WO2003088397A1 - Fuel cell, electrode for fuel cell, and method for preparing the same - Google Patents

Fuel cell, electrode for fuel cell, and method for preparing the same Download PDF

Info

Publication number
WO2003088397A1
WO2003088397A1 PCT/JP2003/004819 JP0304819W WO03088397A1 WO 2003088397 A1 WO2003088397 A1 WO 2003088397A1 JP 0304819 W JP0304819 W JP 0304819W WO 03088397 A1 WO03088397 A1 WO 03088397A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer electrolyte
solid polymer
fuel cell
electrode
catalyst
Prior art date
Application number
PCT/JP2003/004819
Other languages
French (fr)
Japanese (ja)
Inventor
Shin Nakamura
Yoshimi Kubo
Yuichi Shimakawa
Takashi Manako
Hidekazu Kimura
Hideto Imai
Sadanori Kuroshima
Tsutomu Yoshitake
Takeshi Obata
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Publication of WO2003088397A1 publication Critical patent/WO2003088397A1/en
Priority to US10/971,737 priority Critical patent/US7700211B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8807Gas diffusion layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8828Coating with slurry or ink
    • H01M4/8839Painting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a fuel cell, an electrode for a fuel cell, and a method for producing the same.
  • the present invention relates to a fuel cell, an electrode for a fuel cell, and a method for producing the same.
  • the polymer electrolyte fuel cell can obtain a high output of 1 A / cm 2 or more at normal temperature and normal pressure.
  • the fuel electrode and the oxidant electrode are provided with a mixture of carbon particles carrying a catalyst metal and a solid polymer electrolyte.
  • the mixture is applied to an electrode substrate such as a force pump to be a fuel gas diffusion layer.
  • a fuel cell is constructed by sandwiching a solid polymer electrolyte membrane between these two electrodes and thermocompression bonding.
  • the hydrogen gas supplied to the fuel electrode passes through the pores in the electrode and reaches the catalyst, and emits electrons to become hydrogen ions.
  • the emitted electrons are led to the external circuit through the carbon particles and the solid electrolyte in the fuel electrode, and flow into the oxidizer electrode from the external circuit.
  • hydrogen ions generated at the fuel electrode pass through the solid polymer electrolyte in the fuel electrode and the solid polymer electrolyte membrane disposed between the two electrodes, reach the oxidizer electrode, and are supplied to the oxidizer electrode.
  • the element reacts with the electrons flowing from the external circuit to produce water as shown in the above reaction formula. As a result, in the external circuit, electrons flow from the fuel electrode to the oxidizer electrode, and power is extracted.
  • the adhesion between the electrode and the solid polymer electrolyte membrane be good. That is, it is required that the conductivity of hydrogen ions generated by the electrode reaction be high at the interface between the two. Poor interfacial adhesion reduces the conductivity of hydrogen ions and increases electrical resistance, causing a reduction in battery efficiency.
  • Fuel cells that use organic liquid fuel include those that reform organic liquid fuel into hydrogen gas and use it as fuel, and those that do not reform organic liquid fuel, such as direct methanol fuel cells.
  • a fuel supply system directly to a fuel electrode is known.
  • a fuel cell that supplies organic liquid fuel directly to the anode without reforming it does not require a device such as a reformer because it has a structure that supplies organic liquid fuel directly to the anode. Therefore, there is an advantage that the configuration of the battery can be simplified and the entire device can be reduced in size.
  • organic liquid fuels compared with gaseous fuels such as hydrogen gas and hydrocarbon gas, organic liquid fuels have the feature that they can be transported easily and safely.
  • a solid polymer electrolyte membrane made of a solid polymer ion exchange resin is used as an electrolyte.
  • hydrogen ions it is necessary for hydrogen ions to move from the fuel electrode to the oxidant electrode in the membrane, but it is known that the movement of the hydrogen ions is accompanied by the movement of water.
  • the membrane must contain a certain amount of water.
  • the polymer constituting the catalyst layer on the electrode surface should be a polymer having a high water content and high permeability to organic liquid fuel, and the polymer constituting the solid polymer electrolyte membrane should be used. It is considered to be preferable to use a material having a low water content and a property of low permeability of organic liquid fuel.
  • Japanese Patent Application Laid-Open No. 2001-167775 discloses a technique relating to an ion-conductive film which makes it possible to suppress the crossover of methanol while maintaining the ion conductivity.
  • the surface layer of an ion conductive film having a basic structure of a fluororesin such as Nafion (registered trademark) is modified by electron beam irradiation or the like so that the conductivity becomes lower than the internal conductivity. ing.
  • the material of the electrode surface catalyst layer and the material of the solid polymer electrolyte membrane are made of different materials as described above, generally, sufficient adhesion cannot be obtained, and the interface between the electrode surface and the solid polymer electrolyte membrane is generally not obtained. May cause peeling. When such peeling occurs, the electrical resistance at the interface increases, causing a decrease in the reliability of the battery performance. Also, as described in JP-A-2001-1677755, when the surface layer of the ion conductive film is modified, the surface of the ion conductive film at the time of swelling is also improved. There is a problem that the strength is increased and the adhesion to the electrode surface catalyst layer is deteriorated.
  • a solid polymer electrolyte of a fuel cell As a solid polymer electrolyte of a fuel cell, a solid polymer electrolyte having high hydrogen ion conductivity represented by Naphion (registered trademark) is generally used.
  • the high hydrogen ion conductivity of the solid polymer electrolyte is caused by the polymer electrolyte containing a large amount of water.
  • the large amount of water contains an organic liquid such as methanol. The body fuel will be easily dissolved in water to promote crossover.
  • the present inventor has proposed a polymer material having a lower organic liquid fuel permeability than naphion or the like as a fuel electrode, an oxidizer electrode, and a solid polymer electrolyte constituting a solid polymer electrolyte membrane.
  • a direct methanol fuel cell was fabricated using the method described above and evaluated. However, the characteristics of this fuel cell were lower than those of a conventional cell using naphion. This is thought to be due to a decrease in methanol permeability and hydrogen ion conductivity at the fuel electrode.
  • the fuel electrode of the fuel cell has a structure in which carbon particles carrying a catalyst and a solid polymer electrolyte as a binder are provided in a mixed form, and a solid polymer electrolyte is interposed between the catalysts. It has become. For this reason, in order for methanol, hydrogen, and electrons to move smoothly on the electrode surface, the solid polymer electrolyte serving as these transmission paths has high liquid fuel permeability such as methanol and excellent hydrogen ion conductivity. It is necessary to be. In the battery with the above structure, it is considered that good battery characteristics could not be obtained because the solid polymer electrolyte did not sufficiently satisfy these performances.
  • the present inventors used naphthion as a solid polymer electrolyte on the electrode surface, and used a solid polymer electrolyte membrane as an organic liquid fuel permeation rather than naphthion or the like.
  • the bonding between the fuel electrode and the solid polymer electrolyte membrane was insufficient, and a battery that could withstand the evaluation was obtained. I could't do it.
  • the adhesive layer and the solid polymer electrolyte membrane may be in contact with or separated from each other. If a configuration in which these are in contact with each other is employed, the adhesion at the interface between the adhesive layer and the solid polymer electrolyte membrane can be reliably improved.
  • the fuel electrode is required to be permeable to organic liquid fuel such as methanol, and the oxidant electrode is required to be permeable to oxygen.
  • the first solid polymer electrolyte satisfies these requirements, and materials having excellent hydrogen ion conductivity and organic liquid fuel permeability such as methanol are preferably used.
  • the solid polymer electrolyte membrane separates the fuel electrode and the oxidizer electrode, and has a role of moving hydrogen ions between the two.
  • the liquid fuel moves from the fuel electrode to the oxidizer electrode. That is, it is desired to have the property of suppressing the crossover of the organic liquid fuel.
  • the fuel electrode, the agent electrode, and the solid polymer electrolyte membrane have different properties required from each other, and therefore, it is desirable that they be made of different materials. However, It is generally difficult to ensure sufficient adhesion at the interface between different materials.
  • the catalyst electrode according to the present invention has a configuration in which the electrode surface includes the first solid polymer electrolyte, the adhesive layer includes the second solid polymer electrolyte, and the first solid polymer electrolyte causes hydrogen on the electrode surface.
  • the second solid polymer electrolyte makes the interface between the catalyst electrode and the solid polymer electrolyte membrane tightly adhered. According to the present invention, by adopting such a configuration, it is possible to stably achieve good battery efficiency over a long period of time while suppressing an increase in electrical resistance at the interface between the catalyst electrode and the solid polymer electrolyte membrane. can do.
  • the adhesive layer does not include the second solid polymer electrolyte on the side in contact with the catalyst electrode, and includes the second solid polymer electrolyte on the side in contact with the solid polymer electrolyte membrane. It can. This can improve the adhesion between the adhesive layer and the catalyst electrode, and between the adhesive layer and the solid polymer electrolyte membrane.
  • the adhesive layer may include a catalytic material.
  • the content of the catalyst substance in the adhesive layer may have a distribution along the direction from the catalyst electrode to the solid polymer electrolyte membrane.
  • Adhesive layer contains catalytic material With such a configuration, the electron conductivity can be improved even in the adhesive layer.
  • the second solid polymer electrolyte can have higher adhesion to the solid polymer electrolyte membrane than the first solid polymer electrolyte.
  • an electrode layer containing a catalyst substance and a first solid polymer electrolyte, and an adhesive layer containing a second solid polymer electrolyte formed on the electrode layer.
  • An electrode for a fuel cell is provided.
  • the hydrogen ion conductivity and the liquid fuel permeability on the surface of the catalyst electrode are improved by the first solid polymer electrolyte, and the catalyst electrode and the solid polymer electrolyte membrane are formed by the second solid polymer electrolyte.
  • the solid electrolyte constituting the electrode surface had to satisfy both electrode performance and interfacial adhesion at the same time.
  • the first solid height The molecular electrolyte may improve the electrode performance
  • the second solid polymer electrolyte may improve the interfacial adhesion.
  • the first coating solution containing particles containing the first solid polymer electrolyte is applied to the substrate to form a catalyst layer, and then different from the first solid polymer electrolyte.
  • a second coating solution containing particles containing a second solid polymer electrolyte made of a polymer is applied on the catalyst layer to form an adhesive layer. Therefore, a layer of particles containing the second solid polymer electrolyte is formed on the layer of particles containing the first solid polymer electrolyte, and excellent adhesion between the two is exhibited.
  • the reason why good adhesion is obtained by adopting such a method is not always clear, but since the catalyst layer is composed of a layer of particles, moderate irregularities are generated on the surface thereof, and the adhesive layer is formed.
  • the solid polymer electrolyte membrane is configured to include the second solid polymer electrolyte, the adhesion between the adhesive layer and the solid polymer electrolyte membrane can also be improved.
  • the coating solution may have a structure in which particles containing the first solid polymer electrolyte or particles containing the second solid polymer electrolyte are dispersed in the coating solution. By doing so, workability during coating and production stability can be improved.
  • the fuel cell electrode is obtained by the above-described method for producing a fuel cell electrode
  • the fuel cell electrode and the solid polymer electrolyte are contacted with the adhesive layer and the solid polymer electrolyte membrane in contact with each other.
  • a method for manufacturing a fuel cell including a step of thermocompression bonding with a porous membrane.
  • the adhesive layer can be stably formed in a simple step, and a fuel cell having good adhesion between the catalyst electrode and the solid polymer electrolyte membrane can be stably obtained.
  • a fuel cell comprising: a step of forming an adhesive layer by coating; and a step of thermocompression bonding the electrode and the solid polymer electrolyte membrane in a state where the catalyst layer and the adhesive layer are in contact with each other.
  • a method is provided.
  • the second solid polymer electrolyte preferably has a lower permeability of the organic liquid fuel than the first solid polymer electrolyte. By doing so, it becomes possible to obtain the adhesion to the solid polymer electrolyte membrane while securing the organic liquid fuel permeability and the hydrogen ion conductivity in the catalyst electrode.
  • the following configuration may be used.
  • the second solid polymer electrolyte has a lower water content than the first solid polymer electrolyte.
  • the first solid polymer electrolyte and the second solid polymer electrolyte each include a proton acid group, and the second solid polymer electrolyte includes a first solid polymer electrolyte.
  • the proton acid group content density is lower than the molecular electrolyte.
  • the protonic acid group is, for example, one or more polar groups selected from the group consisting of a sulfone group, a carbonyl group, a phosphoric acid group, a phosphonic acid group and a phosphinic acid group.
  • the first solid polymer electrolyte may be constituted by a polymer containing fluorine.
  • the second solid polymer electrolyte may be formed of a polymer containing no fluorine.
  • the second solid polymer electrolyte described above may be constituted by a polymer containing an aromatic.
  • the measurement of the resin content and the catalyst content in the present invention is performed by, for example, performing secondary ion mass spectrometry (SIMS) while sputtering the layer structure to be measured from the surface. Can be.
  • SIMS secondary ion mass spectrometry
  • FIG. 1 is a sectional view schematically showing the structure of an example of the fuel cell of the present invention.
  • FIG. 3 is a diagram schematically showing a fuel electrode and a solid polymer electrolyte membrane in a fuel cell according to an example of the present invention.
  • FIG. 4 is a cross-sectional view showing the adhesive layer in the embodiment of the present invention in detail.
  • FIG. 5 is a diagram schematically showing a fuel electrode and a solid polymer electrolyte membrane of a fuel cell according to an example of the present invention, and an adhesive layer interposed therebetween. .
  • FIG. 6 is a diagram schematically showing a fuel electrode and a solid polymer electrolyte membrane of a fuel cell according to an example of the present invention, and an adhesive layer interposed therebetween.
  • FIG. 7 is a diagram schematically showing a fuel electrode and a solid polymer electrolyte membrane of a fuel cell according to an example of the present invention, and an adhesive layer interposed therebetween.
  • a fuel cell according to the present invention includes: a catalyst electrode including a first solid polymer electrolyte and a catalyst substance; An adhesive layer containing the second polymer electrolyte is provided between the solid polymer electrolyte membrane.
  • the adhesive layer may be formed on the surface of the catalyst electrode or the solid polymer electrolyte membrane and then bonded to the catalyst electrode and the solid polymer electrolyte membrane, or the catalyst electrode and the solid polymer electrolyte membrane may be used. In a state where a sheet made of the second solid polymer electrolyte is disposed between the membrane and the membrane, these may be joined by thermocompression bonding or the like.
  • the catalyst electrode of the present invention contains a catalyst substance and a first solid polymer electrolyte.
  • a configuration in which a catalyst layer containing a catalyst substance and a first solid polymer electrolyte is formed on a substrate such as a force pump or the like can be used.
  • the catalyst material includes a catalyst metal and conductive particles carrying the catalyst metal.
  • carbon particles or the like are used as the conductive particles.
  • the first solid polymer electrolyte has a role of immobilizing the conductive particles on the base and electrically connecting the conductive particles to the solid polymer electrolyte membrane.
  • the adhesive layer in the present invention contains the second solid polymer electrolyte.
  • conductive particles such as a catalyst metal and carbon particles carrying the catalyst metal may be included. Since the adhesive layer contains the catalytic metal and the conductive particles as described above, the organic liquid fuel is consumed in the adhesive layer, and an electrode reaction occurs, so that the electron conductivity of the adhesive layer can be improved.
  • the adhesive layer in the present invention may include a solid polymer electrolyte other than the second solid polymer electrolyte, such as the first solid polymer electrolyte.
  • the electrode-electrolyte assembly 101 is composed of a fuel electrode 102, an oxidant electrode 108, and a solid polymer electrolyte membrane 114.
  • the fuel electrode 102 includes a substrate 104 and a catalyst layer 106.
  • the oxidant electrode 108 is composed of a base 110 and a catalyst layer 112.
  • An adhesive layer 161 is provided between the polymer electrolyte membrane 114 and the oxidant electrode 108, respectively.
  • the plurality of electrode-electrolyte assemblies 101 are electrically connected via the fuel electrode side separator 120 and the oxidizer electrode side separator 122 to manufacture the fuel cell 100. .
  • the fuel electrode 102 and the oxidant electrode 108 have a configuration including a catalyst layer 106 and a catalyst layer 112 each containing a catalyst and a first solid polymer electrolyte.
  • the solid polymer electrolyte membrane 114 is made of a second solid polymer electrolyte.
  • the adhesive layer 161 contains the second solid polymer electrolyte. Specific materials constituting the first and second solid polymer electrolytes will be described later.
  • the fuel electrode 102 of the electrode-electrolyte assembly 101 is supplied with the fuel 124 through the fuel electrode side separator 120. Is done.
  • the oxidizer electrode 108 of each electrode-electrolyte assembly 101 is supplied with an oxidizer 126 such as air or oxygen through the oxidizer electrode side separator 122. .
  • the solid polymer electrolyte membrane 114 has a role of separating the fuel electrode 102 from the oxidant electrode 108 and also has a role of transferring hydrogen ions and water molecules between the two. For this reason, it is preferable that the solid polymer electrolyte membrane 114 be a membrane having high conductivity of hydrogen ions. It is also preferable that the material is chemically stable and has high mechanical strength. Examples of the material constituting the solid polymer electrolyte membrane 114 include an organic polymer having a polar group such as a strong acid group such as a sulfone group, a phosphate group, a phosphone group, or a phosphine group, or a weak acid group such as a lipoxyl group.
  • a polar group such as a strong acid group such as a sulfone group, a phosphate group, a phosphone group, or a phosphine group, or a weak acid group such as a lipoxyl group.
  • organic polymers include aromatic-containing polymers such as sulfonated poly (4-phenoxybenzoyl_1,4-phenylene) and alkyl sulfonated polybenzoimidazole; polystyrene sulfonate copolymer Copolymers such as polyvinyl sulfonic acid copolymers, cross-linked alkyl sulfonic acid derivatives, fluorine resin skeletons and fluorine-containing polymers composed of sulfonic acid; acrylamides such as acrylamide 2-methylpropane sulfonic acid; A copolymer obtained by copolymerizing an acrylate such as butyl methacrylate; a sulfone group-containing perfluorocarbon (Naphion (registered trademark, manufactured by Dupont), aciplex (manufactured by Asahi Kasei Corporation)); a lipoxyl group-containing Perfluorocarbon (Flemi)
  • a crosslinkable substituent for example, a bier group, an epoxy group, an acrylic group, a methacryl group, a cinnamoyl group, a methylol group, an azide group, or a naphthoquinone diazide group is appropriately introduced into the above-described polymer.
  • a polymer that has been crosslinked by irradiating it with radiation in a molten state can also be used.
  • FIG. 2 is a cross-sectional view schematically showing the structure of the fuel electrode 102, the oxidizer electrode 108, the solid polymer electrolyte membrane 114, and the adhesive layer 161.
  • the fuel electrode 102 and the oxidizer electrode 108 in the present embodiment have a catalyst layer 106, which is a membrane containing carbon particles carrying a catalyst and fine particles of a solid polymer electrolyte, and a catalyst.
  • the structure is such that the layer 112 is formed on the substrate 104 and the substrate 110.
  • the substrate surface may be subjected to a water-repellent treatment.
  • a porous substrate such as carbon paper, molded carbon fiber, sintered carbon, sintered metal, or foamed metal can be used.
  • a water repellent such as polytetrafluoroethylene can be used for the water repellent treatment of the substrate.
  • Examples of the catalyst for the anode 102 include platinum, platinum t-ruthenium, gold, rhenium, and the like, rhodium, palladium, iridium, osmium, ruthenium, rhenium, gold, silver, nickel, cobalt, lithium, lanthanum, and the like. Examples include strontium and yttrium.
  • the catalyst for the oxidant electrode 108 the same catalyst as the catalyst for the fuel electrode 102 can be used, and the above-mentioned exemplified substances can be used.
  • the catalysts for the fuel electrode 102 and the oxidant electrode 108 may be the same or different.
  • the carbon particles supporting the catalyst include acetylene black (Denka Black (registered trademark, manufactured by Denki Kagaku Kogyo), XC72 (Vu1can), etc.), Ketjen Black, carbon nanotubes, and carbon nanohorns. And the like.
  • the size of the carbon particles is For example, it is set to 0.01 to 0.1 ⁇ , preferably to 0.02 to 0.06 m.
  • the solid polymer electrolyte constituting the fuel electrode 102 or the oxidizer electrode 108 is configured to include at least the first solid polymer electrolyte.
  • the solid polymer electrolyte constituting the fuel electrode 102 or the oxidizer electrode 108 may include a second solid polymer electrolyte.
  • both the fuel electrode 102 and the oxidizer electrode 108 may be configured to include the first and second solid polymer electrolytes, or the fuel electrode 102 and the oxidizer electrode 108 Either one of them may be configured to include the first and second solid polymer electrolytes.
  • the first solid polymer electrolyte constituting the fuel electrode 102 and the oxidant electrode 108 electrically connects the carbon particles carrying the catalyst and the solid polymer electrolyte membrane 114 on the electrode surface. It is required to have good hydrogen ion conductivity and water mobility.
  • permeability of organic liquid fuel such as methanol is required, and in oxidant electrode 108, oxygen permeability is required.
  • the first solid polymer electrolyte satisfies such demands, and materials excellent in hydrogen ion conductivity and organic liquid fuel permeability such as methanol are preferably used.
  • an organic polymer having a polar group such as a strong acid group such as a sulfone group or a phosphoric acid group or a weak acid group such as a carbonyl group is preferably used.
  • organic polymers examples include sulfone group-containing perfluorocarbon (Nafion (registered trademark, manufactured by Dupont), aciplex (manufactured by Asahi Kasei Corporation), etc.); S film (manufactured by Asahi Glass Co., Ltd.); polystyrene sulfonic acid copolymer, polypinyl sulfonic acid copolymer, cross-linked alkyl sulfonic acid derivative, fluorine resin skeleton and fluorine-containing polymer composed of sulfonic acid And copolymers obtained by copolymerizing acrylamides such as acrylamide-12-methylpropanesulfonic acid and acrylates such as n-butyl methacrylate; and the like.
  • acrylamides such as acrylamide-12-methylpropanesulfonic acid and acrylates such as n-butyl methacrylate
  • polymer to which the polar group is bonded examples include amines such as a polybenzimidazole derivative, a polybenzoxazole derivative, a crosslinked polyethyleneimine, a polysilamine derivative, and a polyethylaminoethyl polystyrene.
  • amines such as a polybenzimidazole derivative, a polybenzoxazole derivative, a crosslinked polyethyleneimine, a polysilamine derivative, and a polyethylaminoethyl polystyrene.
  • Substituted polystyrene, getylaminoethyl polymer Resins having nitrogen or hydroxyl groups such as nitrogen-substituted polyacrylates such as phenols; hydroxyl-containing polyacryl resins represented by silanol-containing polysiloxanes and hydroxyethyl polymethyl acrylate; hydroxyl-containing polystyrenes represented by para-hydroxypolystyrene Resins; etc. can also be used.
  • a crosslinkable substituent for example, a vinyl group, an epoxy group, an acrylic group, a methyl group, a cinnamoyl group, a methylol group, an azide group, or a naphthoquinone diazide group may be appropriately introduced into the above-described polymer. Is also good.
  • the second solid polymer electrolyte constituting the adhesive layer 161 in FIG. 1 plays a role in improving the adhesion between the electrode surface and the solid polymer electrolyte membrane 114. It is preferable to use a material having good adhesion to the film 114.
  • a material having good adhesion to the film 114 For example, when the solid polymer electrolyte membrane 114 is composed of an organic polymer, as the second solid polymer electrolyte, a polymer having a structure similar to that of the organic polymer, polarity, wettability, SP value, etc. By selecting a polymer having similar physical properties, the adhesion between the electrode and the solid polymer electrolyte membrane 114 can be improved.
  • the adhesive layer 161 can also be composed of a polymer in which a polymer having a crosslinkable substituent introduced therein is crosslinked by, for example, irradiating radiation in a molten state.
  • both the solid polymer electrolyte membrane 114 and the second solid polymer electrolyte be made of a material having low permeability to organic liquid fuel.
  • sulfonated poly (4-phenoxybenzoyl _1,4-phenylene), alk It is preferable to use an aromatic condensed polymer such as rusulfonated polybenzoimidazole.
  • the solid polymer electrolyte membrane 114 and the second solid polymer electrolyte should have, for example, a swelling property with methanol of 50% or less, more preferably 20% or less (swelling property with respect to 70 vol% MeOH solution). Good. By doing so, particularly good interfacial adhesion and proton conductivity can be obtained.
  • the first solid polymer electrolyte in the fuel electrode 102 and the oxidant electrode 108 may be the same or different.
  • a catalyst is supported on carbon particles. This step can be performed by a commonly used impregnation method.
  • the catalyst-supported carbon particles and the first solid polymer electrolyte particles are dispersed in a solvent to form a paste, which is then applied to a substrate and dried to form the catalyst layer 106 or the catalyst layer 112.
  • the formed fuel electrode 102 and oxidant electrode 108 can be produced.
  • the particle size of the carbon particles is, for example, 0.001 to 0.1m.
  • the particle size of the catalyst particles is, for example, 0.1 ⁇ ! ⁇ 100 nm.
  • the particle size of the first and second solid polymer electrolyte particles is, for example, 0.05 to 100 iirn.
  • the carbon particles and the solid polymer electrolyte particles are used, for example, in a weight ratio of 1: 5 to 40: 1. Also, ⁇
  • the weight ratio of water to solute in the strike is, for example, about 1: 2 to 10: 1.
  • the method of applying the paste to the substrate is not particularly limited, and for example, methods such as brush coating, spray coating, and screen printing can be used. The cost is about ⁇ ! It is applied with a thickness of ⁇ 2mm.
  • the paste is dried by heating at a heating temperature and heating time according to the first solid polymer electrolyte to be used.
  • the heating temperature and heating time depend on the material used. For example, the heating temperature may be 100 ° C. to 250 ° C., and the heating time may be 30 seconds to 30 minutes.
  • the solid polymer electrolyte membrane 114 in the present invention can be manufactured by using an appropriate method according to the material to be used. For example, it can be obtained by casting and drying a liquid in which an organic polymer material is dissolved or dispersed in a solvent, on a peelable sheet of polytetrafluoroethylene or the like.
  • the adhesive layer 16 1 is formed between the solid electrolyte membrane 114 and the fuel electrode 102 and between the solid and solid electrolyte membrane 114 and the oxidant electrode 108. , But may be provided in any one of them. Further, the adhesive layer 161 does not need to be formed over the entire surface of these regions, but may be formed only partially on the above-described region. For example, the adhesive layer 161 may be formed in an island shape. The thickness of the adhesive layer 161 is appropriately selected, for example, from the range of 0.1] ⁇ to 20111.
  • the solid polymer electrolyte membrane 114 produced as described above is sandwiched between the fuel electrode 102 and the oxidant electrode 108 and hot-pressed to obtain an electrode-electrolyte assembly. At this time, the surfaces of both electrodes where the catalyst is provided and the solid polymer electrolyte membrane 114 are opposed to each other with the adhesive layer 161 interposed therebetween. Hot pressing conditions are selected according to the material. For example, the first solid polymer electrolyte Or a temperature exceeding the softening temperature or the glass transition temperature of the second solid polymer electrolyte. Specifically, for example, the temperature is set to 100 to 250 ° C., the pressure is set to 5 to: L 0 kgf / cm 2 , and the time is set to 10 to 300 seconds.
  • the interface between the electrode and the solid polymer electrolyte membrane 114 is Strongly adheres. As a result, it is possible to prevent the transfer of hydrogen ions from being hindered due to the separation of the interface, thereby suppressing the deterioration of the battery performance. In addition, the physical strength of the battery is increased and the durability is improved.
  • the water content is expressed as (B-A) ZA, where A is the weight of the test material dried at 100 for 2 hours and B is the weight of the test material after immersion in pure water for 24 hours. Value.
  • the fluorine content can be quantified by X-ray fluorescence analysis or the like.
  • the method for producing the electrode-electrolyte conjugate in the present embodiment is not particularly limited.
  • it can be produced as follows.
  • the catalyst layer 106 or the catalyst layer 112 can be manufactured in the same manner as in the first embodiment.
  • the adhesive layer 161 is formed by dispersing a carbon particle supporting the second solid polymer electrolyte and the catalyst in a solvent, and forming a paste-like coating solution on the catalyst layer 106 or the catalyst layer 112, and It can be formed by coating and drying on the surface of the solid polymer electrolyte membrane 114.
  • the carbon particles and the solid polymer electrolyte particles in the coating liquid are, for example, in a weight ratio of 1: 5 to 40: 1. Used in range. Thereby, an adhesive layer 161 containing carbon particles carrying a catalyst can be produced.
  • the content of the carbon particles supporting the catalyst is determined in the direction from the surface in contact with the catalyst layer 106 or the catalyst layer 112 to the surface in contact with the solid polymer electrolyte membrane 114.
  • the surface of the adhesive layer 161, which contacts the catalyst layer 106 or the catalyst layer 112 contains carbon particles
  • the surface of the adhesive layer 161, which contacts the polymer electrolyte membrane 114 does not contain carbon particles. Can be configured.
  • the adhesive layer 161 includes the first solid polymer electrolyte in addition to the second solid polymer electrolyte.
  • the weight ratio of the second solid polymer electrolyte to the first solid polymer electrolyte in the adhesive layer 16 1 is preferably 10 to 1 to 10, more preferably 4 / :! ⁇ 1 Z4.
  • the adhesive layer 161 may include carbon particles supporting a catalyst.
  • the first and second solid polymer electrolytes may be distributed uniformly or non-uniformly.
  • the content of the first solid polymer electrolyte on the surface of the adhesive layer 161 in contact with the catalyst layer 106 or the catalyst layer 112 can be configured to be higher than the content of the second solid polymer electrolyte on the surface of the adhesive layer 161 in contact with the solid polymer electrolyte membrane 114.
  • the adhesive layer 16 1 and the catalyst layer 106 contain the first solid polymer electrolyte
  • the solid polymer electrolyte membrane 114 contains the second solid polymer electrolyte.
  • the adhesion between the adhesive layer 161 and the catalyst layer 106 or the catalyst layer 112 can be improved.
  • the adhesion between the adhesive layer 161 and the solid polymer electrolyte membrane 114 can be improved.
  • the adhesive layer 161 can be formed by cross-linking by irradiating radiation in the molten state of a polymer into which a crosslinkable substituent has been introduced.
  • FIG. 4 is a cross-sectional view illustrating an example of the adhesive layer 161 in the present embodiment in detail.
  • the adhesive layer 16 1 can be composed of a plurality of adhesive layers 16 1 a, 16 1 b, 16 1 c, 16 1 d, and 16 e.
  • the adhesive layer 16 1 a is a layer in contact with the catalyst layer 106 or the catalyst layer 112
  • the adhesive layer 16 1 e is a layer in contact with the solid polymer electrolyte membrane 114.
  • each of the adhesive layers 161a to 161e includes both or at least one of the first solid polymer electrolyte and the second solid polymer electrolyte.
  • the catalyst layer 106 or the catalyst layer 112 can be manufactured in the same manner as in the first embodiment.
  • the first and second solid polymer electrolytes are uniformly distributed in the adhesive layer 161
  • the first and second solid polymer electrolytes are dispersed in a solvent, and the paste-like coating liquid is applied to the catalyst layer 1.
  • the adhesive layer 16 1 can be formed by coating and drying on 06 or the catalyst layer 112 and on the surface of Z or the solid polymer electrolyte membrane 114.
  • the coating liquid may include carbon particles carrying a catalyst.
  • the second solid polymer electrolyte A coating solution e containing degraded particles is applied to the solid polymer electrolyte membrane 114 and dried to form an adhesive layer 161 e. Subsequently, the first and second solid polymer electrolytes are dispersed in a solvent such that the content of the first solid polymer electrolyte is higher than that of the coating solution e, and the paste-like coating solution d is bonded. Apply and dry on layer 16 1 e to form adhesive layer 16 1 d.
  • the first solid polymer is more distant from the solid polymer electrolyte membrane 114.
  • An adhesive layer 161 configured to increase the content of the electrolyte can be formed.
  • An electrode-electrolyte assembly is obtained by sandwiching the solid polymer electrolyte membrane 114 including the adhesive layer 161 formed in this manner between the fuel electrode 102 and the oxidant electrode 108 and hot pressing. be able to.
  • the coating solution on the catalyst layer 106 or the catalyst layer 112 When applying the coating solution on the catalyst layer 106 or the catalyst layer 112, apply the coating solution a containing at least the first solid polymer electrolyte particles on the catalyst layer 106 or the catalyst layer 112. Application. Dry to form an adhesive layer 16a.
  • the first and second solid polymer electrolytes are dispersed in a solvent such that the content of the second solid polymer electrolyte is higher than that of the coating solution a, and the paste-like coating solution is formed.
  • b is applied onto the adhesive layer 16 1 a and dried to form an adhesive layer 16 1 b.
  • the second solid polymer electrolyte becomes more distant from the catalyst layer 106 or the catalyst layer 112. It is possible to form the adhesive layer 161 configured to increase the content of the polymer electrolyte.
  • An electrode-electrolyte assembly is obtained by sandwiching the solid polymer electrolyte membrane 114 between the fuel electrode 102 and the oxidant electrode 108 containing the adhesive layer 161 thus formed, and hot pressing.
  • the coating solution contains the first and second solid polymer electrolytes
  • a substrate such as a carbon paper has an uneven surface
  • the solid polymer electrolyte membrane 114 has a relatively flat surface, and the coating liquid is applied to such a flat surface. This is because applying the adhesive improves the adhesive performance.
  • the electrode for a polymer electrolyte fuel cell of the present invention and a fuel cell using the same will be specifically described with reference to Examples, but the present invention is not limited thereto.
  • the first solid polymer electrolyte naphion was used as the first solid polymer electrolyte, and sulfonated poly (4-phenoxybenzoyl-1,1,4-phenylene) (hereinafter, referred to as “the second solid polymer electrolyte”). PPBP).
  • the first solid polymer electrolyte forms a part of the catalyst layer on the electrode surface
  • the second solid polymer electrolyte forms a part of the catalyst layer on the electrode surface and the solid polymer electrolyte membrane.
  • platinum was used as a noble metal catalyst for both the fuel electrode and the oxidizer electrode. A method for manufacturing a fuel cell according to this example will be described with reference to FIG.
  • acetylene black and 100 g of acetylene black were added to 500 g of dinitrodiamine platinum nitrate solution containing 3% of platinum serving as a catalyst at the fuel electrode 102 and the oxidizer electrode 108.
  • 98 ml of ethanol (60 ml) was added as a reducing agent.
  • This solution was stirred and mixed at about 95 ° C. for 8 hours to support the catalyst on the acetylene black particles.
  • this solution was filtered and dried to obtain catalyst-carrying carbon particles.
  • the supported amount of platinum was about 50% based on the weight of acetylene black.
  • paste A was obtained.
  • This paste A was applied to a base made of carbon paper (manufactured by Toray Industries, Inc .: TGP-H-120) by screen printing, and then heated and dried at 100 ° C. to obtain a fuel electrode 102 and an oxidizer electrode 108. .
  • the amount of platinum on the surface of the obtained electrode was 0.1 to 0.4 mg / cm 2 .
  • solution A The mixture was suspended in 100 ml of 95% sulfuric acid and stirred for 200 hours to perform a sulfonation treatment.
  • the PP BP thus obtained was washed with sufficient distilled water, dried and powdered, and dissolved in a dimethylformamide solution. This is referred to as solution A.
  • This solution A was cast on a Teflon (registered trademark) sheet and dried to obtain a solid polymer electrolyte membrane 114 having a size of 10 cm ⁇ 10 cm and a thickness of 30.
  • the solution A was applied to the surfaces of the fuel electrode 102 and the oxidizer electrode 108.
  • the coating method was a brush coating method. After the application, the coating was dried to form an adhesive layer 161 on the surface of each electrode.
  • a solid polymer electrolyte membrane 114 was sandwiched between these electrodes, and hot-pressed at a temperature of 150 ° C., a pressure of 10 kgf / cm 2 and a condition of 10 seconds to produce an electrode-electrolyte assembly. Further, this electrode-electrolyte assembly was set in a single cell measuring device of a fuel cell to produce a single cell.
  • the current-voltage characteristics of the single cell were measured using a 10 wt% aqueous methanol solution and oxygen (1.1 atm, 25 ° C) as fuel. As a result, an open circuit voltage of 0.54 V and a short circuit current of 0.18 A / cm 2 were continuously observed.
  • the above-mentioned electrode showed good bondability to the above-mentioned solid polymer electrolyte membrane, and it was confirmed that the above-mentioned electrode effectively functions as a direct methanol fuel cell using methanol as a fuel.
  • the adhesion between the adhesive layer 161 and the fuel electrode 102 is also good because naphion and PP BP particles are entangled and bonded.
  • the adhesive layer 161 functions as a binder between the solid polymer electrolyte membrane 114 and the fuel electrode 102, and the bondability between the solid polymer electrolyte membrane 114 and the fuel electrode 102 is improved. As a result, It is considered that this contributes to good operation of the fuel cell in this embodiment.
  • Table 1 shows the values of the methanol permeability and water content of PPBP and naphion.
  • naphion was used as the first solid polymer electrolyte
  • PPBP was used as the second solid polymer electrolyte
  • platinum was used for the fuel electrode and the oxidant electrode as the catalyst.
  • the fuel electrode 102, the oxidizer electrode 108, and the solid polymer electrolyte membrane 114 were produced in the same manner as in Example 1.
  • PPBP and catalyst-supporting carbon particles obtained in the same manner as in Example 1 were The residue was dissolved in a amide solution to obtain a first B.
  • the paste B was applied to the surfaces of the fuel electrode 102 and the oxidizer electrode 108 by a brush coating method, and dried after application, to form an adhesive layer 161 on the surface of each electrode.
  • the current-voltage characteristics of the single cell were measured using 10 wt% methanol aqueous solution and oxygen (1.1 atm, 25 ° C) as fuel. As a result, an open-circuit voltage of 0.54 V and a short-circuit current of 0.19 A / cm 2 were continuously observed.
  • FIG. 5 is a diagram schematically showing the fuel electrode 102 and the solid polymer electrolyte membrane 114 of the fuel cell of this embodiment, and the adhesive layer 161 interposed therebetween.
  • the adhesive layer 161 includes P P BP and carbon particles 140. Since both the adhesive layer 161 and the solid polymer electrolyte membrane 114 contain PPBP, the adhesion between them is good. On the other hand, since the particles of the naphth ion and the PPBP are entangled with each other, the adhesion between the adhesive layer 161 and the fuel electrode 102 is also good.
  • the conductive carbon particles 140 are also included in the adhesive layer 161, the electron conductivity of the adhesive layer can be improved.
  • the bonding property between the solid polymer electrolyte membrane 114 and the fuel electrode 102 is improved due to the presence of the bonding layer 161, and the organic liquid fuel can be consumed also in the bonding layer. It is considered that the electron conductivity can be improved, which contributes to the favorable operation of the fuel cell in this embodiment.
  • the fuel electrode 102, the oxidizer electrode 108, and the solid polymer electrolyte membrane 114 were produced in the same manner as in Example 1.
  • the solution A of PPPBP obtained in the same manner as in Example 1 was mixed with the naphion paste A obtained in the same manner as in Example 1 to obtain a paste C and a paste D.
  • the naphion and the PPBP in the paste C are in a weight ratio of 1: 1.
  • Naphion in PP D and PPBP are 4: 1 by weight.
  • paste C was applied to both sides of the solid polymer electrolyte membrane 114 by a brush coating method, and dried after application.
  • paste D was applied onto paste C by a brush coating method, and dried after application.
  • an adhesive layer 161 composed of the paste C and the paste D was formed on both surfaces of the solid polymer electrolyte membrane 114.
  • hot pressing was performed in the same manner as in Example 1 to produce an electrode-electrolyte assembly.
  • This electrode-electrolyte assembly was set in a unit for measuring a single cell of a fuel cell to produce a single cell.
  • FIG. 6 is a diagram schematically showing the fuel electrode 102 and the solid polymer electrolyte membrane 114 of the fuel cell of the present embodiment, and the adhesive layer 161 interposed therebetween.
  • the adhesive layer 161 has a high content of the second solid polymer electrolyte 160 (PPBP) in a region near the solid polymer electrolyte membrane 114 and a first solid polymer polymer in a region near the catalyst layer 106. It is configured to increase the content of electrolyte 150 (Nafion). In the region of the adhesive layer 161 near the solid polymer electrolyte membrane 114, the PPBP content is high, so that the adhesion between the two is good.
  • PPBP second solid polymer electrolyte 160
  • naphion was used as the first solid polymer electrolyte
  • PPBP was used as the second solid polymer electrolyte
  • platinum was used for the fuel electrode and the oxidant electrode as the catalyst.
  • the fuel electrode 102, the oxidizer electrode 108, and the solid polymer electrolyte membrane 114 were produced in the same manner as in Example 1.
  • 2 OOmg of the catalyst-supporting carbon particles were added, respectively, to obtain paste E and paste F.
  • paste E was applied to both sides of solid polymer electrolyte membrane 114 by a brush coating method, and dried after application.
  • paste F was applied on paste E by a brush coating method, and dried after application.
  • an adhesive layer 161 composed of the paste E and the paste F was formed on both surfaces of the solid polymer electrolyte membrane 114.
  • hot pressing was performed in the same manner as in Example 1 to produce an electrode-electrolyte assembly.
  • This electrode-electrolyte assembly was set in a unit for measuring a single cell of a fuel cell to produce a single cell.
  • FIG. 7 is a diagram schematically showing the fuel electrode 102 and the solid polymer electrolyte membrane 114 of the fuel cell of the present embodiment, and the adhesive layer 161 interposed therebetween.
  • the adhesive layer 161 has a high content of the second solid polymer electrolyte 160 (PPBP) in a region near the solid polymer electrolyte membrane 114 and a first solid polymer polymer in a region near the catalyst layer 106. It is configured to increase the content of electrolyte 150 (Nafion).
  • Adhesive layer 161 also contains carbon particles 140.
  • the bonding property between the solid polymer electrolyte membrane 114 and the fuel electrode 102 is improved by the presence of the adhesive layer 161.
  • the adhesive layer 161 also contains conductive carbon particles 140, the electron conductivity of the adhesive layer can be improved. Accordingly, it is considered that the fuel cell in the present example shows good operation. (Comparative Example 1)
  • the first solid polymer electrolyte constituting the fuel electrode 102 and the oxidant electrode 108, and the second solid polymer electrolyte constituting the solid polymer electrolyte membrane 114 In each case, Nafion was used, and no adhesive layer 16 1 was provided.
  • the first solid polymer electrolyte forms a part of the catalyst layer on the electrode surface
  • the second solid polymer electrolyte forms a solid polymer electrolyte membrane.
  • the solid polymer electrolyte membrane 114 was produced in the same manner as in the above example, except that PPBP was changed to naphion.
  • the fuel electrode 102 and the oxidant electrode 108 were produced in the same manner as in Example 1.
  • the current-voltage characteristics of the single cell were measured using a 10 wt% methanol aqueous solution and oxygen (1.1 atm, 25 ° C) as fuel. As a result, an open-circuit voltage of 0.45 V and a short-circuit current of 0.09 A / cm 2 were observed.
  • the first solid polymer electrolyte forms a part of the catalyst layer on the electrode surface
  • the second solid polymer electrolyte forms a solid polymer electrolyte membrane.
  • the solid polymer electrolyte membrane 114 was produced using PBP in the same manner as in the above example.
  • the fuel electrode 102 and the oxidizer electrode 108 were prepared as follows. First, the embodiment The catalyst-supporting carbon particles obtained in the same manner as in Example 1 were added to Solution A (containing PPBP) of Example 1 to obtain a dispersion. The dispersion thus obtained was dispersed in an ultrasonic disperser at 50 ° C. for 3 hours to obtain a paste, and paste B was obtained. This paste B is applied by screen printing to the bases 104 and 110 made of carbon paper (manufactured by Toray: TGP-H-120), and then heated and dried at 100 to dry the fuel electrode 102 and the oxidizer electrode. 108 was obtained. The amount of platinum on the obtained electrode surface was 0.1 to 0.4 mg / cm 2 .
  • the solid polymer electrolyte membrane 114 was sandwiched between the fuel electrode 102 and the oxidizer electrode 108, and hot-pressed at a temperature of 150 ° C., a pressure of 10 kg fZcm 2 and a duration of 10 seconds to produce an electrode-electrolyte assembly. .
  • This comparative example has a configuration in which the first solid polymer electrolyte 150 (naphion) in FIG. 3 is replaced by the second solid polymer electrolyte 160 (PPBP).
  • the second solid polymer electrolyte 160 (PPBP) is inferior in methanol permeability and water content to the first solid polymer electrolyte 150 (Naphion). Therefore, it is presumed that the movement of hydrogen ions from the fuel electrode to the oxidizer electrode was insufficient, and the battery did not function stably.
  • the fuel electrode 102, the oxidant electrode 108, and the solid polymer electrolyte membrane 114 After preparing the fuel electrode 102, the oxidant electrode 108, and the solid polymer electrolyte membrane 114 by the same method as in Example 1, the fuel electrode 102, the oxidant electrode 108, and the solid polymer electrolyte membrane 114 Although the two were thermocompression bonded, the two were not sufficiently joined, and a fuel cell that could withstand the evaluation could not be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)

Abstract

A fuel cell, which comprises a solid polymer electrolyte film, a fuel electrode and/or an oxidizing agent electrode comprising a first solid polymer electrolyte and a catalytic substance and, provided between the electrolyte film and the electrode, an adhesive layer comprising a second polymer electrolyte; and the above fuel cell, wherein the solid polymer electrolyte film and the adhesive layer comprise the same solid polymer electrolyte. The fuel cell exhibits enhanced adhesion between the surface of the electrode and the solid polymer electrolyte film, which results in the improvement of cell characteristics and the improvement of the reliability thereof.

Description

燃料電池、 燃料電池用電極およびそれらの製造方法 技術分野  TECHNICAL FIELD The present invention relates to a fuel cell, an electrode for a fuel cell, and a method for producing the same.
本発明は、 燃料電池、 燃料電池用電極およびそれらの製造方法に関する。 背景技術  The present invention relates to a fuel cell, an electrode for a fuel cell, and a method for producing the same. Background art
固体高分子型燃料電池は、 パーフルォロスルフォン酸膜等の固体高分子電解質膜を電解 質とし、 この膜の両面に燃料極およぴ 化剤極を接合して構成され、 燃料極に水素、 酸化 剤極に酸素を供給して電気化学反応により発電する装置である。  A polymer electrolyte fuel cell is configured by using a solid polymer electrolyte membrane such as a perfluorosulfonate membrane as an electrolyte, and joining a fuel electrode and a catalyst electrode to both sides of the membrane. This is a device that supplies oxygen to the hydrogen and oxidizer electrodes and generates power by an electrochemical reaction.
各電極では次のような電気化学反応が生じている。  The following electrochemical reaction occurs in each electrode.
燃料極: H 2→2 H++ 2 e - 酸化剤極: l / 2 02 + 2 H++ 2 e—→H 20 Fuel electrode: H 2 → 2 H + + 2 e - oxidant electrode: l / 2 0 2 + 2 H + + 2 e- → H 2 0
この反応によって、 固体高分子型燃料電池は常温 ·常圧で 1 A/ c m2以上の高出力を得 ることができる。 By this reaction, the polymer electrolyte fuel cell can obtain a high output of 1 A / cm 2 or more at normal temperature and normal pressure.
燃料極および酸化剤極には、 触媒金属が担持された炭素粒子と固体高分子電解質との混 合体が備えられている。 一般的に、 この混合体は、 燃料のガスの拡散層となる力一ポンぺ 一パーなどの電極基体上に塗布されて構成される。 これら 2つの電極により固体高分子電 解質膜を挟み、 熱圧着することにより燃料電池が構成される。  The fuel electrode and the oxidant electrode are provided with a mixture of carbon particles carrying a catalyst metal and a solid polymer electrolyte. In general, the mixture is applied to an electrode substrate such as a force pump to be a fuel gas diffusion layer. A fuel cell is constructed by sandwiching a solid polymer electrolyte membrane between these two electrodes and thermocompression bonding.
この構成の燃料電池において、 燃料極に供給された水素ガスは、 電極中の細孔を通過し て触媒に達し、 電子を放出して水素イオンとなる。 放出された電子は燃料極内の炭素粒子 および固体電解質を通って外部回路へ導き出され、 外部回路より酸化剤極に流れ込む。 一方、 燃料極において発生した水素イオンは、 燃料極中の固体高分子電解質および両電 極間に配置された固体高分子電解質膜を通って酸化剤極に達し、 酸化剤極に供給された酸 素と外部回路より流れ込む電子と反応して上記反応式に示すように水を生じる。 この結果、 外部回路では燃料極から酸化剤極へ向かって電子が流れ、 電力が取り出される。 In the fuel cell having this configuration, the hydrogen gas supplied to the fuel electrode passes through the pores in the electrode and reaches the catalyst, and emits electrons to become hydrogen ions. The emitted electrons are led to the external circuit through the carbon particles and the solid electrolyte in the fuel electrode, and flow into the oxidizer electrode from the external circuit. On the other hand, hydrogen ions generated at the fuel electrode pass through the solid polymer electrolyte in the fuel electrode and the solid polymer electrolyte membrane disposed between the two electrodes, reach the oxidizer electrode, and are supplied to the oxidizer electrode. The element reacts with the electrons flowing from the external circuit to produce water as shown in the above reaction formula. As a result, in the external circuit, electrons flow from the fuel electrode to the oxidizer electrode, and power is extracted.
上記のような構成の燃料電池の特性を向上させるためには、 電極と固体高分子電解質膜 との界面の密着性が良好であることが重要となる。 すなわち、 両者の界面において、 電極 反応によって生じた水素イオンの伝導性が高いことが要求される。 界面の密着性が不良で あると、 水素イオンの伝導性が低下して電気抵抗が上昇し、 電池効率の低下をもたらす原 因となる。  In order to improve the characteristics of the fuel cell configured as described above, it is important that the adhesion between the electrode and the solid polymer electrolyte membrane be good. That is, it is required that the conductivity of hydrogen ions generated by the electrode reaction be high at the interface between the two. Poor interfacial adhesion reduces the conductivity of hydrogen ions and increases electrical resistance, causing a reduction in battery efficiency.
以上、 水素を燃料とした燃料電池について説明したが、 近年はメタノールなどの有機液 体燃料を用いた燃料電池の研究開発も盛んに行われている。  The fuel cell using hydrogen as a fuel has been described above. In recent years, research and development of a fuel cell using an organic liquid fuel such as methanol has been actively conducted.
有機液体燃料を使用する燃料電池には、 有機液体燃料を水素ガスへ改質して燃料として 使用するものや、 ダイレクトメタノール型燃料電池に代表されるような、 有機液体燃料を 改質せずに燃料極に直接供給するものなどが知られている。  Fuel cells that use organic liquid fuel include those that reform organic liquid fuel into hydrogen gas and use it as fuel, and those that do not reform organic liquid fuel, such as direct methanol fuel cells. A fuel supply system directly to a fuel electrode is known.
中でも、 有機液体燃料を改質せずに燃料極に直接供給する燃料電池は、 有機液体燃料を 直接燃料極に供給する構造であるため、 改質器のような装置を必要としない。 そのため、 電池の構成を簡単なものとすることができ、 装置全体を小型化することが可能であるとい うメリットを有している。 また、 水素ガスや炭化水素ガス等の気体燃料と比較して、 有機 液体燃料は容易かつ安全に運搬可能であるという特徴も有している。  Above all, a fuel cell that supplies organic liquid fuel directly to the anode without reforming it does not require a device such as a reformer because it has a structure that supplies organic liquid fuel directly to the anode. Therefore, there is an advantage that the configuration of the battery can be simplified and the entire device can be reduced in size. In addition, compared with gaseous fuels such as hydrogen gas and hydrocarbon gas, organic liquid fuels have the feature that they can be transported easily and safely.
一般的に、 有機液体燃料を使用する燃料電池においては、 電解質として固体高分子ィォ ン交換樹脂からなる固体高分子電解質膜が用いられる。 ここで、 燃料電池が機能するため には、 水素イオンがこの膜中を燃料極から酸化剤極へ移動することが必要であるが、 この 水素イオンの移動には水の移動が伴うことが知られており、 当該膜には一定の水分が含ま れていることが必要である。  Generally, in a fuel cell using an organic liquid fuel, a solid polymer electrolyte membrane made of a solid polymer ion exchange resin is used as an electrolyte. Here, in order for the fuel cell to function, it is necessary for hydrogen ions to move from the fuel electrode to the oxidant electrode in the membrane, but it is known that the movement of the hydrogen ions is accompanied by the movement of water. The membrane must contain a certain amount of water.
しかし、 水に対して親和性の高いメタノールなどの有機液体燃料を用いる場合、 当該有 機液体燃料は水分を含んだ固体高分子電解質膜に拡散し、 さらには、 酸化剤極まで到達す る (クロスオーバ一) という克服すべき課題を有していた。 このクロスオーバ一は、 本来 燃料極において電子を提供すべき有機液体燃料が酸化剤極側で酸化されてしまい、 燃料と して有効に使用されないことから、 電圧や出力の低下、 燃料効率の低下を引き起こす。 こうしたクロスオーバ一の問題を解消する観点からは、 固体高分子電解質膜の材料とし て含水率の低い高分子を選択し、 メタノールなどの有機液体燃料が水とともに拡散するこ とを抑制することが望まれる。 しかしながら、 その電解質膜に接する電極表面の触媒層に ついては、 電極層から燃料となる有機液体燃料を効率良く移動させ、 多くの水素イオンを 供給することが重要である。 すなわち、 電極表面の触媒層は有機液体燃料をよく透過し、 電解質膜は有機液体燃料を透過させないようにすることが望ましい。 このようにするため には、 電極表面の触媒層を構成する高分子としては含水率が高く有機液体燃料の透過性の 高い性質を有するものを用い、 固体高分子電解質膜を構成する高分子としては含水率が低 く有機液体燃料の透過性の低い性質を有するものを用いることが好適と考えられる。 However, when an organic liquid fuel such as methanol having a high affinity for water is used, the organic liquid fuel diffuses into the solid polymer electrolyte membrane containing water and further reaches the oxidant electrode ( Crossover). This crossover is originally The organic liquid fuel, which should provide electrons at the fuel electrode, is oxidized on the oxidant electrode side and is not used effectively as fuel, causing a decrease in voltage, output, and fuel efficiency. From the viewpoint of solving such a crossover problem, a polymer having a low water content should be selected as the material of the solid polymer electrolyte membrane to suppress the diffusion of organic liquid fuel such as methanol with water. desired. However, for the catalyst layer on the electrode surface in contact with the electrolyte membrane, it is important to efficiently move the organic liquid fuel as fuel from the electrode layer and supply a large amount of hydrogen ions. That is, it is desirable that the catalyst layer on the electrode surface is permeable to the organic liquid fuel, and the electrolyte membrane is permeable to the organic liquid fuel. In order to achieve this, the polymer constituting the catalyst layer on the electrode surface should be a polymer having a high water content and high permeability to organic liquid fuel, and the polymer constituting the solid polymer electrolyte membrane should be used. It is considered to be preferable to use a material having a low water content and a property of low permeability of organic liquid fuel.
特開 2 0 0 1— 1 6 7 7 7 5号公報には、 イオン導電性を維持しながらメタノールのク ロスオーバ一を抑制することを可能にするイオン導電性膜に関する技術が開示されている。 ここでは、 ナフイオン (登録商標) 等のフッ素樹脂を基本構造とするイオン導電性膜の表 面層を電子線照射等により改質して導電性が内部の導電性に比較して低くなるようにして いる。  Japanese Patent Application Laid-Open No. 2001-167775 discloses a technique relating to an ion-conductive film which makes it possible to suppress the crossover of methanol while maintaining the ion conductivity. Here, the surface layer of an ion conductive film having a basic structure of a fluororesin such as Nafion (registered trademark) is modified by electron beam irradiation or the like so that the conductivity becomes lower than the internal conductivity. ing.
ところが、 上記のように電極表面触媒層の材料と固体高分子電解質膜の材料とを異なる 材料とした場合、 一般に、 充分な密着性が得られず、 電極表面と固体高分子電解質膜との 界面で剥離が発生する場合がある。 このような剥離が発生すると、 界面における電気抵抗 が上昇し、 電池性能の信頼性の低下をもたらす原因となる。 また、 上記特開 2 0 0 1 - 1 6 7 7 7 5号公報に記載されたように、 イオン導電性膜の表面層を改質した場合も、 ィォ ン導電性膜の膨潤時の表面強度が上がり、 電極表面触媒層との密着性が悪化するという課 題を有していた。  However, when the material of the electrode surface catalyst layer and the material of the solid polymer electrolyte membrane are made of different materials as described above, generally, sufficient adhesion cannot be obtained, and the interface between the electrode surface and the solid polymer electrolyte membrane is generally not obtained. May cause peeling. When such peeling occurs, the electrical resistance at the interface increases, causing a decrease in the reliability of the battery performance. Also, as described in JP-A-2001-1677755, when the surface layer of the ion conductive film is modified, the surface of the ion conductive film at the time of swelling is also improved. There is a problem that the strength is increased and the adhesion to the electrode surface catalyst layer is deteriorated.
上記事情に鑑み、 本発明は、 電極表面と固体高分子電解質膜との界面における密着性を 高め、 電池特性の向上および電池の信頼性の向上を図ることを目的とする。 また本発明は、 電極表面における水素イオン伝導性や有機液体燃料の透過性等を良好に 維持しつつ有機液体燃料のクロスオーバーを抑制することを目的とする。 発明の開示 In view of the above circumstances, an object of the present invention is to improve the adhesion at the interface between the electrode surface and the solid polymer electrolyte membrane, thereby improving battery characteristics and battery reliability. Another object of the present invention is to suppress the crossover of the organic liquid fuel while maintaining good hydrogen ion conductivity and permeability of the organic liquid fuel on the electrode surface. Disclosure of the invention
燃料電池の固体高分子電解質には、 一般に、 ナフイオン (登録商標) 等に代表される高 い水素イオン伝導性を有する固体高分子電解質が使用されている。 こうした固体高分子電 解質における高い水素ィォン伝導性は、 高分子電解質が多量の水分を含むことによって発 現するのであるが、 一方では、 この多量の水分の含有により、 メタノールのような有機液 体燃料が水に容易に溶解してクロスオーバーを発生することを促すこととなる。  As a solid polymer electrolyte of a fuel cell, a solid polymer electrolyte having high hydrogen ion conductivity represented by Naphion (registered trademark) is generally used. The high hydrogen ion conductivity of the solid polymer electrolyte is caused by the polymer electrolyte containing a large amount of water. On the other hand, the large amount of water contains an organic liquid such as methanol. The body fuel will be easily dissolved in water to promote crossover.
そこで本発明者は、 クロスオーバ一の抑制を図るため、 燃料極や酸化剤極、 固体高分子 電解質膜を構成する固体高分子電解質として、 ナフイオン等よりも有機液体燃料透過性の 低い高分子材料を用いてダイレクトメタノール型燃料電池を作製し、 評価を行った。 とこ ろが、 この燃料電池はナフイオンを用いた従来の電池と比較して電池特性が低下した。 こ れは、 燃料極において、 メタノールの透過性、 水素イオン伝導性が低下したことによるも のと考えられる。 上記燃料電池の燃料極は、 触媒を担持する炭素粒子と、 バインダとして の固体高分子電解質が混在した形態の触媒層を備えた構成となっており、 触媒間に固体高 分子電解質が介在した構造となっている。 このため、 電極表面でメタノール、 水素、 電子 が円滑に移動するためには、 これらの伝達経路となる固体高分子電解質が、 高いメタノ一 ル等液体燃料透過性および優れた水素ィォン伝導性を有していることが必要となる。 上記 構造の電池では、 固体高分子電解質がこれらの性能を充分に満足していなかつたため、 良 好な電池特性が得られなかつたものと考えられる。  In order to suppress crossover, the present inventor has proposed a polymer material having a lower organic liquid fuel permeability than naphion or the like as a fuel electrode, an oxidizer electrode, and a solid polymer electrolyte constituting a solid polymer electrolyte membrane. A direct methanol fuel cell was fabricated using the method described above and evaluated. However, the characteristics of this fuel cell were lower than those of a conventional cell using naphion. This is thought to be due to a decrease in methanol permeability and hydrogen ion conductivity at the fuel electrode. The fuel electrode of the fuel cell has a structure in which carbon particles carrying a catalyst and a solid polymer electrolyte as a binder are provided in a mixed form, and a solid polymer electrolyte is interposed between the catalysts. It has become. For this reason, in order for methanol, hydrogen, and electrons to move smoothly on the electrode surface, the solid polymer electrolyte serving as these transmission paths has high liquid fuel permeability such as methanol and excellent hydrogen ion conductivity. It is necessary to be. In the battery with the above structure, it is considered that good battery characteristics could not be obtained because the solid polymer electrolyte did not sufficiently satisfy these performances.
次に本発明者らは、 燃料極における触媒反応を効率化するために、 電極表面の固体高分 子電解質としてナフイオンを用い、 固体高分子電解質膜として、 ナフイオン等よりも有機 液体燃料透過性の低い高分子材料を用いてダイレク卜メタノール型燃料電池の作製を試み たところ、 燃料極と固体高分子電解質膜との接合が不充分であり、 評価に耐える電池を得 ることができなかった。 Next, in order to increase the efficiency of the catalytic reaction at the fuel electrode, the present inventors used naphthion as a solid polymer electrolyte on the electrode surface, and used a solid polymer electrolyte membrane as an organic liquid fuel permeation rather than naphthion or the like. An attempt was made to fabricate a direct methanol fuel cell using a low polymer material. However, the bonding between the fuel electrode and the solid polymer electrolyte membrane was insufficient, and a battery that could withstand the evaluation was obtained. I couldn't do it.
以上の予備実験の結果を踏まえ、 さらに検討を行った結果、 本発明者らは、 複数種類の 固体高分子電解質を有効に利用することにより、 電極表面と固体高分子電解質膜との界面 における密着性を効果的に高めることができることを見いだし、 本発明の完成に至った。 本発明によれば、 第一の固体高分子電解質および触媒物質を含む触媒電極と、 固体高分 子電解質膜と、 触媒電極と固体高分子電解質膜との間に設けられ、 第二の高分子電解質を 含む接着層と、 を有することを特徴とする燃料電池が提供される。  Based on the results of the preliminary experiments described above, as a result of further studies, the present inventors have found that by effectively utilizing a plurality of types of solid polymer electrolytes, the adhesion at the interface between the electrode surface and the solid polymer electrolyte membrane is improved. The inventors have found that the properties can be effectively improved, and have completed the present invention. According to the present invention, a first solid polymer electrolyte and a catalyst electrode containing a catalyst substance, a solid polymer electrolyte membrane, and a second polymer provided between the catalyst electrode and the solid polymer electrolyte membrane And a bonding layer containing an electrolyte.
ここで、 接着層と固体高分子電解質膜とは接していても離間していてもよい。 これらが 接する構成を採用すれば、 接着層と固体高分子電解質膜との間の界面の密着性を確実に向 上させることができる。  Here, the adhesive layer and the solid polymer electrolyte membrane may be in contact with or separated from each other. If a configuration in which these are in contact with each other is employed, the adhesion at the interface between the adhesive layer and the solid polymer electrolyte membrane can be reliably improved.
また、 接着層と触媒電極とは接していても離間していてもよい。 これらが接する構成を 採用すれば、 接着層と触媒電極との間の界面の密着性を確実に向上させることができる。 本発明における 「触媒電極」 は、 触媒を含む電極であり、 燃料極および酸化剤極を含む 総称として用いている。 触媒電極表面における第一の固体高分子電解質は、 電極表面にお いて、 触媒を担持した炭素粒子と固体高分子電解質膜を電気的に接続するとともに触媒表 面に有機液体燃料を到達させる役割を有しており、 水素イオン伝導性や水移動性が要求さ れ、 さらに、 燃料極においてはメタノ一ル等の有機液体燃料透過性が求められ、 酸化剤極 においては酸素透過性が求められる。 第一の固体高分子電解質はこうした要求を満たすた めのものであり、 水素イオン伝導性や、 メタノール等の有機液体燃料透過性に優れる材料 が好ましく用いられる。  Further, the adhesive layer and the catalyst electrode may be in contact with or separated from each other. If a configuration in which these are in contact with each other is adopted, the adhesion at the interface between the adhesive layer and the catalyst electrode can be reliably improved. The “catalyst electrode” in the present invention is an electrode containing a catalyst, and is used as a generic term including a fuel electrode and an oxidant electrode. The first solid polymer electrolyte on the catalyst electrode surface serves to electrically connect the catalyst-supporting carbon particles and the solid polymer electrolyte membrane on the electrode surface and to allow the organic liquid fuel to reach the catalyst surface. Hydrogen ion conductivity and water mobility are required. Further, the fuel electrode is required to be permeable to organic liquid fuel such as methanol, and the oxidant electrode is required to be permeable to oxygen. The first solid polymer electrolyte satisfies these requirements, and materials having excellent hydrogen ion conductivity and organic liquid fuel permeability such as methanol are preferably used.
一方、 固体高分子電解質膜は、 燃料極と酸化剤極を隔てるとともに、 両者の間で水素ィ オンを移動させる役割を有し、 さらに、 液体燃料が燃料極から酸化剤極へ移動すること、 すなわち有機液体燃料のクロスオーバ一を抑える性質を備えていることが望まれる。 以上のように燃料極および 化剤極と固体高分子電解質膜とは、 互いに要求される性質 が異なることから、 それぞれ異なる材料により構成することが望ましい。 しかしながら、 このような異なる材料間の界面の密着性を充分に確保することは一般に困難である。 そこ で本発明は、 触媒電極と固体高分子電解質膜との間に接着層を設けることにより、 電極お よび固体高分子電解質膜に適した材料を選択した場合でも両者の間の密着性を充分にする ことができる。 On the other hand, the solid polymer electrolyte membrane separates the fuel electrode and the oxidizer electrode, and has a role of moving hydrogen ions between the two.In addition, the liquid fuel moves from the fuel electrode to the oxidizer electrode. That is, it is desired to have the property of suppressing the crossover of the organic liquid fuel. As described above, the fuel electrode, the agent electrode, and the solid polymer electrolyte membrane have different properties required from each other, and therefore, it is desirable that they be made of different materials. However, It is generally difficult to ensure sufficient adhesion at the interface between different materials. Therefore, the present invention provides an adhesive layer between the catalyst electrode and the solid polymer electrolyte membrane to ensure sufficient adhesion between the electrode and the solid polymer electrolyte membrane even when a material suitable for the electrode and the solid polymer electrolyte membrane is selected. It can be.
すなわち、 本発明に係る触媒電極は、 電極表面が第一の固体高分子電解質を含み、 接着 層が第二の固体高分子電解質を含む構成とし、 第一の固体高分子電解質によって電極表面 における水素イオンや液体燃料の円滑な移動を担保するとともに、 第二の固体高分子電解 質により、 触媒電極と固体高分子電解質膜との間の界面を強固に密着せしめている。 本発 明によれば、 こうした構成を採用することにより、 触媒電極と固体高分子電解質膜との間 の界面における電気抵抗の上昇を抑制しつつ、 良好な電池効率を長期間にわたって安定的 に実現することができる。  That is, the catalyst electrode according to the present invention has a configuration in which the electrode surface includes the first solid polymer electrolyte, the adhesive layer includes the second solid polymer electrolyte, and the first solid polymer electrolyte causes hydrogen on the electrode surface. In addition to ensuring smooth movement of ions and liquid fuel, the second solid polymer electrolyte makes the interface between the catalyst electrode and the solid polymer electrolyte membrane tightly adhered. According to the present invention, by adopting such a configuration, it is possible to stably achieve good battery efficiency over a long period of time while suppressing an increase in electrical resistance at the interface between the catalyst electrode and the solid polymer electrolyte membrane. can do.
本発明における接着層は、 固体高分子電解質膜と触媒電極との間の全面にわたつて形成 される必要はなく、 これらの間の少なくとも一部に形成されていればよい。 また、 接着層 は、 第一の固体高分子電解質を含むこともできる。 この場合、 接着層中の第一の固体高分 子電解質の含有率は、 触媒電極から固体高分子電解質膜に向かう方向に沿って分布を有し ていてもよい。 たとえば、 接着層が、 触媒電極と接する側において第一の固体高分子電解 質を含み、 固体高分子電解質膜と接する側において第一の固体高分子電解質を含まない構 成とすることができる。 このとき同時に、 接着層が、 触媒電極と接する側において第二の 固体高分子電解質を含まず、 固体高分子電解質膜と接する側において第二の固体高分子電 解質を含む構成とすることができる。 このようにすれば、 接着層と触媒電極、 および接着 層と固体高分子電解質膜の密着性をそれぞれ向上することができる。  The adhesive layer in the present invention does not need to be formed over the entire surface between the solid polymer electrolyte membrane and the catalyst electrode, but may be formed at least partially between them. Further, the adhesive layer may include the first solid polymer electrolyte. In this case, the content of the first solid polymer electrolyte in the adhesive layer may have a distribution along the direction from the catalyst electrode to the solid polymer electrolyte membrane. For example, a configuration in which the adhesive layer includes the first solid polymer electrolyte on the side in contact with the catalyst electrode and does not include the first solid polymer electrolyte on the side in contact with the solid polymer electrolyte membrane can be employed. At the same time, the adhesive layer does not include the second solid polymer electrolyte on the side in contact with the catalyst electrode, and includes the second solid polymer electrolyte on the side in contact with the solid polymer electrolyte membrane. it can. This can improve the adhesion between the adhesive layer and the catalyst electrode, and between the adhesive layer and the solid polymer electrolyte membrane.
さらに、 接着層は、 触媒物質を含むこともできる。 この場合、 接着層中の触媒物質の含 有率は、 触媒電極から固体高分子電解質膜に向かう方向に沿つて分布を有していてもよい。 たとえば、 接着層が、 触媒電極と接する側において触媒物質を含み、 固体高分子電解質膜 と接する側において触媒物質を含まない構成とすることができる。 接着層が触媒物質を含 む構成とすることにより、 接着層においても電子の伝導性を良好にすることができる。 ここで、 第二の固体高分子電解質は、 第一の固体高分子電解質よりも固体高分子電解質 膜に対する密着性が高いものとすることができる。 また、 第二の固体高分子電解質は、 固 体高分子電解質膜を構成する固体高分子電解質またはその誘導体からなるものとすること ができる。 こうすることにより、 接着層を構成する第二の固体高分子電解質を介して第一 の固体高分子電解質と固体高分子電解質膜との間に良好な密着性が発現する。 Further, the adhesive layer may include a catalytic material. In this case, the content of the catalyst substance in the adhesive layer may have a distribution along the direction from the catalyst electrode to the solid polymer electrolyte membrane. For example, it is possible to adopt a configuration in which the adhesive layer contains a catalytic substance on the side in contact with the catalyst electrode and does not contain a catalytic substance on the side in contact with the solid polymer electrolyte membrane. Adhesive layer contains catalytic material With such a configuration, the electron conductivity can be improved even in the adhesive layer. Here, the second solid polymer electrolyte can have higher adhesion to the solid polymer electrolyte membrane than the first solid polymer electrolyte. Further, the second solid polymer electrolyte can be made of a solid polymer electrolyte constituting a solid polymer electrolyte membrane or a derivative thereof. By doing so, good adhesion is developed between the first solid polymer electrolyte and the solid polymer electrolyte membrane via the second solid polymer electrolyte constituting the adhesive layer.
本発明の燃料電池において、 前記触媒電極に有機液体燃料が供給される構成とすること ができる。 すなわち、 いわゆるダイレクト型の燃料電池とすることができる。 ここで有機 液体燃料としては、 たとえばメタノールとすることができる。 ダイレクト型の燃料電池は 電池効率が高い、 改質器が不要であるため省スペース化を図ることができる、 等の利点が 得られる反面、 メタノールなどの有機液体燃料のクロスオーバ一が問題となる。 本発明に よれば、 こうしたクロスオーバ一の問題を解消しつつ触媒電極と固体高分子電解質膜との 間の界面における電気抵抗の上昇を抑制し、 良好な電池効率を長期間にわたって安定的に 実現することができる。  In the fuel cell according to the present invention, an organic liquid fuel may be supplied to the catalyst electrode. That is, a so-called direct type fuel cell can be obtained. Here, the organic liquid fuel can be, for example, methanol. Direct-type fuel cells have the advantages of high cell efficiency, space savings because no reformer is required, and other advantages.On the other hand, crossover of organic liquid fuels such as methanol is a problem. . According to the present invention, it is possible to stably achieve good battery efficiency over a long period of time by suppressing an increase in electrical resistance at the interface between the catalyst electrode and the solid polymer electrolyte membrane while solving such a problem of crossover. can do.
また本発明によれば、 触媒物質および第一の固体高分子電解質を含む電極層と、 該電極 層上に形成された第二の固体高分子電解質を含む接着層と、 を有することを特徴とする燃 料電池用電極が提供される。  Further, according to the present invention, there is provided an electrode layer containing a catalyst substance and a first solid polymer electrolyte, and an adhesive layer containing a second solid polymer electrolyte formed on the electrode layer. An electrode for a fuel cell is provided.
本発明によれば、 第一の固体高分子電解質によって触媒電極の表面における水素イオン 伝導性および液体燃料透過性を良好にしつつ、 第二の固体高分子電解質により触媒電極と 固体高分子電解質膜を強固に接合することができる。 従来の触媒電極では、 電極表面を構 成する固体電解質が電極性能と界面密着性の両方を同時に満たす必要があつたが、 本発明 においては、 接着層を設けているため、 第一の固体高分子電解質が電極性能を良好にし、 第二の固体高分子電解質が界面密着性を良好にする役割を果たせばよい。 したがって、 単 一種類の固体高分子電解質では実現困難な電極性能と界面密着性の両立を安定的に実現す ることが可能となる。 さらに本発明によれば、 基体上に触媒層、 接着層がこの順で形成された燃料電池用電極 の製造方法であって、 触媒金属を担持した導電粒子と、 第一の固体高分子電解質を含む粒 子とを含有する第一の塗布液を基体上に塗布して前記触媒層を形成する工程と、 前記第一 の固体高分子電解質とは異なる高分子からなる第二の固体高分子電解質を含む粒子を含有 する第二の塗布液を触媒層上に塗布して前記接着層を形成する工程と、 を含むことを特徴 とする燃料電池用電極の製造方法が提供される。 According to the present invention, the hydrogen ion conductivity and the liquid fuel permeability on the surface of the catalyst electrode are improved by the first solid polymer electrolyte, and the catalyst electrode and the solid polymer electrolyte membrane are formed by the second solid polymer electrolyte. Can be firmly joined. In the conventional catalyst electrode, the solid electrolyte constituting the electrode surface had to satisfy both electrode performance and interfacial adhesion at the same time. In the present invention, however, the first solid height The molecular electrolyte may improve the electrode performance, and the second solid polymer electrolyte may improve the interfacial adhesion. Therefore, it is possible to stably realize both electrode performance and interfacial adhesion, which are difficult to achieve with a single type of solid polymer electrolyte. Furthermore, according to the present invention, there is provided a method for producing an electrode for a fuel cell in which a catalyst layer and an adhesive layer are formed on a substrate in this order, comprising: conductive particles carrying a catalyst metal; and a first solid polymer electrolyte. Forming a catalyst layer by applying a first coating solution containing particles containing the first solid polymer electrolyte to a substrate; and a second solid polymer electrolyte comprising a polymer different from the first solid polymer electrolyte. A step of applying a second coating solution containing particles containing the above on a catalyst layer to form the adhesive layer, the method for producing an electrode for a fuel cell provided.
この製造方法によれば、 第一の固体高分子電解質を含む粒子を含有する第一の塗布液を 基体上に塗布して触媒層を形成し、 その後、 第一の固体高分子電解質とは異なる高分子か らなる第二の固体高分子電解質を含む粒子を含有する第二の塗布液を触媒層上に塗布して 接着層を形成する。 このため、 第一の固体高分子電解質を含む粒子の層の上に第二の固体 高分子電解質を含む粒子の層が形成されることとなり、 両者間に優れた密着性が発現する。 このような方法を採用することにより良好な密着性が得られる理由は必ずしも明らかでは ないが、 触媒層が粒子の層によって構成されるため、 その表面に適度な凹凸が生じ、 接着 層を構成する粒子との間の接触面積が増加して吸着ないし結合が生じやすいことによるも のと推察される。 ここで、 固体高分子電解質膜が第二の固体高分子電解質を含むように構 成すれば、 接着層と固体高分子電解質膜との間の密着性も良好にすることができる。  According to this production method, the first coating solution containing particles containing the first solid polymer electrolyte is applied to the substrate to form a catalyst layer, and then different from the first solid polymer electrolyte. A second coating solution containing particles containing a second solid polymer electrolyte made of a polymer is applied on the catalyst layer to form an adhesive layer. Therefore, a layer of particles containing the second solid polymer electrolyte is formed on the layer of particles containing the first solid polymer electrolyte, and excellent adhesion between the two is exhibited. The reason why good adhesion is obtained by adopting such a method is not always clear, but since the catalyst layer is composed of a layer of particles, moderate irregularities are generated on the surface thereof, and the adhesive layer is formed. This is presumed to be due to the fact that the contact area between the particles increases and adsorption or binding easily occurs. Here, if the solid polymer electrolyte membrane is configured to include the second solid polymer electrolyte, the adhesion between the adhesive layer and the solid polymer electrolyte membrane can also be improved.
上記塗布液は、 第一の固体高分子電解質を含む粒子または第二の固体高分子電解質を含 む粒子がそれぞれ塗布液中で分散した構成とすることができる。 こうすることにより、 塗 布時の作業性および製造安定性を良好にすることができる。  The coating solution may have a structure in which particles containing the first solid polymer electrolyte or particles containing the second solid polymer electrolyte are dispersed in the coating solution. By doing so, workability during coating and production stability can be improved.
さらに本発明によれば、 上記燃料電池用電極の製造方法によって燃料電池用電極を得た 後、 接着層と固体高分子電解質膜とを当接させた状態で燃料電池用電極と固体高分子電解 質膜とを熱圧着する工程を含むことを特徴とする燃料電池の製造方法が提供される。  Further, according to the present invention, after the fuel cell electrode is obtained by the above-described method for producing a fuel cell electrode, the fuel cell electrode and the solid polymer electrolyte are contacted with the adhesive layer and the solid polymer electrolyte membrane in contact with each other. A method for manufacturing a fuel cell, the method including a step of thermocompression bonding with a porous membrane.
この製造方法によれば、 接着層を簡便な工程で安定的に形成することができ、 触媒電極 と固体高分子電解質膜との密着性が良好な燃料電池を安定的に得ることができる。  According to this production method, the adhesive layer can be stably formed in a simple step, and a fuel cell having good adhesion between the catalyst electrode and the solid polymer electrolyte membrane can be stably obtained.
本発明によれば、 固体高分子電解質膜と、 該固体高分子電解質膜を狭持し、 基体上に触 媒層が形成された一対の電極とを有する燃料電池の製造方法であって、 触媒物質と、 第一 の固体高分子電解質を含む粒子とを含有する第一の塗布液を基体上に塗布して触媒層を形 成する工程と、 第一の固体高分子電解質とは異なる高分子からなる第二の固体高分子電解 質を含む粒子を含有する第二の塗布液を固体高分子電解質膜に塗布して接着層を形成する 工程と、 触媒層と接着層とを当接させた状態で電極と固体高分子電解質膜とを熱圧着する 工程と、 を含むことを特徴とする燃料電池の製造方法が提供される。 According to the present invention, a solid polymer electrolyte membrane, and the solid polymer electrolyte membrane sandwiched between the A method for manufacturing a fuel cell having a pair of electrodes having a medium layer formed thereon, comprising: applying a first coating liquid containing a catalyst substance and particles containing a first solid polymer electrolyte to a substrate. Forming a catalyst layer by applying a second coating solution containing particles containing a second solid polymer electrolyte composed of a polymer different from the first solid polymer electrolyte to a solid polymer electrolyte membrane. A fuel cell comprising: a step of forming an adhesive layer by coating; and a step of thermocompression bonding the electrode and the solid polymer electrolyte membrane in a state where the catalyst layer and the adhesive layer are in contact with each other. A method is provided.
本発明において、 前記第二の固体高分子電解質は、 前記第一の固体高分子電解質よりも 前記有機液体燃料の透過性が低いことが好ましい。 このようにすることにより、 触媒電極 における有機液体燃料透過性および水素イオン伝導性を確保しつつ、 固体高分子電解質膜 との密着性を得ることが可能となる。 これを実現させるためには、 たとえば以下のような 構成にするとよい。  In the present invention, the second solid polymer electrolyte preferably has a lower permeability of the organic liquid fuel than the first solid polymer electrolyte. By doing so, it becomes possible to obtain the adhesion to the solid polymer electrolyte membrane while securing the organic liquid fuel permeability and the hydrogen ion conductivity in the catalyst electrode. To achieve this, for example, the following configuration may be used.
( i ) 前記第二の固体高分子電解質は、 前記第一の固体高分乎電解質よりも含水率が低い こと。  (i) The second solid polymer electrolyte has a lower water content than the first solid polymer electrolyte.
( 1 1 ) 前記第一の固体高分子電解質および前記第二の固体高分子電解質が、 いずれも、 プロトン酸基を含む構成とし、 前記第二の固体高分子電解質は、 前記第一の固体高分子電 解質よりも前記プロトン酸基の含有密度が低いこと。 ここで、 プロトン酸基とは、 たとえ ば、 スルフォン基、 力ルポキシル基、 リン酸基、 ホスホン酸基およびホスフィン酸基から なる群から選択される一または二以上の極性基である。  (11) The first solid polymer electrolyte and the second solid polymer electrolyte each include a proton acid group, and the second solid polymer electrolyte includes a first solid polymer electrolyte. The proton acid group content density is lower than the molecular electrolyte. Here, the protonic acid group is, for example, one or more polar groups selected from the group consisting of a sulfone group, a carbonyl group, a phosphoric acid group, a phosphonic acid group and a phosphinic acid group.
また、 本発明において、 前記第一の固体高分子電解質を、 フッ素を含有する高分子から なる構成とすることができる。 また、 本発明において、 前記第二の固体高分子電解質は、 フッ素を含まない高分子からなる構成とすることができる。 さらに、 本発明において、 前 記第二の固体高分子電解質は、 芳香族を含有する高分子からなる構成とすることができる。 なお、 本発明における樹脂含有率や触媒含有率の測定は、 たとえば、 測定対象となる層 構造に対して表面からスパッタリングを行いながら二次イオン質量分析 (S I M S ) を行 う等の方法により行うことができる。 以上説明したように本発明によれば、 触媒電極と固体高分子電解質膜との間に接着層を 設けているため、 固体高分子電解質膜と当該電極との良好な密着性が得られる。 このため、 電極表面と固体高分子電解質膜との界面における密着性を高め、 電池特性の向上および電 池の信頼性を向上させることができる。 また、 電極表面における水素イオン伝導性や有機 液体燃料の透過性等を良好に維持しつつ有機液体燃料のクロスオーバ一を抑制することが できる。 Further, in the present invention, the first solid polymer electrolyte may be constituted by a polymer containing fluorine. Further, in the present invention, the second solid polymer electrolyte may be formed of a polymer containing no fluorine. Further, in the present invention, the second solid polymer electrolyte described above may be constituted by a polymer containing an aromatic. The measurement of the resin content and the catalyst content in the present invention is performed by, for example, performing secondary ion mass spectrometry (SIMS) while sputtering the layer structure to be measured from the surface. Can be. As described above, according to the present invention, since the adhesive layer is provided between the catalyst electrode and the solid polymer electrolyte membrane, good adhesion between the solid polymer electrolyte membrane and the electrode can be obtained. Therefore, the adhesion at the interface between the electrode surface and the solid polymer electrolyte membrane can be increased, and the battery characteristics can be improved and the reliability of the battery can be improved. Further, crossover of the organic liquid fuel can be suppressed while maintaining good hydrogen ion conductivity and organic liquid fuel permeability on the electrode surface.
本発明の上記及び他の目的、 態様及び利点は、 引き続く説明により更に明らかになるで あろう。 図面の簡単な説明  The above and other objects, aspects and advantages of the present invention will become more apparent from the following description. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の燃料電池の一例の構造を模式的に表した断面図である。  FIG. 1 is a sectional view schematically showing the structure of an example of the fuel cell of the present invention.
図 2は、 本発明の燃料電池の一例における燃料極、 酸化剤極および固体高分子電解質膜 を模式的に表した断面図である。  FIG. 2 is a cross-sectional view schematically showing a fuel electrode, an oxidant electrode, and a solid polymer electrolyte membrane in an example of the fuel cell of the present invention.
図 3は、 本発明の実施例の燃料電池における燃料極と固体高分子電解質膜とを模式的に 示した図である。  FIG. 3 is a diagram schematically showing a fuel electrode and a solid polymer electrolyte membrane in a fuel cell according to an example of the present invention.
図 4は、 本発明の実施形態における接着層を詳細に示す断面図である。  FIG. 4 is a cross-sectional view showing the adhesive layer in the embodiment of the present invention in detail.
図 5は、 本発明の実施例の燃料電池の燃料極と固体高分子電解質膜、 およびこれらの間 に介在する接着層を模式的に示した図である。 .  FIG. 5 is a diagram schematically showing a fuel electrode and a solid polymer electrolyte membrane of a fuel cell according to an example of the present invention, and an adhesive layer interposed therebetween. .
図 6は、 本発明の実施例の燃料電池の燃料極と固体高分子電解質膜、 およびこれらの間 に介在する接着層を模式的に示した図である。  FIG. 6 is a diagram schematically showing a fuel electrode and a solid polymer electrolyte membrane of a fuel cell according to an example of the present invention, and an adhesive layer interposed therebetween.
図 7は、 本発明の実施例の燃料電池の燃料極と固体高分子電解質膜、 およびこれらの間 に介在する接着層を模式的に示した図である。 発明を実施するための最良の形態  FIG. 7 is a diagram schematically showing a fuel electrode and a solid polymer electrolyte membrane of a fuel cell according to an example of the present invention, and an adhesive layer interposed therebetween. BEST MODE FOR CARRYING OUT THE INVENTION
本発明における燃料電池は、 第一の固体高分子電解質および触媒物質を含む触媒電極と、 固体高分子電解質膜との間に第二の高分子電解質を含む接着層が設けられている。 製造ェ 程上、 この接着層は、 触媒電極または固体高分子電解質膜の表面に形成した後、 触媒電極 と固体高分子電解質膜とを接合する方式としてもよいし、 触媒電極と固体高分子電解質膜 との間に第二の固体高分子電解質からなるシートを配置した状態でこれらを熱圧着等によ り接合する方式とすることもできる。 A fuel cell according to the present invention includes: a catalyst electrode including a first solid polymer electrolyte and a catalyst substance; An adhesive layer containing the second polymer electrolyte is provided between the solid polymer electrolyte membrane. In the manufacturing process, the adhesive layer may be formed on the surface of the catalyst electrode or the solid polymer electrolyte membrane and then bonded to the catalyst electrode and the solid polymer electrolyte membrane, or the catalyst electrode and the solid polymer electrolyte membrane may be used. In a state where a sheet made of the second solid polymer electrolyte is disposed between the membrane and the membrane, these may be joined by thermocompression bonding or the like.
本発明における触媒電極は、 触媒物質と第一の固体高分子電解質を含むものである。 具 体的には、 たとえば、 力一ポンぺ一パーなどの基体上に、 触媒物質と、 第一の固体高分子 電解質とを含む触媒層が形成された構成とすることができる。 ここで、 触媒物質は触媒金 属と触媒金属を担持する導電粒子を含む。 ここで導電粒子としては炭素粒子等が用いられ る。 第一の固体高分子電解質は、 導電粒子を基体上に固定化するとともに導電粒子と固体 高分子電解質膜との間を電気的に接続する役割を果たす。  The catalyst electrode of the present invention contains a catalyst substance and a first solid polymer electrolyte. Specifically, for example, a configuration in which a catalyst layer containing a catalyst substance and a first solid polymer electrolyte is formed on a substrate such as a force pump or the like can be used. Here, the catalyst material includes a catalyst metal and conductive particles carrying the catalyst metal. Here, carbon particles or the like are used as the conductive particles. The first solid polymer electrolyte has a role of immobilizing the conductive particles on the base and electrically connecting the conductive particles to the solid polymer electrolyte membrane.
本発明における接着層は、 第二の固体高分子電解質を含むものである。 第二の固体高分 子電解質以外の成分として、 触媒金属や触媒金属を担持する炭素粒子等の導電粒子を含ん でいてもよい。 このように接着層が触媒金属や導電粒子含むことにより、 接着層において も有機液体燃料が消費されて電極反応が起こり、 接着層の電子の伝導性を良好にすること ができる。 なお、 本発明における接着層は、 第一の固体高分子電解質等、 第二の固体高分 子電解質以外の他の固体高分子電解質を含んでもいてもよい。  The adhesive layer in the present invention contains the second solid polymer electrolyte. As a component other than the second solid polymer electrolyte, conductive particles such as a catalyst metal and carbon particles carrying the catalyst metal may be included. Since the adhesive layer contains the catalytic metal and the conductive particles as described above, the organic liquid fuel is consumed in the adhesive layer, and an electrode reaction occurs, so that the electron conductivity of the adhesive layer can be improved. The adhesive layer in the present invention may include a solid polymer electrolyte other than the second solid polymer electrolyte, such as the first solid polymer electrolyte.
[実施形態] [Embodiment]
以下、 本発明の第一〜第三実施形態につき詳細に説明する。  Hereinafter, the first to third embodiments of the present invention will be described in detail.
(第一の実施形態)  (First embodiment)
図 1に示すように、 本実施形態の燃料電池は、 電極一電解質接合体 1 0 1は、 燃料極 1 0 2、 酸化剤極 1 0 8、 固体高分子電解質膜 1 1 4から構成さ る。 燃料極 1 0 2は基体 1 0 4および触媒層 1 0 6から構成される。 酸化剤極 1 0 8は基体 1 1 0および触媒層 1 1 2から構成される。 また、 固体高分子電解質膜 1 1 4と燃料極 1 0 2の間、 および固体 高分子電解質膜 1 1 4と酸化剤極 1 0 8の間にはそれぞれ接着層 1 6 1が設けられている。 上記複数の電極—電解質接合体 1 0 1が、 燃料極側セパレ一夕 1 2 0および酸化剤極側セ パレータ 1 2 2を介して電気的に接続され、 燃料電池 1 0 0が製造される。 As shown in FIG. 1, in the fuel cell of this embodiment, the electrode-electrolyte assembly 101 is composed of a fuel electrode 102, an oxidant electrode 108, and a solid polymer electrolyte membrane 114. . The fuel electrode 102 includes a substrate 104 and a catalyst layer 106. The oxidant electrode 108 is composed of a base 110 and a catalyst layer 112. In addition, between the solid polymer electrolyte membrane 114 and the fuel electrode 102, An adhesive layer 161 is provided between the polymer electrolyte membrane 114 and the oxidant electrode 108, respectively. The plurality of electrode-electrolyte assemblies 101 are electrically connected via the fuel electrode side separator 120 and the oxidizer electrode side separator 122 to manufacture the fuel cell 100. .
燃料極 1 0 2および酸化剤極 1 0 8は、 触媒および第一の固体高分子電解質を含む触媒 層 1 0 6および触媒層 1 1 2をそれぞれ備えた構成となっている。 固体高分子電解質膜 1 1 4は第二の固体高分子電解質からなる。 接着層 1 6 1は、 第二の固体高分子電解質を含 んでいる。 第一および第二の固体高分子電解質を構成する具体的材料については後述する。 以上のように構成された燃料電池 1 0 0において、 各電極一電解質接合体 1 0 1の燃料 極 1 0 2には、 燃料極側セパレ一夕 1 2 0を介して燃料 1 2 4が供給される。 また、 各電 極一電解質接合体 1 0 1の酸化剤極 1 0 8には、 酸化剤極側セパレ一夕 1 2 2を介して空 気または酸素などの酸化剤 1 2 6が供給される。  The fuel electrode 102 and the oxidant electrode 108 have a configuration including a catalyst layer 106 and a catalyst layer 112 each containing a catalyst and a first solid polymer electrolyte. The solid polymer electrolyte membrane 114 is made of a second solid polymer electrolyte. The adhesive layer 161 contains the second solid polymer electrolyte. Specific materials constituting the first and second solid polymer electrolytes will be described later. In the fuel cell 100 configured as described above, the fuel electrode 102 of the electrode-electrolyte assembly 101 is supplied with the fuel 124 through the fuel electrode side separator 120. Is done. The oxidizer electrode 108 of each electrode-electrolyte assembly 101 is supplied with an oxidizer 126 such as air or oxygen through the oxidizer electrode side separator 122. .
固体高分子電解質膜 1 1 4は、 燃料極 1 0 2と酸化剤極 1 0 8を隔てるとともに、 両者 の間で水素イオンや水分子を移動させる役割を有する。 このため、 固体高分子電解質膜 1 1 4は、 水素イオンの導電性が高い膜であることが好ましい。 また、 化学的に安定であつ て機械的強度が高いことが好ましい。 固体高分子電解質膜 1 1 4を構成する材料としては、 スルフォン基、 リン酸基、 ホスホン基、 ホスフィン基などの強酸基や、 力ルポキシル基な どの弱酸基などの極性基を有する有機高分子が好ましく用いられる。 こうした有機高分子 として、 スルフォン化ポリ ( 4一フエノキシベンゾィル _ 1 , 4一フエ二レン)、 アルキル スルフォン化ポリべンゾイミダゾールなどの芳香族含有高分子;ポリスチレンスルフォン 酸共重合体、 ポリビニルスルフォン酸共重合体、 架橋アルキルスルフォン酸誘導体、 フッ 素樹脂骨格およびスルフォン酸からなるフッ素含有高分子などの共重合体;アクリルアミ ドー 2—メチルプロパンスルフォン酸のようなアクリルアミド類と n—ブチルメタクリレ ートのようなァクリレート類とを共重合させて得られる共重合体;スルフォン基含有パー フルォロカーボン(ナフイオン(登録商標、デュポン社製)、ァシプレックス(旭化成社製) ) ; 力ルポキシル基含有パ一フルォロカ一ボン (フレミオン (登録商標) S膜(旭硝子社製)) ; などが例示される。 このうち、 スルフォン化ポリ (4一フエノキシベンゾィル一 1 , 4一 フエ二レン)、 アルキルスルフォン化ポリべンゾイミダゾールなどの芳香族含有高分子を選 択した場合、 有機液体燃料の透過を抑制でき、 クロスオーバ一による電池効率の低下を抑 えることができる。 The solid polymer electrolyte membrane 114 has a role of separating the fuel electrode 102 from the oxidant electrode 108 and also has a role of transferring hydrogen ions and water molecules between the two. For this reason, it is preferable that the solid polymer electrolyte membrane 114 be a membrane having high conductivity of hydrogen ions. It is also preferable that the material is chemically stable and has high mechanical strength. Examples of the material constituting the solid polymer electrolyte membrane 114 include an organic polymer having a polar group such as a strong acid group such as a sulfone group, a phosphate group, a phosphone group, or a phosphine group, or a weak acid group such as a lipoxyl group. It is preferably used. Examples of such organic polymers include aromatic-containing polymers such as sulfonated poly (4-phenoxybenzoyl_1,4-phenylene) and alkyl sulfonated polybenzoimidazole; polystyrene sulfonate copolymer Copolymers such as polyvinyl sulfonic acid copolymers, cross-linked alkyl sulfonic acid derivatives, fluorine resin skeletons and fluorine-containing polymers composed of sulfonic acid; acrylamides such as acrylamide 2-methylpropane sulfonic acid; A copolymer obtained by copolymerizing an acrylate such as butyl methacrylate; a sulfone group-containing perfluorocarbon (Naphion (registered trademark, manufactured by Dupont), aciplex (manufactured by Asahi Kasei Corporation)); a lipoxyl group-containing Perfluorocarbon (Flemion (registered trademark) S film (Asahi Glass Co., Ltd.) )); And the like. Of these, when aromatic-containing polymers such as sulfonated poly (4-phenoxybenzoyl-1,4-phenylene) and alkylsulfonated polybenzoimidazole are selected, organic liquid fuel Transmission can be suppressed, and a decrease in battery efficiency due to crossover can be suppressed.
また、 上記した高分子に対して、 適宜、 架橋性の置換基、 例えば、 ビエル基、 エポキシ 基、 アクリル基、 メタクリル基、 シンナモイル基、 メチロール基、 アジド基、 ナフトキノ ンジアジド基を導入し、 これらの高分子を溶融した状態で放射線を照射すること等により 架橋したものを用いることもできる。  In addition, a crosslinkable substituent, for example, a bier group, an epoxy group, an acrylic group, a methacryl group, a cinnamoyl group, a methylol group, an azide group, or a naphthoquinone diazide group is appropriately introduced into the above-described polymer. A polymer that has been crosslinked by irradiating it with radiation in a molten state can also be used.
図 2は燃料極 1 0 2、 酸化剤極 1 0 8、 固体高分子電解質膜 1 1 4および接着層 1 6 1 の構造を模式的に表した断面図である。 図のように、 本実施形態における燃料極 1 0 2お よび酸化剤極 1 0 8は、 触媒を担持した炭素粒子と固体高分子電解質の微粒子とを含む膜 である触媒層 1 0 6、 触媒層 1 1 2を基体 1 0 4、 基体 1 1 0上に形成した構成となって いる。 基体表面は撥水処理してもよい。  FIG. 2 is a cross-sectional view schematically showing the structure of the fuel electrode 102, the oxidizer electrode 108, the solid polymer electrolyte membrane 114, and the adhesive layer 161. As shown in the figure, the fuel electrode 102 and the oxidizer electrode 108 in the present embodiment have a catalyst layer 106, which is a membrane containing carbon particles carrying a catalyst and fine particles of a solid polymer electrolyte, and a catalyst. The structure is such that the layer 112 is formed on the substrate 104 and the substrate 110. The substrate surface may be subjected to a water-repellent treatment.
基体 1 0 4および基体 1 1 0としては、 カーボンペーパー、 力一ボンの成形体、 カーボ ンの焼結体、 焼結金属、 発泡金属などの多孔性基体を用いることができる。 また、 基体の 撥水処理にはポリテトラフルォロエチレンなどの撥水剤を用いることができる。  As the substrate 104 and the substrate 110, a porous substrate such as carbon paper, molded carbon fiber, sintered carbon, sintered metal, or foamed metal can be used. In addition, a water repellent such as polytetrafluoroethylene can be used for the water repellent treatment of the substrate.
また燃料極 1 0 2の触媒としては、 白金、 白金 tルテニウム、 金、 レニウムなどとの合 金、 ロジウム、 パラジウム、 イリジウム、 オスミウム、 ルテニウム、 レニウム、 金、 銀、 ニッケル、 コバルト、 リチウム、 ランタン、 ストロンチウム、 イットリウムなどが例示さ れる。 一方、 酸化剤極 1 0 8の触媒としては、 燃料極 1 0 2の触媒と同様のものが用いる ことができ、 上記例示物質を使用することができる。 なお、 燃料極 1 0 2および酸化剤極 1 0 8の触媒は同じものを用いても異なるものを用いてもよい。  Examples of the catalyst for the anode 102 include platinum, platinum t-ruthenium, gold, rhenium, and the like, rhodium, palladium, iridium, osmium, ruthenium, rhenium, gold, silver, nickel, cobalt, lithium, lanthanum, and the like. Examples include strontium and yttrium. On the other hand, as the catalyst for the oxidant electrode 108, the same catalyst as the catalyst for the fuel electrode 102 can be used, and the above-mentioned exemplified substances can be used. The catalysts for the fuel electrode 102 and the oxidant electrode 108 may be the same or different.
また、 触媒を担持する炭素粒子としては、 アセチレンブラック (デンカブラック (登録 商標、 電気化学工業社製)、 X C 7 2 (V u 1 c a n社製) など)、 ケッチェンブラック、 カーボンナノチューブ、 カーボンナノホーンなどが例示される。 炭素粒子の粒径は、 たと えば、 0 . 0 0 1〜0 . 1 μ πι、 好ましくは 0 . 0 2〜0 . 0 6 mとする。 The carbon particles supporting the catalyst include acetylene black (Denka Black (registered trademark, manufactured by Denki Kagaku Kogyo), XC72 (Vu1can), etc.), Ketjen Black, carbon nanotubes, and carbon nanohorns. And the like. The size of the carbon particles is For example, it is set to 0.01 to 0.1 μπι, preferably to 0.02 to 0.06 m.
燃料極 1 0 2または酸化剤極 1 0 8を構成する固体高分子電解質は、 少なくとも第一の 固体高分子電解質を含む構成とする。 また、 燃料極 1 0 2または酸化剤極 1 0 8を構成す る固体高分子電解質は、 第二の固体高分子電解質を含むこともできる。 ここで、 燃料極 1 0 2および酸化剤極 1 0 8の両方について、 第一および第二の固体高分子電解質を含む構 成としてもよいし、 燃料極 1 0 2および酸化剤極 1 0 8のいずれか一方について、 第一お よび第二の固体高分子電解質を含む構成としてもよい。  The solid polymer electrolyte constituting the fuel electrode 102 or the oxidizer electrode 108 is configured to include at least the first solid polymer electrolyte. In addition, the solid polymer electrolyte constituting the fuel electrode 102 or the oxidizer electrode 108 may include a second solid polymer electrolyte. Here, both the fuel electrode 102 and the oxidizer electrode 108 may be configured to include the first and second solid polymer electrolytes, or the fuel electrode 102 and the oxidizer electrode 108 Either one of them may be configured to include the first and second solid polymer electrolytes.
燃料極 1 0 2および酸化剤極 1 0 8を構成する第一の固体高分子電解質は、 電極表面に おいて、 触媒を担持した炭素粒子と固体高分子電解質膜 1 1 4を電気的に接続する役割を 有しており、 水素イオン伝導性や水移動性が良好であることが求められ、 さらに、 燃料極 The first solid polymer electrolyte constituting the fuel electrode 102 and the oxidant electrode 108 electrically connects the carbon particles carrying the catalyst and the solid polymer electrolyte membrane 114 on the electrode surface. It is required to have good hydrogen ion conductivity and water mobility.
1 0 2においてはメタノール等の有機液体燃料透過性が求められ、 酸化剤極 1 0 8におい ては酸素透過性が求められる。 第一の固体高分子電解質はこうした要求を満たすためのも のであり、 水素イオン伝導性や、 メタノ一ル等の有機液体燃料透過性に優れる材料が好ま しく用いられる。 具体的には、 スルフォン基、 リン酸基などの強酸基や、 力ルポキシル基 などの弱酸基などの極性基を有する有機高分子が好ましく用いられる。 こうした有機高分 子として、 スルフォン基含有パ一フルォロカ一ボン (ナフイオン (登録商標、 デュポン社 製)、 ァシプレックス (旭化成社製) など);カルポキシル基含有パ一フルォロカ一ボン (フ レミオン (登録商標) S膜 (旭硝子社製) など) ;ポリスチレンスルフォン酸共重合体、 ポ リピニルスルフォン酸共重合体、 架橋アルキルスルフォン酸誘導体、 フッ素樹脂骨格およ びスルフォン酸からなるフッ素含有高分子などの共重合体;アクリルアミド一 2—メチル プロパンスルフォン酸のようなァクリルァミド類と n—ブチルメタクリレートのようなァ クリレート類とを共重合させて得られる共重合体;などが例示される。 また、 極性基の結 合する対象の高分子としては他に、 ポリべンズイミダゾ一ル誘導体、 ポリべンズォキサゾ —ル誘導体、 ポリエチレンィミン架橋体、 ポリサイラミン誘導体、 ポリジェチルアミノエ チルポリスチレン等のァミン置換ボリスチレン、 ジェチルアミノエチルポリメ夕クリレー ト等の窒素置換ポリアクリレート等の窒素または水酸基を有する樹脂;シラノール含有ポ リシロキサン、 ヒドロキシェチルポリメチルァクリレートに代表される水酸基含有ポリア クリル樹脂;パラヒドロキシポリスチレンに代表される水酸基含有ポリスチレン樹脂;な どを用いることもできる。 これらのうち、 イオン伝導性等の観点からは、 スルフォン基含 有パ一フルォロカ一ボン (ナフイオン (登録商標、 デュポン社製)、 ァシプレックス (旭化 成社製) など)、 カルボキシル基含有パーフルォロカーボン (フレミオン (登録商標) S膜 (旭硝子社製) など) などが好ましく用いられる。 In 102, permeability of organic liquid fuel such as methanol is required, and in oxidant electrode 108, oxygen permeability is required. The first solid polymer electrolyte satisfies such demands, and materials excellent in hydrogen ion conductivity and organic liquid fuel permeability such as methanol are preferably used. Specifically, an organic polymer having a polar group such as a strong acid group such as a sulfone group or a phosphoric acid group or a weak acid group such as a carbonyl group is preferably used. Examples of such organic polymers include sulfone group-containing perfluorocarbon (Nafion (registered trademark, manufactured by Dupont), aciplex (manufactured by Asahi Kasei Corporation), etc.); S film (manufactured by Asahi Glass Co., Ltd.); polystyrene sulfonic acid copolymer, polypinyl sulfonic acid copolymer, cross-linked alkyl sulfonic acid derivative, fluorine resin skeleton and fluorine-containing polymer composed of sulfonic acid And copolymers obtained by copolymerizing acrylamides such as acrylamide-12-methylpropanesulfonic acid and acrylates such as n-butyl methacrylate; and the like. Examples of the polymer to which the polar group is bonded include amines such as a polybenzimidazole derivative, a polybenzoxazole derivative, a crosslinked polyethyleneimine, a polysilamine derivative, and a polyethylaminoethyl polystyrene. Substituted polystyrene, getylaminoethyl polymer Resins having nitrogen or hydroxyl groups such as nitrogen-substituted polyacrylates such as phenols; hydroxyl-containing polyacryl resins represented by silanol-containing polysiloxanes and hydroxyethyl polymethyl acrylate; hydroxyl-containing polystyrenes represented by para-hydroxypolystyrene Resins; etc. can also be used. Of these, from the viewpoint of ion conductivity and the like, sulfone group-containing perfluorocarbons (Nafion (registered trademark, manufactured by DuPont), acylplex (Asahi Kasei Corporation), etc.), and carboxyl group-containing perfluorocarbon Carbon (such as Flemion (registered trademark) S film (manufactured by Asahi Glass Co., Ltd.)) is preferably used.
また、 上記した高分子に対して、 適宜、 架橋性の置換基、 例えば、 ビニル基、 エポキシ 基、 アクリル基、 メ夕クリル基、 シンナモイル基、 メチロール基、 アジド基、 ナフトキノ ンジアジド基を導入してもよい。  In addition, a crosslinkable substituent, for example, a vinyl group, an epoxy group, an acrylic group, a methyl group, a cinnamoyl group, a methylol group, an azide group, or a naphthoquinone diazide group may be appropriately introduced into the above-described polymer. Is also good.
図 1における接着層 1 6 1を構成する第二の固体高分子電解質は、 電極表面と固体高分 子電解質膜 1 1 4との密着性を改良する役割を果たすものであり、 固体高分子電解質膜 1 1 4に対する密着性の良好な材料を用いることが好ましい。 たとえば、 固体高分子電解質 膜 1 1 4を有機高分子で構成した場合、 第二の固体高分子電解質として、 当該有機高分子 と類似の構造を有する高分子や、 極性、 濡れ性、 S P値等の物性値が類似する高分子を選 択することにより、 電極と固体高分子電解質膜 1 1 4の間の密着性を向上させることがで きる。 たとえば、 固体高分子電解質膜 1 1 4材料としてフッ素を含まない高分子を用いた 場合、 第二の固体高分子電解質としてフッ素を含まない高分子を選択することが好ましい。 また、 固体高分子電解質膜 1 1 4の材料として芳香族系高分子を用いた場合、 第二の固体 高分子電解質として芳香族系高分子を選択することが好ましい。 また、 接着層 1 6 1は、 架橋性の置換基を導入した高分子を溶融した状態で放射線を照射すること等により架橋し たものにより構成することもできる。  The second solid polymer electrolyte constituting the adhesive layer 161 in FIG. 1 plays a role in improving the adhesion between the electrode surface and the solid polymer electrolyte membrane 114. It is preferable to use a material having good adhesion to the film 114. For example, when the solid polymer electrolyte membrane 114 is composed of an organic polymer, as the second solid polymer electrolyte, a polymer having a structure similar to that of the organic polymer, polarity, wettability, SP value, etc. By selecting a polymer having similar physical properties, the adhesion between the electrode and the solid polymer electrolyte membrane 114 can be improved. For example, when a polymer containing no fluorine is used as the material of the solid polymer electrolyte membrane 114, it is preferable to select a polymer containing no fluorine as the second solid polymer electrolyte. When an aromatic polymer is used as the material of the solid polymer electrolyte membrane 114, it is preferable to select an aromatic polymer as the second solid polymer electrolyte. Further, the adhesive layer 161 can also be composed of a polymer in which a polymer having a crosslinkable substituent introduced therein is crosslinked by, for example, irradiating radiation in a molten state.
ここで、 クロスオーバ一抑制の観点からは、 固体高分子電解質膜 1 1 4および第二の固 体高分子電解質を、 いずれも、 有機液体燃料の透過性の低い材料を用いることが好ましい。 たとえば、 スルフォン化ポリ ( 4一フエノキシベンゾィル _ 1 , 4一フエ二レン)、 アルキ ルスルフォン化ポリベンゾィミダゾ一ルなどの芳香族縮合系高分子により構成することが 好ましい。 また、 固体高分子電解質膜 114および第二の固体高分子電解質は、 たとえば メタノールによる膨潤性が 50%以下、 より望ましくは 20%以下 (70 vo l %MeO H水溶液に対する膨潤性) とするのがよい。 こうすることにより、 特に良好な界面密着性 およびプロトン伝導性が得られる。 Here, from the viewpoint of suppressing crossover, it is preferable that both the solid polymer electrolyte membrane 114 and the second solid polymer electrolyte be made of a material having low permeability to organic liquid fuel. For example, sulfonated poly (4-phenoxybenzoyl _1,4-phenylene), alk It is preferable to use an aromatic condensed polymer such as rusulfonated polybenzoimidazole. Further, the solid polymer electrolyte membrane 114 and the second solid polymer electrolyte should have, for example, a swelling property with methanol of 50% or less, more preferably 20% or less (swelling property with respect to 70 vol% MeOH solution). Good. By doing so, particularly good interfacial adhesion and proton conductivity can be obtained.
なお、 燃料極 102および酸化剤極 108における第一の固体高分子電解質は、 同一の ものであっても異なるものであってもよい。  The first solid polymer electrolyte in the fuel electrode 102 and the oxidant electrode 108 may be the same or different.
本実施形態に係る燃料電池の燃料としては、 液体有機燃料や水素含有ガスを用いること ができる。 このうち、 液体有機燃料を用いる構成とした場合、 液体燃料のクロスオーバ一 を抑制しつつ電池効率の向上を図ることができ、 本発明の効果がより顕著に発揮される。 本実施形態における電極一電解質接合体の作製方法は特に制限がないが、 たとえば以下 のようにして作製することができる。  As the fuel of the fuel cell according to the present embodiment, a liquid organic fuel or a hydrogen-containing gas can be used. Among them, when the liquid organic fuel is used, the cell efficiency can be improved while suppressing the crossover of the liquid fuel, and the effect of the present invention is more remarkably exhibited. The method for producing the electrode-electrolyte assembly in the present embodiment is not particularly limited, and for example, it can be produced as follows.
まず炭素粒子へ触媒を担持する。 この工程は、 一般的に用いられている含浸法によって 行うことができる。 次に触媒を担持させた炭素粒子と上記第一の固体高分子電解質粒子を 溶媒に分散させ、 ペースト状とした後、 これを基体に塗布、 乾燥させることによって触媒 層 106または触媒層 1 12が形成された燃料極 102および酸化剤極 108を作製する ことができる。 ここで、 炭素粒子の粒径は、 たとえば 0. 001〜0. l mとする。 触 媒粒子の粒径は、 たとえば 0. 1 ηπ!〜 100 nmとする。 また、 第一および第二の固体 高分子電解質粒子の粒径は、 たとえば 0. 05〜100 iirnとする。 炭素粒子と固体高分 子電解質粒子とは、 たとえば、 重量比で 1 : 5~40 : 1の範囲で用いられる。 また、 ぺ First, a catalyst is supported on carbon particles. This step can be performed by a commonly used impregnation method. Next, the catalyst-supported carbon particles and the first solid polymer electrolyte particles are dispersed in a solvent to form a paste, which is then applied to a substrate and dried to form the catalyst layer 106 or the catalyst layer 112. The formed fuel electrode 102 and oxidant electrode 108 can be produced. Here, the particle size of the carbon particles is, for example, 0.001 to 0.1m. The particle size of the catalyst particles is, for example, 0.1 ηπ! 〜100 nm. The particle size of the first and second solid polymer electrolyte particles is, for example, 0.05 to 100 iirn. The carbon particles and the solid polymer electrolyte particles are used, for example, in a weight ratio of 1: 5 to 40: 1. Also, ぺ
—スト中の水と溶質との重量比は、 たとえば、 1 : 2〜10 : 1程度とする。 基体へのぺ —ストの塗布方法については特に制限がないが、 たとえば、 刷毛塗り、 スプレー塗布、 お ょぴスクリーン印刷等の方法を用いることができる。 ぺ一ストは、 約 ΐ μπ!〜 2mmの厚 さで塗布される。 ペーストを塗布した後、 使用する第一の固体高分子電解質に応じた加熱 温度および加熱時間で加熱して乾燥させる。 加熱温度おょぴ加熱時間は、 用いる材料によ つて適宜に選択されるが、 たとえば、 加熱温度 1 0 0 °C~ 2 5 0 °C、 加熱時間 3 0秒間〜 3 0分とすることができる。 — The weight ratio of water to solute in the strike is, for example, about 1: 2 to 10: 1. The method of applying the paste to the substrate is not particularly limited, and for example, methods such as brush coating, spray coating, and screen printing can be used. The cost is about ΐμπ! It is applied with a thickness of ~ 2mm. After applying the paste, the paste is dried by heating at a heating temperature and heating time according to the first solid polymer electrolyte to be used. The heating temperature and heating time depend on the material used. For example, the heating temperature may be 100 ° C. to 250 ° C., and the heating time may be 30 seconds to 30 minutes.
本発明における固体高分子電解質膜 1 1 4は、 用いる材料に応じて適宜な方法を採用し て作製することができる。 たとえば、 有機高分子材料を溶媒に溶解ないし分散した液体を、 ポリテトラフルォロエチレン等の剥離性シート等の上にキャストして乾燥させることによ り得ることができる。  The solid polymer electrolyte membrane 114 in the present invention can be manufactured by using an appropriate method according to the material to be used. For example, it can be obtained by casting and drying a liquid in which an organic polymer material is dissolved or dispersed in a solvent, on a peelable sheet of polytetrafluoroethylene or the like.
次いで、 接着層 1 6 1を形成する。 接着層 1 6 1は、 第二の固体高分子電解質を溶解ま たは分散させた塗布液を触媒層 1 0 6または触媒層 1 1 2の上、 および/または固体高分 子電解質膜 1 1 4の表面に塗布'乾燥することにより形成することができる。 塗布液を固 体高分子電解質膜 1 1 4上に塗布する場合、 この工程を固体高分子電解質膜 1 1 4の表面 と裏面の両方について行う。 この場合、 たとえば、 固体高分子電解質膜 1 1 4の一方の面 に上記塗布液を塗布した後、 その面をポリテトラフルォロエチレン等の剥離性シートで力 バーし、 固体高分子電解質膜 1 1 4の他方の面に上記塗布液を塗布する方法を採用するこ とができる。 これにより、 両面に接着層 1 6 1が形成された固体高分子電解質膜 1 1 4を 得ることができる。  Next, an adhesive layer 16 1 is formed. The adhesive layer 161 is formed by coating the coating solution in which the second solid polymer electrolyte is dissolved or dispersed on the catalyst layer 106 or the catalyst layer 112, and / or the solid polymer electrolyte membrane 111. It can be formed by coating and drying on the surface of 4. When the coating liquid is applied onto the solid polymer electrolyte membrane 114, this step is performed on both the front and back surfaces of the solid polymer electrolyte membrane 114. In this case, for example, after applying the above coating solution to one surface of the solid polymer electrolyte membrane 114, the surface is urged with a peelable sheet of polytetrafluoroethylene or the like to obtain a solid polymer electrolyte membrane. A method of applying the above-mentioned coating liquid to the other surface of 114 can be adopted. Thus, a solid polymer electrolyte membrane 114 having the adhesive layers 161 formed on both surfaces can be obtained.
本実施形態では、 接着層 1 6 1は、 固体電解質膜 1 1 4と燃料極 1 0 2との間および固 , 体電解質膜 1 1 4と酸化剤極 1 0 8との間の両方の領域に設けられているが、 いずれか一 方に設けた構成としてもよい。 また、 接着層 1 6 1は、 これらの領域に全面にわたって形 成される必要はなく、 上記領域に一部に形成されていればよい。 たとえば接着層 1 6 1が 島状に形成されていてもよい。 接着層 1 6 1の厚みは、 たとえば 0 . 1 ]^〜2 0 111の 範囲から適宜選択される。  In the present embodiment, the adhesive layer 16 1 is formed between the solid electrolyte membrane 114 and the fuel electrode 102 and between the solid and solid electrolyte membrane 114 and the oxidant electrode 108. , But may be provided in any one of them. Further, the adhesive layer 161 does not need to be formed over the entire surface of these regions, but may be formed only partially on the above-described region. For example, the adhesive layer 161 may be formed in an island shape. The thickness of the adhesive layer 161 is appropriately selected, for example, from the range of 0.1] ^ to 20111.
以上のようにして作製した固体高分子電解質膜 1 1 4を、 燃料極 1 0 2および酸化剤極 1 0 8で挟み、 ホットプレスし、 電極一電解質接合体を得る。 このとき、 両電極の触媒が 設けられた面と固体高分子電解質膜 1 1 4とが接着層 1 6 1を挟んで対向するようにする。 ホットプレスの条件は、 材料に応じて選択されるが、 たとえば、 第一の固体高分子電解質 や第二の固体高分子電解質の軟化温度やガラス転位温度を超える温度とする。 具体的には、 たとえば、 温度 1 0 0 - 2 5 0 °C、 圧力 5〜: L 0 0 k g f / c m2 , 時間 1 0秒〜 3 0 0秒 とする。 The solid polymer electrolyte membrane 114 produced as described above is sandwiched between the fuel electrode 102 and the oxidant electrode 108 and hot-pressed to obtain an electrode-electrolyte assembly. At this time, the surfaces of both electrodes where the catalyst is provided and the solid polymer electrolyte membrane 114 are opposed to each other with the adhesive layer 161 interposed therebetween. Hot pressing conditions are selected according to the material. For example, the first solid polymer electrolyte Or a temperature exceeding the softening temperature or the glass transition temperature of the second solid polymer electrolyte. Specifically, for example, the temperature is set to 100 to 250 ° C., the pressure is set to 5 to: L 0 kgf / cm 2 , and the time is set to 10 to 300 seconds.
図 2において、 接着層 1 6 1を構成する第二の固体高分子電解質は、 固体高分子電解質 膜 1 1 4の材料と共通するため、 電極と固体高分子電解質膜 1 1 4との界面が強固に密着 する。 この結果、 界面の剥離により水素イオンの移動が阻害され電池性能が劣化すること を抑制できるほか、 電池の物理的強度が増し、 耐久性が向上する。  In FIG. 2, since the second solid polymer electrolyte constituting the adhesive layer 161 is common to the material of the solid polymer electrolyte membrane 114, the interface between the electrode and the solid polymer electrolyte membrane 114 is Strongly adheres. As a result, it is possible to prevent the transfer of hydrogen ions from being hindered due to the separation of the interface, thereby suppressing the deterioration of the battery performance. In addition, the physical strength of the battery is increased and the durability is improved.
次に、 本発明における第一おょぴ第二の固体高分子電解質の好ましい態様について説明 する。  Next, a preferred embodiment of the first and second solid polymer electrolytes in the present invention will be described.
クロスオーバ一を効果的に抑制する観点からは、 第一および第二の固体高分子電解質を、 以下のように選択することが有効である。  From the viewpoint of effectively suppressing crossover, it is effective to select the first and second solid polymer electrolytes as follows.
( i ) 第二の固体高分子電解質として、 第一の固体高分子電解質よりもメタノール透過性 の低い材料を選択する。 '  (i) As the second solid polymer electrolyte, a material having a lower methanol permeability than the first solid polymer electrolyte is selected. '
( i i ) 第二の固体高分子電解質として、 第一の固体高分子電解質よりも含水率の低い材 料を選択する。  (ii) As the second solid polymer electrolyte, a material having a lower moisture content than the first solid polymer electrolyte is selected.
( i i i ) 第二の固体高分子電解質として、 第一の固体高分子電解質より極性基の含有密 度の低い材料を選択する。  (iiii) As the second solid polymer electrolyte, a material having a lower polar group-containing density than the first solid polymer electrolyte is selected.
( i v ) 第二の固体高分子電解質として、 第一の固体高分子電解質よりもフッ素含有率の 低い材料を選択する。  (iv) As the second solid polymer electrolyte, a material having a lower fluorine content than the first solid polymer electrolyte is selected.
こうした手法を採用することにより、 固体高分子電解質膜 1 1 4中の有機液体燃料の透 過を抑制でき、 クロスオーバーによる電池性能の低下を抑えることができる。以下、 上記 G) 〜(iv)に示した物性の測定方法について説明する。  By adopting such a method, it is possible to suppress the permeation of the organic liquid fuel in the solid polymer electrolyte membrane 114, and to suppress a decrease in the battery performance due to the crossover. Hereinafter, methods for measuring the physical properties shown in the above G) to (iv) will be described.
メタノール透過性は、 以下のように測定することができる。 被測定電解質膜 (膜厚 5 0 ΐη, 面積 1 c m 2) で隔てられた液体容器に、 片側に 9 9 . 5 %メタノールを 5 0 c c、 反対側に純水 5 0 c cを注入し、 それぞれの液体が蒸発しないように密閉する。 純水中に 被測定電解質膜を透過してくるメタノ一ルの濃度の時間変化をガスクロマトダラフで測定 してメタノール透過量を決める。上記 (i)の構成を採用した場合、第二の固体高分子電解質は、 厚さ 5 0 μιηの膜としたときの単位面積、 単位時間あたりのメタノール透過量が 3 0 0 m o 1 / c m2/h以下とすることが好ましい。 このような材料を選択することにより、 メ 夕ノールが酸化剤へ到達することを抑制することができ、 上記のクロスオーバーの課題を 克服することできる。 Methanol permeability can be measured as follows. Inject 50 cc of 99.5% methanol on one side and 50 cc of pure water on the other side into a liquid container separated by the electrolyte membrane to be measured (film thickness 50 ΐη, area 1 cm 2 ). Seal the liquid so that it does not evaporate. In pure water The time change of the concentration of methanol permeating the electrolyte membrane to be measured is measured by gas chromatography to determine the amount of methanol permeated. When the configuration (i) is adopted, the second solid polymer electrolyte has a membrane area of 50 μιη and a permeation amount of methanol per unit time of 300 mo 1 / cm 2 / h or less is preferable. By selecting such a material, it is possible to prevent the methanol from reaching the oxidizing agent, and it is possible to overcome the crossover problem.
含水率は、 1 0 0 で 2時間乾燥した被験材料の重量を A、 純水に 2 4時間浸漬した後 の当該被験材料の重量を Bとしたときの (B— A) ZAで表される値である。  The water content is expressed as (B-A) ZA, where A is the weight of the test material dried at 100 for 2 hours and B is the weight of the test material after immersion in pure water for 24 hours. Value.
極性基の含有密度は、 官能基の種類に応じ、 所定の方法を用いて測定することができる。 スルフォン基の場合、 たとえば、 酸素燃焼フラスコ法等によりスルフォン基を硫酸イオン に変換した後、 イオンクロマトグラフィーまたは滴定で定量することができる。 滴定はカ ルポキシァルセナゾを指示薬とし、 0 . 0 1 M過塩素酸バリウムで滴定し、 胄から紫の変 色点を求める。  The content density of the polar group can be measured using a predetermined method according to the type of the functional group. In the case of a sulfone group, for example, it can be quantified by ion chromatography or titration after converting the sulfone group into sulfate ion by an oxygen combustion flask method or the like. The titration is performed using carboxy arsenazo as an indicator, and titration is performed with 0.01 M barium perchlorate, and the purple discoloration point is determined from the body.
フッ素含有率は、 蛍光 X線分析等により定量することができる。  The fluorine content can be quantified by X-ray fluorescence analysis or the like.
(第二の実施形態) (Second embodiment)
本実施形態は、 接着層 1 6 1にも触媒および触媒を担持させた炭素粒子が含まれる点で 第一の実施形態と異なる。  This embodiment is different from the first embodiment in that the adhesive layer 161 also contains a catalyst and carbon particles supporting the catalyst.
本実施形態における電極—電解質接合体の作製方法もとくに制限がないが、 たとえば以 下のようにして作製することができる。  The method for producing the electrode-electrolyte conjugate in the present embodiment is not particularly limited. For example, it can be produced as follows.
触媒層 1 0 6または触媒層 1 1 2は、 第一の実施形態と同様に作製することができる。 接着層 1 6 1は、 第二の固体高分子電解質および触媒を担持させた炭素粒子を溶媒に分散 させ、 ペースト状とした塗布液を触媒層 1 0 6または触媒層 1 1 2の上、 および/または 固体高分子電解質膜 1 1 4の表面に塗布 '乾燥することにより形成することができる。 塗 布液中の炭素粒子と固体高分子電解質粒子とは、 たとえば、 重量比で 1 : 5 ~ 4 0 : 1の 範囲で用いられる。 これにより、 触媒を担持させた炭素粒子を含む接着層 1 6 1を作製す ることができる。 また、 接着層 1 6 1において、 触媒を担持させた炭素粒子の含有率は、 触媒層 1 0 6または触媒層 1 1 2と接する面から固体高分子電解質膜 1 1 4と接する面の 方向に沿って分布を有していてもよい。 たとえば、 接着層 1 6 1の触媒層 1 0 6または触 媒層 1 1 2と接する面において炭素粒子を含み、 固体高分子電解質膜 1 1 4と接する面に おいて炭素粒子を含まないように構成することができる。 The catalyst layer 106 or the catalyst layer 112 can be manufactured in the same manner as in the first embodiment. The adhesive layer 161 is formed by dispersing a carbon particle supporting the second solid polymer electrolyte and the catalyst in a solvent, and forming a paste-like coating solution on the catalyst layer 106 or the catalyst layer 112, and It can be formed by coating and drying on the surface of the solid polymer electrolyte membrane 114. The carbon particles and the solid polymer electrolyte particles in the coating liquid are, for example, in a weight ratio of 1: 5 to 40: 1. Used in range. Thereby, an adhesive layer 161 containing carbon particles carrying a catalyst can be produced. In the adhesive layer 161, the content of the carbon particles supporting the catalyst is determined in the direction from the surface in contact with the catalyst layer 106 or the catalyst layer 112 to the surface in contact with the solid polymer electrolyte membrane 114. Along with a distribution. For example, the surface of the adhesive layer 161, which contacts the catalyst layer 106 or the catalyst layer 112, contains carbon particles, and the surface of the adhesive layer 161, which contacts the polymer electrolyte membrane 114, does not contain carbon particles. Can be configured.
本実施形態において、 接着層 1 6 1にも触媒を担持させた炭素粒子が含まれるので、 接 着層においても電子の導電性を良好にすることができる。 (第三の実施形態)  In the present embodiment, since carbon particles carrying a catalyst are also contained in the adhesive layer 161, the electron conductivity can be improved also in the adhesive layer. (Third embodiment)
本実施形態は、 接着層 1 6 1が第二の固体高分子電解質に加えて、 第一の固体高分子電 解質をも含む点で第一および第二の実施形態と異なる。 こうすることにより、 接着層 1 6 1と触媒層 1 0 6または触媒層 1 1 2との密着性がより顕著に改善される。 この場合、 接 着層 1 6 1中の第二の固体高分子電解質/第一の固体高分子電解質の重量比を、 好ましく は 1 0ノ 1〜 1ノ1 0、 より好ましくは 4/:!〜 1 Z 4とすることができる。 また、 本実 施の形態においても、 第二の実施形態と同様、 接着層 1 6 1は、 触媒を担持させた炭素粒 子を含んでもよい。  This embodiment is different from the first and second embodiments in that the adhesive layer 161 includes the first solid polymer electrolyte in addition to the second solid polymer electrolyte. By doing so, the adhesion between the adhesive layer 161 and the catalyst layer 106 or the catalyst layer 112 is more remarkably improved. In this case, the weight ratio of the second solid polymer electrolyte to the first solid polymer electrolyte in the adhesive layer 16 1 is preferably 10 to 1 to 10, more preferably 4 / :! ~ 1 Z4. Also, in the present embodiment, similarly to the second embodiment, the adhesive layer 161 may include carbon particles supporting a catalyst.
接着層 1 6 1中において、 第一および第二の固体高分子電解質は、 均一に分布していて も不均一に分布していてもよい。 第一および第二の固体高分子電解質を不均一に分布させ る場合、 接着層 1 6 1の触媒層 1 0 6または触媒層 1 1 2と接する面における第一の固体 高分子電解質の含有率が、 接着層 1 6 1の固体高分子電解質膜 1 1 4と接する面における 第二の固体高分子電解質の含有率よりも高くなるように構成することができる。 本実施の 形態において、 接着層 1 6 1および触媒層 1 0 6は第一の固体高分子電解質を含有し、 固 体高分子電解質膜 1 1 4は第二の固体高分子電解質を含有するため、 このようにすれば、 接着層 1 6 1と触媒層 1 0 6または触媒層 1 1 2との密着性を高めることができるととも に、 接着層 1 6 1と固体高分子電解質膜 1 1 4との密着性を高めることもできる。 本実施 の形態においても、 接着層 1 6 1は、 架橋性の置換基を導入した高分子を溶融した状態で 放射線を照射すること等により架橋したものにより構成することもできる。 In the adhesive layer 161, the first and second solid polymer electrolytes may be distributed uniformly or non-uniformly. When the first and second solid polymer electrolytes are unevenly distributed, the content of the first solid polymer electrolyte on the surface of the adhesive layer 161 in contact with the catalyst layer 106 or the catalyst layer 112 However, it can be configured to be higher than the content of the second solid polymer electrolyte on the surface of the adhesive layer 161 in contact with the solid polymer electrolyte membrane 114. In the present embodiment, the adhesive layer 16 1 and the catalyst layer 106 contain the first solid polymer electrolyte, and the solid polymer electrolyte membrane 114 contains the second solid polymer electrolyte. In this way, the adhesion between the adhesive layer 161 and the catalyst layer 106 or the catalyst layer 112 can be improved. In addition, the adhesion between the adhesive layer 161 and the solid polymer electrolyte membrane 114 can be improved. Also in the present embodiment, the adhesive layer 161 can be formed by cross-linking by irradiating radiation in the molten state of a polymer into which a crosslinkable substituent has been introduced.
図 4は、 本実施形態における接着層 1 6 1の一例を詳細に示す断面図である。 ここで、 接着層 1 6 1は、 複数の接着層 1 6 1 a、 1 6 1 b、 1 6 1 c、 1 6 1 d、 1 6 1 eによ り構成することができる。 接着層 1 6 1 aは触媒層 1 0 6または触媒層 1 1 2と接する層、 接着層 1 6 1 eは固体高分子電解質膜 1 1 4と接する層である。 このような構成において、 各接着層 1 6 1 a ~ l 6 1 eは、 第一の固体高分子電解質および第二の固体高分子電解質 の両方、 または少なくともいずれか一方を含む。 接着層 1 6 1 a〜l 6 1 eは、 第二の固 体高分子電解質の第一の固体高分子電解質に対する含有率が、 接着層 1 6 1 e、 接着層 1 6 1 d、 接着層 1 6 1 c、 接着層 1 6 1 b、 接着層 1 6 1 aの順で高くなるように構成さ れる。 接着層 1 6 1 aは、 第二の固体高分子電解質を含まない構成とすることもできる。 また、 接着層 1 6 1 eは第一の固体高分子電解質を含まない構成とすることもできる。 本実施形態における電極—電解質接合体の作製方法もとくに制限がないが、 たとえば以 下のようにして作製することができる。  FIG. 4 is a cross-sectional view illustrating an example of the adhesive layer 161 in the present embodiment in detail. Here, the adhesive layer 16 1 can be composed of a plurality of adhesive layers 16 1 a, 16 1 b, 16 1 c, 16 1 d, and 16 e. The adhesive layer 16 1 a is a layer in contact with the catalyst layer 106 or the catalyst layer 112, and the adhesive layer 16 1 e is a layer in contact with the solid polymer electrolyte membrane 114. In such a configuration, each of the adhesive layers 161a to 161e includes both or at least one of the first solid polymer electrolyte and the second solid polymer electrolyte. In the adhesive layers 16 1 a to l 61 e, the content ratio of the second solid polymer electrolyte to the first solid polymer electrolyte is determined as follows: adhesive layer 16 1 e, adhesive layer 16 1 d, adhesive layer 1 The structure is such that the height is increased in the order of 6 1 c, the adhesive layer 16 1 b, and the adhesive layer 16 1 a. The adhesive layer 161a may be configured not to include the second solid polymer electrolyte. Further, the adhesive layer 161 e may be configured not to include the first solid polymer electrolyte. The method for producing the electrode-electrolyte conjugate in the present embodiment is not particularly limited. For example, it can be produced as follows.
触媒層 1 0 6または触媒層 1 1 2は、 第一の実施形態と同様に作製することができる。 接着層 1 6 1において、 第一および第二の固体高分子電解質を均一に分布させる場合、 第 一および第二の固体高分子電解質を溶媒に分散させ、 ペースト状とした塗布液を触媒層 1 0 6または触媒層 1 1 2の上、 および Zまたは固体高分子電解質膜 1 1 4の表面に塗布 · 乾燥することにより接着層 1 6 1を形成することができる。 塗布液に触媒を担持させた炭 素粒子を含めてもよい。  The catalyst layer 106 or the catalyst layer 112 can be manufactured in the same manner as in the first embodiment. When the first and second solid polymer electrolytes are uniformly distributed in the adhesive layer 161, the first and second solid polymer electrolytes are dispersed in a solvent, and the paste-like coating liquid is applied to the catalyst layer 1. The adhesive layer 16 1 can be formed by coating and drying on 06 or the catalyst layer 112 and on the surface of Z or the solid polymer electrolyte membrane 114. The coating liquid may include carbon particles carrying a catalyst.
接着層 1 6 1において、 図 4を参照して説明したように、 第二の固体高分子電解質の第 一の固体高分子電解質の含有率を異ならせる場合、 接着層 1 6 1は、 以下のようにして作 製することができる。 以下、 図 4を参照して説明する。  As described with reference to FIG. 4, when the content of the first solid polymer electrolyte in the second solid polymer electrolyte is changed in the adhesive layer 161, the adhesive layer 16 It can be made in this way. Hereinafter, description will be made with reference to FIG.
塗布液を固体高分子電解質膜 1 1 4上に塗布する場合、 少なくとも第二の固体高分子電 解質粒子を含む塗布液 eを固体高分子電解質膜 1 1 4上に塗布 ·乾燥させて接着層 1 6 1 eを形成する。 つづいて、 塗布液 eよりも第一の固体高分子電解質の含有率が高くなるよ うにして第一および第二の固体高分子電解質を溶媒に分散させ、 ペースト状とした塗布液 dを接着層 1 6 1 e上に塗布 ·乾燥させて接着層 1 6 1 dを形成する。 徐々に第一の固体 高分子電解質の含有率が高くなるようにした塗布液を塗布 ·乾燥させる工程を繰り返すこ とにより、 固体高分子電解質膜 1 1 4から遠い領域ほど第一の固体高分子電解質の含有率 が高くなるように構成された接着層 1 6 1を形成することができる。 このようにして形成 した接着層 1 6 1を含む固体高分子電解質膜 1 1 4を燃料極 1 0 2および酸化剤極 1 0 8 で挟み、 ホットプレスすることにより、 電極—電解質接合体を得ることができる。 When applying the coating solution on the solid polymer electrolyte membrane 114, at least the second solid polymer electrolyte A coating solution e containing degraded particles is applied to the solid polymer electrolyte membrane 114 and dried to form an adhesive layer 161 e. Subsequently, the first and second solid polymer electrolytes are dispersed in a solvent such that the content of the first solid polymer electrolyte is higher than that of the coating solution e, and the paste-like coating solution d is bonded. Apply and dry on layer 16 1 e to form adhesive layer 16 1 d. By repeating the process of applying and drying a coating solution in which the content of the first solid polymer electrolyte is gradually increased, the first solid polymer is more distant from the solid polymer electrolyte membrane 114. An adhesive layer 161 configured to increase the content of the electrolyte can be formed. An electrode-electrolyte assembly is obtained by sandwiching the solid polymer electrolyte membrane 114 including the adhesive layer 161 formed in this manner between the fuel electrode 102 and the oxidant electrode 108 and hot pressing. be able to.
塗布液を触媒層 1 0 6または触媒層 1 1 2の上に塗布する場合、 少なくとも第一の固体 高分子電解質粒子を含む塗布液 aを触媒層 1 0 6または触媒層 1 1 2の上に塗布。乾燥さ せて接着層 1 6 1 aを形成する。 つづいて、 塗布液 aよりも第二の固体高分子電解質の含 有率が高くなるようにして第一およぴ第二の固体高分子電解質を溶媒に分散させ、 ペース ト状とした塗布液 bを接着層 1 6 1 a上に塗布 ·乾燥させて接着層 1 6 1 bを形成する。 徐々に第二の固体高分子電解質の含有率が高くなるようにした塗布液を塗布 ·乾燥させる 工程を繰り返すことにより、 触媒層 1 0 6または触媒層 1 1 2から遠い領域ほど第二の固 体高分子電解質の含有率が高くなるように構成された接着層 1 6 1を形成することができ る。 このようにして形成した接着層 1 6 1を含む燃料極 1 0 2および酸化剤極 1 0 8で固 体高分子電解質膜 1 1 4を挟み、 ホットプレスすることにより、 電極一電解質接合体を得 ることができる。  When applying the coating solution on the catalyst layer 106 or the catalyst layer 112, apply the coating solution a containing at least the first solid polymer electrolyte particles on the catalyst layer 106 or the catalyst layer 112. Application. Dry to form an adhesive layer 16a. Next, the first and second solid polymer electrolytes are dispersed in a solvent such that the content of the second solid polymer electrolyte is higher than that of the coating solution a, and the paste-like coating solution is formed. b is applied onto the adhesive layer 16 1 a and dried to form an adhesive layer 16 1 b. By repeating the process of applying and drying the coating liquid in which the content of the second solid polymer electrolyte is gradually increased, the second solid polymer electrolyte becomes more distant from the catalyst layer 106 or the catalyst layer 112. It is possible to form the adhesive layer 161 configured to increase the content of the polymer electrolyte. An electrode-electrolyte assembly is obtained by sandwiching the solid polymer electrolyte membrane 114 between the fuel electrode 102 and the oxidant electrode 108 containing the adhesive layer 161 thus formed, and hot pressing. Can be
また、 固体高分子電解質膜 1 1 4上、 および触媒層 1 0 6または触媒層 1 1 2上にそれ ぞれ上記のように接着層 1 6 1を形成した後、 燃料極 1 0 2および酸化剤極 1 0 8で固体 高分子電解質膜 1 1 4を挟み、 ホットプレスすることにより、 電極一電解質接合体を得る こともできる。  After forming the adhesive layer 16 1 on the solid polymer electrolyte membrane 114 and the catalyst layer 106 or the catalyst layer 112 as described above, respectively, the fuel electrode 102 and the oxidation An electrode-electrolyte assembly can also be obtained by sandwiching the solid polymer electrolyte membrane 114 between the agent electrodes 108 and hot pressing.
塗布液を塗布する対象は、 固体高分子電解質膜 1 1 4、 および触媒層 1 0 6または触媒 04819 The coating liquid is applied to the solid polymer electrolyte membrane 114 and the catalyst layer 106 or the catalyst. 04819
23 層 1 1 2の両方またはいずれか一方とすることもできるが、 塗布液が第一および第二の固 体高分子電解質を含む場合、 固体高分子電解質膜 1 1 4に塗布することが好ましい。 カー ポンぺ一パ一等の基体は表面が凹凸形状を有するのに対し、 固体高分子電解質膜 1 1 4は 比較的平坦な面を有しており、 このような平坦な面に塗布液を塗布する方が接着性能が向 上するからである。  It is also possible to use both or any one of the 23 layers 112. However, when the coating solution contains the first and second solid polymer electrolytes, it is preferable to coat the solid polymer electrolyte membrane 114. A substrate such as a carbon paper has an uneven surface, whereas the solid polymer electrolyte membrane 114 has a relatively flat surface, and the coating liquid is applied to such a flat surface. This is because applying the adhesive improves the adhesive performance.
[実施例〗 [Example〗
以下に本発明の固体高分子型燃料電池用電極及びそれを用いた燃料電池について実施例 によって具体的に説明するが、 本発明はこれらに限定されない。  Hereinafter, the electrode for a polymer electrolyte fuel cell of the present invention and a fuel cell using the same will be specifically described with reference to Examples, but the present invention is not limited thereto.
(実施例 1 )  (Example 1)
本実施例では、 第一の固体高分子電解質としてナフイオンを使用し、 第二の固体高分子 電解質としてスルフォン化ポリ (4—フエノキシベンゾィル一 1, 4一フエ二レン) (以下、 P P B Pという) を使用した。 第一の固体高分子電解質は電極表面の触媒層の一部を構成 し、 第二の固体高分子電解質は、 電極表面の触媒層の一部および固体高分子電解質膜を構 成する。 本実施例においては、 燃料極、 酸化剤極ともに貴金属触媒として白金を用いた。 本実施例に係る燃料電池の作製方法について図 2を参照して説明する。  In this example, naphion was used as the first solid polymer electrolyte, and sulfonated poly (4-phenoxybenzoyl-1,1,4-phenylene) (hereinafter, referred to as “the second solid polymer electrolyte”). PPBP). The first solid polymer electrolyte forms a part of the catalyst layer on the electrode surface, and the second solid polymer electrolyte forms a part of the catalyst layer on the electrode surface and the solid polymer electrolyte membrane. In this example, platinum was used as a noble metal catalyst for both the fuel electrode and the oxidizer electrode. A method for manufacturing a fuel cell according to this example will be described with reference to FIG.
まず燃料極 1 0 2および酸化剤極 1 0 8において触媒となる白金を 3 %含有するジニト ロジァミン白金硝酸溶液 5 0 0 gにアセチレンブラック 1 0 g (デンカブラック (登録商 標) ;電気化学工業社製) を混合させて撹拌後、 還元剤として 9 8 %エタノール 6 0 m 1を 添加した。 この溶液を約 9 5 °Cで 8時間攪拌混合し、 触媒をアセチレンブラック粒子に担 持させた。 そして、 この溶液をろ過、 乾燥して触媒担持炭素粒子を得た。 白金の担持量は アセチレンブラックの重量に対し 5 0 %程度であった。  First, 100 g of acetylene black and 100 g of acetylene black (registered trademark) were added to 500 g of dinitrodiamine platinum nitrate solution containing 3% of platinum serving as a catalyst at the fuel electrode 102 and the oxidizer electrode 108. Was mixed and stirred, and then 98 ml of ethanol (60 ml) was added as a reducing agent. This solution was stirred and mixed at about 95 ° C. for 8 hours to support the catalyst on the acetylene black particles. Then, this solution was filtered and dried to obtain catalyst-carrying carbon particles. The supported amount of platinum was about 50% based on the weight of acetylene black.
上記の触媒担持炭素粒子 2 0 O m gと 5 %ナフイオン溶液 (アルコール溶液、 アルドリ ツチ 'ケミカル社製) 3 . 5 m lを混合することにより、 これらの触媒及び炭素粒子の表 面にナフイオンを吸着させた。 こうして得られた分散液を 5 0 °Cにて 3時間超音波分散器 04819 By mixing 20 mg of the above-described catalyst-carrying carbon particles and 3.5 ml of a 5% naphion solution (alcohol solution, Aldrich Co., Ltd.), naphth ions were adsorbed on the surfaces of these catalysts and carbon particles. Was. The dispersion thus obtained is subjected to ultrasonic dispersion at 50 ° C for 3 hours. 04819
24 で分散することによりぺ—スト状とし、 ペースト Aを得た。 このペースト Aを、 カーボン ペーパー (東レ社製: TGP—H— 120) からなる基体にスクリーン印刷法で塗布した 後、 100°Cにて加熱乾燥して燃料極 102および酸化剤極 108を得た。 得られた電極 表面の白金量は 0. 1〜0. 4mg/cm2となった。 The mixture was dispersed in 24 to give a paste, and paste A was obtained. This paste A was applied to a base made of carbon paper (manufactured by Toray Industries, Inc .: TGP-H-120) by screen printing, and then heated and dried at 100 ° C. to obtain a fuel electrode 102 and an oxidizer electrode 108. . The amount of platinum on the surface of the obtained electrode was 0.1 to 0.4 mg / cm 2 .
次に、 微粉末化したポリ (4一フエノキシベンゾィル一 1, 4一フエ二レン)' 10gを Next, 10 g of finely powdered poly (4-phenoxybenzoyl-1,4-phenylene)
95%硫酸 100mlに懸濁させ、 200時間撹拌することによりスルフォン化処理を行 つた。 こうして得られた PP BPを、 十分な蒸留水で洗浄し、 乾燥'粉枠し、 これをジメ チルホルムアミド溶液に溶解させた。 これを溶液 Aとする。 The mixture was suspended in 100 ml of 95% sulfuric acid and stirred for 200 hours to perform a sulfonation treatment. The PP BP thus obtained was washed with sufficient distilled water, dried and powdered, and dissolved in a dimethylformamide solution. This is referred to as solution A.
この溶液 Aをテフロン (登録商標) シート上にキャストした後、 乾燥し、 大きさ 10 c mX 10 c m、 厚さ 30 の固体高分子電解質膜 114を得た。  This solution A was cast on a Teflon (registered trademark) sheet and dried to obtain a solid polymer electrolyte membrane 114 having a size of 10 cm × 10 cm and a thickness of 30.
一方、 上記溶液 Aを燃料極 102および酸化剤極 108の表面に塗布した。 塗布方法は、 刷毛塗り法とした。 塗布後、 乾燥を行い、 各電極の表面に接着層 161を形成した。  On the other hand, the solution A was applied to the surfaces of the fuel electrode 102 and the oxidizer electrode 108. The coating method was a brush coating method. After the application, the coating was dried to form an adhesive layer 161 on the surface of each electrode.
これらの電極で固体高分子電解質膜 114を挟み、 温度 150 °C、 圧力 10 k g f / c m2、 10秒間の条件でホットプレスすることにより電極一電解質接合体を作製した。 さら に、 この電極一電解質接合体を燃料電池の単セル測定用装置にセットして単セルを作製し た。 A solid polymer electrolyte membrane 114 was sandwiched between these electrodes, and hot-pressed at a temperature of 150 ° C., a pressure of 10 kgf / cm 2 and a condition of 10 seconds to produce an electrode-electrolyte assembly. Further, this electrode-electrolyte assembly was set in a single cell measuring device of a fuel cell to produce a single cell.
この単セルに、 10wt%メタノール水溶液および酸素 (1. 1気圧、 25°C) を燃料と してセルの電流電圧特性を測定した。 その結果、 開放電圧 0. 54V、 短絡電流 0. 18 A/cm2が持続的に観測された。 The current-voltage characteristics of the single cell were measured using a 10 wt% aqueous methanol solution and oxygen (1.1 atm, 25 ° C) as fuel. As a result, an open circuit voltage of 0.54 V and a short circuit current of 0.18 A / cm 2 were continuously observed.
上記電極は、 上記固体高分子電解質膜に対する良好な接合性を示しており、 メタノール を燃料とするダイレクトメタノ一ル燃料電池として有効に機能することが確認された。  The above-mentioned electrode showed good bondability to the above-mentioned solid polymer electrolyte membrane, and it was confirmed that the above-mentioned electrode effectively functions as a direct methanol fuel cell using methanol as a fuel.
図 3は本実施例の燃料電池の燃料極 102と固体高分子電解質膜 114、 およびこれら の間に介在する接着層 161を模式的に示した図である。 図示したように、 本実施例の燃 料極 102の触媒層はナフイオンからなる第一の固体高分子電解質 150と、 触媒 (不図 示) を担持した炭素粒子 140からなつている。 接着層 161は PPBPからなる第二の 固体高分子電解質 160を主成分としている。 固体高分子電解質膜 114は PP BPから なっている。 接着層 161および固体高分子電解質膜 114は、 いずれも PP BPを含む ため、 両者の間の密着性は良好である。 一方、 ナフイオンおよび PP BPの粒子が絡み合 うように結合することから、 接着層 161および燃料極 102の間の密着性も良好である。 以上のことから、 接着層 161が固体高分子電解質膜 114と燃料極 102と間のバイン ダの役目を果たし、 固体高分子電解質膜 114と燃料極 102との接合性が良好となり、 この結果、 本実施例における燃料電池の良好な動作に寄与しているものと考えられる。 ここで、 PPBPおよびナフイオンのメタノール透過率および含水率の値を表 1に示す。 FIG. 3 is a diagram schematically showing the fuel electrode 102 and the solid polymer electrolyte membrane 114 of the fuel cell of the present embodiment, and the adhesive layer 161 interposed therebetween. As shown in the drawing, the catalyst layer of the fuel electrode 102 of the present embodiment includes a first solid polymer electrolyte 150 made of naphth ions and carbon particles 140 carrying a catalyst (not shown). Adhesive layer 161 is a second The main component is a solid polymer electrolyte 160. The solid polymer electrolyte membrane 114 is made of PP BP. Since the adhesive layer 161 and the solid polymer electrolyte membrane 114 both contain PPBP, the adhesion between them is good. On the other hand, the adhesion between the adhesive layer 161 and the fuel electrode 102 is also good because naphion and PP BP particles are entangled and bonded. From the above, the adhesive layer 161 functions as a binder between the solid polymer electrolyte membrane 114 and the fuel electrode 102, and the bondability between the solid polymer electrolyte membrane 114 and the fuel electrode 102 is improved. As a result, It is considered that this contributes to good operation of the fuel cell in this embodiment. Table 1 shows the values of the methanol permeability and water content of PPBP and naphion.
(表 1)
Figure imgf000027_0001
本実施例においては、 固体高分子電解質膜 114および第二の固体高分子電解質 160 として、 第一の固体高分子電解質 150よりもメタノール透過性おょぴ含水率の低い材料 を選択していることから、 固体高分子電解質膜 114中のメタノール透過が抑制されてい る。 このことからクロスオーバ一による電池性能の低下が抑制され、 良好な電池特性を有 する燃料電池が得られたと考えられる。
(table 1)
Figure imgf000027_0001
In the present embodiment, as the solid polymer electrolyte membrane 114 and the second solid polymer electrolyte 160, a material having a lower methanol permeability and a lower moisture content than the first solid polymer electrolyte 150 is selected. Thus, permeation of methanol in the solid polymer electrolyte membrane 114 is suppressed. This suggests that a decrease in cell performance due to crossover was suppressed, and that a fuel cell with good cell characteristics was obtained.
(実施例 2) (Example 2)
本実施例でも、 第一の固体高分子電解質としてナフイオンを使用し、 第二の固体高分子 電解質として PPBPを使用した。 本実施例でも、 触媒としては、 燃料極、 酸化剤極とも に白金を用いた。 ,  Also in this example, naphion was used as the first solid polymer electrolyte, and PPBP was used as the second solid polymer electrolyte. Also in this example, platinum was used for the fuel electrode and the oxidant electrode as the catalyst. ,
燃料極 102、 酸化剤極 108、 および固体高分子電解質膜 114は実施例 1と同様に 作製した。 実施例 1と同様にして得た PPBPおよび触媒担持炭素粒子をジメチルホルミ ァミド溶液に溶解させ、 ぺ一スト Bを得た。 ペースト Bを刷毛塗り法で燃料極 102およ び酸化剤極 108の表面に塗布し、 塗布後、 乾燥を行い、 各電極の表面に接着層 161を 形成した。 The fuel electrode 102, the oxidizer electrode 108, and the solid polymer electrolyte membrane 114 were produced in the same manner as in Example 1. PPBP and catalyst-supporting carbon particles obtained in the same manner as in Example 1 were The residue was dissolved in a amide solution to obtain a first B. The paste B was applied to the surfaces of the fuel electrode 102 and the oxidizer electrode 108 by a brush coating method, and dried after application, to form an adhesive layer 161 on the surface of each electrode.
これらの電極で固体高分子電解質膜 114を挟み、 温度 150°C、 圧力 10kg f/c m2、 10秒間の条件でホットプレスすることにより電極一電解質接合体を作製した。 さら に、 この電極一電解質接合体を燃料電池の単セル測定用装置にセットして単セルを作製し た。 A solid polymer electrolyte membrane 114 was sandwiched between these electrodes, and hot-pressed at a temperature of 150 ° C., a pressure of 10 kg f / cm 2 , and for 10 seconds, to produce an electrode-electrolyte assembly. Further, this electrode-electrolyte assembly was set in a single cell measuring device of a fuel cell to produce a single cell.
この単セルに、 10w t %メタノール水溶液および酸素 (1. 1気圧、 25°C) を燃料 としてセルの電流電圧特性を測定した。 その結果、 開放電圧 0. 54V、 短絡電流 0. 1 9 A/cm2が持続的に観測された。 The current-voltage characteristics of the single cell were measured using 10 wt% methanol aqueous solution and oxygen (1.1 atm, 25 ° C) as fuel. As a result, an open-circuit voltage of 0.54 V and a short-circuit current of 0.19 A / cm 2 were continuously observed.
図 5は本実施例の燃料電池の燃料極 102と固体高分子電解質膜 114、 およびこれら の間に介在する接着層 161を模式的に示した図で る。 図示したように、 接着層 161 は P P B Pおよび炭素粒子 140を含む。 接着層 161および固体高分子電解質膜 114 は、 いずれも PPBPを含むため、 両者の間の密着性は良好である。 一方、 ナフイオンお よび P PBPの粒子が絡み合うように結合することから、 接着層 161および燃料極 10 2の間の密着性も良好である。 また、 ここで、 接着層 161にも導電性の炭素粒子 140 が含まれるため、 接着層の電子の伝導性を良好にすることができる。 以上のことから、 接 着層 161の存在により固体高分子電解質膜 114と燃料極 102との接合性が良好とな り、 また接着層においても有機液体燃料を消費することができ、 接着層の電子の伝導性を 良好にすることができるため、 本実施例における燃料電池の良好な動作に寄与しているも のと考えられる。  FIG. 5 is a diagram schematically showing the fuel electrode 102 and the solid polymer electrolyte membrane 114 of the fuel cell of this embodiment, and the adhesive layer 161 interposed therebetween. As shown, the adhesive layer 161 includes P P BP and carbon particles 140. Since both the adhesive layer 161 and the solid polymer electrolyte membrane 114 contain PPBP, the adhesion between them is good. On the other hand, since the particles of the naphth ion and the PPBP are entangled with each other, the adhesion between the adhesive layer 161 and the fuel electrode 102 is also good. Here, since the conductive carbon particles 140 are also included in the adhesive layer 161, the electron conductivity of the adhesive layer can be improved. From the above, the bonding property between the solid polymer electrolyte membrane 114 and the fuel electrode 102 is improved due to the presence of the bonding layer 161, and the organic liquid fuel can be consumed also in the bonding layer. It is considered that the electron conductivity can be improved, which contributes to the favorable operation of the fuel cell in this embodiment.
(実施例 3) , (Example 3),
本実施例でも、 第一の固体高分子電解質としてナフイオンを使用し、 第二の固体高分子 電解質として PP BPを使用した。 本実施例でも、 触媒としては、 燃料極、 酸化剤極とも PC画細 19 Also in this example, naphion was used as the first solid polymer electrolyte, and PP BP was used as the second solid polymer electrolyte. Also in this embodiment, as the catalyst, both the fuel electrode and the oxidizer electrode are used. PC picture 19
27 に白金を用いた。  Platinum was used for 27.
燃料極 102、 酸化剤極 108、 および固体高分子電解質膜 114は実施例 1と同様に 作製した。 実施例 1と同様の方法で得られた P P B Pの溶液 Aを、 実施例 1と同様の方法 で得られたナフイオンのペースト Aに混合し、 ペースト Cおよびペースト Dを得た。 この とき、 ペースト C中のナフイオンと PPBPとは、 重量比で 1 : 1である。 また、 ぺ一ス ト D中のナフイオンと PPBPとは、 重量比で 4: 1である。  The fuel electrode 102, the oxidizer electrode 108, and the solid polymer electrolyte membrane 114 were produced in the same manner as in Example 1. The solution A of PPPBP obtained in the same manner as in Example 1 was mixed with the naphion paste A obtained in the same manner as in Example 1 to obtain a paste C and a paste D. At this time, the naphion and the PPBP in the paste C are in a weight ratio of 1: 1. Naphion in PP D and PPBP are 4: 1 by weight.
まず、 ペースト Cを刷毛塗り法で固体高分子電解質膜 114の両面に塗布し、 塗布後、 乾燥させた。 次いで、 ペースト Dを刷毛塗り法でペースト C上に塗布し、 塗布後、 乾燥さ せた。 これにより、 固体高分子電解質膜 114の両面にペースト Cおよびペースト Dによ り構成された接着層 161を形成した。 これを用いて、 実施例 1と同様にホットプレスす ることにより、 電極一電解質接合体を作製した。 この電極一電解質接合体を燃料電池の単 セル測定用装置にセットして単セルを作製した。  First, paste C was applied to both sides of the solid polymer electrolyte membrane 114 by a brush coating method, and dried after application. Next, paste D was applied onto paste C by a brush coating method, and dried after application. As a result, an adhesive layer 161 composed of the paste C and the paste D was formed on both surfaces of the solid polymer electrolyte membrane 114. Using this, hot pressing was performed in the same manner as in Example 1 to produce an electrode-electrolyte assembly. This electrode-electrolyte assembly was set in a unit for measuring a single cell of a fuel cell to produce a single cell.
この単セルに、 1 Owt %メタノール水溶液および酸素 (1. 1気圧、 25°C) を燃料 としてセルの電流電圧特性を測定した。 その結果、 開放電圧 0. 54V、 短絡電流 0. 1 9 A/ cm 2が持続的に観測された。 The current-voltage characteristics of the single cell were measured using a 1 Owt% methanol aqueous solution and oxygen (1.1 atm, 25 ° C) as fuel. As a result, an open circuit voltage of 0.54 V and a short circuit current of 0.19 A / cm 2 were continuously observed.
図 6は本実施例の燃料電池の燃料極 102と固体高分子電解質膜 114、 およびこれら の間に介在する接着層 161を模式的に示した図である。 図示したように、 接着層 161 は、 固体高分子電解質膜 114に近い領域では第二の固体高分子電解質 160 (PPBP) の含有率が高く、 触媒層 106に近い領域では第一の固体高分子電解質 150 (ナフィォ ン) の含有率が高くなるように構成される。 接着層 161の固体高分子電解質膜 114に 近い領域において、 PPBPの含有率が高いため、 両者の間の密着性は良好である。 一方、 接着層 161の触媒層 106に近い領域において、 ナフイオンの含有率が高いため、 接着 層 161および燃料極 102の間の密着性も良好である。 以上のことから、 接着層 161 の存在により固体高分子電解質膜 114と燃料極 102との接合性が良好となり、 本実施 例における燃料電池の良好な動作に寄与しているものと考えられる。 (実施例 4) FIG. 6 is a diagram schematically showing the fuel electrode 102 and the solid polymer electrolyte membrane 114 of the fuel cell of the present embodiment, and the adhesive layer 161 interposed therebetween. As shown in the figure, the adhesive layer 161 has a high content of the second solid polymer electrolyte 160 (PPBP) in a region near the solid polymer electrolyte membrane 114 and a first solid polymer polymer in a region near the catalyst layer 106. It is configured to increase the content of electrolyte 150 (Nafion). In the region of the adhesive layer 161 near the solid polymer electrolyte membrane 114, the PPBP content is high, so that the adhesion between the two is good. On the other hand, in a region of the adhesive layer 161 close to the catalyst layer 106, the content of naphtho ions is high, so that the adhesion between the adhesive layer 161 and the fuel electrode 102 is also good. From the above, it is considered that the presence of the adhesive layer 161 improves the bondability between the solid polymer electrolyte membrane 114 and the fuel electrode 102, and contributes to the good operation of the fuel cell in this embodiment. (Example 4)
本実施例でも、 第一の固体高分子電解質としてナフイオンを使用し、 第二の固体高分子 電解質として PPBPを使用した。 本実施例でも、 触媒としては、 燃料極、 酸化剤極とも に白金を用いた。  Also in this example, naphion was used as the first solid polymer electrolyte, and PPBP was used as the second solid polymer electrolyte. Also in this example, platinum was used for the fuel electrode and the oxidant electrode as the catalyst.
燃料極 102、 酸化剤極 108、 および固体高分子電解質膜 114は実施例 1と同様に 作製した。 実施例 3と同様のペースト Cおよびペースト Dにそれぞれ触媒担持炭素粒子 2 OOmgを加え、 ペースト Eおよびペースト Fとした。  The fuel electrode 102, the oxidizer electrode 108, and the solid polymer electrolyte membrane 114 were produced in the same manner as in Example 1. To the same paste C and paste D as in Example 3, 2 OOmg of the catalyst-supporting carbon particles were added, respectively, to obtain paste E and paste F.
まず、 ペースト Eを刷毛塗り法で固体高分子電解質膜 114の両面に塗布し、 塗布後、 乾燥させた。 次いで、 ペースト Fを刷毛塗り法でペースト E上に塗布し、 塗布後、 乾燥さ せた。 これにより、 固体高分子電解質膜 114の両面にペースト Eおよびペースト Fによ り構成された接着層 161を形成した。 これを用いて、 実施例 1と同様にホットプレスす ることにより、 電極一電解質接合体を作製した。 この電極一電解質接合体を燃料電池の単 セル測定用装置にセットして単セルを作製した。  First, paste E was applied to both sides of solid polymer electrolyte membrane 114 by a brush coating method, and dried after application. Next, paste F was applied on paste E by a brush coating method, and dried after application. Thus, an adhesive layer 161 composed of the paste E and the paste F was formed on both surfaces of the solid polymer electrolyte membrane 114. Using this, hot pressing was performed in the same manner as in Example 1 to produce an electrode-electrolyte assembly. This electrode-electrolyte assembly was set in a unit for measuring a single cell of a fuel cell to produce a single cell.
この単セルに、 1 Owt %メタノール水溶液おょぴ酸素 (1. 1気圧、 25°C) を燃料 としてセルの電流電圧特性を測定した。 その結果、 開放電圧 0. 54V、 短絡電流 0. 2 The current-voltage characteristics of the single cell were measured using 1 Owt% methanol aqueous solution and oxygen (1.1 atm, 25 ° C) as fuel. As a result, open circuit voltage 0.54V, short circuit current 0.2
OA/cm2が持続的に観測された。 OA / cm 2 was continuously observed.
図 7は本実施例の燃料電池の燃料極 102と固体高分子電解質膜 114、 およびこれら の間に介在する接着層 161を模式的に示した図である。 図示したように、 接着層 161 は、 固体高分子電解質膜 114に近い領域では第二の固体高分子電解質 160 (PPBP) の含有率が高く、 触媒層 106に近い領域では第一の固体高分子電解質 150 (ナフィォ ン) の含有率が高くなるように構成される。 また、 接着層 161は、 炭素粒子 140をも 含む。 本実施例において、 実施例 3と同様に、 接着層 161の存在により固体高分子電解 質膜 114と燃料極 102との接合性が良好となる。 また、 接着層 161には導電性の炭 素粒子 140も含まれるため、 接着層の電子の伝導性を良好にすることができる。 これに より、 本実施例における燃料電池が良好な動作を示すと考えられる。 (比較例 1 ) FIG. 7 is a diagram schematically showing the fuel electrode 102 and the solid polymer electrolyte membrane 114 of the fuel cell of the present embodiment, and the adhesive layer 161 interposed therebetween. As shown in the figure, the adhesive layer 161 has a high content of the second solid polymer electrolyte 160 (PPBP) in a region near the solid polymer electrolyte membrane 114 and a first solid polymer polymer in a region near the catalyst layer 106. It is configured to increase the content of electrolyte 150 (Nafion). Adhesive layer 161 also contains carbon particles 140. In the present embodiment, as in the third embodiment, the bonding property between the solid polymer electrolyte membrane 114 and the fuel electrode 102 is improved by the presence of the adhesive layer 161. In addition, since the adhesive layer 161 also contains conductive carbon particles 140, the electron conductivity of the adhesive layer can be improved. Accordingly, it is considered that the fuel cell in the present example shows good operation. (Comparative Example 1)
本比較例では、 燃料極 1 0 2および酸化剤極 1 0 8を構成する第一の固体高分子電解質 と、 固体高分子電解質膜 1 1 4を構成する第二の固体高分子電解質とを、 いずれもナフィ オンとし、 接着層 1 6 1を設けない構成とした。 ここで、 第一の固体高分子電解質は電極 表面の触媒層の一部を構成し、 第二の固体高分子電解質は固体高分子電解質膜を構成する。 固体高分子電解質膜 1 1 4は、 P P B Pをナフイオンに代えたこと以外は上記実施例と 同様の方法により作製した。  In this comparative example, the first solid polymer electrolyte constituting the fuel electrode 102 and the oxidant electrode 108, and the second solid polymer electrolyte constituting the solid polymer electrolyte membrane 114, In each case, Nafion was used, and no adhesive layer 16 1 was provided. Here, the first solid polymer electrolyte forms a part of the catalyst layer on the electrode surface, and the second solid polymer electrolyte forms a solid polymer electrolyte membrane. The solid polymer electrolyte membrane 114 was produced in the same manner as in the above example, except that PPBP was changed to naphion.
また、 燃料極 1 0 2および酸化剤極 1 0 8は、 実施例 1と同様にして作製した。  The fuel electrode 102 and the oxidant electrode 108 were produced in the same manner as in Example 1.
つづいて燃料極 1 0 2および酸化剤極 1 0 8で上記固体高分子電解質膜 1 1 4を挾み、 温度 1 5 0 、 圧力 1 0 k g f / c m2、 1 0秒間の条件でホットプレスすることにより電 極一電解質接合体を作製した。 Subsequently, the solid polymer electrolyte membrane 114 is sandwiched between the fuel electrode 102 and the oxidizer electrode 108, and hot-pressed at a temperature of 150, a pressure of 10 kgf / cm 2 , and 10 seconds. As a result, an electrode-electrolyte assembly was produced.
さらに、 これらを燃料電池の単セル測定用装置にセットして単セルを作製した。  Further, these were set in an apparatus for measuring a single cell of a fuel cell to produce a single cell.
この単セルに、 1 0 wt%メタノール水溶液および酸素 (1 . 1気圧、 2 5 °C)を燃料とし てセルの電流電圧特性を測定した。 その結果、 開放電圧 0 . 4 5 V、 短絡電流 0 . 0 9 A / c m 2が観測された。 The current-voltage characteristics of the single cell were measured using a 10 wt% methanol aqueous solution and oxygen (1.1 atm, 25 ° C) as fuel. As a result, an open-circuit voltage of 0.45 V and a short-circuit current of 0.09 A / cm 2 were observed.
本比較例では、 燃料極から酸化剤極へのメタノールのクロスオーバ一が発生したため電 池効率が低下したものと推察される。  In this comparative example, it is inferred that the battery efficiency was lowered due to crossover of methanol from the fuel electrode to the oxidant electrode.
(比較例 2 ) (Comparative Example 2)
本比較例では、 第一の固体高分子電解質および第二の固体高分子電解質として P P B P を使用し、 接着層 1 6 1を設けない構成とした。 ここで、 第一の固体高分子電解質は電極 表面の触媒層の一部を構成し、 第二の固体高分子電解質は固体高分子電解質膜を構成する。 固体高分子電解質膜 1 1 4は上記実施例と同様の方法により、 P P B Pを用いて作製し た。  In this comparative example, PBPBP was used as the first solid polymer electrolyte and the second solid polymer electrolyte, and no adhesive layer 161 was provided. Here, the first solid polymer electrolyte forms a part of the catalyst layer on the electrode surface, and the second solid polymer electrolyte forms a solid polymer electrolyte membrane. The solid polymer electrolyte membrane 114 was produced using PBP in the same manner as in the above example.
また、 燃料極 1 0 2および酸化剤極 1 0 8は、 以下のようにして作製した。 まず実施例 1の溶液 A (PPBP含有) に、 実施例 1と同様にして得た触媒担持炭素粒子を添加し、 分散液を得た。 こうして得られた分散液を 50 °Cにて 3時間超音波分散器で分散すること によりペースト状とし、 ペースト Bを得た。 このペースト Bを、 カーボンペーパー (東レ 社製: TGP— H— 120) である基体 104および基体 110にスクリーン印刷法で塗 布した後、 100でにて加熱乾燥して燃料極 102および酸化剤極 108を得た。 得られ た電極表面の白金量は 0. 1〜0. 4mg/cm2となった。 The fuel electrode 102 and the oxidizer electrode 108 were prepared as follows. First, the embodiment The catalyst-supporting carbon particles obtained in the same manner as in Example 1 were added to Solution A (containing PPBP) of Example 1 to obtain a dispersion. The dispersion thus obtained was dispersed in an ultrasonic disperser at 50 ° C. for 3 hours to obtain a paste, and paste B was obtained. This paste B is applied by screen printing to the bases 104 and 110 made of carbon paper (manufactured by Toray: TGP-H-120), and then heated and dried at 100 to dry the fuel electrode 102 and the oxidizer electrode. 108 was obtained. The amount of platinum on the obtained electrode surface was 0.1 to 0.4 mg / cm 2 .
つづいて燃料極 102および酸化剤極 108で上記固体高分子電解質膜 114を挟み、 温度 150°C、 圧力 10kg fZcm2、 10秒間の条件でホットプレスすることにより電 極一電解質接合体を作製した。 Subsequently, the solid polymer electrolyte membrane 114 was sandwiched between the fuel electrode 102 and the oxidizer electrode 108, and hot-pressed at a temperature of 150 ° C., a pressure of 10 kg fZcm 2 and a duration of 10 seconds to produce an electrode-electrolyte assembly. .
さらに、 これらを燃料電池の単セル測定用装置にセットして単セルを作製した。 上記実 施例と同様の放電試験を行ったが、 安定な放電を確認することはできなかった。  Further, these were set in an apparatus for measuring a single cell of a fuel cell to produce a single cell. A discharge test similar to that of the above example was performed, but no stable discharge could be confirmed.
本比較例では、 図 3における第一の固体高分子電解質 150 (ナフイオン) が第二の固 体高分子電解質 160 (PPBP) によって置き換わった構成となっている。 この第二の 固体高分子電解質 160 (PPBP) は、 表 1に示したように第一の固体高分子電解質 1 50 (ナフイオン) よりもメタノール透過率および含水率が劣る。 そのため、 燃料極から 酸化剤極への水素ィオンの移動が不充分となり、 電池として安定に機能しなかったものと 推察される。  This comparative example has a configuration in which the first solid polymer electrolyte 150 (naphion) in FIG. 3 is replaced by the second solid polymer electrolyte 160 (PPBP). As shown in Table 1, the second solid polymer electrolyte 160 (PPBP) is inferior in methanol permeability and water content to the first solid polymer electrolyte 150 (Naphion). Therefore, it is presumed that the movement of hydrogen ions from the fuel electrode to the oxidizer electrode was insufficient, and the battery did not function stably.
(比較例 3) (Comparative Example 3)
本比較例では、 第一の固体高分子電解質としてナフイオンを使用し、 第二の固体高分子 電解質として PPBPを使用し、 接着層 161を設けない構成とした。 ここで、 第一の固 体高分子電解質は電極表面の触媒層の一部を構成し、 第二の固体高分子電解質は固体高分 子電解質膜を構成した。  In this comparative example, a configuration was adopted in which naphthion was used as the first solid polymer electrolyte, PPBP was used as the second solid polymer electrolyte, and the adhesive layer 161 was not provided. Here, the first solid polymer electrolyte constituted part of a catalyst layer on the electrode surface, and the second solid polymer electrolyte constituted a solid polymer electrolyte membrane.
燃料極 102および酸化剤極 108、 固体高分子電解質膜 114を実施例 1と同様の方 法により作製した後、 燃料極 102および酸化剤極 108と、 固体高分子電解質膜 114 とを熱圧着したが、 両者が充分に接合せず、 評価に耐えうる燃料電池を得ることはできな かった。 After preparing the fuel electrode 102, the oxidant electrode 108, and the solid polymer electrolyte membrane 114 by the same method as in Example 1, the fuel electrode 102, the oxidant electrode 108, and the solid polymer electrolyte membrane 114 Although the two were thermocompression bonded, the two were not sufficiently joined, and a fuel cell that could withstand the evaluation could not be obtained.
以上の実施例において、 酸化剤極 1 0 8の貴金属触媒として白金一ルテニウム触媒を用 いた場合、 各実施例において、 さらに安定的な電池特性を有することが示された。 前記実施態様及び実施例は例示のために記載したもので、 本発明は前記実施態様に限定 されるべきではなく、 種々の修正や変形が、 本発明の範囲から逸脱することなく当業者に より行われる。  In the above examples, when a platinum-ruthenium catalyst was used as the noble metal catalyst of the oxidant electrode 108, it was shown that each of the examples had more stable battery characteristics. The above embodiments and examples are described by way of example, and the present invention should not be limited to the above embodiments, and various modifications and variations may be made by those skilled in the art without departing from the scope of the present invention. Done.

Claims

請求の範囲 The scope of the claims
1 . 第一の固体高分子電解質および触媒物質を含む触媒電極と、 固体高分子電解質膜と、 前記触媒電極と前記固体高分子電解質膜との間に設けられ、 第二の高分子電解質を含む接 着層と、 を有することを特徴とする燃料電池。 1. a catalyst electrode including a first solid polymer electrolyte and a catalyst substance; a solid polymer electrolyte membrane; a second polymer electrolyte provided between the catalyst electrode and the solid polymer electrolyte membrane; A fuel cell, comprising: an adhesive layer;
2 . 請求項 1に記載の燃料電池において、 前記接着層と前記固体高分子電解質膜とが接 していることを特徵とする燃料電池。 2. The fuel cell according to claim 1, wherein the adhesive layer and the solid polymer electrolyte membrane are in contact with each other.
3 . 請求項 1に記載の燃料電池において、 前記接着層と前記触媒電極とが接しているこ とを特徴とする燃料電池。 3. The fuel cell according to claim 1, wherein the adhesive layer and the catalyst electrode are in contact with each other.
4 . 請求項 1に記載の燃料電池において、 前記第二の固体高分子電解質は、 前記第一の 固体高分子電解質よりも前記固体高分子電解質膜に対する密着性が高いことを特徴とする 燃料電池。 4. The fuel cell according to claim 1, wherein the second solid polymer electrolyte has higher adhesion to the solid polymer electrolyte membrane than the first solid polymer electrolyte. .
5 . 請求項 1に記載の燃料電池において、 前記第二の固体高分子電解質は、 前記固体高 分子電解質膜を構成する固体高分子電解質またはその誘導体からなることを特徴とする燃 料電池。 5. The fuel cell according to claim 1, wherein the second solid polymer electrolyte comprises a solid polymer electrolyte constituting the solid polymer electrolyte membrane or a derivative thereof.
6 . 請求項 1に記載の燃料電池において、 前記触媒電極に有機液体燃料が供給されるこ とを特徴とする燃料電池。 6. The fuel cell according to claim 1, wherein an organic liquid fuel is supplied to the catalyst electrode.
7 . 請求項 6に記載の燃料電池において、 前記有機液体燃料がメタノールであることを 特徴とする燃料電池。 7. The fuel cell according to claim 6, wherein the organic liquid fuel is methanol.
8. 請求項 1に記載の燃料電池において、 前記第二の固体高分子電解質は、 前記第一の 固体高分子電解質よりも前記有機液体燃料の透過性が低いことを特徴とする燃料電'池。 8. The fuel cell according to claim 1, wherein the second solid polymer electrolyte has a lower permeability of the organic liquid fuel than the first solid polymer electrolyte. .
9. 請求項 1に記載の燃料電池において、 前記第二の固体高分子電解質は、 前記第一の 固体高分子電解質よりも含水率が低いことを特徴とする燃料電池。 9. The fuel cell according to claim 1, wherein the second solid polymer electrolyte has a lower moisture content than the first solid polymer electrolyte.
10. 請求項 1に記載の燃料電池において、 前記第一の固体高分子電解質および前記第 二の固体高分子電解質が、 いずれも、 プロトン酸基を含むことを特徴とする燃料電池。 10. The fuel cell according to claim 1, wherein each of the first solid polymer electrolyte and the second solid polymer electrolyte includes a proton acid group.
11. 請求項 1に記載の燃料電池において、 前記第一の固体高分子電解質は、 フッ素を 含有する高分子からなることを特徴とする燃料電池。 11. The fuel cell according to claim 1, wherein the first solid polymer electrolyte is made of a polymer containing fluorine.
12. 請求項 1に記載の燃料電池において、 前記第二の固体高分子電解質は、 フッ素を 含まない高分子からなることを特徴とする燃料電池。 12. The fuel cell according to claim 1, wherein the second solid polymer electrolyte is made of a polymer containing no fluorine.
13. 請求項 1に記載の燃料電池において、 前記第二の固体高分子電解質は、 芳香族を 含有する高分子からなることを特徴とする燃料電池。 13. The fuel cell according to claim 1, wherein the second solid polymer electrolyte is made of an aromatic-containing polymer.
14. 請求項 1に記載の燃料電池において、 前記接着層は、 前記第二の高分子電解質を 主成分として構成されたことを特徴とする燃料電池。 14. The fuel cell according to claim 1, wherein the adhesive layer is composed mainly of the second polymer electrolyte.
15. 請求項 1に記載の燃料電池において、 前記接着層は、 さらに、 前記第一の高分子 電解質を含むことを特徴とする燃料電池。 15. The fuel cell according to claim 1, wherein the adhesive layer further includes the first polymer electrolyte.
16. 請求項 1に記載の燃料電池において、 前記接着層は、 前記触媒電極おょぴ前記固 体高分子電解質膜に接して設けられ、 前記接着層の前記触媒電極と接する面における前記 第二の固体高分子電解質の含有率が、 前記接着層の前記固体高分子電解質膜と接する面に おける前記第二の固体高分子の含有率よりも低いことを特徴とする燃料電池。 16. The fuel cell according to claim 1, wherein the adhesive layer includes the catalyst electrode and the solid electrode. The second solid polymer electrolyte in a surface of the adhesive layer in contact with the catalyst electrode, wherein the content of the second solid polymer electrolyte in the surface of the adhesive layer in contact with the catalyst electrode is the same as that in the surface of the adhesive layer in contact with the solid polymer electrolyte membrane. A fuel cell, wherein the content is lower than the content of the second solid polymer.
1 7 . 請求項 1に記載の燃料電池において、 前記接着層は、 触媒物質を含むことを特徴 とする燃料電池。 17. The fuel cell according to claim 1, wherein the adhesive layer contains a catalytic substance.
1 8 . 請求項 1 7に記載の燃料電池において、 前記接着層は、 前記触媒電極および前記 固体高分子電解質膜に接して設けられ、 前記接着層の前記触媒電極と接する面における前 記触媒物質の含有率が、 前記接着層の前記固体高分子電解質膜と接する面における前記触 媒物質の含有率よりも高いことを特徴とする燃料電池。 18. The fuel cell according to claim 17, wherein the adhesive layer is provided in contact with the catalyst electrode and the solid polymer electrolyte membrane, and the catalyst substance on a surface of the adhesive layer in contact with the catalyst electrode. Wherein the content of the catalyst layer is higher than the content of the catalyst substance on the surface of the adhesive layer in contact with the solid polymer electrolyte membrane.
1 9 . 請求項 1に記載の燃料電池において、 前記触媒物質は、 触媒金属と、 前記触媒金 属を担持した導電粒子とを含むことを特徴とする燃料電池。 19. The fuel cell according to claim 1, wherein the catalyst material includes a catalyst metal and conductive particles carrying the catalyst metal.
2 0 . 触媒物質および第一の固体高分子電解質を含む電極層と、 該電極層上に形成され た第二の固体高分子電解質を含む接着層と、 を有することを特徴とする燃料電池用電極。 20. A fuel cell comprising: an electrode layer containing a catalyst substance and a first solid polymer electrolyte; and an adhesive layer containing a second solid polymer electrolyte formed on the electrode layer. electrode.
2 1 . 請求項 2 0に記載の燃料電池用電極において、 前記第二の固体高分子電解質は、 前記第一の固体高分子電解質よりもメタノール透過性が低いことを特徴とする燃料電池用 21. The fuel cell electrode according to claim 20, wherein the second solid polymer electrolyte has a lower methanol permeability than the first solid polymer electrolyte.
2 2 . 請求項 2 0に記載の燃料電池用電極において、 前記第;の固体高分子電解質は、 前記第一の固体高分子電解質よりも含水率が低いことを特徴とする燃料電池用電極。 22. The electrode for a fuel cell according to claim 20, wherein the second solid polymer electrolyte has a lower moisture content than the first solid polymer electrolyte.
2 3 . 請求項 2 0に記載の燃料電池用電極において、 前記第一の固体高分子電解質およ び前記第二の固体高分子電解質が、 いずれも、 プロトン酸基を含むことを特徴とする燃料 電池用電極。 23. The fuel cell electrode according to claim 20, wherein the first solid polymer electrolyte and the second solid polymer electrolyte both contain a protonic acid group. Electrodes for fuel cells.
2 4 . 請求項 2 0に記載の燃料電池用電極において、 前記第一の固体高分子電解質は、 フッ素を含有する高分子からなることを特徴とする燃料電池用電極。 24. The fuel cell electrode according to claim 20, wherein the first solid polymer electrolyte is made of a polymer containing fluorine.
2 5 . 請求項 2 0に記載の燃料電池用電極において、 前記第二の固体高分子電解質は、 フッ素を含まない高分子からなることを特徴とする燃料電池用電極。 25. The fuel cell electrode according to claim 20, wherein the second solid polymer electrolyte is made of a polymer containing no fluorine.
2 6 . 請求項 2 0に記載の燃料電池用電極において、 前記第二の固体高分子電解質は、 芳香族を含有する高分子からなることを特徴とする燃料電池用電極。 26. The fuel cell electrode according to claim 20, wherein the second solid polymer electrolyte is made of an aromatic-containing polymer.
2 7 . 請求項 2 0に記載の燃料電池用電極において、 前記触嫫層は、 前記第一の固体高 分子電解質を含むことを特徴とする燃料電池用電極。 27. The fuel cell electrode according to claim 20, wherein the contact layer includes the first solid polymer electrolyte.
2 8 . 請求項 2 0に記載の燃料電池用電極において、 前記接着層は、 前記触媒層に接し て設けられ、 前記接着層の前記触媒層と接する面における前記第二の固体高分子電解質の 含有率が、 当該触媒層と接する面とは反対の面における前記第二の固体高分子電解質の含 有率よりも低い'ことを特徴とする燃料電池用電極。 28. The fuel cell electrode according to claim 20, wherein the adhesive layer is provided in contact with the catalyst layer, and the second solid polymer electrolyte is provided on a surface of the adhesive layer in contact with the catalyst layer. An electrode for a fuel cell, wherein the content is lower than the content of the second solid polymer electrolyte on a surface opposite to a surface in contact with the catalyst layer.
2 9 . 請求項 2 0に記載の燃料電池用電極において、 前記接着層は、 触媒物質を含むこ とを特徴とする燃料電池用電極。 29. The fuel cell electrode according to claim 20, wherein the adhesive layer contains a catalytic substance.
3 0 . 請求項 2 9に記載の燃料電池用電極において、 前記接着層は、 前記触媒層に接し て設けられ、 前記接着層の前記触媒層と接する面における前記触媒物質の含有率が、 当該 触媒層と接する面とは反対の面における前記触媒物質の含有率よりも高いことを特徴とす る燃料電池用電極。 30. The fuel cell electrode according to claim 29, wherein the adhesive layer is in contact with the catalyst layer. Wherein the content of the catalyst substance on the surface of the adhesive layer that is in contact with the catalyst layer is higher than the content of the catalyst substance on the surface opposite to the surface that is in contact with the catalyst layer. Electrodes for fuel cells.
3 1 . 請求項 2 0に記載の燃料電池用電極において、 前記触媒物質は、 触媒金属と、 前 記触媒金属を担持した導電粒子とを含むことを特徴とする燃料電池用電極。 31. The fuel cell electrode according to claim 20, wherein the catalyst substance comprises a catalyst metal and conductive particles carrying the catalyst metal.
3 2 . 基体上に触媒層、 接着層がこの順で形成された燃料電池用電極の製造方法であつ て、 触媒金属を担持した導電粒子と、 第一の固体高分子電解質を含む粒子とを含有する第 一の塗布液を基体上に塗布して前記触媒層を形成する工程と、 前記第一の固体高分子電解 質とは異なる高分子からなる第二の固体高分子電解質を含む粒子を含有する第二の塗布液 を前記触媒層上に塗布して前記接着層を形成する工程と、 を含むことを特徴とする燃料電 池用電極の製造方法。 32. A method for producing a fuel cell electrode in which a catalyst layer and an adhesive layer are formed in this order on a substrate, comprising: a conductive particle carrying a catalyst metal; and a particle containing a first solid polymer electrolyte. Applying the first coating solution to the substrate to form the catalyst layer; and forming particles containing a second solid polymer electrolyte made of a polymer different from the first solid polymer electrolyte. Coating the second coating solution contained on the catalyst layer to form the adhesive layer. A method for producing an electrode for a fuel cell, comprising:
3 3 . 請求項 3 2に記載の燃料電池用電極の製造方法において、 前記第二の固体高分子 電解質は、 前記第一の固体高分子電解質よりもメタノール透過性が低いことを特徴とする 燃料電池用電極の製造方法。 33. The method for producing an electrode for a fuel cell according to claim 32, wherein the second solid polymer electrolyte has a lower methanol permeability than the first solid polymer electrolyte. A method for manufacturing a battery electrode.
3 4 . 請求項 3 2に記載の燃料電池用電極の製造方法において、 前記第二の固体高分子 電解質は、 前記第一の固体高分子電解質よりも含水率が低いことを特徴とする燃料電池用 電極の製造方法。 34. The method for manufacturing a fuel cell electrode according to claim 32, wherein the second solid polymer electrolyte has a lower moisture content than the first solid polymer electrolyte. For manufacturing electrodes.
3 5 . 請求項 3 2に記載の燃料電池用電極の製造方法におい!;、 前記第一の固体高分子 電解質および前記第二の固体高分子電解質が、 いずれも、 プロトン酸基を含むことを特徴 とする燃料電池用電極の製造方法。 35. A method for manufacturing an electrode for a fuel cell according to claim 32! A method for producing an electrode for a fuel cell, wherein each of the first solid polymer electrolyte and the second solid polymer electrolyte contains a protonic acid group;
3 6 . 請求項 3 2に記載の燃料電池用電極の製造方法において、 前記第一の固体高分子 電解質は、 フッ素を含有する高分子からなることを特徴とする燃料電池用電極の製造方法。 36. The method for manufacturing an electrode for a fuel cell according to claim 32, wherein the first solid polymer electrolyte is made of a polymer containing fluorine.
3 7 . 請求項 3 2に記載の燃料電池用電極の製造方法において、 前記第二の固体高分子 電解質は、 フッ素を含まない高分子からなることを特徴とする燃料電池用電極の製造方法。 37. The method for producing a fuel cell electrode according to claim 32, wherein the second solid polymer electrolyte is made of a polymer containing no fluorine.
3 8 . 請求項 3 2に記載の燃料電池用電極の製造方法において、 前記第二の固体高分子 電解質は、 芳香族を含有する高分子からなることを特徴とする燃料電池用電極の製造方法。 38. The method for manufacturing a fuel cell electrode according to claim 32, wherein the second solid polymer electrolyte is made of a polymer containing an aromatic compound. .
3 9 . 請求項 3 2に記載の燃料電池用電極の製造方法において、 前記第二の塗布液は、 前記第一の固体高分子電解質を含む粒子を含むことを特徴とする燃料電池用電極の製造方 法。 39. The method for producing an electrode for a fuel cell according to claim 32, wherein the second coating solution comprises a particle containing the first solid polymer electrolyte. Production method.
4 0 . 請求項 3 9に記載の燃料電池用電極の製造方法において、 前記接着層を形成する 工程は、 前記第一の固体高分子電解質を含む粒子の含有率が異なる複数の塗布液を塗布す る工程を含むことを特徴とする燃料電池用電極の製造方法。 40. The method of manufacturing a fuel cell electrode according to claim 39, wherein the step of forming the adhesive layer comprises applying a plurality of coating liquids having different content rates of the particles including the first solid polymer electrolyte. A method for producing an electrode for a fuel cell, comprising:
4 1 . 請求項 3 2に記載の燃料電池用電極の製造方法において、 前記第二の塗布液は、 触媒金属を担持した導電粒子を含むことを特徴とする燃料電池用電極の製造方法。 41. The method for manufacturing a fuel cell electrode according to claim 32, wherein the second coating solution includes conductive particles carrying a catalyst metal.
4 2 . 請求項 4 1に記載の燃料電池用電極の製造方法において、 前記接着層を形成する 工程は、 前記触媒金属を担持した導電粒子の含有率の異なる複数の塗布液を塗布する工程 を含むことを特徴とする燃料電池用電極の製造方法。 42. The method for manufacturing an electrode for a fuel cell according to claim 41, wherein the step of forming the adhesive layer includes a step of applying a plurality of coating liquids having different contents of the conductive particles supporting the catalyst metal. A method for producing an electrode for a fuel cell, comprising:
4 3 . 請求項 3 2に記載の燃料電池用電極の製造方法によって燃料電池用電極を得た後、 前記接着層と固体高分子電解質膜とを当接させた状態で前記燃料電池用電極と固体高分子 電解質膜とを熱圧着する工程を含むことを特徴とする燃料電池の製造方法。 43. After obtaining a fuel cell electrode by the method for producing a fuel cell electrode according to claim 32, A method for producing a fuel cell, comprising a step of thermocompression bonding the fuel cell electrode and the solid polymer electrolyte membrane in a state where the adhesive layer and the solid polymer electrolyte membrane are in contact with each other.
4 4 . 固体高分子電解質膜と、 該固体高分子電解質膜を狭持し、 基体上に触媒層が形成 された一対の電極とを有する燃料電池の製造方法であって、 触媒物質と、 第一の固体高分 子電解質を含む粒子とを含有する第一の塗布液を基体上に塗布して前記触媒層を形成する 工程と、 前記第一の固体高分子電解質とは異なる高分子からなる第二の固体高分子電解質 を含む粒子を含有する第二の塗布液を前記固体高分子電解質膜に塗布して接着層を形成す る工程と、 前記触媒層と前記接着層とを当接させた状態で前記電極と前記固体高分子電解 質膜とを熱圧着する工程と、 を含むことを特徴とする燃料電池の製造方法。 44. A method for producing a fuel cell, comprising: a solid polymer electrolyte membrane; and a pair of electrodes having the catalyst layer formed on a substrate by sandwiching the solid polymer electrolyte membrane. A step of applying a first coating solution containing particles containing one solid polymer electrolyte on a substrate to form the catalyst layer, and comprising a polymer different from the first solid polymer electrolyte. Applying a second coating solution containing particles containing a second solid polymer electrolyte to the solid polymer electrolyte membrane to form an adhesive layer; and contacting the catalyst layer with the adhesive layer. And a step of thermocompression bonding the electrode and the solid polymer electrolyte membrane in a folded state.
4 5 . 請求項 4 4に記載の燃料電池の製造方法において、 前記第二の塗布液は、 前記第 一の固体高分子電解質を含む粒子を含むことを特徴とする燃料電池の製造方法。 45. The method for manufacturing a fuel cell according to claim 44, wherein the second coating liquid contains particles containing the first solid polymer electrolyte.
4 6 . 請求項 4 5に記載の燃料電池の製造方法において、 前記接着層を形成する工程は、 前記第一の固体高分子電解質を含む粒子の含有率の異なる複数の塗布液を塗布する工程を 含むことを特徴とする燃料電池の製造方法。 46. The method for manufacturing a fuel cell according to claim 45, wherein the step of forming the adhesive layer includes a step of applying a plurality of coating liquids having different content rates of particles including the first solid polymer electrolyte. A method for manufacturing a fuel cell, comprising:
4 7 . 請求項 4 4に記載の燃料電池の製造方法において、 前記第二の塗布液は、 触媒金 属を担持した導電粒子を含むことを特徴とする燃料電池の製造方法。 47. The method for manufacturing a fuel cell according to claim 44, wherein the second coating solution contains conductive particles carrying a catalyst metal.
4 8 . 請求項 4 7に記載の燃料電池の製造方法において、 前記接着層を形成する工程は、 前記触媒金属を担持した導電粒子の含有率の異なる複数の塗布液を塗布する工程を含むこ とを特徵とする燃料電池の製造方法。 48. The method of manufacturing a fuel cell according to claim 47, wherein the step of forming the adhesive layer includes a step of applying a plurality of coating solutions having different contents of the conductive particles supporting the catalyst metal. And a method of manufacturing a fuel cell.
PCT/JP2003/004819 2002-04-17 2003-04-16 Fuel cell, electrode for fuel cell, and method for preparing the same WO2003088397A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/971,737 US7700211B2 (en) 2002-04-17 2004-10-18 Fuel cell, fuel cell electrode and method for fabricating the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002114339 2002-04-17
JP2002-114339 2002-04-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/971,737 Continuation US7700211B2 (en) 2002-04-17 2004-10-18 Fuel cell, fuel cell electrode and method for fabricating the same

Publications (1)

Publication Number Publication Date
WO2003088397A1 true WO2003088397A1 (en) 2003-10-23

Family

ID=29243382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/004819 WO2003088397A1 (en) 2002-04-17 2003-04-16 Fuel cell, electrode for fuel cell, and method for preparing the same

Country Status (3)

Country Link
CN (1) CN1324744C (en)
TW (1) TWI231620B (en)
WO (1) WO2003088397A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016108255A1 (en) * 2014-12-28 2016-07-07 国立大学法人信州大学 Membrane/electrode assembly and method for producing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5660879B2 (en) * 2010-12-20 2015-01-28 トヨタ自動車株式会社 Cathode side catalyst layer, membrane electrode assembly, polymer electrolyte fuel cell and method for producing the same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07135004A (en) * 1993-11-12 1995-05-23 Toyota Motor Corp Solid high molecular electrolytic film and fuel cell
JPH08148151A (en) * 1994-11-17 1996-06-07 Tokyo Gas Co Ltd Fuel cell electrode and manufacture thereof
JPH11135136A (en) * 1997-10-30 1999-05-21 Asahi Glass Co Ltd Solid poly electrolyte type fuel cell
JPH11144745A (en) * 1997-11-06 1999-05-28 Asahi Glass Co Ltd Solid high molecular electrolyte type methanol fuel cell
JPH11288727A (en) * 1998-04-02 1999-10-19 Asahi Chem Ind Co Ltd Solid high polymer fuel cell film/electrode junction body
JP2000311694A (en) * 1999-04-12 2000-11-07 General Motors Corp <Gm> Laminated electrode for electrochemical battery
JP2002008440A (en) * 2000-06-20 2002-01-11 Jsr Corp Proton conductive film
JP2002015743A (en) * 2000-06-30 2002-01-18 Asahi Glass Co Ltd Solid polymer fuel cell
JP2002298867A (en) * 2001-03-30 2002-10-11 Honda Motor Co Ltd Solid polymer fuel cell
JP2002373674A (en) * 2001-06-14 2002-12-26 Honda Motor Co Ltd Electrode assembly for solid polymer fuel cell

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0835004A (en) * 1994-07-21 1996-02-06 Nippon Steel Corp Method for tapping iron and slag of blast furnace

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07135004A (en) * 1993-11-12 1995-05-23 Toyota Motor Corp Solid high molecular electrolytic film and fuel cell
JPH08148151A (en) * 1994-11-17 1996-06-07 Tokyo Gas Co Ltd Fuel cell electrode and manufacture thereof
JPH11135136A (en) * 1997-10-30 1999-05-21 Asahi Glass Co Ltd Solid poly electrolyte type fuel cell
JPH11144745A (en) * 1997-11-06 1999-05-28 Asahi Glass Co Ltd Solid high molecular electrolyte type methanol fuel cell
JPH11288727A (en) * 1998-04-02 1999-10-19 Asahi Chem Ind Co Ltd Solid high polymer fuel cell film/electrode junction body
JP2000311694A (en) * 1999-04-12 2000-11-07 General Motors Corp <Gm> Laminated electrode for electrochemical battery
JP2002008440A (en) * 2000-06-20 2002-01-11 Jsr Corp Proton conductive film
JP2002015743A (en) * 2000-06-30 2002-01-18 Asahi Glass Co Ltd Solid polymer fuel cell
JP2002298867A (en) * 2001-03-30 2002-10-11 Honda Motor Co Ltd Solid polymer fuel cell
JP2002373674A (en) * 2001-06-14 2002-12-26 Honda Motor Co Ltd Electrode assembly for solid polymer fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016108255A1 (en) * 2014-12-28 2016-07-07 国立大学法人信州大学 Membrane/electrode assembly and method for producing same

Also Published As

Publication number Publication date
CN1643719A (en) 2005-07-20
TWI231620B (en) 2005-04-21
CN1324744C (en) 2007-07-04
TW200404382A (en) 2004-03-16

Similar Documents

Publication Publication Date Title
JP3608565B2 (en) Fuel cell and manufacturing method thereof
JP4327732B2 (en) Solid polymer fuel cell and manufacturing method thereof
US6465136B1 (en) Membranes, membrane electrode assemblies and fuel cells employing same, and process for preparing
JP3760895B2 (en) LIQUID FUEL SUPPLY FUEL CELL, FUEL CELL ELECTRODE, AND METHOD FOR PRODUCING THEM
US6638659B1 (en) Membrane electrode assemblies using ionic composite membranes
US7700211B2 (en) Fuel cell, fuel cell electrode and method for fabricating the same
US6946214B2 (en) Manufacturing method of fuel cell electrode and fuel cell using thereof
WO2003088396A1 (en) Solid polymer electrolyte fuel battery having improved performance and reliability and manufacturing method thereof
JP4534590B2 (en) Solid oxide fuel cell
JP4214918B2 (en) Fuel cell
JP2003317737A (en) Fuel cell, catalyst electrode using it and solid electrolyte film
JP3608564B2 (en) Fuel cell and manufacturing method thereof
JP2006261043A (en) Polymer membrane electrode assembly and polyelectrolyte type fuel cell using this
WO2003088397A1 (en) Fuel cell, electrode for fuel cell, and method for preparing the same
JP5313569B2 (en) Solid polymer electrolyte membrane and method for producing solid polymer electrolyte membrane
JP2002015746A (en) Fuel cell and fuel cell electrode member
WO2004004050A1 (en) Fuel for solid electrolyte fuel cell, solid electrolyte fuel cell and method of use thereof
JP2004253399A (en) Fuel cell and its manufacturing method
JP3575477B2 (en) Fuel cell
JP4631309B2 (en) Fuel for solid oxide fuel cell, solid oxide fuel cell and method of using the same
JP2005174827A (en) Solid polymer electrolyte membrane, fuel cell using the same, and manufacturing method of them
JP3599044B2 (en) Fuel cell catalyst electrode, fuel cell using the same, and methods of manufacturing the same
JP2003323896A (en) Solid electrolyte fuel cell
US20090239114A1 (en) Polymer electrolyte fuel cell
JP2003317736A (en) Fuel cell, solid electrolyte film for fuel cell and catalyst electrode for fuel cell

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20038073315

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10971737

Country of ref document: US

122 Ep: pct application non-entry in european phase