JP2007265734A - Catalyst electrode for fuel cell, its manufacturing method, polymer electrolyte membrane/electrode assembly for fuel cell, and fuel cell - Google Patents

Catalyst electrode for fuel cell, its manufacturing method, polymer electrolyte membrane/electrode assembly for fuel cell, and fuel cell Download PDF

Info

Publication number
JP2007265734A
JP2007265734A JP2006087577A JP2006087577A JP2007265734A JP 2007265734 A JP2007265734 A JP 2007265734A JP 2006087577 A JP2006087577 A JP 2006087577A JP 2006087577 A JP2006087577 A JP 2006087577A JP 2007265734 A JP2007265734 A JP 2007265734A
Authority
JP
Japan
Prior art keywords
catalyst
electrode
fuel cell
polymer electrolyte
ion conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006087577A
Other languages
Japanese (ja)
Other versions
JP5114859B2 (en
Inventor
Shinichiro Yamagata
紳一郎 山形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2006087577A priority Critical patent/JP5114859B2/en
Publication of JP2007265734A publication Critical patent/JP2007265734A/en
Application granted granted Critical
Publication of JP5114859B2 publication Critical patent/JP5114859B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell equipped with a catalyst electrode having a high effective utilization factor of a platinum catalyst while being easy to manufacture. <P>SOLUTION: A suspension containing a platinum catalyst particle and a hydrogen ion conductive polymer electrolyte as solid contents is sprayed to the surfaces of the electrode base materials 21, 41 of a fuel cell by using ultrasonic vibration while resonating a spray nozzle. The catalyst electrode manufactured by making it adhere to the surfaces of the electrode base materials 21, 41 has high porosity, and the effective utilization factor of the platinum catalyst increases. In addition, the platinum utilization factor can be further increased by making the catalyst layers 22, 42 of the catalyst electrode have inclined structures, this solid polymer type fuel cell having excellent battery performance can be manufactured. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、製造が容易であり、白金触媒の有効利用率が高い燃料電池用触媒電極、その製造方法、この触媒電極を使用した燃料電池用高分子電解質膜・電極接合体および燃料電池に関する。   The present invention relates to a catalyst electrode for a fuel cell that is easy to produce and has a high effective utilization rate of a platinum catalyst, a method for producing the same, a polymer electrolyte membrane / electrode assembly for a fuel cell using the catalyst electrode, and a fuel cell.

水素と酸素を使用する燃料電池は、その反応生成物が原理的に水のみであり環境への悪影響がほとんどない発電システムとして注目されている。近年、燃料電池のなかでも、水素イオン伝導性を有するイオン交換膜を電解質として使用する固体高分子型燃料電池は、作動温度が低く、出力密度が高く、かつ、小型化が容易に可能なため、車載用電源や家庭据置用電源などへの使用が有望視されている。   A fuel cell using hydrogen and oxygen is attracting attention as a power generation system that has almost no adverse environmental impact because its reaction product is essentially only water. In recent years, a polymer electrolyte fuel cell using an ion exchange membrane having hydrogen ion conductivity as an electrolyte among fuel cells has a low operating temperature, a high output density, and can be easily downsized. It is expected to be used for in-vehicle power sources and household stationary power sources.

固体高分子型燃料電池は多数の単セルが積層されて構成されている。単セルは、図2に示すように、アノード側のセパレータ1、アノード側触媒電極2、水素イオン伝導性高分子電解質膜3、カソード側の触媒電極4及びカソード側のセパレータ5を、この順に積層して構成されている。アノード側触媒電極2は、電極基材21とこの表面に積層された触媒層22とで構成されており、カソード側の触媒電極4は電極基材41とこの表面に積層された触媒層42とで構成されている。アノード側電極基材21とカソード側電極基材41とは、いずれも、ガス拡散性と導電性とを有する材質から構成されており、例えば、カーボンペーパーあるいはカーボンクロス等が利用されている。また、アノード側触媒層22とカソード側触媒層42とは、いずれも、カーボン粒子に白金触媒を担持させて粒子状とし、これを水素イオン伝導性高分子電解質で電極基材21,41に固定して構成されている。   A polymer electrolyte fuel cell is formed by stacking a large number of single cells. As shown in FIG. 2, the single cell is composed of an anode-side separator 1, an anode-side catalyst electrode 2, a hydrogen ion conductive polymer electrolyte membrane 3, a cathode-side catalyst electrode 4 and a cathode-side separator 5 stacked in this order. Configured. The anode side catalyst electrode 2 is composed of an electrode base material 21 and a catalyst layer 22 laminated on the surface, and the cathode side catalyst electrode 4 is composed of an electrode base material 41 and a catalyst layer 42 laminated on the surface. It consists of The anode side electrode base material 21 and the cathode side electrode base material 41 are both made of a material having gas diffusibility and conductivity. For example, carbon paper or carbon cloth is used. The anode-side catalyst layer 22 and the cathode-side catalyst layer 42 are both formed into particles by supporting a platinum catalyst on carbon particles and fixed to the electrode base materials 21 and 41 with a hydrogen ion conductive polymer electrolyte. Configured.

そして、アノード側のセパレータ1に反応ガス流路が設けられ水素ガスを供給する。他方、カソード側のセパレータ5にも反応ガス流路が設けられて酸素ガスを供給する。これら水素ガスと酸素ガスとを、白金触媒の存在下で反応させることにより、両電極2,4の間に起電力を生じる。   The anode-side separator 1 is provided with a reaction gas flow path to supply hydrogen gas. On the other hand, the reaction gas flow path is also provided in the cathode-side separator 5 to supply oxygen gas. An electromotive force is generated between the electrodes 2 and 4 by reacting these hydrogen gas and oxygen gas in the presence of a platinum catalyst.

ところで、固体高分子型燃料電池が普及する上で、前記白金触媒の使用量の低減化が重要な課題として挙げられる。その理由として、地球全体における白金の埋蔵量が限られているためである。たとえば、現在の自動車台数がガソリン車から燃料電池車に置き換わっていった場合に、現在の単位面積あたりの白金使用量では地球の埋蔵量をオーバーしてしまう恐れがある。   By the way, as the polymer electrolyte fuel cell becomes widespread, reduction of the amount of the platinum catalyst used is an important issue. The reason is that the amount of platinum reserves in the entire earth is limited. For example, if the current number of automobiles is replaced by a fuel cell vehicle from a gasoline vehicle, the current amount of platinum used per unit area may exceed the reserves of the earth.

白金触媒の使用量の低減化を図るためには、白金触媒の有効利用率を高めることが重要である。しかしながら、ダイコーターやスクリーン印刷などの一般的な湿式法による塗工方法で触媒層22,42を形成した場合には、その溶媒を徐々に乾燥するため、この乾燥工程中で白金触媒担持カーボンの凝集が進行する。このため、触媒層22,42における空孔度が低下して燃料ガスの経路が遮断されやすくなり、触媒層22,42における触媒と水素イオン伝導性高分子電解質から形成される三相界面を十分に形成させることが困難となってしまう。結果として、白金触媒の有効利用率を高めることが困難となり、単位白金量あたりで得られる電池性能が低下してしまうという欠点があった。特に、車載用で用いる場合では瞬時に大電流の発生を必要とするためにコジェネレーション用として用いる場合と比べて燃料ガスの拡散性が不足し電池性能が低下する傾向がある。   In order to reduce the amount of platinum catalyst used, it is important to increase the effective utilization rate of the platinum catalyst. However, when the catalyst layers 22 and 42 are formed by a general wet coating method such as a die coater or screen printing, the solvent is gradually dried. Aggregation proceeds. For this reason, the porosity in the catalyst layers 22 and 42 is reduced, and the path of the fuel gas is easily blocked, and the three-phase interface formed from the catalyst and the hydrogen ion conductive polymer electrolyte in the catalyst layers 22 and 42 is sufficiently provided. It becomes difficult to form. As a result, it is difficult to increase the effective utilization rate of the platinum catalyst, and there is a drawback that the battery performance obtained per unit platinum amount is lowered. In particular, when used in a vehicle, since a large current is required instantly, the diffusibility of fuel gas tends to be insufficient and battery performance tends to be lower than when used for cogeneration.

そこで一般的な高圧スプレーを用いて電極触媒層を形成することが提案されている(特許文献1参照)。高圧スプレーを用いた場合では、触媒インクの乾燥速度を高めることができ触媒の凝集を防止し、より多くの三相界面が形成されることが可能となり電池性能を改善する傾向を示す。しかしながら、高圧スプレーを用いて形成された触媒層の空孔度は、おおよそ30%程度の値であり、低白金量では十分な電池性能を発揮できない。また、高圧スプレーでは圧力をかけて噴霧するために吹きつけが強くなってしまいオーバースプレーおよび二次飛散が起こりやすい。そのために吹きつけたインクの回収サイクルを確立するなどの工夫をしない限り、触媒インクの塗着効率が15〜20%前後と低く、堆積した触媒層における白金触媒の有効利用率も5〜50%前後と低くなってしまう欠点がある。さらに、オーバースプレーおよび二次飛散によって膜厚のムラも起こりやすい欠点もある。   Therefore, it has been proposed to form an electrode catalyst layer using a general high-pressure spray (see Patent Document 1). When high-pressure spray is used, the drying speed of the catalyst ink can be increased, the catalyst can be prevented from agglomerating, and more three-phase interfaces can be formed, which tends to improve battery performance. However, the porosity of the catalyst layer formed using high-pressure spray is about 30%, and sufficient battery performance cannot be achieved with a low platinum content. Further, in high pressure spraying, since spray is applied with pressure, spraying becomes strong, and overspray and secondary scattering are likely to occur. Therefore, unless a device such as establishing a collection cycle of the sprayed ink is established, the catalyst ink application efficiency is as low as 15 to 20%, and the effective utilization rate of the platinum catalyst in the deposited catalyst layer is also 5 to 50%. There is a drawback that it becomes lower and lower. Furthermore, there is a drawback that film thickness unevenness is likely to occur due to overspray and secondary scattering.

また、電池性能を向上させるために、従来から種々の傾斜構造を有する触媒電極が提案されている。例えば、ガス拡散電極側は比較的ガス濃度が高く、水素イオン伝導性電解質膜側は電離したイオンおよび電子の濃度が比較的高い点に着目し、触媒電極層の厚み方向の組成を変化させ、水素イオン伝導性電解質膜側の触媒担持量を多くして反応サイトを増加させる技術(例えば特許文献2参照。)、反応ガスの拡散制御を目的として厚み方向の水素イオン伝導性電解質量を変化させる技術(例えば特許文献3参照。)、また厚み方向にプロトン伝導性や電子伝導性を変化させる技術(例えば特許文献4参照。)等が挙げられる。   In order to improve battery performance, catalyst electrodes having various inclined structures have been proposed. For example, paying attention to the relatively high gas concentration on the gas diffusion electrode side and the relatively high concentration of ionized ions and electrons on the hydrogen ion conductive electrolyte membrane side, changing the composition in the thickness direction of the catalyst electrode layer, A technique for increasing the reaction site by increasing the amount of catalyst supported on the hydrogen ion conductive electrolyte membrane side (see, for example, Patent Document 2), and changing the hydrogen ion conductive electrolytic mass in the thickness direction for the purpose of controlling the diffusion of the reaction gas. A technique (for example, refer to Patent Document 3), a technique for changing proton conductivity or electron conductivity in the thickness direction (for example, refer to Patent Document 4), and the like.

特開平8-115726号公報JP-A-8-115726 特開平9-180730号公報JP-A-9-180730 特開2001-319663号公報JP 2001-319663 A 特開2005−259525号公報JP 2005-259525 A

しかしながら、上記技術はいずれも、ダイコーターやスクリーン印刷などの一般的な湿式法による塗工方法や高圧スプレーを用いて製造した傾斜構造である。ダイコーターやスクリーン印刷などでは傾斜構造に連続的に変化する傾斜勾配を与えようとした場合は製造上極めて困難である。また、高圧スプレーを用いた場合でも、オーバースプレーおよび二次飛散によって膜厚のムラも起こりやすいために、傾斜構造の傾斜を制御することは難しい。   However, any of the above techniques is an inclined structure manufactured using a general wet method such as a die coater or screen printing, or a high-pressure spray. In the case of a die coater, screen printing, or the like, it is extremely difficult to manufacture if an inclined gradient that continuously changes is applied to the inclined structure. Even when high-pressure spray is used, it is difficult to control the inclination of the inclined structure because film thickness unevenness is likely to occur due to overspray and secondary scattering.

本発明は、以上のような技術的背景の下でなされたもので、三相界面を十分に形成し白金触媒利用率を高めることで、白金触媒の使用量を低減し且つ発電特性が優れた燃料電池用触媒電極、その製造方法、燃料電池用高分子電解質膜・電極接合体及び燃料電池を提供することを目的とするものである。   The present invention has been made under the technical background as described above. By sufficiently forming a three-phase interface and increasing the utilization ratio of the platinum catalyst, the amount of the platinum catalyst used is reduced and the power generation characteristics are excellent. It aims at providing the catalyst electrode for fuel cells, its manufacturing method, the polymer electrolyte membrane electrode assembly for fuel cells, and a fuel cell.

請求項1に記載の発明は、白金触媒粒子と水素イオン伝導性高分子電解質とを固形分として含む懸濁液を、燃料電池の電極基材表面に超音波振動を利用してスプレーノズルを共振させながら噴霧することにより、前記電極基材表面に前記懸濁液を付着させ、触媒層を形成して製造されることを特徴とする燃料電池用触媒電極である。
請求項2に記載の発明は、前記触媒電極における白金触媒粒子と水素イオン伝導性高分子電解質の含有量が、前記触媒電極の厚さ方向に変化する傾斜構造を有することを特徴とする請求項1に記載の燃料電池用触媒電極である。
請求項3に記載の発明は、前記触媒電極が、水素イオン伝導性高分子電解質膜およびガス拡散電極間に設けられ、前記傾斜構造が、前記水素イオン伝導性高分子電解質膜からガス拡散電極に向かって、前記白金触媒粒子の含有量が増加し且つ前記水素イオン伝導性高分子電解質の含有量が減少するような傾斜構造であることを特徴とする請求項2に記載の燃料電池用触媒電極である。
請求項4に記載の発明は、前記懸濁液において、前記白金触媒粒子の含有量が10質量%〜40質量%であり、且つ前記水素イオン伝導性高分子電解質の含有量が20質量%〜80質量%であることを特徴とする請求項1〜3のいずれかに記載の燃料電池用触媒電極である。
請求項5に記載の発明は、前記超音波振動の共振周波数が10kHz〜500kHzであることを特徴とする請求項1〜4のいずれかに記載の燃料電池用触媒電極である。
請求項6に記載の発明は、前記触媒電極における触媒層の空孔度が30〜90%であることを特徴とする請求項1〜5のいずれかに記載の燃料電池用触媒電極である。
請求項7に記載の発明は、請求項1〜6のいずれかに記載の燃料電池用触媒電極を2枚使用し、この2枚の触媒電極の間に水素イオン伝導性高分子電解質膜を挟持させてなることを特徴とする燃料電池用高分子電解質膜・電極接合体(MEA)である。
請求項8に記載の発明は、請求項7記載の燃料電池用高分子電解質膜・電極接合体を、反応ガス流路を有する2枚のセパレータで挟持させてなることを特徴とする燃料電池である。
請求項9に記載の発明は、白金触媒粒子と水素イオン伝導性高分子電解質とを固形分として含む懸濁液を、燃料電池の電極基材表面に超音波振動を利用してスプレーノズルを共振させながら噴霧し、前記電極基材表面に前記懸濁液を付着させ、触媒層を形成する工程を有することを特徴とする燃料電池用触媒電極の製造方法である。
According to the first aspect of the present invention, a suspension containing platinum catalyst particles and a hydrogen ion conductive polymer electrolyte as a solid content is resonated with a spray nozzle on the surface of a fuel cell electrode substrate using ultrasonic vibration. The fuel cell catalyst electrode is produced by spraying while allowing the suspension to adhere to the surface of the electrode substrate to form a catalyst layer.
The invention according to claim 2 has an inclined structure in which the content of the platinum catalyst particles and the hydrogen ion conductive polymer electrolyte in the catalyst electrode changes in the thickness direction of the catalyst electrode. 1. The fuel cell catalyst electrode according to 1.
According to a third aspect of the present invention, the catalyst electrode is provided between the hydrogen ion conductive polymer electrolyte membrane and the gas diffusion electrode, and the inclined structure is formed from the hydrogen ion conductive polymer electrolyte membrane to the gas diffusion electrode. The catalyst electrode for a fuel cell according to claim 2, wherein the catalyst electrode for a fuel cell according to claim 2 has an inclined structure in which the content of the platinum catalyst particles increases and the content of the hydrogen ion conductive polymer electrolyte decreases. It is.
The invention according to claim 4 is the suspension, wherein the platinum catalyst particle content is 10 mass% to 40 mass%, and the hydrogen ion conductive polymer electrolyte content is 20 mass% to 20 mass%. It is 80 mass%, It is a catalyst electrode for fuel cells in any one of Claims 1-3 characterized by the above-mentioned.
A fifth aspect of the present invention is the catalyst electrode for a fuel cell according to any one of the first to fourth aspects, wherein a resonance frequency of the ultrasonic vibration is 10 kHz to 500 kHz.
The invention according to claim 6 is the catalyst electrode for a fuel cell according to any one of claims 1 to 5, wherein the porosity of the catalyst layer in the catalyst electrode is 30 to 90%.
The invention described in claim 7 uses two fuel cell catalyst electrodes according to any one of claims 1 to 6, and sandwiches a hydrogen ion conductive polymer electrolyte membrane between the two catalyst electrodes. A polymer electrolyte membrane / electrode assembly (MEA) for fuel cells, characterized in that
The invention according to claim 8 is a fuel cell comprising the polymer electrolyte membrane / electrode assembly for fuel cell according to claim 7 sandwiched between two separators each having a reaction gas flow path. is there.
According to the ninth aspect of the present invention, a suspension containing platinum catalyst particles and a hydrogen ion conductive polymer electrolyte as a solid content is made to resonate a spray nozzle on the surface of a fuel cell electrode substrate using ultrasonic vibration. A method of producing a catalyst electrode for a fuel cell, comprising: a step of spraying while adhering and adhering the suspension to the surface of the electrode substrate to form a catalyst layer.

本発明においては、超音波振動を利用してスプレーノズルを共振させながら懸濁液を噴霧するため、懸濁液に超音波エネルギーを付与して固形分をその凝集エネルギーから開放する。このため、噴霧される懸濁液中の微粒子の粒度分布がシャープとなり、また、平均粒子径も小さくなる。そして、このため、形成される触媒層の空孔度が大きくなり、ガス拡散性が向上し、三相界面を十二分に形成することが可能となる。なお、触媒層の空孔度とは、電極面積と触媒層の厚みとの積に対する空孔自体の体積の割合で、細孔分布測定装置ポアサイザー9320((株)島津製作所製)などにて測定が可能である。   In the present invention, since the suspension is sprayed while resonating the spray nozzle using ultrasonic vibration, the suspension is applied with ultrasonic energy to release the solid content from the cohesive energy. For this reason, the particle size distribution of the fine particles in the sprayed suspension becomes sharp, and the average particle size also becomes small. For this reason, the porosity of the formed catalyst layer is increased, gas diffusibility is improved, and a three-phase interface can be sufficiently formed. The porosity of the catalyst layer is a ratio of the volume of the pores to the product of the electrode area and the thickness of the catalyst layer, and is measured with a pore distribution measuring device Pore Sizer 9320 (manufactured by Shimadzu Corporation). Is possible.

また、超音波振動を利用してスプレーノズルを共振させながら懸濁液を噴霧することによって、触媒電極に傾斜構造を付与させることができる。特に、超音波振動を利用したスプレー方式ではオーバースプレーおよび二次飛散を抑制しその塗着効率を向上させ、白金触媒の使用量を低減することができ、且つ傾斜勾配が連続的に変化するような傾斜構造を形成させることができる。その結果、よりいっそう三相界面を増加させて電池性能を向上させた触媒電極の製造が可能となる。   In addition, an inclined structure can be imparted to the catalyst electrode by spraying the suspension while resonating the spray nozzle using ultrasonic vibration. In particular, the spray method using ultrasonic vibration can suppress overspray and secondary scattering, improve the coating efficiency, reduce the amount of platinum catalyst used, and continuously change the gradient. An inclined structure can be formed. As a result, it is possible to manufacture a catalyst electrode that further increases the three-phase interface and improves the battery performance.

したがって本発明によれば、三相界面を十分に形成し白金触媒利用率を高めることで、白金触媒の使用量を低減し且つ発電特性が優れた燃料電池用触媒電極、その製造方法、燃料電池用高分子電解質膜・電極接合体及び燃料電池を提供することができる。   Therefore, according to the present invention, by sufficiently forming a three-phase interface and increasing the utilization rate of the platinum catalyst, the catalyst electrode for a fuel cell which has reduced the amount of platinum catalyst used and has excellent power generation characteristics, a method for producing the same, a fuel cell A polymer electrolyte membrane / electrode assembly for use and a fuel cell can be provided.

本発明は、白金触媒粒子と水素イオン伝導性高分子電解質とを固形分として含む懸濁液(触媒インク)を、超音波振動を利用してスプレーノズルを共振させながら電極基材表面に噴霧して、白金触媒粒子の周囲を水素イオン伝導性高分子電解質で被覆した微粒子を電極基材表面に付着させて触媒層とするものである。   In the present invention, a suspension (catalyst ink) containing platinum catalyst particles and a hydrogen ion conductive polymer electrolyte as a solid content is sprayed on the surface of an electrode substrate while resonating a spray nozzle using ultrasonic vibration. Then, fine particles obtained by coating the periphery of the platinum catalyst particles with a hydrogen ion conductive polymer electrolyte are attached to the surface of the electrode base material to form a catalyst layer.

本発明で用いる白金触媒粒子としては、白金単体もしくは白金担持カーボン粒子が使用できる。その他では、パラジウム、ルテニウム等と白金との合金、もしくはその合金を担持したカーボン粒子などでもよい。水素イオン伝導性高分子電解質は、ナフィオン(デュポン社製;登録商標)等のフッ素系陽イオン交換樹脂であることが好ましい。白金触媒粒子と水素イオン伝導性高分子電解質は混合後に分散処理を行うことが必要である。触媒インクの分散は、ボールミルや超音波ホモジナイザーなどで行うことが可能である。この水素イオン伝導性高分子電解質は、分散処理や噴霧処理の際に白金触媒粒子の周囲に付着して、全体として微粒子を形成する。   As the platinum catalyst particles used in the present invention, platinum alone or platinum-supported carbon particles can be used. In addition, an alloy of platinum, ruthenium, and the like and platinum, or carbon particles supporting the alloy may be used. The hydrogen ion conductive polymer electrolyte is preferably a fluorine-based cation exchange resin such as Nafion (manufactured by DuPont; registered trademark). It is necessary to disperse the platinum catalyst particles and the hydrogen ion conductive polymer electrolyte after mixing. The catalyst ink can be dispersed with a ball mill or an ultrasonic homogenizer. This hydrogen ion conductive polymer electrolyte adheres to the periphery of the platinum catalyst particles during the dispersion treatment or spray treatment, and forms fine particles as a whole.

また、触媒インクで使用する溶媒は特に限定されず、白金触媒粒子や水素イオン伝導性高分子電解質が反応することがない揮発性の液体有機溶媒が含まれることが望ましく、特にイソプロパノールなどのアルコールが望ましい。水素イオン伝導性高分子電解質と親和性が高い水が含まれていてもよい。   The solvent used in the catalyst ink is not particularly limited, and preferably includes a volatile liquid organic solvent that does not react with the platinum catalyst particles or the hydrogen ion conductive polymer electrolyte. desirable. Water having high affinity with the hydrogen ion conductive polymer electrolyte may be included.

また、本発明において、超音波振動を利用して共振させながら噴霧させるスプレーは、ピエゾセラミックなどによって発生させた超音波をスプレーノズル部に伝え共振させることによって、そこを通過する触媒インクに超音波エネルギーを付与させて、インク自体が寄り集まろうとする凝集エネルギーから解き放させることにより霧化させて噴霧させるもの(超音波スプレー)である。   Further, in the present invention, spray sprayed while resonating using ultrasonic vibration transmits ultrasonic waves generated by piezoceramics and the like to the spray nozzle part to resonate, and ultrasonic waves are applied to the catalyst ink passing therethrough. By applying energy and releasing from the cohesive energy that the ink itself tries to gather together, it is atomized and sprayed (ultrasonic spray).

このような超音波スプレーの振動周波数は10kHz〜500kHzが望ましい。振動周波数が10kHz未満の場合では、超音波エネルギーが足りなくて触媒インクの凝集エネルギーによる束縛を開放しきれずに液体を霧状態とすることができない。また、振動周波数が500kHzを超える場合では、与えられた超音波振動に対して追随できず共振できなくなってしまう触媒インクの割合が増加してしまい、霧微粒子のシャープな粒子分布が損なわれてしまう。   The vibration frequency of such an ultrasonic spray is desirably 10 kHz to 500 kHz. When the vibration frequency is less than 10 kHz, the ultrasonic energy is insufficient, and the constraint due to the cohesive energy of the catalyst ink cannot be fully released, so that the liquid cannot be in a mist state. In addition, when the vibration frequency exceeds 500 kHz, the ratio of the catalyst ink that cannot follow the given ultrasonic vibration and cannot resonate increases, and the sharp particle distribution of the fog fine particles is impaired. .

本発明における触媒電極の触媒層は傾斜構造を有することが望ましい。傾斜構造とは、触媒電極における白金触媒粒子と水素イオン伝導性高分子電解質の含有量が、前記触媒電極の厚さ方向に変化する構造であり、例えば、水素イオン伝導性高分子電解質膜からガス拡散電極に向かって、白金触媒粒子の含有量が増加し且つ水素イオン伝導性高分子電解質の含有量が減少するような傾斜構造である。触媒層にそのような傾斜構造を与えることにより、均一な単一層である場合と比較して、ガス拡散層側から供給されるガスが反応サイトに運ばれやすく白金触媒粒子が反応しやくなり、且つ反応して生じた水素イオンを円滑に水素イオン伝導性高分子電解質膜側に流れやすくことができる。また、外部回路からの供給される電子と酸化性ガスの反応も同様に円滑に進行する。結果的に、燃料電池の内部抵抗が減少し、発電性能を向上させることができる。   In the present invention, the catalyst layer of the catalyst electrode desirably has an inclined structure. The inclined structure is a structure in which the content of platinum catalyst particles and hydrogen ion conductive polymer electrolyte in the catalyst electrode changes in the thickness direction of the catalyst electrode, for example, gas from the hydrogen ion conductive polymer electrolyte membrane. The gradient structure is such that the platinum catalyst particle content increases and the hydrogen ion conductive polymer electrolyte content decreases toward the diffusion electrode. By giving such a tilted structure to the catalyst layer, compared to the case of a uniform single layer, the gas supplied from the gas diffusion layer side is easily transported to the reaction site, and the platinum catalyst particles easily react. In addition, the hydrogen ions generated by the reaction can easily flow to the hydrogen ion conductive polymer electrolyte membrane side. Further, the reaction between electrons supplied from the external circuit and the oxidizing gas also proceeds smoothly. As a result, the internal resistance of the fuel cell is reduced and the power generation performance can be improved.

傾斜構造は2層以上の複数層であればよい。多層構造とするほど反応及びイオンの移動は円滑に進行し、発電性能は向上しやすく且つ安定性までも向上する。傾斜構造を複数層にするためには、組成の異なる触媒インクを満たした複数本のノズルを用意して、噴霧すればよい。噴霧の際にオンラインで行いたい場合は、ノズルをライン上に連続的に用意して噴霧することができる。超音波スプレーの場合ではオーバースプレーおよび二次飛散が起きにくいために生産性を飛躍的に向上させることができる。   The inclined structure may be a plurality of layers of two or more layers. As the multilayer structure is formed, the reaction and the movement of ions proceed more smoothly, and the power generation performance is easily improved and the stability is also improved. In order to make the inclined structure into a plurality of layers, a plurality of nozzles filled with catalyst inks having different compositions may be prepared and sprayed. When it is desired to carry out spraying online, nozzles can be continuously prepared on the line and sprayed. In the case of ultrasonic spraying, overspray and secondary scattering are unlikely to occur, so productivity can be dramatically improved.

触媒インクにおける白金触媒粒子の含有量は10質量%〜40質量%が望ましい。10質量%未満では触媒が不足となり発電特性を十分に発揮させることが難しく、40質量%以上では反応せずに無駄になってしまう白金触媒が増えてしまう。   The content of platinum catalyst particles in the catalyst ink is desirably 10% by mass to 40% by mass. If the amount is less than 10% by mass, the catalyst becomes insufficient and it is difficult to sufficiently exhibit the power generation characteristics. If the amount is 40% by mass or more, the number of platinum catalysts that are not reacted and is wasted increases.

また、水素イオン伝導性高分子電解質の含有量は20質量%〜80質量%が望ましい。20質量%未満では水素イオン伝導性高分子電解質が不足となり発電特性を十分に発揮することが難しく、80質量%以上では白金触媒粒子が包埋されすぎてしまい三相界面を減少させてしまうためである。   Moreover, as for content of a hydrogen ion conductive polymer electrolyte, 20 mass%-80 mass% are desirable. If the amount is less than 20% by mass, the hydrogen ion conductive polymer electrolyte is insufficient and it is difficult to sufficiently exhibit power generation characteristics. If the amount is 80% by mass or more, platinum catalyst particles are embedded too much and the three-phase interface is reduced. It is.

触媒電極における触媒層の空孔度は、30%未満であると反応ガスの供給が不十分となり電池性能が低下する。また、空孔度が90%を越えると導電性が低下し直流抵抗が増加すること及び触媒層としての機械的強度が低下して不十分となる。   When the porosity of the catalyst layer in the catalyst electrode is less than 30%, the supply of the reaction gas is insufficient and the battery performance is deteriorated. On the other hand, when the porosity exceeds 90%, the electrical conductivity is lowered and the direct current resistance is increased, and the mechanical strength as the catalyst layer is lowered and becomes insufficient.

次に、本発明において、噴霧する電極基材は、固体高分子型燃料電池の電極基材であって、一般にガス拡散性と導電性とを有する材質から成り、ガス拡散電極(ガス拡散層)としての機能を有し、例えば、カーボンペーパー又はカーボンクロス等が使用できる。噴霧する前に予め電極基材上に目処め層を形成させてもよい。目処め層は、触媒インクが電極の中へ染み込むことを防止する層であり、その噴霧量が少ない場合でも電極の中へ染み込むことがなく、電極上に堆積して皮膜を形成して三相界面を形成する。このような目処め層は、例えば、カーボンとフッ素系樹脂を混練してフッ素系樹脂の融点以上の温度で焼結させることにより形成することができる。フッ素系樹脂としては、ポリテトラフルオロエチレン(PTFE)等が利用できる。   Next, in the present invention, the electrode base material to be sprayed is an electrode base material for a polymer electrolyte fuel cell, and is generally made of a material having gas diffusibility and conductivity. A gas diffusion electrode (gas diffusion layer) For example, carbon paper or carbon cloth can be used. The spray layer may be formed in advance on the electrode substrate before spraying. The eye-catching layer is a layer that prevents the catalyst ink from penetrating into the electrode, and even if the spray amount is small, it does not soak into the electrode, and deposits on the electrode to form a film to form a three-phase. Form an interface. Such a sealing layer can be formed, for example, by kneading carbon and a fluororesin and sintering at a temperature equal to or higher than the melting point of the fluororesin. As the fluororesin, polytetrafluoroethylene (PTFE) or the like can be used.

また、この電極基材の表面を60〜120℃に加熱した状態で噴霧することが望ましい。60〜120℃に加熱した電極基材の表面に噴霧することによって、触媒インク中の溶媒を瞬時に乾燥させて、着滴後の白金触媒粒子の凝集を防止して、触媒層の空孔度を向上させることができる。電極基材表面が60℃未満では溶媒を瞬時に乾燥させる効果が低い。また、電極基材表面が120℃を越えると乾燥ムラを発生することがある。超音波スプレーする際に雰囲気ガスを管理・制御することによって、この効果を更に顕著にできる。   Moreover, it is desirable to spray in the state which heated the surface of this electrode base material at 60-120 degreeC. By spraying on the surface of the electrode base material heated to 60 to 120 ° C., the solvent in the catalyst ink is instantly dried to prevent aggregation of platinum catalyst particles after landing, and the porosity of the catalyst layer Can be improved. If the electrode substrate surface is less than 60 ° C., the effect of instantly drying the solvent is low. Further, when the electrode substrate surface exceeds 120 ° C., drying unevenness may occur. This effect can be further conspicuous by managing and controlling the atmospheric gas during ultrasonic spraying.

次に、超音波スプレーにおける噴霧速度は、0.01ml/分〜10ml/分程度の割合で触媒インクが通過するように行えばよい。この程度の噴霧速度の場合には、自然落下噴霧が可能が高い。超音波スプレーのノズル径は噴霧圧力と噴霧速度に応じて選択することができ、一般に数mm程度でよい。   Next, the spray speed in the ultrasonic spray may be such that the catalyst ink passes at a rate of about 0.01 ml / min to 10 ml / min. In the case of this level of spraying speed, natural falling spraying is highly possible. The nozzle diameter of the ultrasonic spray can be selected according to the spraying pressure and the spraying speed, and is generally about several mm.

また、このような超音波スプレーで噴霧する場合、噴霧した微粒子の自然落下噴霧を妨げることがない程度の低い圧力の範囲で、この微粒子を搬送させるガスを送り流してもよい。搬送用ガスの圧力は、0.005〜0.02MPa程度が望ましい。また、搬送用ガスを送ることによって噴きつけ角度がわずかに影響を受ける場合があるが、触媒層を形成するにあたり特に問題とはならない。ガスの種類は圧縮空気や窒素などでよく、安価で安全であれば特に問わない。   Moreover, when spraying by such an ultrasonic spray, you may send the gas which conveys this microparticles | fine-particles in the range of the low pressure which does not interfere with the natural fall spray of the sprayed microparticles | fine-particles. The pressure of the carrier gas is preferably about 0.005 to 0.02 MPa. Further, although the spray angle may be slightly affected by sending the carrier gas, there is no particular problem in forming the catalyst layer. The type of gas may be compressed air or nitrogen, and is not particularly limited as long as it is inexpensive and safe.

こうして電極基材の表面に触媒層を形成して得られたものは、固体高分子型燃料電池のアノード側触媒電極又はカソード側触媒電極として利用できる。すなわち、まず、図1に示すように、電極基材21,41に触媒層22,42を形成して、それぞれ、アノード側触媒電極、カソード側触媒電極とする。次に、これら触媒電極の間に、水素イオン伝導性高分子電解質膜3を挟み、熱プレスなどで接合することでMEAを製造することができる。   What was obtained by forming the catalyst layer on the surface of the electrode substrate in this way can be used as an anode side catalyst electrode or a cathode side catalyst electrode of a polymer electrolyte fuel cell. That is, first, as shown in FIG. 1, the catalyst layers 22 and 42 are formed on the electrode base materials 21 and 41 to form an anode side catalyst electrode and a cathode side catalyst electrode, respectively. Next, the MEA can be manufactured by sandwiching the hydrogen ion conductive polymer electrolyte membrane 3 between the catalyst electrodes and joining them by hot pressing or the like.

そして、このMEAを、反応ガス流路を有する2枚のセパレータで挟持させることにより、燃料電池セルを形成することができる。燃料電池セルは単体でも燃料電池として機能するが、この燃料電池セルを多数積層することによって、大きい起電力を得ることができる。   A fuel cell can be formed by sandwiching the MEA with two separators having a reaction gas flow path. Although a single fuel cell functions as a fuel cell, a large electromotive force can be obtained by stacking a large number of fuel cells.

以下、実施例によって本発明をさらに説明する。   Hereinafter, the present invention will be further described by way of examples.

(実施例1)
白金担持量が30質量%である市販の白金担持カーボン触媒2.0g及び市販の水素イオン伝導性高分子電解質20質量%溶液(ナフィオン溶液)5.0gを、水20.0gとイソプロパノール23.0gの混合溶媒中で超音波ホモジナイザーを使用して30分間攪拌して触媒インク1を調製した(白金触媒粒子固形分比20質量%、水素イオン伝導性高分子電解質固形分比33質量%)。
Example 1
2.0 g of a commercially available platinum-supported carbon catalyst having a platinum loading of 30% by mass and 5.0 g of a commercially available hydrogen ion conductive polymer electrolyte 20% by mass solution (Nafion solution), 20.0 g of water and 23.0 g of isopropanol. The catalyst ink 1 was prepared by stirring for 30 minutes using an ultrasonic homogenizer in a mixed solvent (platinum catalyst particle solid content ratio 20 mass%, hydrogen ion conductive polymer electrolyte solid content ratio 33 mass%).

白金担持量が30質量%である市販の白金担持カーボン触媒1.5g及び市販の水素イオン伝導性高分子電解質20質量%溶液(ナフィオン溶液)7.5gを、水20.0gとイソプロパノール23.0gの混合溶媒中で超音波ホモジナイザーを使用して30分間攪拌して触媒インク2を調製した(白金触媒粒子固形分比15質量%、水素イオン伝導性高分子電解質固形分比50質量%)。   1.5 g of a commercially available platinum supported carbon catalyst having a platinum loading of 30% by mass and 7.5 g of a commercially available hydrogen ion conductive polymer electrolyte 20% by mass (Nafion solution), 20.0 g of water and 23.0 g of isopropanol. The catalyst ink 2 was prepared by stirring for 30 minutes using an ultrasonic homogenizer in a mixed solvent (platinum catalyst particle solid content ratio 15 mass%, hydrogen ion conductive polymer electrolyte solid content ratio 50 mass%).

白金担持量が30質量%である市販の白金担持カーボン触媒1.0g及び市販の水素イオン伝導性高分子電解質20質量%溶液(ナフィオン溶液)10.0gを、水20.0gとイソプロパノール23.0gの混合溶媒中で超音波ホモジナイザーを使用して30分間攪拌して触媒インク3を調製した(白金触媒粒子固形分比10質量%、水素イオン伝導性高分子電解質固形分比67質量%)。   1.0 g of a commercially available platinum-supported carbon catalyst with a platinum loading of 30% by mass and 10.0 g of a commercially available hydrogen ion conductive polymer electrolyte 20% by mass solution (Nafion solution), 20.0 g of water and 23.0 g of isopropanol The catalyst ink 3 was prepared by stirring for 30 minutes using an ultrasonic homogenizer in a mixed solvent (platinum catalyst particle solid content ratio 10 mass%, hydrogen ion conductive polymer electrolyte solid content ratio 67 mass%).

調整した触媒インク1をシリンジに入れて、ノズルの内径が約2mmであり振動周波数が100kHzである超音波スプレーにて、噴霧圧0.01MPa 、送液速度0.15ml/分で、目処め層付きカーボンペーパー(E―Tek社製)上に、超音波噴霧した。ついでその上へ、触媒インク2を、同じようにノズルの内径が約2mmである超音波スプレーにて、噴霧圧0.01MPa、送液速度0.15ml/分で超音波噴霧を行った。さらにその上へ、触媒インク3を、ノズルの内径が約2mmである超音波スプレーにて、噴霧圧0.01MPa、送液速度0.15ml/分で超音波噴霧を行った。触媒層の白金担持量はアノード側を0.10mg/cm2、カソード側を0.15mg/cm2となるように作製した。そのときのアノード側の触媒層とカソード側の触媒層はともに、空孔度55%であった。 The prepared catalyst ink 1 is put into a syringe, and the target layer is formed by an ultrasonic spray having an inner diameter of the nozzle of about 2 mm and a vibration frequency of 100 kHz at a spray pressure of 0.01 MPa and a liquid feeding speed of 0.15 ml / min. Ultrasonic spraying was performed on attached carbon paper (manufactured by E-Tek). Then, the catalyst ink 2 was sprayed ultrasonically at a spraying pressure of 0.01 MPa and a liquid feed speed of 0.15 ml / min. Further thereon, the catalyst ink 3 was ultrasonically sprayed by an ultrasonic spray having an inner diameter of the nozzle of about 2 mm at a spraying pressure of 0.01 MPa and a liquid feeding speed of 0.15 ml / min. Platinum content in the catalyst layer was produced on the anode side 0.10 mg / cm 2, the cathode side so that the 0.15 mg / cm 2. At that time, the anode-side catalyst layer and the cathode-side catalyst layer both had a porosity of 55%.

得られた触媒電極を所定の面積にカットして、水素イオン伝導性高分子電解質膜(デュポン社製ナフィオン膜)と接合してMEAを作製した。接合には熱プレスを用いて、150℃、50kg/cm2、5分の条件で行った。次に、このMEAを、反応ガス流路を有する2枚のセパレータで挟持させて図2に示すような燃料電池セルを製造した。 The obtained catalyst electrode was cut into a predetermined area and joined to a hydrogen ion conductive polymer electrolyte membrane (Nafion membrane manufactured by DuPont) to prepare an MEA. The joining was performed using a hot press under conditions of 150 ° C., 50 kg / cm 2 and 5 minutes. Next, the MEA was sandwiched between two separators having a reaction gas flow path to manufacture a fuel cell as shown in FIG.

(実施例2)
触媒インク1を、ノズルの内径が約2mmであり振動周波数が100kHzである超音波スプレーにて、噴霧圧0.01MPa 、送液速度0.15ml/分で、目処め層付きカーボンペーパー(E―Tek社製)上に、超音波噴霧を行った。ついでその上へ、触媒インク3を、ノズルの内径が約2mmであり振動周波数が100kHzである超音波スプレーにて、噴霧圧0.01MPa 、送液速度0.15ml/分で超音波噴霧を行った。触媒層の白金担持量はアノード側を0.10mg/cm2 、カソード側を0.15mg/cm2となるように作製した。そのときのアノード側の触媒層とカソード側の触媒層はともに、空孔度50%であった。
(Example 2)
The catalyst ink 1 is carbon paper (E-) with an eye layer at an atomizing pressure of 0.01 MPa and a liquid feed rate of 0.15 ml / min by ultrasonic spraying with an inner diameter of the nozzle of about 2 mm and a vibration frequency of 100 kHz. Ultrasonic spraying was performed on Tek). Then, the catalyst ink 3 is ultrasonically sprayed at an atomizing pressure of 0.01 MPa and a liquid feeding speed of 0.15 ml / min by ultrasonic spraying with an inner diameter of the nozzle of about 2 mm and a vibration frequency of 100 kHz. It was. Platinum content in the catalyst layer was produced on the anode side 0.10 mg / cm 2, the cathode side so that the 0.15 mg / cm 2. At that time, both the anode-side catalyst layer and the cathode-side catalyst layer had a porosity of 50%.

得られた触媒電極を所定の面積にカットして、水素イオン伝導性高分子電解質膜(デュポン社製ナフィオン膜)と接合してMEAを作製した。接合には熱プレスを用いて、150℃、50kg/cm2、5分の条件で行った。次に、このMEAを、反応ガス流路を有する2枚のセパレータで挟持させて図2に示すような燃料電池セルを製造した。 The obtained catalyst electrode was cut into a predetermined area and joined to a hydrogen ion conductive polymer electrolyte membrane (Nafion membrane manufactured by DuPont) to prepare an MEA. The joining was performed using a hot press under conditions of 150 ° C., 50 kg / cm 2 and 5 minutes. Next, the MEA was sandwiched between two separators having a reaction gas flow path to manufacture a fuel cell as shown in FIG.

(実施例3)
触媒インク2を、ノズルの内径が約2mmであり振動周波数が100kHzである超音波スプレーにて、噴霧圧0.01MPa 、送液速度0.15ml/分で、目処め層付きカーボンペーパー(E―Tek社製)上に、超音波噴霧を行った。触媒層の白金担持量はアノード側を0.10mg/cm2 、カソード側を0.15mg/cm2となるように作製した。そのときのアノード側の触媒層とカソード側の触媒層はともに、空孔度45%であった。
(Example 3)
The catalyst ink 2 is carbon paper (E-) with an eye layer at an atomizing pressure of 0.01 MPa and a liquid feed rate of 0.15 ml / min by ultrasonic spraying with an inner diameter of the nozzle of about 2 mm and a vibration frequency of 100 kHz. Ultrasonic spraying was performed on Tek). Platinum content in the catalyst layer was produced on the anode side 0.10 mg / cm 2, the cathode side so that the 0.15 mg / cm 2. At that time, both the anode-side catalyst layer and the cathode-side catalyst layer had a porosity of 45%.

(比較例1)
実施例1で用いた超音波スプレーを、エアスプレーに変更したこと以外は実施例1と同様である。
(Comparative Example 1)
Example 1 is the same as Example 1 except that the ultrasonic spray used in Example 1 is changed to air spray.

得られた触媒電極を所定の面積にカットして、水素イオン伝導性高分子電解質膜(デュポン社製ナフィオン膜)と接合してMEAを作製した。接合には熱プレスを用いて、150℃、50kg/cm2、5分の条件で行った。次に、このMEAを、反応ガス流路を有する2枚のセパレータで挟持させて図2に示すような燃料電池セルを製造した。 The obtained catalyst electrode was cut into a predetermined area and joined to a hydrogen ion conductive polymer electrolyte membrane (Nafion membrane manufactured by DuPont) to prepare an MEA. The joining was performed using a hot press under conditions of 150 ° C., 50 kg / cm 2 and 5 minutes. Next, the MEA was sandwiched between two separators having a reaction gas flow path to manufacture a fuel cell as shown in FIG.

(燃料電池の電池性能測定)
水素流量が400ml/分、酸素流量が200ml/分となるようにして80℃で加湿・加熱した水素ガスと、加湿していない酸素ガスを供給して反応を行わせ、電池性能を測定した。その結果を表1に示す。実施例1及び実施例2の触媒電極を用いた場合では比較例1の触媒電極を用いた場合と比べて電池性能が向上することがわかった。
(Measurement of fuel cell performance)
The battery performance was measured by supplying hydrogen gas humidified and heated at 80 ° C. so that the hydrogen flow rate was 400 ml / min and the oxygen flow rate was 200 ml / min, and oxygen gas that was not humidified. The results are shown in Table 1. It was found that the battery performance was improved when the catalyst electrodes of Example 1 and Example 2 were used as compared with the case of using the catalyst electrode of Comparative Example 1.

Figure 2007265734
Figure 2007265734

(電気化学的な白金表面積の測定)
周知の電気化学測定法に準じて、触媒電極の水素脱離電気量を測定し、この値を電極面積で割って電極単位面積あたりの水素脱離電気量を求め、次いで210μC/cm2で割り、さらにこの値を電極単位面積あたりの白金担持量で割ることによって、白金単位重量あたりの活性な表面積を測定した。なお、アノード極側には水素ガスを、カソード極側には窒素ガスを加湿状態40℃の条件でそれぞれ供給して測定した。
(Electrochemical measurement of platinum surface area)
According to a well-known electrochemical measurement method, the amount of hydrogen desorption electricity of the catalyst electrode is measured, and this value is divided by the electrode area to obtain the amount of hydrogen desorption electricity per electrode unit area, and then divided by 210 μC / cm 2 . Further, the active surface area per unit weight of platinum was measured by dividing this value by the amount of platinum supported per unit area of electrode. Measurement was performed by supplying hydrogen gas to the anode electrode side and nitrogen gas to the cathode electrode side in a humidified condition of 40 ° C.

その測定の結果、実施例1のカソード極側の電気化学的に活性な表面積は910cm2/mgであった。実施例2のカソード極側の電気化学的に活性な表面積は840cm2/mgであった。実施例3のカソード極側の電気化学的に活性な表面積は770cm2/mgであった。一方、(比較例1)のカソード極側の電気化学的に活性な表面積は480cm2/mgであった。白金触媒のサイズを約2nmと仮定すると、白金触媒がすべて有効に利用された場合の表面積は1400cm2/mg程度となる。この値を用いて白金触媒の有効利用率を求めると、実施例1では65%、実施例2では60%、実施例3では55%、比較例1では34%となることが分かった。 As a result of the measurement, the electrochemically active surface area on the cathode electrode side in Example 1 was 910 cm 2 / mg. The electrochemically active surface area on the cathode side in Example 2 was 840 cm 2 / mg. The electrochemically active surface area of the cathode side in Example 3 was 770 cm 2 / mg. On the other hand, the electrochemically active surface area of the cathode side of (Comparative Example 1) was 480 cm 2 / mg. Assuming that the size of the platinum catalyst is about 2 nm, the surface area when all of the platinum catalyst is effectively used is about 1400 cm 2 / mg. Using this value, the effective utilization rate of the platinum catalyst was found to be 65% in Example 1, 60% in Example 2, 55% in Example 3, and 34% in Comparative Example 1.

以上の測定結果より、実施例1〜3の触媒電極は、比較例1の触媒電極と比べて、白金有効利用率が高くなり、且つ電池性能が優れていることが確認できた。   From the above measurement results, it was confirmed that the catalyst electrodes of Examples 1 to 3 had a higher platinum effective utilization rate and superior battery performance as compared with the catalyst electrode of Comparative Example 1.

本発明の燃料電池用触媒電極は、低白金量でも白金触媒の有効利用率が高くなり優れた発電性能を有し、安価で製造可能であり、そして優れた発電性能を有する固体高分子型燃料電池を製造できることから、固体高分子型燃料電池の分野での応用が期待できる。   The catalyst electrode for a fuel cell of the present invention has a high effective utilization rate of a platinum catalyst even when the amount of platinum is low, has excellent power generation performance, can be manufactured at low cost, and has a solid polymer fuel having excellent power generation performance Since the battery can be manufactured, application in the field of polymer electrolyte fuel cells can be expected.

膜・電極接合体の製造工程の説明図である。It is explanatory drawing of the manufacturing process of a membrane electrode assembly. 燃料電池の分解斜視図である。It is a disassembled perspective view of a fuel cell.

符号の説明Explanation of symbols

1……アノード側のセパレータ、2……アノード側触媒電極、21……アノード側電極基材、22……アノード側触媒層、3……水素イオン伝導性高分子電解質膜、4……カソード側触媒電極、41……カソード側電極基材、42……カソード側触媒層、5……カソード側のセパレータ。   DESCRIPTION OF SYMBOLS 1 ... Anode side separator, 2 ... Anode side catalyst electrode, 21 ... Anode side electrode base material, 22 ... Anode side catalyst layer, 3 ... Hydrogen ion conductive polymer electrolyte membrane, 4 ... Cathode side Catalyst electrode 41... Cathode side electrode base material 42... Cathode side catalyst layer 5.

Claims (9)

白金触媒粒子と水素イオン伝導性高分子電解質とを固形分として含む懸濁液を、燃料電池の電極基材表面に超音波振動を利用してスプレーノズルを共振させながら噴霧することにより、前記電極基材表面に前記懸濁液を付着させ、触媒層を形成して製造されることを特徴とする燃料電池用触媒電極。   By spraying a suspension containing platinum catalyst particles and a hydrogen ion conductive polymer electrolyte as a solid content on the electrode substrate surface of a fuel cell while resonating a spray nozzle using ultrasonic vibration, the electrode A catalyst electrode for a fuel cell, which is produced by adhering the suspension to the surface of a substrate to form a catalyst layer. 前記触媒電極における白金触媒粒子と水素イオン伝導性高分子電解質の含有量が、前記触媒電極の厚さ方向に変化する傾斜構造を有することを特徴とする請求項1に記載の燃料電池用触媒電極。   2. The catalyst electrode for a fuel cell according to claim 1, wherein the catalyst electrode has an inclined structure in which the content of the platinum catalyst particles and the hydrogen ion conductive polymer electrolyte in the catalyst electrode changes in the thickness direction of the catalyst electrode. . 前記触媒電極が、水素イオン伝導性高分子電解質膜およびガス拡散電極間に設けられ、前記傾斜構造が、前記水素イオン伝導性高分子電解質膜からガス拡散電極に向かって、前記白金触媒粒子の含有量が増加し且つ前記水素イオン伝導性高分子電解質の含有量が減少するような傾斜構造であることを特徴とする請求項2に記載の燃料電池用触媒電極。   The catalyst electrode is provided between the hydrogen ion conductive polymer electrolyte membrane and the gas diffusion electrode, and the inclined structure contains the platinum catalyst particles from the hydrogen ion conductive polymer electrolyte membrane toward the gas diffusion electrode. The catalyst electrode for a fuel cell according to claim 2, wherein the catalyst electrode for a fuel cell has an inclined structure in which the amount increases and the content of the hydrogen ion conductive polymer electrolyte decreases. 前記懸濁液において、前記白金触媒粒子の含有量が10質量%〜40質量%であり、且つ前記水素イオン伝導性高分子電解質の含有量が20質量%〜80質量%であることを特徴とする請求項1〜3のいずれかに記載の燃料電池用触媒電極。   In the suspension, the platinum catalyst particle content is 10% by mass to 40% by mass, and the hydrogen ion conductive polymer electrolyte content is 20% by mass to 80% by mass. The fuel cell catalyst electrode according to any one of claims 1 to 3. 前記超音波振動の共振周波数が10kHz〜500kHzであることを特徴とする請求項1〜4のいずれかに記載の燃料電池用触媒電極。   5. The fuel cell catalyst electrode according to claim 1, wherein a resonance frequency of the ultrasonic vibration is 10 kHz to 500 kHz. 前記触媒電極における触媒層の空孔度が30〜90%であることを特徴とする請求項1〜5のいずれかに記載の燃料電池用触媒電極。   The catalyst electrode for a fuel cell according to any one of claims 1 to 5, wherein the porosity of the catalyst layer in the catalyst electrode is 30 to 90%. 請求項1〜6のいずれかに記載の燃料電池用触媒電極を2枚使用し、この2枚の触媒電極の間に水素イオン伝導性高分子電解質膜を挟持させてなることを特徴とする燃料電池用高分子電解質膜・電極接合体。   7. A fuel comprising two fuel cell catalyst electrodes according to claim 1 and a hydrogen ion conductive polymer electrolyte membrane sandwiched between the two catalyst electrodes. Battery polymer electrolyte membrane / electrode assembly. 請求項7記載の燃料電池用高分子電解質膜・電極接合体を、反応ガス流路を有する2枚のセパレータで挟持させてなることを特徴とする燃料電池。   A fuel cell comprising the polymer electrolyte membrane / electrode assembly according to claim 7 sandwiched between two separators each having a reaction gas flow path. 白金触媒粒子と水素イオン伝導性高分子電解質とを固形分として含む懸濁液を、燃料電池の電極基材表面に超音波振動を利用してスプレーノズルを共振させながら噴霧し、前記電極基材表面に前記懸濁液を付着させ、触媒層を形成する工程を有することを特徴とする燃料電池用触媒電極の製造方法。
A suspension containing platinum catalyst particles and a hydrogen ion conductive polymer electrolyte as a solid content is sprayed on the surface of the electrode substrate of the fuel cell while resonating a spray nozzle using ultrasonic vibration, and the electrode substrate A method for producing a catalyst electrode for a fuel cell, comprising the step of depositing the suspension on a surface to form a catalyst layer.
JP2006087577A 2006-03-28 2006-03-28 Method for producing catalyst electrode for fuel cell Expired - Fee Related JP5114859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006087577A JP5114859B2 (en) 2006-03-28 2006-03-28 Method for producing catalyst electrode for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006087577A JP5114859B2 (en) 2006-03-28 2006-03-28 Method for producing catalyst electrode for fuel cell

Publications (2)

Publication Number Publication Date
JP2007265734A true JP2007265734A (en) 2007-10-11
JP5114859B2 JP5114859B2 (en) 2013-01-09

Family

ID=38638529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006087577A Expired - Fee Related JP5114859B2 (en) 2006-03-28 2006-03-28 Method for producing catalyst electrode for fuel cell

Country Status (1)

Country Link
JP (1) JP5114859B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009117069A (en) * 2007-11-02 2009-05-28 Equos Research Co Ltd Paste for electrode of fuel cell, membrane electrode assembly, and method of manufacturing paste for electrode
WO2010126119A1 (en) * 2009-04-27 2010-11-04 ジャパンゴアテックス株式会社 Anode-side catalyst composition for fuel cell and membrane electrode assembly (mea) for solid polymer-type fuel cell
TWI401975B (en) * 2008-12-09 2013-07-11 Univ Nat Kaohsiung Applied Sci Fabrication method of polymer-based vibrating membrane for capacitance micromachined ultrasonic transducers
JP2015162279A (en) * 2014-02-26 2015-09-07 帝人株式会社 Cathode electrode structure and membrane-electrode assembly
WO2018124645A1 (en) * 2016-12-28 2018-07-05 코오롱인더스트리 주식회사 Method for manufacturing electrode, electrode manufactured thereby, membrane-electrode assembly comprising same electrode, and fuel cell including same membrane-electrode assembly
KR20180079635A (en) * 2017-01-02 2018-07-11 코오롱인더스트리 주식회사 Method for manufacturing ionomer coated carbon structure and ionomer coated carbon structure manufactrued by the same
JP2019119931A (en) * 2017-12-29 2019-07-22 株式会社Flosfia Processing method
US20210296655A1 (en) * 2020-03-23 2021-09-23 Toyota Jidosha Kabushiki Kaisha Manufacturing method for catalyst layer for fuel cell
JP2022507922A (en) * 2018-11-26 2022-01-18 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー A catalyst layer with an expanded surface area for a polyelectrolyte fuel cell and a method for forming such a catalyst layer.
DE102022106413A1 (en) 2021-03-25 2022-09-29 Toyota Jidosha Kabushiki Kaisha CATALYST LAYER AND METHOD OF MAKING SAME

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0888008A (en) * 1994-09-19 1996-04-02 Toyota Motor Corp Fuel cell and manufacture thereof
JPH08115726A (en) * 1994-10-17 1996-05-07 Tanaka Kikinzoku Kogyo Kk Preparation of electrode for high-molecular solid electrolytic type electrochemistry cell
JPH08130020A (en) * 1994-10-28 1996-05-21 Tanaka Kikinzoku Kogyo Kk Manufacture of electrode for polymer solid-electrolytic electrochemical cell
JPH09180730A (en) * 1995-12-27 1997-07-11 Tokyo Gas Co Ltd Electrode for solid high molecular fuel cell and manufacture thereof
JP2002075407A (en) * 2000-09-01 2002-03-15 Honda Motor Co Ltd Electrode structure for fuel cell and its manufacturing method
JP2004507341A (en) * 2000-06-08 2004-03-11 スーペリア マイクロパウダーズ リミテッド ライアビリティ カンパニー Electrode catalyst powder, method for producing powder, and device formed from the powder
JP2004158446A (en) * 2002-10-16 2004-06-03 Canon Inc Manufacturing method of fuel cell and fuel cell device
JP2005216743A (en) * 2004-01-30 2005-08-11 Seiko Epson Corp Manufacturing method of membrane electrode junction, membrane electrode assembly, and fuel cell
JP2006508501A (en) * 2002-10-24 2006-03-09 キャボット コーポレイション Improved energy equipment
JP2007165075A (en) * 2005-12-13 2007-06-28 Toppan Printing Co Ltd Manufacturing method of catalyst electrode for fuel cell, polymer electrolyte membrane for fuel cell, and mancufaturing method of electrode assembly, and manufacturing method of fuel cell

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0888008A (en) * 1994-09-19 1996-04-02 Toyota Motor Corp Fuel cell and manufacture thereof
JPH08115726A (en) * 1994-10-17 1996-05-07 Tanaka Kikinzoku Kogyo Kk Preparation of electrode for high-molecular solid electrolytic type electrochemistry cell
JPH08130020A (en) * 1994-10-28 1996-05-21 Tanaka Kikinzoku Kogyo Kk Manufacture of electrode for polymer solid-electrolytic electrochemical cell
JPH09180730A (en) * 1995-12-27 1997-07-11 Tokyo Gas Co Ltd Electrode for solid high molecular fuel cell and manufacture thereof
JP2004507341A (en) * 2000-06-08 2004-03-11 スーペリア マイクロパウダーズ リミテッド ライアビリティ カンパニー Electrode catalyst powder, method for producing powder, and device formed from the powder
JP2002075407A (en) * 2000-09-01 2002-03-15 Honda Motor Co Ltd Electrode structure for fuel cell and its manufacturing method
JP2004158446A (en) * 2002-10-16 2004-06-03 Canon Inc Manufacturing method of fuel cell and fuel cell device
JP2006508501A (en) * 2002-10-24 2006-03-09 キャボット コーポレイション Improved energy equipment
JP2005216743A (en) * 2004-01-30 2005-08-11 Seiko Epson Corp Manufacturing method of membrane electrode junction, membrane electrode assembly, and fuel cell
JP2007165075A (en) * 2005-12-13 2007-06-28 Toppan Printing Co Ltd Manufacturing method of catalyst electrode for fuel cell, polymer electrolyte membrane for fuel cell, and mancufaturing method of electrode assembly, and manufacturing method of fuel cell

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009117069A (en) * 2007-11-02 2009-05-28 Equos Research Co Ltd Paste for electrode of fuel cell, membrane electrode assembly, and method of manufacturing paste for electrode
TWI401975B (en) * 2008-12-09 2013-07-11 Univ Nat Kaohsiung Applied Sci Fabrication method of polymer-based vibrating membrane for capacitance micromachined ultrasonic transducers
WO2010126119A1 (en) * 2009-04-27 2010-11-04 ジャパンゴアテックス株式会社 Anode-side catalyst composition for fuel cell and membrane electrode assembly (mea) for solid polymer-type fuel cell
JP2015162279A (en) * 2014-02-26 2015-09-07 帝人株式会社 Cathode electrode structure and membrane-electrode assembly
US11283093B2 (en) 2016-12-28 2022-03-22 Kolon Industries, Inc. Method for manufacturing electrode, electrode manufactured thereby, membrane-electrode assembly comprising same electrode, and fuel cell including same membrane-electrode assembly
WO2018124645A1 (en) * 2016-12-28 2018-07-05 코오롱인더스트리 주식회사 Method for manufacturing electrode, electrode manufactured thereby, membrane-electrode assembly comprising same electrode, and fuel cell including same membrane-electrode assembly
KR20180079635A (en) * 2017-01-02 2018-07-11 코오롱인더스트리 주식회사 Method for manufacturing ionomer coated carbon structure and ionomer coated carbon structure manufactrued by the same
KR102175008B1 (en) * 2017-01-02 2020-11-05 코오롱인더스트리 주식회사 Method for manufacturing ionomer coated carbon structure and ionomer coated carbon structure manufactrued by the same
JP2019119931A (en) * 2017-12-29 2019-07-22 株式会社Flosfia Processing method
JP7461946B2 (en) 2018-11-26 2024-04-04 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー Surface area enhanced catalyst layer for polymer electrolyte fuel cells and method for producing such a catalyst layer - Patents.com
JP2022507922A (en) * 2018-11-26 2022-01-18 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー A catalyst layer with an expanded surface area for a polyelectrolyte fuel cell and a method for forming such a catalyst layer.
US20210296655A1 (en) * 2020-03-23 2021-09-23 Toyota Jidosha Kabushiki Kaisha Manufacturing method for catalyst layer for fuel cell
JP7156328B2 (en) 2020-03-23 2022-10-19 トヨタ自動車株式会社 METHOD FOR MANUFACTURING CATALYST LAYER FOR FUEL CELL
US11527763B2 (en) * 2020-03-23 2022-12-13 Toyota Jidosha Kabushiki Kaisha Manufacturing method for catalyst layer for fuel cell
JP2021150217A (en) * 2020-03-23 2021-09-27 トヨタ自動車株式会社 Manufacturing method of catalyst layer for fuel cell
DE102022106413A1 (en) 2021-03-25 2022-09-29 Toyota Jidosha Kabushiki Kaisha CATALYST LAYER AND METHOD OF MAKING SAME
US12095099B2 (en) 2021-03-25 2024-09-17 Toyota Jidosha Kabushiki Kaisha Catalyst layer and method for producing the same

Also Published As

Publication number Publication date
JP5114859B2 (en) 2013-01-09

Similar Documents

Publication Publication Date Title
JP5114859B2 (en) Method for producing catalyst electrode for fuel cell
Millington et al. A novel method for preparing proton exchange membrane fuel cell electrodes by the ultrasonic-spray technique
US11831025B2 (en) Catalyst, preparation method therefor, electrode comprising same, membrane-electrode assembly, and fuel cell
EP3536664B1 (en) Method for manufacturing electrode, electrode manufactured thereby, membrane-electrode assembly comprising same electrode, and fuel cell including same membrane-electrode assembly
KR102189064B1 (en) Method for manufacturing electrode, electrode manufactured by using the same, membrane-electrode assembly comprising the electrode, and fuel cell comprising the membrane-electrode assembly
US8481224B2 (en) Direct methanol fuel cell and anode used therein
JP2009117248A (en) Fuel cell
JP2007214008A (en) Electrode catalyst for polymer electrolyte fuel cell, its manufacturing method and solid polymer fuel cell
JP2007165075A (en) Manufacturing method of catalyst electrode for fuel cell, polymer electrolyte membrane for fuel cell, and mancufaturing method of electrode assembly, and manufacturing method of fuel cell
JP2007501496A (en) Hybrid membrane / electrode assembly with reduced interfacial resistance and method for producing the same
JP2008135274A (en) Method of manufacturing fuel cell
JP5034252B2 (en) Electrode catalyst layer for polymer electrolyte fuel cell and method for producing the same
JP5114856B2 (en) Anode manufacturing method
JP4918753B2 (en) Electrode, battery, and manufacturing method thereof
JP2007250312A (en) Membrane/electrode assembly for solid polymer fuel cell, its manufacturing method, and solid polymer fuel cell
JP2008171702A (en) Manufacturing method of fuel cell assembly, manufacturing method of fuel cell, fuel cell assembly and fuel cell
JP2007027064A (en) Catalyst layer for polymer electrolyte fuel cell and polymer electrolyte fuel cell equipped with the same
JP2004139789A (en) Catalyst powder for fuel cell and its manufacturing method as well as polyelectrolyte membrane/electrode joint body and polyelectrolyte fuel cell equipped with the same
JP2004349076A (en) Electrode material for polymer electrolyte fuel cell, and manufacturing method of the same
JP2012243656A (en) Method for producing membrane electrode assembly, and membrane electrode assembly
JP2008300212A (en) Manufacturing method of electrode catalyst layer for solid polymer fuel cell, electrode catalyst layer for solid polymer fuel cell, and solid polymer type fuel cell using it
KR102187990B1 (en) Manufacturing method of catalyst ink for forming fuel cell electrode catalyst layer
JP2009170243A (en) Membrane electrode assembly
WO2023106392A1 (en) Catalyst composition and catalyst layer for fuel cells using catalyst composition
JP2003045439A (en) Manufacturing method of catalyst for polymer electrolyte fuel cell, electrolyte membrane/electrode assembly using it, and polymer electrolyte fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121001

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees