JPH08148153A - Solid polymeric fuel cell electrode and manufacture thereof - Google Patents

Solid polymeric fuel cell electrode and manufacture thereof

Info

Publication number
JPH08148153A
JPH08148153A JP6309934A JP30993494A JPH08148153A JP H08148153 A JPH08148153 A JP H08148153A JP 6309934 A JP6309934 A JP 6309934A JP 30993494 A JP30993494 A JP 30993494A JP H08148153 A JPH08148153 A JP H08148153A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
solvent
electrode
catalyst particles
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6309934A
Other languages
Japanese (ja)
Inventor
Tsutomu Seki
務 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP6309934A priority Critical patent/JPH08148153A/en
Publication of JPH08148153A publication Critical patent/JPH08148153A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE: To provide the electrode improving the cell efficiency substantially by using catalyst particles obtained through the application of a coat under the specified condition, regarding the subject electrode where catalyst particles coated with a polymeric electrolyte are used. CONSTITUTION: In applying suspension as a mixture of catalyst particles (e.g. carbon black particles carrying platinum thereon) and a polymeric electrolyte (e.g. perfluorocarbon sulfonic acid resin) dissolved in a solvent therefor as a coating material after the removal of the solvent, a solvent (e.g. butyl acetate) acting to coagulate and form the electrode into a colloidal state is added to the solvent (e.g. water and ethanol) for dissolving the electrolyte, and a mixed solvent thereby prepared is used. After dissolving the particles and a polymeric electrolyte film solution in the mixed solvent, the solvent for dissolving the electrolyte is removed and the catalyst particles obtainable therefrom are used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、触媒粒子を高分子電解
質でコ−ティングしてなる固体高分子型燃料電池用電極
及びその製造方法に関し、より詳しくは触媒粒子を高分
子電解質でコ−ティングしてなる固体高分子型燃料電池
用電極及びその製造方法において、これに使用する触媒
粒子を高分子電解質を溶解させる溶媒に溶解した電解質
膜溶液によりコ−ティングすることにより得られた電極
及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode for a polymer electrolyte fuel cell in which catalyst particles are coated with a polymer electrolyte and a method for producing the same, and more specifically, catalyst particles are coated with a polymer electrolyte. In a solid polymer electrolyte fuel cell electrode and a method for producing the same, an electrode obtained by coating an electrolyte membrane solution in which a catalyst particle used in the electrode is dissolved in a solvent for dissolving a polymer electrolyte, and The manufacturing method is related.

【0002】[0002]

【従来の技術】固体高分子型燃料電池は、イオン伝導体
すなわち電解質が固体で且つ高分子である点に特徴を有
するものであるが、その固体高分子電解質としては、具
体的にはイオン交換樹脂膜等が使用され、この電解質を
挟んで負極及び正極の両電極を配置し、例えば負極側に
燃料としての水素を、また正極側には酸素又は空気を供
給することにより電気化学反応を起こさせ、電気を発生
させるものである。
2. Description of the Related Art A polymer electrolyte fuel cell is characterized in that an ionic conductor, that is, an electrolyte, is a solid and a polymer. A resin film or the like is used, and both electrodes of the negative electrode and the positive electrode are arranged with the electrolyte sandwiched therebetween. For example, hydrogen as a fuel is supplied to the negative electrode side, and oxygen or air is supplied to the positive electrode side to cause an electrochemical reaction. And generate electricity.

【0003】その固体高分子電解質に接する負極及び正
極の両電極としては、その中に反応を促進させるための
触媒が添加、使用される形式のものがあるが、この形式
の電極の製造法としてはこれまで種々のものが提案され
てきており、例えば、米国特許第3297484号に
は、白金ブラック、パラジウムブラック等の触媒粒子或
いはこれらをカ−ボン粒子に担持させた粒子をポリテト
ラフルオロエチレンと混合して電極シ−トとし、これを
イオン交換樹脂膜に熱圧着する方法が、また特公昭58
−47471号公報ではイオン交換樹脂膜の内表面に触
媒金属層を析出させた後、さらにその表面に触媒金属層
を成長させる方法が紹介されており、ここでの触媒成分
としては白金その他の白金族金属が示されている。
For both the negative electrode and the positive electrode in contact with the solid polymer electrolyte, there is a type in which a catalyst for accelerating the reaction is added and used. As a method for producing this type of electrode, Have been proposed so far, for example, in U.S. Pat. No. 3,297,484, catalyst particles such as platinum black and palladium black, or particles obtained by supporting them on carbon particles are referred to as polytetrafluoroethylene. Another method is to mix and form an electrode sheet, and thermocompression-bond this to an ion exchange resin membrane.
No. 47471 discloses a method of depositing a catalyst metal layer on the inner surface of an ion exchange resin membrane and then growing the catalyst metal layer on the surface. As the catalyst component here, platinum or other platinum is introduced. Group metals are shown.

【0004】また「電気化学」53、No.10、P.
812〜817(1985)には、固体高分子電解質と
してパ−フルオロカ−ボンスルホン酸樹脂膜の一種であ
るNAFION−117膜(Du Pont社製、商品
名)を用いた燃料電池において、この材質に対応する材
料を用いて、電子−イオン混合伝導体を接合することに
より、反応サイト(反応域)を三次元化し、作用面積を
上げる試み等が紹介されている。これによれば、固体高
分子電解質としてのNAFION−117膜の片面に対
して無電解メッキ法(浸透法)により白金電極を接合し
て水素極すなわちアノ−ドとする一方、この電極の対極
を構成する酸素極すなわちカソ−ド側電極を、概略、以
下の工程により製作している。
In "Electrochemistry" 53, No. 10, P.I.
812-817 (1985), a fuel cell using a NAFION-117 membrane (manufactured by Du Pont, trade name), which is a kind of perfluorocarbon sulfonic acid resin membrane, as a solid polymer electrolyte, Attempts have been introduced that the reaction site (reaction region) is made three-dimensional by joining electron-ion mixed conductors using a corresponding material to increase the action area. According to this, a platinum electrode is bonded to one surface of a NAFION-117 membrane as a solid polymer electrolyte by an electroless plating method (permeation method) to form a hydrogen electrode, that is, an anode, while the counter electrode of this electrode is The constituent oxygen electrode, that is, the cathode side electrode, is generally manufactured by the following steps.

【0005】まず、酸素極用の電極触媒粉末として、白
金ブラック粉末又は10%の白金を担持したカ−ボン粉
末(以下、「白金担持カ−ボン粉末」という)を用い、
これにアンバ−ライトIR−120B(T−3)〔スチ
レン−ジビニルベンゼンスルホン酸樹脂、Na型、粒経
30μmの粉末、Organo社製、商品名〕又はNA
FION−117(パ−フルオロカ−ボンスルホン酸樹
脂、H型、脂肪族アルコ−ルと水との混合溶媒中5%溶
液、Aldrich Chemical社製、商品名)
を種々の混合比で混合する。
First, as the electrode catalyst powder for the oxygen electrode, platinum black powder or carbon powder carrying 10% platinum (hereinafter referred to as "platinum-supporting carbon powder") was used.
Amberlite IR-120B (T-3) [styrene-divinylbenzenesulfonic acid resin, Na type, powder with a particle size of 30 μm, manufactured by Organo, trade name] or NA
FION-117 (perfluorocarbon sulfonic acid resin, H type, 5% solution in a mixed solvent of aliphatic alcohol and water, manufactured by Aldrich Chemical Company, trade name)
Are mixed in various mixing ratios.

【0006】次いで、上記で得た各混合物に対し、ポリ
テトラフルオロエチレンを、白金ブラック粉末の場合は
固形分重量割合で30%、白金担持カ−ボン粉末の場合
には同じく60%、水懸濁液状で加えて混練した後、圧
延してシ−ト状とし、真空乾燥後、このシ−トを固体高
分子電解質としてのNAFION膜に対して、温度10
0℃、圧力210kg/cm2 でホットプレスするとい
うものである。そしてそこでは、固体高分子電解質とし
てのNAFION膜に接合される酸素極にイオン交換樹
脂膜を混入することにより、反応サイトの三次元化を図
り、分極特性を著しく向上させることができ、このイオ
ン交換樹脂膜の混入による効果は特に白金を担持したカ
−ボンを電極触媒とした場合に大きい旨指摘されてい
る。
Next, polytetrafluoroethylene was added to each of the mixtures obtained above in a solid content weight ratio of 30% in the case of platinum black powder, 60% in the case of platinum-supported carbon powder, and water suspension. After being added as a turbid liquid and kneaded, rolled to form a sheet, and dried in a vacuum, and the sheet was dried at a temperature of 10 to a NAFION membrane as a solid polymer electrolyte.
Hot pressing is performed at 0 ° C. and a pressure of 210 kg / cm 2 . Then, there, by mixing an ion exchange resin film into the oxygen electrode bonded to the NAFION film as a solid polymer electrolyte, the reaction site can be made three-dimensional and the polarization characteristics can be remarkably improved. It has been pointed out that the effect of mixing the exchange resin film is particularly large when carbon carrying platinum is used as the electrode catalyst.

【0007】このほか、特開平4−162365号公報
には、白金触媒担持のカ−ボンブラックと触媒無担持の
カ−ボンブラックとを、それぞれ固体高分子電解質の一
種であるNAFIONのブタノ−ル溶液で浸漬処理し、
次いで両粒子の混合物をポリテトラフルオロエチレンの
ディスパ−ジョンで処理すること等を特徴とする方法が
紹介されており、この方法では、使用触媒の量を少なく
し、低コストで高性能の電極が得られ、小型高出力密度
の燃料電池の作製が可能となるとしている。
In addition, in Japanese Patent Laid-Open No. 4-162365, carbon black carrying a platinum catalyst and carbon black carrying no catalyst are respectively prepared from butanol of NAFION which is a kind of solid polymer electrolyte. Soak in the solution,
Then, a method characterized by treating the mixture of both particles with a dispersion of polytetrafluoroethylene, etc. has been introduced. In this method, the amount of catalyst used is reduced, and a low-cost and high-performance electrode is obtained. It is said that it will be possible to manufacture a small-sized and high-power-density fuel cell.

【0008】この点、本発明者は、固体高分子型燃料電
池で使用するこのような電極を製造する方法について各
種研究、開発を進めてきているが、返ってポリテトラフ
ルオロエチレンを用いることなく、製造工程を簡略化
し、この電極を使用して優れた性能を有する燃料電池を
製造する方法を先に開発し、提案しているが(特願平4
−35058号、特願平4−358059号)、この場
合にも触媒粒子を高分子電解質でコ−ティングする点で
は変わりはない。
In this respect, the present inventor has been conducting various researches and developments on a method for producing such an electrode used in a polymer electrolyte fuel cell, but in return, without using polytetrafluoroethylene. , Has previously developed and proposed a method of simplifying the manufacturing process and manufacturing a fuel cell having excellent performance using this electrode (Japanese Patent Application No.
No. 35058, Japanese Patent Application No. 4-358059), and even in this case, there is no difference in coating the catalyst particles with the polymer electrolyte.

【0009】このように、固体高分子型燃料電池用の電
極を製造する工程においては、まず触媒粒子として、
例えば白金ブラックや白金を担持させたカ−ボンブラッ
ク粒子を製造し、この粒子と固体高分子電解質溶液と
を、さらに溶媒を加えて均一に混合することにより懸濁
液を造り、次いで、必要に応じて結合剤としてのポリ
テトラフルオロエチレン等を混合することになるが、
の混合工程に先立ち、その懸濁液からその中の溶媒を除
去する工程が必要不可欠である。
As described above, in the process of manufacturing an electrode for a polymer electrolyte fuel cell, first, as catalyst particles,
For example, platinum black or carbon black particles supporting platinum are produced, and the particles and the solid polymer electrolyte solution are further mixed with a solvent to prepare a suspension. Accordingly, polytetrafluoroethylene or the like as a binder will be mixed,
Prior to the mixing step (1), the step of removing the solvent therein from the suspension is essential.

