JP2011009226A - Composite catalyst, its manufacturing method, and method of electrode for manufacturing fuel cell using the composite catalyst - Google Patents

Composite catalyst, its manufacturing method, and method of electrode for manufacturing fuel cell using the composite catalyst Download PDF

Info

Publication number
JP2011009226A
JP2011009226A JP2010162838A JP2010162838A JP2011009226A JP 2011009226 A JP2011009226 A JP 2011009226A JP 2010162838 A JP2010162838 A JP 2010162838A JP 2010162838 A JP2010162838 A JP 2010162838A JP 2011009226 A JP2011009226 A JP 2011009226A
Authority
JP
Japan
Prior art keywords
catalyst
exchange resin
cation exchange
composite catalyst
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010162838A
Other languages
Japanese (ja)
Other versions
JP5605048B2 (en
Inventor
Naohiro Tsumura
直宏 津村
Shuji Hitomi
周二 人見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2010162838A priority Critical patent/JP5605048B2/en
Publication of JP2011009226A publication Critical patent/JP2011009226A/en
Application granted granted Critical
Publication of JP5605048B2 publication Critical patent/JP5605048B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To solve a problem that, although cation exchange resin has high protonic conductivity, it has an extremely low gas diffusion property, and in a catalyst layer as above, a part of pores formed between catalyst particles are occluded by cation exchange resin and a gas diffusion channel is shut off, and so, to aim at a higher output of a PEFC by obtaining high-performance composite catalyst with a high utilization rate of catalyst metal and aim at improvement of an electrode structure with the use of the composite catalyst.SOLUTION: The composite catalyst includes holed cation exchange resin 2 on the surface of the catalyst. For the composite catalyst, a volume of the holed cation exchange resin to catalyst weight is 1.0 to 100 wt.%. In the manufacturing method of the composite catalyst, after solution with the cation exchange resin dissolved in a solvent is adhered to the surface of the catalyst, the cation exchange resin is put under phase separation.

Description

本発明は、複合触媒とその製造方法およびその複合触媒を使用した燃料電池用電極の製造方法に関する。  The present invention relates to a composite catalyst, a method for producing the same, and a method for producing an electrode for a fuel cell using the composite catalyst.

固体高分子電解質型燃料電池(PEFC)は、陽イオン交換樹脂の1種である固体高分子電解質膜の一方の面にアノ−ドを、もう一方の面にカソ−ドを接合して構成され、アノ−ドに水素などの燃料を、カソ−ドに酸素などの酸化剤を供給したときに進行する電気化学反応によって電力を得る装置である。PEFCを作動させると、アノ−ドおよびカソ−ドにそれぞれ水素と酸素とを供給した場合、次のような電気化学反応が進行する。  A solid polymer electrolyte fuel cell (PEFC) is constructed by joining an anode on one surface and a cathode on the other surface of a solid polymer electrolyte membrane which is a kind of cation exchange resin. This is an apparatus for obtaining electric power by an electrochemical reaction that proceeds when a fuel such as hydrogen is supplied to an anode and an oxidant such as oxygen is supplied to a cathode. When the PEFC is operated, when hydrogen and oxygen are supplied to the anode and the cathode, the following electrochemical reaction proceeds.

アノ−ド:2H2→4H++4e-
カソ−ド:O2+4H++4e-→H2
このような電気化学反応は、各電極において、プロトン(H+)および電子(e-)授受を同時に行うことができる三相界面でのみ進行する。そこでPEFCにおけるアノ−ドおよびカソ−ドには、三相界面を得るためにガス拡散層と触媒層とで構成されるガス拡散電極が用いられる。
Anod: 2H 2 → 4H + + 4e
Cathode: O 2 + 4H + + 4e → H 2 O
Such an electrochemical reaction proceeds only at the three-phase interface where protons (H + ) and electrons (e ) can be exchanged simultaneously at each electrode. Therefore, gas diffusion electrodes composed of a gas diffusion layer and a catalyst layer are used for anodes and cathodes in PEFC in order to obtain a three-phase interface.

ガス拡散層には、外部から供給される反応物質を触媒層へ十分に拡散させるために、その経路を備えた撥水性を付与した多孔質なカ−ボンペ−パなどが用いられる。触媒層には、ガス拡散層を経て供給される反応物質の電気化学反応を円滑に進めるために、陽イオン交換樹脂と触媒とを含む混合物が用いられる。  For the gas diffusion layer, in order to sufficiently diffuse the reactants supplied from the outside into the catalyst layer, a porous carbon paper or the like having a water repellency provided therewith is used. A mixture containing a cation exchange resin and a catalyst is used for the catalyst layer in order to smoothly advance the electrochemical reaction of the reactant supplied through the gas diffusion layer.

ここで、触媒としては、白金族金属、金、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、スズなどの金属の単体、またはそれらの金属の合金などの触媒粒子、あるいは、それらを担持したカーボン粒子が用いられる。  Here, the catalyst includes catalyst particles such as platinum group metals, gold, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, tin, and the like, or alloys of these metals, or support them. Carbon particles are used.

従来の触媒層は、陽イオン交換樹脂を含む溶液と触媒粒子とからなるペーストを高分子フィルムやカーボンペーパなどの基材上に製膜し、乾燥することによって製作されていた。このような触媒層では、陽イオン交換樹脂によるプロトン伝導チャンネル、触媒粒子同士の接触による電子伝導チャンネル、および、触媒粒子間の隙間からなる細孔によるガス拡散チャンネルが三次元的に分布しているので、三相界面が無数に形成される。  The conventional catalyst layer has been manufactured by forming a paste made of a solution containing a cation exchange resin and catalyst particles on a substrate such as a polymer film or carbon paper and drying the paste. In such a catalyst layer, proton conduction channels by cation exchange resin, electron conduction channels by contact between catalyst particles, and gas diffusion channels by pores formed by gaps between catalyst particles are three-dimensionally distributed. Therefore, an infinite number of three-phase interfaces are formed.

しかし、従来の陽イオン交換樹脂はプロトン伝導性が高いが、ガス拡散性が極めて低いために、上記のような触媒層では、触媒粒子間に形成される細孔の一部が陽イオン交換樹脂によって閉塞し、ガス拡散チャンネルが遮断されるといった問題があった。  However, the conventional cation exchange resin has high proton conductivity but extremely low gas diffusivity. Therefore, in the catalyst layer as described above, some of the pores formed between the catalyst particles are cation exchange resin. There is a problem that the gas diffusion channel is blocked due to clogging.

このようなガス拡散チャンネルが十分に形成されていない触媒層を電極に用いた場合、触媒層の細部にまで反応ガスが供給されないので、触媒の利用率が低く、また、濃度過電圧が大きいのでセル電圧が低いという問題があった。   When a catalyst layer in which such a gas diffusion channel is not sufficiently formed is used for the electrode, the reaction gas is not supplied to the details of the catalyst layer, so the utilization rate of the catalyst is low and the concentration overvoltage is large, so the cell There was a problem that the voltage was low.

以上に鑑み、本発明の目的は、ガス拡散性が高く、触媒金属の利用率が高い、高性能な複合触媒を得ることにあり、さらにこの複合触媒を使用することと電極構造の改善を行なうことにより、PEFCの高出力化をはかることにある。   In view of the above, an object of the present invention is to obtain a high-performance composite catalyst having high gas diffusibility and high utilization rate of catalytic metal, and further using this composite catalyst and improving the electrode structure. This is to increase the output of PEFC.

本発明による第一の発明は、複合触媒が、触媒表面に有孔性陽イオン交換樹脂を備えたことを特徴とする。  The first invention according to the present invention is characterized in that the composite catalyst comprises a porous cation exchange resin on the catalyst surface.

本発明による第二の発明は、前記複合触媒において、触媒重量に対する有孔性陽イオン交換樹脂量が1.0〜100wt%であること特徴とする。  According to a second aspect of the present invention, the composite catalyst is characterized in that the amount of the porous cation exchange resin with respect to the catalyst weight is 1.0 to 100 wt%.

本発明による第三の発明は、前記複合触媒の製造方法において、陽イオン交換樹脂を溶媒に溶解した溶液を触媒の表面に付着させた後、前記陽イオン交換樹脂を相分離させることを特徴とする。  A third invention according to the present invention is characterized in that, in the method for producing a composite catalyst, a solution obtained by dissolving a cation exchange resin in a solvent is attached to the surface of the catalyst, and then the cation exchange resin is phase-separated. To do.

本発明のよる第四の発明は、前記複合触媒の製造方法において、陽イオン交換樹脂を第1の溶媒に溶解した溶液を触媒の表面に付着させた後、前記陽イオン交換樹脂に対して不溶性でかつ第1の溶媒と相溶性の第2の溶媒により、溶液中の第1の溶媒を抽出することを特徴とする。  According to a fourth invention of the present invention, in the method for producing the composite catalyst, after a solution in which the cation exchange resin is dissolved in the first solvent is attached to the surface of the catalyst, it is insoluble in the cation exchange resin. And extracting the first solvent in the solution with a second solvent that is compatible with the first solvent.

本発明による第五の発明は、燃料電池用電極が前記複合触媒を含むことを特徴とする。  According to a fifth aspect of the present invention, the fuel cell electrode includes the composite catalyst.

本発明による第六の発明は、燃料電池用電極の製造方法において、複合触媒を含む混合物をプレスする工程を経て触媒層を形成することを特徴とする。  A sixth invention according to the present invention is characterized in that, in the fuel cell electrode manufacturing method, the catalyst layer is formed through a step of pressing the mixture containing the composite catalyst.

本発明の複合触媒は、触媒表面に有孔性陽イオン交換樹脂を備えているために、それ自体がプロトン伝導性を持ち、触媒層内に至るまでプロトン伝導チャンネルが形成され、さらに、陽イオン交換樹脂が有孔性であるために外部からのガスが触媒層内に十分に透過および拡散するので、触媒層内の細部に至るまでプロトン伝導チャンネルとガス拡散チャンネルとが閉塞することなく形成されているため、ガス拡散性が高く、触媒金属の利用率が高い高性能な複合触媒である。 Since the composite catalyst of the present invention includes a porous cation exchange resin on the catalyst surface, the composite catalyst itself has proton conductivity, and a proton conduction channel is formed up to the inside of the catalyst layer. Since the gas is porous, the gas from the outside sufficiently permeates and diffuses into the catalyst layer, so that the proton conduction channel and the gas diffusion channel are formed without clogging up to the details in the catalyst layer. Therefore, it is a high performance composite catalyst having high gas diffusivity and high utilization rate of catalyst metal.

この複合触媒を使用することにより、高いプロトン伝導性とガス拡散性とを有する高性能な燃料電池電極が得られる。  By using this composite catalyst, a high-performance fuel cell electrode having high proton conductivity and gas diffusivity can be obtained.

本発明の複合触媒の、断面の状態を示す模式図。The schematic diagram which shows the state of a cross section of the composite catalyst of this invention. 本発明の複合触媒の、表面状態の一例を示す模式図。The schematic diagram which shows an example of the surface state of the composite catalyst of this invention. 本発明の複合触媒の、表面状態の他の例を示す模式図。The schematic diagram which shows the other example of the surface state of the composite catalyst of this invention. 複合触媒の、断面の状態の一例を示す模式図。The schematic diagram which shows an example of the state of a cross section of a composite catalyst. 複合触媒の、断面の状態の他の例を示す模式図。The schematic diagram which shows the other example of the state of a cross section of a composite catalyst. 本発明の複合触媒を用いた触媒層を含む電極の、多孔性陽イオン交換樹脂の配合比と電気化学的に活性な触媒表面積との関係を示す図。The figure which shows the relationship between the compounding ratio of the porous cation exchange resin of the electrode containing the catalyst layer using the composite catalyst of this invention, and the electrochemically active catalyst surface area. セルA、B、Cの電流−電圧特性を示す図。The figure which shows the current-voltage characteristic of the cells A, B, and C.

以下、本発明に係る燃料電池用複合触媒の構造例を図面を参照して説明する。図1は本発明の複合触媒の断面を示す模式図、図2および図3は本発明の複合触媒の表面状態を示す模式図である。図1、図2および図3において、1は触媒、2は有孔性陽イオン交換樹脂である。なお、触媒1は、触媒金属粒子または触媒金属を担持したカーボン粒子からなる。  Hereinafter, structural examples of the composite catalyst for a fuel cell according to the present invention will be described with reference to the drawings. FIG. 1 is a schematic view showing a cross section of the composite catalyst of the present invention, and FIGS. 2 and 3 are schematic views showing the surface state of the composite catalyst of the present invention. 1, 2 and 3, 1 is a catalyst and 2 is a porous cation exchange resin. The catalyst 1 is composed of catalyst metal particles or carbon particles carrying a catalyst metal.

本発明の複合触媒は、図1に示したように、電気化学反応に活性な触媒1の表面に有孔性陽イオン交換樹脂2を備えた構造である。  As shown in FIG. 1, the composite catalyst of the present invention has a structure in which a porous cation exchange resin 2 is provided on the surface of a catalyst 1 that is active in an electrochemical reaction.

そして、本発明の複合触媒は、図1のように有孔性陽イオン交換樹脂2が触媒1の表面を完全に被覆した構造でもよいし、図2に示したように、触媒1の表面に有孔性陽イオン交換樹脂2が部分的に備えられた構造でもよい。また、本発明の複合触媒は、図1および図2のように個々の触媒1を有孔性陽イオン交換樹脂2で被覆した形状でもよく、また、図3に示すように触媒1で構成される二次粒子の表面に有孔性陽イオン交換樹脂2を備えた形状でもよい。  The composite catalyst of the present invention may have a structure in which the porous cation exchange resin 2 completely covers the surface of the catalyst 1 as shown in FIG. 1, or the porous cation exchange resin 2 on the surface of the catalyst 1 as shown in FIG. A structure in which the ion exchange resin 2 is partially provided may be used. Further, the composite catalyst of the present invention may have a shape in which each catalyst 1 is coated with a porous cation exchange resin 2 as shown in FIGS. 1 and 2, and is composed of the catalyst 1 as shown in FIG. 3. The shape provided with the porous cation exchange resin 2 on the surface of the next particle may be sufficient.

このような本発明に係る複合触媒は、その触媒表面に有孔性陽イオン交換樹脂を備えているために、それ自体がプロトン伝導性を持ち、触媒層内に至るまでプロトン伝導チャンネルが形成され、さらに、陽イオン交換樹脂が有孔性であるために外部からのガスが触媒層内に十分に透過および拡散するので、触媒層内の細部に至るまでプロトン伝導チャンネルとガス拡散チャンネルとが閉塞することなく形成される。すなわち、本発明の複合触媒は、ガス拡散性が高く、触媒金属の利用率が高い高性能な複合触媒である。  Since the composite catalyst according to the present invention has a porous cation exchange resin on the catalyst surface, the composite catalyst itself has proton conductivity, and a proton conduction channel is formed up to the inside of the catalyst layer. Since the cation exchange resin is porous, the gas from the outside is sufficiently permeated and diffused into the catalyst layer, so that the proton conduction channel and the gas diffusion channel are blocked up to the details in the catalyst layer. Formed without. That is, the composite catalyst of the present invention is a high-performance composite catalyst having high gas diffusibility and high utilization rate of catalyst metal.

また、本発明の電極用複合触媒において、含まれる触媒重量に対する有孔性陽イオン交換樹脂の重量の割合は特に限定されるものではないが、1.0〜100wt%であることが好ましい。その割合は、触媒が触媒金属の粒子である場合、その比重が大きいことから1.0〜20wt%であることが好ましく、触媒が触媒金属を担持したカーボン粒子である場合、その比重が小さいことから15〜100wt%であることが好ましい。  In the composite catalyst for an electrode of the present invention, the ratio of the weight of the porous cation exchange resin to the weight of the catalyst contained is not particularly limited, but is preferably 1.0 to 100 wt%. The ratio is preferably 1.0 to 20 wt% because the specific gravity is large when the catalyst is particles of catalyst metal, and the specific gravity is small when the catalyst is carbon particles supporting the catalyst metal. It is preferable that it is 15-100 wt%.

そこで、複合触媒における触媒と有孔性陽イオン交換樹脂の混合割合と特性との関係を、複合触媒の断面の状態を示す図4および図5を用いて説明する。なお、図4および 図5において、1は触媒、2は有孔性陽イオン交換樹脂である。  Accordingly, the relationship between the mixing ratio of the catalyst and the porous cation exchange resin in the composite catalyst and the characteristics will be described with reference to FIGS. 4 and 5 showing the cross-sectional state of the composite catalyst. 4 and 5, 1 is a catalyst and 2 is a porous cation exchange resin.

触媒重量に対する有孔性陽イオン交換樹脂の混合割合が、触媒が触媒金属の粒子の場合で1.0wt%以下、触媒金属を担持したカーボン粒子の場合で15wt%以下の場合は、図4に示すように、有孔性陽イオン交換樹脂が少ないために、有孔性陽イオン交換樹脂に被覆されている触媒の表面積が極端に小さくなる。このため、多くの触媒金属が電極反応時にプロトンを授受できないので、その触媒利用率が大きく低下する。  As shown in FIG. 4, the mixing ratio of the porous cation exchange resin to the catalyst weight is 1.0 wt% or less when the catalyst is a catalyst metal particle and 15 wt% or less when the catalyst is a carbon particle supporting the catalyst metal. In addition, since the porous cation exchange resin is small, the surface area of the catalyst coated with the porous cation exchange resin becomes extremely small. For this reason, since many catalytic metals cannot give and receive protons during the electrode reaction, the catalyst utilization rate is greatly reduced.

また、触媒が触媒金属の粒子の場合で20wt%以上、触媒金属を担持したカーボン粒子の場合で100wt%以上の場合は、 図5に示すように、触媒表面の有孔性陽イオン交換樹脂の層によって、触媒間距離が極端に広くなる。このため、多くの触媒金属が電極反応時に電子を授受できないので、その触媒利用率が大きく低下する。  In addition, when the catalyst is a catalyst metal particle and is 20 wt% or more, and when the catalyst metal is a carbon particle supporting 100 wt% or more, as shown in FIG. 5, a porous cation exchange resin layer on the catalyst surface The distance between the catalysts becomes extremely wide. For this reason, many catalyst metals cannot exchange electrons during the electrode reaction, so that the catalyst utilization rate is greatly reduced.

本発明の複合触媒に含まれる触媒は、触媒活性を有する物質であればどのような物性および形状のものでも効果があり、一般的な燃料電池用触媒として用いられる触媒金属の粒子、または触媒金属を担持したカーボン粒子などを用いることができる。  The catalyst included in the composite catalyst of the present invention is effective in any physical property and shape as long as it has a catalytic activity, and is a catalyst metal particle or catalyst metal used as a general fuel cell catalyst. For example, carbon particles supporting the carbon can be used.

なお、上記触媒金属の粒子とは、たとえば、白金族金属、金、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、スズなどの金属の単体、またはそれらの金属の合金の触媒金属粒子である。
また、触媒金属を担持するカーボン粒子とは、たとえば、アセチレンブラックやファーネスブラックなどのカーボンブラック、または活性炭などであり、とくにカーボンブラックは触媒金属を高分散担持できることから好ましく用いられる。
The catalyst metal particles are, for example, platinum group metals, gold, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, tin, and other simple metals or alloys of these metals. is there.
The carbon particles supporting the catalyst metal are, for example, carbon black such as acetylene black and furnace black, or activated carbon, and carbon black is particularly preferably used because it can carry the catalyst metal in a highly dispersed state.

また、本発明の複合触媒に用いられる陽イオン交換樹脂としては、プロトン伝導性の高いものが好ましく、たとえば、パーフロロカーボンスルホン酸またはスチレン−ジビニルベンゼン系のスルホン酸型イオン交換樹脂を単独であるいは混合して用いることができる。  The cation exchange resin used in the composite catalyst of the present invention is preferably one having high proton conductivity. For example, perfluorocarbon sulfonic acid or styrene-divinylbenzene sulfonic acid type ion exchange resin may be used alone or in combination. Can be used.

本発明の、有孔性の陽イオン交換樹脂を表面に備えた複合触媒は、陽イオン交換樹脂を溶媒に溶解した溶液を触媒の表面に付着させた後、前記陽イオン交換樹脂を相分離した後、溶媒を抽出することによって得られる。  The composite catalyst provided with a porous cation exchange resin on the surface of the present invention was prepared by adhering a solution of the cation exchange resin in a solvent to the surface of the catalyst and then phase-separating the cation exchange resin. Later, it is obtained by extracting the solvent.

この方法は、本発明の複合触媒に限らず、例えば非多孔のような、他の構造の複合触媒の製造方法としても用いることができる。  This method is not limited to the composite catalyst of the present invention, and can be used as a method for producing a composite catalyst having another structure such as non-porous structure.

陽イオン交換樹脂を溶媒に溶解した溶液を触媒の表面に付着させるには、触媒を溶液に浸漬するか、または触媒に溶液をスプレーなどで吹き付けることによりなされる。  In order to attach a solution obtained by dissolving the cation exchange resin in a solvent to the surface of the catalyst, the catalyst is immersed in the solution or sprayed on the catalyst by spraying or the like.

特に触媒を溶液に浸漬する方法の場合には、触媒表面の孔中、あるいは、触媒が二次粒子を形成している場合にはその二次粒子の孔中にも溶液を含ませるために、50Torr以下の減圧下で、さらに好ましくは1Torr以下の減圧下でその浸漬工程をおこなうことが好ましい。さらに、陽イオン交換樹脂溶液とカーボン粒子とを攪拌、振動または流動させる工程をおこなうことが好ましい。  In particular, in the case of the method of immersing the catalyst in the solution, in order to include the solution in the pores of the catalyst surface, or when the catalyst forms secondary particles, the pores of the secondary particles are also included. It is preferable to perform the dipping step under a reduced pressure of 50 Torr or less, more preferably 1 Torr or less. Furthermore, it is preferable to perform a step of stirring, vibrating or flowing the cation exchange resin solution and the carbon particles.

また、触媒の表面に付着した溶液から陽イオン交換樹脂を相分離する方法としては、加熱または冷却による陽イオン交換樹脂の溶媒に対する溶解度変化、溶媒を蒸発させることによる溶液中の陽イオン交換樹脂の濃度変化を利用する方法などがあげられる。  In addition, as a method for phase-separating the cation exchange resin from the solution adhering to the surface of the catalyst, the solubility of the cation exchange resin in the solvent by heating or cooling, the cation exchange resin in the solution by evaporating the solvent, For example, a method using a change in density is used.

例えば、溶解度変化を利用する方法として、低温において陽イオン交換樹脂が溶媒に溶解しにくく、温度を上昇させた場合に溶解しやすいような陽イオン交換樹脂と溶媒との組み合せにおいて、温度を上昇させて陽イオン交換樹脂を溶媒に完全に溶解させた溶液を触媒表面に付着させた後、その温度を下げていくと、溶液中で陽イオン交換樹脂と溶媒とが分離する。このような相分離をおこした陽イオン交換樹脂と溶媒との溶液から溶媒を除去することによって、有孔性樹脂を表面に備えた複合触媒が得られる。  For example, as a method of utilizing the change in solubility, the cation exchange resin is difficult to dissolve in a solvent at a low temperature, and the temperature is increased in a combination of a cation exchange resin and a solvent that easily dissolves when the temperature is increased. After the solution in which the cation exchange resin is completely dissolved in the solvent is attached to the catalyst surface, the cation exchange resin and the solvent are separated in the solution when the temperature is lowered. By removing the solvent from the solution of the cation exchange resin and the solvent subjected to such phase separation, a composite catalyst having a porous resin on the surface can be obtained.

また、溶媒抽出法を用いることにり前記相分離をおこなうことが可能である。この方法は、陽イオン交換樹脂を第1の溶媒に溶解した溶液を触媒に付着させた後、この触媒を、前記陽イオン交換樹脂に対して不溶性でかつ第1の溶媒と相溶性のある第2の溶媒に浸漬することによって、溶液中の第1の溶媒を抽出して、有孔性樹脂を表面に備えた複合触媒が得られる。  Further, the phase separation can be performed by using a solvent extraction method. In this method, after a solution in which a cation exchange resin is dissolved in a first solvent is attached to a catalyst, the catalyst is insoluble in the cation exchange resin and compatible with the first solvent. By immersing in No. 2 solvent, the first solvent in the solution is extracted to obtain a composite catalyst having a porous resin on the surface.

ここで、陽イオン交換樹脂を第1の溶媒に溶解した溶液を触媒の表面に付着させる工程から陽イオン交換樹脂を相分離する工程までを繰り返すことによって、または陽イオン交換樹脂を第1の溶媒に溶解した溶液を触媒の表面に付着させる工程において、用いる陽イオン交換樹脂溶液の濃度あるいは粘度を増減することによって、触媒の表面に備えられた陽イオン交換樹脂の担持量を調整し、触媒に対する陽イオン交換樹脂を1.0〜100wt%にすることができる。  Here, by repeating from the step of attaching a solution in which the cation exchange resin is dissolved in the first solvent to the surface of the catalyst to the step of phase-separating the cation exchange resin, or the cation exchange resin in the first solvent In the step of adhering the solution dissolved in the catalyst to the surface of the catalyst, by adjusting the concentration or viscosity of the cation exchange resin solution to be used, the amount of the cation exchange resin provided on the surface of the catalyst is adjusted, The cation exchange resin can be 1.0 to 100 wt%.

ここで使用する触媒の形態は、粉末状態でも、触媒が集電体に凝集した状態でも良いが、粉末状態であることが好ましい。  The form of the catalyst used here may be in a powder state or in a state where the catalyst is aggregated on a current collector, but is preferably in a powder state.

本発明の、溶媒抽出法による複合触媒の製造方法に用いられる第1の溶媒として、水や水とアルコールとの混合溶液が好ましい。その混合溶液に使用されるアルコールとしては、炭素数が4以下のものが好ましく、メタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノールあるいはこれらの混合物を用いることができる。  As a 1st solvent used for the manufacturing method of the composite catalyst by the solvent extraction method of this invention, the mixed solution of water or water, and alcohol is preferable. As the alcohol used in the mixed solution, those having 4 or less carbon atoms are preferable, and methanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol or a mixture thereof can be used.

また本発明の、溶媒抽出法による複合触媒の製造方法に用いられる第2の溶媒として、アルコール性水酸基以外の極性基を有する有機溶媒を用いることができ、分子内にアルコキシカルボニル基を有する炭素鎖の炭素数が1〜7の有機溶媒、例えば、ギ酸プロピル、ギ酸ブチル、ギ酸イソブチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸アリル、酢酸ブチル、酢酸イソブチル、酢酸ペンチル、酢酸イソペンチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、アクリル酸メチル、アクリル酸ブチル、アクリル酸イソブチル、酪酸メチル、イソ酪酸メチル、酪酸エチル、イソ酪酸エチル、メタクリル酸メチル、酪酸プロピル、イソ酪酸イソプロピル、酢酸2-エトキシエチル、酢酸2−(2エトキシエトキシ)エチル等の単独もしくは混合物、または分子内にエーテル結合を有する炭素鎖の炭素数が3〜5の有機溶媒、例えば、ジプロピルエーテル、ジブチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、トリプロピレングリコールモノメチルエーテル、テトラヒドロフラン等の単独もしくは混合物、または分子内にカルボニル基を有する炭素鎖の炭素数が4〜8の有機溶媒、例えば、メチルブチルケトン、メチルイソブチルケトン、メチルヘキシルケトン、ジプロピルケトン等の単独もしくは混合物、または分子内にアミノ基を有する炭素鎖の炭素数が1〜5の有機溶媒、例えば、イソプロピルアミン、イソブチルアミン、ターシャルブチルアミン、イソペンチルアミン、ジエチルアミン等の単独もしくは混合物、または分子内にカルボキシル基を有する炭素鎖の炭素数が1〜6の有機溶媒、例えば、プロピオン酸、吉草酸、カプロン酸、ヘプタン酸等の単独もしくは混合物、またはこれらの組み合わせから得られるものを用いるこ
とができる。
As the second solvent used in the method for producing a composite catalyst by the solvent extraction method of the present invention, an organic solvent having a polar group other than an alcoholic hydroxyl group can be used, and a carbon chain having an alkoxycarbonyl group in the molecule An organic solvent having 1 to 7 carbon atoms such as propyl formate, butyl formate, isobutyl formate, ethyl acetate, propyl acetate, isopropyl acetate, allyl acetate, butyl acetate, isobutyl acetate, pentyl acetate, isopentyl acetate, methyl propionate, Ethyl propionate, propyl propionate, methyl acrylate, butyl acrylate, isobutyl acrylate, methyl butyrate, methyl isobutyrate, ethyl butyrate, ethyl isobutyrate, methyl methacrylate, propyl butyrate, isopropyl isobutyrate, 2-ethoxyethyl acetate Acetic acid 2- (2ethoxyethoxy) A single or mixture of chill or the like, or an organic solvent having a carbon chain having an ether bond in the molecule and having 3 to 5 carbon atoms, such as dipropyl ether, dibutyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, tripropylene glycol monomethyl A single or mixture of ether, tetrahydrofuran, or the like, or an organic solvent having a carbon chain having a carbonyl group in the molecule and having 4 to 8 carbon atoms, such as methyl butyl ketone, methyl isobutyl ketone, methyl hexyl ketone, dipropyl ketone, etc. Or a mixture, or an organic solvent having a carbon chain having an amino group in the molecule and having 1 to 5 carbon atoms, such as isopropylamine, isobutylamine, tertiary butylamine, isopentylamine, diethylamine, etc. A mixture, or an organic solvent having a carbon chain having a carboxyl group in the molecule and having 1 to 6 carbon atoms, such as propionic acid, valeric acid, caproic acid, heptanoic acid, or a combination thereof, or a combination thereof Can be used.

なかでも、三次元連通性の孔を有する有孔性陽イオン交換樹脂を形成するために用いるアルコール性水酸基以外の極性基を有する有機溶媒としては、アルコキシカルボニル基を有するものがもっとも好ましい。  Especially, as an organic solvent which has polar groups other than the alcoholic hydroxyl group used in order to form the porous cation exchange resin which has a three-dimensional communication hole, what has an alkoxycarbonyl group is the most preferable.

本発明に係る燃料電池用電極は、上記本発明の複合触媒を含む触媒層を備えたことを特徴とし、必要に応じては、従来通りPTFE粒子や陽イオン交換樹脂を含んでもよい。また、本発明に係る燃料電池用電極は、外部から供給される反応物質を触媒層へ十分に拡散させるために、ガス拡散層としてその経路を備えた撥水性を付与した多孔質なカ−ボンペ−パなどを備えてもよい。  The electrode for a fuel cell according to the present invention is characterized by including a catalyst layer containing the composite catalyst of the present invention, and may include PTFE particles or a cation exchange resin as usual, if necessary. In addition, the electrode for a fuel cell according to the present invention is a porous carbon cartridge provided with water repellency having a path as a gas diffusion layer in order to sufficiently diffuse reactants supplied from the outside into the catalyst layer. -You may provide pa.

本発明の電極を燃料電池に備えることによって、プロトン移動に起因する抵抗によるセル電圧の低下と濃度過電圧によるセル電圧の低下とが軽減されるので、燃料電池の高出力化がはかられる。  By providing the fuel cell with the electrode of the present invention, a decrease in cell voltage due to resistance caused by proton transfer and a decrease in cell voltage due to concentration overvoltage are alleviated, so that the output of the fuel cell can be increased.

本発明の燃料電池用電極は、本発明の複合触媒を含む混合物、または本発明の製造方法によって得られた複合触媒を含む混合物をプレスする工程を経て触媒層を形成することによって製作できる。  The electrode for a fuel cell of the present invention can be manufactured by forming a catalyst layer through a step of pressing the mixture containing the composite catalyst of the present invention or the mixture containing the composite catalyst obtained by the production method of the present invention.

本発明の燃料電池用電極の製造方法は、有孔性陽イオン交換樹脂によって被覆された触媒を含む混合物をプレスすることによって、個々の触媒間の電気的接触を遮断していた陽イオン交換樹脂の被覆層が圧迫されて部分的に剥離するので、形成された触媒層内の電子伝導性が向上すること、および、プレスする工程をおこなっても有孔性陽イオン交換樹脂が十分な多孔度を保持することに着目してなされたものであり、上記本発明の燃料電池用電極に限らず、他の構造の燃料電池用電極の製造方法としても用いることのできるものである。  The method for producing an electrode for a fuel cell according to the present invention includes a coating of a cation exchange resin that has blocked electrical contact between individual catalysts by pressing a mixture containing a catalyst coated with a porous cation exchange resin. Since the layer is pressed and partially peeled, the electron conductivity in the formed catalyst layer is improved, and the porous cation exchange resin retains sufficient porosity even when the pressing step is performed. Therefore, the present invention is not limited to the fuel cell electrode of the present invention, and can be used as a method of manufacturing a fuel cell electrode having another structure.

本発明の燃料電池用電極の製造方法では、有孔性陽イオン交換樹脂によって被覆された触媒を含む混合物を高分子フィルムなどの上に製膜し、それをプレスして触媒層を形成した後、固体高分子電解質膜の少なくとも一方の面に転写・接合して電極―固体高分子電解質膜接合体としてもよいし、必要に応じて、前記接合体のさらに外側からガス拡散層としてカーボンペーパなどの多孔質な導電基材を接合してもよい。  In the method for producing an electrode for a fuel cell of the present invention, a mixture containing a catalyst coated with a porous cation exchange resin is formed on a polymer film or the like, pressed to form a catalyst layer, and then a solid It may be transferred to and bonded to at least one surface of the polymer electrolyte membrane to form an electrode-solid polymer electrolyte membrane assembly, and if necessary, a porous material such as carbon paper may be used as a gas diffusion layer from the outside of the assembly. A high quality conductive substrate may be joined.

また、高分子フィルムなどの上に製膜した前記混合物をプレスして触媒層を形成した後、ガス拡散層となるカーボンペーパなどの多孔質な導電基材に転写することによって電極としてもよい。あるいは、高分子フィルムなどの上に製膜した前記混合物を固体高分子電解質膜の少なくとも一方の面に転写したのちに、あるいは、前記混合物を直接、固体高分子電解質膜の少なくとも一方の面に塗布し製膜したのちに、それをプレスすることによって電極―固体高分子電解質膜接合体としてもよく、必要に応じてガス拡散層を接合してもよい。  Alternatively, the mixture formed on a polymer film or the like may be pressed to form a catalyst layer, and then transferred to a porous conductive substrate such as carbon paper serving as a gas diffusion layer to form an electrode. Alternatively, after transferring the mixture formed on a polymer film or the like to at least one surface of the solid polymer electrolyte membrane, or directly applying the mixture to at least one surface of the solid polymer electrolyte membrane After forming the film, it may be pressed to form an electrode-solid polymer electrolyte membrane assembly, or a gas diffusion layer may be bonded if necessary.

本発明の燃料電池用電極の製造方法において、前記混合物をプレスする際の圧力は、少なくとも、個々の触媒間に存在して電気的な接触を遮断している有孔性陽イオン交換樹脂を部分的に剥離させることができる圧力以上であればよく、圧力が、50kg/cm2以上であれば、触媒層に十分な電子伝導性を付与することができる。特に効果的な触媒層の多孔度を維持するためには、その圧力が1000kg/cm2以下であることが好ましい。 In the method for producing an electrode for a fuel cell of the present invention, the pressure at which the mixture is pressed is at least partially that of the porous cation exchange resin that exists between the individual catalysts and blocks electrical contact. If it is more than the pressure which can be made to peel and a pressure is 50 kg / cm < 2 > or more, sufficient electronic conductivity can be provided to a catalyst layer. In order to maintain a particularly effective porosity of the catalyst layer, the pressure is preferably 1000 kg / cm 2 or less.

本発明の燃料電池用電極の製造方法に用いる混合物とは、本発明の複合触媒、または、本発明によって製造される複合触媒によって構成され、その形状はどのようであっても本発明の効果が得られるが、膜厚が50μm以下の膜状であることが好ましい。  The mixture used in the method for producing a fuel cell electrode of the present invention is composed of the composite catalyst of the present invention or the composite catalyst produced by the present invention, and the effect of the present invention is not limited in any shape. Although obtained, it is preferable that the film thickness is 50 μm or less.

このような混合物は、たとえば、本発明の燃料電池用複合触媒を分散媒に分散させペースト状にしたのちに、製膜し、乾燥することによって製作できる。このとき、前記ペーストに必要に応じてPTFE粒子や陽イオン交換樹脂を加えてもよい。  Such a mixture can be produced, for example, by dispersing the composite catalyst for a fuel cell of the present invention in a dispersion medium to form a paste, forming a film, and drying. At this time, PTFE particles or a cation exchange resin may be added to the paste as necessary.

なお、分散媒としては、水、グリセリン、N−メチルピロリドン、ベンゼン、クロロホルム、メタノールやエタノールなどの低級アルコール類などを用いることができる。また、製膜する方法としては、スクリーン印刷法、スプレーまたはドクターブレードまたは刷毛などによる塗布法などが好適である。  As the dispersion medium, water, glycerin, N-methylpyrrolidone, benzene, chloroform, lower alcohols such as methanol and ethanol, and the like can be used. Moreover, as a film forming method, a screen printing method, a coating method using a spray, a doctor blade, a brush, or the like is preferable.

以下本発明の好適な実施例を用いて説明する。  Hereinafter, a preferred embodiment of the present invention will be described.

[実施例1]白金担持カーボン(田中貴金属製、10V30E:Valcan XC−72に白金30wt%を担持)と陽イオン交換樹脂溶液(アルドリッチ社製、ナフィオン5.0wt%溶液)とを混合し、60℃で撹拌しながら陽イオン交換樹脂溶液に対する陽イオン交換樹脂の濃度が20wt%になるまで濃縮することによって、表面に陽イオン交換樹脂溶液を付着した白金担持カーボン粒子を含むペースト状の混合物を得た。  [Example 1] Platinum-supported carbon (manufactured by Tanaka Kikinzoku, 10V30E: 30% by weight of platinum supported on Valcan XC-72) and a cation exchange resin solution (Aldrich, 5.0% by weight Nafion solution) were mixed. A paste-like mixture containing platinum-supported carbon particles with the cation exchange resin solution attached to the surface is obtained by concentrating until the concentration of the cation exchange resin with respect to the cation exchange resin solution reaches 20 wt% while stirring at ℃. It was.

つぎにこの混合物を、酢酸ブチルを満たしたビーカーに滴下し1時間撹拌した後乾燥し、白金担持カーボン表面に多孔性陽イオン交換樹脂を備えた複合触媒を得た。  Next, this mixture was dropped into a beaker filled with butyl acetate, stirred for 1 hour, and then dried to obtain a composite catalyst having a porous cation exchange resin on the platinum-supported carbon surface.

この工程の後、得られた複合触媒の重量を測定して陽イオン交換樹脂の白金担持カーボン粒子に対する担持量(wt%)を求めた。そして、陽イオン交換樹脂の担持量が白金担持カーボン粒子に対して1、10、20、30、50、75、100、125、150wt%となるように、工程を繰り返した。  After this step, the weight of the resulting composite catalyst was measured to determine the amount (wt%) of the cation exchange resin supported on the platinum-supported carbon particles. And the process was repeated so that the load of cation exchange resin might be 1, 10, 20, 30, 50, 75, 100, 125, 150 wt% with respect to platinum carrying | support carbon particle.

上記で得られた複合触媒を、ベンゼンを分散媒として高分子フィルム(テトラフルオロエチレン−ヘキサフルオロプロピレン共重合フィルム)上に製膜し、乾燥した後、それを870kg/cm2の圧力でプレスすることによって本発明の複合触媒を含む触媒層Aを得た。得られた触媒層を固体高分子電解質膜(デュポン社製、ナフィオン、膜厚約50μm)の両面にホットプレスにて接合し、さらにガス拡散層としてカーボンペーパを接合し、燃料電池の単セルに組んでセルAを得た。 The composite catalyst obtained above is formed on a polymer film (tetrafluoroethylene-hexafluoropropylene copolymer film) using benzene as a dispersion medium, dried, and then pressed at a pressure of 870 kg / cm 2. As a result, a catalyst layer A containing the composite catalyst of the present invention was obtained. The obtained catalyst layer was bonded to both sides of a solid polymer electrolyte membrane (DuPont, Nafion, film thickness of about 50 μm) by hot pressing, and further, carbon paper was bonded as a gas diffusion layer to form a single cell of a fuel cell. As a result, cell A was obtained.

この有孔性陽イオン交換樹脂量の異なる触媒層Aを備えた電極の水素の吸着・脱離挙動を、サイクリックボルタンメトリ法を用いて測定した。上記セルAの電極の一方を作用極、他方を対象極として、26℃にて加湿したアルゴンガスと水素ガスをそれぞれ30cc/min流し、50〜1000mV/RHE、 100mV/secにて作用極の電位を掃印した。測定温度は26℃とした。RHE電位は、開回路時の参照極に対する対象極の電位とした。  The hydrogen adsorption / desorption behavior of the electrodes provided with the catalyst layers A having different amounts of the porous cation exchange resin was measured using a cyclic voltammetry method. With one of the electrodes of cell A as the working electrode and the other as the target electrode, argon gas and hydrogen gas humidified at 26 ° C. are flowed at 30 cc / min, respectively, and the potential of the working electrode at 50 to 1000 mV / RHE and 100 mV / sec. Was swept out. The measurement temperature was 26 ° C. The RHE potential was the potential of the target electrode with respect to the reference electrode in the open circuit.

そして、有孔性陽イオン交換樹脂量の異なる触媒層Aを備えた電極の白金担持量あたりの電気化学的に活性な表面積を、サイクリックボルタモグラムの水素の脱離電気量と別途おこなった化学分析による白金量とから求めて、白金担持カーボン粒子表面に備えられた有孔性陽イオン交換樹脂の配合比と電気化学的に活性な表面積との関係を得た。その結果を 図6に示した。  Then, the electrochemically active surface area per platinum loading of the electrode provided with the catalyst layer A having different porous cation exchange resin amounts was determined by separately analyzing the amount of hydrogen desorption from the cyclic voltammogram and the platinum by chemical analysis. From the amount, the relationship between the mixing ratio of the porous cation exchange resin provided on the surface of the platinum-supported carbon particles and the electrochemically active surface area was obtained. The results are shown in FIG.

図6より、白金担持カーボン粒子表面に備えられた陽イオン交換樹脂が、白金担持カーボン粒子に対して20〜100wt%のときに、白金担持量あたりの電気化学的に活性な表面積が著しく高いことがわかる。このことは、この範囲において白金の利用率が飛躍的に高いことを示している。    From FIG. 6, when the cation exchange resin provided on the surface of the platinum-supported carbon particles is 20 to 100 wt% with respect to the platinum-supported carbon particles, the electrochemically active surface area per platinum support amount is remarkably high. I understand. This indicates that the utilization rate of platinum is remarkably high in this range.

また、別のカーボンブラックを用いても同様の結果が得られ、触媒として白金黒を用いた場合は、1.0〜20wt%のときに白金の利用率が飛躍的に高くなる結果が得られた。  Moreover, the same result is obtained even when another carbon black is used. When platinum black is used as a catalyst, a result that the utilization rate of platinum is drastically increased at 1.0 to 20 wt% is obtained. It was.

別途行った分析により、白金担持カーボン粒子に対して30wt%の有孔性陽イオン交換樹脂を備えた複合触媒を用いて製作した触媒層Aに担持された白金量は、約1.0mg/cm2であることが確認された。 According to a separate analysis, the amount of platinum supported on the catalyst layer A produced using a composite catalyst having a porous cation exchange resin of 30 wt% with respect to platinum-supported carbon particles was about 1.0 mg / cm 2 . It was confirmed that there was.

[実施例2]実施例1で製作された複合触媒を、ベンゼンを分散媒として高分子フィルム(テトラフルオロエチレン−ヘキサフルオロプロピレン共重合フィルム)上に成膜し、乾燥したものを、プレスせずに触媒層Bとした。  [Example 2] The composite catalyst produced in Example 1 was formed on a polymer film (tetrafluoroethylene-hexafluoropropylene copolymer film) using benzene as a dispersion medium, and the dried catalyst was not pressed. The catalyst layer B was used.

別途行った分析により、白金担持カーボン粒子に対して30wt%の有孔性陽イオン交換樹脂を備えた複合触媒を用いて製作した触媒層Bに担持された白金量は、約1.0mg/cm2であることが確認された。得られた触媒層Bを固体高分子電解質膜(デュポン社製、ナフィオン、膜厚約50μm)の両面にホットプレスにて接合し、さらにガス拡散層としてカーボンペーパを接合し、燃料電池の単セルに組んでセルBを得た。 According to a separate analysis, the amount of platinum supported on the catalyst layer B produced using a composite catalyst having a porous cation exchange resin of 30 wt% with respect to platinum-supported carbon particles was about 1.0 mg / cm 2 . It was confirmed that there was. The obtained catalyst layer B was bonded to both surfaces of a solid polymer electrolyte membrane (DuPont, Nafion, film thickness of about 50 μm) by hot pressing, and further, carbon paper was bonded as a gas diffusion layer, and a single cell of a fuel cell Cell B was obtained.

[比較例1]白金担持カーボン(田中貴金属製、10V30E:Valcan XC−72に白金30wt%を担持)1.0gと陽イオン交換樹脂溶液(アルドリッチ社製、ナフィオン5.0wt%溶液)6.0mgとを混合し、60℃で撹拌しながら陽イオン交換樹脂溶液に対する陽イオン交換樹脂の濃度が20wt%になるまで濃縮し、白金担持カーボンとこれに対して30wt%の陽イオン交換樹脂とからなるペースト状の混合物を得た。  [Comparative Example 1] Platinum-supported carbon (manufactured by Tanaka Kikinzoku, 10V30E: Valcan XC-72 carries 30 wt% platinum) and cation exchange resin solution (Aldrich, Nafion 5.0 wt% solution) 6.0 mg And is concentrated until the concentration of the cation exchange resin with respect to the cation exchange resin solution becomes 20 wt% with stirring at 60 ° C., and consists of platinum-supported carbon and 30 wt% cation exchange resin. A pasty mixture was obtained.

上記で得られたペースト状の混合物を高分子フィルム(テトラフルオロエチレン−ヘキサフルオロプロピレン共重合フィルム)上に成膜し乾燥したのち、それを870kg/cm2の圧力でプレスすることによって触媒層Cとした。得られた触媒層Cを固体高分子電解質膜(デュポン社製、ナフィオン、膜厚約50μm)の両面にホットプレスにて接合し、さらにガス拡散層としてカーボンペーパを接合し、燃料電池の単セルに組んでセルCを得た。 The paste-like mixture obtained above is formed on a polymer film (tetrafluoroethylene-hexafluoropropylene copolymer film), dried, and then pressed at a pressure of 870 kg / cm 2 to obtain catalyst layer C. It was. The obtained catalyst layer C was bonded to both sides of a solid polymer electrolyte membrane (DuPont, Nafion, film thickness of about 50 μm) by hot pressing, and further, carbon paper was bonded as a gas diffusion layer, and a single cell of a fuel cell Cell C was obtained.

別途行った分析により、触媒層Cに担持された白金量は、約1.0mg/cm2であることが確認された。 A separate analysis confirmed that the amount of platinum supported on the catalyst layer C was about 1.0 mg / cm 2 .

セルA、B、Cの供給ガスに酸素および水素を用いた際の電流―電圧特性を 図7に示した。運転条件は、供給ガス圧がそれぞれ2.5気圧で、80℃の密閉水槽中でバブリングすることで加湿した。そして、セルの運転温度は75℃とし、各電流値で5分間保持したのちに電圧を測定した。  FIG. 7 shows the current-voltage characteristics when oxygen and hydrogen are used as the supply gas for the cells A, B, and C. The operating conditions were humidified by bubbling in a sealed water bath at 80 ° C. with a supply gas pressure of 2.5 atm. The operating temperature of the cell was 75 ° C., and the voltage was measured after holding at each current value for 5 minutes.

図7より、本発明による実施例1のセルAは、実施例2のセルBおよび比較例1のセルCよりも、各電流密度において出力電圧が高いことがわかった。これは、実施例1のセルAでは、触媒層内に均一なプロトン伝導チャンネル、ガス拡散チャンネルおよび電子伝導チャンネルが形成されているためである。   From FIG. 7, it was found that the cell A of Example 1 according to the present invention had a higher output voltage at each current density than the cell B of Example 2 and the cell C of Comparative Example 1. This is because in the cell A of Example 1, uniform proton conduction channels, gas diffusion channels, and electron conduction channels are formed in the catalyst layer.

1 触媒
2 多孔性陽イオン交換樹脂
1 Catalyst 2 Porous cation exchange resin

Claims (5)

触媒と陽イオン交換樹脂を溶媒に溶解した溶液との混合物を濃縮する工程と、前記濃縮する工程で得られた混合物を相分離する工程とを含む、燃料電池用触媒の製造方法。 A method for producing a fuel cell catalyst, comprising a step of concentrating a mixture of a catalyst and a solution obtained by dissolving a cation exchange resin in a solvent, and a step of phase-separating the mixture obtained in the step of concentrating. 濃縮する工程において、陽イオン交換樹脂溶液に対する陽イオン交換樹脂の濃度が20wt%以下に濃縮する、請求項1に記載の触媒の製造方法。 The method for producing a catalyst according to claim 1, wherein in the concentration step, the concentration of the cation exchange resin with respect to the cation exchange resin solution is concentrated to 20 wt% or less. 相分離する工程において、前記陽イオン交換樹脂に対して不溶性でかつ第1の溶媒と相溶性の第2の溶媒の中に混合物を滴下する、請求項1または2に記載の触媒の製造方法。 The method for producing a catalyst according to claim 1 or 2, wherein, in the phase separation step, the mixture is dropped into a second solvent that is insoluble in the cation exchange resin and compatible with the first solvent. 請求項1ないし3記載の触媒の製造方法で製造した触媒を含む混合物をプレスする工程を経て触媒層を形成することを特徴とする、燃料電池用電極の製造方法。 A method for producing an electrode for a fuel cell, comprising forming a catalyst layer through a step of pressing a mixture containing the catalyst produced by the method for producing a catalyst according to claim 1. プレスする時の圧力は50 kg/cm2以上1000 kg/cm2以下である請求項4記載の電極の製造方法。 The method for producing an electrode according to claim 4, wherein the pressing pressure is 50 kg / cm 2 or more and 1000 kg / cm 2 or less.
JP2010162838A 2010-07-20 2010-07-20 Method for producing composite catalyst and method for producing electrode for fuel cell using the composite catalyst Expired - Fee Related JP5605048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010162838A JP5605048B2 (en) 2010-07-20 2010-07-20 Method for producing composite catalyst and method for producing electrode for fuel cell using the composite catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010162838A JP5605048B2 (en) 2010-07-20 2010-07-20 Method for producing composite catalyst and method for producing electrode for fuel cell using the composite catalyst

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000126636A Division JP2001300324A (en) 2000-03-15 2000-04-26 Composite catalyst and manufacturing method and method of manufacturing electrode for fuel cell using the same

Publications (2)

Publication Number Publication Date
JP2011009226A true JP2011009226A (en) 2011-01-13
JP5605048B2 JP5605048B2 (en) 2014-10-15

Family

ID=43565601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010162838A Expired - Fee Related JP5605048B2 (en) 2010-07-20 2010-07-20 Method for producing composite catalyst and method for producing electrode for fuel cell using the composite catalyst

Country Status (1)

Country Link
JP (1) JP5605048B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008177135A (en) * 2007-01-22 2008-07-31 Nissan Motor Co Ltd Catalyst electrode for fuel cell and its manufacturing method
CN110364741A (en) * 2019-07-12 2019-10-22 深圳市信宇人科技股份有限公司 The composite coating method of hydrogen fuel cell CCM membrane electrode

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04162365A (en) * 1990-10-25 1992-06-05 Tanaka Kikinzoku Kogyo Kk Method for preparing electrode of fuel cell
JPH0536418A (en) * 1991-03-13 1993-02-12 Fuji Electric Co Ltd Solid polymer electrolytic fuel cell and manufacture of the same
JPH05315000A (en) * 1991-12-31 1993-11-26 Stonehard Assoc Inc Polymer solid electrolyte-type fuel cell
JPH07130375A (en) * 1993-10-29 1995-05-19 Sanyo Electric Co Ltd Manufacture of solid polymer fuel cell electrode
JPH08148153A (en) * 1994-11-17 1996-06-07 Tokyo Gas Co Ltd Solid polymeric fuel cell electrode and manufacture thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04162365A (en) * 1990-10-25 1992-06-05 Tanaka Kikinzoku Kogyo Kk Method for preparing electrode of fuel cell
JPH0536418A (en) * 1991-03-13 1993-02-12 Fuji Electric Co Ltd Solid polymer electrolytic fuel cell and manufacture of the same
JPH05315000A (en) * 1991-12-31 1993-11-26 Stonehard Assoc Inc Polymer solid electrolyte-type fuel cell
JPH07130375A (en) * 1993-10-29 1995-05-19 Sanyo Electric Co Ltd Manufacture of solid polymer fuel cell electrode
JPH08148153A (en) * 1994-11-17 1996-06-07 Tokyo Gas Co Ltd Solid polymeric fuel cell electrode and manufacture thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008177135A (en) * 2007-01-22 2008-07-31 Nissan Motor Co Ltd Catalyst electrode for fuel cell and its manufacturing method
CN110364741A (en) * 2019-07-12 2019-10-22 深圳市信宇人科技股份有限公司 The composite coating method of hydrogen fuel cell CCM membrane electrode
CN110364741B (en) * 2019-07-12 2023-04-18 深圳市信宇人科技股份有限公司 Composite coating method for CCM membrane electrode of hydrogen fuel cell

Also Published As

Publication number Publication date
JP5605048B2 (en) 2014-10-15

Similar Documents

Publication Publication Date Title
US6492295B2 (en) Composite catalyst for solid polymer electrolyte type fuel cell and processes for producing the same
CN101306377B (en) Catalyst for fuel cell and its preparation method, membrane-electrode assembly for fuel cell including the same and fuel cell system including the same
US6391487B1 (en) Gas diffusion electrode, method for manufacturing the same, and fuel cell with such electrode
JP2007250274A (en) Electrode catalyst for fuel cell with enhanced noble metal utilization efficiency, its manufacturing method, and solid polymer fuel cell equipped with this
JP2009117248A (en) Fuel cell
JP4919005B2 (en) Method for producing electrode for fuel cell
JP2006253042A (en) Manufacturing method of catalyst for polymer electrolyte fuel cell
JP2013127865A (en) Electrode catalyst for fuel cell, method for manufacturing ionomer used for electrode catalyst, method for manufacturing membrane electrode assembly, membrane electrode assembly and fuel cell
JP5605048B2 (en) Method for producing composite catalyst and method for producing electrode for fuel cell using the composite catalyst
JP3649085B2 (en) Catalyst for fuel cell and method for producing the same
JP2005135787A (en) Electrode for fuel cell
JP2006134752A (en) Solid polymer fuel cell and vehicle
JP2001300324A (en) Composite catalyst and manufacturing method and method of manufacturing electrode for fuel cell using the same
US8273230B2 (en) Method for making membrane fuel cell electrodes by low-voltage electrophoretic deposition of carbon nanomaterial-supported catalysts
JP4403634B2 (en) Composite catalyst for solid polymer electrolyte fuel cell.
US20190267636A1 (en) Enhancing catalyst activity of a pem fuel cell electrode with an ionic liquid additive
JP5092381B2 (en) Catalyst powder for fuel cell, method for producing catalyst powder for fuel cell, and fuel cell
JP5017981B2 (en) Varnish for forming catalyst electrode for fuel cell, method for producing the same, and method for producing catalyst electrode using the same
JP2000235859A (en) Gas diffusing electrode and fuel cell provided with the same
JP5345870B2 (en) Method for producing membrane-electrode assembly
JP2000208151A (en) Gas diffusion electrode and its production
JP2006066309A (en) Method of manufacturing catalyst for solid polymer type fuel cell
JP2006147345A (en) Electrode catalyst layer and its manufacturing method
JP2005276443A (en) Junction of cation exchange membrane and catalyst electrode for polymer electrolyte fuel cell and its manufacturing method
JP2013206676A (en) Method of manufacturing membrane electrode assembly and membrane electrode assembly

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140811

R150 Certificate of patent or registration of utility model

Ref document number: 5605048

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees