JP4636235B2 - Liquid curable resin composition for electrolyte membrane / electrode bonding and method for producing electrolyte membrane / electrode assembly - Google Patents

Liquid curable resin composition for electrolyte membrane / electrode bonding and method for producing electrolyte membrane / electrode assembly Download PDF

Info

Publication number
JP4636235B2
JP4636235B2 JP2004287561A JP2004287561A JP4636235B2 JP 4636235 B2 JP4636235 B2 JP 4636235B2 JP 2004287561 A JP2004287561 A JP 2004287561A JP 2004287561 A JP2004287561 A JP 2004287561A JP 4636235 B2 JP4636235 B2 JP 4636235B2
Authority
JP
Japan
Prior art keywords
electrolyte membrane
electrode
resin composition
curable resin
liquid curable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004287561A
Other languages
Japanese (ja)
Other versions
JP2006100207A (en
Inventor
敏夫 大庭
光人 高橋
繁 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2004287561A priority Critical patent/JP4636235B2/en
Publication of JP2006100207A publication Critical patent/JP2006100207A/en
Application granted granted Critical
Publication of JP4636235B2 publication Critical patent/JP4636235B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、固体高分子型燃料電池の電解質膜・電極接合用液状硬化性樹脂組成物及び電解質膜・電極接合体の製造方法に関する。   The present invention relates to a liquid curable resin composition for joining an electrolyte membrane / electrode of a polymer electrolyte fuel cell and a method for producing an electrolyte membrane / electrode assembly.

固体高分子型燃料電池用電解質膜を用いた燃料電池は、作動温度が100℃以下と低く、そのエネルギー密度が高いことから、電気自動車の電源や簡易補助電源として広く実用化が期待されている。この固体高分子型燃料電池においては、電解質膜、白金系の触媒、ガス拡散電極、及び電解質膜と電極の接合体などに関する重要な要素技術があり、この中でも、電解質膜と電極の接合体は、燃料電池としての特性に関与する最も重要な技術の一つである。   A fuel cell using an electrolyte membrane for a polymer electrolyte fuel cell has a low operating temperature of 100 ° C. or lower, and its energy density is high. Therefore, it is expected to be widely put into practical use as a power source for electric vehicles and a simple auxiliary power source. . In this polymer electrolyte fuel cell, there are important elemental technologies related to electrolyte membranes, platinum-based catalysts, gas diffusion electrodes, and electrolyte membrane-electrode assemblies. Among these, electrolyte membrane-electrode assemblies include It is one of the most important technologies involved in fuel cell characteristics.

従来、この固体高分子型燃料電池の電解質膜・電極接合体の製造方法には、大別して次の2つの方法が知られている。
(1)電解質膜に直接電極触媒を析出させる方法(例えば、特許文献1:特公昭58−47471号公報参照)。
(2)触媒能を有する電極シートを作製し、ホットプレスにより電解質膜に接合する方法(以下、ホットプレス法という。例えば、特許文献2〜4:米国特許第3134697号明細書、米国特許第3297484号明細書及び特公平2−7398号公報参照)。
Conventionally, the following two methods are generally known as a method for producing an electrolyte membrane / electrode assembly of a polymer electrolyte fuel cell.
(1) A method of directly depositing an electrode catalyst on an electrolyte membrane (for example, see Patent Document 1: Japanese Patent Publication No. 58-47471).
(2) A method of producing an electrode sheet having catalytic ability and bonding it to an electrolyte membrane by hot pressing (hereinafter referred to as hot pressing method. For example, Patent Documents 2 to 4: US Pat. No. 3,134,697, US Pat. No. 3,297,484) No. specification and Japanese Patent Publication No. 2-7398).

現在では、少量の触媒を有効に利用できる(2)のホットプレス法が主流となっている。これまでの固体高分子型燃料電池の研究では、ガス拡散電極シート上に触媒層を形成する方法として、例えば、電気化学的析出法(特許文献5:米国特許第5084144号明細書参照)、触媒ペーストの塗布(特許文献6:特開平4−162365号公報等参照)など、種々の方法が提案されているが、最終的にイオン交換膜と接合する方法に関してはホットプレスに頼っていた。   At present, the hot pressing method (2), which can effectively use a small amount of catalyst, has become the mainstream. In the research on solid polymer fuel cells so far, as a method for forming a catalyst layer on a gas diffusion electrode sheet, for example, an electrochemical deposition method (see Patent Document 5: US Pat. No. 5,084,144), a catalyst, and the like. Various methods such as paste application (see Patent Document 6: Japanese Patent Laid-Open No. Hei 4-162365) have been proposed, but the method of finally joining the ion exchange membrane has relied on hot pressing.

ホットプレス法では、電解質膜と電極間の接合強度、電気的接合状態を得るため、温度は電解質膜を形成する樹脂のガラス転移点である100℃以上、圧力は樹脂が電極に一部食い込むようにするため必要な20kgf/cm2以上が一般的である。 In the hot press method, in order to obtain the bonding strength between the electrolyte membrane and the electrode and the electrical bonding state, the temperature is 100 ° C. or more, which is the glass transition point of the resin forming the electrolyte membrane, and the pressure seems to partially penetrate the electrode. In general, the amount of 20 kgf / cm 2 or more necessary for achieving the above is generally used.

しかしながら、100℃以上、20kgf/cm2以上でホットプレスした場合、カーボンペーパーやカーボンクロスからなる電極や細孔構造を形成しているポリテトラフルオロエチレンなどのフッ素系樹脂が変形し易くなり、気孔率の低下や細孔のつぶれが生じることにより、燃料拡散性が悪化する問題があった。 However, when hot-pressing at 100 ° C. or higher and 20 kgf / cm 2 or higher, an electrode made of carbon paper or carbon cloth or a fluorine-based resin such as polytetrafluoroethylene forming a pore structure is easily deformed, There was a problem that the fuel diffusibility deteriorated due to the decrease in the rate and the collapse of the pores.

また、電解質膜と電極を高温でプレスするに際し、電解質膜が乾燥することにより含水率が低下し、膜抵抗が増大する問題や、ホットプレス温度を高くしすぎた場合には、膜の変質が起こる問題、及びホットプレス圧力を高くしすぎた場合には、膜が破損するなどの問題があった。   Moreover, when the electrolyte membrane and the electrode are pressed at a high temperature, the moisture content decreases due to drying of the electrolyte membrane, the membrane resistance increases, and if the hot press temperature is too high, the membrane may be altered. There are problems that occur, and when the hot press pressure is too high, the film is broken.

ホットプレス法では、これらの問題は不可避であり、常温・非加圧で電極とイオン交換膜とを接合するプロセスが求められていた。また、大面積の接合体を作製する場合には、非加熱・非加圧の方が量産性の点で有利である。   In the hot press method, these problems are unavoidable, and a process for joining the electrode and the ion exchange membrane at room temperature and under no pressure has been demanded. Moreover, when producing a large-area joined body, non-heating and non-pressurization are more advantageous in terms of mass productivity.

生産性、密着性を向上するために、特許文献7:特開平7−220741号公報には特定の溶剤に溶解した電解質膜を接合剤として用い、比較的低温で接合することが提案されているが、高分子の電解質膜は基材表面にとどまり易く、内部に浸透し難いため、接合性は必ずしも十分ではなかった。
特公昭58−47471号公報 米国特許第3134697号明細書 米国特許第3297484号明細書 特公平2−7398号公報 米国特許第5084144号明細書 特開平4−162365号公報 特開平7−220741号公報
In order to improve productivity and adhesiveness, Patent Document 7: Japanese Patent Laid-Open No. 7-220741 proposes that an electrolyte membrane dissolved in a specific solvent is used as a bonding agent to bond at a relatively low temperature. However, the polymer electrolyte membrane tends to stay on the surface of the base material and does not easily penetrate into the inside, so that the bonding property is not always sufficient.
Japanese Patent Publication No.58-47471 US Pat. No. 3,134,697 US Pat. No. 3,297,484 Japanese Patent Publication No.2-7398 US Pat. No. 5,084,144 JP-A-4-162365 Japanese Patent Laid-Open No. 7-220741

本発明は、上記事情に鑑みなされたもので、固体高分子型燃料電池用電解質膜・電極接合体において、上記問題を解決し、高性能な接合体を簡便に製造することを可能とする新規な電解質膜・電極接合用液状硬化性樹脂組成物及びそれを用いた電解質膜・電極接合体の製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances. In an electrolyte membrane / electrode assembly for a polymer electrolyte fuel cell, the present invention solves the above problems and makes it possible to easily produce a high-performance assembly. An object of the present invention is to provide a liquid curable resin composition for joining an electrolyte membrane / electrode and a method for producing an electrolyte membrane / electrode assembly using the same.

本発明者らは、上記目的を達成するために鋭意検討を行った結果、
(A)一分子中に1個のエチレン性不飽和基と1個のスルホン酸基もしくはその前駆体基とを有するモノマーとして、スチレンスルホン酸、アリルベンゼンスルホン酸、アリルオキシベンゼンスルホン酸、アクリルアミド2−メチルプロパンスルホン酸、ビニルスルホン酸、フルオロビニルスルホン酸、パーフルオロアルキルスルホン酸フルオロビニルエーテル及びパーフルオロビニルエーテルスルホン酸から選ばれるスルホン酸基含有モノマー又はそのアルカリ金属塩
(B)エチレン性不飽和基と共重合もしくは付加反応する基を一分子中に少なくとも2個有するオリゴマーとして、ポリエーテルポリアクリレー
モノマー/オリゴマーの質量比10/90〜90/10で含有してなり、25℃における粘度が100,000mPa・s以下である電解質膜・電極接合用液状硬化性樹脂組成物を電解質膜又は電極の少なくともいずれか一方に塗布し、前記液状硬化性樹脂組成物が電解質膜と電極間に介在するよう貼り合わせた後、加熱及び/又は放射線照射により硬化させることにより、前記電解質膜と前記電極とがこの硬化膜によってホットプレスなしで良好に接合し得、燃料電池用として有用な電解質膜・電極接合体を工業的に有利に製造できることを見出し、本発明をなすに至った。
As a result of intensive studies to achieve the above object, the present inventors have
(A) as a monomer having a one ethylenically unsaturated group and one sulfonic acid group or its precursor group in the molecule, styrene sulfonic acid, allyl sulfonic acid, allyl oxybenzene sulfonic acid, acrylamide 2 A sulfonic acid group-containing monomer selected from methylpropanesulfonic acid, vinylsulfonic acid, fluorovinylsulfonic acid, perfluoroalkylsulfonic acid fluorovinyl ether and perfluorovinyl ether sulfonic acid, or an alkali metal salt thereof ,
(B) an ethylenically unsaturated group copolymerizable or addition reaction to groups as oligomers having in one molecule at least two, polyether acrylated DOO
A liquid curable resin composition for joining an electrolyte membrane and an electrode having a viscosity at 25 ° C. of 100,000 mPa · s or less, at a monomer / oligomer mass ratio of 10/90 to 90/10. The liquid curable resin composition is applied so that the liquid curable resin composition is interposed between the electrolyte membrane and the electrode, and then cured by heating and / or radiation irradiation, thereby the electrolyte membrane and the electrode. However, it was found that the cured film can be satisfactorily bonded without hot pressing, and that an electrolyte membrane / electrode assembly useful for a fuel cell can be advantageously produced industrially, and the present invention has been made.

従って、本発明は、下記に示す電解質膜・電極接合用液状硬化性樹脂組成物及び電解質膜・電極接合体の製造方法を提供する。
[請求項1]
(A)一分子中に1個のエチレン性不飽和基と1個のスルホン酸基もしくはその前駆体基とを有するモノマーとして、スチレンスルホン酸、アリルベンゼンスルホン酸、アリルオキシベンゼンスルホン酸、アクリルアミド2−メチルプロパンスルホン酸、ビニルスルホン酸、フルオロビニルスルホン酸、パーフルオロアルキルスルホン酸フルオロビニルエーテル及びパーフルオロビニルエーテルスルホン酸から選ばれるスルホン酸基含有モノマー又はそのアルカリ金属塩
(B)エチレン性不飽和基と共重合もしくは付加反応する基を一分子中に少なくとも2個有するオリゴマーとして、ポリエーテルポリアクリレー
モノマー/オリゴマーの質量比10/90〜90/10で含有してなり、25℃における粘度が100,000mPa・s以下であることを特徴とする電解質膜・電極接合用液状硬化性樹脂組成物。
[請求項2]
請求項記載の電解質膜・電極接合用液状硬化性樹脂組成物を予め作製した電解質膜又は電極の少なくともいずれか一方に塗布し、前記液状硬化性樹脂組成物が電解質膜と電極間に介在するよう貼り合わせた後、前記液状硬化性樹脂組成物を加熱及び/又は放射線照射により硬化させることにより、前記電解質膜と前記電極硬化膜を接合することを特徴とする固体高分子型燃料電池用電解質膜・電極接合体の製造方法。
Therefore, the present invention provides the following liquid curable resin composition for electrolyte membrane / electrode bonding and a method for producing an electrolyte membrane / electrode assembly.
[Claim 1]
(A) as a monomer having a one ethylenically unsaturated group and one sulfonic acid group or its precursor group in the molecule, styrene sulfonic acid, allyl sulfonic acid, allyl oxybenzene sulfonic acid, acrylamide 2 A sulfonic acid group-containing monomer selected from methylpropanesulfonic acid, vinylsulfonic acid, fluorovinylsulfonic acid, perfluoroalkylsulfonic acid fluorovinyl ether and perfluorovinyl ether sulfonic acid, or an alkali metal salt thereof ,
(B) an ethylenically unsaturated group copolymerizable or addition reaction to groups as oligomers having in one molecule at least two, polyether acrylated DOO
A liquid curable resin composition for joining an electrolyte membrane and an electrode, characterized by having a monomer / oligomer mass ratio of 10/90 to 90/10 and a viscosity at 25 ° C. of 100,000 mPa · s or less .
[Claim 2]
The liquid curable resin composition for bonding an electrolyte membrane / electrode according to claim 1 is applied to at least one of an electrolyte membrane or an electrode prepared in advance, and the liquid curable resin composition is interposed between the electrolyte membrane and the electrode. After being bonded together, the liquid curable resin composition is cured by heating and / or radiation irradiation to join the electrolyte membrane and the electrode cured membrane, and the electrolyte for a polymer electrolyte fuel cell, Manufacturing method of membrane / electrode assembly.

本発明によれば、ホットプレスすることなく、電解質膜と電極を十分な強度をもって接合することができるため、電解質膜と電極の接合体を作製する工程が簡略になる。また、熱による電解質膜や電極の劣化がないため、内部抵抗の低い燃料電池を作製することができ、固体高分子型燃料電池及びダイレクトメタノール型燃料電池用電解質膜・電極接合体として特に有用である。   According to the present invention, since the electrolyte membrane and the electrode can be joined with sufficient strength without hot pressing, the process of manufacturing the joined body of the electrolyte membrane and the electrode is simplified. In addition, since there is no deterioration of the electrolyte membrane or electrode due to heat, it is possible to produce a fuel cell with low internal resistance, which is particularly useful as an electrolyte membrane / electrode assembly for solid polymer fuel cells and direct methanol fuel cells. is there.

本発明の電解質膜・電極接合用液状硬化性樹脂組成物は、一分子中に少なくとも1個のエチレン性不飽和基と、少なくとも1個のイオン伝導性基もしくはその前駆体基とを有するモノマーと、エチレン性不飽和基と共重合もしくは付加反応する基を一分子中に少なくとも2個有するオリゴマーを含有するものである。 The liquid curable resin composition for electrolyte membrane / electrode bonding of the present invention comprises a monomer having at least one ethylenically unsaturated group and at least one ion-conducting group or a precursor group thereof in one molecule. , those containing the oligomer of at least two chromatic ethylenically unsaturated group copolymerizable or addition reaction to groups in a molecule.

本発明に用いられる一分子中に少なくとも1個のエチレン性不飽和基とスルホン酸基(−SO3)の少なくとも1個のイオン伝導性基もしくはその前駆体基を有する化合物は、スチレンスルホン酸、アリルベンゼンスルホン酸、アリルオキシベンゼンスルホン酸、アクリルアミド2−メチルプロパンスルホン酸、ビニルスルホン酸、フルオロビニルスルホン酸、パーフルオロアルキルスルホン酸フルオロビニルエーテル、パーフルオロビニルエーテルスルホン酸から選ばれるスルホン酸基含有モノマー、そのアルカリ金属塩である。
Compounds having at least one ion-conducting group or a precursor group of at least one ethylenically unsaturated group and scan sulfonic acid group in one molecule used in the present invention (-SO 3 H) is the scan styrene sulfonic acid, allyl sulfonic acid, allyl oxybenzene sulfonic acid, acrylamido 2-methylpropane sulfonic acid, vinyl sulfonic acid, fluoro vinyl sulfonic acid, perfluoroalkylsulfonic acid fluorovinyl ether, a sulfonic acid group selected from the perfluorovinyl ether sulfonate Containing monomer, its alkali metal salt .

これらの中でも、分子量1,000未満、特に200〜500のモノマーが、硬化膜のイオン(プロトン)伝導性を高くするために望ましい。   Among these, monomers having a molecular weight of less than 1,000, particularly 200 to 500, are desirable for increasing the ion (proton) conductivity of the cured film.

本発明においては、イオン伝導性基としてスルホン酸基、更にスルホン酸基の前駆体基を有するものが、高イオン伝導度の点から好ましい。なお、スルホン酸基の前駆体基としては、スルホン酸の金属塩、亜硫酸ナトリウムなどでスルホン酸金属塩とするためのグリシジル基などが挙げられる。   In the present invention, those having a sulfonic acid group and further a sulfonic acid group precursor group as the ion conductive group are preferred from the viewpoint of high ionic conductivity. Examples of the precursor group of the sulfonic acid group include a metal salt of sulfonic acid, a glycidyl group for forming a sulfonic acid metal salt with sodium sulfite and the like.

本発明に用いられる一分子中に少なくとも2個の反応性基を有するオリゴマーにおいて、反応性基は、エチレン性不飽和基と共重合もしくは付加反応する基であ、ビニル基、アリル基、(メタ)アクリロイル基、メルカプト基、珪素原子に直結する水素原子などが挙げられ、かかるオリゴマーとしては、ポリエチレングリコールジ(メタ)アクリレート、ポリエチレングリコール,ポリプロピレングリコール,ポリテトラメチレングリコール,ポリブチレングリコールのジウレタン(メタ)アクリレートなどのポリエーテルポリアクリレート、ポリエステルポリアクリレート、(メタ)アクリロキシ基含有オルガノポリシロキサン、ビニル基含有オルガノポリシロキサン、珪素原子に直結する水素原子含有オルガノポリシロキサンなどが例示され、数平均分子量1,000以上、特に1,000〜4,000のものが、組成物の塗工性、硬化性に優れるために望ましい。 In oligomer having at least two reactive groups per molecule for use in the present invention, the reactive group, Ri Oh ethylenically unsaturated group copolymerizable or addition reactions group, a vinyl group, an allyl group, ( Examples of such oligomers include polyethylene glycol di (meth) acrylate, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polybutylene glycol diurethane (meth) acryloyl group, mercapto group, and hydrogen atom directly bonded to a silicon atom. Examples include polyether polyacrylates such as (meth) acrylates, polyester polyacrylates, (meth) acryloxy group-containing organopolysiloxanes, vinyl group-containing organopolysiloxanes, and hydrogen atom-containing organopolysiloxanes directly connected to silicon atoms. It is a number average molecular weight of 1,000 or more, and particularly those of 1,000 to 4,000, coatability of the composition, desirable for excellent curability.

本発明の電解質膜・電極接合用液状硬化性樹脂組成物において、上記一分子中に少なくとも1個のエチレン性不飽和基と少なくとも1個のイオン伝導性基もしくはその前駆体基を有する化合物(モノマー)と、一分子中に少なくとも2個の反応性基を有するオリゴマーの質量比(モノマー/オリゴマー)は10/90〜90/10、望ましくは20/80〜80/20、更に望ましくは30/70〜70/30である。上記モノマーとオリゴマーの質量比が10/90未満であるとイオン伝導度が低下する場合があり、90/10を超えると硬化性が損なわれる場合がある。
In the liquid curable resin composition for bonding an electrolyte membrane / electrode of the present invention, a compound (monomer) having at least one ethylenically unsaturated group and at least one ion-conducting group or precursor group in one molecule. ) And an oligomer having at least two reactive groups in one molecule (monomer / oligomer) is 10/90 to 90/10, preferably 20/80 to 80/20, more preferably 30/70. 70 / Ru 30 der. If the mass ratio of the monomer to the oligomer is less than 10/90, the ionic conductivity may decrease, and if it exceeds 90/10, the curability may be impaired.

本発明の電解質膜・電極接合用液状硬化性樹脂組成物には、電解質膜と電極の接合性を調整する目的で、イオン伝導性基もしくはその前駆体基を有しないモノマー、例えば、スチレン、t−ブチルスチレン、n−ラウリルアクリレート、2−エチルヘキシルアクリレート、n−ヘキシルアクリレート、イソオクチルアクリレート、2−フェノキシエチルアクリレート、2−エトキシエチルアクリレートなどを、得られる電解質膜・電極接合体のイオン伝導性を損なわない範囲で併用してもよい。   The liquid curable resin composition for joining an electrolyte membrane / electrode of the present invention includes a monomer having no ion conductive group or its precursor group, for example, styrene, t, for the purpose of adjusting the joining property between the electrolyte membrane and the electrode. -Ion conductivity of electrolyte membrane / electrode assembly obtained by using -butylstyrene, n-lauryl acrylate, 2-ethylhexyl acrylate, n-hexyl acrylate, isooctyl acrylate, 2-phenoxyethyl acrylate, 2-ethoxyethyl acrylate, etc. You may use together in the range which does not impair.

更に本発明では、イオン伝導性を向上する目的でリンタングステン酸などのヘテロポリ酸、あるいは燃料電池の水素又はアルコール、水、酸素の透過を防ぐ目的で酸化物、窒化物、炭化物等の無機化合物を充填剤として添加することができる。充填剤の具体例としては、窒化硼素、炭化珪素、シリカなどが挙げられる。   Furthermore, in the present invention, heteropolyacids such as phosphotungstic acid for the purpose of improving ion conductivity, or inorganic compounds such as oxides, nitrides and carbides for the purpose of preventing the permeation of hydrogen or alcohol, water, and oxygen in fuel cells. It can be added as a filler. Specific examples of the filler include boron nitride, silicon carbide, and silica.

本発明の電解質膜・電極接合用液状硬化性樹脂組成物の製造方法は特に限定されるものではなく、常法に準じて調製される。なお、電解質膜・電極接合用液状硬化性樹脂組成物の回転粘度計により測定した25℃における粘度は、塗布性の観点から100,000mPa・s以下であり、望ましい粘度は100〜10,000mPa・sである。組成物の粘度が100,000mPa・sを超えるとレベリング性が悪く、薄く均一に塗工することが困難になり、100mPa・s未満になるとハジキや基材へのしみ込みが大きくなる場合がある。   The method for producing the liquid curable resin composition for bonding an electrolyte membrane / electrode of the present invention is not particularly limited, and is prepared according to a conventional method. In addition, the viscosity at 25 ° C. measured by a rotational viscometer of the liquid curable resin composition for electrolyte membrane / electrode bonding is 100,000 mPa · s or less from the viewpoint of applicability, and a desirable viscosity is 100 to 10,000 mPa · s. s. When the viscosity of the composition exceeds 100,000 mPa · s, the leveling property is poor, and it becomes difficult to apply thinly and uniformly. When the viscosity is less than 100 mPa · s, the penetration into the repellent or the substrate may be increased. .

また、本発明における電解質膜・電極接合用液状硬化性樹脂組成物には、粘度を調整する目的で溶剤を併用することができる。このとき用いる溶剤としては、組成物を均一に溶解するものが好ましく、例えば、アセトン、メチルエチルケトン等のケトン類、酢酸エチル、酢酸ブチル等のエステル類、テトラヒドロフラン、ジオキサン等のエーテル類、ベンゼン、トルエン等の芳香族炭化水素、n−ヘプタン、n−ヘキサン、シクロヘキサン等の脂肪族乃至脂環族炭化水素、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、水などの極性溶剤、あるいはこれらの混合溶剤が用いられる。これらの中でも極性溶剤がより好ましい。   In the liquid curable resin composition for joining an electrolyte membrane and an electrode in the present invention, a solvent can be used in combination for the purpose of adjusting the viscosity. The solvent used at this time is preferably a solvent that uniformly dissolves the composition, for example, ketones such as acetone and methyl ethyl ketone, esters such as ethyl acetate and butyl acetate, ethers such as tetrahydrofuran and dioxane, benzene, toluene and the like. Aromatic hydrocarbons, aliphatic or alicyclic hydrocarbons such as n-heptane, n-hexane, cyclohexane, polar solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, water, or These mixed solvents are used. Among these, polar solvents are more preferable.

上記電解質膜・電極接合用液状硬化性樹脂組成物を白金などの金属触媒が担持されたカーボンペーパーなどの電極上に塗布し、これに電解質膜を貼り合わせ、更に電解質膜・電極接合用液状硬化性樹脂組成物が塗布してあるもう一方の電極を電解質膜の反対面に貼り合わせ、加熱及び/又は放射線を照射することで硬化させ、電解質膜・電極接合体が作製できるが、これに限定されるものではなく、樹脂組成物を電解質膜に塗布し、これに電極を貼り合わせるようにしてもよい。   Apply the above liquid curable resin composition for electrolyte membrane / electrode bonding onto an electrode such as carbon paper carrying a metal catalyst such as platinum, and paste the electrolyte membrane on it, and then liquid curing for electrolyte membrane / electrode bonding. The other electrode coated with the conductive resin composition is bonded to the opposite surface of the electrolyte membrane and cured by heating and / or irradiation to produce an electrolyte membrane / electrode assembly. Instead, the resin composition may be applied to the electrolyte membrane, and the electrode may be bonded thereto.

本発明の電解質膜・電極接合用液状硬化性樹脂組成物を硬化させるには、加熱及び/又は放射線を照射する必要がある。なお、本発明においては、組成物を加熱した後に、更に放射線を照射して硬化させることもできる。組成物を硬化する雰囲気としては、ラジカル重合を容易に進行させるため、窒素、ヘリウム、アルゴンなどの不活性ガス雰囲気が好ましく、該ガス中の酸素濃度は500ppm以下が好ましく、200ppm以下が更に好ましい。   In order to cure the liquid curable resin composition for bonding an electrolyte membrane / electrode of the present invention, it is necessary to apply heat and / or radiation. In the present invention, after the composition is heated, it can be further cured by irradiation with radiation. The atmosphere for curing the composition is preferably an inert gas atmosphere such as nitrogen, helium or argon in order to facilitate radical polymerization. The oxygen concentration in the gas is preferably 500 ppm or less, and more preferably 200 ppm or less.

ここで、加熱により硬化させる場合、温度は電解質膜、電極が変質しない温度であることが好ましく、120℃以下、望ましくは80〜100℃、加熱時間は0.1〜30分間、望ましくは3〜10分間である。組成物の温度が80℃未満の加熱では硬化が不十分となる場合があり、120℃を超えると電解質膜、電極及び電解質膜・電極接合用液状硬化性樹脂が変質するおそれがある。加熱時間が0.1分未満であると組成物の硬化性が不十分となるおそれがあり、30分を超えると生産性が悪くなる場合がある。なお、加熱硬化を行う場合は、組成物の硬化を促進するため、公知の重合開始剤を使用することができ、例えば、ベンゾイルパーオキサイド、アゾビスイソブチロニトリルなどが例示される。   Here, in the case of curing by heating, the temperature is preferably a temperature at which the electrolyte membrane and the electrode do not change, 120 ° C. or less, desirably 80 to 100 ° C., the heating time is 0.1 to 30 minutes, desirably 3 to 10 minutes. When the temperature of the composition is less than 80 ° C., curing may be insufficient. When the temperature exceeds 120 ° C., the electrolyte membrane, the electrode, and the liquid curable resin for electrolyte membrane / electrode bonding may be altered. If the heating time is less than 0.1 minutes, the curability of the composition may be insufficient, and if it exceeds 30 minutes, the productivity may deteriorate. In addition, when performing heat curing, in order to accelerate | stimulate hardening of a composition, a well-known polymerization initiator can be used, For example, a benzoyl peroxide, an azobisisobutyronitrile, etc. are illustrated.

放射線は電子線、γ線、X線、紫外線などが例示され、電子線が特に好ましい。放射線を照射する際の温度は室温付近でよいが、樹脂組成物の粘度を塗布し易いように調整したり、膜厚や塗工面の状態を一定にするため、予め樹脂組成物の温度や照射雰囲気の温度を一定に調整したほうがよい。この場合、樹脂組成物、照射雰囲気の温度は25〜60℃の範囲で、一定の温度であることが望ましい。   Examples of radiation include electron beams, γ-rays, X-rays, and ultraviolet rays, and electron beams are particularly preferable. The temperature when irradiating with radiation may be around room temperature, but in order to adjust the viscosity of the resin composition so that it is easy to apply, or to keep the film thickness and the state of the coating surface constant, the temperature and irradiation of the resin composition are previously determined. It is better to adjust the temperature of the atmosphere to be constant. In this case, the temperature of the resin composition and the irradiation atmosphere is preferably in the range of 25 to 60 ° C. and constant.

電子線を用いて硬化する場合、加速電圧50〜300kVの加速器が使用でき、望ましい吸収線量は5kGy以上、より望ましい吸収線量は5〜500kGy、更に望ましい吸収線量は10〜100kGyである。5kGy未満であると硬化が不十分になるおそれがあり、また500kGyを超えると樹脂の分解が生じるおそれがある。   When curing using an electron beam, an accelerator having an acceleration voltage of 50 to 300 kV can be used, a desirable absorbed dose is 5 kGy or more, a more desirable absorbed dose is 5 to 500 kGy, and a more desirable absorbed dose is 10 to 100 kGy. If it is less than 5 kGy, curing may be insufficient, and if it exceeds 500 kGy, the resin may be decomposed.

また、紫外線を照射して硬化させる場合は、望ましい照射エネルギーは20mJ/cm2以上であり、より望ましい照射エネルギーは50〜1,000mJ/cm2である。照射エネルギーが20mJ/cm2未満であると硬化が不十分になるおそれがあり、1,000mJ/cm2を超えるとエネンルギーが無駄になる以外に樹脂が損傷するおそれもある。なお、紫外線硬化を行う場合は、組成物の硬化を促進するため、公知の光重合開始剤を使用することができる。公知の光重合開始剤としては、例えば、1−ヒドロキシシクロヘキシルフェニルケトン、2,2−ジメトキシ−2−フェニルアセトフェノン、フェニルアセトフェノンジエチルケタール、アルコキシアセトフェノン、ベンジルメチルケタール、ベンゾフェノン及び3,3−ジメチル−4−メトキシベンゾフェノン、4,4−ジメトキシベンゾフェノン、4,4−ジアミノベンゾフェノン等のベンゾフェノン誘導体、ベンゾイル安息香酸アルキル、ビス(4−ジアルキルアミノフェニル)ケトン、ベンジル及びベンジルメチルケタール等のベンジル誘導体、ベンゾイル及びベンゾインブチルメチルケタール等のベンゾイン誘導体、ベンゾインイソプロピルエーテル、2−ヒドロキシ−2−メチルプロピオフェノン、2,4−ジエチルチオキサントン及び2,4−ジクロロチオキサントン等のチオキサントン誘導体、フルオレン、2−メチル−1−[4−(メチルチオ)フェニル]2−モルホリノプロパン−1,2−ベンジル−2−ジメチルアミノ−1−(モルホリノフェニル)−ブタノン−1、2,4,6−トリメチルベンゾイルジフェニルホスフィンオキシド、ビス(2,6−ジメトキシベンゾイル)−2,4,4−トリメチルペンチルホスフィンオキシド等のホスフィンオキシド誘導体、過酸化ベンゾイル、t−ブチルペルオキシド、クメンハイドロペルオキシド等の有機過酸化物、アゾビスシアノ吉草酸、アゾビスブチロニトリル、アゾビス−(2,4−ジメチル)バレロニトリル、アゾビス−(2−アミノプロパン)ハイドロクロライドのような有機アゾ化合物等が挙げられる。 Moreover, when making it harden | cure by irradiating an ultraviolet-ray, desirable irradiation energy is 20 mJ / cm < 2 > or more, and more desirable irradiation energy is 50-1,000 mJ / cm < 2 >. Irradiation energy may become insufficient curing is less than 20 mJ / cm 2, a resin besides Enenrugi is wasted exceeds 1,000 mJ / cm 2 there is a risk of damage. In addition, when performing ultraviolet curing, in order to accelerate | stimulate hardening of a composition, a well-known photoinitiator can be used. Known photopolymerization initiators include, for example, 1-hydroxycyclohexyl phenyl ketone, 2,2-dimethoxy-2-phenylacetophenone, phenylacetophenone diethyl ketal, alkoxyacetophenone, benzylmethyl ketal, benzophenone and 3,3-dimethyl-4. Benzophenone derivatives such as methoxybenzophenone, 4,4-dimethoxybenzophenone, 4,4-diaminobenzophenone, benzoylalkyl benzoate, bis (4-dialkylaminophenyl) ketone, benzyl derivatives such as benzyl and benzylmethyl ketal, benzoyl and benzoin Benzoin derivatives such as butyl methyl ketal, benzoin isopropyl ether, 2-hydroxy-2-methylpropiophenone, 2,4-diethylthioxan And thioxanthone derivatives such as 2,4-dichlorothioxanthone, fluorene, 2-methyl-1- [4- (methylthio) phenyl] 2-morpholinopropane-1,2-benzyl-2-dimethylamino-1- (morpholinophenyl) ) -Butanone-1,2,4,6-trimethylbenzoyldiphenylphosphine oxide, phosphine oxide derivatives such as bis (2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide, benzoyl peroxide, t- Organic peroxides such as butyl peroxide and cumene hydroperoxide, organic azo such as azobiscyanovaleric acid, azobisbutyronitrile, azobis- (2,4-dimethyl) valeronitrile, azobis- (2-aminopropane) hydrochloride Compounds, etc. .

これら光重合開始剤は1種単独で使用してもよいし、2種以上使用してもよい。配合量は、本発明の組成物の硬化性を向上し、特性を損なわない範囲で使用でき、通常組成物中、20質量%以下で使用される。好ましい使用量は0.1〜10質量%、特に1〜5質量%である。   These photopolymerization initiators may be used alone or in combination of two or more. A compounding quantity improves the sclerosis | hardenability of the composition of this invention, can be used in the range which does not impair a characteristic, and is normally used in 20 mass% or less in a composition. A preferred amount of use is 0.1 to 10% by mass, particularly 1 to 5% by mass.

上記電解質膜・電極接合用液状硬化性樹脂組成物の膜厚は、100μm以下、望ましくは0.1〜10μmである。100μmを超えると電解質膜・電極接合体とした場合の硬化膜の抵抗が大きくなり、0.1μm未満では電解質膜と電極の接合性が不十分になるため接触抵抗が大きくなり、出力が低下するおそれがある。   The film thickness of the electrolyte membrane / electrode bonding liquid curable resin composition is 100 μm or less, preferably 0.1 to 10 μm. When the thickness exceeds 100 μm, the resistance of the cured film increases when the electrolyte membrane / electrode assembly is used. When the thickness is less than 0.1 μm, the bonding resistance between the electrolyte membrane and the electrode becomes insufficient, so that the contact resistance increases and the output decreases. There is a fear.

なお、イオン伝導性前駆体基を有する化合物を含有する組成物を用いて硬化した場合、例えば、硬化物中のスルホン酸金属塩は、塩酸、硫酸などの酸でイオン交換し、グリシジル基は亜硫酸ナトリウムなどでスルホン酸金属塩とした後に酸処理することにより、硬化物中に存在するイオン伝導性前駆体基をイオン伝導性基とすることができる。   In addition, when it hardens | cures using the composition containing the compound which has an ion conductive precursor group, for example, the sulfonic acid metal salt in hardened | cured material ion-exchanges with acids, such as hydrochloric acid and a sulfuric acid, and a glycidyl group is a sulfurous acid. By making an acid treatment after forming a sulfonic acid metal salt with sodium or the like, the ion conductive precursor group present in the cured product can be made an ion conductive group.

本発明にかかわる電解質膜・電極接合用液状硬化性樹脂組成物は、燃料電池用の電解質膜と電極の接合性を向上する役割を果たすが、この電解質膜と電極の接合体は、例えば、下記方法により製造することができる。
(i)触媒が担持された第一の電極上に、電解質膜・電極接合用液状硬化性樹脂組成物を塗布し、電解質膜を貼り合わせた後、加熱及び/又は放射線を照射することにより組成物を硬化させ、電解質膜と電極を接合させる工程を行う。
(ii)触媒が担持された第一の電極上に、電解質膜・電極接合用液状硬化性樹脂組成物を塗布し、電解質膜を貼り合わせた後、更に、電解質膜・電極接合用液状硬化性樹脂組成物を塗布した触媒が担持された第二の電極を貼り合わせた後、加熱及び/又は放射線を照射して前記樹脂組成物を硬化させ、電解質膜と電極を接合させる工程を行う。
The liquid curable resin composition for joining an electrolyte membrane and an electrode according to the present invention plays a role of improving the joining property between an electrolyte membrane for a fuel cell and an electrode. It can be manufactured by a method.
(I) A liquid curable resin composition for electrolyte membrane / electrode bonding is applied on the first electrode on which the catalyst is supported, the electrolyte membrane is bonded together, and then heated and / or irradiated with radiation. The step of curing the object and bonding the electrolyte membrane and the electrode is performed.
(Ii) A liquid curable resin composition for electrolyte membrane / electrode bonding is applied on the first electrode carrying the catalyst, and the electrolyte membrane is bonded together. After the second electrode on which the catalyst coated with the resin composition is supported is bonded, heating and / or radiation is applied to cure the resin composition, and a step of joining the electrolyte membrane and the electrode is performed.

図1は、上記(ii)の方法を説明するもので、図中1は、カーボンペーパー2上に触媒層3が形成された空気極、4は、同じくカーボンペーパー5上に触媒層6が形成された燃料極で、7は電解質膜、8,9は本発明の液状硬化性樹脂組成物の層であり、例えば燃料極4の触媒層6面上に液状硬化性樹脂組成物層9、電解質膜7、液状硬化性樹脂組成物層8、空気極1の触媒層3面の順に積層し、次いで加熱及び/又は電子線等の放射線を照射し、上記組成物8,9を硬化させて、電解質膜・電極接合体を得るものである。   FIG. 1 illustrates the method (ii). In FIG. 1, 1 is an air electrode in which a catalyst layer 3 is formed on a carbon paper 2, and 4 is a catalyst layer 6 that is also formed on a carbon paper 5. 7 is an electrolyte membrane, and 8 and 9 are layers of the liquid curable resin composition of the present invention. For example, the liquid curable resin composition layer 9 and the electrolyte are formed on the surface of the catalyst layer 6 of the fuel electrode 4. The film 7, the liquid curable resin composition layer 8, and the catalyst layer 3 surface of the air electrode 1 are laminated in this order, and then irradiated with radiation such as heating and / or electron beam to cure the compositions 8 and 9, An electrolyte membrane / electrode assembly is obtained.

上記の触媒が担持された電極としては、通常の燃料電池の電極(燃料極、空気極)に触媒が担持されたものを用いることができる。この場合、これら電極の構成、材質は、燃料電池として公知の構成、材質とすることができ、触媒としても、燃料電池として公知の触媒、例えば白金系触媒等を使用することもできる。   As an electrode on which the catalyst is supported, an electrode in which a catalyst is supported on an electrode (fuel electrode, air electrode) of a normal fuel cell can be used. In this case, the structure and material of these electrodes can be those known as fuel cells, and catalysts known as fuel cells, such as platinum-based catalysts, can also be used.

電極と接合する電解質膜としては、例えば、パーフルオロアルキレン基を主鎖として側鎖にパーフルオロエーテルスルホン酸を有するパーフルオロスルホン酸系電解質膜、ポリテトラフルオロエチレンやエチレン・テトラフルオロエチレン共重合フイルムに放射線を照射し、スチレン、ジビニルベンゼンをグラフトした後、スルホン化した放射線グラフト電解質膜、ポリベンズイミダゾールやポリエーテルエーテルケトンにスルホン酸基を導入した炭化水素系電解質膜が例示される。また、本発明の組成物を予め熱及び/又は放射線を用いて硬化させ、フイルム状にしたものも電解質膜として使用できる。   Examples of the electrolyte membrane bonded to the electrode include a perfluorosulfonic acid electrolyte membrane having a perfluoroalkylene group as a main chain and a perfluoroethersulfonic acid in a side chain, polytetrafluoroethylene, ethylene / tetrafluoroethylene copolymer film, and the like. Examples include a radiation-grafted electrolyte membrane that is irradiated with radiation and grafted with styrene and divinylbenzene, and a hydrocarbon-based electrolyte membrane in which sulfonic acid groups are introduced into polybenzimidazole or polyetheretherketone. In addition, a film obtained by previously curing the composition of the present invention with heat and / or radiation can be used as an electrolyte membrane.

上記工程において、電極に塗工膜あるいは電解質膜を接合させるには、プレス等を用いて0.05〜5kgf/cm2程度で圧着させればよく、電解質膜と電極とを高温でプレスしなくても良好に密着させることができる。 In the above process, in order to join the coating film or the electrolyte membrane to the electrode, it is only necessary to press the electrode at about 0.05 to 5 kgf / cm 2 using a press or the like, without pressing the electrolyte membrane and the electrode at a high temperature. Even if it adheres well.

本発明の電解質膜・電極接合用液状硬化性樹脂組成物及び電解質膜・電極接合体は、燃料電池用として好適に用いられるものである。燃料電池は、燃料極と空気極との間に各極に良好に密着した薄膜の固体高分子電解質膜が設けられているものであり、固体高分子電解質膜の両面に触媒層・燃料拡散層及びセパレータを配置することで発電特性に優れる燃料電池を製造することができる。   The liquid curable resin composition for electrolyte membrane / electrode bonding and the electrolyte membrane / electrode assembly of the present invention are suitably used for fuel cells. A fuel cell has a thin solid polymer electrolyte membrane that is well adhered to each electrode between a fuel electrode and an air electrode, and a catalyst layer and a fuel diffusion layer on both sides of the solid polymer electrolyte membrane. In addition, a fuel cell having excellent power generation characteristics can be manufactured by arranging the separator.

以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。なお、下記の例において数平均分子量はゲルパーミュエーションクロマトグラフィ(GPC)により測定したポリスチレン換算値を示し、粘度はB型回転粘度計を用い、ローターNo.3、回転数30rpmの条件により測定した25℃における値を示す。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example. In the following examples, the number average molecular weight indicates a polystyrene conversion value measured by gel permeation chromatography (GPC), and the viscosity is measured using a B-type rotational viscometer. 3. The value at 25 ° C. measured under the condition of the rotation speed of 30 rpm is shown.

[実施例1]
数平均分子量410のフルオロテトラエチレングリコール100g、2,6−ジ−tert−ブチルヒドロキシトルエン(BHT)0.05gを反応容器に仕込み、窒素通気下、65〜70℃で2,4−トリレンジイソシアネート84.9gを滴下した。滴下後更に70℃で2時間反応させ、次いでジブチルチンジラウレート0.02gを添加し、乾燥空気下で2−ヒドロキシエチルアクリレート56.6gを滴下した。更に、70℃で5時間反応させ、数平均分子量990のフルオロポリエーテルウレタンアクリレートオリゴマー(オリゴマーA)を得た。
[Example 1]
A reaction vessel was charged with 100 g of fluorotetraethylene glycol having a number average molecular weight of 410 and 0.05 g of 2,6-di-tert-butylhydroxytoluene (BHT), and 2,4-tolylene diisocyanate at 65 to 70 ° C. under nitrogen flow. 84.9 g was added dropwise. After the dropwise addition, the mixture was further reacted at 70 ° C. for 2 hours, then 0.02 g of dibutyltin dilaurate was added, and 56.6 g of 2-hydroxyethyl acrylate was added dropwise under dry air. Furthermore, it was made to react at 70 degreeC for 5 hours, and the fluoro polyether urethane acrylate oligomer (oligomer A) of the number average molecular weight 990 was obtained.

オリゴマーA50g、アクリルアミドメチルプロパンスルホン酸100g、数平均分子量543,000のフッ化ポリビニリデンパウダー(PVDF)100g、溶剤としてN,N−ジメチルホルムアミド(DMF)900gを混合し、25℃の粘度が8,000mPa・sで蛍光色透明の液状硬化性樹脂組成物Bを得た。   50 g of oligomer A, 100 g of acrylamidomethylpropanesulfonic acid, 100 g of polyvinylidene fluoride powder (PVDF) having a number average molecular weight of 543,000, and 900 g of N, N-dimethylformamide (DMF) as a solvent are mixed, and the viscosity at 25 ° C. is 8, Fluorescent color transparent liquid curable resin composition B was obtained at 000 mPa · s.

次に、アプリケーターを用い、ガラス板上に液状硬化性樹脂組成物Bを200μmになるよう塗工し、酸素濃度50ppm以下の窒素雰囲気下で加速電圧300kV、吸収線量が50kGyになるよう電子線照射して硬化させ、膜厚が約30μmの電解質膜Cを得た。   Next, using an applicator, the liquid curable resin composition B is applied to a glass plate to a thickness of 200 μm, and irradiated with an electron beam so that the acceleration voltage is 300 kV and the absorbed dose is 50 kGy in a nitrogen atmosphere with an oxygen concentration of 50 ppm or less. And cured to obtain an electrolyte membrane C having a thickness of about 30 μm.

ナフィオンの5%イソプロピルアルコール溶液(アルドリッチ社製)と白金を50質量%担持したTEC10E50E(田中貴金属社製)を混練してペースト状とした触媒ペーストをカーボンペーパーTGP−H−060(東レ社製)上に白金触媒が3mg/cm2になるようワイヤーバーを用いて塗工した後、熱風循環式乾燥器内で60℃,30分間乾燥させ、電極(空気極)を得た。 Carbon paper TGP-H-060 (manufactured by Toray Industries, Inc.) is a catalyst paste made by kneading 5% isopropyl alcohol solution of Nafion (manufactured by Aldrich) and TEC10E50E (manufactured by Tanaka Kikinzoku) carrying 50% by mass of platinum. After coating using a wire bar so that a platinum catalyst might be set to 3 mg / cm < 2 > above, it dried at 60 degreeC for 30 minute (s) in the hot air circulation type dryer, and the electrode (air electrode) was obtained.

同様にして白金・ルテニウム合金を54質量%担持したカーボンTEC61E54(田中貴金属社製)を混練してペースト状とした触媒ペーストをカーボンペーパーTGP−H−060(東レ社製)上に白金・ルテニウム触媒が3mg/cm2になるようワイヤーバーを用いて塗工した後、熱風循環式乾燥器内で60℃,30分間乾燥させ、電極(燃料極)を得た。 Similarly, a platinum-ruthenium catalyst obtained by kneading carbon TEC61E54 (manufactured by Tanaka Kikinzoku Co., Ltd.) carrying 54% by mass of a platinum-ruthenium alloy into a paste is prepared on carbon paper TGP-H-060 (manufactured by Toray Industries, Inc.). Was applied using a wire bar so as to be 3 mg / cm 2, and then dried in a hot air circulation dryer at 60 ° C. for 30 minutes to obtain an electrode (fuel electrode).

これらの電極の触媒層面上にそれぞれ液状硬化性樹脂組成物Bを膜厚が約20μmになるようアプリケーターを用いて塗工し、電解質膜Cの両面に貼り合わせ、室温で5kgf/cm2のローラーを2往復させ、圧着した。その後、電子線照射装置を用い、図1に示す態様で、酸素濃度50ppm以下の窒素雰囲気下で加速電圧300kV、吸収線量が50kGyになるよう電子線照射したところ、液状硬化性樹脂組成物Bは良好に硬化し、電解質膜と各電極は強固に接合していた。 The liquid curable resin composition B is applied on the catalyst layer surface of these electrodes using an applicator so that the film thickness is about 20 μm, and is bonded to both surfaces of the electrolyte membrane C, and a roller of 5 kgf / cm 2 at room temperature. Was reciprocated twice and crimped. Thereafter, using the electron beam irradiation apparatus, in the embodiment shown in FIG. 1, the liquid curable resin composition B was irradiated with an electron beam so that the acceleration voltage was 300 kV and the absorbed dose was 50 kGy in a nitrogen atmosphere with an oxygen concentration of 50 ppm or less. It cured well and the electrolyte membrane and each electrode were firmly bonded.

この電解質膜・電極接合体を用い、1M/Lの濃度のメタノールを燃料とし、30℃で発電させたところ、電流100mA/cm2で、20mW/cm2の出力を得た。 Using this electrolyte membrane / electrode assembly, methanol at a concentration of 1 M / L was used as fuel, and power was generated at 30 ° C., and an output of 20 mW / cm 2 was obtained at a current of 100 mA / cm 2 .

[比較例1]
実施例1で作製した燃料極(アノード)と空気極(カソード)の間に、液状硬化性樹脂組成物を塗布しないで直接電解質膜Cを挟み、室温で5kgf/cm2のローラーを2往復させて圧着したが、全く密着しなかった。
[Comparative Example 1]
The electrolyte membrane C was directly sandwiched between the fuel electrode (anode) and the air electrode (cathode) produced in Example 1 without applying the liquid curable resin composition, and a 5 kgf / cm 2 roller was reciprocated twice at room temperature. Although it was crimped, it did not adhere at all.

本発明の電解質膜・電極接合体を作製する方法の一例を説明する断面図である。It is sectional drawing explaining an example of the method of producing the electrolyte membrane electrode assembly of this invention.

符号の説明Explanation of symbols

1 空気極
2,5 カーボンペーパー
3,6 触媒層
4 燃料極
7 電解質膜
8,9 液状硬化性樹脂組成物
DESCRIPTION OF SYMBOLS 1 Air electrode 2,5 Carbon paper 3,6 Catalyst layer 4 Fuel electrode 7 Electrolyte membrane 8,9 Liquid curable resin composition

Claims (2)

(A)一分子中に1個のエチレン性不飽和基と1個のスルホン酸基もしくはその前駆体基とを有するモノマーとして、スチレンスルホン酸、アリルベンゼンスルホン酸、アリルオキシベンゼンスルホン酸、アクリルアミド2−メチルプロパンスルホン酸、ビニルスルホン酸、フルオロビニルスルホン酸、パーフルオロアルキルスルホン酸フルオロビニルエーテル及びパーフルオロビニルエーテルスルホン酸から選ばれるスルホン酸基含有モノマー又はそのアルカリ金属塩
(B)エチレン性不飽和基と共重合もしくは付加反応する基を一分子中に少なくとも2個有するオリゴマーとして、ポリエーテルポリアクリレー
モノマー/オリゴマーの質量比10/90〜90/10で含有してなり、25℃における粘度が100,000mPa・s以下であることを特徴とする電解質膜・電極接合用液状硬化性樹脂組成物。
(A) as a monomer having a one ethylenically unsaturated group and one sulfonic acid group or its precursor group in the molecule, styrene sulfonic acid, allyl sulfonic acid, allyl oxybenzene sulfonic acid, acrylamide 2 A sulfonic acid group-containing monomer selected from methylpropanesulfonic acid, vinylsulfonic acid, fluorovinylsulfonic acid, perfluoroalkylsulfonic acid fluorovinyl ether and perfluorovinyl ether sulfonic acid, or an alkali metal salt thereof ,
(B) an ethylenically unsaturated group copolymerizable or addition reaction to groups as oligomers having in one molecule at least two, polyether acrylated DOO
A liquid curable resin composition for joining an electrolyte membrane and an electrode, characterized by having a monomer / oligomer mass ratio of 10/90 to 90/10 and a viscosity at 25 ° C. of 100,000 mPa · s or less .
請求項記載の電解質膜・電極接合用液状硬化性樹脂組成物を予め作製した電解質膜又は電極の少なくともいずれか一方に塗布し、前記液状硬化性樹脂組成物が電解質膜と電極間に介在するよう貼り合わせた後、前記液状硬化性樹脂組成物を加熱及び/又は放射線照射により硬化させることにより、前記電解質膜と前記電極硬化膜を接合することを特徴とする固体高分子型燃料電池用電解質膜・電極接合体の製造方法。 The liquid curable resin composition for bonding an electrolyte membrane / electrode according to claim 1 is applied to at least one of an electrolyte membrane or an electrode prepared in advance, and the liquid curable resin composition is interposed between the electrolyte membrane and the electrode. After being bonded together, the liquid curable resin composition is cured by heating and / or radiation irradiation to join the electrolyte membrane and the electrode cured membrane, and the electrolyte for a polymer electrolyte fuel cell, Manufacturing method of membrane / electrode assembly.
JP2004287561A 2004-09-30 2004-09-30 Liquid curable resin composition for electrolyte membrane / electrode bonding and method for producing electrolyte membrane / electrode assembly Expired - Fee Related JP4636235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004287561A JP4636235B2 (en) 2004-09-30 2004-09-30 Liquid curable resin composition for electrolyte membrane / electrode bonding and method for producing electrolyte membrane / electrode assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004287561A JP4636235B2 (en) 2004-09-30 2004-09-30 Liquid curable resin composition for electrolyte membrane / electrode bonding and method for producing electrolyte membrane / electrode assembly

Publications (2)

Publication Number Publication Date
JP2006100207A JP2006100207A (en) 2006-04-13
JP4636235B2 true JP4636235B2 (en) 2011-02-23

Family

ID=36239788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004287561A Expired - Fee Related JP4636235B2 (en) 2004-09-30 2004-09-30 Liquid curable resin composition for electrolyte membrane / electrode bonding and method for producing electrolyte membrane / electrode assembly

Country Status (1)

Country Link
JP (1) JP4636235B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3361546B1 (en) * 2016-09-02 2023-06-07 LG Energy Solution, Ltd. Gel polymer electrolyte and lithium secondary battery including the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07220741A (en) * 1994-01-28 1995-08-18 Asahi Glass Co Ltd Manufacture of electrode-film binder for solid high monomer type fuel cell
JPH11339824A (en) * 1998-05-22 1999-12-10 Asahi Glass Co Ltd Manufacture of electrode-membrane joining body for solid polymer electrolyte fuel cell
JP2003147074A (en) * 2001-11-16 2003-05-21 Toyobo Co Ltd Aromatic polyarylene ether compound containing sulfonic acid group and polymer electrolyte membrane
JP2003217365A (en) * 2002-01-24 2003-07-31 Toyobo Co Ltd High polymer solid electrolyte formed body, high polymer solid electrolyte film and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07220741A (en) * 1994-01-28 1995-08-18 Asahi Glass Co Ltd Manufacture of electrode-film binder for solid high monomer type fuel cell
JPH11339824A (en) * 1998-05-22 1999-12-10 Asahi Glass Co Ltd Manufacture of electrode-membrane joining body for solid polymer electrolyte fuel cell
JP2003147074A (en) * 2001-11-16 2003-05-21 Toyobo Co Ltd Aromatic polyarylene ether compound containing sulfonic acid group and polymer electrolyte membrane
JP2003217365A (en) * 2002-01-24 2003-07-31 Toyobo Co Ltd High polymer solid electrolyte formed body, high polymer solid electrolyte film and its manufacturing method

Also Published As

Publication number Publication date
JP2006100207A (en) 2006-04-13

Similar Documents

Publication Publication Date Title
WO2005098875A1 (en) Electrolyte membrane, method for producing membrane electrode assembly, and fuel cell
EP1772918B1 (en) Curable resin composition for fuel cell electrolyte film, electrolyte film and process for producing the same, electrolyte film/electrode assembly and process for producing the same
EP1786054A1 (en) Electrolyte membrane and fuel cell utilizing the electrolyte membrane
EP1890351A1 (en) Membrane electrode assembly and direct liquid fuel type fuel cell
JP4284463B2 (en) Electrolyte membrane and fuel cell using the electrolyte membrane
WO2005076396A1 (en) Electrolyte film and fuel cell using the electrolyte film
CA2560377A1 (en) Electrolyte membrane and fuel cell
JP4217891B2 (en) Fuel cell electrolyte membrane and method for producing fuel cell electrolyte membrane / electrode assembly
JP4632050B2 (en) Catalyst paste for polymer electrolyte fuel cell
JP4636235B2 (en) Liquid curable resin composition for electrolyte membrane / electrode bonding and method for producing electrolyte membrane / electrode assembly
EP1569294B1 (en) Electrolyte membrane-forming liquid curable resin composition, and preparation of electrolyte membrane and electrolyte membrane/electrode assembly
US20090233143A1 (en) Membrane Electrode Assembly, Process for Producing Same, and Direct Methanol Fuel Cell
JP2004253336A (en) Electrolyte film and fuel cell using it
JP4561214B2 (en) Electrolyte membrane
JP4811575B2 (en) Curable resin composition for electrolyte membrane, method for producing electrolyte membrane, and method for producing electrolyte membrane / electrode assembly
JP2007048543A (en) Electrolyte film and direct liquid fuel type fuel cell
JP2004253183A (en) Manufacturing method of electrolyte membrane, and fuel cell
US8232324B2 (en) Electrolyte membrane-forming curable resin composition, and preparation of electrolyte membrane and electrolyte membrane/electrode assembly
JP4303531B2 (en) FUEL CELL USING SOLID ELECTROLYTE MEMBRANE AND FUEL CELL MANUFACTURING METHOD
JP2005268032A (en) Polymer electrolyte membrane, its evaluation method, and fuel cell
JP2009218154A (en) Manufacturing method of membrane electrode assembly
JP4632053B2 (en) Curable composition for fuel cell catalyst layer and catalyst layer
JP2005063690A (en) Electrolyte membrane and fuel cell using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4636235

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees