JPH08148152A - Solid polymeric fuel cell electrode and manufacture thereof - Google Patents

Solid polymeric fuel cell electrode and manufacture thereof

Info

Publication number
JPH08148152A
JPH08148152A JP6309932A JP30993294A JPH08148152A JP H08148152 A JPH08148152 A JP H08148152A JP 6309932 A JP6309932 A JP 6309932A JP 30993294 A JP30993294 A JP 30993294A JP H08148152 A JPH08148152 A JP H08148152A
Authority
JP
Japan
Prior art keywords
electrode
polymer electrolyte
fuel cell
solution
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6309932A
Other languages
Japanese (ja)
Inventor
Tsutomu Seki
務 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP6309932A priority Critical patent/JPH08148152A/en
Publication of JPH08148152A publication Critical patent/JPH08148152A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE: To provide the subject electrode having a uniform and high capability free from a crack and an impurity by applying the specified treatment to the surface layer thereof, regarding the prescribed form of a solid polymeric fuel cell electrode. CONSTITUTION: This electrode 4 is a type of solid polymeric fuel cell electrode using a mixture of catalyst particles (e.g. carbon blacks carrying platinum thereon), a polymeric electrolyte (e.g. perfluorocarbon sulfonic acid resin) and polytetrafluoro ethylene. Regarding this electrode 4, the whole area of an electrode surface layer as a catalyst layer preferably formed on water repellent carbon paper as a gas diffusion layer is coated with a solution of a solid polymeric electrolyte (e.g. alcohol solution) and, then, a solvent in the solution is heated up to a temperature level above a boiling point and removed with waver vapors. For example, the electrode 4 is placed on a well ventilated seat 3 of a metallic mesh and water in a vessel 2 is heated with on the operation of a heater 1. Water vapors are thereby generated and the temperature of the seat 3 is maintained at a level above the boiling point of the solvent.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体高分子型燃料電池
用電極及びその製造方法に関し、より具体的には、固体
高分子型燃料電池用電極の製造方法において、その電極
表面層の触媒層の処理法及びこの処理法により得られた
電極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode for polymer electrolyte fuel cells and a method for producing the same, and more specifically, in a method for producing an electrode for polymer electrolyte fuel cells, a catalyst for the electrode surface layer. It relates to a method of treating a layer and an electrode obtained by this method of treatment.

【0002】[0002]

【従来の技術】固体高分子型燃料電池は、イオン伝導体
すなわち電解質が固体で且つ高分子である点に特徴を有
するものであるが、その固体高分子電解質としては、具
体的にはイオン交換樹脂膜等が使用され、この高分子電
解質を挟んで負極及び正極の両電極を配置し、例えば負
極側に水素を、また正極側には酸素又は空気を供給する
ことにより電気化学反応を起こさせ、電気を発生させる
ものである。
2. Description of the Related Art A polymer electrolyte fuel cell is characterized in that an ionic conductor, that is, an electrolyte, is a solid and a polymer. A resin film or the like is used, and both electrodes of the negative electrode and the positive electrode are arranged with the polymer electrolyte sandwiched therebetween. For example, hydrogen is supplied to the negative electrode side and oxygen or air is supplied to the positive electrode side to cause an electrochemical reaction. , To generate electricity.

【0003】その固体高分子電解質に接する負極及び正
極の両電極としては、その電極中に反応を促進させるた
めに触媒粒子を添加、混入した形式のものが開発されて
きているが、この形式の電極の製造法についても、これ
まで種々のものが提案されてきており、その一つの系統
として、その触媒粒子にさらにポリテトラフルオロエチ
レンを混合する形式のものが知られている。
For both the negative electrode and the positive electrode in contact with the solid polymer electrolyte, a type in which catalyst particles are added and mixed in order to accelerate the reaction has been developed. Various electrode manufacturing methods have been proposed so far, and one type of such method is known in which the catalyst particles are further mixed with polytetrafluoroethylene.

【0004】例えば、米国特許3297484号明細書
では、白金ブラック、パラジウムブラック等の触媒粒
子、或いはこれらを炭素粒子に担持させた触媒粒子をポ
リテトラフルオロエチレンと混合した混練物を電極シ−
トとし、これを高分子電解質としてのイオン交換樹脂膜
に熱圧着する方法が、また、米国特許3432355号
明細書では、その混練物を、別途ポリテトラフルオロエ
チレンのフィルム上にスラリ−として塗布して電極シ−
トとし、これを高分子電解質としてのイオン交換樹脂膜
に熱圧着する方法が提案されている。
For example, in US Pat. No. 3,297,484, catalyst particles such as platinum black and palladium black, or a kneaded material obtained by mixing catalyst particles in which these are supported on carbon particles with polytetrafluoroethylene is used as an electrode sheet.
And a method of thermocompression-bonding this to an ion exchange resin membrane as a polymer electrolyte, and in US Pat. No. 3,432,355, the kneaded product is separately applied as a slurry on a film of polytetrafluoroethylene. Electrode
And a method of thermocompression-bonding this to an ion exchange resin membrane as a polymer electrolyte has been proposed.

【0005】この技術において、触媒粒子にそのように
ポリテトラフルオロエチレンを混合するのは、主として
その電極シ−ト中で触媒層を形成する触媒成分を結合、
結着させるためのものであるが、このように高分子電解
質と電極シ−トとをただ接合するだけでは、反応サイト
(反応域)が両者間の二次元的な界面に限られ、実質的
な作用面積が小さい。これを改善する手法の一つとし
て、固体電解質としてのスチレン−ジビニルベンゼンス
ルホン酸樹脂膜に対し、触媒金属を担持したカ−ボン粉
末とスチレン−ジビニルスルホン酸樹脂粉末とポリスチ
レン結合剤との混合物からなる電子−イオン混合伝導体
層を接合することにより、電極材料と固体高分子電解質
との接点を多くし、反応サイトの三次元化を図ることが
提案されている。
In this technique, such mixing of polytetrafluoroethylene with the catalyst particles is mainly to bind the catalyst components forming the catalyst layer in the electrode sheet,
Although it is for binding, the reaction site (reaction region) is limited to a two-dimensional interface between the two by just joining the polymer electrolyte and the electrode sheet in this way, and The working area is small. As one of the techniques for improving this, for a styrene-divinylbenzenesulfonic acid resin membrane as a solid electrolyte, a mixture of a carbon powder carrying a catalyst metal, a styrene-divinylsulfonic acid resin powder and a polystyrene binder is used. It has been proposed to increase the number of contact points between the electrode material and the solid polymer electrolyte and to make the reaction site three-dimensional by bonding the electron-ion mixed conductor layer.

【0006】「電気化学」、53、No.10(198
5)、P.812〜817では、上記三次元化技術を紹
介し、そのようにスチレン−ジビニルベンゼン系のイオ
ン交換樹脂膜を電解質とした固体高分子型燃料電池にお
いては、電子−イオン混合伝導体層を設けたにしても、
取り出し得る電流密度が低い等の難点がある旨指摘した
上で、これに代わるパ−フルオロカ−ボンスルホン酸樹
脂膜を使用する場合について、反応サイトを三次元化
し、作用面積を上げる試みが紹介されている。
"Electrochemistry", 53, No. 10 (198
5), P. 812 to 817, the above three-dimensionalization technique is introduced, and in such a polymer electrolyte fuel cell using a styrene-divinylbenzene ion exchange resin membrane as an electrolyte, an electron-ion mixed conductor layer is provided. even if,
After pointing out that there are problems such as low current density that can be taken out, an attempt to increase the working area by introducing three-dimensional reaction sites was introduced in the case of using an alternative perfluorocarbon sulfonic acid resin film. ing.

【0007】これによれば、固体高分子電解質としてパ
−フルオロカ−ボンスルホン酸樹脂膜の一種であるNA
FION膜を使用し、このNAFION膜の片面に無電
解メッキ法(浸透法)により白金電極を接合して水素極
すなわちアノ−ド側電極とする一方、この電極の対極を
構成する酸素極すなわちカソ−ド側電極については、概
略、以下の工程により製作されている。
According to this, NA, which is a kind of perfluorocarbon sulfonic acid resin membrane, is used as the solid polymer electrolyte.
A FION film is used, and a platinum electrode is bonded to one surface of the NAFION film by an electroless plating method (permeation method) to form a hydrogen electrode, that is, an anode side electrode. The negative electrode is manufactured by the following steps.

【0008】まず、酸素極用の電極触媒粉末として、白
金ブラック粉末又は10%の白金を担持したカ−ボン粉
末(以下、「白金担持カ−ボン粉末」という)を用い、
これにアンバ−ライトIR−120B(T−3)〔スチ
レン−ジビニルベンゼンスルホン酸樹脂、Na型、粒径
30μmの粉末、Organo社製、商品名)又はNA
FION−117(パ−フルオロカ−ボンスルホン酸樹
脂、H型、脂肪族アルコ−ルと水との混合溶媒中5%溶
液、Aldrich Chemical社製、商品名)
を、種々の混合比で混合する。
First, as the electrode catalyst powder for the oxygen electrode, platinum black powder or carbon powder carrying 10% platinum (hereinafter referred to as "platinum-supporting carbon powder") was used.
Amberlite IR-120B (T-3) [styrene-divinylbenzenesulfonic acid resin, Na type, powder having a particle size of 30 μm, manufactured by Organo, trade name) or NA
FION-117 (perfluorocarbon sulfonic acid resin, H type, 5% solution in a mixed solvent of aliphatic alcohol and water, manufactured by Aldrich Chemical Company, trade name)
Are mixed in various mixing ratios.

【0009】次いで上記各混合物に対し、ポリテトラフ
ルオロエチレンを、水懸濁液状で、白金ブラック粉末の
場合は固形分重量割合で30%、白金担持カ−ボン粉末
の場合には同じく60%、添加し混練した後、この混練
物を圧延してシ−ト状とし、真空乾燥後、この酸素極シ
−トを固体高分子電解質としてのNAFION膜に対し
て温度100℃、圧力210kg/cm2 でホットプレ
スする、というものである。
Then, polytetrafluoroethylene was added to each of the above mixtures in the form of an aqueous suspension, in the case of platinum black powder, the solid content weight ratio was 30%, and in the case of platinum-supporting carbon powder, the same was 60%. After adding and kneading, the kneaded product is rolled to form a sheet, and after vacuum drying, the oxygen electrode sheet is applied to a NAFION membrane as a solid polymer electrolyte at a temperature of 100 ° C. and a pressure of 210 kg / cm 2. Hot pressing in.

【0010】これによれば、固体高分子電解質としての
NAFION膜に対し、これに一体に接合される酸素極
にイオン交換樹脂を混入することにより、電極反応サイ
トの三次元化を図り、これによって分極特性を著しく向
上させることができ、このイオン交換樹脂の混入による
効果は、特に白金担持カ−ボンを電極触媒とした場合に
大きい旨指摘されている。そしてここでは、白金ブラッ
ク粉末又は白金担持カ−ボン粉末からなる触媒粒子が、
これに混入された高分子電解質によりコ−ティングさ
れ、また上記「白金ブラック粉末の場合は固形物重量割
合で30%、白金担持カ−ボン粉末の場合には同じく6
0%」の割合で添加されたポリテトラフルオロエチレン
が、結着剤に相当している。
According to this, by mixing the ion exchange resin into the oxygen electrode integrally bonded to the NAFION membrane as a solid polymer electrolyte, the electrode reaction site is made three-dimensional, and thereby It is pointed out that the polarization characteristics can be remarkably improved, and that the effect of mixing the ion exchange resin is particularly large when the platinum-supporting carbon is used as the electrode catalyst. And here, the catalyst particles composed of platinum black powder or platinum-supported carbon powder,
It is coated with a polymer electrolyte mixed therein, and the above-mentioned "platinum black powder has a solid content of 30% by weight, and platinum-supported carbon powder has the same amount of 6%.
The polytetrafluoroethylene added in the proportion of "0%" corresponds to the binder.

【0011】以上の技術では、その電極シ−トは(フィ
ルムを用いる米国特許3432355号の場合を除き)
何れもその電極材料の混練物を圧延等によりシ−ト化す
ることにより作製されているが、この電極シ−トの作製
すなわちシ−ト化の態様としては、その基材として別途
多孔性のペ−パ−又はシ−トを用い、これに触媒粒子等
の触媒層形成成分を担持させる形式で行う手法も行われ
ている。この場合にはそのペ−パ−又はシ−トとして例
えば所定の気孔率及び厚さを有するカ−ボンペ−パ−を
用い、これにポリテトラフルオロエチレン系のディスパ
−ジョンを含浸させた後、熱処理をし、この撥水化カ−
ボンペ−パ−上に、触媒粒子等の電極構成成分を付着、
担持させるものであるが、その一例として特公平4−1
62365号公報がある。
According to the above technique, the electrode sheet is (except in the case of US Pat. No. 3,432,355 using a film).
All of them are produced by sheeting a kneaded material of the electrode material by rolling or the like. As an aspect of producing the electrode sheet, that is, sheeting, a porous material is separately used as the base material. A method is also used in which a paper or a sheet is used, and a catalyst layer forming component such as catalyst particles is supported on the paper or the sheet. In this case, for example, a carbon paper having a predetermined porosity and thickness is used as the paper or sheet, and after impregnating this with a polytetrafluoroethylene-based dispersion, This water repellent card is heat treated.
Electrode components such as catalyst particles are attached to the bomber,
It is carried, but as an example, Japanese Patent Publication 4-1.
There is a 62365 publication.

【0012】この公報の技術は、電極シ−トを構成する
触媒層用微粉末として、白金触媒担持のカ−ボンブラッ
クと触媒無担持のカ−ボンブラックとの混合物を用いる
点に特徴を有するものであるが、そのシ−ト化用として
撥水化カ−ボンペ−パ−が使用され、触媒粒子を含む微
粉末の混合物は、この撥水化カ−ボンペ−パ−上へ散布
され、加熱下、プレスをすることによって付着されてお
り、また、ここでもこれら触媒粒子はイオン交換樹脂で
被覆され、ポリテトラフルオロエチレンで処理されてい
る。
The technique of this publication is characterized in that a mixture of carbon black supporting a platinum catalyst and carbon black not supporting a catalyst is used as the fine powder for the catalyst layer constituting the electrode sheet. However, a water-repellent carbon paper is used for the sheet formation, and a mixture of fine powder containing catalyst particles is sprayed on the water-repellent carbon paper. They are attached by pressing under heat and again, these catalyst particles are coated with an ion exchange resin and treated with polytetrafluoroethylene.

【0013】本発明者は、返ってポリテトラフルオロエ
チレンを用いることなく、製造工程を簡略化し、その電
池性能上も優れた固体高分子型燃料電池用電極を製造す
る方法を別途開発し、先に特許出願をしているが(特願
平4−358058号、特願平4−358059号)、
この場合にも、基材シ−トとしてそのような撥水化カ−
ボンペ−パ−を使用する点では変わりはない。
The present inventor has separately developed a method for simplifying the manufacturing process without using polytetrafluoroethylene and manufacturing an electrode for a polymer electrolyte fuel cell having excellent cell performance. Have applied for a patent (Japanese Patent Application No. 4-358058, Japanese Patent Application No. 4-358059),
Also in this case, such a water repellent card is used as the base sheet.
There is no difference in using a bomber.

【0014】上記出願に係る発明では、溶媒中、触媒粒
子としての白金担持カ−ボンブラックと固体高分子電解
質(イオン交換樹脂)とをスラリ−とし、これを撥水化
カ−ボンペ−パ−上に膜状に塗布するか又は濾過形式で
堆積、付着させるものであるが、その後の研究成果によ
ると、そのスラリ−中にポリテトラフルオロエチレンを
も添加、使用することも可能であり、この添加によりさ
らに有効な効果が得られている。
In the invention according to the above application, a platinum-supported carbon black as catalyst particles and a solid polymer electrolyte (ion exchange resin) are used as a slurry in a solvent, and the slurry is used as a water repellent carbon paper. It is applied on a film in the form of a film or deposited and adhered by a filtration method, but according to the research results thereafter, it is also possible to add and use polytetrafluoroethylene in the slurry. A more effective effect is obtained by the addition.

【0015】このように撥水化カ−ボンペ−パ−の使用
の有無を問わず、触媒粒子及びこれに混入された高分子
電解質からなる電極では、これを組み込んだ固体高分子
型燃料電池中その触媒粒子が高分子電解質及びガス相と
共存しており、この三相界面をより多く確保することに
より、電池の性能を向上させることができるが、これに
ポリテトラフルオロエチレンを添加した場合には、これ
が結着剤としてだけではなく、ガス相を確保する効果も
ある反面、非導電性である面も持っている。
As described above, regardless of whether or not the water repellent carbon paper is used, the electrode composed of the catalyst particles and the polymer electrolyte mixed therein is used in a solid polymer fuel cell incorporating the same. The catalyst particles coexist with the polymer electrolyte and the gas phase, and by securing more of these three-phase interfaces, the performance of the battery can be improved, but when polytetrafluoroethylene is added to this, This not only serves as a binder, but also has the effect of securing a gas phase, but it also has the aspect of being non-conductive.

【0016】本発明者は、触媒粒子、高分子電解質及び
ポリテトラフルオロエチレンの混合物を用いる形式の固
体高分子型燃料電池用電極における、上記非導電性であ
ることによる問題点を、この電極の触媒層面の全面を固
体高分子電解質でコ−ティングすることにより解決し、
先に提案しており(特願平5−297281号)、これ
によってこの電極の特性を有効に向上させ、これを組み
込んだ燃料電池の性能を格段に向上させることができる
ものである。
The inventor of the present invention has a problem in the electrode for a polymer electrolyte fuel cell of a type using a mixture of catalyst particles, a polymer electrolyte and polytetrafluoroethylene, which is caused by the above non-conductivity. The problem is solved by coating the entire surface of the catalyst layer with a solid polymer electrolyte,
As previously proposed (Japanese Patent Application No. 5-297281), the characteristics of this electrode can be effectively improved, and the performance of a fuel cell incorporating the same can be markedly improved.

【0017】しかしこの技術を実施するには、固体高分
子電解質の溶液を触媒層に対して噴霧等により含浸させ
た後、その溶媒を乾燥によって除去する必要があるが、
この溶媒除去操作を例えば温度80℃、真空中で、12
時間加熱するというように注意深く実施してもなお、こ
の電解質(膜)の乾燥による収縮がさけられず、ひびが
は入り、このためこの電極の特性上も微妙に影響し、こ
れを組み込んだ燃料電池の性能を低下させることが観察
された。
However, in order to carry out this technique, it is necessary to impregnate the catalyst layer with a solution of the solid polymer electrolyte by spraying and then remove the solvent by drying.
This solvent removal operation is performed, for example, at a temperature of 80 ° C. in a vacuum of 12
Even if it is carefully carried out such as heating for a long time, the shrinkage due to the drying of this electrolyte (membrane) is not avoided, and cracks are formed. Therefore, the characteristics of this electrode are delicately affected, and the fuel containing this is It was observed to reduce the performance of the cell.

【0018】[0018]

【発明が解決しようとする課題】本発明は、上記問題点
を解決するためになされたものであり、触媒粒子、高分
子電解質及びポリテトラフルオロエチレンの混合物を用
いる形式の固体高分子型燃料電池用電極及びその製造法
において、固体高分子電解質の溶液を触媒層に対して噴
霧し含浸させた後、その溶媒を除去する操作を新規且つ
独特の手法により行うことにより、この電解質(膜)に
収縮やひび割れ等ががない電極を得るとともに、その製
造方法を提供することを目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and is a solid polymer fuel cell of the type using a mixture of catalyst particles, a polymer electrolyte and polytetrafluoroethylene. In the electrode for electrode and its manufacturing method, the solid polymer electrolyte solution is sprayed and impregnated onto the catalyst layer, and then the solvent is removed by a new and unique method to obtain the electrolyte (membrane). It is an object of the present invention to obtain an electrode free from shrinkage and cracks and to provide a manufacturing method thereof.

【0019】[0019]

【課題を解決するための手段】すなわち本発明は、触媒
粒子、高分子電解質及びポリテトラフルオロエチレンの
混合物を用いる形式の固体高分子型燃料電池用電極にお
いて、この電極の表面層の全面を固体高分子電解質溶液
によりコ−ティングした後、水蒸気によりその溶液中の
溶媒を沸点以上に加熱して除去してなることを特徴とす
る固体高分子型燃料電池用電極を提供するものである。
Means for Solving the Problems That is, the present invention provides an electrode for a polymer electrolyte fuel cell of a type using a mixture of catalyst particles, a polymer electrolyte and polytetrafluoroethylene, in which the entire surface layer of the electrode is solid. The present invention provides an electrode for a polymer electrolyte fuel cell, which is characterized in that after coating with a polymer electrolyte solution, the solvent in the solution is heated to a boiling point or higher and removed with water vapor.

【0020】また本発明は、触媒粒子、高分子電解質及
びポリテトラフルオロエチレンの混合物を用いる形式の
固体高分子型燃料電池用電極の製造法において、この電
極の表面層の全面を固体高分子電解質溶液でコ−ティン
グした後、この電極に水蒸気を通すことによりその溶液
中の溶媒を沸点以上に加熱し、その溶媒を水蒸気に同伴
させて除去することを特徴とする固体高分子型燃料電池
用電極の製造方法を提供するものである。
The present invention also provides a method for producing an electrode for a polymer electrolyte fuel cell of the type using a mixture of catalyst particles, a polymer electrolyte and polytetrafluoroethylene, wherein the entire surface layer of the electrode is a solid polymer electrolyte. After coating with a solution, steam is passed through this electrode to heat the solvent in the solution to the boiling point or higher, and the solvent is entrained in the steam to remove the solvent. A method for manufacturing an electrode is provided.

【0021】この場合、その触媒粒子としては白金ブラ
ック粉末、白金合金粉末、白金担持カ−ボンブラック、
パラジウムブラック粉末等、従来公知の触媒を同じく公
知の形態でそのまま使用することができ、前述電極反応
サイトの三次元化、或いはこの三相界面をより多く確保
する等の面からして、これら粒子を、例えばパ−フルオ
ロカ−ボンスルホン酸樹脂系の固体高分子電解質により
コ−ティングしたものを使用する。
In this case, the catalyst particles include platinum black powder, platinum alloy powder, carbon black carrying platinum,
Conventionally known catalysts such as palladium black powder can be used as they are in the same known form as they are, and from the viewpoint of making the electrode reaction site three-dimensional or securing more three-phase interfaces, these particles can be used. Is coated with, for example, a perfluorocarbon sulfonic acid resin-based solid polymer electrolyte.

【0022】また、そのコ−ティング用固体高分子電解
質としては、スチレン−ジビニルベンゼンスルホン酸樹
脂、パ−フルオロカ−ボンスルホン酸樹脂等を使用する
ことができるが、上記コ−ティング用固体高分子電解質
と同系統であり、またその優れた特性からして、例えば
NAFION等のパ−フルオロカ−ボンスルホン酸系の
樹脂を用いるのが有利である。
As the solid polymer electrolyte for coating, styrene-divinylbenzene sulfonic acid resin, perfluorocarbon sulfonic acid resin, etc. may be used. It is advantageous to use, for example, a perfluorocarbon sulfonic acid type resin such as NAFION because it is of the same type as the electrolyte and has excellent characteristics.

【0023】さらに固体高分子型燃料電池用電極は、電
極シ−トの形で適用されるのが通常であり、そのシ−ト
化としては、その触媒構成材料を電池本体としての固
体高分子電解質膜に直かに付着させる、その触媒構成
材料を混練物として圧延等によりシ−ト化する、その
懸濁液を基材シ−ト(電極中で、ガス拡散層となる)と
しての撥水化カ−ボンペ−パ−上に付着させる、等各種
態様で行われるが、本発明はこれらの何れの態様で得ら
れた電極シ−トに対しても適用可能である。
Further, the solid polymer fuel cell electrode is usually applied in the form of an electrode sheet, and as the formation of the sheet, the catalyst constituent material is a solid polymer as a cell body. It is directly attached to the electrolyte membrane, the catalyst constituent material is kneaded to form a sheet by rolling, etc., and the suspension is used as a base sheet (which becomes a gas diffusion layer in the electrode). It is carried out in various modes such as being attached onto a hydrated carbon paper, but the present invention can be applied to the electrode sheet obtained in any of these modes.

【0024】また、本発明は、これらのうち触媒粒
子、電解質及びポリテトラフルオロエチレンからなるそ
の触媒構成材料の懸濁液を、基材シ−ト(電極中で、ガ
ス拡散層となる)としての撥水化カ−ボンペ−パ−上に
付着させる態様を採る場合に特に有利であり、この態様
自体が備える優れた利点に加え、本発明による効果をさ
らに有効に得ることができる。この場合そのペ−パ−の
撥水化剤としては、ポリテトラフルオロエチレン系のも
のであるのが望ましい。ここでポリテトラフルオロエチ
レン系とは、ポリテトラフルオロエチレンのほか、テト
ラフルオロエチレン−ヘキサフルオロプロピレン共重合
体その他その共重合体等をも含む意味である。
Further, in the present invention, a suspension of the catalyst particles, the electrolyte, and the catalyst constituent material composed of polytetrafluoroethylene among them is used as a base sheet (which becomes a gas diffusion layer in the electrode). It is particularly advantageous in the case of adopting the mode of adhering onto the water repellent carbon paper, and in addition to the excellent advantages of this mode itself, the effect of the present invention can be obtained more effectively. In this case, the water repellent agent for the paper is preferably a polytetrafluoroethylene type. Here, the polytetrafluoroethylene-based is meant to include not only polytetrafluoroethylene but also tetrafluoroethylene-hexafluoropropylene copolymer and other copolymers thereof.

【0025】以下、本発明をさらに具体的に説明する。
図1は本発明の原理を説明するための模式図である。図
1中、1はヒ−タ−、2はヒ−タ−1上に載置された水
を収容した容器、3は台であり、この台3は載置する役
目をすると同時に、水蒸気を通す必要があり、このため
金属メッシュ等の通気性のよい構造を備えている必要が
ある。また4は電極であり、この電極は、その表面層の
全面を固体高分子電解質溶液でコ−ティングした後、図
示のとおり台3の上面に載置する。
The present invention will be described in more detail below.
FIG. 1 is a schematic diagram for explaining the principle of the present invention. In FIG. 1, 1 is a heater, 2 is a container for accommodating water placed on the heater-1 and 3 is a table. Therefore, it is necessary to have a structure having good air permeability such as a metal mesh. Reference numeral 4 denotes an electrode. This electrode is placed on the upper surface of the stand 3 as shown in the figure after coating the entire surface layer with a solid polymer electrolyte solution.

【0026】次に操作態様について述べると、所定の方
法を用いて作製した電極に高分子電解質膜溶液を膜が
0.1〜10mg/cm2 程度となるよう含浸させる。
これを金属メッシュ等の通気性のよい台3にのせる。ヒ
−タ−1により下から容器2中の水を例えば約90℃に
加熱することにより水蒸気を生成させ、水蒸気が台3か
ら電極を通り抜けるようにする。この時、台3を蒸発さ
せたい溶媒の沸点以上の温度に維持する。上記の状態で
例えば3時間経過後、電極を乾燥しないよう冷却して電
解質膜でコ−ティングした電極を得る。これを十分に水
を含んだ高分子電解質膜(NFION膜等)と例えばホ
ットプレスして燃料電池本体を得る。この電池を数分間
純水中に入れ、超音波洗浄を行う。
Next, the operation mode will be described. An electrode produced by a predetermined method is impregnated with a polymer electrolyte membrane solution so that the membrane has a concentration of about 0.1 to 10 mg / cm 2 .
This is placed on a table 3 having a good air permeability such as a metal mesh. Heater 1 heats the water in the container 2 from below to, for example, about 90 ° C. to generate steam, which allows the steam to pass through the electrode from the table 3. At this time, the table 3 is maintained at a temperature higher than the boiling point of the solvent to be evaporated. In the above state, for example, after 3 hours have passed, the electrode is cooled so as not to be dried to obtain an electrode coated with an electrolyte membrane. This is hot-pressed with a polymer electrolyte membrane (NFION membrane or the like) containing a sufficient amount of water to obtain a fuel cell body. The battery is placed in pure water for several minutes and ultrasonically cleaned.

【0027】[0027]

【実施例】 まず、ビ−カ−(容量:1l)中で、白金をカ−ボン
ブラック粒子に対して50重量%の割合で担持した触媒
粒子を調製し、この粒子に全量に対して20重量%とな
る量のNAFION−117(パ−フルオロカ−ボンス
ルホン酸樹脂、Du Pont社製、商品名)のアルコ
−ル溶液を加え、均一に混合した。次いで、この混合
液から溶媒を除去したが、この操作は、攪拌しながら、
温度50℃に加熱し、次いでアスピレ−タ−により吸引
して容器内を減圧することにより溶媒の蒸発を促進し、
蒸発した溶媒はその排出用導管に連結した冷却器により
冷却するいわゆる貫流形式で実施し、凝縮した溶媒は他
の容器に収容した。引続きここで得られたNAFION
−117でコ−ティングされた触媒粒子にポリフロン
(ポリテトラフルオロエチレン、ダイキン工業社製、登
録商標)のディスパ−ジョンを加えて均一な水性懸濁液
とした。
Example First, in a beaker (volume: 1 liter), catalyst particles were prepared by supporting platinum at a ratio of 50% by weight with respect to carbon black particles. An alcohol solution of NAFION-117 (a perfluorocarbon sulfonic acid resin, manufactured by Du Pont, trade name) in an amount of wt% was added and mixed uniformly. Then, the solvent was removed from the mixed solution, but this operation was performed while stirring.
After heating to a temperature of 50 ° C., suction by an aspirator to reduce the pressure in the container to promote evaporation of the solvent,
The evaporated solvent was carried out in a so-called flow-through mode in which it was cooled by a cooler connected to its discharge conduit, and the condensed solvent was stored in another container. NAFION obtained here continuously
Dispersion of polyflon (polytetrafluoroethylene, registered trademark of Daikin Industries, Ltd.) was added to the catalyst particles coated with -117 to obtain a uniform aqueous suspension.

【0028】一方、表面積100cm2 、気孔率80
%、厚さ0.4mmのカ−ボンペ−パ−にネオフロン
(テトラフルオロエチレン−ヘキサフルオロプロピレン
共重合体、ダイキン工業社製、登録商標)のディスパ−
ジョンを含浸させた後、熱処理を行い、ネオフロンで撥
水化したカ−ボンペ−パ−を得た。この場合その量的割
合は、ネオフロンがその全体量中20重量%占めるよう
調製した。次に、上記で得た撥水化カ−ボンペ−パ
−上で、で得たコ−ティング触媒粒子の懸濁液を濾過
し、この撥水化カ−ボンペ−パ−上にそのコ−ティング
触媒粒子を均一に堆積させた。その濾過操作は、撥水化
カ−ボンペ−パ−を多孔板上に載置し、その上に上記懸
濁液を注ぐ一方、上方を加圧して溶媒のみを透過させ
る、いわゆるヌッツェ漏斗形式で実施した。
On the other hand, the surface area is 100 cm 2 , and the porosity is 80.
%, A carbon paper having a thickness of 0.4 mm and a disperser of neofron (tetrafluoroethylene-hexafluoropropylene copolymer, manufactured by Daikin Industries, Ltd.)
After impregnation with John, heat treatment was carried out to obtain a carbon paper water repellent with NEOFLON. In this case, the quantitative ratio was adjusted so that neofuron accounted for 20% by weight in the total amount. Next, on the water repellent carbon paper obtained above, the suspension of the coating catalyst particles obtained in the above was filtered, and on the water repellent carbon paper, the co-coated catalyst particles were filtered. The Ting catalyst particles were uniformly deposited. The filtration operation is carried out in a so-called Nutze funnel type in which a water repellent carbon paper is placed on a perforated plate and the suspension is poured onto the porous plate while pressurizing the upper part to allow only the solvent to permeate. Carried out.

【0029】上記撥水化カ−ボンペ−パ−上に堆積し
た層がすなわち触媒層であるが、引続きその付着面に対
し、固体高分子電解質としてNAFION−117〔パ
−フルオロカ−ボンスルホン酸樹脂(H型)、アルコ−
ルと水との混合溶媒中5%溶液、Aldrich Ch
emical社製、商品名〕のアルコ−ル(エタノ−
ル)溶液を噴霧し、これを触媒層に4mg/cm2 とな
るよう含浸させた後、この固体高分子電解質含浸触媒層
を有する電極について、次のとおり本発明による溶媒除
去操作を適用した。
The layer deposited on the water-repellent carbon paper is the catalyst layer, and the NAFION-117 [perfluorocarbon sulfonic acid resin] as a solid polymer electrolyte is continuously applied to the adhered surface. (H type), alcohol
5% solution in a mixed solvent of water and water, Aldrich Ch
manufactured by E.Malical Co., Ltd.] Alcohol (Ethanol
Solution) was sprayed, and the catalyst layer was impregnated with the solution to 4 mg / cm 2, and then the solvent removal operation according to the present invention was applied to the electrode having the solid polymer electrolyte-impregnated catalyst layer as follows.

【0030】上記で得た固体高分子電解質含浸触媒層
を有する電極(図1中4)を金属メッシュからなる通気
性のよい台3に載置し、ヒ−タ−1により容器2中の水
を90℃に加熱することにより水蒸気を生成させ、台3
から電極を通り抜けるようにした。この時、台3が蒸発
させたい溶媒(アルコ−ル)の沸点以上の温度90℃を
維持する。上記の状態で1時間経過後、電極を乾燥しな
いよう冷却した。こうして作製した電極シ−トは、ひび
割れは全く認められず、また不純物も認められなかっ
た。このようにひび割れがない点は大面積(100cm
2 以上)であっても全く同様であった。
The electrode (4 in FIG. 1) having the solid polymer electrolyte-impregnated catalyst layer obtained above was placed on a well-ventilated base 3 made of a metal mesh, and the water in the container 2 was heated by a heater-1. Is heated to 90 ° C. to generate steam,
To pass through the electrode. At this time, the table 3 maintains a temperature of 90 ° C. which is higher than the boiling point of the solvent (alcohol) to be evaporated. After 1 hour in the above state, the electrode was cooled so as not to dry. The electrode sheet thus produced had no cracks and no impurities. The point that there is no crack like this is a large area (100 cm
(2 or more) was exactly the same.

【0031】また、この電極の2枚間に十分に水を含ま
せた高分子電解質膜(NAFION−117膜)を挟
み、温度140℃、圧力100kg/cm2 で60秒間
ホットプレスして一体化し、これを数分純水中に入れ、
超音波洗浄を行った。こうして電極シ−トと固体高分子
電解質膜とを一体化したものを固体高分子型燃料電池用
としてセットし、燃料として水素を、酸化剤として空気
を通して電池としての性能を測定したところ、電池温度
60℃で開放起電力(電流を流さない時の電圧)0.9
5Vが得られた。
A polymer electrolyte membrane (NAFION-117 membrane) sufficiently moistened with water is sandwiched between two electrodes, and hot pressed at a temperature of 140 ° C. and a pressure of 100 kg / cm 2 for 60 seconds to integrate them. , Put it in pure water for a few minutes,
Ultrasonic cleaning was performed. In this way, the one in which the electrode sheet and the solid polymer electrolyte membrane were integrated was set for a solid polymer fuel cell, and hydrogen as a fuel and air as an oxidizer were passed through to measure the performance as a battery. Open electromotive force (voltage when current is not applied) 0.9 at 60 ℃
5V was obtained.

【0032】[0032]

【発明の効果】本発明により作製した電極は、ひび割れ
は全く生じず、また不純物も認められない。また本発明
によれば、大面積(100cm2 以上)の電極であって
もひびのない均一な電極を得ることができ、例えば開放
起電力で0.95V(水素−空気使用、温度60℃)と
いう高性能の電池を得ることができる。
The electrode produced according to the present invention has no cracks and no impurities are observed. Further, according to the present invention, even if the electrode has a large area (100 cm 2 or more), a uniform electrode without cracks can be obtained. For example, the open electromotive force is 0.95 V (hydrogen-air is used, temperature is 60 ° C.). That is, a high-performance battery can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理を説明するための模式図。FIG. 1 is a schematic diagram for explaining the principle of the present invention.

【符号の説明】[Explanation of symbols]

1 ヒ−タ− 2 水を収容した容器 3 台(金属メッシュ等) 4 電極 1 Heater 2 Containers Containing Water 3 Units (Metal Mesh, etc.) 4 Electrodes

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】触媒粒子、高分子電解質及びポリテトラフ
ルオロエチレンの混合物を用いる形式の固体高分子型燃
料電池用電極において、この電極の表面層の全面を固体
高分子電解質溶液によりコ−ティングした後、水蒸気に
よりその溶液中の溶媒を沸点以上に加熱して除去してな
ることを特徴とする固体高分子型燃料電池用電極。
1. A solid polymer fuel cell electrode of a type using a mixture of catalyst particles, a polymer electrolyte and polytetrafluoroethylene. The entire surface layer of this electrode is coated with a solid polymer electrolyte solution. An electrode for a polymer electrolyte fuel cell, which is characterized in that the solvent in the solution is heated to a boiling point or higher and then removed by steam.
【請求項2】上記電極の表面層が、ガス拡散層としての
撥水化カ−ボンペ−パ−上に形成された触媒層である請
求項1記載の固体高分子型燃料電池用電極。
2. The electrode for a polymer electrolyte fuel cell according to claim 1, wherein the surface layer of the electrode is a catalyst layer formed on a water repellent carbon paper as a gas diffusion layer.
【請求項3】上記高分子電解質溶液がパ−フルオロカ−
ボンスルホン酸系樹脂のアルコ−ル溶液である請求項1
又は2記載の高分子型燃料電池用電極。
3. The polymer electrolyte solution is a perfluorocarbon.
2. An alcohol solution of a sulfonic acid resin.
Alternatively, the polymer fuel cell electrode according to 2 above.
【請求項4】触媒粒子、高分子電解質及びポリテトラフ
ルオロエチレンの混合物を用いる形式の固体高分子型燃
料電池用電極の製造法において、この電極の表面層の全
面を固体高分子電解質溶液でコ−ティングした後、この
電極に水蒸気を通すことによりその溶液中の溶媒を沸点
以上に加熱し、その溶媒を水蒸気に同伴させて除去する
ことを特徴とする固体高分子型燃料電池用電極の製造方
法。
4. In a method for producing an electrode for a polymer electrolyte fuel cell of a type using a mixture of catalyst particles, a polymer electrolyte and polytetrafluoroethylene, the entire surface layer of this electrode is coated with a solid polymer electrolyte solution. -Manufacturing of an electrode for a polymer electrolyte fuel cell, characterized in that, after watering, water vapor is passed through this electrode to heat the solvent in the solution to a temperature above the boiling point and remove the solvent by entraining the solvent in water vapor. Method.
【請求項5】上記電極の表面層が、ガス拡散層としての
撥水化カ−ボンペ−パ−上に形成された触媒層である請
求項4記載の固体高分子型燃料電池用電極の製造方法。
5. The production of an electrode for a polymer electrolyte fuel cell according to claim 4, wherein the surface layer of the electrode is a catalyst layer formed on a water repellent carbon paper as a gas diffusion layer. Method.
【請求項6】上記高分子電解質溶液がパ−フルオロカ−
ボンスルホン酸系樹脂のアルコ−ル溶液である請求項4
又は5記載の固体高分子型燃料電池用電極の製造方法。
6. The polymer electrolyte solution is a perfluorocarbon.
5. An alcoholic solution of a sulfonic acid resin.
Or the method for producing an electrode for a polymer electrolyte fuel cell according to item 5.
JP6309932A 1994-11-17 1994-11-17 Solid polymeric fuel cell electrode and manufacture thereof Pending JPH08148152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6309932A JPH08148152A (en) 1994-11-17 1994-11-17 Solid polymeric fuel cell electrode and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6309932A JPH08148152A (en) 1994-11-17 1994-11-17 Solid polymeric fuel cell electrode and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH08148152A true JPH08148152A (en) 1996-06-07

Family

ID=17999089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6309932A Pending JPH08148152A (en) 1994-11-17 1994-11-17 Solid polymeric fuel cell electrode and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH08148152A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001078173A1 (en) * 2000-04-05 2001-10-18 Asahi Glass Company, Limited Method for manufacturing solid polymer type fuel cell and method for manufacturing gas diffusion electrode therefore
WO2003077336A1 (en) * 2002-03-14 2003-09-18 Matsushita Electric Industrial Co., Ltd. Method for manufacturing polymer electrolyte type fuel cell
WO2005041334A1 (en) * 2003-10-22 2005-05-06 Honda Motor Co., Ltd. Method for producing membrane-electrode assembly for fuel cell
JP2005129298A (en) * 2003-10-22 2005-05-19 Honda Motor Co Ltd Forming method of electrolyte film for fuel cell
JP2005302538A (en) * 2004-04-13 2005-10-27 Fuji Electric Holdings Co Ltd Manufacturing method of fuel battery cell and electrode plate
WO2006051679A1 (en) * 2004-11-10 2006-05-18 Honda Motor Co., Ltd. Method of producing electrode layer for fuel cell
WO2006061993A1 (en) * 2004-12-07 2006-06-15 Toray Industries, Inc. Film electrode composite element and production method therefor, and fuel cell
JP2007048555A (en) * 2005-08-09 2007-02-22 Jsr Corp Method of manufacturing membrane electrode assembly
JP2007048556A (en) * 2005-08-09 2007-02-22 Jsr Corp Method of manufacturing membrane electrode assembly
JP2007265997A (en) * 2001-12-20 2007-10-11 Sumitomo Chemical Co Ltd Manufacturing method of polymer electrolyte membrane
JP2008112728A (en) * 2001-12-20 2008-05-15 Sumitomo Chemical Co Ltd Manufacturing method of polymer electrolyte membrane

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001078173A1 (en) * 2000-04-05 2001-10-18 Asahi Glass Company, Limited Method for manufacturing solid polymer type fuel cell and method for manufacturing gas diffusion electrode therefore
JP2007265997A (en) * 2001-12-20 2007-10-11 Sumitomo Chemical Co Ltd Manufacturing method of polymer electrolyte membrane
JP2008112728A (en) * 2001-12-20 2008-05-15 Sumitomo Chemical Co Ltd Manufacturing method of polymer electrolyte membrane
WO2003077336A1 (en) * 2002-03-14 2003-09-18 Matsushita Electric Industrial Co., Ltd. Method for manufacturing polymer electrolyte type fuel cell
JPWO2003077336A1 (en) * 2002-03-14 2005-07-07 松下電器産業株式会社 POLYMER ELECTROLYTE FUEL CELL MANUFACTURING METHOD AND POLYMER ELECTROLYTE MEMBRANE FUEL CELL
US7285354B2 (en) 2002-03-14 2007-10-23 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell, fuel cell electrode, method for producing electrode catalyst layer, and method for producing polymer electrolyte fuel cell
WO2005041334A1 (en) * 2003-10-22 2005-05-06 Honda Motor Co., Ltd. Method for producing membrane-electrode assembly for fuel cell
JP2005129295A (en) * 2003-10-22 2005-05-19 Honda Motor Co Ltd Manufacturing method of electrode-membrane junction for fuel cell
JP2005129298A (en) * 2003-10-22 2005-05-19 Honda Motor Co Ltd Forming method of electrolyte film for fuel cell
JP4486341B2 (en) * 2003-10-22 2010-06-23 本田技研工業株式会社 Fuel cell electrolyte membrane manufacturing method and fuel cell electrolyte membrane manufacturing apparatus
JP2005302538A (en) * 2004-04-13 2005-10-27 Fuji Electric Holdings Co Ltd Manufacturing method of fuel battery cell and electrode plate
WO2006051679A1 (en) * 2004-11-10 2006-05-18 Honda Motor Co., Ltd. Method of producing electrode layer for fuel cell
WO2006061993A1 (en) * 2004-12-07 2006-06-15 Toray Industries, Inc. Film electrode composite element and production method therefor, and fuel cell
JP2007048556A (en) * 2005-08-09 2007-02-22 Jsr Corp Method of manufacturing membrane electrode assembly
JP2007048555A (en) * 2005-08-09 2007-02-22 Jsr Corp Method of manufacturing membrane electrode assembly

Similar Documents

Publication Publication Date Title
US8652985B2 (en) Electrode catalyst layer for use in fuel cell
CN101000967A (en) Membrane electrode of protone exchange membrane fuel cell and preparation method thereof
CN1375886A (en) Electrode base material for fuel cell
JPH09501541A (en) Gas diffusion electrode with catalyst for electrochemical cell with solid electrolyte and manufacturing method thereof
MX2007014473A (en) Process for recycling components of a pem fuel cell membrane electrode assembly.
JPH07296818A (en) Polymer solid electrolyte fuel cell electrode and joint of same with polymer solid electrolyte
CN109524676A (en) A kind of fuel cell catalyst layer electrode of three-dimensional and preparation method thereof
JPH08148152A (en) Solid polymeric fuel cell electrode and manufacture thereof
JPH08236123A (en) Fuel cell electrode and manufacture thereof
EP1165885B1 (en) Nonwoven web
JPH09180730A (en) Electrode for solid high molecular fuel cell and manufacture thereof
JPH08148151A (en) Fuel cell electrode and manufacture thereof
JP4649094B2 (en) Manufacturing method of membrane electrode assembly for fuel cell
JPH06203848A (en) Manufacture of solid high polymer fuel cell
JPH06203849A (en) Manufacture of solid high polymer fuel cell
WO1999027600A1 (en) Improved hspes membrane electrode assembly
JPH10189002A (en) Electrode for fuel cell and its manufacture
JPH08148153A (en) Solid polymeric fuel cell electrode and manufacture thereof
JPH08148167A (en) Jointed body of polymeric electrolytic film and electrode, and jointing method therefor
JPH07130372A (en) Solid polymer fuel cell electrode and manufacture thereof
JPH07130374A (en) Water repellent treating method for carbon paper in fuel cell electrode
JPH10189003A (en) Electrode for fuel cell and its manufacture
JP4011330B2 (en) Electrocatalyst layer formation method
CN104659376B (en) A kind of membrane electrode with gas flow configuration and preparation method thereof
JPH11167925A (en) Electrode for fuel cell and its manufacture