WO2001078173A1 - Method for manufacturing solid polymer type fuel cell and method for manufacturing gas diffusion electrode therefore - Google Patents

Method for manufacturing solid polymer type fuel cell and method for manufacturing gas diffusion electrode therefore Download PDF

Info

Publication number
WO2001078173A1
WO2001078173A1 PCT/JP2001/002780 JP0102780W WO0178173A1 WO 2001078173 A1 WO2001078173 A1 WO 2001078173A1 JP 0102780 W JP0102780 W JP 0102780W WO 0178173 A1 WO0178173 A1 WO 0178173A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas diffusion
diffusion electrode
catalyst
exchange resin
fuel cell
Prior art date
Application number
PCT/JP2001/002780
Other languages
French (fr)
Japanese (ja)
Inventor
Toshihiro Tanuma
Original Assignee
Asahi Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Company, Limited filed Critical Asahi Glass Company, Limited
Publication of WO2001078173A1 publication Critical patent/WO2001078173A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • H01M4/8668Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/881Electrolytic membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8875Methods for shaping the electrode into free-standing bodies, like sheets, films or grids, e.g. moulding, hot-pressing, casting without support, extrusion without support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing a polymer electrolyte fuel cell and a method for manufacturing a gas diffusion electrode therefor.
  • the present invention relates to a polymer electrolyte fuel cell, particularly to a polymer electrolyte fuel cell having excellent initial activity and capable of obtaining a stable output for a long period of time, and a method for producing a gas diffusion electrode therefor.
  • a fuel cell is a battery that directly converts the reaction energy of a gas serving as fuel into electric energy.
  • a hydrogen-oxygen fuel cell has the characteristic that its reaction product is in principle only water.
  • polymer electrolyte fuel cells that use ion exchange membranes as electrolyte membranes can operate at room temperature and provide high power density.
  • polymer electrolyte fuel cells which are expected to be used as power sources for electric vehicles and stationary power sources, usually use proton-conducting ion exchange membranes as electrolyte membranes.
  • An ion exchange membrane made of a perfluorocarbon polymer having a sulfonic acid group (hereinafter referred to as a sulfonic acid type perfluorocarbon polymer) has excellent basic characteristics.
  • gas diffusion electrodes are formed on both sides of this ion exchange membrane, and power is generated by supplying a gas containing hydrogen, which is the fuel, to the anode, and oxygen and air, which are the oxidizing agents, to the power source.
  • the catalyst contained in the catalyst layer of the gas diffusion electrode usually has a high loading ratio of a platinum-based noble metal catalyst or platinum alloy catalyst on a conductive carbon black carrier with a large specific surface area. And used with good dispersibility.
  • the electrolyte, the catalyst, and the fuel gas are simultaneously present.
  • the electrolyte, the catalyst, and the fuel gas hydrogen or oxygen
  • ion exchange resin is contained in the electrode layer, and the catalyst is coated with ion exchange resin to expand the three-phase interface. Let me.
  • a platinum-supported carbon catalyst powder and a solution of an ion-exchange resin composed of a sulfonic acid-type perfluorocarbon polymer are mixed, and the catalyst is coated with the resin.
  • the state of the coating of the catalyst powder with the resin differs depending on the pore structure, the aggregation state, and the like of the catalyst powder.
  • a method to increase the three-phase interface by increasing the resin coverage of platinum is being studied.
  • the coverage cannot be increased due to the influence of the pore structure and the aggregation state of the carbon carrier used for the platinum-supported carbon catalyst, and the output characteristics are not sufficient. Disclosure of the invention
  • the present invention provides a method for producing a gas diffusion electrode for a polymer electrolyte fuel cell, in which the three-phase interface is enlarged, the resin coverage of the catalyst is high, and the pore volume of the power catalyst is large as compared with the conventional art.
  • the purpose is to do.
  • Still another object of the present invention is to provide a method for producing a polymer electrolyte fuel cell having excellent initial output characteristics and a stable output over a long period of time by having the gas diffusion electrode.
  • the present invention relates to a method for producing a gas diffusion electrode for a polymer electrolyte fuel cell having a catalyst layer disposed adjacent to an electrolyte membrane comprising an ion exchange membrane and comprising a catalyst and a fluorine-containing exchange resin.
  • a solvent capable of dissolving the fluorinated ion exchange resin After bringing the catalyst and the fluorinated ion exchange resin into contact with each other in a solvent capable of dissolving the fluorinated ion exchange resin, the solid obtained by removing the solvent is converted into a saturated hydrocarbon or an aromatic hydrocarbon.
  • a fluorinated alcohol, a fluorinated ether and a fluorinated alkane are dispersed in at least one dispersion medium selected from the group consisting of the above, and the catalyst layer is formed using the obtained dispersion.
  • the present invention provides a method for producing a gas diffusion electrode for a polymer electrolyte fuel cell.
  • the present invention is a method for producing a polymer electrolyte fuel cell comprising a membrane-electrode assembly in which gas diffusion electrodes are arranged and bonded on both sides of an electrolyte membrane composed of an ion exchange membrane, A method for manufacturing a polymer electrolyte fuel cell, wherein a gas diffusion electrode arranged on at least one side of the above is manufactured by the method for manufacturing a gas diffusion electrode.
  • the catalyst layer of the gas diffusion electrode obtained by the present invention contains a catalyst and a fluorinated ion exchange resin.
  • a catalyst a substance which promotes an electrode reaction with an anode and a power source is used, and a platinum group metal such as platinum or an alloy thereof is preferable.
  • the catalyst may be used as fine particles as they are, but it is preferable to use a supported catalyst, and as the carrier, it is preferable to use activated carbon having a specific surface area of 20 Om 2 Zg or more, a power pump rack or the like.
  • the amount of supported metal is preferably 10 to 70% of the total mass of the catalyst.
  • the amount of supported metal is preferably 10% or more.
  • the fluorinated ion exchange resin contained in the catalyst layer has an ion exchange capacity of 0.5 to 2.0 milliequivalent Z gram dry resin, particularly 0.8 to 1.5 in terms of conductivity and gas permeability. Preferably, it is a milliequivalent / gram dry resin.
  • the fluorine-containing ion exchange resin is preferably made of a copolymer containing a polymerization unit based on tetrafluoroethylene and a polymerization unit based on a perfluorovinyl compound having a sulfonic acid group.
  • One O p - is preferably one represented by S_ ⁇ 3 H - (CF 2) n .
  • X is a fluorine atom or a trifluoromethyl group
  • m is an integer of 0 to 3
  • n is an integer of 1 to 12
  • p is 0 or 1.
  • preferred specific examples include compounds represented by any one of formulas 1 to 3 below. However, in the following formula, q and r are integers of 1 to 8, and t is an integer of 1 to 3.
  • CF 2 CFOCF 2 CF (CF 3 ) O (CF 2 ), .S 0 3 H Equation 2
  • the catalyst and the fluorinated ion exchange resin contained in the catalyst layer of the gas diffusion electrode are such that the mass ratio of the catalyst to the fluorinated ion exchange resin is 40:60 to 95: 5 in terms of electrode conductivity and water repellency. Is preferred. Particularly, 60:40 to 80:20 is preferable.
  • the mass of the catalyst in the case of a supported catalyst includes the mass of the carrier.
  • the solvent dissolving the fluorinated ion exchange resin is at least one selected from the group consisting of alcohols having 1 to 6 carbon atoms, ethers having 2 to 6 carbon atoms, and dialkyl sulfoxide having 2 to 6 carbon atoms. Is preferred.
  • Water and the like may be mixed with these solvents and used.
  • Specific examples of the solvent include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 1,4-dioxane, n-propyl ether, and dimethyl sulfo. Oxide and the like.
  • the catalyst is dispersed in the solution and the fluorinated ion exchange resin is brought into contact with the catalyst. At this time, it is considered that the fluorinated ion exchange resin is adsorbed on the catalyst.
  • the solid content concentration (the total amount of the fluorinated ion exchange resin and the catalyst) in the dispersion obtained by the above operation is 0.1 to 20%, particularly 1 to 15% of the total mass of the dispersion. Power is preferred. If the solid content concentration is too low, the efficiency of the solvent removal operation in the next step is poor.
  • the solvent is removed from the above-mentioned dispersion liquid, and it is preferably dried. This operation is important for firmly coating the catalyst with the fluorinated ion exchange resin. It is preferable to completely remove the solvent, but if it is removed at least until the content of the solid matter becomes 5% or less, the fluorine-containing ion exchange will be performed when the above catalyst is dispersed in the solvent in the next step. This is preferable because the resin does not elute into the liquid phase. +
  • the removal of the solvent is preferably performed by heating at a temperature at which the fluorinated ion exchange resin does not deteriorate, and preferably at 180 ° C. or lower. It is also preferable to heat under reduced pressure using an evaporator. When using an evaporator, it is preferable to heat at a temperature of about 40 to 70 ° C.
  • the solvent removal operation is preferably performed in an atmosphere containing no oxygen, such as a nitrogen atmosphere.
  • the solid obtained by removing the solvent is dispersed in a dispersion medium, and the dispersion medium includes a saturated hydrocarbon, an aromatic hydrocarbon, a fluorinated alcohol, a fluorinated ether, and a fluorinated alkane.
  • the dispersion medium used here is preferably difficult to dissolve the fluorinated ion-exchange resin.
  • the pore volume of the catalyst When dispersed in the dispersion medium, the pore volume of the catalyst can be increased, and the number of reaction fields can be increased, so that the performance as a polymer electrolyte fuel cell is improved.
  • the reason why the pore volume of the catalyst becomes large is not always clear, but is considered as follows.
  • the molecular chain of the fluorine-containing ion-exchange resin adsorbed in the pores of the catalyst is entangled.
  • the molecular chain of the fluorinated ion exchange resin is elongated and the pore volume is increased. Due to the large pore volume, the resulting gas diffusion electrode uses a fluorine-containing ion exchange resin. It is thought that the three-phase interface where the catalyst, the resin and the fuel gas (hydrogen or oxygen) are present is enlarged, and the output of the obtained fuel cell is increased.
  • the fluorinated ion exchange resin When a dispersion medium in which the fluorinated ion exchange resin is swollen and mixed by mixing with the fluorinated ion exchange resin is used as the dispersion medium, the fluorinated ion exchange resin is adsorbed by the swelling of the fluorinated ion exchange resin.
  • the dispersibility of the catalyst in the dispersion medium is enhanced, and the catalyst is preferably applied when a gas diffusion electrode is produced using the obtained dispersion.
  • the solid When it is difficult to disperse the solid in the dispersion medium, the solid may be dispersed using a dispersant or the like.
  • a dispersing agent a commonly used dispersing agent can be used.
  • Cationic surfactants such as amine salt, quaternary ammonium salt, pyridinium salt, sulfonium salt, phosphonium salt, polyethylenepolyamine, amino acid, beaine, amino sulfate and the like.
  • amphoteric surfactants such as esters and sulfobetaines
  • nonionic surfactants such as alkyl polyoxyethylene and polyhydric alcohols.
  • dispersion medium for dispersing the above-mentioned solids include, as the saturated hydrocarbon, chain hydrocarbons such as hexane, heptane, nonane, and decane, and the like.
  • chain hydrocarbons such as hexane, heptane, nonane, and decane
  • aromatic hydrocarbon benzene and toluene are used.
  • Xylene and the like are used as the saturated hydrocarbon.
  • fluorinated alcohol examples include 2,2,2-trifluoroethanol, 2,2,3,3,3-pentafluoro-1-propanol, 2,2,3,4,4,4-hexafluoro- Examples include 1-butanol and 1,1,1,3,3,3-hexafluoro-21-propanol.
  • fluorinated alkanes examples include 1,3-dichloro-1,1,2,2,3-fluoropentane, 3,3-dichloro-1,1,1,2,2-pentafluorofluoropropane, 1,1, 1,2,2,3,4,5,5,5-decafluoropentane, 1,1,1,1-trichloro-2,2,3,3,3-pentanofluorop Mouth bread, 1; 1, 2, 2, 3,3,4-heptofluorocyclopentane and the like.
  • fluorinated ethers examples include 2,2,3,3,3-pentylfluoromethyl ether, 2,2,3,3,3-pentafluoropropylfluoromethyl ether, 1,1 1,3,3,3-pentanofluoro-2-trifluoromethylpropyl methyl ether, 1,1,1,2,2,3,3,4,4-nonafluorobutyl methyl ether, 1,1,1,2 , 2, 3, 3, 4, 4-nonafluorobutylethyl ether and the like.
  • the solid content concentration (total amount of the catalyst and the resin) when dispersing the solid in the dispersion medium is preferably 0.01 to 20%, particularly 0.1 to 15% of the total weight of the dispersion. No. If the solid content is too low, a catalyst layer having a predetermined thickness cannot be obtained unless the coating is repeated many times in producing a catalyst layer by coating with a dispersion, resulting in poor production efficiency. If the solid content is too high, the viscosity of the dispersion is too high, and the catalyst layer obtained by coating the dispersion tends to be non-uniform.
  • a catalyst layer of a gas diffusion electrode is prepared using a dispersion in which the solid is dispersed in the dispersion medium.
  • the mass ratio between the catalyst and the fluorinated ion exchange resin in the obtained catalyst layer is 50:50 to 85:15, and particularly preferably 60:40 to 80:20. If this mass ratio is less than 50:50, the pores of the catalyst carrier may be crushed by the resin. In that case, the number of reaction fields decreases, and the performance as a polymer electrolyte fuel cell decreases.
  • the mass ratio is larger than 85:15, the amount of the The catalyst may be insufficiently coated with the exchange resin, and the performance as a polymer electrolyte fuel cell may be reduced.
  • the gas diffusion electrode is disposed adjacent to the ion exchange membrane which is a polymer electrolyte membrane.
  • the gas diffusion electrode may be prepared using the above-mentioned dispersion on both the anode side and the force source side. Only the above-mentioned dispersion liquid may be used.
  • the gas diffusion electrode may be composed of only a catalyst layer prepared using the above-mentioned dispersion liquid.
  • the catalyst layer is disposed adjacent to the electrolyte membrane, and the catalyst layer is formed outside the catalyst layer. It is preferable that a gas diffusion layer is disposed adjacent to the gas diffusion layer, and the gas diffusion electrode is constituted by the catalyst layer and the gas diffusion layer.
  • the following method can be mentioned.
  • a dispersion containing carbon powder and polytetrafluoroethylene (hereinafter referred to as PTFE) is applied to the surface of carbon paper or carbon cloth, and fired in air to form a gas diffusion layer.
  • PTFE polytetrafluoroethylene
  • a dispersion liquid of the above-mentioned catalyst is applied on the gas diffusion layer to form a catalyst layer, and a gas diffusion electrode is formed.
  • a method of forming a catalyst layer on a gas diffusion layer has been described as a method of manufacturing a membrane-electrode assembly.
  • a dispersion of the catalyst is directly applied on an ion exchange membrane.
  • a method of obtaining a membrane-electrode assembly, a method of applying a dispersion of the above-described catalyst on a flat plate to form a catalyst layer, and then transferring the catalyst layer to an ion exchange membrane can also be preferably employed.
  • a separator having a gas flow path for supplying fuel gas is arranged on the outside of the membrane-electrode assembly obtained as described above.
  • a gas containing hydrogen is supplied to the anode, and oxygen is supplied to the power source. Containing gas is supplied.
  • Dispersion liquid 1 was treated with an evaporator at 50 ° C. in a hot water bath to remove the solvent, and 3.7 g of a solid was obtained. This was added to 33.3 g of 2,2,3,3,3-pentanofluoro-11-propanol, mixed well, and dispersed to obtain Dispersion 2.
  • the dispersion 2 was ground in an agate mortar and dried under reduced pressure, and the pore volume was measured using a mercury porosimeter (manufactured by CE Instruments, Inc.). The pore volume was 130 Omm 3 / g.
  • an ion exchange membrane made of sulfonic acid type perfluorocarbon polymer with a ion exchange capacity of 1.0 meq / g dry resin and a thickness of 50 m (trade name: Flemion S membrane, manufactured by Asahi Glass Co., Ltd.) ) It was used.
  • the dispersion 2 was applied once on the above-mentioned ion-exchange membrane so as to have a platinum content of 0.5 mgZcm 2 on both sides of the force source side and the anode side once, and then heated to 120 ° C. After drying for 1 hour, a membrane-electrode assembly (electrode area: 10 cm 2 ) in which a gas diffusion electrode composed of a porous catalyst layer having a thickness of 50 xm was formed on both sides of the membrane was produced.
  • a fuel cell is assembled using the above membrane-electrode assembly, and the fuel cell is supplied with hydrogen to the anode and air to the power source at 0.2 MPa, and 0.60 V at a cell temperature of 70 ° C. was operated continuously with a constant voltage drive. Power density (AZcm 2 ) When the temporal change was measured, the results shown in Table 1 were obtained.
  • Dispersion liquid 3 was prepared in the same manner as in Example 1 except that hexane was used instead of 2, 2, 3, 3, 3-pentafluoro-1-propanol, and a gas diffusion electrode was prepared using this. did. Using this gas diffusion electrode, a membrane-electrode assembly was produced in the same manner as in Example 1, and evaluated in the same manner as in Example 1. Table 1 shows the results. The dispersion 3 was dried in the same manner as the dispersion 2 and the pore volume was measured. The pore volume was 1200 mm 3 g.
  • Dispersion 4 was prepared in the same manner as in Example 1, except that ethanol was used instead of 2,2,3,3,3-pentanofluoro-1-propanol, and a gas diffusion electrode was formed using this. Produced. Using this gas diffusion electrode, a membrane-electrode assembly was produced in the same manner as in Example 1, and evaluated in the same manner as in Example 1. Table 1 shows the results. The dispersion 4 was dried in the same manner as the dispersion 2 and the pore volume was measured to be 75 OmmVg.
  • a membrane-electrode assembly was prepared in the same manner as in Example 1 except that the dispersion 1 in Example 1 was used as it was as a coating liquid for preparing a gas diffusion electrode, and was evaluated in the same manner as in Example 1. Table 1 shows the results.
  • the dispersion 1 was dried in the same manner as the dispersion 2 and the pore volume was measured to be 80 Omm 3 Zg.
  • a gas diffusion electrode is formed simply and satisfactorily on the surface of an ion exchange membrane, and a polymer electrolyte fuel cell using the obtained gas diffusion electrode has a high output and a long continuous operation. Even with this, there is little deterioration over time.

Abstract

A method for manufacturing a gas diffusion electrode, which comprises contacting a fluorine-containing ion exchange resin with a catalyst in a solvent capable of dissolving the fluorine-containing ion exchange resin, removing the solvent to provide a solid, dispersing the solid in a dispersion medium such as a saturated hydrocarbon, an aromatic hydrocarbon or a fluorine-containing ether, and forming a catalyst layer from the resulting dispersion; a method for manufacturing a solid polymer type fuel cell, which comprises arranging a gas diffusion electrode manufactured by the above method on at least one side of a polymer electrolyte film, and jointing the electrode and the electrolyte film. A solid polymer type fuel cell manufactured by the method has excellent initial output characteristics and also can maintain a high level output for a long period of time.

Description

固体高分子型燃料電池の製造方法及びそのためのガス拡散電極の製造方法 技術分野  TECHNICAL FIELD The present invention relates to a method for manufacturing a polymer electrolyte fuel cell and a method for manufacturing a gas diffusion electrode therefor.
本発明は、 固体高分子型燃料電池、 特に初期の活性に優れかつ長期にわたつ て安定した出力の得られる固体高分子型燃料電池とそのためのガス拡散電極の 製造方法に関する。 背景技術  The present invention relates to a polymer electrolyte fuel cell, particularly to a polymer electrolyte fuel cell having excellent initial activity and capable of obtaining a stable output for a long period of time, and a method for producing a gas diffusion electrode therefor. Background art
燃料電池は、 燃料となるガスの反応エネルギを直接的に電気工ネルギに変換 する電池であり、 そのなかで水素 ·酸素燃料電池は、 その反応生成物が原理的 に水のみであるという特徴を有する。 水素 ·酸素燃料電池のなかでも電解質膜 としてイオン交換膜を使用する固体高分子型燃料電池は、 常温からの作動が可 能で高出力密度が得られるため、 近年のエネルギ、 地球環境問題への社会的要 請の高まりとともに、 電気自動車用電源、 定置用電源等として期待されている 固体高分子型燃料電池では、 電解質膜として、 通常、 プロトン伝導性のィォ ン交換膜が用いられ、 特にスルホン酸基を有するパーフルォロカ一ボン重合体 (以下、 スルホン酸型パーフルォロカ一ボン重合体という。 ) からなるイオン 交換膜が基本特性に優れている。 固体高分子型燃料電池では、 このイオン交換 膜の両面にガス拡散電極を形成し、 燃料である水素を含むガスをアノードに、 酸化剤となる酸素や空気を力ソードにそれぞれ供給することにより発電を行う ガス拡散電極の触媒層に含まれる触媒は、 高い出力を得るため、 通常は比表 面積の大きい導電性のカーボンブラック担体等に白金を主体とする貴金属触媒 又は白金合金触媒を高担持率で分散性よく担持させて使用する。 電極層 (触媒 層) における反応は、 電解質、 触媒及び燃料ガス (水素又は酸素) が同時に存 在する三相界面でのみ進行するため、 固体高分子型燃料電池ではイオン交換樹 脂を電極層に含有させ、 ィォン交換樹脂で触媒を被覆して三相界面を拡大させ る方法により性能を向上させている。 A fuel cell is a battery that directly converts the reaction energy of a gas serving as fuel into electric energy. Among them, a hydrogen-oxygen fuel cell has the characteristic that its reaction product is in principle only water. Have. Among the hydrogen-oxygen fuel cells, polymer electrolyte fuel cells that use ion exchange membranes as electrolyte membranes can operate at room temperature and provide high power density. Along with the increasing social demands, polymer electrolyte fuel cells, which are expected to be used as power sources for electric vehicles and stationary power sources, usually use proton-conducting ion exchange membranes as electrolyte membranes. An ion exchange membrane made of a perfluorocarbon polymer having a sulfonic acid group (hereinafter referred to as a sulfonic acid type perfluorocarbon polymer) has excellent basic characteristics. In polymer electrolyte fuel cells, gas diffusion electrodes are formed on both sides of this ion exchange membrane, and power is generated by supplying a gas containing hydrogen, which is the fuel, to the anode, and oxygen and air, which are the oxidizing agents, to the power source. In order to obtain a high output, the catalyst contained in the catalyst layer of the gas diffusion electrode usually has a high loading ratio of a platinum-based noble metal catalyst or platinum alloy catalyst on a conductive carbon black carrier with a large specific surface area. And used with good dispersibility. In the reaction at the electrode layer (catalyst layer), the electrolyte, the catalyst, and the fuel gas (hydrogen or oxygen) are simultaneously present. In polymer electrolyte fuel cells, ion exchange resin is contained in the electrode layer, and the catalyst is coated with ion exchange resin to expand the three-phase interface. Let me.
従来より、 電極触媒層中の上記三相界面を形成するために、 例えば白金担持 カーボン触媒粉末とスルホン酸型パーフルォロカ一ポン重合体からなるイオン 交換樹脂の溶液を混合し、 該樹脂で触媒を被覆する方法が知られている。 この 場合、 樹脂による触媒粉末の被覆の状態は、 触媒粉末の細孔構造や凝集状態等 により異なる。 固体高分子型燃料電池では、 より高い出力を得るため、 白金に 対する樹脂の被覆率を上げて三相界面を拡大させる方法力 S検討されている。 し かし、 従来の方法では、 白金担持カーボン触媒に使用するカーボン担体の細孔 構造や凝集状態の影響で被覆率を高められず、 出力特性の点で充分ではなかつ た。 発明の開示  Conventionally, in order to form the three-phase interface in the electrode catalyst layer, for example, a platinum-supported carbon catalyst powder and a solution of an ion-exchange resin composed of a sulfonic acid-type perfluorocarbon polymer are mixed, and the catalyst is coated with the resin. There are known ways to do this. In this case, the state of the coating of the catalyst powder with the resin differs depending on the pore structure, the aggregation state, and the like of the catalyst powder. For polymer electrolyte fuel cells, in order to obtain higher output, a method to increase the three-phase interface by increasing the resin coverage of platinum is being studied. However, in the conventional method, the coverage cannot be increased due to the influence of the pore structure and the aggregation state of the carbon carrier used for the platinum-supported carbon catalyst, and the output characteristics are not sufficient. Disclosure of the invention
そこで本発明は、 従来に比べ、 上記三相界面が拡大され、 樹脂による触媒の 被覆率が高く、 力つ触媒の細孔容積が大きい固体高分子型燃料電池用ガス拡散 電極の製造方法を提供することを目的とする。 さらに本発明は、 上記ガス拡散 電極を有することにより、 初期の出力特性に優れ、 かつ長期にわたって安定し た出力が得られる固体高分子型燃料電池の製造方法を提供することを目的とす る。  Accordingly, the present invention provides a method for producing a gas diffusion electrode for a polymer electrolyte fuel cell, in which the three-phase interface is enlarged, the resin coverage of the catalyst is high, and the pore volume of the power catalyst is large as compared with the conventional art. The purpose is to do. Still another object of the present invention is to provide a method for producing a polymer electrolyte fuel cell having excellent initial output characteristics and a stable output over a long period of time by having the gas diffusion electrode.
本発明は、 イオン交換膜からなる電解質膜に隣接して配置され、 触媒と含フ ッ素ィォン交換樹脂とを含む触媒層を有する固体高分子型燃料電池用のガス拡 散電極の製造方法において、 前記含フッ素イオン交換樹脂を溶解できる溶媒中 で前記触媒と前記含フッ素イオン交換樹脂とを接触させた後、 該溶媒を除去し て得られた固形物を、 飽和炭化水素、 芳香族炭化水素、 含フッ素アルコール、 含フッ素エーテル及ぴ含フッ素アルカンからなる群から選ばれる一種以上の分 散媒に分散させ、 得られた分散液を用いて前記触媒層を形成することを特徴と 02780 The present invention relates to a method for producing a gas diffusion electrode for a polymer electrolyte fuel cell having a catalyst layer disposed adjacent to an electrolyte membrane comprising an ion exchange membrane and comprising a catalyst and a fluorine-containing exchange resin. After bringing the catalyst and the fluorinated ion exchange resin into contact with each other in a solvent capable of dissolving the fluorinated ion exchange resin, the solid obtained by removing the solvent is converted into a saturated hydrocarbon or an aromatic hydrocarbon. , A fluorinated alcohol, a fluorinated ether and a fluorinated alkane are dispersed in at least one dispersion medium selected from the group consisting of the above, and the catalyst layer is formed using the obtained dispersion. 02780
3 Three
する固体高分子型燃料電池用ガス拡散電極の製造方法を提供する。 The present invention provides a method for producing a gas diffusion electrode for a polymer electrolyte fuel cell.
また、 本発明は、 イオン交換膜からなる電解質膜の両面にガス拡散電極を配 置し接合してなる膜一電極接合体を備える固体高分子型燃料電池の製造方法で あって、 前記電解質膜の少なくとも片面に配置されるガス拡散電極を、 上記ガ ス拡散電極の製造方法により作製する固体高分子型燃料電池の製造方法を提供 する。 発明を実施するための最良の形態  Further, the present invention is a method for producing a polymer electrolyte fuel cell comprising a membrane-electrode assembly in which gas diffusion electrodes are arranged and bonded on both sides of an electrolyte membrane composed of an ion exchange membrane, A method for manufacturing a polymer electrolyte fuel cell, wherein a gas diffusion electrode arranged on at least one side of the above is manufactured by the method for manufacturing a gas diffusion electrode. BEST MODE FOR CARRYING OUT THE INVENTION
本発明により得られるガス拡散電極の触媒層には、 触媒と含フッ素イオン交 換榭脂が含まれる。 触媒としては、 アノード及び力ソードで電極反応を促進す る物質が使用されるが、 白金等の白金族金属又はその合金が好ましい。 触媒は 微粒子としてそのまま使用してもよいが、 担持触媒を用いることが好ましく、 その担体としては比表面積が 2 0 O m2 Z g以上の活性炭、 力一ポンプラック 等を用いることが好ましい。 The catalyst layer of the gas diffusion electrode obtained by the present invention contains a catalyst and a fluorinated ion exchange resin. As the catalyst, a substance which promotes an electrode reaction with an anode and a power source is used, and a platinum group metal such as platinum or an alloy thereof is preferable. The catalyst may be used as fine particles as they are, but it is preferable to use a supported catalyst, and as the carrier, it is preferable to use activated carbon having a specific surface area of 20 Om 2 Zg or more, a power pump rack or the like.
担持触媒の場合、 金属の担持量が触媒全質量の 1 0〜7 0 %であることが好 ましい。 固体高分子型燃料電池では、 高電流密度にて運転する場合は、 電極中 のガス拡散性を高めるために触媒層の厚さを薄くすることが有効であるが、 同 時に活性を保っため単位面積あたりの金属触媒量を確保することが必要なため 、 金属の担持量は 1 0 %以上であることが好ましい。  In the case of a supported catalyst, the amount of supported metal is preferably 10 to 70% of the total mass of the catalyst. In polymer electrolyte fuel cells, when operating at a high current density, it is effective to reduce the thickness of the catalyst layer in order to increase gas diffusion in the electrodes, but at the same time, to maintain activity, Since it is necessary to secure the amount of the metal catalyst per area, the amount of supported metal is preferably 10% or more.
触媒層に含まれる含フッ素イオン交換樹脂は、 導電性及びガスの透過性の点 から、 イオン交換容量が 0 . 5〜2 . 0ミリ当量 Zグラム乾燥樹脂、 特には 0 . 8〜1 . 5ミリ当量/グラム乾燥樹脂であることが好ましい。 また、 含フッ 素イオン交換樹脂は、 テトラフルォロエチレンに基づく重合単位と、 スルホン 酸基を有するパーフルォロビニル化合物に基づく重合単位とを含む共重合体か らなるものが好ましい。  The fluorinated ion exchange resin contained in the catalyst layer has an ion exchange capacity of 0.5 to 2.0 milliequivalent Z gram dry resin, particularly 0.8 to 1.5 in terms of conductivity and gas permeability. Preferably, it is a milliequivalent / gram dry resin. Further, the fluorine-containing ion exchange resin is preferably made of a copolymer containing a polymerization unit based on tetrafluoroethylene and a polymerization unit based on a perfluorovinyl compound having a sulfonic acid group.
上記スルホン酸基を有するパーフルォロビニル化合物としては、 C F2 = C F (O C F ., C F X) „,一 Op— ( C F 2 ) n— S〇3 Hで表されるものが好ましい 。 ここで、 Xはフッ素原子又はトリフルォロメチル基であり、 mは 0〜3の整 数であり、 nは 1〜12の整数であり、 pは 0又は 1である。 上記パーフルォ 口ビニル化合物のなかでも好ましい具体例として、 下式の式 1〜 3のいずれか で表される化合物等が挙げられる。 ただし下式中、 q、 rは 1〜8の整数であ り、 tは 1〜3の整数である。 The par full O b vinyl compound having a sulfonic acid group, CF 2 = CF (OCF, CFX.) ", One O p - is preferably one represented by S_〇 3 H - (CF 2) n . Here, X is a fluorine atom or a trifluoromethyl group, m is an integer of 0 to 3, n is an integer of 1 to 12, and p is 0 or 1. Among the above perfluoro vinyl compounds, preferred specific examples include compounds represented by any one of formulas 1 to 3 below. However, in the following formula, q and r are integers of 1 to 8, and t is an integer of 1 to 3.
CF2=CFO (CF2) q S03H 式 1CF 2 = CFO (CF 2 ) q S0 3 H Formula 1
CF2=CFOCF2 CF (CF3 ) O (CF2) ,. S 03 H 式 2CF 2 = CFOCF 2 CF (CF 3 ) O (CF 2 ), .S 0 3 H Equation 2
CF2=CF (OCF2 CF (CF3) ) , O (CF2) 2 S03H 式 3 CF 2 = CF (OCF 2 CF (CF 3 )), O (CF 2 ) 2 S0 3 H Formula 3
ガス拡散電極の触媒層に含まれる触媒と含フッ素イオン交換樹脂とは、 質量 比で触媒:含フッ素イオン交換樹脂が 40 : 60〜95 : 5であることが電極 の導電性と撥水性の点から好ましい。 特に 60 : 40〜 80 : 20が好ましい 。 なお、 ここでいう触媒の質量は、 担持触媒の場合には担体の質量を含む。 本発明において、 含フッ素イオン交換樹脂を溶解する溶媒としては、 炭素数 1〜6のアルコール、 炭素数 2〜 6のエーテル、 及び炭素数 2〜 6のジアルキ ルスルホキシドからなる群から選ばれる一種以上が好ましい。 これらの溶媒に 水等を混合して用いてもよい。 上記溶媒としては、 具体的には、 メタノール、 エタノール、 1—プロパノール、 2—プロパノール、 1一ブ夕ノ一ル、 2—ブ 夕ノール、 1, 4一ジォキサン、 n—プロピルェ一テル、 ジメチルスルホキシ ド等が挙げられる。  The catalyst and the fluorinated ion exchange resin contained in the catalyst layer of the gas diffusion electrode are such that the mass ratio of the catalyst to the fluorinated ion exchange resin is 40:60 to 95: 5 in terms of electrode conductivity and water repellency. Is preferred. Particularly, 60:40 to 80:20 is preferable. Here, the mass of the catalyst in the case of a supported catalyst includes the mass of the carrier. In the present invention, the solvent dissolving the fluorinated ion exchange resin is at least one selected from the group consisting of alcohols having 1 to 6 carbon atoms, ethers having 2 to 6 carbon atoms, and dialkyl sulfoxide having 2 to 6 carbon atoms. Is preferred. Water and the like may be mixed with these solvents and used. Specific examples of the solvent include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 1,4-dioxane, n-propyl ether, and dimethyl sulfo. Oxide and the like.
本発明では好ましくは上記溶媒に含フッ素イオン交換樹脂を溶解させて溶液 を得た後、 該溶液に触媒を分散させ、 含フッ素イオン交換樹脂と触媒とを接触 させる。 このとき、 含フッ素イオン交換樹脂が触媒に吸着するものと考えられ る。 また、 上記の操作により得られる分散液中の固形分濃度 (含フッ素イオン 交換樹脂と触媒の濃度の合量) は、 分散液全質量の 0. 1〜20%、 特に 1〜 15 %であること力好ましい。 固形分濃度が低すぎると次工程である溶媒除去 操作の効率が悪い。 また、 固形分濃度が高すぎると分散液の粘度が高まって均 一に混合できなくなり分散状態が悪くなる。 次に本発明では上記分散液から溶媒を除去し、 好ましくは乾固させる。 この 操作は、 含フッ素イオン交換樹脂の触媒への被覆を堅固なものとするために重 要である。 溶媒は、 完全に除去することが好ましいが、 少なくとも得られる固 形物の 5 %以下の含有量となるまで除去すれば、 次工程において上記触媒を溶 媒に分散させたときに含フッ素イオン交換樹脂が液相に溶出することがないの で好ましい。 + In the present invention, preferably, after dissolving the fluorinated ion exchange resin in the solvent to obtain a solution, the catalyst is dispersed in the solution and the fluorinated ion exchange resin is brought into contact with the catalyst. At this time, it is considered that the fluorinated ion exchange resin is adsorbed on the catalyst. Further, the solid content concentration (the total amount of the fluorinated ion exchange resin and the catalyst) in the dispersion obtained by the above operation is 0.1 to 20%, particularly 1 to 15% of the total mass of the dispersion. Power is preferred. If the solid content concentration is too low, the efficiency of the solvent removal operation in the next step is poor. On the other hand, if the solid content concentration is too high, the viscosity of the dispersion becomes too high to mix uniformly, resulting in poor dispersion. Next, in the present invention, the solvent is removed from the above-mentioned dispersion liquid, and it is preferably dried. This operation is important for firmly coating the catalyst with the fluorinated ion exchange resin. It is preferable to completely remove the solvent, but if it is removed at least until the content of the solid matter becomes 5% or less, the fluorine-containing ion exchange will be performed when the above catalyst is dispersed in the solvent in the next step. This is preferable because the resin does not elute into the liquid phase. +
溶媒除去は含フッ素イオン交換樹脂が変質しない温度で加熱することにより 行うことが好ましく、 1 8 0 °C以下で加熱することが好ましい。 また、 エバポ レー夕等を用いて減圧下で加熱することも好ましい。 エバポレータを用いる場 合は、 4 0〜7 0 °C程度の温度で加熱することが好ましい。 また除去する溶媒 に可燃性溶媒が含まれている場合は、 窒素雰囲気等、 酸素を含まない雰囲気中 で溶媒除去操作を行うことが好ましい。  The removal of the solvent is preferably performed by heating at a temperature at which the fluorinated ion exchange resin does not deteriorate, and preferably at 180 ° C. or lower. It is also preferable to heat under reduced pressure using an evaporator. When using an evaporator, it is preferable to heat at a temperature of about 40 to 70 ° C. When the solvent to be removed contains a flammable solvent, the solvent removal operation is preferably performed in an atmosphere containing no oxygen, such as a nitrogen atmosphere.
次に、 溶媒除去により得られた固形物を分散媒に分散させるが、 該分散媒と しては、 飽和炭化水素、 芳香族炭化水素、 含フッ素アルコール、 含フッ素エー テル及び含フッ素アルカンからなる群から選ばれる一種以上を使用する。 触媒 に吸着した含フッ素ィォン交換樹脂の再溶解を防ぐため、 ここで用いる分散媒 は含フッ素イオン交換樹脂を溶解しに'くいことが好ましい。 なかでも、 含フッ 素アルコール、 含フッ素エーテル又は含フッ素アルカン中で分散させることが 好ましい。 上記分散媒に分散させると、 触媒の細孔容積を大きくすることがで き、 反応場を増やすことができるため、 固体高分子型燃料電池としての性能が 向上する。 触媒の細孔容積が大きくなる理由は必ずしも明確ではないが、 以下 のように考えられる。  Next, the solid obtained by removing the solvent is dispersed in a dispersion medium, and the dispersion medium includes a saturated hydrocarbon, an aromatic hydrocarbon, a fluorinated alcohol, a fluorinated ether, and a fluorinated alkane. Use one or more selected from the group. In order to prevent the fluorinated ion-exchange resin adsorbed on the catalyst from being redissolved, the dispersion medium used here is preferably difficult to dissolve the fluorinated ion-exchange resin. Especially, it is preferable to disperse in a fluorine-containing alcohol, a fluorine-containing ether or a fluorine-containing alkane. When dispersed in the dispersion medium, the pore volume of the catalyst can be increased, and the number of reaction fields can be increased, so that the performance as a polymer electrolyte fuel cell is improved. The reason why the pore volume of the catalyst becomes large is not always clear, but is considered as follows.
溶媒を除去し乾固した状態の、 含フッ素イオン交換樹脂が吸着した触媒にお いて.は、 触媒の細孔中に吸着している含フッ素イオン交換樹脂の分子鎖はから まった状態であり、 これを上記分散媒に分散させると、 含フッ素イオン交換樹 脂の分子鎖が伸び、 細孔容積が大きくなると考えられる。 細孔容積が大きくな ることにより、 得られるガス拡散電極においては含フッ素イオン交換樹脂によ る触媒の被覆率を高めることができ、 その結果触媒、 樹脂及び燃料ガス (水素 又は酸素) が存在する三相界面が拡大され、 得られる燃料電池の出力が高まる と考えられる。 In the catalyst to which the fluorine-containing ion-exchange resin is adsorbed after the solvent is removed and dried, the molecular chain of the fluorine-containing ion-exchange resin adsorbed in the pores of the catalyst is entangled. When this is dispersed in the dispersion medium, it is considered that the molecular chain of the fluorinated ion exchange resin is elongated and the pore volume is increased. Due to the large pore volume, the resulting gas diffusion electrode uses a fluorine-containing ion exchange resin. It is thought that the three-phase interface where the catalyst, the resin and the fuel gas (hydrogen or oxygen) are present is enlarged, and the output of the obtained fuel cell is increased.
また、 上記分散媒として、 含フッ素イオン交換樹脂と混合することにより含 フッ素イオン交換樹脂が膨潤しゃすい分散媒を使用すると、 含フッ素イオン交 換樹脂が膨潤することにより含フッ素イオン交換樹脂が吸着した触媒の分散媒 中への分散性が高まり、 得られる分散液を用いてガス拡散電極を作製するとき に塗工しやすいので好ましい。  When a dispersion medium in which the fluorinated ion exchange resin is swollen and mixed by mixing with the fluorinated ion exchange resin is used as the dispersion medium, the fluorinated ion exchange resin is adsorbed by the swelling of the fluorinated ion exchange resin. The dispersibility of the catalyst in the dispersion medium is enhanced, and the catalyst is preferably applied when a gas diffusion electrode is produced using the obtained dispersion.
また、 上記固形物を分散媒に分散させにくい場合は、 分散剤等を使用して分 散させてもよい。 該分散剤としては通常使用される分散剤が使用でき、 ァミン 塩、 4級アンモニゥム塩、 ピリジニゥム塩、 スルホニゥム塩、 ホスホニゥム塩 、 ポリエチレンポリアミン等のカチオン界面活性剤、 アミノ酸、 ベ夕イン、 ァ ミノ硫酸エステル、 スルホベタイン等の両性界面活性剤、 アルキルポリオキシ エチレン、 多価アルコール等の非イオン界面活性剤等が挙げられる。  When it is difficult to disperse the solid in the dispersion medium, the solid may be dispersed using a dispersant or the like. As the dispersing agent, a commonly used dispersing agent can be used. Cationic surfactants such as amine salt, quaternary ammonium salt, pyridinium salt, sulfonium salt, phosphonium salt, polyethylenepolyamine, amino acid, beaine, amino sulfate and the like. Examples include amphoteric surfactants such as esters and sulfobetaines, and nonionic surfactants such as alkyl polyoxyethylene and polyhydric alcohols.
上記固形物を分散させる分散媒を具体的に例示すると、 飽和炭化水素として は、 へキサン、 ヘプタン、 ノナン、 デカン等の鎖状炭化水素等が挙げられ、 芳 香族炭化水素としてはベンゼン、 トルエン、 キシレン等が挙げられる。  Specific examples of the dispersion medium for dispersing the above-mentioned solids include, as the saturated hydrocarbon, chain hydrocarbons such as hexane, heptane, nonane, and decane, and the like. As the aromatic hydrocarbon, benzene and toluene are used. , Xylene and the like.
また、 含フッ素アルコールとしては、 2, 2, 2—トリフルォロエタノール 、 2, 2, 3, 3, 3—ペン夕フルオロー 1—プロパノール、 2, 2, 3, 4 , 4, 4—へキサフルオロー 1ーブ夕ノール、 1, 1, 1, 3, 3, 3—へキ サフルオロー 2一プロパノール等が挙げられる。  Examples of the fluorinated alcohol include 2,2,2-trifluoroethanol, 2,2,3,3,3-pentafluoro-1-propanol, 2,2,3,4,4,4-hexafluoro- Examples include 1-butanol and 1,1,1,3,3,3-hexafluoro-21-propanol.
また、 含フッ素アルカンとしては、 1, 3—ジクロロー 1, 1, 2, 2, 3 一ペン夕フルォロプロパン、 3, 3—ジクロロー 1, 1, 1, 2, 2—ペン夕 フルォロプロパン、 1, 1, 1, 2, 2, 3, 4, 5, 5, 5—デカフルォロ ペンタン、 1, 1, 1一トリクロロー 2, 2, 3, 3, 3—ペン夕フルォロプ 口パン、 1; 1, 2, 2, 3, 3, 4—ヘプ夕フルォロシクロペンタン等が挙 げられる。 また、 含フッ素エーテルとしては、 2, 2, 3, 3, 3—ペン夕フルォロプ 口ピルメチルエーテル、 2, 2, 3, 3, 3—ペンタフルォロプロピルフルォ ロメチルエーテル、 1, 1, 3, 3, 3—ペン夕フルオロー 2—トリフルォロ メチルプロピルメチルエーテル、 1, 1, 1, 2, 2, 3, 3, 4, 4ーノナ フルォロブチルメチルエーテル、 1, 1, 1, 2, 2, 3, 3, 4, 4ーノナ フルォロブチルェチルエーテル等が挙げられる。 Examples of the fluorinated alkanes include 1,3-dichloro-1,1,2,2,3-fluoropentane, 3,3-dichloro-1,1,1,2,2-pentafluorofluoropropane, 1,1, 1,2,2,3,4,5,5,5-decafluoropentane, 1,1,1,1-trichloro-2,2,3,3,3-pentanofluorop Mouth bread, 1; 1, 2, 2, 3,3,4-heptofluorocyclopentane and the like. Examples of the fluorinated ethers include 2,2,3,3,3-pentylfluoromethyl ether, 2,2,3,3,3-pentafluoropropylfluoromethyl ether, 1,1 1,3,3,3-pentanofluoro-2-trifluoromethylpropyl methyl ether, 1,1,1,2,2,3,3,4,4-nonafluorobutyl methyl ether, 1,1,1,2 , 2, 3, 3, 4, 4-nonafluorobutylethyl ether and the like.
このなかで、 含フッ素イオン交換樹脂を膨潤させやすい分散媒としては 2, 2, 3, 3, 3一ペンタフルォ口— 1一プロパノール、 1, 1 , 1, 2, 2, 3, 4, 5, 5, 5ーデカフルォロペンタン、 1, 1, 2, 2, 3, 3, 4一 ヘプ夕フルォロシクロペンタン、 1, 1, 1, 2, 2, 3, 3, 4, 4ーノナ フルォロブチルメチルエーテル、 1, 1, 1, 2, 2, 3, 3, 4, 4ーノナ フルォロブチルェチルェ一テル、 3, 3—ジクロロ— 1, 1, 1, 2, 2—ぺ ン夕フルォロプロパン又は 1, 3—ジクロロー 1, 1, 2, 2, 3—ペンタフ ルォロプロパン等が挙げられ、 これらの分散媒は特に好ましい。  Among these, 2,2,3,3,3-pentafluoro-1-1propanol, 1,1,1,2,2,3,4,5 5,5-decafluoropentane, 1,1,2,2,3,3,41-fluorocyclopentane, 1,1,1,2,2,3,3,4,4-nona Fluorobutyl methyl ether, 1,1,1,2,2,3,3,4,4-nonafluorobutylethyl ether, 3,3-dichloro-1,1,1,2,2 — ぺ Fluoropropane or 1,3-dichloro-1,1,2,2,3-pentafluoropropane, etc., and these dispersion media are particularly preferred.
上記分散媒に上記固形物を分散させるときの固形分濃度 (触媒と樹脂の合量 ) は、 分散液全質量の 0. 01〜20%、 特に 0. 1〜15%であることが好 ましい。 固形分濃度が低すぎると、 分散液の塗工により触媒層を作製するにあ たり、 何回も繰り返し塗工しなければ所定の厚さの触媒層が得られず生産効率 が悪い。 また、 固形分濃度が高すぎると分散液の粘度が高すぎて分散液の塗工 により得られる触媒層が不均一となりやすい。  The solid content concentration (total amount of the catalyst and the resin) when dispersing the solid in the dispersion medium is preferably 0.01 to 20%, particularly 0.1 to 15% of the total weight of the dispersion. No. If the solid content is too low, a catalyst layer having a predetermined thickness cannot be obtained unless the coating is repeated many times in producing a catalyst layer by coating with a dispersion, resulting in poor production efficiency. If the solid content is too high, the viscosity of the dispersion is too high, and the catalyst layer obtained by coating the dispersion tends to be non-uniform.
本発明では、 上記分散媒に上記固形物を分散させた分散液を用いてガス拡散 電極の触媒層を作製する。 得られる触媒層中の触媒と含フッ素イオン交換樹脂 との質量比が、 50 : 50〜85 : 15となるように作製することが好ましく 、 特に 60 : 40〜80 : 20とすることが好ましい。 この質量比が 50 : 5 0より触媒の查が少ないと、 触媒担体の細孔が樹脂でつぶされるおそれがある 。 その場合、 反応場が少なくなり、 固体高分子型燃料電池としての性能が低下 する。 また、 この質量比が 85 : 15より触媒の量が多いと含フッ素イオン交 換樹脂による触媒の被覆が不十分になるおそれがあり、 固体高分子型燃料電池 としての性能が低下するおそれがある。 In the present invention, a catalyst layer of a gas diffusion electrode is prepared using a dispersion in which the solid is dispersed in the dispersion medium. It is preferable that the mass ratio between the catalyst and the fluorinated ion exchange resin in the obtained catalyst layer is 50:50 to 85:15, and particularly preferably 60:40 to 80:20. If this mass ratio is less than 50:50, the pores of the catalyst carrier may be crushed by the resin. In that case, the number of reaction fields decreases, and the performance as a polymer electrolyte fuel cell decreases. When the mass ratio is larger than 85:15, the amount of the The catalyst may be insufficiently coated with the exchange resin, and the performance as a polymer electrolyte fuel cell may be reduced.
本発明では、 ガス拡散電極は、 高分子電解質膜であるイオン交換膜に隣接し て配置されるが、 アノード側、 力ソード側ともに上記分散液を用いて作製して もよいし、 いずれか一方のみを上記分散液を用いて作製してもよい。 また、 ガ ス拡散電極は、 上記分散液を用いて作製される触媒層のみから構成されてもよ いが、 触媒層を電解質膜と隣接して配置し、 さらに触媒層の外側に触媒層と隣 接してガス拡散層を配置し、 ガス拡散電極を触媒層とガス拡散層とにより構成 することが好ましい。  In the present invention, the gas diffusion electrode is disposed adjacent to the ion exchange membrane which is a polymer electrolyte membrane. However, the gas diffusion electrode may be prepared using the above-mentioned dispersion on both the anode side and the force source side. Only the above-mentioned dispersion liquid may be used. In addition, the gas diffusion electrode may be composed of only a catalyst layer prepared using the above-mentioned dispersion liquid. However, the catalyst layer is disposed adjacent to the electrolyte membrane, and the catalyst layer is formed outside the catalyst layer. It is preferable that a gas diffusion layer is disposed adjacent to the gas diffusion layer, and the gas diffusion electrode is constituted by the catalyst layer and the gas diffusion layer.
ガス拡散電極の作製方法としては、 例えば以下の方法が挙げられる。 カーボ ンペーパーや力一ポンクロス等の表面に力一ボン粉末とポリテトラフルォロェ チレン (以下、 P T F Eという。 ) を含む分散液を塗布し、 大気中で焼成して ガス拡散層とする。 次に、 このガス拡散層の上に、 上記触媒の分散液を塗布し て触媒層を形成し、 ガス拡散電極を形成する。  As a method for producing the gas diffusion electrode, for example, the following method can be mentioned. A dispersion containing carbon powder and polytetrafluoroethylene (hereinafter referred to as PTFE) is applied to the surface of carbon paper or carbon cloth, and fired in air to form a gas diffusion layer. Next, a dispersion liquid of the above-mentioned catalyst is applied on the gas diffusion layer to form a catalyst layer, and a gas diffusion electrode is formed.
次に、 触媒層が形成されたガス拡散電極 2枚を、 触媒層が内側を向くように 対向させ、 間にイオン交換膜を挟んでホットプレスすることにより膜一電極接 合体を形成する。 この膜一電極接合体が固体高分子型燃料電池の発電部として 機能する部分である。 イオン交換膜と電極の接合は、 ホットプレスではなく接 着法 (特開平 7— 2 2 0 7 4 1参照) を用いてもよい。  Next, two gas diffusion electrodes having the catalyst layer formed thereon are opposed to each other so that the catalyst layer faces inward, and the membrane-electrode assembly is formed by hot pressing with an ion exchange membrane interposed therebetween. This membrane-electrode assembly is a part that functions as a power generation unit of a polymer electrolyte fuel cell. The bonding between the ion exchange membrane and the electrode may be performed not by hot pressing but by a bonding method (see Japanese Patent Application Laid-Open No. 7-22074).
また、 上記においては膜一電極接合体を製造する方法としてガス拡散層上に 触媒層を形成する方法を挙げたが、 このほか、 上記触媒の分散液をイオン交換 膜上に直接塗工して膜一電極接合体を得る方法、 上記触媒の分散液を平板上に 塗工して触媒層を形成した後に該触媒層をィォン交換膜に転写する方法等も好 ましく採用できる。  In the above description, a method of forming a catalyst layer on a gas diffusion layer has been described as a method of manufacturing a membrane-electrode assembly. In addition, a dispersion of the catalyst is directly applied on an ion exchange membrane. A method of obtaining a membrane-electrode assembly, a method of applying a dispersion of the above-described catalyst on a flat plate to form a catalyst layer, and then transferring the catalyst layer to an ion exchange membrane can also be preferably employed.
上記のように得られた膜—電極接合体の外側には、 燃料ガスを供給するため のガスの流路が形成されたセパレー夕が配置され、 アノードに水素を含むガス 、 力ソードに酸素を含むガスが供給される。 以下、 本発明の具体的な態様を実施例 (例 1、 2) 及び比較例 (例 3、 4) により説明するが、 本発明はこれらに限定されない。 On the outside of the membrane-electrode assembly obtained as described above, a separator having a gas flow path for supplying fuel gas is arranged. A gas containing hydrogen is supplied to the anode, and oxygen is supplied to the power source. Containing gas is supplied. Hereinafter, specific embodiments of the present invention will be described with reference to Examples (Examples 1 and 2) and Comparative Examples (Examples 3 and 4), but the present invention is not limited thereto.
[例 1 ]  [Example 1 ]
力一ポンプラック粉末に白金を 40質量%担持した担持触媒 2. 6 gをエタ ノール 25 g中に十分に分散させ、 これにイオン交換容量が 1. 1ミリ当量 Z g乾燥樹脂の、 CF2 = CF2に基づく重合単位と CF2 = CFOCF2 CF (C F3) 〇CF2 CF2 S03Hに基づく重合単位とからなる共重合体の 9. 0質量 %エタノール溶液 12. 4 gを添加し、 十分に混合し、 担持触媒を分散させた (以下、 分散液 1という。 ) 。 Power first pump rack powder platinum well dispersed supported catalyst 2. 6 g carrying 40 wt% in ethanol 25 g, to which ion exchange capacity 1. 1 milliequivalent Z g dry resin, CF 2 = CF 2 polymer units and CF 2 = CFOCF 2 CF based (CF 3) 9. 0% by weight ethanol solution of 〇_CF 2 CF 2 S0 3 consisting polymerized units and based on H copolymer 12. added 4 g Then, the mixture was sufficiently mixed to disperse the supported catalyst (hereinafter, referred to as dispersion liquid 1).
分散液 1を湯浴 50°Cのエバポレー夕で処理して溶媒を除去し、 固形物 3. 7 gを得た。 これを 2, 2, 3, 3, 3—ペン夕フルオロー 1一プロパノール 33. 3 g中に添加し、 十分に混合し、 分散させ分散液 2を得た。  Dispersion liquid 1 was treated with an evaporator at 50 ° C. in a hot water bath to remove the solvent, and 3.7 g of a solid was obtained. This was added to 33.3 g of 2,2,3,3,3-pentanofluoro-11-propanol, mixed well, and dispersed to obtain Dispersion 2.
分散液 2を少量サンプリングして乾固させた後、 めのう乳鉢ですりつぶし、 さらに減圧下で乾燥させた後、 水銀ポロシメータ (CE I n s t r ume n t s社製) を用いて細孔容積を測定した。 細孔容積は 130 Omm3/gであ つた。 After a small amount of the dispersion 2 was sampled and dried, it was ground in an agate mortar and dried under reduced pressure, and the pore volume was measured using a mercury porosimeter (manufactured by CE Instruments, Inc.). The pore volume was 130 Omm 3 / g.
イオン交換膜としては、 イオン交換容量 1. 0ミリ当量/ g乾燥樹脂、 厚さ 50 mのスルホン酸型パーフルォロカーボン重合体からなるイオン交換膜 ( 商品名:フレミオン S膜、 旭硝子社製) を使用した。 上記イオン交換膜に対し て、 力ソード側及びアノード側の両面に、 分散液 2をいずれも白金含有量が 0 . 5mgZcm2となるようにアプリケ一夕で 1回塗布し、 次いで 120°Cに て 1時間乾燥することにより、 厚さ 50 xmの多孔質の触媒層からなるガス拡 散電極を膜の両面に形成した膜一電極接合体 (電極面積 10 cm2) を作製し た。 As the ion exchange membrane, an ion exchange membrane made of sulfonic acid type perfluorocarbon polymer with a ion exchange capacity of 1.0 meq / g dry resin and a thickness of 50 m (trade name: Flemion S membrane, manufactured by Asahi Glass Co., Ltd.) ) It was used. The dispersion 2 was applied once on the above-mentioned ion-exchange membrane so as to have a platinum content of 0.5 mgZcm 2 on both sides of the force source side and the anode side once, and then heated to 120 ° C. After drying for 1 hour, a membrane-electrode assembly (electrode area: 10 cm 2 ) in which a gas diffusion electrode composed of a porous catalyst layer having a thickness of 50 xm was formed on both sides of the membrane was produced.
上記膜一電極接合体を使用して燃料電池セルを組み立て、 該燃料電池を、 0 . 2MP aにてアノードに水素、 力ソードに空気を供給し、 セル温度 70°Cに おいて 0. 60Vの定電圧駆動で連続運転した。 出力密度 (AZcm2) の経 時的な変化を測定したところ、 表 1に示す結果が得られた。 A fuel cell is assembled using the above membrane-electrode assembly, and the fuel cell is supplied with hydrogen to the anode and air to the power source at 0.2 MPa, and 0.60 V at a cell temperature of 70 ° C. Was operated continuously with a constant voltage drive. Power density (AZcm 2 ) When the temporal change was measured, the results shown in Table 1 were obtained.
[例 2]  [Example 2]
2, 2, 3, 3, 3—ペンタフルオロー 1—プロパノールのかわりにへキサ ンを使用した以外は例 1と同様にして分散液 3を作製し、 これを用いてガス拡 散電極を作製した。 このガス拡散電極を用いて例 1と同様に膜一電極接合体を 作製し、 例 1と同様に評価した。 結果を表 1に示す。 なお、 分散液 3について 分散液 2と同様に乾固させて細孔容積を測定したところ、 細孔容積は 1200 mm3 gであつ 。 Dispersion liquid 3 was prepared in the same manner as in Example 1 except that hexane was used instead of 2, 2, 3, 3, 3-pentafluoro-1-propanol, and a gas diffusion electrode was prepared using this. did. Using this gas diffusion electrode, a membrane-electrode assembly was produced in the same manner as in Example 1, and evaluated in the same manner as in Example 1. Table 1 shows the results. The dispersion 3 was dried in the same manner as the dispersion 2 and the pore volume was measured. The pore volume was 1200 mm 3 g.
[例 3 (比較例) ]  [Example 3 (Comparative example)]
2, 2, 3, 3, 3—ペン夕フルオロー 1一プロパノールのかわりにェ夕ノ —ルを使用した以外は例 1と同様にして分散液 4を作製し、 これを用いてガス 拡散電極を作製した。 このガス拡散電極を用いて例 1と同様に膜一電極接合体 を作製し、 例 1と同様に評価した。 結果を表 1に示す。 なお、 分散液 4につい て分散液 2と同様に乾固させて細孔容積を測定したところ、 75 OmmVg であった。  Dispersion 4 was prepared in the same manner as in Example 1, except that ethanol was used instead of 2,2,3,3,3-pentanofluoro-1-propanol, and a gas diffusion electrode was formed using this. Produced. Using this gas diffusion electrode, a membrane-electrode assembly was produced in the same manner as in Example 1, and evaluated in the same manner as in Example 1. Table 1 shows the results. The dispersion 4 was dried in the same manner as the dispersion 2 and the pore volume was measured to be 75 OmmVg.
[例 4 (比較例) ]  [Example 4 (Comparative example)]
例 1における分散液 1を、 ガス拡散電極を作製するための塗工液としてその まま用いた以外は例 1と同様に膜—電極接合体を作製し、 例 1と同様に評価し た。 結果を表 1に示す。 なお、 分散液 1について分散液 2と同様に乾固させて 細孔容積を測定したところ、 80 Omm3Zgであった。 A membrane-electrode assembly was prepared in the same manner as in Example 1 except that the dispersion 1 in Example 1 was used as it was as a coating liquid for preparing a gas diffusion electrode, and was evaluated in the same manner as in Example 1. Table 1 shows the results. The dispersion 1 was dried in the same manner as the dispersion 2 and the pore volume was measured to be 80 Omm 3 Zg.
表 1 table 1
10時間後 500時間後 1000時間後  After 10 hours After 500 hours After 1000 hours
例 1 1. 74 1. 73 1. 71 Example 1 1.74 1.73 1.71
例 2 1. 70 1. 69 1. 67 Example 2 1.70 1.69 1.67
例 3 1. 32 1. 31 1. 28 Example 3 1.32 1.31 1.28
例 4 1. 20 1. 16 1. 13 産業上の利用の可能性 Example 4 1.20 1.16 1.13 Industrial applicability
本発明の方法によれば、 ガス拡散電極がイオン交換膜の表面に簡便かつ良好 に形成され、 得られたガス拡散電極を用いた固体高分子型燃料電池は、 出力が 高く、 長時間連続運転しても経時劣化が少ない。  According to the method of the present invention, a gas diffusion electrode is formed simply and satisfactorily on the surface of an ion exchange membrane, and a polymer electrolyte fuel cell using the obtained gas diffusion electrode has a high output and a long continuous operation. Even with this, there is little deterioration over time.

Claims

請求の範囲 The scope of the claims
1. イオン交換膜からなる電解質膜に隣接して配置され、 触媒と含フッ素ィォ ン交換樹脂とを含む触媒層を有する固体高分子型燃料電池用ガス拡散電極の製 造方法において、 前記含フッ素イオン交換樹脂を溶解できる溶媒中で前記触媒 と前記含フッ素ィォン交換樹脂とを接触させた後、 該溶媒を除去して得られた 固形物を、 飽和炭化水素、 芳香族炭化水素、 含フッ素アルコール、 含フッ素ェ 一テル及び含フッ素アルカンからなる群から選ばれる一種以上の分散媒に分散 させ、 得られた分散液を用いて触媒層を形成することを特徴とする固体高分子 型燃料電池用ガス拡散電極の製造方法。  1. A method for producing a gas diffusion electrode for a polymer electrolyte fuel cell, comprising: a catalyst layer comprising a catalyst and a fluorinated ion-exchange resin disposed adjacent to an electrolyte membrane comprising an ion-exchange membrane; After bringing the catalyst and the fluorinated ion-exchange resin into contact with each other in a solvent capable of dissolving a fluorinated ion-exchange resin, the solid obtained by removing the solvent is converted into a saturated hydrocarbon, an aromatic hydrocarbon, and a fluorinated resin. A polymer electrolyte fuel cell characterized by being dispersed in at least one dispersion medium selected from the group consisting of alcohols, fluorinated ethers and fluorinated alkanes, and using the resulting dispersion to form a catalyst layer. Of manufacturing gas diffusion electrode for use.
2. 前記含フッ素イオン交換樹脂を溶解できる溶媒が、 炭素数 1〜6のアルコ ール、 炭素数 2〜 6のェ一テル及び炭素数 2〜 6のジアルキルスルホキシドか らなる群から選ばれる一種以上である請求の範囲 1に記載のガス拡散電極の製 造方法。  2. A solvent selected from the group consisting of alcohols having 1 to 6 carbon atoms, ethers having 2 to 6 carbon atoms and dialkyl sulfoxides having 2 to 6 carbon atoms, wherein the solvent capable of dissolving the fluorinated ion exchange resin is 2. The method for producing a gas diffusion electrode according to claim 1, which is as described above.
3. 前記分散媒が、 2, 2, 3, 3, 3—ペン夕フルオロー 1—プロパノ一ル 、 1, 1, 1, 2, 2, 3, 4, 5, 5, 5ーデカフルォロペンタン、 1, 1  3. The dispersion medium is 2,2,3,3,3-pentanofluoro-1-propanol, 1,1,1,2,2,3,4,5,5,5-decafluoro. Pentane, 1, 1
, 3, 3, 4, 4ーノナフルォロブチルメチルエーテル、 1, 1, 1, 2, 2 , 3, 3, 4, 4ーノナフルォロブチルェチルエーテル、 3, 3—ジクロロー 1 , 1, 1, 2, 2—ペンタフルォロプロパン又は 1, 3—ジクロロー 1, 1 , 2, 2, 3 _ペンタフルォロプロパンである請求の範囲 1又は 2に記載のガ ス拡散電極の製造方法。 1,3,3,4,4-Nonafluorobutyl methyl ether, 1,1,1,2,2,3,3,4,4-Nonafluorobutylethyl ether, 3,3-dichloro-1 3. The gas diffusion electrode according to claim 1, which is 1,1,1,2,2-pentafluoropropane or 1,3-dichloro-1,1,2,2,3_pentafluoropropane. Manufacturing method.
4. 前記含フッ素イオン交換樹脂は、 テトラフルォロエチレンに基づく重合単 位と CF2 = CF (OCF2 CFX) n, -Op- (CF2) n— S〇3Hに基づく重 合単位 (Xはフッ素原子又はトリフルォロメチル基であり、 mは 0〜3の整数 であり、 nは 1〜 12の整数であり、 pは 0又は 1である。 ) とからなる共重 合体からなる請求の範囲 1、 2又は 3に記載のガス拡散電極の製造方法。4. The fluorinated ion exchange resin has a polymerization unit based on tetrafluoroethylene and a polymer based on CF 2 = CF (OCF 2 CFX) n , -O p- (CF 2 ) n — S〇 3 H A unit (X is a fluorine atom or a trifluoromethyl group, m is an integer of 0 to 3, n is an integer of 1 to 12, and p is 0 or 1.) 4. The method for producing a gas diffusion electrode according to claim 1, 2 or 3, comprising:
5. 前記溶媒は、 前記溶媒を除去して得られる前記固形物の 5%以下の含有量 となるまで除去される請求の範囲 1〜4のいずれかに記載のガス拡散電極の製 造方法。 5. The content of the solvent is 5% or less of the solid obtained by removing the solvent. The method for producing a gas diffusion electrode according to any one of claims 1 to 4, wherein the gas diffusion electrode is removed until the following conditions are satisfied.
6. 前記分散液は、 固形分濃度を 0. 01〜20質量%とし、 前記触媒層中の 触媒と含フッ素イオン交換樹脂との質量比が、 50 : 50〜 85 : 15となる ように調製する請求の範囲 1〜 5のいずれかに記載のガス拡散電極の製造方法  6. The dispersion is prepared so that the solid content concentration is 0.01 to 20% by mass and the mass ratio between the catalyst and the fluorinated ion exchange resin in the catalyst layer is 50:50 to 85:15. The method for producing a gas diffusion electrode according to any one of claims 1 to 5,
7. イオン交換膜からなる電解質膜の両面にガス拡散電極を配置し接合してな る膜一電極接合体を備える固体高分子型燃料電池の製造方法であって、 前記電 解質膜の少なくとも片面に配置されるガス拡散電極を、 請求の範囲 1〜 6のい ずれかに記載の製造方法により作製する固体高分子型燃料電池の製造方法。 7. A method for producing a polymer electrolyte fuel cell comprising a membrane-electrode assembly formed by arranging and bonding gas diffusion electrodes on both surfaces of an electrolyte membrane comprising an ion exchange membrane, wherein at least one of the electrolyte membranes is provided. A method for producing a polymer electrolyte fuel cell, wherein a gas diffusion electrode arranged on one side is produced by the production method according to any one of claims 1 to 6.
PCT/JP2001/002780 2000-04-05 2001-03-30 Method for manufacturing solid polymer type fuel cell and method for manufacturing gas diffusion electrode therefore WO2001078173A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-103935 2000-04-05
JP2000103935 2000-04-05

Publications (1)

Publication Number Publication Date
WO2001078173A1 true WO2001078173A1 (en) 2001-10-18

Family

ID=18617562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/002780 WO2001078173A1 (en) 2000-04-05 2001-03-30 Method for manufacturing solid polymer type fuel cell and method for manufacturing gas diffusion electrode therefore

Country Status (1)

Country Link
WO (1) WO2001078173A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151088A (en) * 2000-11-09 2002-05-24 Asahi Glass Co Ltd Manufacturing method of solid high polymer type fuel cell
WO2003100891A1 (en) * 2002-05-28 2003-12-04 Nec Corporation Fuel cell-use catalyst electrode and fuel cell having this catalyst electrode, and production methods therefor
JP2009252560A (en) * 2008-04-07 2009-10-29 Asahi Glass Co Ltd Coating liquid for forming gas diffusion layer of solid polymer fuel cell, and forming method of solid polymer fuel cell gas diffusion layer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04305249A (en) * 1991-04-03 1992-10-28 Matsushita Electric Ind Co Ltd Production of catalyst for liquid fuel battery and production of electrode thereof
JPH07130376A (en) * 1993-11-03 1995-05-19 Tokyo Gas Co Ltd Catalyst treating method for solid polymer fuel cell electrode
JPH08148152A (en) * 1994-11-17 1996-06-07 Tokyo Gas Co Ltd Solid polymeric fuel cell electrode and manufacture thereof
JPH08236122A (en) * 1995-02-27 1996-09-13 Asahi Glass Co Ltd Gas diffusion electrode and catalyst dispersion liquid for manufacturing this electrode
JPH11307108A (en) * 1998-04-23 1999-11-05 Asahi Glass Co Ltd Manufacture of electrode-membrane joined body for solid high polymer electrolyte fuel cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04305249A (en) * 1991-04-03 1992-10-28 Matsushita Electric Ind Co Ltd Production of catalyst for liquid fuel battery and production of electrode thereof
JPH07130376A (en) * 1993-11-03 1995-05-19 Tokyo Gas Co Ltd Catalyst treating method for solid polymer fuel cell electrode
JPH08148152A (en) * 1994-11-17 1996-06-07 Tokyo Gas Co Ltd Solid polymeric fuel cell electrode and manufacture thereof
JPH08236122A (en) * 1995-02-27 1996-09-13 Asahi Glass Co Ltd Gas diffusion electrode and catalyst dispersion liquid for manufacturing this electrode
JPH11307108A (en) * 1998-04-23 1999-11-05 Asahi Glass Co Ltd Manufacture of electrode-membrane joined body for solid high polymer electrolyte fuel cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151088A (en) * 2000-11-09 2002-05-24 Asahi Glass Co Ltd Manufacturing method of solid high polymer type fuel cell
JP4529276B2 (en) * 2000-11-09 2010-08-25 旭硝子株式会社 Method for producing polymer electrolyte fuel cell
WO2003100891A1 (en) * 2002-05-28 2003-12-04 Nec Corporation Fuel cell-use catalyst electrode and fuel cell having this catalyst electrode, and production methods therefor
JP2009252560A (en) * 2008-04-07 2009-10-29 Asahi Glass Co Ltd Coating liquid for forming gas diffusion layer of solid polymer fuel cell, and forming method of solid polymer fuel cell gas diffusion layer

Similar Documents

Publication Publication Date Title
KR101223559B1 (en) Method of preparing polymer membrane for fuel cell
JP4419550B2 (en) Proton-conducting electrolyte membrane manufacturing method, proton-conducting electrolyte membrane, and fuel cell using proton-conducting electrolyte membrane
JP2012092345A (en) Liquid composition, method for producing the same, and method for manufacturing membrane-electrode assembly for polymer electrolyte fuel cell
JP4887580B2 (en) Gas diffusion electrode and polymer electrolyte fuel cell having the same
JP4649705B2 (en) Polymer electrolyte fuel cell
JP4090108B2 (en) Membrane / electrode assembly for polymer electrolyte fuel cells
JP2007109599A (en) Film electrode assembly for solid polymer fuel cell
JP3714766B2 (en) Electrode and membrane / electrode assembly for polymer electrolyte fuel cell
JP2007503707A (en) Fullerene electrolytes for fuel cells
JP2002184414A (en) Method of manufacturing gas diffusion electrode and method of manufacturing solid polymer fuel cell
JP2007031718A (en) Liquid composition, method for producing the same, and method for producing membrane electrode assembly for solid polymer fuel cell
JP3394836B2 (en) Method for producing gas diffusion electrode and catalyst dispersion for producing the electrode
JP4608781B2 (en) Method for producing polymer electrolyte fuel cell
JP5614891B2 (en) Membrane electrode composite and solid polymer electrolyte fuel cell
JP2002110202A (en) Solid high polymer fuel cell and manufacturing method therefor
WO2001078173A1 (en) Method for manufacturing solid polymer type fuel cell and method for manufacturing gas diffusion electrode therefore
JPH09213350A (en) Fuel cell with solid polymer electrolyte
JP4529276B2 (en) Method for producing polymer electrolyte fuel cell
JPH05182671A (en) Manufacture of electrode for ton-exchange membrane fuel cell
JP2006331845A (en) Catalyst powder for polymer electrolyte fuel cell and its manufacturing method, and electrode for polymer electrolyte fuel cell containing catalyst powder
JP2006236927A (en) Membrane electrode junction for solid polymer fuel cell
JP2005285413A (en) Proton conductive membrane, its manufacturing method, and solid polymer type fuel cell using proton conductive membrane
JPH11339824A (en) Manufacture of electrode-membrane joining body for solid polymer electrolyte fuel cell
JP6158377B2 (en) Solid polymer electrolyte fuel cell
JP2001118581A (en) Method for manufacturing gas-spreading electrode for solid polymer electrolyte type fuel cell

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 574925

Kind code of ref document: A

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase