JPH11339824A - Manufacture of electrode-membrane joining body for solid polymer electrolyte fuel cell - Google Patents

Manufacture of electrode-membrane joining body for solid polymer electrolyte fuel cell

Info

Publication number
JPH11339824A
JPH11339824A JP10141796A JP14179698A JPH11339824A JP H11339824 A JPH11339824 A JP H11339824A JP 10141796 A JP10141796 A JP 10141796A JP 14179698 A JP14179698 A JP 14179698A JP H11339824 A JPH11339824 A JP H11339824A
Authority
JP
Japan
Prior art keywords
electrode
ion exchange
adhesive
solvent
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10141796A
Other languages
Japanese (ja)
Inventor
Masaru Yoshitake
優 吉武
Yasuhiro Kokukyo
康弘 国狭
Naoki Yoshida
直樹 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP10141796A priority Critical patent/JPH11339824A/en
Publication of JPH11339824A publication Critical patent/JPH11339824A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Inert Electrodes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solid polymer electrolyte fuel cell capable of operating at high temperature and obtaining high output. SOLUTION: An ion exchange membrane is made of a perfluorocarbon polymer having a phosphonic acid group, and an adhesive is a solution prepared by dissolving ion exchange resin comprising 0.1-30 wt.% perfluorocarbon polymer in a hydrocarbon alcohol solvent, a fluorine-containing hydrocarbon solvent, or a mixed solvent of them.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体高分子電解質
型の燃料電池の電極−膜接合体の製造方法に関する。
The present invention relates to a method for producing an electrode-membrane assembly of a solid polymer electrolyte fuel cell.

【0002】[0002]

【従来の技術】水素−酸素燃料電池は原理的に反応生成
物が水のみであり、環境への影響が小さい発電システム
として注目されている。なかでも固体高分子電解質型の
水素−酸素燃料電池では、近年の急速な研究の進展によ
り高出力が得られるようになっており、その実用化がお
おいに期待されている。
2. Description of the Related Art Hydrogen-oxygen fuel cells have attracted attention as a power generation system which has only a small reaction product in principle and has little influence on the environment. Above all, a solid polymer electrolyte type hydrogen-oxygen fuel cell has been able to obtain a high output due to the rapid progress of recent research, and its practical application is greatly expected.

【0003】固体高分子電解質型の水素−酸素燃料電池
においては、イオン交換膜の両面にガス拡散性の電極層
が形成されており、一方の電極層に燃料である水素を供
給し、他方の電極層に酸化剤となる酸素または空気を供
給することにより発電を行う。
In a solid polymer electrolyte type hydrogen-oxygen fuel cell, gas diffusion electrode layers are formed on both surfaces of an ion exchange membrane, and hydrogen as a fuel is supplied to one electrode layer and the other is supplied to the other electrode layer. Electric power is generated by supplying oxygen or air serving as an oxidant to the electrode layer.

【0004】電解質であるイオン交換膜としては、従来
よりスルホン酸基またはカルボン酸基を有するパーフル
オロカーボン重合体からなるイオン交換膜が使用されて
きた。該イオン交換膜を用いた燃料電池は、加湿する等
してイオン交換膜を比較的高い含水率に保って運転する
必要があり、通常、常圧で100℃未満で運転される。
これは、100℃以上の温度条件下ではイオン交換膜が
極度に乾燥し、膜抵抗が急激に上昇するためである。同
様の理由から、低コストを目的として近年意欲的に開発
されている炭化水素系の膜を用いた燃料電池について
も、常圧で100℃未満で運転されている。
As an ion exchange membrane serving as an electrolyte, an ion exchange membrane made of a perfluorocarbon polymer having a sulfonic acid group or a carboxylic acid group has been conventionally used. A fuel cell using the ion exchange membrane needs to be operated while keeping the ion exchange membrane at a relatively high water content by humidification or the like, and is usually operated at a normal pressure of less than 100 ° C.
This is because the ion exchange membrane is extremely dried under the temperature condition of 100 ° C. or more, and the membrane resistance sharply increases. For the same reason, a fuel cell using a hydrocarbon-based membrane which has been eagerly developed in recent years for the purpose of low cost is also operated at a normal pressure of less than 100 ° C.

【0005】しかし、100℃未満の温度では、反応生
成水やイオン交換膜の加湿用として添加した水の一部
が、液体のまま電極層中やガス拡散層中に残存するた
め、水が電極層の細孔を塞ぎ燃料ガスの供給を妨げ、電
池出力が低下するという問題があった。
However, at a temperature lower than 100 ° C., a part of the water produced by the reaction or the water added for humidifying the ion exchange membrane remains in the electrode layer or the gas diffusion layer as a liquid. There is a problem in that the pores of the layer are blocked, the supply of fuel gas is hindered, and the output of the battery is reduced.

【0006】また、従来より、両面にガス拡散電極を有
するイオン交換膜(以下、電極−膜接合体と称する)の
製造方法としては、主に、触媒を含有するシート状のガ
ス拡散電極をイオン交換膜に熱と圧力を加えることによ
り接合するホットプレス法が用いられている。
Conventionally, as a method for producing an ion exchange membrane having gas diffusion electrodes on both surfaces (hereinafter referred to as an electrode-membrane assembly), mainly, a sheet-shaped gas diffusion electrode containing a catalyst is ion-exchanged. A hot press method of joining by applying heat and pressure to an exchange membrane is used.

【0007】ホットプレス法では、電極−膜接合体が充
分な接合強度を有し、かつ、電気抵抗が小さくなるよう
に、イオン交換膜を形成する重合体のガラス転移点であ
る百数十度でプレスする。この場合、ガス拡散電極の細
孔が変形したり、閉塞したりするため、ガス拡散性能が
低下するという問題があった。
In the hot press method, the glass transition point of the polymer forming the ion-exchange membrane is set to one hundred and several tens of degrees so that the electrode-membrane assembly has sufficient bonding strength and low electric resistance. Press with In this case, there is a problem that the gas diffusion performance is reduced because the pores of the gas diffusion electrode are deformed or closed.

【0008】上記問題を解決する方法として、本発明者
らは常温、かつわずかな加圧で電極−膜接合体を製造す
る方法を提供している(特開平7−220741、特開
平7−254420)。しかし、この方法によって得ら
れた電極−膜接合体を用いた燃料電池においても、前述
した反応生成水や加湿のために添加した水によって、電
極層の細孔が閉塞する問題については、なお改良の余地
があった。
As a method for solving the above problems, the present inventors have provided a method for producing an electrode-membrane assembly at normal temperature and under slight pressure (Japanese Patent Application Laid-Open Nos. 7-220741 and 7-254420). ). However, even in the fuel cell using the electrode-membrane assembly obtained by this method, the problem that the pores of the electrode layer are blocked by the water produced by the reaction or the water added for humidification described above is still improved. There was room for

【0009】[0009]

【発明が解決しようとする課題】本発明は、高温作動が
可能であり、濃度過電圧が小さく、安定して高い電池出
力が得られる固体高分子電解質型の燃料電池用の電極−
膜接合体の製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention provides an electrode for a solid polymer electrolyte type fuel cell which can operate at a high temperature, has a small concentration overvoltage, and can stably provide a high cell output.
An object of the present invention is to provide a method for manufacturing a membrane assembly.

【0010】[0010]

【課題を解決するための手段】本発明は、ガス拡散電極
とイオン交換膜とを接着剤を用いて接合する固体高分子
電解質型の燃料電池用電極−膜接合体の製造方法であっ
て、イオン交換膜がホスホン酸基を有するパーフルオロ
カーボン重合体からなり、接着剤が、炭化水素アルコー
ル溶媒、含フッ素炭化水素溶媒、またはこれらの混合溶
媒に0.1〜30重量%のパーフルオロカーボン重合体
からなるイオン交換樹脂を溶解させた溶液であることを
特徴とする固体高分子電解質型の燃料電池用電極−膜接
合体の製造方法を提供する。
The present invention relates to a method for producing an electrode-membrane assembly for a fuel cell of a solid polymer electrolyte type in which a gas diffusion electrode and an ion exchange membrane are joined using an adhesive, The ion exchange membrane is made of a perfluorocarbon polymer having a phosphonic acid group, and the adhesive is made of a hydrocarbon alcohol solvent, a fluorinated hydrocarbon solvent, or 0.1 to 30% by weight of a perfluorocarbon polymer in a mixed solvent thereof. The present invention provides a method for producing an electrode-membrane assembly for a fuel cell of a solid polymer electrolyte type, which is a solution in which an ion exchange resin is dissolved.

【0011】[0011]

【発明の実施の形態】本発明において、イオン交換膜と
しては、ホスホン酸基を有するパーフルオロカーボン重
合体を用いる。上記重合体は、本質的に高含水率である
ため、100℃以上の高温条件下でも比較的高い含水率
を維持できる。したがって、上記重合体からなるイオン
交換膜を電解質として用いた場合は、高温での膜抵抗の
上昇を抑制でき、100℃以上の高温条件下での燃料電
池の運転が可能となる。その結果、反応生成水やイオン
交換膜の加湿用として添加した水が水蒸気として容易に
除去されるため、ガス拡散電極の細孔の閉塞が起こら
ず、安定して高い電池出力が得られる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, a perfluorocarbon polymer having a phosphonic acid group is used as an ion exchange membrane. Since the polymer has an essentially high water content, it can maintain a relatively high water content even at a high temperature of 100 ° C. or higher. Therefore, when an ion exchange membrane made of the above polymer is used as an electrolyte, an increase in membrane resistance at a high temperature can be suppressed, and the fuel cell can be operated under a high temperature condition of 100 ° C. or higher. As a result, since the reaction product water and the water added for humidifying the ion exchange membrane are easily removed as water vapor, the pores of the gas diffusion electrode are not blocked, and a stable high battery output can be obtained.

【0012】ホスホン酸基を有するパーフルオロカーボ
ン重合体としては、CF2 =CF−(OCF2 CFX)
m −Op −(CF2n −A(式中、mは0〜8の整
数、nは0〜12の整数、pは0または1、Xはフッ素
原子またはトリフルオロメチル基、Aはホスホン酸基
(−PO32 )またはその前駆体官能基。)で表され
るフルオロビニル化合物と、テトラフルオロエチレンと
を共重合して得られる共重合体が好ましい。
As the perfluorocarbon polymer having a phosphonic acid group, CF 2 CFCF— (OCF 2 CFX)
m -O p - (CF 2) n -A ( wherein, m is 0-8 integer, n represents 0 to 12 integer, p is 0 or 1, X is fluorine atom or a trifluoromethyl group, A is A copolymer obtained by copolymerizing a fluorovinyl compound represented by a phosphonic acid group (—PO 3 H 2 ) or a precursor functional group thereof) with tetrafluoroethylene is preferable.

【0013】上記フルオロビニル化合物の好ましい例と
しては、以下の化合物が挙げられる。なお、Rおよび
R’はアルキル基を表し、RとR’は同一のアルキル
基、異なるアルキル基のいずれでもよい。上記アルキル
基としては、炭素数1〜3であるものが好ましい。ま
た、qおよびrは1〜8の整数、sは0〜8の整数、t
は1〜5の整数である。
Preferred examples of the above fluorovinyl compound include the following compounds. R and R 'represent an alkyl group, and R and R' may be the same alkyl group or different alkyl groups. The alkyl group preferably has 1 to 3 carbon atoms. Also, q and r are integers of 1 to 8, s is an integer of 0 to 8, t
Is an integer of 1 to 5.

【0014】[0014]

【化1】CF2 =CFO(CF2 q −PO3 RR’、 CF2 =CFOCF2 CF(CF3 )O(CF2 r
PO3 RR’、 CF2 =CF(CF2s −PO3 RR’、 CF2 =CF(OCF2 CF(CF3 ))t −(CF
22 −PO3 RR’。
## STR1 ## CF 2 = CFO (CF 2) q -PO 3 RR ', CF 2 = CFOCF 2 CF (CF 3) O (CF 2) r -
PO 3 RR ', CF 2 = CF (CF 2) s -PO 3 RR', CF 2 = CF (OCF 2 CF (CF 3)) t - (CF
2) 2 -PO 3 RR '.

【0015】なお、ホスホン酸基を有するパーフルオロ
カーボン共重合体は、ヘキサフルオロプロピレン、クロ
ロトリフルオロエチレン等のパーフルオロオレフィンに
基づく重合単位、パーフルオロ(アルキルビニルエーテ
ル)に基づく重合単位を第三成分として含む共重合体で
あってもよい。
The perfluorocarbon copolymer having a phosphonic acid group includes a polymerized unit based on a perfluoroolefin such as hexafluoropropylene and chlorotrifluoroethylene and a polymerized unit based on perfluoro (alkyl vinyl ether) as a third component. May be included.

【0016】本発明におけるガス拡散電極は、通常の既
知の手法にしたがって製造できる。例えば、水素極また
は空気極としての活性を付与する触媒を、ポリテトラフ
ルオロエチレン(PTFE)などの疎水性樹脂結着材で
保持し、多孔質のシート状とする方法により得られる。
また、ガス拡散電極を構成する材料を含む分散混合液を
噴霧、塗布する等の方法によっても得られる。
The gas diffusion electrode according to the present invention can be manufactured according to a commonly known method. For example, it can be obtained by a method in which a catalyst for imparting activity as a hydrogen electrode or an air electrode is held by a hydrophobic resin binder such as polytetrafluoroethylene (PTFE) to form a porous sheet.
Further, it can also be obtained by a method such as spraying and applying a dispersion mixture containing a material constituting the gas diffusion electrode.

【0017】なお、ガス拡散電極に含有される触媒とし
て、イオン交換樹脂で被覆された触媒を用いる場合は、
100℃以上の高温条件下においても比較的高い含水率
を維持できることから、該イオン交換樹脂としてホスホ
ン酸基を有するパーフルオロカーボン重合体からなるイ
オン交換樹脂を用いるのが好ましい。
When using a catalyst coated with an ion exchange resin as the catalyst contained in the gas diffusion electrode,
Since a relatively high water content can be maintained even under a high temperature condition of 100 ° C. or more, it is preferable to use an ion exchange resin made of a perfluorocarbon polymer having a phosphonic acid group as the ion exchange resin.

【0018】本発明における接着剤としては、炭化水素
アルコール溶媒、含フッ素炭化水素溶媒、またはこれら
の混合溶媒にパーフルオロカーボン重合体からなるイオ
ン交換樹脂を溶解させた溶液を用いる。
The adhesive used in the present invention is a hydrocarbon alcohol solvent, a fluorinated hydrocarbon solvent, or a solution obtained by dissolving an ion exchange resin composed of a perfluorocarbon polymer in a mixed solvent thereof.

【0019】上記溶液は多くの場合ゲル状である。本発
明の製造方法においては、このゲル状の溶液をガス拡散
電極とイオン交換膜との間に介在させ、全体を押圧する
ことにより該ゲル状の溶液をガス拡散電極の細孔に浸入
させ、次いで、溶液中の溶媒を除去し、イオン交換樹脂
を固化させることによって、ガス拡散電極とイオン交換
膜とを接合する。この接合によれば、常圧またはわずか
な加圧でガス拡散電極とイオン交換膜とを接合できるの
で、ガス拡散電極の細孔は閉塞せず、細孔径が数ミクロ
ンの大きな細孔も多数残る。したがって、得られる電極
−膜接合体は優れたガス拡散性能を有する。
The above solutions are often in the form of a gel. In the production method of the present invention, this gel-like solution is interposed between the gas diffusion electrode and the ion exchange membrane, and the gel-like solution is infiltrated into the pores of the gas diffusion electrode by pressing the whole, Next, the gas diffusion electrode and the ion exchange membrane are joined by removing the solvent in the solution and solidifying the ion exchange resin. According to this bonding, the gas diffusion electrode and the ion exchange membrane can be bonded at normal pressure or slight pressure, so that the pores of the gas diffusion electrode are not closed, and many large pores having a pore diameter of several microns remain. . Therefore, the obtained electrode-membrane assembly has excellent gas diffusion performance.

【0020】接着剤を構成するイオン交換樹脂として用
いられるパーフルオロカーボン重合体としては、好まし
くはCF2 =CF−(OCF2 CFX)i −Ok −(C
2)j −B(式中、iは0〜8の整数、jは0〜12の
整数、kは0または1、Xはフッ素原子またはトリフル
オロメチル基、Bはホスホン酸基(−PO32 )また
はその前駆体官能基、スルホン酸基(−SO3 H)また
はその前駆体官能基、カルボン酸基(−COOH)また
はその前駆体官能基。)で表されるフルオロビニル化合
物と、テトラフルオロエチレンとを共重合させて得られ
る共重合体からなるものが好ましい。
The perfluorocarbon polymer used as the ion exchange resin constituting the adhesive is preferably CF 2 CFCF— (OCF 2 CFX) i —O k — (C
F 2) j -B (wherein, i is 0-8 integer, j is 0 to 12 integer, k is 0 or 1, X is fluorine atom or trifluoromethyl group, B is a phosphonic acid group (-PO 3 H 2 ) or its precursor functional group, sulfonic acid group (—SO 3 H) or its precursor functional group, carboxylic acid group (—COOH) or its precursor functional group. And those obtained from copolymers obtained by copolymerization with tetrafluoroethylene are preferred.

【0021】なかでも、上式中において、Bがホスホン
酸基またはその前駆体官能基であるパーフルオロカーボ
ン重合体は本質的に高含水率であるため、100℃以上
の高温条件下でも比較的高い含水率を維持でき、電極−
膜接合体の電気抵抗の上昇を抑制できる。
Among them, in the above formula, the perfluorocarbon polymer in which B is a phosphonic acid group or a precursor functional group thereof has a relatively high water content, so that it is relatively high even under a high temperature condition of 100 ° C. or more. The electrode can maintain the water content,
An increase in electric resistance of the membrane assembly can be suppressed.

【0022】接着剤を構成する溶媒としては、炭化水素
アルコール溶媒、含フッ素炭化水素溶媒、またはこれら
の混合溶媒が用いられる。炭化水素アルコール溶媒およ
び含フッ素炭化水素溶媒の沸点は、10〜140℃、特
には25〜80℃であるものが好ましい。
As the solvent constituting the adhesive, a hydrocarbon alcohol solvent, a fluorinated hydrocarbon solvent, or a mixed solvent thereof is used. The boiling point of the hydrocarbon alcohol solvent and the fluorinated hydrocarbon solvent is preferably from 10 to 140C, particularly preferably from 25 to 80C.

【0023】炭化水素アルコール溶媒としては、具体的
にはメタノール、エタノール、n−プロパノール、イソ
プロピルアルコール、tert−ブチルアルコール等が
好ましい。炭化水素アルコール溶媒の主鎖の炭素数は1
〜3が好適である。
As the hydrocarbon alcohol solvent, specifically, methanol, ethanol, n-propanol, isopropyl alcohol, tert-butyl alcohol and the like are preferable. The number of carbon atoms in the main chain of the hydrocarbon alcohol solvent is 1
3 are preferable.

【0024】含フッ素炭化水素溶媒としては、具体的に
は以下のものが挙げられる。
The following are specific examples of the fluorinated hydrocarbon solvent.

【0025】1,1,1,2,3,3−ヘキサフルオロ
プロパン(HFC−236ea)、1,1,2,2,
3,3,4,4−オクタフルオロブタン(HFC−33
8pcc)、1,1,1,2,3,4,4,5,5,5
−デカフルオロペンタン(HFC−43−10me
e)、1,1,1,2,3,4,5,5,5−ノナフル
オロ−2−トリフルオロメチルペンタン(HFC−53
−12myee)、1,1,1,2,3,3,4,4,
5,6,6,6−ドデカフルオロヘキサン(HFC−5
3−12−mecce)、1,1,1,2,3,4,
4,5,5,5−デカフルオロ−2−トリフルオロメチ
ルペンタン(HFC−52−13−mcey)、1,
2,3,3,4,4−ヘキサフルオロ−1,2−ビス
(トリフルオロメチル)シクロブタン(FC−C−51
−12mym)、パーフルオロオクタン、パーフルオロ
ヘプタン、パーフルオロヘキサン等のフルオロカーボン
類、1,1−ジクロロ−1−フルオロエタン(HCFC
−141b)、2,2−ジクロロ−1,1,1−トリフ
ルオロエタン(HCFC−123)、1,1−ジクロロ
−2,2,3,3,3−ペンタフルオロプロパン(HC
FC−225ca)、1,3−ジクロロ−1,1,2,
2,3−ペンタフルオロプロパン(HCFC−225c
b)等のようなハイドロクロロフルオロカーボン類、
1,1,1−トリフルオロエチル=1’,1’,2’,
2’−テトラフルオロエチル=エーテル(HFE−34
7)、メチル=1,1,1,2,3,3−ヘキサフルオ
ロプロピル=エーテル(HFE−356mec)等のハ
イドロフルオロエーテル類、2,2,2−トリフルオロ
エタノール、2,2,3,3,3ペンタフルオロプロパ
ノール、2,2,2−トリフルオロ−1−トリフルオロ
メチルエタノール等の含フッ素アルコール類。
1,1,1,2,3,3-hexafluoropropane (HFC-236ea), 1,1,2,2,
3,3,4,4-octafluorobutane (HFC-33
8 pcc), 1,1,1,2,3,4,4,5,5,5
-Decafluoropentane (HFC-43-10me
e), 1,1,1,2,3,4,5,5,5-nonafluoro-2-trifluoromethylpentane (HFC-53
-12 myee), 1,1,1,2,3,3,4,4
5,6,6,6-dodecafluorohexane (HFC-5
3-12-mec)), 1,1,1,2,3,4
4,5,5,5-decafluoro-2-trifluoromethylpentane (HFC-52-13-mcey), 1,
2,3,3,4,4-hexafluoro-1,2-bis (trifluoromethyl) cyclobutane (FC-C-51
-12 mym), fluorocarbons such as perfluorooctane, perfluoroheptane and perfluorohexane, and 1,1-dichloro-1-fluoroethane (HCFC
-141b), 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123), 1,1-dichloro-2,2,3,3,3-pentafluoropropane (HC
FC-225ca), 1,3-dichloro-1,1,2,2
2,3-pentafluoropropane (HCFC-225c
b) hydrochlorofluorocarbons such as;
1,1,1-trifluoroethyl = 1 ′, 1 ′, 2 ′,
2'-tetrafluoroethyl = ether (HFE-34
7), hydrofluoroethers such as methyl = 1,1,1,2,3,3-hexafluoropropyl ether (HFE-356mec), 2,2,2-trifluoroethanol, 2,2,3 Fluorinated alcohols such as 3,3 pentafluoropropanol and 2,2,2-trifluoro-1-trifluoromethylethanol.

【0026】また、C816O、(C493 N、C
10517や、トリクロロモノフルオロメタン(CFC
−11)、1,1,2−トリクロロトリフルオロエタン
(CFC−113)等のクロロフルオロカーボン類も使
用できる。
Also, C 8 F 16 O, (C 4 F 9 ) 3 N, C
10 H 5 F 17 or trichloromonofluoromethane (CFC
-11), chlorofluorocarbons such as 1,1,2-trichlorotrifluoroethane (CFC-113) can also be used.

【0027】一般に含フッ素炭化水素溶媒では、主鎖の
炭素数が多いもの、または、分子中のフッ素原子の数が
多いものが、イオン交換樹脂の溶解度が大きいことから
好ましく用いられる。接着剤としてイオン交換樹脂の溶
解度が大きい溶媒を用いると、ガス拡散電極とイオン交
換膜の接合は容易になる。
In general, among the fluorinated hydrocarbon solvents, those having a large number of carbon atoms in the main chain or those having a large number of fluorine atoms in the molecule are preferably used because of high solubility of the ion exchange resin. When a solvent having a high solubility of the ion exchange resin is used as the adhesive, the bonding between the gas diffusion electrode and the ion exchange membrane becomes easy.

【0028】また、同様の理由から、炭化水素アルコー
ル溶媒と含フッ素炭化水素溶媒の混合溶媒が好ましく用
いられる。上記混合溶媒の混合比率(炭化水素アルコー
ル溶媒/含フッ素炭化水素溶媒)は重量比で1/9〜9
/1、特には、3/7〜7/3であるのが好ましい。こ
のように、溶媒の種類や混合溶媒の混合比率を変えるこ
とにより、溶媒中のイオン交換樹脂の溶解量を制御でき
る。
For the same reason, a mixed solvent of a hydrocarbon alcohol solvent and a fluorine-containing hydrocarbon solvent is preferably used. The mixing ratio (hydrocarbon alcohol solvent / fluorinated hydrocarbon solvent) of the above mixed solvent is 1/9 to 9 by weight.
/ 1, particularly preferably 3/7 to 7/3. Thus, the amount of the ion exchange resin dissolved in the solvent can be controlled by changing the type of the solvent and the mixing ratio of the mixed solvent.

【0029】また、ガス拡散電極とイオン交換膜とをよ
り密着させるためには、ガス拡散電極の内部へ含浸させ
る接着剤の量を制御することが重要である。上記接着剤
が多い場合は、接着剤中のイオン交換樹脂によってガス
拡散電極の細孔が塞がれ、少ない場合は接着強度が弱く
なるおそれがある。したがって、接着剤の溶液粘度は1
000〜50000cPとするのが好ましい。接着剤の
溶液粘度が上記範囲内である場合は、適量の接着剤がガ
ス拡散電極に含浸されやすい(なお、本明細書中におけ
る溶液粘度はJIS K7117のS法による測定値で
あり、粘度計の回転数を10min-1として測定した値
である。)。
Further, in order to make the gas diffusion electrode and the ion exchange membrane more intimate, it is important to control the amount of the adhesive impregnated inside the gas diffusion electrode. When the amount of the adhesive is large, the pores of the gas diffusion electrode are blocked by the ion exchange resin in the adhesive, and when the amount is small, the adhesive strength may be reduced. Therefore, the solution viscosity of the adhesive is 1
It is preferably 000 to 50,000 cP. When the solution viscosity of the adhesive is within the above range, an appropriate amount of the adhesive is easily impregnated into the gas diffusion electrode (the solution viscosity in this specification is a value measured by the S method of JIS K7117, and Is a value measured at a rotation speed of 10 min -1 .)

【0030】また、本発明における接着剤中のイオン交
換樹脂の含有量は0.1〜30重量%であり、特には
0.1〜10重量%とするのが好ましい。上記イオン交
換樹脂の含有量が上記範囲である場合は、好ましい溶液
粘度を有する接着剤が得られる。
The content of the ion exchange resin in the adhesive in the present invention is 0.1 to 30% by weight, and particularly preferably 0.1 to 10% by weight. When the content of the ion exchange resin is within the above range, an adhesive having a preferable solution viscosity is obtained.

【0031】また、ガス拡散電極としては、気孔率が大
きいものほど、接着剤中のイオン交換樹脂がガス拡散電
極の細孔に浸入しやすく、接合強度の大きい電極−膜接
合体が得られる。しかし、気孔率が50%程度と小さい
ガス拡散電極であっても、接着剤として約5重量%のイ
オン交換樹脂を含むエタノールとHCFC−225の等
重量の混合溶液(溶液粘度:10000〜20000c
P)のように、高粘度でイオン交換樹脂の溶解度が大き
い接着剤を用いることにより、充分な強度を有する電極
−膜接合体が得られる。ガス拡散電極に応じて接着剤に
用いるイオン交換樹脂濃度、溶媒の種類、混合溶媒の混
合比を選択することが重要である。
Further, as the gas diffusion electrode, the one having a higher porosity allows the ion exchange resin in the adhesive to easily penetrate into the pores of the gas diffusion electrode, so that an electrode-membrane assembly having a higher bonding strength can be obtained. However, even with a gas diffusion electrode having a porosity as small as about 50%, an equal weight mixed solution of ethanol and HCFC-225 containing about 5% by weight of an ion exchange resin as an adhesive (solution viscosity: 10,000 to 20,000 c.
By using an adhesive having a high viscosity and a high solubility of the ion exchange resin as in P), an electrode-membrane assembly having sufficient strength can be obtained. It is important to select the concentration of the ion exchange resin used for the adhesive, the type of the solvent, and the mixing ratio of the mixed solvent according to the gas diffusion electrode.

【0032】接着剤の好ましい塗布量は、接着剤の溶液
粘度によって異なるので一概には限定できないが、例え
ば、スルホン酸基を有するパーフルオロカーボンイオン
交換樹脂5重量%を含むエタノールとHCFC−225
の混合溶液(混合比率は重量比でエタノール/HCFC
−225=1/1)を用いる場合は、ガス拡散電極の見
かけ表面積あたり20mg/cm2 程度の塗布量とする
のが好ましい。
The preferred amount of the adhesive to be applied cannot be unequivocally limited because it varies depending on the solution viscosity of the adhesive. For example, ethanol containing 5% by weight of a perfluorocarbon ion exchange resin having a sulfonic acid group and HCFC-225 are used.
(Mixing ratio is ethanol / HCFC by weight ratio)
When (−225 = 1/1) is used, the coating amount is preferably about 20 mg / cm 2 per apparent surface area of the gas diffusion electrode.

【0033】接着剤は、ガス拡散電極とイオン交換膜の
少なくとも一方に塗布すればよい。すなわち、接着剤は
イオン交換膜側のみ、電極側のみ、またはイオン交換膜
側と電極側の両方に塗布してよいが、接着剤をイオン交
換膜に塗布すると、イオン交換膜が膨潤して接合が困難
になる場合があるので、電極側のみに塗布するのが好ま
しい。
The adhesive may be applied to at least one of the gas diffusion electrode and the ion exchange membrane. That is, the adhesive may be applied only to the ion exchange membrane side, only to the electrode side, or to both the ion exchange membrane side and the electrode side. However, when the adhesive is applied to the ion exchange membrane, the ion exchange membrane swells and bonds. In some cases, it is preferable to apply the coating only on the electrode side.

【0034】本発明における電極−膜接合体の作製方法
は、特に限定されないが、例えばシート状のガス拡散電
極の一方の面に接着剤を塗布したものを2枚用意し、こ
のガス拡散電極を接着剤が塗布された面が相対するよう
に配置し、その間にイオン交換膜を挿入し、全体を押圧
した後、接着剤の溶媒を乾燥させる方法等により得られ
る。
The method for producing the electrode-membrane assembly in the present invention is not particularly limited. For example, two sheets of a sheet-like gas diffusion electrode having one surface coated with an adhesive are prepared, and this gas diffusion electrode is prepared. It is obtained by, for example, a method in which the surfaces on which the adhesive is applied are opposed to each other, an ion exchange membrane is inserted between the surfaces, the whole is pressed, and the solvent of the adhesive is dried.

【0035】接着剤塗布後のガス拡散電極とイオン交換
膜との接合には特に大きな圧力をかける必要はなく、例
えば1kg/cm2 以下の圧力でも充分に接合できる。
このとき電極−膜間の気泡を追い出す操作を行って良好
な密着性を得ることが好ましく、具体的には、電極−膜
の接着物を過大な圧力が加わらない程度に接近したロー
ル間を通したり、平板上に置いた接着物にローラーを施
す方法等が好ましい。なお、電極−膜接合体の接合強度
を大きくするため、接合する前にイオン交換膜を粗面化
する等の処理を行ってもよい。
It is not necessary to apply a particularly large pressure to the gas diffusion electrode and the ion exchange membrane after the application of the adhesive. For example, the bonding can be sufficiently performed even at a pressure of 1 kg / cm 2 or less.
At this time, it is preferable to obtain good adhesion by performing an operation of expelling bubbles between the electrode and the membrane. Specifically, the adhesive between the electrode and the membrane is passed between rolls that are so close that excessive pressure is not applied. For example, a method of applying a roller to an adhesive placed on a flat plate or the like is preferable. In order to increase the bonding strength of the electrode-membrane assembly, a treatment such as roughening the ion exchange membrane may be performed before the bonding.

【0036】ガス拡散電極とイオン交換膜とを接合する
際の加圧状態を保つ時間は、接着剤により異なるが、例
えば接着剤として前記スルホン酸基を有するパーフルオ
ロカーボンイオン交換樹脂5重量%を含むエタノールと
HCFC−225の混合溶液を用いる場合は数秒間で充
分である。
The time for maintaining the pressurized state at the time of joining the gas diffusion electrode and the ion exchange membrane varies depending on the adhesive. For example, the adhesive contains 5% by weight of the above-mentioned perfluorocarbon ion exchange resin having a sulfonic acid group. When a mixed solution of ethanol and HCFC-225 is used, a few seconds are sufficient.

【0037】また、本発明の方法によれば、イオン交換
膜とガス拡散電極を接合する際の温度は特に限定され
ず、好ましくは5〜35℃で接合できる。また、接着剤
を乾燥する際の温度は、イオン交換膜の乾燥を防ぐため
100℃未満、特には70℃以下とするのが好ましい。
Further, according to the method of the present invention, the temperature for bonding the ion exchange membrane and the gas diffusion electrode is not particularly limited, and the bonding can be preferably performed at 5 to 35 ° C. The temperature at which the adhesive is dried is preferably less than 100 ° C., particularly preferably 70 ° C. or less, in order to prevent drying of the ion exchange membrane.

【0038】[0038]

【作用】本発明によれば、常圧またはわずかな加圧によ
ってイオン交換膜とガス拡散電極の接合体が得られるた
め、ガス拡散電極の細孔が変形したり、閉塞したりする
ことがなく、良好なガス拡散性能が得られる。また、イ
オン交換膜が、本質的に高含水率であるホスホン酸基を
有するパーフルオロカーボン膜であるため、高温でイオ
ン交換膜が乾燥しやすい条件下においても比較的高い含
水率を維持でき、膜抵抗の上昇を抑制できる。
According to the present invention, a bonded body of the ion exchange membrane and the gas diffusion electrode can be obtained by normal pressure or slight pressure, so that the pores of the gas diffusion electrode are not deformed or clogged. And good gas diffusion performance can be obtained. In addition, since the ion exchange membrane is a perfluorocarbon membrane having a phosphonic acid group having a high water content, a relatively high water content can be maintained even under conditions where the ion exchange membrane is easily dried at a high temperature. The rise in resistance can be suppressed.

【0039】[0039]

【実施例】「例1」テトラフルオロエチレンとCF2
CFOCF2 CF(CF3 )O(CF22 PO3 (C
32 との共重合体からなるイオン交換容量2.2ミ
リ当量/g乾燥樹脂の共重合を溶融キャスト法で製膜
し、厚さ50μmのフィルムを得た。このフィルムを1
Nの塩酸水溶液と1Nの酢酸水溶液との混合水溶液中で
加水分解を行い、水洗した後、1N塩酸水溶液中に浸漬
した。次いで、水洗し、60℃で1時間乾燥してイオン
交換膜を得た。得られたイオン交換膜の90℃の純水中
の含水率は78重量%であった。
EXAMPLES Example 1 Tetrafluoroethylene and CF 2 =
CFOCF 2 CF (CF 3 ) O (CF 2 ) 2 PO 3 (C
An ion exchange capacity of 2.2 meq / g of a copolymer with H 3 ) 2 was formed by copolymerization of a dry resin by a melt casting method to obtain a film having a thickness of 50 μm. This film is
Hydrolysis was performed in a mixed aqueous solution of an aqueous solution of N hydrochloric acid and an aqueous solution of 1N acetic acid, washed with water, and then immersed in an aqueous solution of 1N hydrochloric acid. Next, it was washed with water and dried at 60 ° C. for 1 hour to obtain an ion exchange membrane. The water content of the obtained ion exchange membrane in pure water at 90 ° C. was 78% by weight.

【0040】ガス拡散電極として、白金触媒を担持した
カーボンブラック60重量部とPTFE40重量部とか
らなる、厚さ約100μm、見かけ表面積10cm2
ガス拡散電極(電極の見かけ表面積あたりのPt担持
量:0.5mg/cm2 )を2枚用意した。接着剤とし
て、溶媒がエタノール50重量部と、1,3−ジクロロ
−1,1,2,2,3−ペンタフルオロプロパン(HC
FC−225cb)50重量部との混合溶媒に、上記イ
オン交換膜と同じ組成のイオン交換樹脂の粒状物を溶解
した5重量%溶液(溶液粘度:18000cP)を用意
した。次いで、2枚のガス拡散電極のそれぞれの一方の
面に接着剤0.05gを均一に塗布し、2枚のガス拡散
電極を接着剤が塗布された面が相対するように配置し、
その間にイオン交換膜を挿入し、常温にて全体を手押し
ローラーで押し付けた後、常温で充分に乾燥し、電極−
膜接合体を得た。
As the gas diffusion electrode, a gas diffusion electrode composed of 60 parts by weight of carbon black carrying a platinum catalyst and 40 parts by weight of PTFE and having a thickness of about 100 μm and an apparent surface area of 10 cm 2 (the amount of Pt carried per apparent surface area of the electrode: 0.5 mg / cm 2 ). As an adhesive, the solvent was 50 parts by weight of ethanol, 1,3-dichloro-1,1,2,2,3-pentafluoropropane (HC
FC-225cb) A 5 wt% solution (solution viscosity: 18000 cP) was prepared by dissolving granules of an ion exchange resin having the same composition as the ion exchange membrane in a mixed solvent with 50 parts by weight of FC. Next, 0.05 g of the adhesive is uniformly applied to one surface of each of the two gas diffusion electrodes, and the two gas diffusion electrodes are arranged so that the surfaces on which the adhesive is applied face each other,
In the meantime, insert the ion-exchange membrane, press the whole with a hand-rolled roller at room temperature, and dry it sufficiently at room temperature.
A membrane assembly was obtained.

【0041】なお、この電極−膜接合体を水中で30分
間浸漬したが剥がれはなく、電極の端部から無理に引き
剥がすと膜側に電極層の一部が残った。
The electrode-membrane assembly was immersed in water for 30 minutes, but did not peel off. When the electrode-membrane assembly was forcibly peeled off from the end of the electrode, a part of the electrode layer remained on the membrane side.

【0042】「例2(比較例)」イオン交換膜とガス拡
散電極を接着剤を用いないでホットプレス法(温度15
0℃、圧力10kg/cm2 で10秒間)で接合した以
外は例1と同様にして、電極−膜接合体を得た。
Example 2 (Comparative Example) An ion exchange membrane and a gas diffusion electrode were hot-pressed (with a temperature of 15) without using an adhesive.
An electrode-membrane assembly was obtained in the same manner as in Example 1 except that the bonding was performed at 0 ° C. and a pressure of 10 kg / cm 2 for 10 seconds.

【0043】「例3(比較例)」イオン交換膜として、
厚さ50μmのスルホン酸基を有するパーフルオロカー
ボンイオン交換膜(イオン交換容量1.0ミリ当量/g
乾燥樹脂)を用いた以外は例1と同様にして、電極−膜
接合体を得た。なお、この電極−膜接合体を水中に30
分間浸漬したが剥がれはなく、電極の端部から無理に引
き剥がすと膜側に電極層の一部が残った。
Example 3 (Comparative Example) As an ion exchange membrane,
Perfluorocarbon ion exchange membrane having a sulfonic acid group having a thickness of 50 μm (ion exchange capacity: 1.0 meq / g)
An electrode-membrane assembly was obtained in the same manner as in Example 1 except that the dried resin) was used. The electrode-membrane assembly was placed in water for 30 minutes.
After immersion for a minute, there was no peeling, and when the film was forcibly peeled off from the end of the electrode, a part of the electrode layer remained on the film side.

【0044】「例4(比較例)」イオン交換膜として例
3で用いたイオン交換膜を用いた以外は例2と同様にし
て、電極−膜接合体を得た。
Example 4 (Comparative Example) An electrode-membrane assembly was obtained in the same manner as in Example 2 except that the ion exchange membrane used in Example 3 was used as the ion exchange membrane.

【0045】[評価]例1〜4で作製した電極−膜接合
体を、それぞれ電池性能測定用セルに組み込んだ。セル
温度105℃で、アノードに加湿した水素を供給し、カ
ソードに加湿した空気を供給して発電試験を行い、電流
密度1.0A/cm2 におけるセルの端子電圧(単位:
V)とおよびIR損(単位:Ω・cm2 )を測定した。
結果を表1に示す。
[Evaluation] Each of the electrode-membrane assemblies prepared in Examples 1 to 4 was incorporated into a cell for measuring battery performance. At a cell temperature of 105 ° C., humidified hydrogen was supplied to the anode, and humidified air was supplied to the cathode to perform a power generation test. The terminal voltage of the cell at a current density of 1.0 A / cm 2 (unit:
V) and IR loss (unit: Ω · cm 2 ).
Table 1 shows the results.

【0046】[0046]

【表1】 [Table 1]

【0047】[0047]

【発明の効果】本発明により得られる電極−膜接合体
は、ガス拡散電極の細孔がほとんど潰れておらず、細孔
径が数μmである細孔を有する微細構造を維持している
ため、ガス拡散性能に優れている。また、上記電極−膜
接合体を有する燃料電池は100℃以上の高温作動が可
能であり、反応生成水によるガス拡散電極の細孔の閉塞
が起こりにくいため、濃度過電圧が小さく、安定して高
出力が得られる。
According to the electrode-membrane assembly obtained by the present invention, since the pores of the gas diffusion electrode are hardly crushed and maintain a fine structure having pores having a pore diameter of several μm, Excellent gas diffusion performance. Further, the fuel cell having the above-mentioned electrode-membrane assembly can operate at a high temperature of 100 ° C. or higher, and the pores of the gas diffusion electrode are not easily blocked by the reaction water, so that the concentration overvoltage is small and the concentration is stable. The output is obtained.

【0048】また、接着剤中のパーフルオロカーボン重
合体がホスホン酸基を有する重合体である場合は、燃料
電池においてさらに濃度過電圧が小さくなり、さらに安
定して高出力が得られる。
When the perfluorocarbon polymer in the adhesive is a polymer having a phosphonic acid group, the concentration overvoltage is further reduced in the fuel cell, and a more stable high output is obtained.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】ガス拡散電極とイオン交換膜とを接着剤を
用いて接合する固体高分子電解質型の燃料電池用電極−
膜接合体の製造方法であって、イオン交換膜がホスホン
酸基を有するパーフルオロカーボン重合体からなり、接
着剤が、炭化水素アルコール溶媒、含フッ素炭化水素溶
媒、またはこれらの混合溶媒に0.1〜30重量%のパ
ーフルオロカーボン重合体からなるイオン交換樹脂を溶
解させた溶液であることを特徴とする固体高分子電解質
型の燃料電池用電極−膜接合体の製造方法。
An electrode for a fuel cell of a solid polymer electrolyte type in which a gas diffusion electrode and an ion exchange membrane are joined using an adhesive.
A method for producing a membrane assembly, wherein the ion-exchange membrane is made of a perfluorocarbon polymer having a phosphonic acid group, and the adhesive is used in a hydrocarbon alcohol solvent, a fluorinated hydrocarbon solvent, or a mixed solvent thereof. A method for producing a solid polymer electrolyte type electrode-membrane assembly for a fuel cell, wherein the solution is a solution in which an ion exchange resin composed of a perfluorocarbon polymer is dissolved in an amount of 30 to 30% by weight.
【請求項2】接着剤中のパーフルオロカーボン重合体
が、ホスホン酸基を有するパーフルオロカーボン重合体
である請求項1記載の固体高分子電解質型の燃料電池用
電極−膜接合体の製造方法。
2. The method for producing an electrode-membrane assembly for a solid polymer electrolyte fuel cell according to claim 1, wherein the perfluorocarbon polymer in the adhesive is a perfluorocarbon polymer having a phosphonic acid group.
【請求項3】ガス拡散電極とイオン交換膜を5〜35℃
で接合する請求項1または2記載の固体高分子電解質型
の燃料電池用電極−膜接合体の製造方法。
3. A gas diffusion electrode and an ion exchange membrane at 5 to 35 ° C.
The method for producing an electrode-membrane assembly for a fuel cell of a solid polymer electrolyte type according to claim 1 or 2, wherein the bonding is performed.
【請求項4】接着剤の溶媒が炭化水素アルコール溶媒と
含フッ素炭化水素溶媒の混合溶媒であり、該混合溶媒の
混合比率(炭化水素アルコール溶媒/含フッ素炭化水素
溶媒)が1/9〜9/1である請求項1、2または3記
載の固体高分子電解質型の燃料電池用電極−膜接合体の
製造方法。
4. The solvent of the adhesive is a mixed solvent of a hydrocarbon alcohol solvent and a fluorinated hydrocarbon solvent, and the mixing ratio of the mixed solvent (hydrocarbon alcohol solvent / fluorinated hydrocarbon solvent) is 1/9 to 9 The method for producing an electrode-membrane assembly for a fuel cell of a solid polymer electrolyte type according to claim 1, 2 or 3.
JP10141796A 1998-05-22 1998-05-22 Manufacture of electrode-membrane joining body for solid polymer electrolyte fuel cell Pending JPH11339824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10141796A JPH11339824A (en) 1998-05-22 1998-05-22 Manufacture of electrode-membrane joining body for solid polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10141796A JPH11339824A (en) 1998-05-22 1998-05-22 Manufacture of electrode-membrane joining body for solid polymer electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JPH11339824A true JPH11339824A (en) 1999-12-10

Family

ID=15300349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10141796A Pending JPH11339824A (en) 1998-05-22 1998-05-22 Manufacture of electrode-membrane joining body for solid polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JPH11339824A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110202A (en) * 2000-10-02 2002-04-12 Asahi Glass Co Ltd Solid high polymer fuel cell and manufacturing method therefor
WO2002058178A1 (en) * 2001-01-19 2002-07-25 Matsushita Electric Industrial Co., Ltd. Method for manufacturing fuel cell elecrolyte film-electrode bond
JP2006100207A (en) * 2004-09-30 2006-04-13 Shin Etsu Chem Co Ltd Liquid curable resin composition for electrolyte membrane electrode assembly and manufacturing method of electrolyte membrane electrode assembly
WO2006061993A1 (en) * 2004-12-07 2006-06-15 Toray Industries, Inc. Film electrode composite element and production method therefor, and fuel cell
US7968247B2 (en) 2005-05-18 2011-06-28 Samsung Sdi Co., Ltd. High temperature fuel cell using alkyl phosphoric acid

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110202A (en) * 2000-10-02 2002-04-12 Asahi Glass Co Ltd Solid high polymer fuel cell and manufacturing method therefor
WO2002058178A1 (en) * 2001-01-19 2002-07-25 Matsushita Electric Industrial Co., Ltd. Method for manufacturing fuel cell elecrolyte film-electrode bond
US6977234B2 (en) 2001-01-19 2005-12-20 Matsushita Electric Industrial Co., Ltd. Method for manufacturing fuel cell electrolyte film-electrode bond
USRE41651E1 (en) * 2001-01-19 2010-09-07 Panasonic Corporation Method for manufacturing fuel cell electrolyte film-electrode bond
JP2006100207A (en) * 2004-09-30 2006-04-13 Shin Etsu Chem Co Ltd Liquid curable resin composition for electrolyte membrane electrode assembly and manufacturing method of electrolyte membrane electrode assembly
JP4636235B2 (en) * 2004-09-30 2011-02-23 信越化学工業株式会社 Liquid curable resin composition for electrolyte membrane / electrode bonding and method for producing electrolyte membrane / electrode assembly
WO2006061993A1 (en) * 2004-12-07 2006-06-15 Toray Industries, Inc. Film electrode composite element and production method therefor, and fuel cell
US7968247B2 (en) 2005-05-18 2011-06-28 Samsung Sdi Co., Ltd. High temperature fuel cell using alkyl phosphoric acid

Similar Documents

Publication Publication Date Title
JP3525944B2 (en) Method for producing electrode / membrane assembly for polymer electrolyte fuel cell
JP3584612B2 (en) Polymer electrolyte fuel cell and method for manufacturing electrode thereof
KR100493991B1 (en) Method for producing film electrode jointed product and method for producing solid polymer type fuel cell
US6352742B1 (en) Method for producing polymer electrolyte membrane and fuel cell
JP2002543578A (en) Electrochemical use of amorphous fluoropolymer.
EP1535950B1 (en) Dispersion of ion-exchange polymer, process for producing the same, and use thereof
JP4649705B2 (en) Polymer electrolyte fuel cell
JP5829668B2 (en) Dispersion composition of fluorine-containing ion exchange resin
JP5194624B2 (en) Manufacturing method of membrane electrode assembly for polymer electrolyte fuel cell
JP2000285932A (en) Manufacture of electrode/film junction for solid polymer fuel cell
WO2001022510A1 (en) Bonded electrode/film for solid polymer fuel cell and method for producing the same
JPH10334923A (en) Solid high polymer fuel cell film/electrode connecting body
JP2006344517A (en) Manufacturing method of fuel cell
JP3394836B2 (en) Method for producing gas diffusion electrode and catalyst dispersion for producing the electrode
JP4608781B2 (en) Method for producing polymer electrolyte fuel cell
JPH11339824A (en) Manufacture of electrode-membrane joining body for solid polymer electrolyte fuel cell
JP2002260686A (en) Method of manufacturing membrane/electrode jointing body for solid high polymer fuel cell
JP4218255B2 (en) Method for producing membrane / electrode assembly for polymer electrolyte fuel cell
JP2002110202A (en) Solid high polymer fuel cell and manufacturing method therefor
JPH11307108A (en) Manufacture of electrode-membrane joined body for solid high polymer electrolyte fuel cell
JPH08148153A (en) Solid polymeric fuel cell electrode and manufacture thereof
JP4529276B2 (en) Method for producing polymer electrolyte fuel cell
CN114072473B (en) Method for producing a catalyst-coated membrane
JP2001351637A (en) Solid polymer fuel cell and its manufacturing method
JP2003045440A (en) Manufacturing method of gas diffusion electrode for solid polymer fuel cell and manufacturing method of solid polymer fuel cell