【0010】この溶媒除去操作としては、ただその溶媒
の自然蒸発に任せる場合もあるが、その懸濁液を加熱し
て溶媒を気化、蒸発させ、またそれらの促進を図るた
め、その操作を真空すなわち減圧状態として実施し、し
かもこの加熱、減圧操作は、その目的上、これまで沸騰
状態で実施されているのが通常であり、その後このよう
にして得られた粉末を水中に分散させて電極を作製して
いる。
This solvent removal operation may be left to the natural evaporation of the solvent, but in order to evaporate and evaporate the solvent by heating the suspension and to accelerate them, the operation is performed in vacuum. That is, it is carried out in a reduced pressure state, and for this purpose, the heating and depressurizing operations are usually carried out in a boiling state so far, and then the powder thus obtained is dispersed in water to form an electrode. Is being made.

【0011】これに対して、本発明者は、溶媒除去操作
におけるその沸騰状態そのものが、その組成中の各成分
の分布にバラツキ等を生じ、これが電極そのものの特性
を左右し、延いては電池の出力、持続性その他その性能
に微妙に影響していることをつきとめ、その溶媒を除去
するに際し、この溶媒除去操作をその懸濁液を攪拌しな
がら加熱し、沸騰状態となる直前まで減圧することによ
り行うことにより、これを経て得られる電極の特性を向
上させ、電池の性能を格段に改善させる方法を先に開発
し、提案している(特願平5−297279号)。
On the other hand, the inventors of the present invention have found that the boiling state itself in the solvent removal operation causes variations in the distribution of each component in the composition, which influences the characteristics of the electrode itself and, by extension, the battery. Output, sustainability, and other factors that have a subtle effect on its performance, and when removing the solvent, this solvent removal operation is performed by heating the suspension while stirring it, and reducing the pressure until it reaches a boiling state. By doing so, a method for improving the characteristics of the electrode obtained through the above and remarkably improving the performance of the battery has been previously developed and proposed (Japanese Patent Application No. 5-297279).

【0012】この提案に係る方法によれば、そのように
優れた電極特性を付与し、延いて電池の性能を格段に改
善させることができるが、その溶媒の除去操作について
その溶媒自体の組成を含めてさらに研究、検討を進めて
いるうち、全く偶然にも、その溶媒の組成として別途特
異な成分を添加するとともに、この溶媒を用いる過程に
工夫をすることにより、その電極特性及び電池の性能を
さらに向上させ得ることを見い出し、本発明に到達する
に至ったものである。
According to the method according to this proposal, it is possible to impart such excellent electrode characteristics and to improve the performance of the battery remarkably. However, regarding the removal operation of the solvent, the composition of the solvent itself is changed. While further researching and studying, including by chance, by accidentally adding a unique component as the composition of the solvent and devising a process for using this solvent, its electrode characteristics and battery performance were improved. The present invention has been achieved by finding that it can be further improved.

【0013】[0013]

【発明が解決しようとする課題】すなわち、本発明は、
触媒粒子を高分子電解質でコ−ティングする形式の固体
高分子型燃料電池用電極において、そのコ−ティング工
程の一環として行う、溶媒中で触媒粒子と高分子電解質
とを混合した懸濁液から溶媒を除去する操作において、
その溶媒として特定の働きをする溶媒成分を混合使用す
ることにより、得られる電極の特性をさらに向上させ、
これを用いた電池の性能を格段に改善させてなる電極及
びその製造方法を提供することを目的とするものであ
る。
That is, the present invention is
In a polymer electrolyte fuel cell electrode in which catalyst particles are coated with a polymer electrolyte, a suspension of the catalyst particles and the polymer electrolyte in a solvent is carried out as a part of the coating process. In the operation of removing the solvent,
By mixing and using a solvent component having a specific function as the solvent, the characteristics of the obtained electrode are further improved,
It is an object of the present invention to provide an electrode and a method for producing the same, which can remarkably improve the performance of a battery using the same.

【0014】[0014]

【課題を解決するための手段】本発明は、高分子電解質
でコ−ティングしてなる触媒粒子を用いる固体高分子型
燃料電池用電極において、この触媒粒子と(A)高分子
電解質を溶解させる溶媒中に溶解した高分子電解質とを
混合した懸濁液からその溶媒を除去することによりコ−
ティングするに際し、この(A)高分子電解質を溶解さ
せる溶媒に対して(B)該高分子電解質を凝集させてコ
ロイド状態とする働きをする溶媒を添加してなる混合溶
媒を用い、これに触媒粒子と高分子電解質膜溶液を溶か
しこんだ後、エバポレ−ションにより高分子電解質を溶
解させる溶媒をとり除くことにより得られた触媒粒子を
用いてなることを特徴とする固体高分子型燃料電池用電
極を提供するものである。
DISCLOSURE OF THE INVENTION The present invention relates to an electrode for a polymer electrolyte fuel cell using catalyst particles coated with a polymer electrolyte, in which the catalyst particles and (A) polymer electrolyte are dissolved. By removing the solvent from the suspension mixed with the polyelectrolyte dissolved in the solvent,
At the time of coating, a mixed solvent obtained by adding (B) a solvent that functions to agglomerate the polyelectrolyte into a colloidal state to a solvent that dissolves the polyelectrolyte (A) is used. An electrode for a polymer electrolyte fuel cell, characterized by comprising catalyst particles obtained by dissolving particles and a polymer electrolyte membrane solution and then removing a solvent that dissolves the polymer electrolyte by evaporation. Is provided.

【0015】また本発明は、触媒粒子を高分子電解質で
コ−ティングしてなる固体高分子型燃料電池用電極の製
造方法において、予め触媒粒子と(A)高分子電解質を
溶解させる溶媒中に溶解した高分子電解質とを混合した
懸濁液からその溶媒を除去することによりコ−ティング
するに際し、この(A)高分子電解質を溶解させる溶媒
に対して(A)該高分子電解質を凝集させてコロイド状
態とする働きをする溶媒を添加し、この混合溶媒に触媒
粒子と高分子電解質膜溶液を溶かしこんだ後、エバポレ
−ションにより高分子電解質を溶解させる溶媒をとり除
くことを特徴とする固体高分子型燃料電池用電極の製造
方法を提供するものである。
The present invention also provides a method for producing an electrode for a polymer electrolyte fuel cell in which catalyst particles are coated with a polymer electrolyte, in a solvent in which the catalyst particles and (A) polymer electrolyte are dissolved in advance. When coating is performed by removing the solvent from the suspension mixed with the dissolved polyelectrolyte, (A) the polyelectrolyte is aggregated with respect to the solvent in which the (A) polyelectrolyte is dissolved. A solvent that acts as a colloidal state by adding a solvent that dissolves the catalyst particles and the polymer electrolyte membrane solution in this mixed solvent, and then removes the solvent that dissolves the polymer electrolyte by evaporation. The present invention provides a method for manufacturing an electrode for a polymer fuel cell.

【0016】ここで、上記(A)高分子電解質を溶解さ
せる溶媒としては、単独の溶媒又は二種以上の混合溶媒
として触媒粒子コ−ティング用高分子電解質を溶解させ
得る溶媒であれば使用でき、その例としては例えばアセ
トン、水とエタノ−ルの混合溶媒、水とプロパノ−ルの
混合溶媒を挙げることができる。また上記(B)該高分
子電解質を凝集させてコロイド状態とする働きをする溶
媒としては、単独の溶媒又は二種以上の混合溶媒とし
て、該高分子電解質を凝集させてコロイド状態とする働
きをする溶媒であれば使用することができ、その例とし
ては酢酸ブチル、プロピオン酸エチル、酪酸メチル等を
挙げることができる。
As the solvent for dissolving the polymer electrolyte (A), a solvent which can dissolve the polymer electrolyte for catalyst particle coating can be used as a single solvent or a mixed solvent of two or more kinds. Examples thereof include acetone, a mixed solvent of water and ethanol, and a mixed solvent of water and propanol. Further, as the solvent (B) that functions to aggregate the polymer electrolyte into a colloidal state, a single solvent or a mixed solvent of two or more kinds of solvents serves to aggregate the polymer electrolyte into a colloidal state. Any solvent can be used, and examples thereof include butyl acetate, ethyl propionate, and methyl butyrate.

【0017】また、本発明における、その触媒粒子の種
類としては、特に制限はなく、これまで固体高分子型燃
料電池の電極用として知られた触媒であれば使用するこ
とができるが、例えば白金系触媒の場合には、白金ブラ
ック粉末、白金合金の粉末、白金担持カ−ボンブラック
等の形で使用することができる。またその高分子電解質
としては、各種イオン交換樹脂等が使用できるが、特に
その固体高分子電解質膜としてNAFION膜系のパ−
フルオロカ−ボンスルホン酸樹脂膜を用いる場合には、
同系統のパ−フルオロカ−ボンスルホン酸樹脂系のもの
を用いるのが望ましい。
The type of the catalyst particles used in the present invention is not particularly limited, and any catalyst known so far for electrodes of polymer electrolyte fuel cells can be used, for example, platinum. In the case of a system catalyst, it can be used in the form of platinum black powder, platinum alloy powder, carbon black carrying platinum and the like. As the polymer electrolyte, various ion exchange resins and the like can be used. Particularly, as the solid polymer electrolyte membrane, a NAFION membrane-based part is used.
When using a fluorocarbon sulfonic acid resin membrane,
It is desirable to use the same type of perfluorocarbon sulfonic acid resin.

【0018】また、本発明方法で得られた高分子電解質
でコ−ティングされた触媒粒子は、次いでシ−ト化され
るが、そのシ−ト化の態様如何を問わず何れにも有効に
適用することができる。すなわちそのシ−ト化の態様と
しては、触媒粒子及び高分子電解質の混合物に結合剤
を加えて混練物とし、これを圧延等によりシ−ト化す
る、その混合物に結合剤を加えて混練物とし、これを
溶液として、多孔性の電極基材面上に堆積、担持させ
る、その混合物の溶液を、膜状に塗工するか又は濾過
形式により多孔性の電極基材面上に堆積、担持させる、
その他の手法があるが、本発明の触媒処理法によれば、
これに続くこれらの何れの態様を採る場合にも、その電
極特性等上優れた効果を得ることができるものである。
Further, the catalyst particles coated with the polymer electrolyte obtained by the method of the present invention are then sheeted, and any sheeting is effective regardless of the mode of sheeting. Can be applied. That is, as a mode of the sheet formation, a binder is added to a mixture of catalyst particles and a polymer electrolyte to obtain a kneaded product, which is then sheeted by rolling or the like, and a kneaded product is prepared by adding a binder to the mixture. The solution of this mixture is deposited and supported on the surface of the porous electrode base material as a solution, and the solution of the mixture is applied to the surface of the porous electrode base material by coating or filtration. Let
Although there are other methods, according to the catalyst treatment method of the present invention,
Even when any of the following modes is adopted, excellent effects can be obtained in terms of the electrode characteristics and the like.

【0019】このうち、の態様を採る場合、その多孔
性の電極基材としては、その優れた特性から撥水化カ−
ボンペ−パ−を用いるのが有利であり、この撥水化剤と
してはポリテトラフルオロエチレン系ポリマ−であるの
が望ましい。ここでポリテトラフルオロエチレン系ポリ
マ−とは、ポリテトラフルオロエチレンのほか、テトラ
フルオロエチレン−ヘキサフルオロプロピレン共重合体
その他その共重合体等をも含めた意味である。
In the case of adopting one of these modes, the porous electrode substrate has a water repellent card because of its excellent characteristics.
It is advantageous to use a bomber, and the water repellent agent is preferably a polytetrafluoroethylene-based polymer. Here, the polytetrafluoroethylene-based polymer is meant to include not only polytetrafluoroethylene but also a tetrafluoroethylene-hexafluoropropylene copolymer and other copolymers thereof.

【0020】また、固体高分子型燃料電池用電極の触媒
層としては、触媒粒子及び高分子電解質からなるもの、
これら触媒粒子及び固体高分子電解質にポリテトラフル
オロエチレン系ポリマ−を加えたもの等があるが、本発
明の電極及びその製造方法によれば、これらの何れの場
合にも、その電極特性及び電池特性上優れた効果を得る
ことができる。
The catalyst layer of the solid polymer fuel cell electrode comprises catalyst particles and a polymer electrolyte,
There are catalyst particles and solid polymer electrolytes to which a polytetrafluoroethylene-based polymer is added, and the like. According to the electrode of the present invention and the method for producing the same, in any of these cases, the electrode characteristics and battery An excellent effect can be obtained in terms of characteristics.

【0021】次に一態様として、触媒粒子として白金担
持のカ−ボン粒子を用い、(A)高分子電解質を溶解さ
せる溶媒として水とエタノ−ルを、また(B)該高分子
電解質を凝集させてコロイド状態とする働きをする溶媒
として酢酸ブチルを使用した場合について述べると、概
略、次の工程〜により実施することができる。3
0〜50%白金担持したカ−ボン粒子(触媒粒子)を容
器、例えばフラスコにとり蒸留水を加える。次いでこ
れにエタノ−ルをで加えた蒸留水の25倍以上の量加
える。ここに適量の高分子電解質膜の溶液を触媒に対し
て加え、さらに先程加えたエタノ−ル量の50〜200
%重量の酢酸ブチルを加える。、で得た溶液を温度
50℃前後に加熱し、徐々に圧力を下げて沸騰させる。
Next, in one embodiment, carbon particles supporting platinum are used as catalyst particles, (A) water and ethanol are used as a solvent for dissolving the polymer electrolyte, and (B) the polymer electrolyte is aggregated. The case where butyl acetate is used as a solvent that acts to make it into a colloidal state will be described. Three
Carbon particles (catalyst particles) supporting 0 to 50% platinum are placed in a container, for example, a flask, and distilled water is added. Next, 25 times or more of distilled water containing ethanol was added thereto. An appropriate amount of the polymer electrolyte membrane solution was added to the catalyst, and the amount of ethanol added was 50 to 200.
Add% by weight butyl acetate. The solution obtained in, is heated to a temperature of about 50 ° C., and the pressure is gradually reduced to bring it to a boil.

【0022】、の沸騰で生じた蒸気(エタノ−ルと
水の共沸物)は温度5℃程度に保持した冷却管中で液化
する。ここでこのようにエタノ−ルと水が除去され、あ
とは酢酸ブチルのみの溶媒となり、高分子電解質は凝集
して触媒粒子とほどよい混合状態となる。、〜で
エタノ−ルと水を除いて得られた溶液にポリフロンディ
スパ−ジョン(ダイキン工業社製、登録商標)を触媒に
対して20〜200重量%となるよう加えて混合する。
次いで、例えば気孔率80%、厚さ0.4mmの撥水
化したカ−ボンペ−パ−上にで得られた溶液を塗布
し、溶質のみを堆積させる。これに高分子電解質膜の
溶液を含浸させて電極とする。
The steam (azeotrope of ethanol and water) generated by the boiling of, is liquefied in a cooling tube kept at a temperature of about 5 ° C. Here, the ethanol and water are removed in this way, and the solvent is then only butyl acetate, and the polymer electrolyte aggregates into a state in which the catalyst particles are mixed appropriately. , And the solution obtained by removing ethanol and water with polyflon dispersion (registered trademark, manufactured by Daikin Industries, Ltd.) is added to the solution in an amount of 20 to 200% by weight with respect to the catalyst and mixed.
Next, for example, the solution obtained above is applied onto a water repellent carbon paper having a porosity of 80% and a thickness of 0.4 mm to deposit only the solute. This is impregnated with a solution of the polymer electrolyte membrane to form an electrode.

【0023】[0023]

【実施例】以下、本発明の一実施例を説明するが、本発
明がこの実施例に限定されないことは勿論である。ま
ず、カ−ボンブラック粒子に対して50重量%の白金を
担持した触媒粒子2gとNAFION−117(パ−フ
ルオロカ−ボンスルホン酸樹脂、Du Pont社製、
商品名)を容量1l(1リットル)のフラスコにとり、
これに蒸留水20mlを加えた。次いでこれにエタノ
−ルを500ml加え、さらに酢酸ブチルをエタノ−ル
量の300ml加えた。、で得た溶液を温度50℃
に加熱し、徐々に圧力を下げて沸騰させた。
EXAMPLES An example of the present invention will be described below, but it goes without saying that the present invention is not limited to this example. First, 2 g of catalyst particles supporting 50% by weight of platinum with respect to carbon black particles and NAFION-117 (perfluorocarbon sulfonic acid resin, manufactured by Du Pont,
Take the product name) in a flask with a capacity of 1 liter (1 liter),
20 ml of distilled water was added to this. Then, 500 ml of ethanol was added thereto, and butyl acetate was further added in an amount of 300 ml of ethanol. The temperature of the solution obtained in
The mixture was heated to 0 ° C., and the pressure was gradually reduced to boil.

【0024】、で生じた蒸気(エタノ−ルと水の共
沸物)を温度5℃に保持した冷却管中で液化した。、
でエタノ−ルと水を除いて得られた溶液にポリフロン
(ポリテトラフルオロエチレン、ダイキン工業社製、登
録商標)のディスパ−ジョンを、触媒に対して120重
量%となるよう加えて混合した。一方、気孔率80
%、厚さ0.4mmのカ−ボンペ−パ−にネオフロン
(テトラフルオロエチレン−ヘキサフルオロプロピレン
共重合体、ダイキン工業社製、登録商標)のディスパ−
ジョンを含浸させた後、熱処理を行い、ネオフロンで撥
水化したカ−ボンペ−パ−を得た。その量的割合は、ネ
オフロンがその全体量中20重量%占めるよう調整し
た。
The steam (azeotrope of ethanol and water) generated in step (1) was liquefied in a cooling tube maintained at a temperature of 5 ° C. ,
Then, a dispersion of polyflon (polytetrafluoroethylene, manufactured by Daikin Industries, Ltd., registered trademark) was added to the solution obtained by removing ethanol and water so as to be 120% by weight with respect to the catalyst and mixed. On the other hand, the porosity is 80
%, A carbon paper having a thickness of 0.4 mm and a disperser of neofron (tetrafluoroethylene-hexafluoropropylene copolymer, manufactured by Daikin Industries, Ltd.)
After impregnation with John, heat treatment was carried out to obtain a carbon paper water repellent with NEOFLON. The quantitative ratio was adjusted so that neofuron accounted for 20% by weight in the total amount.

【0025】、で得られた撥水化カ−ボンペ−パ−
上にで得られた溶液を塗布し、溶質のみを堆積させ
た。これにNafion溶液(高分子電解質膜の溶
液、Aldrich Chemical社製、商品名)
を含浸させて電極とした。この電極シ−トの2枚間に
NAFION−117膜を挟んで接合・一体化し、得ら
れた接合体の両面に常法により集電体を密着させ、さら
に水素出入口及び酸素出入口等を設けて供試用固体高分
子型燃料電池を得た。
The water repellent carbon paper obtained in,
The solution obtained above was applied and only the solute was deposited. Nafion solution (polymer electrolyte solution, Aldrich Chemical Co., trade name)
Was impregnated into an electrode. The NAFION-117 membrane was sandwiched and integrated between two sheets of this electrode sheet, and a current collector was adhered to both surfaces of the obtained joined body by a conventional method, and a hydrogen inlet / outlet and an oxygen inlet / outlet were provided. A test solid polymer fuel cell was obtained.

【0026】図1は、この供試用燃料電池について測定
した電流密度とセル電圧との関係を示すものである。図
1には、比較例として本発明に係る酢酸ブチルを使用せ
ず、これに関連する操作をしない点を除き、実施例と同
様にして作製した電池についての測定デ−タも示してい
る。ここで、その操作条件は、水素流量0.1l/mi
n、酸素流量0.5l/min、水素圧力2.0at
m、酸素圧力2.0atm、電池温度60℃で実施し
た。
FIG. 1 shows the relationship between the current density and the cell voltage measured for this test fuel cell. FIG. 1 also shows, as a comparative example, measurement data of a battery produced in the same manner as in the example, except that the butyl acetate according to the present invention was not used and the operation related thereto was not performed. Here, the operating condition is a hydrogen flow rate of 0.1 l / mi.
n, oxygen flow rate 0.5 l / min, hydrogen pressure 2.0 at
m, oxygen pressure 2.0 atm, and battery temperature 60 ° C.

【0027】電流密度とセル電圧とは相関関係にあり、
電流密度を増加させるに伴いセル電圧は徐々に低下する
が、図示のとおり供試用固体高分子型燃料電池では、セ
ル電圧は、電流密度の増加に伴い徐々に低下するが、比
較例ではこれを下回り、低下していることが分かる。こ
の結果はテスト用の小規模の供試電池によるものである
が、実用上の燃料電池では、さらに規模が大きく、長期
間使用されること等を考慮すると、本発明によるその電
池効率の向上効果は明らかである。
There is a correlation between the current density and the cell voltage,
Although the cell voltage gradually decreases as the current density increases, as shown in the figure, in the test solid polymer fuel cell, the cell voltage gradually decreases as the current density increases. It can be seen that it is lower and lower. This result is due to the small-scale test battery for the test, but in consideration of the fact that the practical fuel cell has a larger scale and is used for a long period of time, the effect of improving the battery efficiency by the present invention is obtained. Is clear.

【0028】[0028]

【発明の効果】以上のとおり、本発明によれば、固体高
分子型燃料電池の電極構成材料である触媒粒子に高分子
電解質膜をコ−ティングする方法として、予め触媒粒子
と電解質膜溶液を例えば水とエタノ−ルと酢酸ブチルの
混合溶媒中に溶かしこみ、エバポレ−ションによって水
とエタノ−ルをとり除いて酢酸ブチルのみの溶媒とする
ことにより、これを経て得られる電極の特性を格段に向
上させ、またこの電極を使用した固体高分子型燃料電池
の特性、性能を大幅に改善することができる。
As described above, according to the present invention, catalyst particles and an electrolyte membrane solution are previously prepared as a method for coating the polymer electrolyte membrane on the catalyst particles which are the electrode constituent material of the polymer electrolyte fuel cell. For example, by dissolving it in a mixed solvent of water, ethanol and butyl acetate, removing water and ethanol by evaporation and using only butyl acetate as a solvent, the characteristics of the electrode obtained through this are markedly improved. In addition, the characteristics and performance of a polymer electrolyte fuel cell using this electrode can be significantly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例及び比較例(従来例)で製作した電極シ
−トをセットした固体高分子型燃料電池について測定し
た電流密度とセル電圧との関係を示す図。
FIG. 1 is a graph showing a relationship between a cell density and a measured current density of a polymer electrolyte fuel cell having electrode sheets manufactured in Examples and Comparative Examples (conventional example).

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】高分子電解質でコ−ティングしてなる触媒
粒子を用いる固体高分子型燃料電池用電極において、こ
の触媒粒子と(A)高分子電解質を溶解させる溶媒中に
溶解した高分子電解質とを混合した懸濁液からその溶媒
を除去することによりコ−ティングするに際し、この
(A)高分子電解質を溶解させる溶媒に対し(B)該高
分子電解質を凝集させてコロイド状態とする働きをする
溶媒を添加してなる混合溶媒を用い、これに触媒粒子と
高分子電解質膜溶液を溶かしこんだ後、エバポレ−ショ
ンにより高分子電解質を溶解させる溶媒をとり除くこと
により得られた触媒粒子を用いてなることを特徴とする
固体高分子型燃料電池用電極。
1. An electrode for a polymer electrolyte fuel cell using catalyst particles coated with a polymer electrolyte, wherein the catalyst particles and the polymer electrolyte (A) are dissolved in a solvent. When the coating is carried out by removing the solvent from the suspension obtained by mixing and, the function of (B) aggregating the polymer electrolyte with the solvent for dissolving the (A) polymer electrolyte to form a colloidal state. Using a mixed solvent obtained by adding a solvent to dissolve the catalyst particles and the polymer electrolyte membrane solution into this, the catalyst particles obtained by removing the solvent to dissolve the polymer electrolyte by evaporation, An electrode for a polymer electrolyte fuel cell, which is characterized by being used.
【請求項2】上記(A)高分子電解質を溶解させる溶媒
が、水とエタノ−ルの混合溶媒であり、(B)該高分子
電解質を凝集させてコロイド状態とする働きをする溶媒
が酢酸ブチルである請求項1記載の固体高分子型燃料電
池用電極。
2. The solvent for dissolving the polymer electrolyte (A) is a mixed solvent of water and ethanol, and the solvent (B) for coagulating the polymer electrolyte into a colloidal state is acetic acid. The polymer electrolyte fuel cell electrode according to claim 1, which is butyl.
【請求項3】上記電極が触媒粒子を高分子電解質でコ−
ティングしてなる触媒粒子を撥水化カ−ボンペ−パ−上
に堆積、担持させてなる電極である請求項1又は2記載
の固体高分子型燃料電池用電極。
3. The electrode comprises a catalyst particle coated with a polymer electrolyte.
3. The electrode for a polymer electrolyte fuel cell according to claim 1, which is an electrode obtained by depositing and carrying catalyst particles formed by coating on a water repellent carbon paper.
【請求項4】触媒粒子のコ−ティング用固体高分子電解
質がパ−フルオロカ−ボンスルホン酸樹脂系のものであ
り、撥水化カ−ボンペ−パ−の撥水化剤がポリテトラフ
ルオロエチレン系ポリマ−である請求項3記載の固体高
分子型燃料電池用電極。
4. The solid polymer electrolyte for coating the catalyst particles is of a perfluorocarbon sulfonic acid resin type, and the water repellent agent of the water repellent carbon paper is polytetrafluoroethylene. The polymer electrolyte fuel cell electrode according to claim 3, which is a polymer.
【請求項5】触媒粒子を高分子電解質でコ−ティングし
てなる固体高分子型燃料電池用電極の製造方法におい
て、予め触媒粒子と(A)高分子電解質を溶解させる溶
媒中に溶解した高分子電解質とを混合した懸濁液からそ
の溶媒を除去することによりコ−ティングするに際し、
この(A)高分子電解質を溶解させる溶媒に対して、
(B)該高分子電解質を凝集させてコロイド状態とする
働きをする溶媒を添加し、この混合溶媒に触媒粒子と高
分子電解質膜溶液を溶かしこんだ後、エバポレ−ション
により高分子電解質を溶解させる溶媒をとり除くことを
特徴とする固体高分子型燃料電池用電極の製造方法。
5. A method for producing an electrode for a polymer electrolyte fuel cell, which comprises coating catalyst particles with a polymer electrolyte, wherein the catalyst particles and (A) the polymer electrolyte are previously dissolved in a solvent. In coating by removing the solvent from the suspension mixed with the molecular electrolyte,
For the solvent that dissolves this (A) polymer electrolyte,
(B) A solvent that functions to aggregate the polymer electrolyte into a colloidal state is added, the catalyst particles and the polymer electrolyte membrane solution are dissolved in this mixed solvent, and then the polymer electrolyte is dissolved by evaporation. A method for producing an electrode for a polymer electrolyte fuel cell, which comprises removing the solvent to be used.
【請求項6】上記(A)高分子電解質を溶解させる溶媒
が、水とエタノ−ルの混合溶媒であり、(B)該高分子
電解質を凝集させてコロイド状態とする働きをする溶媒
が酢酸ブチルである請求項5記載の固体高分子型燃料電
池用電極の製造方法。
6. The solvent (A) for dissolving the polymer electrolyte is a mixed solvent of water and ethanol, and the solvent (B) for aggregating the polymer electrolyte into a colloidal state is acetic acid. It is butyl, The manufacturing method of the electrode for polymer electrolyte fuel cells of Claim 5.
【請求項7】上記電極が触媒粒子を高分子電解質でコ−
ティングしてなる触媒粒子を撥水化カ−ボンペ−パ−上
に堆積、担持させる形式のものである請求項5又は6記
載の固体高分子型燃料電池用電極の製造方法。
7. The electrode comprises a catalyst particle coated with a polymer electrolyte.
The method for producing an electrode for a polymer electrolyte fuel cell according to claim 5 or 6, which is of a type in which the coated catalyst particles are deposited and carried on a water repellent carbon paper.
【請求項8】触媒粒子のコ−ティング用固体高分子電解
質がパ−フルオロカ−ボンスルホン酸樹脂系のものであ
り、撥水化カ−ボンペ−パ−の撥水化剤がポリテトラフ
ルオロエチレン系ポリマ−である請求項7記載の固体高
分子型燃料電池用電極の製造方法。
8. A solid polymer electrolyte for coating catalyst particles is of a perfluorocarbon sulfonic acid resin type, and a water repellent agent of a water repellent carbon paper is polytetrafluoroethylene. The method for producing an electrode for a polymer electrolyte fuel cell according to claim 7, which is a polymer.
JP6309934A 1994-11-17 1994-11-17 Solid polymeric fuel cell electrode and manufacture thereof Pending JPH08148153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6309934A JPH08148153A (en) 1994-11-17 1994-11-17 Solid polymeric fuel cell electrode and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6309934A JPH08148153A (en) 1994-11-17 1994-11-17 Solid polymeric fuel cell electrode and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH08148153A true JPH08148153A (en) 1996-06-07

Family

ID=17999113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6309934A Pending JPH08148153A (en) 1994-11-17 1994-11-17 Solid polymeric fuel cell electrode and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH08148153A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998029916A1 (en) * 1996-12-27 1998-07-09 Japan Storage Battery Co., Ltd. Gas diffusion electrode, solid polymer electrolyte membrane, method of producing them, and solid polymer electrolyte type fuel cell using them
JP2001300324A (en) * 2000-04-26 2001-10-30 Japan Storage Battery Co Ltd Composite catalyst and manufacturing method and method of manufacturing electrode for fuel cell using the same
US6730404B1 (en) * 1999-03-04 2004-05-04 Japan Storage Battery Co., Ltd. Composite active material and process for the production thereof, electrode and process for the production thereof, and non-aqueous electrolyte battery
JP2004273434A (en) * 2003-02-20 2004-09-30 Jsr Corp Paste composition for electrode
JP2006031951A (en) * 2004-07-12 2006-02-02 Tomoegawa Paper Co Ltd Method of manufacturing gas diffusion electrode for solid polymer fuel cell
JP2011009226A (en) * 2010-07-20 2011-01-13 Gs Yuasa Corp Composite catalyst, its manufacturing method, and method of electrode for manufacturing fuel cell using the composite catalyst

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998029916A1 (en) * 1996-12-27 1998-07-09 Japan Storage Battery Co., Ltd. Gas diffusion electrode, solid polymer electrolyte membrane, method of producing them, and solid polymer electrolyte type fuel cell using them
US6592934B2 (en) * 1996-12-27 2003-07-15 Japan Storage Battery Co., Ltd. Gas diffusion electrode, solid polymer electrolyte membrane, process for the production thereof and solid polymer electrolyte fuel cell
US6730404B1 (en) * 1999-03-04 2004-05-04 Japan Storage Battery Co., Ltd. Composite active material and process for the production thereof, electrode and process for the production thereof, and non-aqueous electrolyte battery
JP2001300324A (en) * 2000-04-26 2001-10-30 Japan Storage Battery Co Ltd Composite catalyst and manufacturing method and method of manufacturing electrode for fuel cell using the same
JP2004273434A (en) * 2003-02-20 2004-09-30 Jsr Corp Paste composition for electrode
JP2006031951A (en) * 2004-07-12 2006-02-02 Tomoegawa Paper Co Ltd Method of manufacturing gas diffusion electrode for solid polymer fuel cell
JP2011009226A (en) * 2010-07-20 2011-01-13 Gs Yuasa Corp Composite catalyst, its manufacturing method, and method of electrode for manufacturing fuel cell using the composite catalyst

Similar Documents

Publication Publication Date Title
US5783325A (en) Gas diffusion electrodes based on poly(vinylidene fluoride) carbon blends
Brodt et al. Power output and durability of electrospun fuel cell fiber cathodes with PVDF and nafion/PVDF binders
JP4791822B2 (en) ELECTROLYTE MEMBRANE, METHOD FOR PRODUCING THE SAME, MEMBRANE ELECTRODE COMPLEX AND FUEL CELL USING THE SAME
CN1764001B (en) Polymer electrolyte for a direct oxidation fuel cell, method of preparing the same, and direct oxidation fuel cell comprising the same
CN104022300A (en) Process for producing membrane/electrode assembly for polymer electrolyte fuel cell
US20120276470A1 (en) Solution based enhancements of fuel cell components and other electrochemical systems and devices
JPH08259873A (en) Improved ink for making electrode
JPH09199138A (en) Manufacture of electrode for fuel cell or electrode electrolytic film bonding body, and electrode for fuel cell
CN109390592B (en) Membrane electrode and preparation method thereof
JP5676696B2 (en) Method for producing durable polymer electrolyte thin films
CN101617424A (en) The manufacture method of membrane-electrode assembly for polymer electrolyte fuel cell and the manufacture method of polymer electrolyte fuel cell
GB2316802A (en) Gas diffusion electrodes based on polyethersulfone Carbon blends
JPH08236123A (en) Fuel cell electrode and manufacture thereof
JPH10334923A (en) Solid high polymer fuel cell film/electrode connecting body
JP2006344517A (en) Manufacturing method of fuel cell
JPH08148152A (en) Solid polymeric fuel cell electrode and manufacture thereof
JPH08148153A (en) Solid polymeric fuel cell electrode and manufacture thereof
JP2004335252A (en) Electrode catalyst for fuel cell, and its manufacturing method
JPH08148151A (en) Fuel cell electrode and manufacture thereof
JP4649094B2 (en) Manufacturing method of membrane electrode assembly for fuel cell
CN103579635A (en) PPS electrode reinforcing material/crack mitigant
JPH06203848A (en) Manufacture of solid high polymer fuel cell
CN101297425A (en) Method for producing membrane electrode assembly for solid polymer fuel cell
JP3182265B2 (en) Method for producing electrode for polymer electrolyte fuel cell
JPH10189002A (en) Electrode for fuel cell and its manufacture