重合体(b)を含有し、該(a)の含有率([(a)/((a)+(b))]×100)が50.00〜99.999質量%、該(b)の含有率([(b)/((a)+(b))]×100)が0.001〜50.00質量%である事を特徴とする。
塩基性重合体(b)の含有率は、上記のように成分(a)と成分(b)の合計質量に対して0.001〜50.000質量%であり、好ましくは0.005〜20.000質量%、より好ましくは0.010〜10.000質量%、さらに好ましくは0.100〜5.000質量%、最も好ましくは0.100〜2.000質量%である。塩基性重合体(b)の含有率を上記の範囲(0.001〜50.000質量%)に設定することにより、良好なプロトン伝導度を維持したまま、高耐久性を有する高分子固体電解質膜を得ることができる。
Figure 2006190627
The solid polymer electrolyte membrane of the present invention contains a solid polymer electrolyte (a) and a basic polymer (b) as an additive, and the content of (a) ([(a) / ((a ) + (B))] × 100) is 50.00 to 99.999 mass%, and the content of (b) ([(b) / ((a) + (b))] × 100) is 0. It is characterized by being 001-50.00 mass%.
The content rate of a basic polymer (b) is 0.001-50000 mass% with respect to the total mass of a component (a) and a component (b) as mentioned above, Preferably it is 0.005-20. 0.000% by mass, more preferably 0.010 to 10.000% by mass, still more preferably 0.100 to 5.000% by mass, and most preferably 0.100 to 2.000% by mass. By setting the content of the basic polymer (b) in the above range (0.001 to 50.000 mass%), a polymer solid electrolyte having high durability while maintaining good proton conductivity A membrane can be obtained.

本発明の高分子固体電解質膜の厚みは制限されないが、10〜150μmであることが好ましく、より好ましくは15〜100μm、最も好ましくは20〜75μmである。膜厚が厚いほど耐久性は良くなる一方で、初期特性は悪くなるため、上記の範囲(10〜150μm)で膜厚を設定するのが好ましい。
本発明の高分子固体電解質膜の製造法は特に限定されないが、上記の高分子固体電解質が水、アルコール類等のプロトン溶媒や、DMF(ジメチルホルムアミド)、DMAc(ジメチルアセトアミド)、DMSO(ジメチルスルホキサイド)、NMP(N−メチル−2−ピロリドン)等の極性非プロトン溶媒、或いは、その混合溶媒に溶解あるいは分散した混合液(含浸液と呼ぶ)に補強材を浸漬、含浸し次いで乾燥する方法が挙げられる。また、補強材の上に上記の高分子固体電解質が溶解あるいは分散した液を塗布して含浸、乾燥する方法も挙げられる。この方法以外にもスプレーや刷毛塗り等でも含浸できるがいずれの方法でも構わない。また含浸後に不織布の表面に付着した余分な高分子固体電解質はスクレーパ、ワイパー、エアナイフ、ローラ等で掻き落として付着量を限定することが好ましい。このような方法で作成した含浸後の高分子固体電解質膜に対して別途用意した高分子固体電解質膜を加熱下でプレスしてさらに複合することもできる。
The thickness of the polymer solid electrolyte membrane of the present invention is not limited, but is preferably 10 to 150 μm, more preferably 15 to 100 μm, and most preferably 20 to 75 μm. The thicker the film thickness, the better the durability, but the initial characteristics deteriorate. Therefore, it is preferable to set the film thickness within the above range (10 to 150 μm).
The production method of the polymer solid electrolyte membrane of the present invention is not particularly limited, but the polymer solid electrolyte may be a proton solvent such as water or alcohols, DMF (dimethylformamide), DMAc (dimethylacetamide), DMSO (dimethylsulfone). Kiss), NMP (N-methyl-2-pyrrolidone) or other polar aprotic solvent, or a mixed solution dissolved or dispersed in the mixed solvent (referred to as impregnating solution), impregnated with the reinforcing material, and then dried. A method is mentioned. Moreover, the method of apply | coating and impregnating and drying the liquid which melt | dissolved or disperse | distributed said polymer solid electrolyte on the reinforcing material is also mentioned. Besides this method, impregnation can be performed by spraying or brushing, but any method may be used. Further, it is preferable that the excess polymer solid electrolyte adhering to the surface of the nonwoven fabric after impregnation is scraped off with a scraper, wiper, air knife, roller or the like to limit the amount of adhesion. The polymer solid electrolyte membrane separately prepared for the impregnated polymer solid electrolyte membrane prepared by such a method can be further combined by pressing under heating.

本発明の高分子固体電解質膜が塩基性重合体を添加物として含む場合には、上記の含浸液に塩基性重合体を通常の混合方法を用いて添加すれば構わない。一例をあげると高分子固体電解質が水、アルコール類等のプロトン溶媒や、DMF(ジメチルホルムアミド)、DMAc(ジメチルアセトアミド)、DMSO(ジメチルスルホキサイド)、NMP(N−メチル−2−ピロリドン)等の極性非プロトン溶媒、或いは、その混合溶媒に溶解あるいは分散した混合液と塩基性重合体がDMF,DMAc、DMSO,NMP等の極性非プロトン溶媒に溶解あるいは分散した液を混ぜ合わせることにより塩基性重合体を添加物として含む高分子固体電解質の含浸液を得ることができる。
補強材の内部に高分子固体電解質あるいは塩基性重合体を添加物として含む高分子固体電解質を充填する際の含浸液の固形分濃度は内部に十分に充填することを考えると5質量%以上であることが望ましく、10質量%以上であることがさらに望ましい。5質量%よりも濃度が小さい場合には空孔を完全に埋めることができない。含浸後になお空孔を有する場合には繰り返し含浸することもできる。その際には含浸後に風乾または熱風等を十分に当てて溶剤を乾燥、除去した後に再度含浸をする。また含浸においては雰囲気を減圧にすることや超音波を照射した場合に好適に空孔を残さずに含浸が達成されるが必ずしも減圧や超音波は必要ではない。
When the solid polymer electrolyte membrane of the present invention contains a basic polymer as an additive, the basic polymer may be added to the above impregnating solution using a normal mixing method. For example, the solid polymer electrolyte is a proton solvent such as water or alcohol, DMF (dimethylformamide), DMAc (dimethylacetamide), DMSO (dimethylsulfoxide), NMP (N-methyl-2-pyrrolidone), etc. By mixing a polar aprotic solvent or a mixed solution dissolved or dispersed in the mixed solvent with a liquid in which a basic polymer is dissolved or dispersed in a polar aprotic solvent such as DMF, DMAc, DMSO, or NMP. An impregnating solution of a solid polymer electrolyte containing a polymer as an additive can be obtained.
The solid content concentration of the impregnating liquid when filling the inside of the reinforcing material with the polymer solid electrolyte or the polymer solid electrolyte containing the basic polymer as an additive is 5% by mass or more considering that the inside is sufficiently filled. It is desirable that it is 10% by mass or more. When the concentration is less than 5% by mass, the vacancies cannot be completely filled. If there are pores after impregnation, the impregnation can be repeated. In that case, air impregnation or hot air is sufficiently applied after impregnation to dry and remove the solvent, and then impregnation again. Further, in the impregnation, when the atmosphere is reduced in pressure or when ultrasonic waves are irradiated, the impregnation is suitably achieved without leaving voids, but the reduced pressure and ultrasonic waves are not necessarily required.

上記のような方法で得られた補強材を有する高分子固体電解質膜は引き続き熱処理される事が望ましい。熱処理により補強材と高分子固体電解質が強固に密着され、その結果機械的強度が安定化される。熱処理温度は、好ましくは120℃以上300℃以下、更に好ましくは140℃以上である250℃以下、最も好ましくは160℃以上230℃以下である。
熱処理温度が低いと補強材と高分子固体電解質間の密着力が確保できず好ましくない。この場合80℃程度の水に浸漬すると含浸した高分子固体電解質が溶け出してくることがある。一方、熱処理温度が高いと高分子固体電解質、塩基性重合体等が変質する可能性があり好ましくない。熱処理の時間は、熱処理温度にもよるが、好ましくは5分以上3時間以下、更に好ましくは10分以上2時間以下である。
含浸後に熱処理を施した高分子固体電解質膜は実質的に空気不透過である。空気の透過性の測定方法は後述する特性値の測定方法の欄に記載するが、この測定を行った際の透気度(ガーレー数)は5000秒以上であることが好ましく、10000秒以上であることがさらに好ましく、最も好ましくは20000秒以上である。5000秒未満の場合には全く実用に供さない。本発明の空気不透過とは5000秒以上のことをいう。
It is desirable that the polymer solid electrolyte membrane having the reinforcing material obtained by the above method is subsequently heat treated. By heat treatment, the reinforcing material and the solid polymer electrolyte are firmly adhered, and as a result, the mechanical strength is stabilized. The heat treatment temperature is preferably 120 ° C. or higher and 300 ° C. or lower, more preferably 140 ° C. or higher and 250 ° C. or lower, most preferably 160 ° C. or higher and 230 ° C. or lower.
If the heat treatment temperature is low, the adhesion between the reinforcing material and the polymer solid electrolyte cannot be secured, which is not preferable. In this case, when immersed in water at about 80 ° C., the impregnated polymer solid electrolyte may melt out. On the other hand, if the heat treatment temperature is high, the solid polymer electrolyte, the basic polymer and the like may be altered, which is not preferable. Although the heat treatment time depends on the heat treatment temperature, it is preferably 5 minutes or longer and 3 hours or shorter, more preferably 10 minutes or longer and 2 hours or shorter.
The polymer solid electrolyte membrane subjected to heat treatment after impregnation is substantially impermeable to air. The air permeability measurement method is described in the column of the characteristic value measurement method described later. The air permeability (Gurley number) when this measurement is performed is preferably 5000 seconds or more, and preferably 10,000 seconds or more. More preferably, it is most preferably 20000 seconds or longer. When it is less than 5000 seconds, it is not used at all. The air impermeability of the present invention means 5000 seconds or more.

本発明の高分子固体電解質膜のイオン交換容量としては特に限定されないが、1g当たり0.50〜4.00ミリ当量が好ましく、より好ましくは0.83〜4.00ミリ当量、最も好ましくは1.00〜1.50ミリ当量である。より大きいイオン交換容量の高分子固体電解質膜を用いる方が、高温低加湿条件下においてより高いプロトン伝導性を示し、燃料電池に用いた場合、運転時により高い出力を得ることができる。
高分子固体電解質膜の乾燥時に対する含水時の寸法の変化は乾湿寸法変化の振幅の測定で評価される。測定方法は後述する特性値の測定方法の欄に記すが、乾湿寸法変化の振幅が10%以下であることが好ましく、さらに好ましくは5%以下、最も好ましくは3%以下である。10%以上の場合には生じる局所的なひずみが高分子固体電解質膜の劣化や破壊の基点となり長時間の連続運転には耐え得ない。
The ion exchange capacity of the polymer solid electrolyte membrane of the present invention is not particularly limited, but is preferably 0.50 to 4.00 milliequivalents per gram, more preferably 0.83 to 4.00 milliequivalents, and most preferably 1 0.001 to 1.50 milliequivalents. The use of a polymer solid electrolyte membrane having a larger ion exchange capacity exhibits higher proton conductivity under high temperature and low humidification conditions, and when used in a fuel cell, a higher output can be obtained during operation.
The change in the dimension of the polymer solid electrolyte membrane during drying with respect to the time of drying is evaluated by measuring the amplitude of the wet and dry dimensional change. Although the measurement method is described in the column of the characteristic value measurement method described later, the amplitude of the wet and dry dimensional change is preferably 10% or less, more preferably 5% or less, and most preferably 3% or less. In the case of 10% or more, the local strain generated becomes the starting point of deterioration or destruction of the polymer solid electrolyte membrane, and cannot withstand continuous operation for a long time.

本発明の高分子固体電解質膜を固体高分子形燃料電池に用いる場合、本発明の高分子固体電解質膜がアノードとカソードの間に密着保持されてなる膜/電極接合体(membrane/electrodeassembly)(以下、しばしば「MEA」と称する)として使用される。ここでアノードはアノード触媒層からなり、プロトン伝導性を有し、カソードはカソード触媒層からなり、プロトン伝導性を有する。また、アノード触媒層とカソード触媒層のそれぞれの外側表面にガス拡散層(後述する)を接合したものもMEAと呼ぶ。
アノード触媒層は、燃料(例えば水素)を酸化して容易にプロトンを生ぜしめる触媒を包含し、カソード触媒層は、プロトン及び電子と酸化剤(例えば酸素や空気)を反応させて水を生成させる触媒を包含する。アノードとカソードのいずれについても、触媒としては白金もしくは白金とルテニウム等を合金化した触媒が好適に用いられ、10〜1000オングストローム以下の触媒粒子であることが好ましい。また、このような触媒粒子は、ファーネスブラック、チャンネルブラック、アセチレンブラック、カーボンブラック、活性炭、黒鉛といった0.01〜10μm程度の大きさの導電性粒子に担持されていることが好ましい。触媒層投影面積に対する触媒粒子の担持量は、0.001mg/cm〜10mg/cm以下であることが好ましい。
さらにアノード触媒層とカソード触媒層は、パーフルオロカーボンスルホン酸ポリマーを含有することが好ましい。触媒層投影面積に対する担持量として、0.001mg/cm〜10mg/cm以下であることが好ましい。
When the polymer solid electrolyte membrane of the present invention is used in a polymer electrolyte fuel cell, a membrane / electrode assembly (membrane / electrode assembly) in which the polymer solid electrolyte membrane of the present invention is held tightly between an anode and a cathode ( Hereinafter often referred to as "MEA"). Here, the anode is composed of an anode catalyst layer and has proton conductivity, and the cathode is composed of a cathode catalyst layer and has proton conductivity. Further, a gas diffusion layer (described later) joined to the outer surface of each of the anode catalyst layer and the cathode catalyst layer is also referred to as MEA.
The anode catalyst layer includes a catalyst that easily oxidizes fuel (for example, hydrogen) to easily generate protons, and the cathode catalyst layer reacts protons and electrons with an oxidizing agent (for example, oxygen or air) to generate water. Includes catalyst. For both the anode and the cathode, platinum or a catalyst in which platinum and ruthenium are alloyed is preferably used as the catalyst, and the catalyst particles are preferably 10 to 1000 angstroms or less. Such catalyst particles are preferably supported on conductive particles having a size of about 0.01 to 10 μm such as furnace black, channel black, acetylene black, carbon black, activated carbon, and graphite. The amount of catalyst particles supported relative to the projected area of the catalyst layer is preferably 0.001 mg / cm 2 to 10 mg / cm 2 or less.
Furthermore, the anode catalyst layer and the cathode catalyst layer preferably contain a perfluorocarbon sulfonic acid polymer. The supported amount relative to the projected area of the catalyst layer is preferably 0.001 mg / cm 2 to 10 mg / cm 2 or less.

MEAの作製方法としては、例えば、次のような方法が挙げられる。まず、パーフルオロカーボンスルホン酸ポリマーをアルコールと水の混合溶液に溶解したものに、触媒として市販の白金担持カーボン(例えば、田中貴金属(株)製TEC10E40E)を分散させてペースト状にする。これを2枚のPTFEシートのそれぞれの片面に一定量塗布して乾燥させて触媒層を形成する。次に、各PTFEシートの塗布面を向かい合わせにして、その間に本発明の高分子固体電解質膜を挟み込み、100〜200℃で熱プレスにより転写接合してから、PTFEシートを取り除くことにより、MEAを得ることができる。
当業者にはMEAの作製方法は周知である。MEAの作製方法は、例えば、JOURNAL OF APPLIED ELECTROCHEMISTRY,22(1992)p.1−7に詳しく記載されている。
As a method for manufacturing the MEA, for example, the following method can be given. First, commercially available platinum-supported carbon (for example, TEC10E40E manufactured by Tanaka Kikinzoku Co., Ltd.) as a catalyst is dispersed in a solution in which a perfluorocarbon sulfonic acid polymer is dissolved in a mixed solution of alcohol and water to form a paste. A certain amount of this is applied to one side of each of the two PTFE sheets and dried to form a catalyst layer. Next, the coated surfaces of the PTFE sheets are faced to each other, the polymer solid electrolyte membrane of the present invention is sandwiched between them, and transferred and bonded by hot pressing at 100 to 200 ° C., and then the PTFE sheet is removed, thereby removing the MEA. Can be obtained.
A person skilled in the art knows how to make MEAs. The method for producing MEA is described in, for example, JOURNAL OF APPLIED ELECTROCHEMISTRY, 22 (1992) p. 1-7.

ガス拡散層としては、市販のカーボンクロスもしくはカーボンペーパーを用いることができる。前者の代表例としては、米国DE NORA NORTH AMERICA社製カーボンクロスE−tek,B−1が挙げられ、後者の代表例としては、CARBEL(登録商標、ジャパンゴアテックス(株))、東レ(株)製TGP−H、米国SPCTRACORP社製カーボンペーパー2050等が挙げられる。また、電極触媒層とガス拡散層が一体化した構造体は「ガス拡散電極」と呼ばれる。ガス拡散電極を本発明の高分子固体電解質膜に接合してもMEAが得られる。市販のガス拡散電極の代表例としては、米国DE NORA NORTH AMERICA社製ガス拡散電極ELAT(登録商標)(ガス拡散層としてカーボンクロスを使用)が挙げられる。
上記MEAのアノードとカソードを高分子固体電解質膜の外側に位置する電子伝導性材料を介して互いに結合させると、作動可能な固体高分子形燃料電池を得ることができる。当業者には固体高分子形燃料電池の作成方法は周知である。固体高分子形燃料電池の作成方法は、例えば、FUEL CELL HANDBOOK(VAN NOSTRAND REINHOLD、A.J.APPLEBY et.al、ISBN 0−442−31
926−6)、化学One Point,燃料電池(第二版),谷口雅夫,妹尾学編,共立出版(1992)等に詳しく記載されている。
A commercially available carbon cloth or carbon paper can be used as the gas diffusion layer. Representative examples of the former include carbon cloth E-tek, B-1 manufactured by DE NORA NORTH AMERICA, USA. Representative examples of the latter include CARBEL (registered trademark, Japan Gore-Tex Co., Ltd.), Toray Industries, Inc. ) Manufactured by TGP-H, carbon paper 2050 manufactured by SPCTRACORP, USA, and the like. A structure in which the electrode catalyst layer and the gas diffusion layer are integrated is called a “gas diffusion electrode”. MEA can also be obtained by joining the gas diffusion electrode to the solid polymer electrolyte membrane of the present invention. A typical example of a commercially available gas diffusion electrode is a gas diffusion electrode ELAT (registered trademark) manufactured by DE NORA NORTH AMERICA (using carbon cloth as a gas diffusion layer).
When the anode and cathode of the MEA are coupled to each other via an electron conductive material located outside the polymer solid electrolyte membrane, an operable polymer electrolyte fuel cell can be obtained. A person skilled in the art knows how to make a polymer electrolyte fuel cell. A method for producing a polymer electrolyte fuel cell is, for example, FUEL CELL HANDBOOK (VAN NOSTRAND REINHOLD, AJ APPLEBY et.al, ISBN 0-442-31).
926-6), Chemistry One Point, Fuel Cell (Second Edition), Masao Taniguchi, Manabu Seneo, Kyoritsu Shuppan (1992) and the like.

電子伝導性材料としては、その表面に燃料や酸化剤等のガスを流すための溝を形成させたグラファイトまたは樹脂との複合材料、金属製のプレート等の集電体を用いる。上記MEAがガス拡散層を有さない場合、MEAのアノードとカソードのそれぞれの外側表面にガス拡散層を位置させた状態で単セル用ケーシング(例えば、米国エレクトロケム社製 PEFC単セル)に組み込むことにより固体高分子形燃料電池が得られる。
高電圧を取り出すためには、上記のような単セルを複数積み重ねたスタックセルとして燃料電池を作動させる。このようなスタックセルとしての燃料電池を作成するためには、複数のMEAを作成してスタックセル用ケーシング(例えば、米国エレクトロケム社製 PEFCスタックセル)に組み込む。このようなスタックセルとしての燃料電池においては、隣り合うセルの燃料と酸化剤を分離する役割と隣り合うセル間の電気的コネクターの役割を果たすバイポーラプレートと呼ばれる集電体が用いられる。
燃料電池の運転は、一方の電極に水素を、他方の電極に酸素または空気を供給することによって行われる。燃料電池の作動温度は高温であるほど触媒活性が上がるために好ましい。通常は、水分管理が容易な50〜80℃で作動させることが多いが、80℃〜150℃で作動させることもできる。
As the electron conductive material, a current collector such as a composite material of graphite or resin having a groove for flowing a gas such as fuel or oxidant on its surface, or a metal plate is used. When the MEA does not have a gas diffusion layer, the MEA is incorporated into a single cell casing (for example, PEFC single cell manufactured by Electrochem Inc., USA) with the gas diffusion layer positioned on the outer surface of each anode and cathode of the MEA. Thus, a polymer electrolyte fuel cell can be obtained.
In order to extract a high voltage, the fuel cell is operated as a stack cell in which a plurality of single cells as described above are stacked. In order to produce such a fuel cell as a stack cell, a plurality of MEAs are produced and assembled into a stack cell casing (for example, PEFC stack cell manufactured by US Electrochem Corp.). In such a fuel cell as a stack cell, a current collector called a bipolar plate is used which serves to separate the fuel and oxidant of adjacent cells and to serve as an electrical connector between the adjacent cells.
The fuel cell is operated by supplying hydrogen to one electrode and oxygen or air to the other electrode. The higher the operating temperature of the fuel cell, the higher the catalyst activity. Usually, it is often operated at 50 to 80 ° C., where moisture management is easy, but it can also be operated at 80 to 150 ° C.

以下に実施例に基づいて本発明をさらに具体的に説明する。
(特性値の測定方法)
(1)イオン交換容量
まず、10cm程度に切り出した(複合)高分子電解質膜を110℃にて真空乾燥して、乾燥重量W(g)を求める。この膜を50mlの25℃飽和NaCl水溶液に浸漬してHを遊離させ、フェノールフタレインを指示薬として、0.01N水酸化ナトリウム水溶液で中和滴定を行い、中和に要したNaOHの等量M(ミリ等量)を求める。このようにして求めたMをWで割って得られる値がイオン交換容量(ミリ等量/g)である。また、WをMで割って1000倍した値が当量質量EWであり、イオン交換基1当量当りの乾燥質量グラム数である。
(2)膜厚
高分子固体電解質膜を23℃、65%の恒温室で12時間以上放置した後に、東洋精機製作所製B−1型膜膜厚計を用いて測定した。
Hereinafter, the present invention will be described more specifically based on examples.
(Measurement method of characteristic value)
(1) Ion exchange capacity First, the (composite) polymer electrolyte membrane cut out to about 10 cm 2 is vacuum-dried at 110 ° C. to determine the dry weight W (g). This membrane is immersed in 50 ml of a saturated NaCl aqueous solution at 25 ° C. to release H + , and neutralization titration is performed with 0.01 N sodium hydroxide aqueous solution using phenolphthalein as an indicator, and the equivalent amount of NaOH required for neutralization. Obtain M (millimeter equivalent). The value obtained by dividing M thus determined by W is the ion exchange capacity (milli equivalent / g). The value obtained by dividing W by M and multiplying by 1000 is the equivalent mass EW, which is the dry mass in grams per equivalent of ion-exchange groups.
(2) Film thickness After the polymer solid electrolyte membrane was allowed to stand for 12 hours or more in a thermostatic chamber at 23 ° C. and 65%, it was measured using a B-1 type film thickness meter manufactured by Toyo Seiki Seisakusho.

(3)乾湿寸法変化の振幅
高分子固体電解質膜を23℃・50%の恒温室で1時間以上放置したあと、任意のサイズに切り出し、初期の寸法(縦方向の長さA(cm)、横方向の長さB(cm))を測定した。そのサンプルを80℃熱水に1時間浸漬させ、膨潤時の寸法(縦方向の長さC(cm)、横方向の長さD(cm))を測定し、下記式を用いて80℃での縦方向、横方向それぞれの膨潤寸法変化率を求め、その平均を膨潤寸法変化率△W(%)とした。
△W=((C−A)/A)×100
△W=((D−B)/B)×100
△W=(△W+△W)/2
引き続き、膨潤したサンプルを23℃・50%の恒温室で1時間以上放置、乾燥させ、乾燥時の寸法(縦方向の長さE(cm)、横方向の長さF(cm))を測定し、下記式を用いて乾燥時での縦方向、横方向それぞれの乾燥寸法変化率を求め、その平均を乾燥寸法変化率△K(%)とした。
△K=((E−A)/A)×100
△K=((F−B)/B)×100
△K=(△K+△K)/2
これらより、以下の式を用いて繰り返し乾湿寸法変化の振幅△H(%)を求めた。
△H=△W−△K
(3) Amplitude of wet and dry dimensional change After leaving the polymer solid electrolyte membrane in a constant temperature room at 23 ° C. and 50% for 1 hour or longer, cut it out to an arbitrary size and set the initial dimensions (length A (cm) in the vertical direction, The lateral length B (cm)) was measured. The sample was immersed in hot water at 80 ° C. for 1 hour, and the dimensions at the time of swelling (longitudinal length C (cm), lateral length D (cm)) were measured. The swelling dimensional change rate in each of the vertical direction and the horizontal direction was determined, and the average was defined as the swelling dimensional change rate ΔW (%).
ΔW length = ((C−A) / A) × 100
ΔW width = ((D−B) / B) × 100
△ W = (△ W length + △ W width ) / 2
Subsequently, the swollen sample was allowed to stand in a thermostatic chamber at 23 ° C. and 50% for 1 hour or more and dried, and the dimensions during drying (longitudinal length E (cm), lateral length F (cm)) were measured. Then, the dry dimensional change rates in the vertical and horizontal directions during drying were determined using the following formula, and the average was defined as the dry dimensional change rate ΔK (%).
ΔK length = ((EA) / A) × 100
ΔK horizontal = ((F−B) / B) × 100
△ K = (△ K vertical + △ K horizontal ) / 2
From these, the amplitude ΔH (%) of the wet and dry dimensional change was repeatedly determined using the following equation.
△ H = △ W- △ K

(4)プロトン伝導度
高分子固体電解質膜を80℃の湯中で処理した後に、膨潤状態のまま幅1cm、長さ7cmに切出し、厚みT を測定した。このサンプルを膨潤状態のまま伝導度を測定する2端子式の伝導度測定セルに装着した。このセルを80℃のイオン交換水中に浸漬し、交流インピーダンス法により周波数10kHzにおける抵抗値Rを測定し、以下の式からプロトン伝導度σを算出した。
σ=L /(R ×T ×W )
σ:プロトン伝導度(S/cm)
T :厚み(cm)
R :抵抗値(Ω)
L :2端子間距離(=5cm)
W :サンプル幅(=1cm)
(4) Proton conductivity After the polymer solid electrolyte membrane was treated in hot water at 80 ° C., it was cut into a 1 cm width and a 7 cm length in a swollen state, and the thickness T was measured. This sample was attached to a two-terminal conductivity measuring cell for measuring conductivity in a swollen state. This cell was immersed in ion exchange water at 80 ° C., a resistance value R at a frequency of 10 kHz was measured by an alternating current impedance method, and proton conductivity σ was calculated from the following equation.
σ = L / (R × T × W)
σ: Proton conductivity (S / cm)
T: Thickness (cm)
R: Resistance value (Ω)
L: Distance between two terminals (= 5cm)
W: Sample width (= 1 cm)

(5)燃料電池膜としての耐久性時間
Nafion溶液(アルドリッチ社製、Nafion固形分10%、溶媒 水/エタノール重量比=1/1に、触媒として市販の白金担持カーボン(田中貴金属(株)社製TEC10E40E)を分散させてペースト状にする。これを2枚のPTFEシートのそれぞれの片面に0.8mg/cmして乾燥させて触媒層を形成した。次に、各PTFEシートの塗布面を向かい合わせにして、その間に本発明の高分子固体電解質膜を挟み込み、150℃、圧力5MPaで90秒間プレスしてMEAを作成した。
得られたMEAの両側にガス拡散層としてカーボンクロスをセットして燃料電池単セル評価装置に組み込み、水素ガスと空気を用いて0.15MPa加圧下95℃で燃料電池特性試験を行った。アノードとカソードのガスの加湿温度は60℃とし、電流密度0.3A/cmで発電した。耐久性試験において、高分子電解質膜にピンホールが生じると、水素ガスがカソード側へ多量にリークする。このリーク量を調べ、測定値が著しく上昇した時点で試験終了とした。
(5) Durability time as fuel cell membrane Nafion solution (manufactured by Aldrich, Nafion solid content 10%, solvent water / ethanol weight ratio = 1/1, commercially available platinum-supported carbon (Tanaka Kikinzoku Co., Ltd.) TEC10E40E) was dispersed into a paste, which was dried on each side of each of the two PTFE sheets by 0.8 mg / cm 2 to form a catalyst layer. The polymer solid electrolyte membrane of the present invention was sandwiched therebetween and pressed at 150 ° C. and a pressure of 5 MPa for 90 seconds to prepare an MEA.
A carbon cloth was set as a gas diffusion layer on both sides of the obtained MEA and incorporated in a fuel cell single cell evaluation apparatus, and a fuel cell characteristic test was conducted at 95 ° C. under a pressure of 0.15 MPa using hydrogen gas and air. The humidification temperature of the anode and cathode gases was 60 ° C., and power was generated at a current density of 0.3 A / cm 2 . In the durability test, when a pinhole is generated in the polymer electrolyte membrane, a large amount of hydrogen gas leaks to the cathode side. The amount of leak was examined, and the test was terminated when the measured value increased significantly.

(6)透気度
JIS P8117に基づき、ガーレ式デンソメータ(島津社製)を用い、空気100ccが透過する時間(秒)を透気度(ガーレー値)として計測し、連続孔の有無を判断した。測定は5サンプルについて行い、その平均値を求めた。なお、連続孔が存在しない場合、透気度は無限大になる。
(7)破断強度
JIS K7113に基づき、島津製作所製精密万能試験機AGS−1KNGを用いて高分子固体電解質膜の破断強度を測定した。サンプルは23℃、65%の恒温室で12時間以上放置した後に幅5mm、長さ50mmに切出し測定に供した。測定は3サンプルについて行い、その平均値を求めた。
(6) Air permeability Based on JIS P8117, using a Gurley type densometer (manufactured by Shimadzu Corporation), the time (seconds) through which 100 cc of air passes was measured as the air permeability (Gurley value), and the presence or absence of continuous holes was judged. . The measurement was performed on 5 samples, and the average value was obtained. In addition, when there is no continuous hole, the air permeability becomes infinite.
(7) Breaking strength Based on JIS K7113, the breaking strength of the solid polymer electrolyte membrane was measured using a precision universal testing machine AGS-1KNG manufactured by Shimadzu Corporation. The sample was left to stand for 12 hours or more in a thermostatic chamber at 23 ° C. and 65%, and then cut out to a width of 5 mm and a length of 50 mm and subjected to measurement. Measurement was performed on three samples, and the average value was obtained.

(8)不織布の空孔率
不織布を10cm×10cmの大きさに切断し23℃50%の恒温室で24時間以上放置した後に重量測定を行った。また特性値の測定方法(2)に示した方法で膜圧を測定した。重量W(g)、膜厚d(μm)、液晶ポリエステルの比重をx(g/cm)として
空孔率(%)=100−[W/(10×10×d×10−4×x)]
として算出した。液晶ポリエステルの比重は1.40g/cmとして計算した。
(8) Porosity of nonwoven fabric The nonwoven fabric was cut into a size of 10 cm x 10 cm and left standing in a temperature-controlled room at 23 ° C and 50% for 24 hours or more, and then the weight was measured. Further, the membrane pressure was measured by the method shown in the characteristic value measurement method (2). Porosity (%) = 100− [W / (10 × 10 × d × 10 −4 × x) where weight W (g), film thickness d (μm), and specific gravity of liquid crystal polyester is x (g / cm 3 ). ]]
Calculated as The specific gravity of the liquid crystal polyester was calculated as 1.40 g / cm 3 .

(参考例1)フッ素系高分子固体電解質溶液の作成法
フッ素系高分子固体電解質として、[CFCF0.812−[CF−CF(−O−(CF−SOH)]0.188で表されるパーフルオロカーボンスルホン酸ポリマー(以下、「PFS」と称する)を用いて、PFS/PBI=100/1(質量比)の塩基性重合体を含むフッ素系高分子固体電解質溶液(含浸液D)を以下のように製造した。
重量平均分子量が27000であるポリ[2,2’−(m−フェニレン)−5,5’−ビベンズイミダゾール](シグマアルドリッチジャパン(株)製、以下PBIと称する)をN,N−ジメチルアセトアミド(以下、「DMAC」と称する)とともにオートクレーブ中に入れて密閉し、200℃まで昇温して5時間保持した。その後、オートクレーブを自然冷却して、PBI/DMAC=10/90(質量%)の組成のPBI溶液を得た。このPBI溶液の固有粘度は0.8(dl/g)であった。さらに、このPBI溶液をDMACで10倍に希釈して、PBI/DMAC=1/99(質量%)の組成の前段階溶液Aを作製した。
Reference Example 1 Preparation Method of Fluorine Polymer Solid Electrolyte Solution As a fluorine polymer solid electrolyte, [CF 2 CF 2 ] 0.812- [CF 2 -CF (-O- (CF 2 ) 2 -SO 3 H)] A fluoropolymer containing a basic polymer of PFS / PBI = 100/1 (mass ratio) using a perfluorocarbon sulfonic acid polymer represented by 0.188 (hereinafter referred to as “PFS”). A solid electrolyte solution (impregnation liquid D) was produced as follows.
Poly [2,2 ′-(m-phenylene) -5,5′-bibenzimidazole] having a weight average molecular weight of 27000 (manufactured by Sigma-Aldrich Japan Co., Ltd., hereinafter referred to as PBI) is N, N-dimethylacetamide. (Hereinafter referred to as “DMAC”) and sealed in an autoclave, heated to 200 ° C. and held for 5 hours. Thereafter, the autoclave was naturally cooled to obtain a PBI solution having a composition of PBI / DMAC = 10/90 (mass%). The intrinsic viscosity of this PBI solution was 0.8 (dl / g). Further, this PBI solution was diluted 10 times with DMAC to prepare a pre-stage solution A having a composition of PBI / DMAC = 1/99 (mass%).

次に、テトラフルオロエチレンとCF=CFO(CF−SOFとのパーフルオロカーボン重合体を製造した。得られたポリマーを、水酸化カリウム(15質量%)とジメチルスルホキシド(30質量%)を溶解した水溶液中に、60℃で4時間接触させて、加水分解処理を行った。その後、60℃水中に4時間浸漬した。次に60℃の2N塩酸水溶液に3時間浸漬した後、イオン交換水で水洗、乾燥することで、イオン交換容量1.41ミリ当量/gのPFSを得た。
このPFSをエタノール水溶液(水:エタノール=50.0:50.0(質量比))とともにオートクレーブ中に入れて密閉し、180℃まで昇温して5時間保持した。その後、オートクレーブを自然冷却して、PFS:水:エタノール=5.0:47.5:47.5(質量%)の組成のポリマー溶液を得た。このポリマー溶液をエバポレータで減圧濃縮を行った後、水を添加してPFS/水=8.5/91.5(質量比)溶液を前段階溶液Bとして製造した。
Next, a perfluorocarbon polymer of tetrafluoroethylene and CF 2 ═CFO (CF 2 ) 2 —SO 2 F was produced. The obtained polymer was subjected to hydrolysis treatment by bringing it into contact with an aqueous solution in which potassium hydroxide (15% by mass) and dimethyl sulfoxide (30% by mass) were dissolved at 60 ° C. for 4 hours. Then, it was immersed in 60 degreeC water for 4 hours. Next, it was immersed in a 2N aqueous hydrochloric acid solution at 60 ° C. for 3 hours, then washed with ion-exchanged water and dried to obtain PFS having an ion-exchange capacity of 1.41 meq / g.
This PFS was placed in an autoclave together with an aqueous ethanol solution (water: ethanol = 50.0: 50.0 (mass ratio)), sealed, heated to 180 ° C. and held for 5 hours. Thereafter, the autoclave was naturally cooled to obtain a polymer solution having a composition of PFS: water: ethanol = 5.0: 47.5: 47.5 (mass%). This polymer solution was concentrated under reduced pressure using an evaporator, and then water was added to prepare a PFS / water = 8.5 / 91.5 (mass ratio) solution as the pre-stage solution B.

得られた前段階溶液BにDMACを添加し、120℃で1時間還流した後、エバポレータで減圧濃縮を行って、PFS/DMAC=1.5/98.5(質量比)溶液を前段階溶液Cとして製造した。
次に40.0gの前段階溶液Cに6.5gの前段階溶液Aを添加し混合した後、68.9gの前段階溶液Bを加えて攪拌し、さらに80℃にて減圧濃縮して含浸液Dを得た。この含浸液中のPFSとPBIの濃度は、各々5.600質量%と0.056質量%であった。
[実施例1]
After adding DMAC to the obtained pre-stage solution B and refluxing at 120 ° C. for 1 hour, the solution was concentrated under reduced pressure with an evaporator to obtain a PFS / DMAC = 1.5 / 98.5 (mass ratio) solution. Manufactured as C.
Next, after adding 6.5 g of the pre-stage solution A to 40.0 g of the pre-stage solution C and mixing, 68.9 g of the pre-stage solution B is added and stirred, and further concentrated under reduced pressure at 80 ° C. Liquid D was obtained. The concentrations of PFS and PBI in this impregnation liquid were 5.600 mass% and 0.056 mass%, respectively.
[Example 1]

一般式(3)で表される芳香族液晶ポリエステルのうちm=0.75,n=0.25である構造を有する不織布(膜厚20μm、空孔率83%)を参考例1で調整した前段階溶液Bに浸漬し次いで80℃の熱風下で10分間乾燥するという操作を3回繰り返して芳香族液晶ポリエステル不織布内に高分子固体電解質を含浸した。含浸後に200℃の熱風下に1時間おき、完全に溶媒を飛ばし複合固体高分子電解質膜を得た。得られた複合固体高分子電解質膜は2Nの塩酸で8時間洗浄し、次いで純水で濯ぎ40μmの高分子固体電解質膜を得た。この膜の評価結果を表1に示すが良好な乾湿寸法変化特性、機械特性を示し、また良好な燃料電池膜としての耐久性を示した。
[実施例2]
A non-woven fabric (film thickness 20 μm, porosity 83%) having a structure of m = 0.75 and n = 0.25 of the aromatic liquid crystal polyester represented by the general formula (3) was prepared in Reference Example 1. The operation of immersing in the pre-stage solution B and then drying for 10 minutes under hot air at 80 ° C. was repeated three times to impregnate the polymer liquid electrolyte in the aromatic liquid crystal polyester nonwoven fabric. After the impregnation, the composite solid polymer electrolyte membrane was obtained by leaving the solvent completely for 1 hour under hot air at 200 ° C. to completely remove the solvent. The obtained composite solid polymer electrolyte membrane was washed with 2N hydrochloric acid for 8 hours and then rinsed with pure water to obtain a 40 μm polymer solid electrolyte membrane. The evaluation results of this membrane are shown in Table 1. The membrane showed good wet / dry dimensional change characteristics and mechanical properties, and also showed good durability as a fuel cell membrane.
[Example 2]

一般式(3)で表される芳香族液晶ポリエステルのうちm=0.75,n=0.25である構造を有する不織布(膜厚20μm、空孔率83%)を参考例1で調整した含浸液Dに浸漬し次いで80℃の熱風下で10分間乾燥するという操作を2回繰り返して全芳香族液晶ポリエステル不織布内にイオン交換樹脂を含浸した。含浸後に200℃の熱風下に1時間おき、完全に溶媒を飛ばし高分子固体電解質膜を得た。得られた高分子固体電解質膜は2Nの塩酸で8時間洗浄し、次いで純水で濯ぎ40μmの高分子固体電解質膜を得た。この膜の評価結果を表1に示すが良好な乾湿寸法変化特性、機械特性を示し、また良好な燃料電池膜としての耐久性を示した。
[実施例3]
A non-woven fabric (film thickness 20 μm, porosity 83%) having a structure of m = 0.75 and n = 0.25 of the aromatic liquid crystal polyester represented by the general formula (3) was prepared in Reference Example 1. The operation of dipping in the impregnating solution D and then drying for 10 minutes under hot air at 80 ° C. was repeated twice to impregnate the wholly aromatic liquid crystal polyester nonwoven fabric with the ion exchange resin. After impregnation, the polymer solid electrolyte membrane was obtained by leaving the solvent completely for 1 hour under hot air at 200 ° C. The obtained polymer solid electrolyte membrane was washed with 2N hydrochloric acid for 8 hours and then rinsed with pure water to obtain a polymer solid electrolyte membrane of 40 μm. The evaluation results of this membrane are shown in Table 1. The membrane showed good wet / dry dimensional change characteristics and mechanical properties, and also showed good durability as a fuel cell membrane.
[Example 3]

一般式(3)で表される芳香族液晶ポリエステルのうちm=0.75,n=0.25である構造を有する不織布(膜厚30μm、空孔率83%)を使用した以外は実施例1と同様に実施した。この膜の評価結果を表1に示すが良好な乾湿寸法変化特性、機械特性を示し、また良好な燃料電池膜としての耐久性を示した。
[実施例4]
Example using the non-woven fabric (film thickness 30 μm, porosity 83%) having a structure of m = 0.75 and n = 0.25 among the aromatic liquid crystalline polyester represented by the general formula (3) 1 was carried out. The evaluation results of this membrane are shown in Table 1. The membrane showed good dry / wet dimensional change characteristics and mechanical properties, and also showed good durability as a fuel cell membrane.
[Example 4]

参考例1で作成した含浸液Dをガラスシャーレに展開し60℃、次いで80℃のホットプレート上で各1時間溶媒を揮散させることにより膜厚5μmの補強材を含まない電解質膜を得た。実施例1で得た高分子固体電解質膜の両表面をこの補強材を含まない電解質膜ではさみ、加熱下でプレスし一体化させた。プレス条件は真空下190℃、60kg/cmで30分であった。得られた高分子固体電解質膜は2Nの塩酸で8時間洗浄し、次いで純水で濯ぎ50μmの高分子固体電解質膜2を得た。
この膜の評価結果を表1に示すが良好な乾湿寸法変化特性、機械特性を示し、また良好な燃料電池膜としての耐久性を示した。
[比較例1]
The impregnating solution D prepared in Reference Example 1 was spread on a glass petri dish, and the solvent was evaporated on a hot plate at 60 ° C. and then at 80 ° C. for 1 hour to obtain an electrolyte membrane containing no reinforcing material with a thickness of 5 μm. Both surfaces of the polymer solid electrolyte membrane obtained in Example 1 were sandwiched between electrolyte membranes not containing this reinforcing material, and pressed and integrated under heating. The press conditions were 190 ° C. under vacuum and 60 kg / cm 2 for 30 minutes. The obtained solid polymer electrolyte membrane was washed with 2N hydrochloric acid for 8 hours and then rinsed with pure water to obtain a solid polymer electrolyte membrane 2 having a thickness of 50 μm.
The evaluation results of this membrane are shown in Table 1. The membrane showed good wet / dry dimensional change characteristics and mechanical properties, and also showed good durability as a fuel cell membrane.
[Comparative Example 1]

Nafion溶液(Aldrich社製、5%、水溶液、EW=1100)をガラス製シャーレに流し込み、ホットプレート上で60℃、次いで80℃各1時間溶媒を揮散させ、さらに160℃の熱風乾燥機で1時間熱処理した。得られた高分子固体電解質膜は2Nの塩酸で8時間洗浄し、次いで純水で濯ぎ50μmの補強材を含まない電解質膜を得た。この膜の評価結果を表1に示すが乾湿寸法変化特性、機械特性ともに悪く、また95℃での燃料電池膜としての評価時間は著しく短かった。
[比較例2]
A Nafion solution (Aldrich, 5%, aqueous solution, EW = 1100) was poured into a glass petri dish, and the solvent was stripped on a hot plate at 60 ° C. and then at 80 ° C. for 1 hour each, and further with a hot air dryer at 160 ° C. Heat treated for hours. The obtained polymer solid electrolyte membrane was washed with 2N hydrochloric acid for 8 hours and then rinsed with pure water to obtain an electrolyte membrane containing no 50 μm reinforcing material. The evaluation results of this membrane are shown in Table 1. Both the wet and dry dimensional change characteristics and the mechanical properties were poor, and the evaluation time as a fuel cell membrane at 95 ° C. was remarkably short.
[Comparative Example 2]

ポリエチレンシート(膜厚15μm、空孔率46%)を使用した以外は実施例1と同様に実施した。この膜の評価結果を表1に示すが乾湿寸法変化特性、機械特性ともに悪く、また95℃での燃料電池膜としての評価時間は著しく短かった。   The same operation as in Example 1 was performed except that a polyethylene sheet (film thickness: 15 μm, porosity: 46%) was used. The evaluation results of this membrane are shown in Table 1. Both dry and wet dimensional change characteristics and mechanical properties were poor, and the evaluation time as a fuel cell membrane at 95 ° C. was remarkably short.

Figure 2006190627
Figure 2006190627

本発明は、高温耐久性の向上作用を示し、燃料電池用の高分子固体電解質膜として好適
である。
The present invention exhibits an effect of improving high temperature durability and is suitable as a polymer solid electrolyte membrane for a fuel cell.

Claims (7)

芳香族液晶ポリエステルからなる不織布を有することを特徴とする高分子固体電解質膜。 A polymer solid electrolyte membrane comprising a nonwoven fabric made of an aromatic liquid crystal polyester. 該不織布の空隙率が40〜95%であって、かつ、空隙が該高分子固体電解質で充填されていることを特徴とする請求項1に記載の高分子固体電解質膜。 The polymer solid electrolyte membrane according to claim 1, wherein the non-woven fabric has a porosity of 40 to 95%, and the voids are filled with the polymer solid electrolyte. 該高分子固体電解質が下記式(1)で示されるパーフルオロカーボンスルホン酸ポリマーからなるイオン交換樹脂であることを特徴とする請求項1又は2に記載の高分子固体電解質膜。
[CFCFa−[CF−CF(−O−CF−CF(CF))−O−(CF−SOH)](1)
(式中、0≦a<1、0<g≦1,a+g=1,0≦b≦3、1≦f≦8である。)
3. The solid polymer electrolyte membrane according to claim 1, wherein the solid polymer electrolyte is an ion exchange resin made of a perfluorocarbon sulfonic acid polymer represented by the following formula (1).
[CF 2 CF 2] a - [CF 2 -CF (-O-CF 2 -CF (CF 3)) b -O- (CF 2) f -SO 3 H)] g (1)
(Where 0 ≦ a <1, 0 <g ≦ 1, a + g = 1, 0 ≦ b ≦ 3, 1 ≦ f ≦ 8)
該高分子固体電解質が下記式(2)で示されるパーフルオロカーボンスルホン酸ポリマーからなるイオン交換樹脂であることを特徴とする請求項1又は2に記載の高分子固体電解質膜。
[CFCFa−[CF−CF(−O−CF−CF(CF))−O−(CF−SOH)](2)
(式中、0≦a<1、0<g≦1,a+g=1,0≦b<1、1≦f≦8である。)
The polymer solid electrolyte membrane according to claim 1 or 2, wherein the polymer solid electrolyte is an ion exchange resin made of a perfluorocarbon sulfonic acid polymer represented by the following formula (2).
[CF 2 CF 2] a - [CF 2 -CF (-O-CF 2 -CF (CF 3)) b -O- (CF 2) f -SO 3 H)] g (2)
(Where 0 ≦ a <1, 0 <g ≦ 1, a + g = 1, 0 ≦ b <1, 1 ≦ f ≦ 8)
該高分子固体電解質膜が、少なくとも高分子固体電解質(a)と、塩基性重合体(b)とを含有し、該(a)と該(b)の間に、該(a)の含有率((a)/((a)+(b))×100)が50.00〜99.999質量%、該(b)の含有率((b)/((a)+(b))×100)が0.001〜50.00質量%なる関係を有することを特徴とする請求項1〜4の何れかに記載の高分子固体電解質膜。 The polymer solid electrolyte membrane contains at least a polymer solid electrolyte (a) and a basic polymer (b), and the content ratio of (a) between (a) and (b). ((A) / ((a) + (b)) × 100) is 50.00 to 99.999% by mass, content of (b) ((b) / ((a) + (b)) × 100) has a relationship of 0.001 to 50.00% by mass, the solid polymer electrolyte membrane according to any one of claims 1 to 4. 請求項1〜5のいずれかに記載の高分子固体電解質膜を介してアノードとカソードが対向してなる膜/電極接合体。 A membrane / electrode assembly in which an anode and a cathode face each other through the polymer solid electrolyte membrane according to any one of claims 1 to 5. 請求項6に記載の膜/電極接合体を包含してなることを特徴とする高分子固体電解質型燃料電池。 A polymer solid oxide fuel cell comprising the membrane / electrode assembly according to claim 6.
JP2005003036A 2005-01-07 2005-01-07 Polymer solid electrolyte membrane with reinforcing material Expired - Fee Related JP4771702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005003036A JP4771702B2 (en) 2005-01-07 2005-01-07 Polymer solid electrolyte membrane with reinforcing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005003036A JP4771702B2 (en) 2005-01-07 2005-01-07 Polymer solid electrolyte membrane with reinforcing material

Publications (2)

Publication Number Publication Date
JP2006190627A true JP2006190627A (en) 2006-07-20
JP4771702B2 JP4771702B2 (en) 2011-09-14

Family

ID=36797622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005003036A Expired - Fee Related JP4771702B2 (en) 2005-01-07 2005-01-07 Polymer solid electrolyte membrane with reinforcing material

Country Status (1)

Country Link
JP (1) JP4771702B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012525719A (en) * 2009-05-01 2012-10-22 スリーエム イノベイティブ プロパティズ カンパニー Passive electrical goods
JP2014002934A (en) * 2012-06-19 2014-01-09 Kaneka Corp Polymer electrolyte membrane and use thereof
WO2015080292A1 (en) * 2013-11-29 2015-06-04 旭化成イーマテリアルズ株式会社 Polymer electrolyte film
JPWO2019188960A1 (en) * 2018-03-29 2021-03-11 東レ株式会社 Composite electrolyte membrane
WO2022220186A1 (en) 2021-04-15 2022-10-20 旭化成株式会社 Solid electrolyte support and solid electrolyte sheet including same
WO2023002999A1 (en) * 2021-07-20 2023-01-26 Agc株式会社 Method for producing composite sheet, and composite sheet
WO2023002998A1 (en) * 2021-07-20 2023-01-26 Agc株式会社 Composite sheet and method for producing composite sheet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6337134A (en) * 1986-08-01 1988-02-17 Tokuyama Soda Co Ltd Fluorine-containing ion exchange membrane
JPS63102161A (en) * 1986-10-16 1988-05-07 Kuraray Co Ltd Separator for battery
JPH06231779A (en) * 1993-01-29 1994-08-19 Asahi Glass Co Ltd Solid high polymer electrolytic type fuel cell
JP2002216800A (en) * 2001-01-19 2002-08-02 Honda Motor Co Ltd Composite polymer electrolyte membrane and its producing method
JP2003022709A (en) * 2001-07-09 2003-01-24 Toyobo Co Ltd Blended polymer electrolyte, electrolytic membrane having the electrolyte as main component, and membrane /electrode junction containing the electrolyte
JP2003022824A (en) * 2001-07-09 2003-01-24 Toyobo Co Ltd Acid base blended polymer electrolyte, electrolyte membrane having same as main component, and membrane/ electrode assembly using same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6337134A (en) * 1986-08-01 1988-02-17 Tokuyama Soda Co Ltd Fluorine-containing ion exchange membrane
JPS63102161A (en) * 1986-10-16 1988-05-07 Kuraray Co Ltd Separator for battery
JPH06231779A (en) * 1993-01-29 1994-08-19 Asahi Glass Co Ltd Solid high polymer electrolytic type fuel cell
JP2002216800A (en) * 2001-01-19 2002-08-02 Honda Motor Co Ltd Composite polymer electrolyte membrane and its producing method
JP2003022709A (en) * 2001-07-09 2003-01-24 Toyobo Co Ltd Blended polymer electrolyte, electrolytic membrane having the electrolyte as main component, and membrane /electrode junction containing the electrolyte
JP2003022824A (en) * 2001-07-09 2003-01-24 Toyobo Co Ltd Acid base blended polymer electrolyte, electrolyte membrane having same as main component, and membrane/ electrode assembly using same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012525719A (en) * 2009-05-01 2012-10-22 スリーエム イノベイティブ プロパティズ カンパニー Passive electrical goods
US10399295B2 (en) 2009-05-01 2019-09-03 3M Innovative Properties Company Passive electrical article
JP2014002934A (en) * 2012-06-19 2014-01-09 Kaneka Corp Polymer electrolyte membrane and use thereof
WO2015080292A1 (en) * 2013-11-29 2015-06-04 旭化成イーマテリアルズ株式会社 Polymer electrolyte film
JPWO2019188960A1 (en) * 2018-03-29 2021-03-11 東レ株式会社 Composite electrolyte membrane
JP7078041B2 (en) 2018-03-29 2022-05-31 東レ株式会社 Composite electrolyte membrane
WO2022220186A1 (en) 2021-04-15 2022-10-20 旭化成株式会社 Solid electrolyte support and solid electrolyte sheet including same
KR20230147169A (en) 2021-04-15 2023-10-20 아사히 가세이 가부시키가이샤 Support for solid electrolyte and solid electrolyte sheet containing the same
WO2023002999A1 (en) * 2021-07-20 2023-01-26 Agc株式会社 Method for producing composite sheet, and composite sheet
WO2023002998A1 (en) * 2021-07-20 2023-01-26 Agc株式会社 Composite sheet and method for producing composite sheet

Also Published As

Publication number Publication date
JP4771702B2 (en) 2011-09-14

Similar Documents

Publication Publication Date Title
Savadogo Emerging membranes for electrochemical systems: Part II. High temperature composite membranes for polymer electrolyte fuel cell (PEFC) applications
US7875392B2 (en) Polymer electrolyte membrane having high durability and method for producing the same
Wycisk et al. New developments in proton conducting membranes for fuel cells
US20070166592A1 (en) Polymer electrolyte membrane, method of preparing the same and fuel cell employing the same
KR100833056B1 (en) Reinforced composite electrolyte membrane for fuel cell
JP6707519B2 (en) film
KR20110006128A (en) Filling system used for preparation of polymer electrolyte membrane and method of manufacturing polymer electrolyte membrane using the same
JPWO2004051776A1 (en) Solid polymer electrolyte membrane, solid polymer fuel cell using the membrane, and method for producing the same
KR20150086384A (en) Fluorine-based polymer electrolyte membrane
JP4771702B2 (en) Polymer solid electrolyte membrane with reinforcing material
KR101315744B1 (en) Multi layer reinfored electrolyte membrane for solid polymer fuel cell, manufacturing method thereof, membrane-electrode assembly having the same and fuel cell having them
Wei et al. On the stability of anion exchange membrane fuel cells incorporating polyimidazolium ionene (Aemion+®) membranes and ionomers
JP2006019294A (en) Polymer electrolyte membrane for fuel cell, and forming method for the same
Noh et al. Multilayered hydrocarbon ionomer/PTFE composite electrolytes with enhanced performance for energy conversion devices
JP2006269266A (en) Compound solid polyelectrolyte membrane having reinforcement material
JP5189394B2 (en) Polymer electrolyte membrane
JP6150616B2 (en) Polymer electrolyte composition and polymer electrolyte membrane
JP4836438B2 (en) Polymer electrolyte laminate film
KR100658739B1 (en) Polymer membrane for fuel cell and method for preparating the same
JP2009021233A (en) Membrane/electrode conjugant, its manufacturing method, and solid high polymer fuel cell
KR101630212B1 (en) A composite membrane comprising nonwoven PAI-PTM and sulfonated poly(arylene ether sulfone) as hydrocarbon-based electrolyte therein and the use thereof
Kim et al. 10.36-polymers in membrane electrode assemblies
JP2006260901A (en) Complex membrane of fluorine-containing sulfonic acid polymer
JP4798974B2 (en) Method for producing solid polymer electrolyte membrane
JP2004296409A (en) Manufacturing method of polymeric electrolyte composite film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071221

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110527

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4771702

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees