JPH07135004A - Solid high molecular electrolytic film and fuel cell - Google Patents

Solid high molecular electrolytic film and fuel cell

Info

Publication number
JPH07135004A
JPH07135004A JP5307264A JP30726493A JPH07135004A JP H07135004 A JPH07135004 A JP H07135004A JP 5307264 A JP5307264 A JP 5307264A JP 30726493 A JP30726493 A JP 30726493A JP H07135004 A JPH07135004 A JP H07135004A
Authority
JP
Japan
Prior art keywords
membrane
cation exchange
fuel cell
electrolyte membrane
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5307264A
Other languages
Japanese (ja)
Inventor
Seiji Mizuno
誠司 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP5307264A priority Critical patent/JPH07135004A/en
Publication of JPH07135004A publication Critical patent/JPH07135004A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To attain both ensuring strength of a solid high molecular electrolytic film and improving ionic conductivity. CONSTITUTION:A cell of a fuel cell is provided with an electrolytic film 10 and positive and negative electrodes 20, 30 on both sides of this electrolytic film. The positive and negative electrodes 20, 30 are constituted of a gas diffusion electrode part 22 and a catalytic reaction layer 24. The electrolytic film 10 is a compound film of 100mum film thickness formed by connecting cation exchange films 12, 14 prepared from fluorine sulfonic high molecular resin to have a sulfon group as an ion exchange group. In the cation exchange films 12, 14, a value of ion exchange group equivalent weight(EW), which is film weight per 1mol ion exchange group (in this case, sulfon group), is different, to provide the value of EW 900 in the cation exchange film 12 and the value of EW 1100 in the cation exchange film 14.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水素イオンに対するイ
オン交換基を備え該水素イオンを選択的に透過する高分
子陽イオン交換膜からなる固体高分子電解質膜と当該膜
を用いた燃料電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid polymer electrolyte membrane comprising a polymer cation exchange membrane having an ion-exchange group for hydrogen ions and selectively permeating the hydrogen ions, and a fuel cell using the membrane. .

【0002】[0002]

【従来の技術】この種の高分子陽イオン交換膜からなる
固体高分子電解質膜を用いた燃料電池(固体高分子電解
質型燃料電池)における陽極(酸素極)および陰極(水
素極)で進行する反応式は、以下の通りである。 陰極(水素極): (1/2)H2 →H+ +e- … 陽極(酸素極): 2H+ +e- +(1/2)O2 →H2O …
2. Description of the Related Art A fuel cell (solid polymer electrolyte type fuel cell) using a solid polymer electrolyte membrane composed of a polymer cation exchange membrane of this kind progresses at an anode (oxygen electrode) and a cathode (hydrogen electrode). The reaction formula is as follows. Cathode (hydrogen electrode): (1/2) H 2 → H + + e - ... anode (oxygen electrode): 2H + + e - + (1/2) O 2 → H 2 O ...

【0003】そして、陰極での反応式により生成した
水素イオンがH+ x2O)の水和状態で固体高分子電
解質膜を透過(拡散)して陽極に至り、の反応式が進
行するのである。なお、陰極には反応に必要な水素(ガ
ス)が供給され、陽極には酸素(ガス)が供給されてい
る。
Then, the hydrogen ion generated by the reaction formula at the cathode permeates (diffuses) the solid polymer electrolyte membrane in the hydrated state of H + ( x H 2 O) to reach the anode, and the reaction formula of To do. Hydrogen (gas) necessary for the reaction is supplied to the cathode, and oxygen (gas) is supplied to the anode.

【0004】このように水素イオンがH+ x2O)の
水和状態で固体高分子電解質膜を透過(拡散)する都合
上、燃料電池の電池特性の向上には、固体高分子電解質
膜である高分子陽イオン交換膜(以下、単に陽イオン交
換膜ともいう)のイオン導電率の向上が不可欠である。
この陽イオン交換膜のイオン導電率は、水素イオンに対
するイオン交換基、例えばスルホン基,カルボキシル基
の含有mol数や膜厚,膜中水分量(吸水量)の影響を
受ける。具体的には、イオン交換基のmol数が少なか
ったり、膜厚が厚かったり或いは膜中水分量が不足する
と、陽イオン交換膜のイオン導電率の低下を招き結果的
には電池性能を低下させてしまう。
Since hydrogen ions permeate (diffuse) through the solid polymer electrolyte membrane in the hydrated state of H + ( xH 2 O) as described above, the solid polymer electrolyte is required to improve the cell characteristics of the fuel cell. It is essential to improve the ionic conductivity of a polymer cation exchange membrane (hereinafter, also simply referred to as a cation exchange membrane) that is a membrane.
The ionic conductivity of this cation exchange membrane is affected by the number of mols of ion exchange groups such as sulfone groups and carboxyl groups for hydrogen ions, the film thickness, and the water content (water absorption) in the film. Specifically, when the number of moles of ion exchange groups is small, the film thickness is thick, or the amount of water in the film is insufficient, the ionic conductivity of the cation exchange membrane is lowered, resulting in a decrease in battery performance. Will end up.

【0005】従って、電池性能の低下を防止するため
に、水素ガスを水蒸気により加湿して供給することで膜
を適当な吸水状態においたり、膜厚を薄くしたり或いは
上記のイオン交換基の含有mol数を高めることが一般
に行なわれている。このイオン交換基の含有mol数
は、イオン交換基1mol当たりの膜重量を陽イオン交
換膜のイオン交換基当量重量として定義すれば、このイ
オン交換基当量重量で規定することができる。即ち、イ
オン交換基当量重量(以下、EWと略称する)の値が小
さければイオン交換基の含有mol数が大きくなり膜の
イオン導電率は高くなり、EWの値が大きければ、反対
にイオン交換基の含有mol数が小さくなって膜のイオ
ン導電率は低くなる。また、EWの値が小さければイオ
ン交換基の含有mol数が大きいので、吸水率をも高め
てガス透過性を向上させることができる。よって、EW
の値が小さい陽イオン交換膜を固体高分子電解質膜に使
用することが望ましい。
Therefore, in order to prevent the deterioration of the battery performance, hydrogen gas is humidified by steam and supplied, so that the membrane is kept in an appropriate water absorbing state, the membrane is thinned, or the above-mentioned ion exchange group is contained. It is common practice to increase the mol number. The mol number of the ion-exchange groups can be defined by the ion-exchange group equivalent weight by defining the membrane weight per 1-mol ion-exchange group as the ion-exchange group equivalent weight of the cation-exchange membrane. That is, when the value of the ion exchange group equivalent weight (hereinafter abbreviated as EW) is small, the number of mols of the ion exchange group contained is large, and the ionic conductivity of the membrane is high. The number of moles of the group contained becomes small and the ionic conductivity of the film becomes low. Further, when the value of EW is small, the number of mols of ion-exchange groups contained is large, so that the water absorption rate can also be increased and the gas permeability can be improved. Therefore, EW
It is desirable to use a cation exchange membrane having a small value of as a solid polymer electrolyte membrane.

【0006】その一方で、陽陰の両電極における前述の
反応式の反応の円滑化を図るために、触媒担体を固体高
分子電解質膜の陽イオン交換膜と同一の樹脂溶液で被覆
したりすることが提案されており、これにより前述の反
応式の円滑化並びに促進が図られている(特開昭60−
26685,特開平5−36418)。
On the other hand, in order to facilitate the reaction of the above-mentioned reaction formula at both positive and negative electrodes, the catalyst carrier may be coated with the same resin solution as the cation exchange membrane of the solid polymer electrolyte membrane. It has been proposed that the smoothing and promotion of the above-mentioned reaction formula be carried out by this (Japanese Patent Laid-Open No. 60-
26685, JP-A-5-36418).

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記し
たようにEWの値が小さい陽イオン交換膜を固体高分子
電解質膜に使用した場合には、次のような問題点が指摘
されている。EWの値を小さくするとイオン交換基が多
くなりイオン導電率,吸水率,ガス透過性等は向上する
が、イオン交換基が膜中に多くなるに従って膜の結晶性
が崩れ膜強度が低下する。膜強度の低下は燃料電池とし
ての耐久性の低下につながるので、膜強度を確保するた
めに、EWの値が小さい陽イオン交換膜を使用できない
でいた。つまり、燃料電池の電解質膜として実用されて
いる陽イオン交換膜では、EWの値のその下限値が11
00程度であり、この値を下回るEWを有するものとす
ることはできないでいた。或いは、EWの値が小さい陽
イオン交換膜を使用した場合には、膜強度の確保のため
に膜をある程度まで厚くせざるを得ず、EWの値が小さ
いにも拘らず膜厚の増加分、膜としてのイオン導電率等
が低下し、現実的な解決にはならなかった。
However, when the cation exchange membrane having a small EW value is used for the solid polymer electrolyte membrane as described above, the following problems have been pointed out. When the value of EW is decreased, the number of ion-exchange groups is increased and the ionic conductivity, water absorption rate, gas permeability and the like are improved, but as the number of ion-exchange groups is increased in the film, the crystallinity of the film is destroyed and the film strength is lowered. Since a decrease in membrane strength leads to a decrease in durability as a fuel cell, a cation exchange membrane having a small EW value cannot be used in order to secure the membrane strength. That is, in the cation exchange membrane which is practically used as the electrolyte membrane of the fuel cell, the lower limit of the EW value is 11
It was around 00, and it was not possible to have an EW below this value. Alternatively, when a cation exchange membrane having a small EW value is used, the membrane has to be thickened to some extent in order to secure the strength of the membrane. However, the ionic conductivity of the film was lowered, and it was not a practical solution.

【0008】また、固体高分子電解質膜として使用する
陽イオン交換膜のEWの値が大きくなると、この陽イオ
ン交換膜と同一の樹脂溶液(EWの値1100)で触媒
担体を被覆したりして触媒反応層を形成しても、次のよ
うな問題がある。つまり、陽極では、上記した反応式の
進行にともない水が生成するが、その水が触媒反応層中
の触媒担体表面や触媒担体間で結露して滞留する虞があ
った。このような事態に至ると、陽極における酸素の拡
散が阻害されるため、円滑な上記反応の進行に支障をき
たし結果的には電池性能が低下してしまう。
Further, when the EW value of the cation exchange membrane used as the solid polymer electrolyte membrane becomes large, the catalyst support may be coated with the same resin solution (EW value 1100) as the cation exchange membrane. Even if the catalytic reaction layer is formed, there are the following problems. That is, at the anode, water is produced as the above reaction formula progresses, but there is a risk that the water will condense and accumulate on the surface of the catalyst carrier in the catalyst reaction layer or between the catalyst carriers. In such a situation, diffusion of oxygen in the anode is hindered, which hinders the smooth progress of the above reaction, resulting in deterioration of battery performance.

【0009】本発明は、上記問題点を解決するためにな
され、高分子陽イオン交換膜からなる固体高分子電解質
膜の強度確保とイオン導電率の向上の両立を図ることを
目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to secure both strength and improve ionic conductivity of a solid polymer electrolyte membrane composed of a polymer cation exchange membrane.

【0010】[0010]

【課題を解決するための手段】かかる目的を達成するた
めに発明の採用した手段は、請求項1記載の固体高分子
電解質膜では、陽イオンに対するイオン交換基を備え該
陽イオンを選択的に透過する高分子陽イオン交換膜から
なる固体高分子電解質膜であって、前記イオン交換基1
mol当たりの膜重量を高分子陽イオン交換膜のイオン
交換基当量重量として定義し、該イオン交換基当量重量
の異なる複数枚の前記高分子陽イオン交換膜を接合して
なることをその要旨とする。
[Means for Solving the Problems] The means adopted by the invention in order to achieve the above object is that in the solid polymer electrolyte membrane according to claim 1, an ion exchange group for a cation is provided and the cation is selectively selected. A solid polymer electrolyte membrane comprising a permeable polymer cation exchange membrane, wherein the ion exchange group 1
The membrane weight per mol is defined as the ion exchange group equivalent weight of the polymer cation exchange membrane, and the summary is that a plurality of the polymer cation exchange membranes having different ion exchange group equivalent weights are joined. To do.

【0011】また、高分子陽イオン交換膜からなる固体
高分子電解質膜を用いるに当たり、請求項2記載の燃料
電池では、陽極と陰極との間に、水素イオンに対するイ
オン交換基を備え該水素イオンを選択的に透過する高分
子陽イオン交換膜からなる固体高分子電解質膜を挟持し
て備える燃料電池であって、前記固体高分子電解質膜
を、水素イオンに対するイオン交換基を備えた前記請求
項1記載の固体高分子電解質膜とした。
Further, in using the solid polymer electrolyte membrane comprising a polymer cation exchange membrane, the fuel cell according to claim 2 is provided with an ion exchange group for hydrogen ion between the anode and the cathode. A fuel cell comprising a solid polymer electrolyte membrane composed of a polymer cation exchange membrane selectively permeating the polymer, wherein the solid polymer electrolyte membrane comprises an ion exchange group for hydrogen ions. The solid polymer electrolyte membrane described in 1.

【0012】請求項3記載の燃料電池では、前記陰極側
には、前記固体高分子電解質膜における前記複数枚の高
分子陽イオン交換膜のうち、前記イオン交換基当量重量
が小さい側の高分子陽イオン交換膜を配置した。
In the fuel cell according to claim 3, on the cathode side, the polymer on the side of the plurality of polymer cation exchange membranes in the solid polymer electrolyte membrane having the smaller equivalent weight of the ion exchange group. A cation exchange membrane was placed.

【0013】請求項4記載の燃料電池では、前記固体高
分子電解質膜を前記イオン交換基当量重量が異なる少な
くとも3枚の前記高分子陽イオン交換膜を接合してなる
固体高分子電解質膜とし、前記陰極側および陽極側に
は、前記固体高分子電解質膜における前記3枚の高分子
陽イオン交換膜のうち、前記イオン交換基当量重量が小
さい側の高分子陽イオン交換膜をそれぞれ配置した。
In the fuel cell according to claim 4, the solid polymer electrolyte membrane is a solid polymer electrolyte membrane formed by joining at least three polymer cation exchange membranes having different ion exchange group equivalent weights. On the cathode side and the anode side, of the three polymer cation exchange membranes in the solid polymer electrolyte membrane, the polymer cation exchange membrane on the side with the smaller ion exchange group equivalent weight was arranged.

【0014】更に、高分子陽イオン交換膜からなる固体
高分子電解質膜を用いた燃料電池において、請求項5記
載の燃料電池で採用した手段は、陽極と陰極との間に、
水素イオンに対するイオン交換基を備え該水素イオンを
選択的に透過する高分子陽イオン交換膜からなる固体高
分子電解質膜を挟持して備える燃料電池であって、前記
陽極と陰極の少なくとも一方は、触媒を担持した触媒担
体を、前記固体高分子電解質膜である前記高分子陽イオ
ン交換膜の前記イオン交換基当量重量より小さいイオン
交換基当量重量を有する高分子陽イオン交換樹脂で被覆
してなる触媒反応層を有することをその要旨とする。
Further, in a fuel cell using a solid polymer electrolyte membrane composed of a polymer cation exchange membrane, the means adopted in the fuel cell according to claim 5 is:
A fuel cell comprising an ion exchange group for hydrogen ions, a solid polymer electrolyte membrane comprising a polymer cation exchange membrane selectively permeating the hydrogen ions sandwiched between at least one of the anode and cathode, A catalyst carrier carrying a catalyst is coated with a polymer cation exchange resin having an ion exchange group equivalent weight smaller than the ion exchange group equivalent weight of the polymer cation exchange membrane, which is the solid polymer electrolyte membrane. The gist of the invention is to have a catalytic reaction layer.

【0015】[0015]

【作用】上記構成を有する請求項1記載の固体高分子電
解質膜では、イオン交換基当量重量の異なる複数枚の高
分子陽イオン交換膜のうち、その一つの高分子陽イオン
交換膜をイオン交換基当量重量の値がある程度大きな値
の膜としてこの膜で膜強度を確保し、その他の高分子陽
イオン交換膜をイオン交換基当量重量の値が小さくイオ
ン導電率の高い膜とすることが可能となる。よって、イ
オン導電率の高い高分子陽イオン交換膜を有することか
ら、イオン交換基当量重量の値がある程度大きな値の高
分子陽イオン交換膜を用いたとしても、膜全体としての
イオン導電率の低下を招くことはない。つまり、固体高
分子電解質膜のイオン導電率を、膜強度を低下させるこ
となく高い値とすることができる。
In the solid polymer electrolyte membrane according to claim 1 having the above structure, one of the plurality of polymer cation exchange membranes having different ion exchange group equivalent weights is ion-exchanged. It is possible to secure membrane strength with this membrane as a membrane with a large value of base equivalent weight, and to use other polymer cation exchange membranes as a membrane with a small value of ion exchange base equivalent weight and high ionic conductivity. Becomes Therefore, since the polymer cation exchange membrane having a high ionic conductivity is used, even if a polymer cation exchange membrane having a relatively large value of the ion exchange group equivalent weight is used, the ionic conductivity of the membrane as a whole is reduced. There is no reduction. That is, the ionic conductivity of the solid polymer electrolyte membrane can be set to a high value without lowering the membrane strength.

【0016】請求項2記載の燃料電池では、陽極と陰極
との間に挟持する固体高分子電解質膜を、イオン交換基
当量重量の異なる複数枚の高分子陽イオン交換膜が接合
した固体高分子電解質膜としたので、この電解質膜の性
質(膜強度確保とイオン導電率向上)に起因して、電池
性能と耐久性の向上を図ることができる。
In the fuel cell according to the present invention, a solid polymer electrolyte membrane sandwiched between an anode and a cathode is joined to a plurality of polymer cation exchange membranes having different ion exchange group equivalent weights. Since the electrolyte membrane is used, the battery performance and durability can be improved due to the properties of the electrolyte membrane (ensuring membrane strength and improving ionic conductivity).

【0017】請求項3記載の燃料電池では、イオン交換
基当量重量が小さい側の高分子陽イオン交換膜を陰極側
に配置したので、イオン交換基当量重量が小さいことに
より、陰極側を吸水状態においたり陽極側に保水したり
することが可能となる。また、固体高分子電解質の不用
意な乾燥を防止できる。
In the fuel cell according to the third aspect, since the polymer cation exchange membrane on the side having a smaller ion exchange group equivalent weight is arranged on the cathode side, the ion exchange group equivalent weight is small, so that the cathode side is in a water absorbing state. It is possible to smell and retain water on the anode side. In addition, it is possible to prevent the solid polymer electrolyte from being inadvertently dried.

【0018】請求項4記載の燃料電池では、イオン交換
基当量重量が小さい側の高分子陽イオン交換膜を陰極側
ばかりか陽極側にも配置したので、陽陰両極側を吸水状
態においたり、陽極側で生成した水を膜に吸水したりす
ることが可能となる。また、固体高分子電解質の不用意
な乾燥の防止に加えて、陽極側で生成した水を電極から
除去することができる。
In the fuel cell according to the fourth aspect, the polymer cation exchange membrane on the side having a smaller ion exchange group equivalent weight is arranged not only on the cathode side but also on the anode side. It becomes possible for the membrane to absorb the water generated on the anode side. Further, in addition to preventing careless drying of the solid polymer electrolyte, water generated on the anode side can be removed from the electrode.

【0019】請求項5記載の燃料電池では、触媒を担持
した触媒担体を有する触媒反応層を次のようにした。即
ち、陽極と陰極との間に挟持する固体高分子電解質膜の
高分子陽イオン交換膜のイオン交換基当量重量より小さ
いイオン交換基当量重量を有する高分子陽イオン交換樹
脂で、触媒担体を被覆して触媒反応層とする。よって、
電極における反応に実際に関与しその反応を促進する触
媒反応層を、高分子陽イオン交換樹脂の小さなイオン交
換基当量重量に基づいて、高いイオン導電率で高い吸水
状態とすることができ、電極における反応をより促進さ
せることが可能となる。そして、陽極と陰極との間に挟
持する固体高分子電解質膜の高分子陽イオン交換膜をイ
オン交換基当量重量の値がある程度大きな値の膜とし
て、この膜で膜強度を確保することができる。
In the fuel cell according to the fifth aspect, the catalyst reaction layer having the catalyst carrier carrying the catalyst is as follows. That is, the catalyst carrier is coated with a polymer cation exchange resin having an ion exchange group equivalent weight smaller than the ion exchange group equivalent weight of the polymer cation exchange membrane of the solid polymer electrolyte membrane sandwiched between the anode and the cathode. To form a catalytic reaction layer. Therefore,
The catalytic reaction layer that actually participates in the reaction at the electrode and accelerates the reaction can be made to have a high water absorption state with high ionic conductivity based on the small ion exchange group equivalent weight of the polymer cation exchange resin. It is possible to further accelerate the reaction in. Then, the polymer cation exchange membrane of the solid polymer electrolyte membrane sandwiched between the anode and the cathode is used as a membrane having a relatively large value of the ion exchange group equivalent weight, and the membrane strength can be secured by this membrane. .

【0020】[0020]

【実施例】以上説明した本発明の構成・作用を一層明ら
かにするために、以下本発明の好適な実施例について説
明する。図1は、本発明の一実施例である燃料電池(固
体高分子電解質型燃料電池)のセル構造の模式図であ
る。図示するように、セルは、電解質膜10と、その両
側の陽極20および陰極30とを備えて構成されてお
り、各電極外側には、陽極側燃料(酸素ガス)および陰
極側燃料(水素ガス)の流路を形成する図示しないガス
流路構造体と各セルを仕切るセパレータとが備え付けら
れている。
Preferred embodiments of the present invention will be described below in order to further clarify the structure and operation of the present invention described above. FIG. 1 is a schematic diagram of a cell structure of a fuel cell (solid polymer electrolyte fuel cell) which is an embodiment of the present invention. As shown in the figure, the cell is configured to include an electrolyte membrane 10 and an anode 20 and a cathode 30 on both sides of the electrolyte membrane 10, and an anode side fuel (oxygen gas) and a cathode side fuel (hydrogen gas) are provided outside each electrode. The gas flow path structure (not shown) that forms the flow path of 1) and a separator that partitions each cell are provided.

【0021】陽極20および陰極30は、ガス拡散電極
部22と触媒反応層24とから構成され、ガス拡散電極
部22は、はっ水処理が施されてポリ四ふっ化エチレン
を50wt%含有するカーボン粒子をカーボン繊維で織
布されたカーボンクロス(厚さ0.4mm)に塗り込む
ことで作製されている。一方、触媒反応層24は、触媒
として白金26を20wt%担持したカーボン粒子28
(Pt0.4mg/cm2 )を凝集・積層したものであ
り、次のようにして作製されている。まず、陽イオン交
換樹脂溶液(当該樹脂の固形分5wt%をプロパノー
ル,水の混合溶液に配合した溶液)に上記カーボン粒子
を徐々に加え、樹脂固形分が1mg/cm2 相当となる
までカーボン粒子を混合する。そして、ペースト状のカ
ーボン粒子懸濁液を得て、これをガス拡散電極部22の
片面に塗布して乾燥させてカーボン粒子28を上記の陽
イオン交換樹脂29で固定し、触媒反応層24とする。
The anode 20 and the cathode 30 are composed of a gas diffusion electrode portion 22 and a catalytic reaction layer 24, and the gas diffusion electrode portion 22 is subjected to water repellency treatment and contains 50 wt% of polytetrafluoroethylene. It is produced by applying carbon particles to a carbon cloth (thickness 0.4 mm) woven with carbon fibers. On the other hand, the catalytic reaction layer 24 has carbon particles 28 supporting 20 wt% of platinum 26 as a catalyst.
(Pt 0.4 mg / cm 2 ) is agglomerated and laminated, and is manufactured as follows. First, the above carbon particles are gradually added to a cation exchange resin solution (solution in which 5 wt% of the solid content of the resin is mixed with a mixed solution of propanol and water), and carbon particles are added until the resin solid content becomes equivalent to 1 mg / cm 2. To mix. Then, a paste-like carbon particle suspension is obtained, and this is applied to one surface of the gas diffusion electrode portion 22 and dried to fix the carbon particles 28 with the cation exchange resin 29, and to form the catalytic reaction layer 24. To do.

【0022】触媒反応層24を形成するに当たりペース
ト状のカーボン粒子懸濁液を得るために用いた陽イオン
交換樹脂溶液は、フッ素系スルホン酸高分子樹脂であ
り、後述する陽イオン交換膜12および陽イオン交換膜
14と同一の樹脂である。但し、そのEWの値は110
0である。
The cation exchange resin solution used to obtain the paste-like carbon particle suspension for forming the catalytic reaction layer 24 is a fluorinated sulfonic acid polymer resin, and is used as the cation exchange membrane 12 and the cation exchange membrane 12 described later. It is the same resin as the cation exchange membrane 14. However, the EW value is 110
It is 0.

【0023】電解質膜10は、フッ素系スルホン酸高分
子樹脂から作製されスルホン基をイオン交換基として有
する陽イオン交換膜12,14を接合して形成された、
膜厚100μmの複合膜である。各陽イオン交換膜1
2,14は、イオン交換基(この場合は、スルホン基)
1mol当たりの膜重量であるイオン交換基当量重量
(EW)の値が異なり、陽イオン交換膜12にあっては
EWの値が900,膜厚50μmであり、陽イオン交換
膜14にあってはEWの値が1100,膜厚50μmで
ある。
The electrolyte membrane 10 is formed by joining cation exchange membranes 12 and 14 made of a fluorine-based sulfonic acid polymer resin and having a sulfone group as an ion exchange group.
It is a composite film having a film thickness of 100 μm. Each cation exchange membrane 1
2 and 14 are ion exchange groups (in this case, sulfone groups)
The value of the ion exchange group equivalent weight (EW), which is the membrane weight per mol, is different, and the cation exchange membrane 12 has an EW value of 900 and a film thickness of 50 μm, and the cation exchange membrane 14 has The EW value is 1100 and the film thickness is 50 μm.

【0024】ここで、電解質膜10の製造工程について
説明する。まず、陽イオン交換膜12および陽イオン交
換膜14を、EWの値が上記した値となるようにそれぞ
れ作製する。つまり、各陽イオン交換膜は、フッ素系ス
ルホン酸高分子樹脂の場合には、そのモノマー(テトラ
フルオロエチレンと、フルオロスルホニル基を含んだパ
ーフルオロビニルエーテル)の共重合および加水分解を
経て形成されるので、これらモノマーの量や重合度等を
変えることで所望するEWの値を得ることができる。
Here, the manufacturing process of the electrolyte membrane 10 will be described. First, the cation exchange membrane 12 and the cation exchange membrane 14 are manufactured so that the EW value becomes the above-mentioned value. That is, each cation exchange membrane is formed through copolymerization and hydrolysis of its monomer (tetrafluoroethylene and perfluorovinyl ether containing a fluorosulfonyl group) in the case of a fluorine-based sulfonic acid polymer resin. Therefore, the desired EW value can be obtained by changing the amounts of these monomers, the degree of polymerization, and the like.

【0025】よって、テトラフルオロエチレン溶液とパ
ーフルオロビニルエーテル溶液とを上記したEWの値が
得られるように秤量して用意し、両者を混合・攪拌す
る。その後、重合槽にてテトラフルオロエチレンとパー
フルオロビニルエーテルとを共重合させて、カレンダー
ロール法等の適宜な薄膜成形法により、膜厚50μmの
薄膜に製膜し、加水分解処理を施す。こうして、EWの
値が900で膜厚50μmの陽イオン交換膜12と、E
Wの値が1100で膜厚50μmの陽イオン交換膜14
とを、別々に作製する。次いで、陽イオン交換膜12と
陽イオン交換膜14との間にフッ素系スルホン酸高分子
樹脂溶液(テトラフルオロエチレン溶液とパーフルオロ
ビニルエーテル溶液の混合溶液)を塗布等により介在さ
せて、両膜をホットプレス(130℃,100kg/c
2 )し、このプレスの間に上記溶液におけるテトラフ
ルオロエチレンとパーフルオロビニルエーテルとの共重
合を進行させ電解質膜10を完成させる。
Therefore, the tetrafluoroethylene solution and the perfluorovinyl ether solution are weighed and prepared so as to obtain the above-mentioned EW value, and both are mixed and stirred. After that, tetrafluoroethylene and perfluorovinyl ether are copolymerized in a polymerization tank to form a thin film having a thickness of 50 μm by an appropriate thin film forming method such as a calender roll method, and a hydrolysis treatment is performed. Thus, the cation exchange membrane 12 having an EW value of 900 and a film thickness of 50 μm
Cation exchange membrane 14 with W value of 1100 and thickness of 50 μm
And are made separately. Then, a fluorine-based sulfonic acid polymer resin solution (a mixed solution of a tetrafluoroethylene solution and a perfluorovinyl ether solution) is interposed between the cation exchange membrane 12 and the cation exchange membrane 14 by coating or the like to form both membranes. Hot press (130 ℃, 100kg / c
m 2 ), and during this pressing, the copolymerization of tetrafluoroethylene and perfluorovinyl ether in the solution is advanced to complete the electrolyte membrane 10.

【0026】なお、EWの値は、陽イオン交換膜(樹
脂)を純水中に浸漬してこの純水にNaClを添加し、
陽イオン交換膜(樹脂)から遊離してくる水素イオンを
0.05NのNaOH溶液で中和滴定して算出される。
そして、算出したEWの値から上記の秤量値等が決定さ
れる。
The value of EW is obtained by immersing the cation exchange membrane (resin) in pure water and adding NaCl to the pure water.
It is calculated by neutralizing titration of hydrogen ions released from the cation exchange membrane (resin) with a 0.05N NaOH solution.
Then, the above-mentioned weighing value and the like are determined from the calculated EW value.

【0027】こうして得られた電解質膜10を、EWの
値(900)が小さい陽イオン交換膜12が陰極30の
触媒反応層24に接するようEWの値(1100)が大
きい陽イオン交換膜14が陽極20の触媒反応層24に
接するよう、陽極20と陰極30との間に挟持し、これ
らをホットプレス(120℃,100kg/cm2 )す
ることで図1に示す燃料電池(セル)を完成させる。
The electrolyte membrane 10 thus obtained is replaced with a cation exchange membrane 14 having a large EW value (1100) so that the cation exchange membrane 12 having a small EW value (900) is in contact with the catalytic reaction layer 24 of the cathode 30. The fuel cell (cell) shown in FIG. 1 is completed by sandwiching between the anode 20 and the cathode 30 so as to be in contact with the catalytic reaction layer 24 of the anode 20 and hot pressing (120 ° C., 100 kg / cm 2 ) these. Let

【0028】次に、完成した本実施例の燃料電池の性能
評価について説明する。対比する燃料電池(比較例)
は、EWの値が従来の下限値である1100で膜厚が1
00μmとなるように製膜されたパーフルオロカーボン
スルホン酸高分子膜(商品名:ナフィオン117, Du
Pont社製)を電解質膜(単一膜)とし、この電解質膜を
本実施例と同一の陽極20と陰極30で挟持した燃料電
池である。なお、パーフルオロカーボンスルホン酸高分
子膜は、テトラフルオロエチレンとパーフルオロビニル
エーテルとを共重合させたフッ素系スルホン酸高分子樹
脂に他ならない。よって、本実施例の燃料電池と対比す
る燃料電池とは、陽陰の両電極がガス拡散電極部22,
触媒反応層24を備える点や電解質膜の膜厚等では共通
し、電解質膜がEWの値が1100の単一膜である点
と、EWの値が900の陽イオン交換膜とEWの値が1
100の陽イオン交換膜の複合膜である点でその構成が
異なる。
Next, performance evaluation of the completed fuel cell of this embodiment will be described. Comparison fuel cell (comparative example)
Indicates that the EW value is 1100, which is the lower limit of the related art, and the film thickness is 1
Perfluorocarbon sulfonic acid polymer film formed to a thickness of 00 μm (trade name: Nafion 117, Du
This is a fuel cell in which an electrolyte membrane (single membrane) made by Pont Inc. is used and the electrolyte membrane is sandwiched between the same anode 20 and cathode 30 as in the present embodiment. The perfluorocarbon sulfonic acid polymer film is nothing but a fluorine-based sulfonic acid polymer resin obtained by copolymerizing tetrafluoroethylene and perfluorovinyl ether. Therefore, in the fuel cell to be compared with the fuel cell of the present embodiment, both the positive and negative electrodes have the gas diffusion electrode portion 22,
The catalyst reaction layer 24 and the thickness of the electrolyte membrane are common, and the electrolyte membrane is a single membrane having an EW value of 1100, and the cation exchange membrane having an EW value of 900 and the EW value are the same. 1
The structure is different in that it is a composite membrane of 100 cation exchange membranes.

【0029】両燃料電池についてI−V特性を調べた。
その結果を図2に示す。この図2から明らかなように、
実施例の燃料電池では、測定範囲の総ての電流密度に亘
って比較例の燃料電池よりその特性が優れていた。この
ことから、EWの値が小さい陽イオン交換膜12とこの
膜よりEWの値が大きく従来の下限値に等しい陽イオン
交換膜14との複合膜とした陽イオン交換膜を電解質膜
10に用いることにより、電解質膜10全体としてのイ
オン導電率を向上を通して、電池特性の向上を図ること
ができた。また、本実施例の燃料電池では、EWの値が
従来の下限値に等しい陽イオン交換膜14を用いている
ので、少なくとも従来と同程度の耐久性を得ることがで
きる。
The IV characteristics of both fuel cells were examined.
The result is shown in FIG. As is clear from FIG. 2,
The fuel cell of the example was superior in characteristics to the fuel cell of the comparative example over the entire current density of the measurement range. From this, a cation exchange membrane which is a composite membrane of a cation exchange membrane 12 having a small EW value and a cation exchange membrane 14 having a larger EW value than this membrane and equal to the conventional lower limit value is used for the electrolyte membrane 10. As a result, the battery characteristics could be improved by improving the ionic conductivity of the electrolyte membrane 10 as a whole. Further, in the fuel cell of the present embodiment, since the cation exchange membrane 14 having the EW value equal to the conventional lower limit value is used, at least the same level of durability as the conventional one can be obtained.

【0030】また、実施例の電解質膜10では、水素ガ
スが水蒸気とともに供給される陰極30側にEWの値が
小さい陽イオン交換膜12(EWの値900)を配置し
たので、陰極30側を小さなEWの値であることにより
吸水状態においたり、陽極20側に保水したりすること
ができる。よって、実施例の電解質膜10を燃料電池に
用いることで、電解質膜10の不用意な乾燥を防止し
て、電池性能の低下を回避できる。
Further, in the electrolyte membrane 10 of the embodiment, since the cation exchange membrane 12 (EW value 900) having a small EW value is arranged on the cathode 30 side to which hydrogen gas is supplied together with water vapor, the cathode 30 side is placed. With a small EW value, it can be in a water absorbing state or retain water on the anode 20 side. Therefore, by using the electrolyte membrane 10 of the example for the fuel cell, it is possible to prevent the electrolyte membrane 10 from being inadvertently dried and to avoid the deterioration of the cell performance.

【0031】次に、他の実施例について説明する。この
第2の実施例の燃料電池のセルは、図3の模式図に示す
ように、単一の膜からなる電解質膜40と、その両側の
陽極50および陰極60とを備えて構成されており、各
電極外側には、上記した実施例と同様、図示しないガス
流路構造体と各セルを仕切るセパレータとが備え付けら
れている。なお、上記した実施例と同一の構成の部材に
ついては、その説明を省略する。
Next, another embodiment will be described. As shown in the schematic view of FIG. 3, the fuel cell of the second embodiment is configured to include an electrolyte membrane 40 composed of a single membrane, and an anode 50 and a cathode 60 on both sides of the electrolyte membrane 40. As in the above-described embodiments, a gas flow path structure (not shown) and a separator for partitioning each cell are provided outside each electrode. It should be noted that description of members having the same configurations as those of the above-described embodiments will be omitted.

【0032】陽極50および陰極60は、ガス拡散電極
部52と触媒反応層54とから構成され、ガス拡散電極
部52は、上記した実施例におけるガス拡散電極部22
と同一である。触媒反応層54は、触媒として白金56
を20wt%担持したカーボン粒子58(Pt0.4m
g/cm2 )を凝集・積層したものであり、次のように
して作製されている。まず、陽イオン交換樹脂溶液(当
該樹脂の固形分5wt%をプロパノール,水の混合溶液
に配合した溶液)に上記カーボン粒子を徐々に加え、樹
脂固形分が1mg/cm2 相当となるまでカーボン粒子
を混合する。そして、ペースト状のカーボン粒子懸濁液
を得て、これをガス拡散電極部52の片面に塗布して乾
燥させてカーボン粒子58を上記の陽イオン交換樹脂5
9で固定し、触媒反応層54とする。
The anode 50 and the cathode 60 are composed of a gas diffusion electrode portion 52 and a catalytic reaction layer 54, and the gas diffusion electrode portion 52 is the gas diffusion electrode portion 22 in the above-mentioned embodiment.
Is the same as The catalytic reaction layer 54 uses platinum 56 as a catalyst.
20% by weight of carbon particles 58 (Pt 0.4 m
g / cm 2 ) is aggregated and laminated, and is manufactured as follows. First, the above carbon particles are gradually added to a cation exchange resin solution (solution in which 5 wt% of the solid content of the resin is mixed with a mixed solution of propanol and water), and carbon particles are added until the resin solid content becomes equivalent to 1 mg / cm 2. To mix. Then, a paste-like carbon particle suspension is obtained, and the paste is applied to one surface of the gas diffusion electrode portion 52 and dried to remove the carbon particles 58 from the cation exchange resin 5 described above.
It is fixed at 9 to form a catalytic reaction layer 54.

【0033】触媒反応層54を形成するに当たりペース
ト状のカーボン粒子懸濁液を得るために用いた陽イオン
交換樹脂溶液は、上記した実施例と同様、フッ素系スル
ホン酸高分子樹脂であるが、そのEWの値は900であ
る。
The cation exchange resin solution used to obtain the paste-like carbon particle suspension for forming the catalytic reaction layer 54 is a fluorinated sulfonic acid polymer resin, as in the above-mentioned examples. Its EW value is 900.

【0034】電解質膜40は、EWの値が従来の下限値
である1100で膜厚が127μmの陽イオン交換膜で
あるパーフルオロカーボンスルホン酸高分子膜(商品
名:ナフィオン117, Du Pont社製)のみからなる単
一膜である。なお、この電解質膜40を、EWの値が1
100となるようテトラフルオロエチレンとパーフルオ
ロビニルエーテルとの共重合および加水分解を経て製膜
することもできる。
The electrolyte membrane 40 is a perfluorocarbon sulfonic acid polymer membrane (trade name: Nafion 117, manufactured by Du Pont) having a EW value of 1100, which is the conventional lower limit, and a thickness of 127 μm. It is a single film consisting of only. The electrolyte membrane 40 has an EW value of 1
A film can also be formed through copolymerization and hydrolysis of tetrafluoroethylene and perfluorovinyl ether so that the ratio becomes 100.

【0035】そして、この電解質膜40を陽極50と陰
極60との間に挟持し、これらをホットプレス(120
℃,100kg/cm2 )することで図3に示す燃料電
池(セル)を完成させる。
Then, the electrolyte membrane 40 is sandwiched between the anode 50 and the cathode 60, and they are hot pressed (120
The fuel cell (cell) shown in FIG. 3 is completed by performing the heating at 100 ° C. and 100 kg / cm 2 .

【0036】次に、完成した第2の実施例における燃料
電池の性能評価について説明する。対比する燃料電池
(比較例)は、陽極50および陰極60における触媒反
応層54の陽イオン交換樹脂59が、電解質膜40(パ
ーフルオロカーボンスルホン酸高分子膜)のEWの値と
同一(1100)の陽イオン交換樹脂である比較例燃料
電池1と、電解質膜40のEWの値より大きな値(12
00)の陽イオン交換樹脂である比較例燃料電池2の二
つである。よって、この第2の実施例の燃料電池と対比
する燃料電池(比較例燃料電池1,2)とは、電解質膜
40の膜厚,EWの値等では共通し、陽陰の電極の触媒
反応層54における陽イオン交換樹脂59のEWの値と
電解質膜40のEWの値との相対比較が異なる点(第2
の実施例では陽イオン交換樹脂59のEWの値が電解質
膜40のEWの値より小さい)でその構成が異なる。な
お、陽イオン交換樹脂59のEWの値が電解質膜40の
EWの値と同一の比較例燃料電池1は、従来の燃料電池
に他ならない(特開昭60−26685,特開平5−3
6418)。
Next, performance evaluation of the completed fuel cell in the second embodiment will be described. In the fuel cell to be compared (comparative example), the cation exchange resin 59 of the catalytic reaction layer 54 in the anode 50 and the cathode 60 has the same (1100) EW value as the electrolyte membrane 40 (perfluorocarbon sulfonic acid polymer membrane). A value larger than the EW value of the comparative fuel cell 1 which is a cation exchange resin and the electrolyte membrane 40 (12
00), which is a cation exchange resin and is a comparative example fuel cell 2. Therefore, the fuel cell (comparative example fuel cells 1 and 2) in comparison with the fuel cell of the second embodiment is common in the thickness of the electrolyte membrane 40, the value of EW, etc., and the catalytic reaction of the positive and negative electrodes. The relative comparison between the EW value of the cation exchange resin 59 and the EW value of the electrolyte membrane 40 in the layer 54 is different (second
In the embodiment, the EW value of the cation exchange resin 59 is smaller than the EW value of the electrolyte membrane 40). The comparative fuel cell 1 in which the EW value of the cation exchange resin 59 is the same as the EW value of the electrolyte membrane 40 is nothing but a conventional fuel cell (JP-A-60-26685, JP-A-5-3).
6418).

【0037】各燃料電池についてI−V特性を調べた。
その結果を図4に示す。この図4から明らかなように、
第2の実施例の燃料電池では、測定範囲の総ての電流密
度に亘って比較例燃料電池1および比較例燃料電池2よ
りその特性が優れていた。つまり、第2の実施例の燃料
電池では、運転初期の活性化分極や高電流密度領域での
濃度分極,抵抗分極による電圧降下が見られない。これ
らのことから、電解質膜40を従来と同じEWの値のも
のとしても触媒反応層54を形成する際の陽イオン交換
樹脂59をそのEWの値が電解質膜40のEWの値より
小さいものとするだけで、触媒反応層を小さなEWの値
に基づいて高いイオン導電率で高い吸水状態とすること
ができ、電極における反応のより一層の促進を通して、
電池特性の向上を図ることができた。しかも、触媒反応
層54の陽イオン交換樹脂59のEWの値が電解質膜4
0のEWの値より大きな値の比較例燃料電池2は、第2
の実施例の燃料電池は勿論、比較例燃料電池1よりも電
圧降下が起き、0.5A/cm2 以上の高電流密度領域
で顕著であった。このことから、触媒反応層54を形成
する際の陽イオン交換樹脂59をそのEWの値が電解質
膜40のEWの値より小さいものとすることで初めて、
電池特性の向上を図ることができるといえる。また、第
2の実施例の燃料電池にあっても、電解質膜40をEW
の値が従来の下限値に等しい陽イオン交換膜の電解質膜
とすることができるので、少なくとも従来と同程度の耐
久性を得ることができる。
The IV characteristics of each fuel cell were examined.
The result is shown in FIG. As is clear from FIG. 4,
In the fuel cell of the second embodiment, the characteristics were superior to those of the comparative fuel cell 1 and the comparative fuel cell 2 over the entire current density of the measurement range. That is, in the fuel cell of the second embodiment, no voltage drop due to activation polarization at the initial stage of operation, concentration polarization in a high current density region, or resistance polarization is observed. From these, even if the electrolyte membrane 40 has the same EW value as the conventional one, the cation exchange resin 59 when forming the catalytic reaction layer 54 has the EW value smaller than the EW value of the electrolyte membrane 40. It is possible to bring the catalytic reaction layer into a high water absorption state with a high ionic conductivity based on a small EW value, and by further promoting the reaction at the electrode,
The battery characteristics could be improved. Moreover, the EW value of the cation exchange resin 59 of the catalytic reaction layer 54 is the same as that of the electrolyte membrane 4.
The comparative fuel cell 2 having a value greater than the EW value of 0
The voltage drop occurred not only in the fuel cell of Example 1 but also in the fuel cell of Comparative Example 1 and was remarkable in the high current density region of 0.5 A / cm 2 or more. From this, the cation exchange resin 59 for forming the catalytic reaction layer 54 has an EW value smaller than that of the electrolyte membrane 40 for the first time.
It can be said that the battery characteristics can be improved. In addition, even in the fuel cell of the second embodiment, the electrolyte membrane 40 has the EW
Since the electrolyte membrane can be a cation exchange membrane having a value equal to the lower limit of the related art, it is possible to obtain at least the same durability as the related art.

【0038】次に、第3の実施例について説明する。こ
の第3の実施例では、図5に示すように、図1の燃料電
池における電解質膜10を、陽イオン交換膜14の両側
に陽イオン交換膜12と同一のEWの値を有する陽イオ
ン交換膜12A,12Bを配置してこれら交換膜を接合
した電解質膜10Aとする。つまり、この第3の実施例
では、陰極30側ばかりか、陽極20側にもEWの値が
小さく高いイオン導電率と高い吸水性を有する陽イオン
交換膜を配置した。そして、このように電解質膜10A
を構成することで、陽陰両極側を吸水状態においたり、
陽極20で生成した水を膜に吸水したりすることができ
る。よって、この第3の実施例であっても、電解質膜1
0Aの不用意な乾燥の防止に加えて、陽極20側で生成
した水を電極から除去して陽極20における水の滞留を
防止できる。このため、この第3の実施例によれば、陽
極20における反応のより一層の促進を通して、電池の
運転効率、延いては電池性能の向上を運転当初から図る
ことができる。また、真ん中の陽イオン交換膜14をE
Wの値が従来の下限値に等しい陽イオン交換膜として高
い膜強度を有するものとすることができるので、この陽
イオン交換膜14により少なくとも従来と同程度の耐久
性を得ることができる。
Next, a third embodiment will be described. In the third embodiment, as shown in FIG. 5, the electrolyte membrane 10 in the fuel cell of FIG. 1 has a cation exchange membrane having the same EW value as the cation exchange membrane 12 on both sides of the cation exchange membrane 14. The electrolyte membrane 10A is obtained by arranging the membranes 12A and 12B and joining these exchange membranes. That is, in the third embodiment, the cation exchange membrane having a small EW value, high ionic conductivity, and high water absorption is arranged not only on the cathode 30 side but also on the anode 20 side. Then, in this way, the electrolyte membrane 10A
By configuring, both the positive and negative electrodes are in a water absorbing state,
The water generated at the anode 20 can be absorbed by the film. Therefore, even in this third embodiment, the electrolyte membrane 1
In addition to preventing inadvertent drying of 0A, water generated on the anode 20 side can be removed from the electrode to prevent water from staying on the anode 20. Therefore, according to the third embodiment, it is possible to improve the operating efficiency of the battery, and hence the battery performance, from the beginning of operation by further promoting the reaction in the anode 20. In addition, the cation exchange membrane 14 in the middle is
Since a cation exchange membrane having a value of W equal to the conventional lower limit value can have high membrane strength, the cation exchange membrane 14 can achieve at least the same durability as the conventional one.

【0039】以上本発明の一実施例について説明した
が、本発明はこの様な実施例になんら限定されるもので
はなく、本発明の要旨を逸脱しない範囲において種々な
る態様で実施し得ることは勿論である。
Although one embodiment of the present invention has been described above, the present invention is not limited to such an embodiment and can be implemented in various modes without departing from the scope of the present invention. Of course.

【0040】例えば、第3の実施例である燃料電池の電
解質膜10Aにおける陽イオン交換膜14両側の陽イオ
ン交換膜12A,12Bを、陽イオン交換膜14より小
さいEWの値を有し、且つ、陽イオン交換膜12A,1
2BのEWの値に差を持たせることもできる。つまり、
陽イオン交換膜12A,12Bの両EWの値が異なるも
のであってもよい。また、陽イオン交換膜12A,陽イ
オン交換膜14,陽イオン交換膜12Bの順に、陰極3
0側から各交換膜のEWの値を徐々に大きくし傾斜させ
ることもできる(陽イオン交換膜12AのEWの値<陽
イオン交換膜14のEWの値<陽イオン交換膜12Bの
EWの値)。更に、陽イオン交換膜12A,12Bに挟
まれた陽イオン交換膜14をEWの値が最も小さい交換
膜とし、陽イオン交換膜12A,12Bを陽イオン交換
膜14よりEWの値が大きい交換膜とすることもでき
る。
For example, the cation exchange membranes 12A and 12B on both sides of the cation exchange membrane 14 in the electrolyte membrane 10A of the fuel cell of the third embodiment have an EW value smaller than that of the cation exchange membrane 14 and , Cation exchange membranes 12A, 1
It is also possible to give a difference in the EW value of 2B. That is,
The cation exchange membranes 12A and 12B may have different EW values. In addition, the cation exchange membrane 12A, the cation exchange membrane 14 and the cation exchange membrane 12B are arranged in this order on the cathode 3
The EW value of each exchange membrane can be gradually increased and inclined from the 0 side (the value of EW of the cation exchange membrane 12A <the value of EW of the cation exchange membrane 14 <the value of EW of the cation exchange membrane 12B. ). Further, the cation exchange membrane 14 sandwiched between the cation exchange membranes 12A and 12B is used as an exchange membrane having the smallest EW value, and the cation exchange membranes 12A and 12B are exchange membrane having a larger EW value than the cation exchange membrane 14. Can also be

【0041】また、第1の実施例および第3の実施例に
おける各陽イオン交換膜を、その膜厚が異なるものとす
ることもできる。このようにしても、従来の下限値であ
るEWの値を有する陽イオン交換膜を用いるので、強度
不足を招くことはない。
Further, the cation exchange membranes in the first and third embodiments may have different thicknesses. Even in this case, since the cation exchange membrane having the conventional lower limit value of EW is used, the strength is not insufficient.

【0042】加えて、第1の実施例の燃料電池における
触媒反応層24の陽イオン交換樹脂29(EWの値11
00)を、第2の実施例における触媒反応層54の陽イ
オン交換樹脂59と同様、そのEWの値が900と小さ
い陽イオン交換樹脂とすることもできる。このようにす
れば、触媒反応層24における反応の促進等を通して、
より電池性能を向上することができる。
In addition, the cation-exchange resin 29 (EW value 11 in the catalytic reaction layer 24 in the fuel cell of the first embodiment was used.
00) may be a cation exchange resin having a small EW value of 900, like the cation exchange resin 59 of the catalytic reaction layer 54 in the second embodiment. In this way, by promoting the reaction in the catalytic reaction layer 24,
The battery performance can be further improved.

【0043】なお、本発明では、固体高分子電解質膜に
おけるイオン交換基の含有mol数を規定するに当た
り、イオン交換基1mol当たりの膜重量を陽イオン交
換膜のイオン交換基当量重量として定義しこのイオン交
換基当量重量を用いたが、当該当量重量の逆数を用いる
こともできる。つまり、単位膜重量当たりのイオン交換
基のmol数で、固体高分子電解質膜におけるイオン交
換基の含有mol数を規定することもできる。
In the present invention, in defining the mol number of ion exchange groups contained in the solid polymer electrolyte membrane, the membrane weight per 1 mol of ion exchange groups is defined as the equivalent weight of ion exchange groups of the cation exchange membrane. Although the ion-exchange group equivalent weight was used, the reciprocal of the equivalent weight can also be used. That is, the mol number of ion exchange groups in the solid polymer electrolyte membrane can be defined by the mol number of ion exchange groups per unit weight of the membrane.

【0044】[0044]

【発明の効果】以上詳述したように請求項1記載の固体
高分子電解質膜では、イオン交換基当量重量の値がある
程度大きな値の高分子陽イオン交換膜で膜強度を確保
し、イオン交換基当量重量の値が小さいことに起因して
高いイオン導電率,吸水率,ガス透過性等を有する高分
子陽イオン交換膜を接合して用いることで膜全体として
のイオン導電率の低下を招くことはない。よって、請求
項1記載の固体高分子電解質膜によれば、固体高分子電
解質膜の膜強度の確保とイオン導電率の向上とを両立す
ることができる。
As described above in detail, in the solid polymer electrolyte membrane according to the first aspect, the membrane strength is ensured by the polymer cation exchange membrane having a relatively large value of the ion exchange group equivalent weight, and the ion exchange is performed. The use of a polymer cation exchange membrane with high ionic conductivity, water absorption, gas permeability, etc., due to the small value of the base equivalent weight causes a decrease in the ionic conductivity of the entire membrane. There is no such thing. Therefore, according to the solid polymer electrolyte membrane of the first aspect, it is possible to ensure both the membrane strength of the solid polymer electrolyte membrane and the improvement of the ionic conductivity.

【0045】請求項2記載の燃料電池では、イオン交換
基当量重量の異なる複数枚の高分子陽イオン交換膜を接
合して膜強度の確保と膜全体としてのイオン導電率の向
上をもたらす固体高分子電解質膜を陽極と陰極との間に
挟持した。このため、請求項2記載の燃料電池によれ
ば、電池性能と耐久性の向上を図ることができる。
In the fuel cell according to the second aspect, a plurality of polymer cation exchange membranes having different ion exchange group equivalent weights are joined to secure the membrane strength and improve the ion conductivity of the membrane as a whole. The molecular electrolyte membrane was sandwiched between the anode and the cathode. Therefore, according to the fuel cell of the second aspect, cell performance and durability can be improved.

【0046】請求項3記載の燃料電池では、イオン交換
基当量重量が小さい側の高分子陽イオン交換膜を陰極側
に配置することで、イオン交換基当量重量が小さいこと
に起因して陰極側を吸水状態においたり、陽極側に保水
したりすることができる。また、燃料電池における固体
高分子電解質の不用意な乾燥を防止できる。よって、請
求項3記載の燃料電池によれば、電池性能の低下を回避
でき、燃料電池の安定した運転や高い電池性能を発揮で
きる。
In the fuel cell according to the third aspect, the polymer cation exchange membrane on the side having a smaller ion exchange group equivalent weight is arranged on the cathode side. Can be placed in a water-absorbing state or can retain water on the anode side. In addition, it is possible to prevent accidental drying of the solid polymer electrolyte in the fuel cell. Therefore, according to the fuel cell of the third aspect, deterioration of the cell performance can be avoided, and stable operation of the fuel cell and high cell performance can be exhibited.

【0047】請求項4記載の燃料電池では、イオン交換
基当量重量が小さい側の高分子陽イオン交換膜を陰極側
ばかりか陽極側にも配置したので、陽陰両極側を吸水状
態においたり、陽極側で生成した水を膜に吸水したりす
ることができる。このため、請求項4記載の燃料電池に
よれば、固体高分子電解質の不用意な乾燥の防止や陽極
側で生成した水の電極からの除去を通して、陽極におけ
る反応を促進して電池性能の低下を回避できるばかり
か、燃料電池の安定した運転や高い電池性能を発揮でき
る。
In the fuel cell according to the fourth aspect, the polymer cation exchange membrane on the side having a smaller ion exchange group equivalent weight is arranged not only on the cathode side but also on the anode side, so that both the positive and negative electrode sides are in a water absorbing state, Water generated on the anode side can be absorbed by the membrane. Therefore, according to the fuel cell of the fourth aspect, the reaction at the anode is promoted by promoting the reaction at the anode by preventing the solid polymer electrolyte from being inadvertently dried and removing the water generated on the anode side from the electrode. In addition to avoiding the above, stable operation of the fuel cell and high cell performance can be exhibited.

【0048】請求項5記載の燃料電池では、小さいイオ
ン交換基当量重量を有する高分子陽イオン交換樹脂で触
媒担体を被覆して触媒反応層としたので、この触媒反応
層の触媒担体を高いイオン導電率で高い吸水状態におく
ことができ、電極における反応をより促進させることが
できる。その一方で、陽極と陰極との間に挟持する固体
高分子電解質膜の高分子陽イオン交換膜をイオン交換基
当量重量の値がある程度大きな値の膜として、この膜で
膜強度を確保することができる。この結果、請求項5記
載の燃料電池によれば、耐久性を維持したまま、電極に
おける反応のより一層の促進を通して電池特性の向上を
図ることができる。
In the fuel cell according to the fifth aspect, since the catalyst carrier is coated with the polymer cation exchange resin having a small ion exchange group equivalent weight to form the catalyst reaction layer, the catalyst carrier in the catalyst reaction layer has a high ion content. It can be kept in a high water absorption state with high conductivity, and the reaction in the electrode can be further promoted. On the other hand, the polymer cation exchange membrane of the solid polymer electrolyte membrane sandwiched between the anode and the cathode should be a membrane with a certain large value of the ion exchange group equivalent weight, and this membrane should secure the membrane strength. You can As a result, according to the fuel cell of the fifth aspect, it is possible to improve the cell characteristics by further promoting the reaction at the electrodes while maintaining the durability.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施例における燃料電池のセル構造の模
式図。
FIG. 1 is a schematic diagram of a cell structure of a fuel cell according to a first embodiment.

【図2】第1の実施例の燃料電池と比較例の燃料電池と
の電池特性の比較評価を説明するためのグラフ。
FIG. 2 is a graph for explaining comparative evaluation of cell characteristics between the fuel cell of the first embodiment and the fuel cell of the comparative example.

【図3】第2の実施例における燃料電池のセル構造の模
式図。
FIG. 3 is a schematic diagram of a cell structure of a fuel cell according to a second embodiment.

【図4】第2の実施例の燃料電池と比較例の燃料電池と
の電池特性の比較評価を説明するためのグラフ。
FIG. 4 is a graph for explaining comparative evaluation of cell characteristics between the fuel cell of the second embodiment and the fuel cell of the comparative example.

【図5】第1の実施例の変形例における燃料電池のセル
構造の模式図。
FIG. 5 is a schematic diagram of a cell structure of a fuel cell according to a modification of the first embodiment.

【符号の説明】[Explanation of symbols]

10…電解質膜 10A…電解質膜 12,14…陽イオン交換膜 12A,12B…陽イオン交換膜 20…陽極 22…ガス拡散電極部 24…触媒反応層 26…白金 28…カーボン粒子 29…陽イオン交換樹脂 30…陰極 40…電解質膜 50…陽極 52…ガス拡散電極部 54…触媒反応層 56…白金 58…カーボン粒子 59…陽イオン交換樹脂 60…陰極 10 ... Electrolyte Membrane 10A ... Electrolyte Membrane 12, 14 ... Cation Exchange Membrane 12A, 12B ... Cation Exchange Membrane 20 ... Anode 22 ... Gas Diffusion Electrode 24 ... Catalytic Reaction Layer 26 ... Platinum 28 ... Carbon Particle 29 ... Cation Exchange Resin 30 ... Cathode 40 ... Electrolyte membrane 50 ... Anode 52 ... Gas diffusion electrode part 54 ... Catalytic reaction layer 56 ... Platinum 58 ... Carbon particles 59 ... Cation exchange resin 60 ... Cathode

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 陽イオンに対するイオン交換基を備え該
陽イオンを選択的に透過する高分子陽イオン交換膜から
なる固体高分子電解質膜であって、 前記イオン交換基1mol当たりの膜重量を高分子陽イ
オン交換膜のイオン交換基当量重量として定義し、該イ
オン交換基当量重量の異なる複数枚の前記高分子陽イオ
ン交換膜を接合してなる固体高分子電解質膜。
1. A solid polymer electrolyte membrane comprising a polymer cation exchange membrane having ion exchange groups for cations and selectively permeating the cations, wherein the membrane weight per mol of the ion exchange groups is high. A solid polymer electrolyte membrane which is defined as an ion-exchange group equivalent weight of a molecular cation-exchange membrane and is formed by joining a plurality of the polymer cation-exchange membranes having different ion-exchange group equivalent weights.
【請求項2】 陽極と陰極との間に、水素イオンに対す
るイオン交換基を備え該水素イオンを選択的に透過する
高分子陽イオン交換膜からなる固体高分子電解質膜を挟
持して備える燃料電池であって、 前記固体高分子電解質膜は、水素イオンに対するイオン
交換基を備えた前記請求項1記載の固体高分子電解質膜
である燃料電池。
2. A fuel cell comprising a positive electrode and a negative electrode, and a solid polymer electrolyte membrane comprising a polymer cation exchange membrane having an ion exchange group for hydrogen ions and selectively permeating the hydrogen ions, sandwiched between the anode and the cathode. The fuel cell as the solid polymer electrolyte membrane according to claim 1, wherein the solid polymer electrolyte membrane comprises an ion exchange group for hydrogen ions.
【請求項3】 請求項2記載の燃料電池であって、 前記陰極側には、前記固体高分子電解質膜における前記
複数枚の高分子陽イオン交換膜のうち、前記イオン交換
基当量重量が小さい側の高分子陽イオン交換膜を配置し
た燃料電池。
3. The fuel cell according to claim 2, wherein, on the cathode side, the ion exchange group equivalent weight of the plurality of polymer cation exchange membranes in the solid polymer electrolyte membrane is small. Fuel cell with polymer cation exchange membrane on the side.
【請求項4】 請求項2記載の燃料電池であって、 前記固体高分子電解質膜を前記イオン交換基当量重量が
異なる少なくとも3枚の前記高分子陽イオン交換膜を接
合してなる固体高分子電解質膜とし、 前記陰極側および陽極側には、前記固体高分子電解質膜
における前記3枚の高分子陽イオン交換膜のうち、前記
イオン交換基当量重量が小さい側の高分子陽イオン交換
膜をそれぞれ配置した燃料電池。
4. The fuel cell according to claim 2, wherein the solid polymer electrolyte membrane is formed by bonding at least three polymer cation exchange membranes having different ion exchange group equivalent weights. As the electrolyte membrane, on the cathode side and the anode side, among the three polymer cation exchange membranes in the solid polymer electrolyte membrane, the polymer cation exchange membrane on the side having the smaller ion exchange group equivalent weight is used. Fuel cells arranged respectively.
【請求項5】 陽極と陰極との間に、水素イオンに対す
るイオン交換基を備え該水素イオンを選択的に透過する
高分子陽イオン交換膜からなる固体高分子電解質膜を挟
持して備える燃料電池であって、 前記陽極と陰極の少なくとも一方は、触媒を担持した触
媒担体を、前記固体高分子電解質膜である前記高分子陽
イオン交換膜の前記イオン交換基当量重量より小さいイ
オン交換基当量重量を有する高分子陽イオン交換樹脂で
被覆してなる触媒反応層を有することを特徴とする燃料
電池。
5. A fuel cell comprising a solid polymer electrolyte membrane, which is composed of a polymer cation exchange membrane having an ion exchange group for hydrogen ions and selectively permeating the hydrogen ions, sandwiched between an anode and a cathode. Wherein, at least one of the anode and the cathode, a catalyst carrier carrying a catalyst, an ion exchange group equivalent weight less than the ion exchange group equivalent weight of the polymer cation exchange membrane is the solid polymer electrolyte membrane A fuel cell having a catalytic reaction layer coated with a polymer cation exchange resin having
JP5307264A 1993-11-12 1993-11-12 Solid high molecular electrolytic film and fuel cell Pending JPH07135004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5307264A JPH07135004A (en) 1993-11-12 1993-11-12 Solid high molecular electrolytic film and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5307264A JPH07135004A (en) 1993-11-12 1993-11-12 Solid high molecular electrolytic film and fuel cell

Publications (1)

Publication Number Publication Date
JPH07135004A true JPH07135004A (en) 1995-05-23

Family

ID=17967022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5307264A Pending JPH07135004A (en) 1993-11-12 1993-11-12 Solid high molecular electrolytic film and fuel cell

Country Status (1)

Country Link
JP (1) JPH07135004A (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10284087A (en) * 1997-04-04 1998-10-23 Asahi Chem Ind Co Ltd Electrode and membrane-electrode joining body for solid polymer fuel cell
JPH10334923A (en) * 1997-04-04 1998-12-18 Asahi Chem Ind Co Ltd Solid high polymer fuel cell film/electrode connecting body
JPH11288727A (en) * 1998-04-02 1999-10-19 Asahi Chem Ind Co Ltd Solid high polymer fuel cell film/electrode junction body
EP1073140A1 (en) * 1999-07-02 2001-01-31 Toyota Jidosha Kabushiki Kaisha Fuel cell and polymer electrolyte membrane
JP2001185158A (en) * 1995-10-06 2001-07-06 Dow Chem Co:The Membrane electrode assembly for fuel cell
JP2001243964A (en) * 2000-02-28 2001-09-07 Asahi Glass Co Ltd Solid polymer electrolyte fuel cell
JP2001338654A (en) * 2000-05-29 2001-12-07 Asahi Glass Co Ltd Solid high polymer molecule type fuel cell
WO2003088397A1 (en) * 2002-04-17 2003-10-23 Nec Corporation Fuel cell, electrode for fuel cell, and method for preparing the same
WO2003088396A1 (en) * 2002-04-18 2003-10-23 Nec Corporation Solid polymer electrolyte fuel battery having improved performance and reliability and manufacturing method thereof
WO2004004037A1 (en) * 2002-06-28 2004-01-08 Sumitomo Chemical Company, Limited Polymeric laminates, processes for producing the same, and use thereof
JP2004063301A (en) * 2002-07-30 2004-02-26 Sumitomo Chem Co Ltd Polymer film stack, its manufacturing method, and its use
KR100442827B1 (en) * 1997-08-30 2004-09-18 삼성전자주식회사 Composition for forming catalyst layer and fuel cell using the same to improve oxidation/reduction activity and ion conductivity with reduced amount of platinum catalyst in convenient way
JP2004303541A (en) * 2003-03-31 2004-10-28 Sumitomo Chem Co Ltd Polymer laminated film, its method of manufacture and its usage
WO2005104280A1 (en) * 2004-04-26 2005-11-03 Toshiba Fuel Cell Power Systems Corporation Fuel cell and method for manufacturing fuel cell
JP2005310454A (en) * 2004-04-20 2005-11-04 Toyota Central Res & Dev Lab Inc Electrolyte and electrolyte film
JP2006004856A (en) * 2004-06-21 2006-01-05 Toyota Motor Corp Fuel cell
JP2006210166A (en) * 2005-01-28 2006-08-10 Asahi Glass Co Ltd Electrolyte membrane for polymer electrolyte fuel cell and membrane electrode assembly for polymer electrolyte fuel cell
JP2007018911A (en) * 2005-07-08 2007-01-25 Toyota Motor Corp Electrolyte membrane and its manufacturing method
JP2007042561A (en) * 2005-08-05 2007-02-15 Asahi Kasei Corp Electrolyte membrane for fuel cell
JP2007145007A (en) * 2005-10-28 2007-06-14 Toray Ind Inc Unsymmetrical electrolytic membrane, membrane electrode complex using the same, and polymer electrolyte fuel cell
JP2007329015A (en) * 2006-06-08 2007-12-20 Hitachi Ltd Polymer electrolyte membrane, membrane electrode assembly, and fuel cell using it
JP2008226646A (en) * 2007-03-13 2008-09-25 Sanyo Electric Co Ltd Fuel cell
JP2009070675A (en) * 2007-09-13 2009-04-02 Fuji Electric Holdings Co Ltd Membrane electrode assembly for polymer electrolyte fuel cell
JP2009283364A (en) * 2008-05-23 2009-12-03 Toshiba Corp Polymer electrolyte membrane type fuel cell
US7700211B2 (en) 2002-04-17 2010-04-20 Nec Corporation Fuel cell, fuel cell electrode and method for fabricating the same
JP2010182547A (en) * 2009-02-06 2010-08-19 Aisin Seiki Co Ltd Membrane electrode assembly for fuel cell
JP2018520461A (en) * 2015-11-26 2018-07-26 エルジー・ケム・リミテッド Polymer electrolyte membrane, membrane electrode assembly including the same, and fuel cell including the membrane electrode assembly
WO2019066460A1 (en) * 2017-09-29 2019-04-04 코오롱인더스트리 주식회사 Polymer electrolyte membrane, method for manufacturing same, and membrane electrode assembly comprising same
KR20190038355A (en) * 2017-09-29 2019-04-08 코오롱인더스트리 주식회사 Polymer electrolyte membrane, method for manufacturing the same and membrane-electrode assembly comprising the same
US10734660B2 (en) 2016-03-10 2020-08-04 Nissan North America, Inc. Functionalized carbon layer for membrane degradation mitigation under fuel cell operating conditions
US10923752B2 (en) 2016-12-29 2021-02-16 Kolon Industries, Inc. Membrane-electrode assembly, method for manufacturing same, and fuel cell comprising same

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185158A (en) * 1995-10-06 2001-07-06 Dow Chem Co:The Membrane electrode assembly for fuel cell
JPH10334923A (en) * 1997-04-04 1998-12-18 Asahi Chem Ind Co Ltd Solid high polymer fuel cell film/electrode connecting body
JPH10284087A (en) * 1997-04-04 1998-10-23 Asahi Chem Ind Co Ltd Electrode and membrane-electrode joining body for solid polymer fuel cell
KR100442827B1 (en) * 1997-08-30 2004-09-18 삼성전자주식회사 Composition for forming catalyst layer and fuel cell using the same to improve oxidation/reduction activity and ion conductivity with reduced amount of platinum catalyst in convenient way
JPH11288727A (en) * 1998-04-02 1999-10-19 Asahi Chem Ind Co Ltd Solid high polymer fuel cell film/electrode junction body
US6436566B1 (en) 1999-07-02 2002-08-20 Toyota Jidosha Kabushiki Kaisha Fuel cell and polymer electrolyte membrane
EP1073140A1 (en) * 1999-07-02 2001-01-31 Toyota Jidosha Kabushiki Kaisha Fuel cell and polymer electrolyte membrane
JP2001243964A (en) * 2000-02-28 2001-09-07 Asahi Glass Co Ltd Solid polymer electrolyte fuel cell
JP2001338654A (en) * 2000-05-29 2001-12-07 Asahi Glass Co Ltd Solid high polymer molecule type fuel cell
WO2003088397A1 (en) * 2002-04-17 2003-10-23 Nec Corporation Fuel cell, electrode for fuel cell, and method for preparing the same
US7700211B2 (en) 2002-04-17 2010-04-20 Nec Corporation Fuel cell, fuel cell electrode and method for fabricating the same
WO2003088396A1 (en) * 2002-04-18 2003-10-23 Nec Corporation Solid polymer electrolyte fuel battery having improved performance and reliability and manufacturing method thereof
WO2004004037A1 (en) * 2002-06-28 2004-01-08 Sumitomo Chemical Company, Limited Polymeric laminates, processes for producing the same, and use thereof
CN100342572C (en) * 2002-06-28 2007-10-10 住友化学株式会社 Polymeric laminates, processes for producing the same, and use thereof
US7638220B2 (en) 2002-06-28 2009-12-29 Sumitomo Chemical Company, Limited Polymeric laminates, processes for producing the same, and use thereof
JP2004063301A (en) * 2002-07-30 2004-02-26 Sumitomo Chem Co Ltd Polymer film stack, its manufacturing method, and its use
JP2004303541A (en) * 2003-03-31 2004-10-28 Sumitomo Chem Co Ltd Polymer laminated film, its method of manufacture and its usage
JP4543616B2 (en) * 2003-03-31 2010-09-15 住友化学株式会社 Manufacturing method of laminated film for fuel cell and manufacturing method of fuel cell
JP4547713B2 (en) * 2004-04-20 2010-09-22 株式会社豊田中央研究所 Electrolyte membrane
JP2005310454A (en) * 2004-04-20 2005-11-04 Toyota Central Res & Dev Lab Inc Electrolyte and electrolyte film
WO2005104280A1 (en) * 2004-04-26 2005-11-03 Toshiba Fuel Cell Power Systems Corporation Fuel cell and method for manufacturing fuel cell
JP2006004856A (en) * 2004-06-21 2006-01-05 Toyota Motor Corp Fuel cell
JP4682629B2 (en) * 2005-01-28 2011-05-11 旭硝子株式会社 Electrolyte membrane for polymer electrolyte fuel cell and membrane / electrode assembly for polymer electrolyte fuel cell
JP2006210166A (en) * 2005-01-28 2006-08-10 Asahi Glass Co Ltd Electrolyte membrane for polymer electrolyte fuel cell and membrane electrode assembly for polymer electrolyte fuel cell
JP2007018911A (en) * 2005-07-08 2007-01-25 Toyota Motor Corp Electrolyte membrane and its manufacturing method
JP2007042561A (en) * 2005-08-05 2007-02-15 Asahi Kasei Corp Electrolyte membrane for fuel cell
JP2007145007A (en) * 2005-10-28 2007-06-14 Toray Ind Inc Unsymmetrical electrolytic membrane, membrane electrode complex using the same, and polymer electrolyte fuel cell
JP2007329015A (en) * 2006-06-08 2007-12-20 Hitachi Ltd Polymer electrolyte membrane, membrane electrode assembly, and fuel cell using it
JP2008226646A (en) * 2007-03-13 2008-09-25 Sanyo Electric Co Ltd Fuel cell
JP2009070675A (en) * 2007-09-13 2009-04-02 Fuji Electric Holdings Co Ltd Membrane electrode assembly for polymer electrolyte fuel cell
JP2009283364A (en) * 2008-05-23 2009-12-03 Toshiba Corp Polymer electrolyte membrane type fuel cell
JP2010182547A (en) * 2009-02-06 2010-08-19 Aisin Seiki Co Ltd Membrane electrode assembly for fuel cell
JP2018520461A (en) * 2015-11-26 2018-07-26 エルジー・ケム・リミテッド Polymer electrolyte membrane, membrane electrode assembly including the same, and fuel cell including the membrane electrode assembly
US10367219B2 (en) 2015-11-26 2019-07-30 Lg Chem, Ltd. Polymer electrolyte membrane, membrane electrode assembly comprising same, and fuel cell comprising membrane electrode assembly
US10734660B2 (en) 2016-03-10 2020-08-04 Nissan North America, Inc. Functionalized carbon layer for membrane degradation mitigation under fuel cell operating conditions
US10923752B2 (en) 2016-12-29 2021-02-16 Kolon Industries, Inc. Membrane-electrode assembly, method for manufacturing same, and fuel cell comprising same
WO2019066460A1 (en) * 2017-09-29 2019-04-04 코오롱인더스트리 주식회사 Polymer electrolyte membrane, method for manufacturing same, and membrane electrode assembly comprising same
KR20190038355A (en) * 2017-09-29 2019-04-08 코오롱인더스트리 주식회사 Polymer electrolyte membrane, method for manufacturing the same and membrane-electrode assembly comprising the same
EP3691010A4 (en) * 2017-09-29 2021-06-23 Kolon Industries, Inc. Polymer electrolyte membrane, method for manufacturing same, and membrane electrode assembly comprising same
US11444305B2 (en) 2017-09-29 2022-09-13 Kolon Industries, Inc. Polymer electrolyte membrane, method for manufacturing same, and membrane electrode assembly comprising same

Similar Documents

Publication Publication Date Title
JPH07135004A (en) Solid high molecular electrolytic film and fuel cell
US7534516B2 (en) Solid polymer membrane for fuel cell with polyamine imbibed therein for reducing methanol permeability
JP4979243B2 (en) Polymer electrolyte membrane, method for producing the same, and fuel cell
US7910236B2 (en) Electrolyte material, electrolyte membrane and membrane-electrolyte assembly for polymer electrolyte fuel cells
JP4023903B2 (en) Membrane / electrode assembly for polymer electrolyte fuel cells
EP1760812A1 (en) Liquid composition, method for producing same, and method for producing membrane electrode assembly for solid polymer fuel cell
JP2009021228A (en) Membrane-electrode assembly, membrane-electrode gas diffusion layer assembly having the same, solid high polymer fuel cell, and manufacturing method for membrane-electrode assembly
CN1961445A (en) Method and apparatus for operating a fuel cell
US7858260B2 (en) Polymer electrolyte membrane and method of producing the same
US8642228B2 (en) Polymer electrolyte membrane and fuel cell using the polymer electrolyte membrane
JP2001338654A (en) Solid high polymer molecule type fuel cell
JPH10334923A (en) Solid high polymer fuel cell film/electrode connecting body
JP2002015743A (en) Solid polymer fuel cell
JP3813406B2 (en) Fuel cell
WO2006006357A1 (en) Electrolyte membrane for solid polymer fuel cell, method for producing same and membrane electrode assembly for solid polymer fuel cell
JPH0620709A (en) Manufacture of gas diffusion electrode for fuel cell
JPH06342667A (en) High molecular type fuel cell
JP2002008677A (en) Manufacturing method of solid polymer type fuel cell
US20220302488A1 (en) Polymer electrolyte membrane, method for preparing the membrane and fuel cell comprising the membrane
JP3382655B2 (en) Improved solid polymer electrolyte fuel cell
US10020526B2 (en) Reverse osmosis membranes made with PFSA ionomer and ePTFE
JP2003297393A (en) Electrolyte membrane for solid high polymer fuel cell and membrane electrode junction body
JP2004349180A (en) Membrane electrode assembly
JP2006269266A (en) Compound solid polyelectrolyte membrane having reinforcement material
JP2005317287A (en) Film-electrode junction, and solid polymer fuel cell