JPH09180730A - Electrode for solid high molecular fuel cell and manufacture thereof - Google Patents

Electrode for solid high molecular fuel cell and manufacture thereof

Info

Publication number
JPH09180730A
JPH09180730A JP7353458A JP35345895A JPH09180730A JP H09180730 A JPH09180730 A JP H09180730A JP 7353458 A JP7353458 A JP 7353458A JP 35345895 A JP35345895 A JP 35345895A JP H09180730 A JPH09180730 A JP H09180730A
Authority
JP
Japan
Prior art keywords
electrolyte
catalyst
electrode
fuel cell
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7353458A
Other languages
Japanese (ja)
Inventor
Yoji Yamada
洋司 山田
Tsutomu Seki
務 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP7353458A priority Critical patent/JPH09180730A/en
Publication of JPH09180730A publication Critical patent/JPH09180730A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solid high molecular fuel cell, of which catalyst bed has the ideal distribution and which has high performance, by forming the catalyst bed so that the electrolyte is contained at a larger rate on the surface side thereof than other parts thereof. SOLUTION: A catalyst bed 15 to be formed on a gas diffused layer 14 is formed of a first layer 16 including the electrolyte at a small ratio, a second layer 17 containing the electrolyte at an intermediate ratio, and a third layer 18 containing the electrolyte at a large ratio. As a method for slanting the rate of the electrolyte in relation to the catalyst powder, the electrolyte is added for mixing to the catalyst powder at a different rate of addition so as to manufacture two or more kinds of raw material mixture, and these two kinds or more of raw material mixture is mixed so as to form the suspension, and this suspension is deposited for carrying on the gas diffused layer 16 by filtering. At the time of filtering the catalyst suspension, plural raw material mixture is relatively divided for lamination by a difference of specific gravity. Distribution of the catalyst bed in the process can be thereby realized, and the electrode manufacturing process can be simplified.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池用電極及
びその製造方法に関し、より詳しくはカーボンその他の
材料からなるガス拡散層上に、(A)触媒粉末及び電解
質を含む触媒層、または(B)触媒粉末、電解質及び撥
水化剤を含む触媒層を堆積、担持させてなる形式の固体
高分子型燃料電池用電極及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell electrode and a method for manufacturing the same, and more particularly, to (A) a catalyst layer containing catalyst powder and an electrolyte on a gas diffusion layer made of carbon or other material, or ( B) An electrode for a polymer electrolyte fuel cell of the type in which a catalyst layer containing a catalyst powder, an electrolyte and a water repellent agent is deposited and supported, and a method for producing the same.

【0002】[0002]

【従来の技術】固体高分子電解質型燃料電池は、イオン
伝導体すなわち電解質が固体で且つ高分子である点に特
徴を有し、その固体高分子電解質としては具体的にはイ
オン交換樹脂膜等が使用され、この電解質膜を挟んで負
極及び正極の両電極を配置し、例えば負極側に水素を供
給し、また正極側には酸素又は空気を供給することで電
気化学反応を起こさせて電気を発生させる。この場合そ
の固体高分子電解質膜に接する負極及び正極の両電極と
しては、その中に反応を促進させるために白金、パラジ
ウムその他の触媒が添加、使用される形式のものがあ
り、この形式の電極の製造法としてはこれまで種々のも
のが提案されてきている。
2. Description of the Related Art Solid polymer electrolyte fuel cells are characterized in that an ionic conductor, that is, an electrolyte is a solid and a polymer. Specific examples of the solid polymer electrolyte include an ion exchange resin membrane. Both electrodes of the negative electrode and the positive electrode are arranged with the electrolyte membrane sandwiched between them.For example, hydrogen is supplied to the negative electrode side, and oxygen or air is supplied to the positive electrode side to cause an electrochemical reaction to cause electrolysis. Generate. In this case, as both the negative electrode and the positive electrode in contact with the solid polymer electrolyte membrane, there is a type in which platinum, palladium or other catalyst is added and used to accelerate the reaction, and this type of electrode is used. Various manufacturing methods have been proposed so far.

【0003】例えば米国特許第3134697号には、
触媒粒子をイオン交換樹脂と混合して電極シートとし、
これを固体高分子電解質としてのイオン交換樹脂膜に熱
圧着する方法が記載され、また米国特許第329748
4号や米国特許第3432355号では触媒粒子をポリ
テトラフルオロエチレンと混合して電極シートとし、こ
れをイオン交換樹脂膜に熱圧着する方法が記載されてい
る。しかしこのように固体高分子電解質膜と電極シート
とを熱圧着等によりそのまま接合するだけでは反応サイ
ト(反応域)が電解質と電極との二次元的な界面に極限
され、実質的な作用面積が少ない。
For example, in US Pat. No. 3,134,697,
The catalyst particles are mixed with an ion exchange resin to form an electrode sheet,
A method of thermocompression bonding this to an ion exchange resin membrane as a solid polymer electrolyte is described, and US Pat. No. 329748.
No. 4 and U.S. Pat. No. 3,432,355 describe a method in which catalyst particles are mixed with polytetrafluoroethylene to form an electrode sheet, which is then thermocompression bonded to an ion exchange resin membrane. However, just by joining the solid polymer electrolyte membrane and the electrode sheet as they are by thermocompression bonding or the like, the reaction site (reaction region) is limited to the two-dimensional interface between the electrolyte and the electrode, and the substantial working area is reduced. Few.

【0004】これを改善する手法の一つとして、電極材
料と固体電解質材料との接点を多くし、反応サイトの三
次元化を図ることが提案されている。例えば「電気化
学」53、No.10(1985)、P.812〜81
7によれば、固体高分子電解質膜としてパーフルオロカ
ーボンスルホン酸樹脂膜の一種であるNAFIONー1
17膜(Du Pont社製、商品名)を用い、このN
AFION膜の片面に無電解メッキ法(浸透法)により
白金電極を接合して水素極(アノード、燃料極)とする
一方、この電極の対極を構成する酸素極(空気極)すな
わちカソード側電極については、概略以下の工程により
製作されている。
As one of the techniques for improving this, it has been proposed to increase the number of contact points between the electrode material and the solid electrolyte material to make the reaction site three-dimensional. For example, “Electrochemistry” 53, No. 10 (1985); 812-81
According to No. 7, NAFION-1 which is a kind of perfluorocarbon sulfonic acid resin membrane as a solid polymer electrolyte membrane.
Using 17 membranes (trade name, manufactured by Du Pont),
A platinum electrode is bonded to one side of the AFION film by an electroless plating method (permeation method) to form a hydrogen electrode (anode, fuel electrode), while an oxygen electrode (air electrode) that constitutes the counter electrode of this electrode, that is, a cathode side electrode. Is manufactured by the following steps.

【0005】まず、触媒粉末として白金ブラック粉末又
は10%の白金を担持したカーボン粉末を使用し、これ
にアンバーライトIRー120B(Tー3)〔スチレン
ージビニルベンゼンスルホン酸樹脂、Na型、粒経30
μmの粉末、Organo社製、商品名〕又はNAFI
ONー117〔パーフルオロカーボンスルホン酸樹脂
(H型)、脂肪族アルコールと水との混合溶媒中5%溶
液、Aldrich Chemical社製、商品名〕
を種々の混合比で混合する。
First, platinum black powder or carbon powder carrying 10% platinum was used as catalyst powder, and Amberlite IR-120B (T-3) [styrene-divinylbenzene sulfonic acid resin, Na type, granules] Sutra 30
μm powder, manufactured by Organo, trade name] or NAFI
ON-117 [perfluorocarbon sulfonic acid resin (H type), 5% solution in a mixed solvent of aliphatic alcohol and water, manufactured by Aldrich Chemical Co., trade name]
Are mixed in various mixing ratios.

【0006】次いで、上記で得た各混合物に対してポリ
テトラフルオロエチレンを水懸濁液状で加えて混練した
後、この混練物をロール圧延により圧延してシート状と
し、真空乾燥後、この電極シートを固体高分子電解質と
してのNAFION膜に対し温度100℃、圧力210
kg/cm2 でホットプレスするというものである。そ
してそこでは、固体高分子電解質膜としてのNAFIO
N膜に一体に接合された酸素極にイオン交換樹脂を混入
することで電極反応サイトの三次元化を図り、分極特性
を著しく向上させている。
Next, polytetrafluoroethylene was added to each mixture obtained above in the form of an aqueous suspension and kneaded, and then the kneaded product was rolled by a roll to form a sheet, which was vacuum dried and then the electrode was formed. The sheet is applied to a NAFION membrane as a solid polymer electrolyte at a temperature of 100 ° C. and a pressure of 210.
It is hot pressing at kg / cm 2 . And there, NAFIO as a solid polymer electrolyte membrane
By mixing an ion exchange resin into the oxygen electrode integrally bonded to the N film, the electrode reaction site is made three-dimensional and the polarization characteristics are remarkably improved.

【0007】以上の技術では、その電極シートは何れも
電極材料の混練物を圧延等の手法によりシート化するこ
とで製造されているが、この種の電極シートの作製法と
してはその基材として別途多孔性のペーパー又はシート
を用い、これに触媒粒子を担持させる態様も行われてい
る。例えば特開平4ー162365号では、シート状触
媒層構成用の微粉末として白金触媒担持のカーボンブラ
ック粒子と触媒無担持のカーボンブラック粒子との混合
物を用い、この粒子を高分子電解質(イオン交換樹脂)
でコーティングし、この粒子混合物を基材としての撥水
化カーボンペーパー上に散布し、加熱下、プレスをする
ことにより付着させている。
In the above technique, all of the electrode sheets are manufactured by forming a kneaded material of the electrode material into a sheet by a method such as rolling. Another mode is also used in which a porous paper or sheet is separately used and catalyst particles are carried on the porous paper or sheet. For example, in JP-A-4-162365, a mixture of carbon black particles carrying a platinum catalyst and carbon black particles carrying no catalyst is used as a fine powder for forming a sheet-like catalyst layer, and the particles are used as a polymer electrolyte (ion exchange resin). )
The particle mixture is sprayed on a water repellent carbon paper as a base material, and is pressed by heating to adhere the carbon paper.

【0008】このようにして得られた電極シートは、撥
水化カーボンペーパーがガス拡散層を形成し、この片面
上に付着されたコーティング触媒粒子の層が触媒層とな
り、燃料電池への組み込むに際しては、触媒層側を高分
子電解質膜面に当接させることになる。その触媒層のガ
ス拡散層上への付着の仕方としては、そのようなプレス
法のほか、塗装法やロール法、ドクターブレード法等が
適用し得るが、このうち塗装法では大面積化が困難であ
り、またロール法やドクターブレード法では各種手間を
要するだけではなく、装置自体が高価である。
In the electrode sheet thus obtained, the water-repellent carbon paper forms a gas diffusion layer, and the layer of coated catalyst particles adhered on one side of this becomes a catalyst layer, which is incorporated into a fuel cell. Causes the catalyst layer side to contact the polymer electrolyte membrane surface. As a method of adhering the catalyst layer onto the gas diffusion layer, in addition to such a pressing method, a coating method, a roll method, a doctor blade method, etc. can be applied, but it is difficult to increase the area by the coating method. In addition, the roll method and the doctor blade method not only require various troubles, but also the apparatus itself is expensive.

【0009】このため本発明者は、コーティング触媒粒
子をガス拡散層上へ付着させるその仕方として、特に濾
過形式を応用した手法すなわちそのガス拡散層(撥水化
カーボンペーパー等)上に触媒粒子を含む触媒層形成用
水溶液を注ぎ、加圧濾過ないし吸引濾過する手法に注目
し、これに関連する成果を先に開発し出願している(特
開平7ー130377号)。
For this reason, the present inventor has found that, as a method of adhering the coated catalyst particles onto the gas diffusion layer, the catalyst particles are applied onto the gas diffusion layer (such as water repellent carbon paper) by applying a filtering method. Attention was paid to a method of pouring an aqueous solution for forming a catalyst layer containing the solution and performing pressure filtration or suction filtration, and the results related to this were previously developed and filed (Japanese Patent Laid-Open No. 7-130377).

【0010】上記出願に係る発明は、固体高分子型燃料
電池用電極の製造法において、撥水化カーボンペーパー
等を基材とし、これに高分子電解質で被覆(コーティン
グ)された触媒粒子にポリテトラフルオロエチレン系ポ
リマーのディスパージョンを混合した懸濁液を濾過形式
で適用するに当たり、その懸濁液を希硫酸中に分散させ
ることにより行うことを特徴とするものである。この技
術はこのようにその懸濁液自体に着目し、これを改善し
たものであるが、これによりこの工程を経て得られる電
極の特性を向上させ、延いて電池の性能を大幅に改善し
ている。
The invention according to the above-mentioned application is a method for producing an electrode for a polymer electrolyte fuel cell, in which a catalyst particle coated with a polymer electrolyte is coated on a catalyst particle made of water-repellent carbon paper or the like as a substrate. When a suspension mixed with a dispersion of a tetrafluoroethylene-based polymer is applied in a filtration mode, the suspension is dispersed in dilute sulfuric acid. This technique is an improvement of this technique, focusing on the suspension itself in this way, but this improves the characteristics of the electrode obtained through this process and, in turn, significantly improves the battery performance. There is.

【0011】ところで、上記濾過法では撥水化カーボン
ペーパー等の面へのその触媒粒子の付着をより確実に
し、さらにその粒子をその撥水化カーボンペーパー等の
面の内部へも混入させる等のため分散液をそのようにた
だ注ぐだけではなく、下方から減圧するいわゆる吸引濾
過形式や上方から加圧する形式で行うこともできるが、
例えばヌッツェ(ブフナー漏斗)形式等ではその規模な
いしは大きさに限度があり、均一な層を形成できないば
かりか、処理面の大面積化は困難である。
By the way, in the above filtration method, the adhesion of the catalyst particles to the surface of the water-repellent carbon paper or the like is made more reliable, and the particles are mixed into the surface of the water-repellent carbon paper or the like. Therefore, it is possible not only to just pour the dispersion liquid in that way, but also to perform so-called suction filtration in which the pressure is reduced from below or pressure in above.
For example, in the Nutze (Buchner funnel) type or the like, there is a limit in the scale or size, and it is difficult to form a uniform layer and it is difficult to increase the area of the treated surface.

【0012】そこで本発明者は、さらにこのような問題
を解決するため、ガス拡散層上に触媒層を担持させてな
る燃料電池用の電極を製造するに当たり、中空筒状体と
その上面がロート状に形成された下板を用い、加圧濾過
を応用することにより、ガス拡散層上に触媒粒子を含む
溶液を均等に堆積させる燃料電池の電極製造方法及び装
置を先に開発している(特願平6ー309931号)。
図1〜図2はこの燃料電池用電極の製造方法及び装置の
一態様を示すものである。
In order to solve such a problem, the inventor of the present invention manufactures an electrode for a fuel cell in which a catalyst layer is carried on a gas diffusion layer, and the hollow cylindrical body and its upper surface are formed into a funnel. A method and an apparatus for manufacturing a fuel cell electrode have been previously developed in which a solution containing catalyst particles is uniformly deposited on a gas diffusion layer by applying pressure filtration using a lower plate formed in a shape of ( Japanese Patent Application No. 6-309931).
1 and 2 show one embodiment of the method and apparatus for manufacturing the fuel cell electrode.

【0013】図1中、1は中空筒状体であり、この断面
形状は図2(a)のような円形状とは限らず、四角形や
五角形その他の多角形をしたものでも使用可能である。
この中空筒状体1は、図2(a)のとおり竪型に配置さ
れるが、その材質としてはガラス製、金属製等適宜のも
のを使用することができる。図1中、2は上板、3は下
板、4及び5はそれぞれ上方及び下方のパッキンであ
り、6はコンプレッサーである。このうち上下のパッキ
ン4及び5は、中空筒状体の上下周縁部の形状に合わせ
た形状に構成され、例えば中空筒状体が円筒状である場
合には、その上下周縁部に対応して円環状に構成され
る。
In FIG. 1, reference numeral 1 denotes a hollow cylindrical body whose cross-sectional shape is not limited to a circular shape as shown in FIG. 2 (a), and a square, pentagonal or other polygonal shape can be used. .
The hollow cylindrical body 1 is arranged in a vertical shape as shown in FIG. 2 (a), but as the material thereof, an appropriate material such as glass or metal can be used. In FIG. 1, 2 is an upper plate, 3 is a lower plate, 4 and 5 are upper and lower packings, respectively, and 6 is a compressor. Of these, the upper and lower packings 4 and 5 are configured to match the shape of the upper and lower peripheral portions of the hollow cylindrical body. For example, when the hollow cylindrical body has a cylindrical shape, the packings 4 and 5 correspond to the upper and lower peripheral portions thereof. It is configured in an annular shape.

【0014】また、上板2には、濾過する溶液を導入す
る管(バルブ付)7、過剰圧時に空気を放出する管(バ
ルブ付)8を備え、容器内の内圧を上昇させるコンプレ
ッサー6からの圧縮空気を導入する管9が連結されてい
る。10は下板3の中央部に設けられた溶媒排出口、1
1は下板3に一体に取り付けられた脚部であり、12は
溶液から触媒層が堆積されるガス拡散板である。このガ
ス拡散板12は、中空円筒体1の下部開口縁部とパッキ
ン5の間に挟持され、これをフィルターとしてその上面
に溶液中の溶質すなわち触媒粒子が堆積されることにな
る。
In addition, the upper plate 2 is provided with a pipe (with a valve) 7 for introducing a solution to be filtered and a pipe (with a valve) 8 for discharging air when the pressure is excessive, and a compressor 6 for increasing the internal pressure in the container. A pipe 9 for introducing the compressed air is connected. 10 is a solvent outlet provided in the central portion of the lower plate 3, 1
Reference numeral 1 is a leg portion integrally attached to the lower plate 3, and 12 is a gas diffusion plate on which a catalyst layer is deposited from a solution. The gas diffusion plate 12 is sandwiched between the lower opening edge of the hollow cylindrical body 1 and the packing 5, and the solute in the solution, that is, catalyst particles is deposited on the upper surface of the packing 5 as a filter.

【0015】下板3は、図2(b)中に点線で示すとお
り、好ましくはロート状に構成される。これにより濾過
後の溶媒がスムーズに流れるようになっている。下板3
の上面をこのようにロート状に構成することにより、中
空筒状体1等の他の構成とも相まち、濾過後の溶媒が溶
媒排出口に向かってスムーズに流れる。またその操作中
に堆積物の厚みに分布が生じても、厚い部分では流れが
悪くなり、触媒粒子の堆積速度が落ちるため、全体とし
て均一な層とすることができる。その傾斜の程度はこの
ような作用効果を得る上で必要な限度で適宜設定するこ
とができる。
The lower plate 3 is preferably formed in a funnel shape as shown by a dotted line in FIG. 2 (b). This allows the solvent after filtration to flow smoothly. Lower plate 3
By configuring the upper surface of the above in a funnel shape in this manner, the solvent after filtration smoothly flows toward the solvent outlet, in contrast with other configurations such as the hollow cylindrical body 1. Even if a distribution of the thickness of the deposit is generated during the operation, the flow becomes poor in the thick portion and the deposition rate of the catalyst particles decreases, so that a uniform layer can be formed as a whole. The degree of the inclination can be appropriately set within a limit necessary for obtaining such an effect.

【0016】その概略以上の装置を操作するに際して
は、中空円筒体1中に触媒粒子を含む溶液をその収容容
器から導管7を介して供給し、コンプレッサー6により
圧縮空気を導入して中空円筒体1内を加圧状態として操
作する。この場合、その加圧の程度は装置の規模(中空
筒体1の径、高さ等)、触媒粒子を含む溶液の流動性、
ガス拡散板12自体の強度等の諸性質、下板3上面のロ
ート状傾斜の程度等の如何により適宜選定できるが、通
常、例えば中空円筒体1の直径が30cm、高さ5cm
程度の場合には0.1kg/cm2 G(ゲージ圧)以下
で実施される。
In operating the above apparatus, a solution containing catalyst particles in the hollow cylindrical body 1 is supplied from its container via a conduit 7 and compressed air is introduced by a compressor 6 to form a hollow cylindrical body. The inside of 1 is operated under pressure. In this case, the degree of pressurization depends on the scale of the apparatus (diameter, height, etc. of the hollow cylinder 1), fluidity of the solution containing the catalyst particles,
The gas diffusion plate 12 itself can be appropriately selected depending on various properties such as strength and the degree of the funnel-shaped inclination of the upper surface of the lower plate 3. Normally, for example, the hollow cylindrical body 1 has a diameter of 30 cm and a height of 5 cm.
In the case of about 0.1 kg / cm 2 G (gauge pressure) or less.

【0017】加圧濾過を応用した以上の電極製造方法及
び装置によれば、100cm2 以上の大面積であっても
均一でしかもガス拡散性能のよい優れた電極を得ること
ができる。またその製造時に溶媒が通過した細孔がガス
の拡散路となるという利点もあり、さらにこの装置によ
れば他の触媒層成膜装置に比べて非常に安価であるなど
優れた効果が得られる。またガス拡散板(層)は、電極
自体の基材ともなるもので、この材料としては好ましく
は撥水化カーボンペーパーが使用される。この撥水化カ
ーボンペーパーは所定の厚さ及び気孔率を有するカーボ
ンペーパーを使用し、これに例えばポリテトラフルオロ
エチレン系のディスパージョンを含浸した後、熱処理を
して撥水化したものである。
According to the above electrode manufacturing method and apparatus to which pressure filtration is applied, it is possible to obtain an excellent electrode which is uniform and has a good gas diffusion performance even in a large area of 100 cm 2 or more. Further, there is also an advantage that the pores through which the solvent passes during the production thereof become a gas diffusion path, and further, this device has an excellent effect such as being extremely inexpensive as compared with other catalyst layer film forming devices. . The gas diffusion plate (layer) also serves as a base material of the electrode itself, and as this material, water repellent carbon paper is preferably used. The water-repellent carbon paper is made of carbon paper having a predetermined thickness and porosity, which is impregnated with, for example, a polytetrafluoroethylene-based dispersion and then heat-treated to be water-repellent.

【0018】さらに触媒粒子を含む溶液としては、白
金ブラック粒子や白金担持カーボンブラック粒子と固体
高分子電解質の溶液とを混合して得た懸濁液、、の
懸濁液に結合剤(撥水化剤でもある)としてポリテトラ
フルオロエチレン系ポリマーを混合してなる懸濁液等の
触媒層を形成する溶液を使用するが、前述特開平7ー1
30377号の発明のようにその懸濁液を希硫酸水溶液
に分散させたものを使用すれば、両者の効果を併わせも
つ効果を得ることができる。
Further, as the solution containing catalyst particles, a suspension obtained by mixing platinum black particles or platinum-supporting carbon black particles with a solution of a solid polymer electrolyte, and a binder (water repellent) A solution for forming a catalyst layer, such as a suspension obtained by mixing a polytetrafluoroethylene-based polymer, is used as the agent).
If the suspension is used in which it is dispersed in a dilute sulfuric acid aqueous solution as in the invention of No. 30377, an effect having both effects can be obtained.

【0019】ところで、以上で述べた触媒層の原料は触
媒粉末、撥水化剤及び電解質の3つであり、このうち電
解質は電極反応点を増加させるために混合される。上記
加圧濾過法では、この3成分を水を溶媒としてスラリー
とし、加圧濾過法によりガス拡散層上に堆積させること
で、上述のように有効な優れた効果が得られる。しかし
このような先行技術ないしは従来技術では、この電解質
を触媒層中に均一に混入させており、このため反応点を
増加させたい触媒層の表面では電解質の割合が所望する
割合よりも小さく、増加させる必要のない拡散層側では
電解質の割合が所望される割合よりも大きくなってい
た。
By the way, the above-mentioned raw materials of the catalyst layer are the catalyst powder, the water repellent agent and the electrolyte, of which the electrolyte is mixed to increase the electrode reaction points. In the pressure filtration method, the three components are made into a slurry using water as a solvent and deposited on the gas diffusion layer by the pressure filtration method, whereby the above-described excellent advantageous effects are obtained. However, in such a prior art or the prior art, this electrolyte is uniformly mixed in the catalyst layer, so that on the surface of the catalyst layer where the reaction points are desired to be increased, the proportion of the electrolyte is smaller than the desired proportion, and the increase On the side of the diffusion layer that does not need to be made, the ratio of the electrolyte was higher than the desired ratio.

【0020】[0020]

【発明が解決しようとする課題】そこで本発明は、ガス
拡散層上に(A)触媒粉末及び電解質を含む触媒層、ま
たは(B)触媒粉末、電解質及び撥水化剤を含む触媒層
を堆積、担持させることにより燃料電池用の電極を製造
するに当たり、それら触媒層中における電解質の分布を
表面に偏らせてなる固体高分子型燃料電池用電極及びそ
の製造方法を提供することを目的とする。
Therefore, the present invention deposits (A) a catalyst layer containing a catalyst powder and an electrolyte or (B) a catalyst layer containing a catalyst powder, an electrolyte and a water repellent agent on a gas diffusion layer. In producing an electrode for a fuel cell by supporting the same, it is an object to provide an electrode for a polymer electrolyte fuel cell in which the distribution of the electrolyte in the catalyst layer is biased to the surface, and a method for producing the same. .

【0021】[0021]

【課題を解決するための手段】すなわち本発明は、ガス
拡散層上に触媒粉末及び電解質を含む触媒層を担持させ
てなる燃料電池用電極であって、触媒層における電解質
の分布を表面に偏らせてなることを特徴とする固体高分
子型燃料電池用電極を提供し、またガス拡散層上に触媒
粉末、電解質及び撥水化剤を含む触媒層を担持させてな
る燃料電池用電極であって、触媒層における電解質の分
布を表面に偏らせてなることを特徴とする固体高分子型
燃料電池用電極を提供する。
That is, the present invention is a fuel cell electrode comprising a gas diffusion layer carrying a catalyst layer containing catalyst powder and an electrolyte, wherein the electrolyte distribution in the catalyst layer is biased to the surface. A fuel cell electrode comprising a solid polymer electrolyte membrane fuel cell electrode characterized by comprising: a catalyst layer containing a catalyst powder, an electrolyte and a water repellent agent on a gas diffusion layer. Thus, there is provided an electrode for a polymer electrolyte fuel cell, characterized in that the electrolyte distribution in the catalyst layer is biased to the surface.

【0022】また本発明は、ガス拡散層上に触媒粉末及
び電解質を含む触媒層を担持させてなる燃料電池用電極
を製造するに当たり、触媒粉末に対する電解質の量が異
なる2種以上の混合物を混合してスラリーとし、このス
ラリーを濾過法によりガス拡散層上に堆積させることに
より、触媒層における電解質の分布を表面に偏らせるこ
とを特徴とする固体高分子型燃料電池の電極製造方法を
提供する。
Further, according to the present invention, in producing a fuel cell electrode in which a catalyst layer containing a catalyst powder and an electrolyte is carried on a gas diffusion layer, a mixture of two or more kinds having different amounts of the electrolyte with respect to the catalyst powder is mixed. To provide a slurry, and depositing the slurry on the gas diffusion layer by a filtration method to bias the distribution of the electrolyte in the catalyst layer to the surface, thereby providing an electrode manufacturing method for a polymer electrolyte fuel cell. .

【0023】さらに本発明は、ガス拡散層上に触媒粉
末、電解質及び撥水化剤を含む触媒層を担持させてなる
燃料電池用電極を製造するに当たり、触媒粉末及び撥水
化剤に対する電解質の量が異なる2種以上の混合物を混
合してスラリーとし、このスラリーを濾過法によりガス
拡散層上に堆積させることにより、触媒層における電解
質の分布を表面に偏らせることを特徴とする固体高分子
型燃料電池用電極の製造方法を提供するものである。
Further, in the present invention, in producing a fuel cell electrode in which a catalyst layer containing a catalyst powder, an electrolyte and a water repellent agent is carried on a gas diffusion layer, the catalyst powder and the electrolyte for the water repellent agent are used. A solid polymer characterized in that a mixture of two or more kinds having different amounts is mixed into a slurry, and the slurry is deposited on the gas diffusion layer by a filtration method to bias the electrolyte distribution in the catalyst layer on the surface. A method of manufacturing an electrode for a fuel cell for a fuel cell.

【0024】[0024]

【発明の実施の形態】上記ガス拡散層は、電極自体の基
材ともなるもので、本発明におけるガス拡散層として
は、特に限定はなく、各種材質からなる多孔性のペーパ
ー又はシート(本明細書中、両者を含めて適宜「ペーパ
ー」と指称している)、或いはこれらペーパーを撥水化
して使用することができるが、特に好ましくはカーボン
ペーパーや撥水化カーボンペーパーを用いることができ
る。このうち撥水化カーボンペーパーは所定の気孔率及
び厚さを有するカーボンペーパーを用い、これに対して
ポリテトラフルオロエチレン系のディスパージョンを含
浸させた後、熱処理をして撥水化したものである。ここ
でポリテトラフルオロエチレン系のポリマーとはポリテ
トラフルオロエチレン(PTFE)のほか、テトラフル
オロエチレンーヘキサフルオロプロピレン共重合体その
他その誘導体等をも含む意味である。
BEST MODE FOR CARRYING OUT THE INVENTION The above-mentioned gas diffusion layer also serves as a base material of the electrode itself, and the gas diffusion layer in the present invention is not particularly limited, and a porous paper or sheet made of various materials (see the present specification). In the description, both of them are appropriately referred to as "paper"), or these papers can be used after being made water repellent, and particularly preferably carbon paper or water repellent carbon paper can be used. Among them, the water-repellent carbon paper is a carbon paper having a predetermined porosity and thickness, which is impregnated with a polytetrafluoroethylene-based dispersion and then heat-treated to be water-repellent. is there. Here, the polytetrafluoroethylene-based polymer is meant to include not only polytetrafluoroethylene (PTFE) but also tetrafluoroethylene-hexafluoropropylene copolymer and other derivatives thereof.

【0025】上記触媒粉末としては白金ブラック粉末、
白金合金粉末、白金又はパラジウム担持のカーボンブラ
ック粉末、パラジウムブラック粉末等が使用できる。ま
た上記撥水化剤としては特に限定はないが、ポリテトラ
フルオロエチレン系のポリマーであるのが望ましい。こ
こでポリテトラフルオロエチレン系のポリマーとはポリ
テトラフルオロエチレンのほか、テトラフルオロエチレ
ンーヘキサフルオロプロピレン共重合体その他その誘導
体等をも含む意味である。
As the catalyst powder, platinum black powder,
Platinum alloy powder, carbon black powder supporting platinum or palladium, palladium black powder and the like can be used. The water repellent agent is not particularly limited, but is preferably a polytetrafluoroethylene-based polymer. Here, the polytetrafluoroethylene-based polymer is meant to include not only polytetrafluoroethylene but also tetrafluoroethylene-hexafluoropropylene copolymer and other derivatives thereof.

【0026】上記電解質(高分子電解質)としては、各
種イオン交換樹脂が使用できるが、その電解質として高
い性能を示すパーフルオロカーボンスルホン酸系の樹脂
を用いるのが有利であり、特に固体高分子電解質膜とし
てNAFION系のパーフルオロカーボンスルホン酸系
の樹脂膜を用いる場合には、同系統のパーフルオロカー
ボンスルホン酸系の樹脂を用いるのが好ましい。また溶
媒としては水、アルコール、或いは両者の混合物等特に
制限はないが、ガス拡散層上への堆積時に濾過法でも特
に加圧濾過法を適用する場合には、水であるのが好まし
い。
As the above-mentioned electrolyte (polymer electrolyte), various ion exchange resins can be used, but it is advantageous to use a perfluorocarbon sulfonic acid-based resin exhibiting high performance as the electrolyte, and particularly a solid polymer electrolyte membrane. When a NAFION-based perfluorocarbon sulfonic acid-based resin film is used as above, it is preferable to use the same type of perfluorocarbon sulfonic acid-based resin. The solvent is not particularly limited, such as water, alcohol, or a mixture of the two, but water is preferable when a filtration method, especially a pressure filtration method, is applied at the time of deposition on the gas diffusion layer.

【0027】本発明では、ガス拡散層上に、(A)触媒
粉末及び電解質を含む触媒層中において、または(B)
触媒粉末、電解質及び撥水化剤を含む触媒層中におい
て、電解質の割合を偏らせて堆積、担持させる。このう
ち(A)の場合には、触媒粉末に対する電解質の量が異
なる2種以上の原料混合物を混合し、この混合懸濁液す
なわちスラリーを濾過法によりガス拡散層上に堆積させ
ることにより行うことができる。この場合、触媒粉末に
対して電解質の割合を偏らせる仕方としては、触媒粉末
に対して、電解質をその添加割合が異なるように添加混
合した二種以上の原料混合物をそれぞれ作製し、さらに
それら二種以上の原料混合物を混合して懸濁液とし、こ
の懸濁液をガス拡散層上に濾過法により堆積、担持させ
ることにより行うことができる。
In the present invention, (A) in the catalyst layer containing the catalyst powder and the electrolyte, or (B) on the gas diffusion layer.
In the catalyst layer containing the catalyst powder, the electrolyte and the water repellent, the proportion of the electrolyte is biased and deposited and carried. In the case of (A), it is performed by mixing two or more kinds of raw material mixtures having different amounts of electrolyte with respect to the catalyst powder, and depositing the mixed suspension, that is, slurry, on the gas diffusion layer by a filtration method. You can In this case, as a method of biasing the proportion of the electrolyte with respect to the catalyst powder, two or more kinds of raw material mixtures are prepared by adding and mixing the electrolyte to the catalyst powder so that the addition proportions thereof are different from each other. This can be carried out by mixing a mixture of one or more raw materials to form a suspension, and depositing and supporting the suspension on the gas diffusion layer by a filtration method.

【0028】また、触媒層として上記(B)触媒粉末、
電解質及び撥水化剤を含む触媒層、すなわち触媒粉末及
び電解質とともに、撥水化剤をも含む触媒層を形成する
場合には、触媒粉末及び撥水化剤の量比を一定にした混
合物に対して、電解質をその添加割合が異なるように添
加混合した二種以上の原料混合物をそれぞれ作製し、さ
らにそれら二種以上の原料混合物を混合して懸濁液と
し、この懸濁液をガス拡散層上に濾過法により堆積、担
持させることにより行うことができる。
Further, as the catalyst layer, the above (B) catalyst powder,
When a catalyst layer containing an electrolyte and a water repellent agent, that is, a catalyst layer containing a water repellent agent together with a catalyst powder and an electrolyte is formed, a mixture having a constant amount ratio of the catalyst powder and the water repellent agent is used. On the other hand, two or more types of raw material mixtures were prepared by adding and mixing electrolytes with different addition ratios, and further mixing these two or more types of raw material mixtures to form a suspension. It can be carried out by depositing and supporting on the layer by a filtration method.

【0029】図3は、この態様により電解質の添加割合
が異なる3種の原料混合物を混合して懸濁液として用い
た場合に、ガス拡散層上に形成された触媒層における電
解質の分布状態を説明するための模式図である。図3
中、13は電極であり、14はガス拡散層、15は触媒
層である。符号16〜18として示す部分は、触媒層1
5中における電解質の分布状態を示し、16は電解質が
少ない層(第1層)、17は電解質量が16と18との
間の層(第2層)、17は電解質が多い層(第3層)で
ある。
FIG. 3 shows the distribution of the electrolyte in the catalyst layer formed on the gas diffusion layer when three raw material mixtures having different electrolyte addition ratios are mixed and used as a suspension according to this embodiment. It is a schematic diagram for explaining. FIG.
Among them, 13 is an electrode, 14 is a gas diffusion layer, and 15 is a catalyst layer. The portions indicated by reference numerals 16 to 18 are the catalyst layer 1
5 shows the state of distribution of the electrolyte in 5, wherein 16 is a layer with a small amount of electrolyte (first layer), 17 is a layer with an electrolytic mass between 16 and 18 (second layer), and 17 is a layer with a large amount of electrolyte (third layer). Layer).

【0030】このように触媒懸濁液のガス拡散層上への
濾過操作時に3種の原料混合物が比重差により相対的に
3層に別れて積層されるが、第1層と第2層との間及び
第2層と第3層との間は図示のように截然としたもので
はなく、電解質量が異なる触媒粒子が相互に入り込み、
電解質量が連続して分布した層として堆積される。この
場合、その分布をより一層よくするためには、電解質の
混合比が異なる少なくとも3種又はそれ以上の原料混合
物を混合して用いるのが好ましく、またこの混合操作は
充分に行うのが望ましい。このように、本発明によれば
1工程で触媒層の理想的な分布を実現できるとともに、
電極製造工程の簡略化を実現することができる。
In this way, during the filtration operation of the catalyst suspension onto the gas diffusion layer, the three kinds of raw material mixtures are relatively separated into three layers due to the difference in specific gravity, and the first layer and the second layer are laminated. And between the second layer and the third layer are not as clear as shown in the figure, and catalyst particles having different electrolysis masses enter each other,
The electrolytic mass is deposited as a continuously distributed layer. In this case, in order to further improve the distribution, it is preferable to mix and use at least three or more raw material mixtures having different electrolyte mixing ratios, and it is desirable to sufficiently perform this mixing operation. Thus, according to the present invention, the ideal distribution of the catalyst layer can be realized in one step, and
It is possible to realize simplification of the electrode manufacturing process.

【0031】次に、本発明の具体的手順の一態様につい
て述べると、以下(a)〜(e)のとおりである。
(a)例えば50%白金を担持した触媒粒子とポリテト
ラフルオロエチレンと電解質との水性混合物を作製す
る。このときこれら触媒粒子とポリテトラフルオロエチ
レンと電解質との混合量比(重量比)を例えば4:3:
2、4:3:3、4:3:4とする。(b)こうして得
られた3種類の混合比を有する原料をコロイドミルで混
合して懸濁液とする。(c)一方、例えば気孔率75
%、厚さ0.4mmのカーボンペーパーに例えばテトラ
フルオロエチレンーヘキサフルオロプロピレン共重合体
(FEP)のディスパージョンを含浸させた後、熱処理
を行い、FEPが20%を占める撥水化カーボンペーパ
ーを作製する。(d)、(a)〜(b)で調製した混合
液を(c)で作製した撥水化カーボンペーパー上に散布
し、溶媒の濾過により触媒層を形成させ、真空乾燥等に
より溶媒を除去する。(e)作製した2枚の電極間に固
体高分子電解質膜を挟みプレスして電池とする。
Next, one aspect of the specific procedure of the present invention is as follows (a) to (e).
(A) For example, an aqueous mixture of 50% platinum-supported catalyst particles, polytetrafluoroethylene, and an electrolyte is prepared. At this time, the mixing ratio (weight ratio) of these catalyst particles, polytetrafluoroethylene, and electrolyte is set to, for example, 4: 3 :.
2, 4: 3: 3, and 4: 3: 4. (B) The raw materials having the three types of mixing ratios thus obtained are mixed by a colloid mill to form a suspension. (C) On the other hand, for example, a porosity of 75
%, 0.4 mm thick carbon paper is impregnated with, for example, a dispersion of tetrafluoroethylene-hexafluoropropylene copolymer (FEP) and then heat treated to obtain a water repellent carbon paper in which FEP accounts for 20%. Create. (D), the mixed solution prepared in (a) to (b) is sprinkled on the water repellent carbon paper prepared in (c), the catalyst layer is formed by filtering the solvent, and the solvent is removed by vacuum drying or the like. To do. (E) A solid polymer electrolyte membrane is sandwiched between two produced electrodes and pressed to obtain a battery.

【0032】[0032]

【実施例】以下、本発明の実施例を説明するが、本発明
がこの実施例に限定されないことは勿論である。使用装
置としては図1〜図2に示すとおりの加圧濾過形式の装
置を使用した。その中空筒状体1としては内径15c
m、高さ8cmのガラス製の中空筒状体を用い、操作時
の内圧は0.08kg/cm2 G(ゲージ圧)として実
施した。
EXAMPLES Examples of the present invention will be described below, but it goes without saying that the present invention is not limited to these examples. As the apparatus used, a pressure filtration type apparatus as shown in FIGS. 1 and 2 was used. The hollow cylindrical body 1 has an inner diameter of 15c
A hollow cylindrical body made of glass and having a height of 8 cm and a height of 8 cm was used, and the internal pressure during operation was 0.08 kg / cm 2 G (gauge pressure).

【0033】(1)まず表面積180cm2 、気孔率7
5%、厚さ0.4mmのカーボンペーパーにネオフロン
(テトラフルオロエチレンーヘキサフルオロプロピレン
共重合体、ダイキン工業社製、登録商標)のディスパー
ジョンを含浸させた後、熱処理を行い、ネオフロンで撥
水化したカーボンペーパーを得た。この場合その量的割
合は、ネオフロンがその全体量中20重量%を占めるよ
うに調製した。(2)一方、カーボン粒子に50%白金
を担持した触媒粒子とポリフロン(ポリテトラフルオロ
エチレン、ダイキン工業社製、登録商標)のディスパー
ジョンと電解質としてのパーフルオロカーボンスルホン
酸樹脂のエタノール溶液とを、これら触媒粒子とポリテ
トラフルオロエチレンと電解質との混合量比(重量比)
がそれぞれ4:3:2、4:3:3、4:3:4である
3種の混合物を作製した。(3)こうして得られた3種
類の混合比を有する原料混合物をコロイドミルで約1時
間混合して懸濁液を得た。
(1) First, the surface area is 180 cm 2 , and the porosity is 7
A 5% carbon paper having a thickness of 0.4 mm was impregnated with a dispersion of NEOFLON (a tetrafluoroethylene-hexafluoropropylene copolymer, a registered trademark of Daikin Industries, Ltd.), followed by heat treatment, and water repellency with NEOFLON. The carbonized paper was obtained. In this case, the quantitative proportion was adjusted so that neofron constituted 20% by weight in the total amount. (2) On the other hand, catalyst particles in which carbon particles carry 50% platinum, dispersion of polyflon (polytetrafluoroethylene, registered trademark of Daikin Industries, Ltd.) and ethanol solution of perfluorocarbon sulfonic acid resin as an electrolyte, Mixing ratio (weight ratio) of these catalyst particles, polytetrafluoroethylene and electrolyte
Were made to be 4: 3: 2, 4: 3: 3, and 4: 3: 4, respectively. (3) The raw material mixtures having three types of mixing ratios thus obtained were mixed in a colloid mill for about 1 hour to obtain a suspension.

【0034】(4)次いで、(1)で得た撥水化カーボ
ンペーパーを図1中符号12としてに示すようにセット
し、図1中溶液供給導管7から(2)〜(3)で得た水
性懸濁液を供給し、白金担持量が1mg/cm2 となる
ように堆積させ、真空乾燥(温度80℃)により溶媒を
除去した。実施例用電極シートを得た。(5)こうして
作製した2枚の電極間に膜厚80μmのパーフルオロカ
ーボンスルホン酸系樹脂膜を、両電極の触媒層側を該高
分子電解質膜面に当接させて挟み、温度140℃、圧力
100kgf/cm2 の加圧下、60秒間プレスした
後、これを燃料電池用枠内に組み込んでセットし、導
線、ガス管等を接続して実施例供試用電池とした。
(4) Next, the water repellent carbon paper obtained in (1) is set as indicated by reference numeral 12 in FIG. 1 and obtained from the solution supply conduit 7 in FIG. 1 by (2) to (3). The above aqueous suspension was supplied, the platinum was deposited so that the amount of platinum supported was 1 mg / cm 2, and the solvent was removed by vacuum drying (temperature 80 ° C.). The electrode sheet for the examples was obtained. (5) A perfluorocarbon sulfonic acid-based resin film having a film thickness of 80 μm is sandwiched between the two electrodes thus produced with the catalyst layer sides of both electrodes in contact with the polymer electrolyte membrane surface, and the temperature is 140 ° C. and pressure is applied. After pressing for 60 seconds under a pressure of 100 kgf / cm 2 , this was assembled in a fuel cell frame and set, and a conducting wire, a gas pipe and the like were connected to obtain a test battery for an example.

【0035】《比較例》他方、上記(1)と同じくして
作製した撥水化カーボンペーパーに対して、図1〜図2
に示す装置を使用し、上記と同じ条件で加圧濾過法を適
用して電極を作製した。この場合、使用触媒粒子、撥水
化剤(ポリテトラフルオロエチレン)及び電解質の材料
としては実施例で用いたものと同じ材料を使用し、これ
ら触媒粒子とポリテトラフルオロエチレンと電解質との
混合量比(重量比)が4:3:3となるように混合し、
この混合物をコロイドミルで約1時間混合して得た懸濁
液を使用した。こうして作製した2枚の電極の触媒層間
に上記実施例と同じ固体高分子電解質膜を挟んで上記と
同じ条件でプレスし、上記実施例の場合と同様に構成し
て比較例供試用電池とした。
Comparative Example On the other hand, with respect to the water repellent carbon paper produced in the same manner as in the above (1), FIGS.
An electrode was produced by applying the pressure filtration method under the same conditions as above using the apparatus shown in FIG. In this case, as the catalyst particles, the water repellent agent (polytetrafluoroethylene) and the material of the electrolyte, the same materials as those used in the examples are used, and the mixing amount of these catalyst particles, polytetrafluoroethylene and the electrolyte is used. Mix so that the ratio (weight ratio) is 4: 3: 3,
A suspension obtained by mixing the mixture with a colloid mill for about 1 hour was used. The same solid polymer electrolyte membrane as in the above example was sandwiched between the catalyst layers of the two electrodes thus produced, and pressed under the same conditions as above, and the same configuration as in the case of the above example was used as a comparative test battery. .

【0036】以上のとおり製作した各種供試電池を用
い、燃料として水素を使用し、これをアノード側に供給
する一方、カソード側には空気を供給した。この両ガス
の供給圧力はともに2atmとし、水素は95℃で、空
気については80℃で加湿し、また電池の温度を80℃
に保って操作して測定した。図4は以上の各供試電池に
ついて測定した電流密度とセル電圧との関係を示すもの
である。
Using the various test cells manufactured as described above, hydrogen was used as the fuel, and this was supplied to the anode side, while air was supplied to the cathode side. The supply pressure of both gases is 2 atm, hydrogen is 95 ° C., air is 80 ° C., and the battery temperature is 80 ° C.
The measurement was performed by keeping the temperature at 0. FIG. 4 shows the relationship between the cell density and the current density measured for each of the above test batteries.

【0037】図4のとおり、比較例供試電池でも、電流
密度の増加に対してセル電圧は徐々に低下するだけで相
当に優たものであるが、実施例供試電池においては、そ
の低下傾向はさらに一層緩慢で、さらに改善されている
ことが分かる。このように本発明によれば、固体高分子
型燃料電池の特性をさらに一層有効に改善することがで
きる。さらに1工程で触媒層の理想的な分布を実現して
おり、製作工程の簡略化が実現できる。
As shown in FIG. 4, even in the test battery of the comparative example, the cell voltage gradually decreased with the increase of the current density, but it was considerably superior in the test battery of the example. It can be seen that the trend is even slower and further improved. As described above, according to the present invention, the characteristics of the polymer electrolyte fuel cell can be improved more effectively. Furthermore, the ideal distribution of the catalyst layer is realized in one step, and the manufacturing process can be simplified.

【0038】[0038]

【発明の効果】以上のとおり、本発明によれば、ガス拡
散層への濾過、堆積の際における電解質の量が異なるこ
とによる比重の差により、触媒層の表面側が電解質の割
合が多く、ガス拡散層に近づくにしたがってその割合が
減少する電極が作製でき、このためさらに一層高い性能
を有する固体高分子型燃料電池を得ることができる。ま
た、本発明によれば1工程で触媒層の理想的な分布を実
現できるとともに、電極製造工程の簡略化を実現するこ
とができる。
As described above, according to the present invention, due to the difference in specific gravity due to the difference in the amount of electrolyte during filtration and deposition in the gas diffusion layer, the surface side of the catalyst layer has a large proportion of electrolyte, An electrode whose ratio decreases as it approaches the diffusion layer can be produced, and thus a polymer electrolyte fuel cell having higher performance can be obtained. Further, according to the present invention, the ideal distribution of the catalyst layer can be realized in one step, and the electrode manufacturing process can be simplified.

【図面の簡単な説明】[Brief description of the drawings]

【図1】加圧濾過形式の電極製造装置の一態様を示す
図。
FIG. 1 is a view showing an embodiment of a pressure filtration type electrode manufacturing apparatus.

【図2】図1の中空筒状体1及び下板3を示す図。FIG. 2 is a view showing a hollow cylindrical body 1 and a lower plate 3 of FIG.

【図3】本発明に係るガス拡散層上に形成された触媒層
における電解質の分布状態を説明するための模式図。
FIG. 3 is a schematic diagram for explaining a distribution state of an electrolyte in a catalyst layer formed on a gas diffusion layer according to the present invention.

【図4】実施例及び比較例で製造した各供試電池につい
て測定した電流密度とセル電圧との関係を示す図。
FIG. 4 is a diagram showing the relationship between the measured current density and cell voltage of each test battery manufactured in Examples and Comparative Examples.

【符号の説明】[Explanation of symbols]

1 中空筒状体 2 上板 3 下板 4、5 パッキン 6 コンプレッサー 7 濾過する溶液を導入する管(バルブ付) 8 過剰圧時に空気を放出する管(バルブ付) 9 圧縮空気導入管 10 溶媒排出口 11 脚部 12 触媒層が堆積されるガス拡散板(層) 13 電極 14 ガス拡散層 15 触媒層 16 電解質が少ない層 17 電解質量が15と17との間の層 18 電解質が多い層 1 Hollow Cylindrical Body 2 Upper Plate 3 Lower Plate 4, 5 Packing 6 Compressor 7 Pipe for Introducing Solution to Be Filtered (with Valve) 8 Pipe for Emitting Air at Overpressure (with Valve) 9 Compressed Air Introducing Pipe 10 Solvent Discharge Outlet 11 Leg 12 Gas diffusion plate (layer) on which catalyst layer is deposited 13 Electrode 14 Gas diffusion layer 15 Catalyst layer 16 Low electrolyte layer 17 Layer between electrolytic mass 15 and 17 18 High electrolyte layer

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】ガス拡散層上に触媒粉末及び電解質を含む
触媒層を担持させてなる燃料電池用電極であって、触媒
層における電解質の分布を表面に偏らせてなることを特
徴とする固体高分子型燃料電池用電極。
1. A fuel cell electrode comprising a gas diffusion layer and a catalyst layer containing a catalyst powder and an electrolyte supported thereon, wherein the electrolyte is distributed in the catalyst layer toward the surface. Electrodes for polymer fuel cells.
【請求項2】ガス拡散層上に触媒粉末、電解質及び撥水
化剤を含む触媒層を担持させてなる燃料電池用電極であ
って、触媒層における電解質の分布を表面に偏らせてな
ることを特徴とする固体高分子型燃料電池用電極。
2. A fuel cell electrode in which a catalyst layer containing a catalyst powder, an electrolyte and a water repellent agent is carried on a gas diffusion layer, wherein the distribution of the electrolyte in the catalyst layer is biased to the surface. An electrode for a polymer electrolyte fuel cell, which is characterized by:
【請求項3】上記ガス拡散層がカーボンペーパー又は撥
水化カーボンペーパーである請求項1又は2記載の固体
高分子型燃料電池用電極。
3. The electrode for a polymer electrolyte fuel cell according to claim 1, wherein the gas diffusion layer is carbon paper or water repellent carbon paper.
【請求項4】上記触媒粒子が白金を担持したカーボン粉
末である請求項1、2又は3記載の固体高分子型燃料電
池用電極。
4. The solid polymer fuel cell electrode according to claim 1, wherein the catalyst particles are carbon powders carrying platinum.
【請求項5】上記電解質がパーフルオロカーボンスルホ
ン酸系の樹脂である請求項1、2、3又4記載の固体高
分子型燃料電池用電極。
5. The solid polymer fuel cell electrode according to claim 1, 2, 3 or 4, wherein the electrolyte is a perfluorocarbon sulfonic acid type resin.
【請求項6】ガス拡散層上に触媒粉末及び電解質を含む
触媒層を担持させてなる燃料電池用電極を製造するに当
たり、触媒粉末に対する電解質の量が異なる2種以上の
混合物を混合してスラリーとし、このスラリーを濾過法
によりガス拡散層上に堆積させることにより、触媒層に
おける電解質の分布を表面に偏らせることを特徴とする
固体高分子型燃料電池の電極製造方法。
6. When manufacturing a fuel cell electrode in which a catalyst layer containing a catalyst powder and an electrolyte is carried on a gas diffusion layer, a slurry is prepared by mixing a mixture of two or more kinds having different amounts of the electrolyte with respect to the catalyst powder. The method for producing an electrode of a polymer electrolyte fuel cell, wherein the slurry is deposited on the gas diffusion layer by a filtration method to bias the distribution of the electrolyte in the catalyst layer on the surface.
【請求項7】ガス拡散層上に触媒粉末、電解質及び撥水
化剤を含む触媒層を担持させてなる燃料電池用電極を製
造するに当たり、触媒粉末及び撥水化剤に対する電解質
の量が異なる2種以上の混合物を混合してスラリーと
し、このスラリーを濾過法によりガス拡散層上に堆積さ
せることにより、触媒層における電解質の分布を表面に
偏らせることを特徴とする固体高分子型燃料電池用電極
の製造方法。
7. When manufacturing a fuel cell electrode in which a catalyst layer containing a catalyst powder, an electrolyte and a water repellent agent is carried on a gas diffusion layer, the amounts of the electrolyte with respect to the catalyst powder and the water repellent agent are different. A polymer electrolyte fuel cell characterized in that a mixture of two or more kinds is mixed into a slurry, and the slurry is deposited on the gas diffusion layer by a filtration method to bias the distribution of the electrolyte in the catalyst layer on the surface. For manufacturing electrodes for use.
【請求項8】上記ガス拡散層がカーボンペーパー又は撥
水化カーボンペーパーである請求項6又は7記載の固体
高分子型燃料電池用電極の製造方法。
8. The method for producing an electrode for a polymer electrolyte fuel cell according to claim 6, wherein the gas diffusion layer is carbon paper or water repellent carbon paper.
【請求項9】上記触媒粒子が白金を担持したカーボン粉
末である請求項6、7又は8記載の固体高分子型燃料電
池用電極の製造方法。
9. The method for producing an electrode for a polymer electrolyte fuel cell according to claim 6, 7 or 8, wherein the catalyst particles are carbon powder supporting platinum.
【請求項10】上記電解質がパーフルオロカーボンスル
ホン酸系の樹脂である請求項6、7、8又は9記載の固
体高分子型燃料電池用電極の製造方法。
10. The method for producing an electrode for a polymer electrolyte fuel cell according to claim 6, 7, 8 or 9, wherein the electrolyte is a perfluorocarbon sulfonic acid type resin.
JP7353458A 1995-12-27 1995-12-27 Electrode for solid high molecular fuel cell and manufacture thereof Pending JPH09180730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7353458A JPH09180730A (en) 1995-12-27 1995-12-27 Electrode for solid high molecular fuel cell and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7353458A JPH09180730A (en) 1995-12-27 1995-12-27 Electrode for solid high molecular fuel cell and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH09180730A true JPH09180730A (en) 1997-07-11

Family

ID=18430990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7353458A Pending JPH09180730A (en) 1995-12-27 1995-12-27 Electrode for solid high molecular fuel cell and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH09180730A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09245802A (en) * 1996-03-11 1997-09-19 Tanaka Kikinzoku Kogyo Kk Electrode for polymer solid electrolyte type fuel cell
JP2005259525A (en) * 2004-03-11 2005-09-22 Honda Motor Co Ltd Solid polymer fuel cell
WO2006104128A1 (en) * 2005-03-28 2006-10-05 Kabushiki Kaisha Toshiba Fuel cell
WO2007048612A2 (en) * 2005-10-27 2007-05-03 Ird Fuel Cells A/S Membrane electrode assemblies for dmfc having catalyst concentration gradient
JP2007258051A (en) * 2006-03-24 2007-10-04 Toppan Printing Co Ltd Anode, its manufacturing method, polymer electrolyte membrane-electrode assembly for fuel cell, and fuel cell
JP2007265734A (en) * 2006-03-28 2007-10-11 Toppan Printing Co Ltd Catalyst electrode for fuel cell, its manufacturing method, polymer electrolyte membrane/electrode assembly for fuel cell, and fuel cell
WO2008096887A1 (en) 2007-02-06 2008-08-14 Toyota Jidosha Kabushiki Kaisha Membrane-electrode assembly and fuel cell comprising the same
WO2008153152A1 (en) 2007-06-15 2008-12-18 Sumitomo Chemical Company, Limited Membrane-electrode assembly, and membrane-electrode-(gas diffusion layer) assembly and solid polymer fuel cell each comprising the same
WO2008153145A1 (en) 2007-06-15 2008-12-18 Sumitomo Chemical Company, Limited Film-electrode assembly, film-electrode gas diffusion layer assembly having the same, solid state polymer fuel cell, and film-electrode assembly manufacturing method
JP2010192350A (en) * 2009-02-20 2010-09-02 Japan Vilene Co Ltd Gas diffusion layer, membrane-electrode assembly, and fuel cell
KR101021115B1 (en) * 2008-05-06 2011-03-14 현대자동차주식회사 Manufacturing method Catalyst layer of membrane electrode assembly

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09245802A (en) * 1996-03-11 1997-09-19 Tanaka Kikinzoku Kogyo Kk Electrode for polymer solid electrolyte type fuel cell
US7601454B2 (en) 2004-03-11 2009-10-13 Honda Motor Co. Ltd. Polymer electrolyte fuel cell
JP2005259525A (en) * 2004-03-11 2005-09-22 Honda Motor Co Ltd Solid polymer fuel cell
WO2006104128A1 (en) * 2005-03-28 2006-10-05 Kabushiki Kaisha Toshiba Fuel cell
WO2007048612A2 (en) * 2005-10-27 2007-05-03 Ird Fuel Cells A/S Membrane electrode assemblies for dmfc having catalyst concentration gradient
WO2007048612A3 (en) * 2005-10-27 2007-07-12 Ird Fuel Cells As Membrane electrode assemblies for dmfc having catalyst concentration gradient
JP2007258051A (en) * 2006-03-24 2007-10-04 Toppan Printing Co Ltd Anode, its manufacturing method, polymer electrolyte membrane-electrode assembly for fuel cell, and fuel cell
JP2007265734A (en) * 2006-03-28 2007-10-11 Toppan Printing Co Ltd Catalyst electrode for fuel cell, its manufacturing method, polymer electrolyte membrane/electrode assembly for fuel cell, and fuel cell
WO2008096887A1 (en) 2007-02-06 2008-08-14 Toyota Jidosha Kabushiki Kaisha Membrane-electrode assembly and fuel cell comprising the same
US8263285B2 (en) 2007-02-06 2012-09-11 Toyota Jidosha Kabushiki Kaisha Membrane-electrode assembly and fuel cell having the same
WO2008153152A1 (en) 2007-06-15 2008-12-18 Sumitomo Chemical Company, Limited Membrane-electrode assembly, and membrane-electrode-(gas diffusion layer) assembly and solid polymer fuel cell each comprising the same
WO2008153145A1 (en) 2007-06-15 2008-12-18 Sumitomo Chemical Company, Limited Film-electrode assembly, film-electrode gas diffusion layer assembly having the same, solid state polymer fuel cell, and film-electrode assembly manufacturing method
KR101021115B1 (en) * 2008-05-06 2011-03-14 현대자동차주식회사 Manufacturing method Catalyst layer of membrane electrode assembly
JP2010192350A (en) * 2009-02-20 2010-09-02 Japan Vilene Co Ltd Gas diffusion layer, membrane-electrode assembly, and fuel cell

Similar Documents

Publication Publication Date Title
US3457113A (en) Laminar electrode including hydrophobic and hydrophilic layfrs; method of making; fuel cell therewith; and method of using fuel cell
US6187468B1 (en) Electrodes for fuel cells
US5843519A (en) Process for forming a catalyst layer on an electrode by spray-drying
US5728485A (en) Electrode for polymer electrolyte electrochemical cell and process of preparing same
CN100452499C (en) Electrode for fuel cell, membrane-electrode assembly and fuel cell system comprising same
JPH0888008A (en) Fuel cell and manufacture thereof
EP2124275A1 (en) Apparatus for manufacturing electrode for polymer electrolyte fuel cell, and method of manufacturing the same
US4585711A (en) Hydrogen electrode for a fuel cell
EP1944819A1 (en) Method for producing membrane electrode assembly for solid polymer fuel cell
CN102104159A (en) Novel gas diffusion layer used for fuel cell, preparation and application
US3385736A (en) Method of making electrode from viscoelastic dough
JPH09180730A (en) Electrode for solid high molecular fuel cell and manufacture thereof
JP2004533544A (en) Manufacturing method of gas diffusion electrode
JP2007265734A (en) Catalyst electrode for fuel cell, its manufacturing method, polymer electrolyte membrane/electrode assembly for fuel cell, and fuel cell
US20190074522A1 (en) Catalyst electrode layer, membrane-electrode assembly, and fuel cell
JPH09180727A (en) Electrode for fuel cell, manufacture thereof, and apparatus therefor
JPH08148152A (en) Solid polymeric fuel cell electrode and manufacture thereof
JP2004335252A (en) Electrode catalyst for fuel cell, and its manufacturing method
JPH08130019A (en) Manufacture of electrode for polymer solid-electrolytic electrochemical cell
JPH08148151A (en) Fuel cell electrode and manufacture thereof
JPH10189002A (en) Electrode for fuel cell and its manufacture
JPH09180728A (en) Electrode for solid polymer fuel cell, manufacture thereof, and apparatus therefor
JPH10189004A (en) Electrode for fuel cell and its manufacture
JPH10270050A (en) Fuel cell electrode and its manufacture
JPH08148154A (en) Electrode fabrication method and device for fuel cell