JP2004158446A - Manufacturing method of fuel cell and fuel cell device - Google Patents

Manufacturing method of fuel cell and fuel cell device Download PDF

Info

Publication number
JP2004158446A
JP2004158446A JP2003356131A JP2003356131A JP2004158446A JP 2004158446 A JP2004158446 A JP 2004158446A JP 2003356131 A JP2003356131 A JP 2003356131A JP 2003356131 A JP2003356131 A JP 2003356131A JP 2004158446 A JP2004158446 A JP 2004158446A
Authority
JP
Japan
Prior art keywords
fuel cell
electrode
electrode catalyst
electrolyte membrane
polymer electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003356131A
Other languages
Japanese (ja)
Inventor
Motokazu Kobayashi
本和 小林
Masayuki Yamada
雅之 山田
Shinji Eritate
信二 襟立
Teigo Sakakibara
悌互 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003356131A priority Critical patent/JP2004158446A/en
Publication of JP2004158446A publication Critical patent/JP2004158446A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a fuel cell capable of easily forming minute holes by accurately controlling an applying amount of electrode catalyst. <P>SOLUTION: The manufacturing method of the fuel cell comprising a fuel electrode, an oxidant electrode, and a polymer electrolyte film held between the both electrodes, and having an electrode catalyst layer formed between the both electrodes and the polymer electrolyte film has a process of forming the electrode catalyst layer by discharging a component for the electrode catalyst containing at least conductive particles carrying catalyst by an ink-jet method. <P>COPYRIGHT: (C)2004,JPO

Description

本発明は、燃料として水素、改質水素、メタノール、ジメチルエーテルなどを用い、空気や酸素を酸化剤として用いる燃料電池の製造方法および燃料電池装置に関するものである。   The present invention relates to a method of manufacturing a fuel cell and a fuel cell apparatus using hydrogen, reformed hydrogen, methanol, dimethyl ether, or the like as a fuel, and using air or oxygen as an oxidant.

固体高分子型燃料電池は、燃料極(アノード)と空気極(酸化剤極)(カソード)とが固体高分子型電解質膜を挟持する層構造を有する。この燃料極と空気極は白金などの貴金属や有機金属錯体が導電性炭素に担持された触媒と、電解質と、バインダーとの混合体よりなる。燃料極に供給された燃料は、電極中の細孔を通過して触媒に達し、触媒により電子を放出して水素イオンとなる。水素イオンは両電極間にある電解質膜を通過して空気極に達し、空気極に供給された酸素と外部回路より流れ込む電子と反応して水が生成される。燃料より放出された電子は、電極中の触媒や触媒が担持されている導電性炭素を通過して外部回路へ導き出され、外部回路より空気極へ流れ込む。この結果、外部回路では燃料極から空気極へ向かって電子が流れ電力が取り出される。   The polymer electrolyte fuel cell has a layer structure in which a fuel electrode (anode) and an air electrode (oxidant electrode) (cathode) sandwich a polymer electrolyte membrane. The fuel electrode and the air electrode are composed of a mixture of a catalyst in which a noble metal such as platinum or an organic metal complex is supported on conductive carbon, an electrolyte, and a binder. The fuel supplied to the fuel electrode passes through the pores in the electrode, reaches the catalyst, and emits electrons by the catalyst to become hydrogen ions. The hydrogen ions pass through the electrolyte membrane between the two electrodes, reach the air electrode, and react with oxygen supplied to the air electrode and electrons flowing from an external circuit to generate water. The electrons emitted from the fuel pass through the catalyst in the electrode and the conductive carbon carrying the catalyst, are led to an external circuit, and flow from the external circuit to the air electrode. As a result, in the external circuit, electrons flow from the fuel electrode to the air electrode, and power is extracted.

上記した固体高分子型燃料電池には、貴金属触媒を担持した炭素微粉末を多孔質導電性基材上または固体高分子型電解質膜に配したものが用いられる。その一般的な製法は、貴金属触媒を担持した導電性炭素微粉末を有機溶媒などに分散してインクとし、これをスクリーン印刷法、転写法、ドクターブレード法、ワイヤーバー法を用いて基材上に配し触媒層として形成される。さらに形成後、焼成などの手段により、ミクロな細孔を触媒層に設ける。
また、触媒粒子を分散させたインクを高分子電解質膜上または多孔質導電性基材上にスプレー塗布して多孔体とし触媒層を形成している(例えば、特許文献1参照)。
特開2001−068119号公報
For the above-mentioned polymer electrolyte fuel cell, one in which carbon fine powder carrying a noble metal catalyst is disposed on a porous conductive substrate or in a polymer electrolyte membrane is used. The general manufacturing method is to disperse conductive carbon fine powder carrying a noble metal catalyst in an organic solvent or the like to form an ink, which is then printed on a substrate using a screen printing method, a transfer method, a doctor blade method, or a wire bar method. To form a catalyst layer. Further, after the formation, micropores are provided in the catalyst layer by means such as baking.
Further, an ink in which catalyst particles are dispersed is spray-coated on a polymer electrolyte membrane or a porous conductive substrate to form a porous body and form a catalyst layer (for example, see Patent Document 1).
JP 2001-068119 A

しかしながら、印刷などの手法により触媒層を形成後、ミクロな細孔を形成するためには、あらかじめインクに造孔材を添加しておき、成膜後に焼成または洗浄などにより除去する必要がある。そのため製造工程が複雑になったり、焼成、洗浄などによって触媒活性が劣化したりするおそれがある。   However, in order to form micropores after forming the catalyst layer by a method such as printing, it is necessary to add a pore-forming material to the ink in advance, and remove the film by baking or washing after forming the film. Therefore, there is a possibility that the manufacturing process becomes complicated, and the catalytic activity is deteriorated due to firing, washing, or the like.

またスプレー塗布して多孔体を形成する方法は、焼成、洗浄などの手間はないが、吐出される液滴が比較的大きいため、形成される孔が細孔ではなく大きな孔となったり、塗布量が場所により不均一となりやすい。細孔径が大きくなると、触媒反応が起こる活性点が少なくなり、取り出せる電力が少なくなってしまう。また発電触媒の塗工量が不均一だと、場所による発電効率にばらつきが生じたりする。   In addition, the method of forming a porous body by spray coating does not require baking, washing, etc., but since the discharged droplet is relatively large, the formed hole is not a fine hole but a large hole. The amount tends to be uneven depending on the location. As the pore diameter increases, the number of active sites where a catalytic reaction occurs decreases, and the power that can be taken out decreases. In addition, if the coating amount of the power generation catalyst is not uniform, the power generation efficiency varies depending on the location.

本発明は、上記の課題を解決するもので、触媒層の塗布量を正確に制御しながら、かつ細孔を簡易な方法で設けることのできる燃料電池の製造方法を提供するものである。
また、本発明は、良好な発電効率が達成できる燃料電池を容易に製造可能とするものである。
また、本発明は、上記の方法で製造された燃料電池を用いた燃料電池装置を提供するものである。
The present invention solves the above-mentioned problems, and provides a method for manufacturing a fuel cell in which the amount of a catalyst layer can be accurately controlled and pores can be provided by a simple method.
Further, the present invention makes it possible to easily manufacture a fuel cell capable of achieving good power generation efficiency.
The present invention also provides a fuel cell device using the fuel cell manufactured by the above method.

即ち、本発明は、燃料極と、酸化剤極と、前記両極に狭持される高分子電解質膜とを有し、前記両極と前記高分子電解質膜との間に電極触媒層が形成されている燃料電池の製造方法であって、少なくとも触媒を担持した導電性粒子を含む電極触媒用組成物を電極触媒層を形成する形成面上にインクジェット法により吐出する工程を有することを特徴とする燃料電池の製造方法である。   That is, the present invention has a fuel electrode, an oxidizer electrode, and a polymer electrolyte membrane sandwiched between the two electrodes, and an electrode catalyst layer is formed between the both electrodes and the polymer electrolyte membrane. A method for producing a fuel cell, comprising: discharging a composition for an electrode catalyst containing at least a conductive particle carrying a catalyst onto a surface on which an electrode catalyst layer is formed by an inkjet method. This is a method for manufacturing a battery.

少なくとも触媒粒子を担持した導電性粒子を含む電極触媒用組成物を、電極触媒層を形成する形成面上の同一画素内に、インクジェット法により複数回吐出する工程を含むことが好ましい。   It is preferable to include a step of discharging the composition for an electrode catalyst containing at least the conductive particles carrying the catalyst particles into the same pixel on the surface on which the electrode catalyst layer is to be formed a plurality of times by an inkjet method.

吐出される電極触媒用組成物の1滴あたりの液滴量が、1pl〜100plであることが好ましい。
前記電極触媒層を形成する形成面が、前記高分子電解質膜の表面であることが好ましい。
It is preferable that the amount of a droplet of the composition for an electrode catalyst to be discharged is 1 pl to 100 pl.
The surface on which the electrode catalyst layer is formed is preferably the surface of the polymer electrolyte membrane.

前記燃料電池が、前記燃料極および前記酸化剤極の少なくと一方と、高分子電解質膜との間に拡散層をさらに有しており、前記電極触媒層を形成する形成面が、前記高分子電解質膜および前記拡散層の表面の少なくとも一方であることが好ましい。
前記導電性粒子が導電性炭素であることが好ましい。
The fuel cell further includes a diffusion layer between at least one of the fuel electrode and the oxidant electrode and a polymer electrolyte membrane, and a formation surface on which the electrode catalyst layer is formed is formed of the polymer catalyst. Preferably, it is at least one of an electrolyte membrane and a surface of the diffusion layer.
Preferably, the conductive particles are conductive carbon.

また、本発明は、燃料極と、酸化剤極と、これら両極に狭持される高分子電解質膜と、前記両極と前記高分子電解質膜との間に電極触媒層と、を有する燃料電池の製造方法であって、少なくとも触媒粒子を担持した導電性粒子を含む電極触媒用組成物を、電極触媒層を形成する形成面上の同一画素内に、1滴あたりの液滴量が1pl〜100plで複数回吐出する工程を含むことを特徴とする燃料電池の製造方法である。   Further, the present invention provides a fuel cell comprising a fuel electrode, an oxidizer electrode, a polymer electrolyte membrane sandwiched between these two electrodes, and an electrode catalyst layer between the two electrodes and the polymer electrolyte membrane. A method for producing an electrode catalyst composition comprising conductive particles carrying at least catalyst particles, wherein the amount of droplets per droplet is 1 pl to 100 pl in the same pixel on the surface on which the electrode catalyst layer is formed. A method of manufacturing a fuel cell, comprising a step of discharging a plurality of times.

さらに、本発明は、上記の方法により製造された燃料電池と、前記燃料電池を格納する筐体と、前記筐体に設けられ、前記燃料電池において生じた電力を外部に取り出すための外部取り出し電極とを少なくとも備えることを特徴とする燃料電池装置である。   Further, the present invention provides a fuel cell manufactured by the above method, a housing for storing the fuel cell, and an external extraction electrode provided in the housing for extracting electric power generated in the fuel cell to the outside. And at least a fuel cell device.

本発明によれば、電極触媒層の塗布量を正確に制御しながら、かつ細孔を簡易な方法で設けることのできる燃料電池の製造方法を提供できる。その結果、良好な発電効率が達成できる燃料電池の製造が可能となる。
また、本発明は、上記の方法で製造された燃料電池を用いた燃料電池装置を提供できる。
ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the fuel cell which can provide a pore by a simple method while controlling the application amount of an electrode catalyst layer accurately can be provided. As a result, it becomes possible to manufacture a fuel cell that can achieve good power generation efficiency.
Further, the present invention can provide a fuel cell device using the fuel cell manufactured by the above method.

以下、本発明を詳細に説明する。
本発明は、燃料極と、酸化剤極と、前記両極に狭持される高分子電解質膜とを有し、前記両極と前記高分子電解質膜との間に電極触媒層が形成されている燃料電池の製造方法であって、少なくとも触媒を担持した導電性粒子を含む電極触媒用組成物をインクジェット法により吐出して前記電極触媒層を形成する工程を有することを特徴とする燃料電池の製造方法である。
Hereinafter, the present invention will be described in detail.
The present invention provides a fuel comprising a fuel electrode, an oxidizer electrode, and a polymer electrolyte membrane sandwiched between the two electrodes, wherein an electrode catalyst layer is formed between the two electrodes and the polymer electrolyte membrane. A method for producing a fuel cell, comprising a step of discharging the composition for an electrode catalyst containing at least conductive particles carrying a catalyst by an inkjet method to form the electrode catalyst layer. It is.

以下、本発明の好ましい実施態様について説明する。
本発明の燃料電池の製造方法は、少なくとも触媒粒子を担持した導電性粒子を含む電極触媒用組成物を、電極触媒層を形成する形成面上の同一画素内に、インクジェット法により複数回吐出する工程を含むことが好ましい。
吐出される電極触媒用組成物の1滴あたりの液滴量が、1pl〜100plであることが好ましい。
Hereinafter, preferred embodiments of the present invention will be described.
In the method for producing a fuel cell according to the present invention, the composition for an electrode catalyst including at least the conductive particles supporting the catalyst particles is ejected a plurality of times by the inkjet method into the same pixel on the formation surface on which the electrode catalyst layer is formed. Preferably, a step is included.
It is preferable that the amount of a droplet of the composition for an electrode catalyst to be discharged is 1 pl to 100 pl.

また、本発明は、燃料極と、酸化剤極と、これら両極に狭持される高分子電解質膜と、前記両極と前記高分子電解質膜との間に電極触媒層と、を有する燃料電池の製造方法であって、少なくとも触媒粒子を担持した導電性粒子を含む電極触媒用組成物を、電極触媒層を形成する形成面上の同一画素内に、1滴あたりの液滴量が1pl〜100plで複数回吐出する工程を含むことを特徴とする燃料電池の製造方法である。   Further, the present invention provides a fuel cell comprising a fuel electrode, an oxidizer electrode, a polymer electrolyte membrane sandwiched between these two electrodes, and an electrode catalyst layer between the two electrodes and the polymer electrolyte membrane. A method for producing an electrode catalyst composition comprising conductive particles carrying at least catalyst particles, wherein the amount of droplets per droplet is 1 pl to 100 pl in the same pixel on the surface on which the electrode catalyst layer is formed. A method of manufacturing a fuel cell, comprising a step of discharging a plurality of times.

前記電極触媒層を形成する形成面が、前記高分子電解質膜の表面であることが好ましい。
前記燃料電池が、前記燃料極および前記酸化剤極の少なくと一方と、高分子電解質膜との間に拡散層をさらに有しており、前記電極触媒層を形成する形成面が、前記高分子電解質膜および前記拡散層の表面の少なくとも一方であることが好ましい。
The surface on which the electrode catalyst layer is formed is preferably the surface of the polymer electrolyte membrane.
The fuel cell further includes a diffusion layer between at least one of the fuel electrode and the oxidant electrode and a polymer electrolyte membrane, and a formation surface on which the electrode catalyst layer is formed is formed of the polymer catalyst. Preferably, it is at least one of an electrolyte membrane and a surface of the diffusion layer.

前記導電性粒子が導電性炭素であることが好ましい。
また上記製造方法において、1回の液滴量が1pl〜100plである固体高分子型燃料電池の製造方法に関する。
Preferably, the conductive particles are conductive carbon.
Further, in the above manufacturing method, the present invention relates to a method for manufacturing a polymer electrolyte fuel cell in which a single droplet amount is 1 pl to 100 pl.

また、本発明は、上記の方法により製造された燃料電池を備えた燃料電池装置である。
また、本発明は、上記記載の固体高分子型燃料電池の製造方法により製造された固体高分子型燃料電池に関する。
Further, the present invention is a fuel cell device provided with the fuel cell manufactured by the above method.
The present invention also relates to a polymer electrolyte fuel cell manufactured by the above-described method for manufacturing a polymer electrolyte fuel cell.

以下図面を用いて本発明を詳細に説明する。
図1は本発明における燃料電池の一例を示す部分概略図である。
図1において、本発明における燃料電池は、高分子電解質膜1の両面に電極触媒層2a、2bが設けられ、その外側に拡散層3a、3bが設けられ、さらにその外側に集電体を兼ねた電極(燃料極)4a、電極(酸化剤極)4bが設けられている。
Hereinafter, the present invention will be described in detail with reference to the drawings.
FIG. 1 is a partial schematic view showing an example of the fuel cell according to the present invention.
In FIG. 1, the fuel cell of the present invention is provided with electrode catalyst layers 2a and 2b on both sides of a polymer electrolyte membrane 1, diffusion layers 3a and 3b on the outside thereof, and a current collector on the outside. The electrode (fuel electrode) 4a and the electrode (oxidant electrode) 4b are provided.

高分子電解質膜1は、Du Pont社製のナフィオン膜に代表されるパーフルオロスルホン酸高分子膜、ヘキスト社製の炭化水素系膜などが好ましく用いられるが、これらに限定されるものではなく、水素イオン導電性を有する官能基、例えばスルホン酸基、スルフィン酸基、カルボン酸基、ホスホン酸基をもつ高分子膜を広く用いることができる。   As the polymer electrolyte membrane 1, a perfluorosulfonic acid polymer membrane typified by a Nafion membrane manufactured by Du Pont or a hydrocarbon-based membrane manufactured by Hoechst is preferably used, but is not limited thereto. A polymer membrane having a functional group having hydrogen ion conductivity, for example, a sulfonic acid group, a sulfinic acid group, a carboxylic acid group, or a phosphonic acid group can be widely used.

また、ゾルゲル法で作成した無機電解質と高分子膜のハイブリッド電解質膜なども用いることができる。
燃料のクロスオーバーを防止するために、電解質膜表面にコーティングを施しても良い。
Further, a hybrid electrolyte membrane of an inorganic electrolyte and a polymer membrane formed by a sol-gel method can also be used.
In order to prevent fuel crossover, a coating may be applied to the surface of the electrolyte membrane.

燃料極側の電極触媒層2aは、少なくとも白金触媒が担持された導電性炭素の電極触媒よりなる。
本発明において用いられる白金触媒は、導電性炭素の表面に担持されていることが好ましい。担持された触媒の平均粒子径は細かいことが好ましく、具体的には、0.5nm〜20nm、さらには1nm〜10nmの範囲が好ましい。0.5nm未満の場合には、触媒粒子単体で活性が高すぎ、取り扱いが困難となる。また20nmを越えると、触媒の表面積が減少して反応部位が減少するために、活性が低下するおそれがある。
The electrode catalyst layer 2a on the fuel electrode side is made of a conductive carbon electrode catalyst carrying at least a platinum catalyst.
The platinum catalyst used in the present invention is preferably supported on the surface of conductive carbon. The average particle diameter of the supported catalyst is preferably small, specifically, in the range of 0.5 nm to 20 nm, more preferably 1 nm to 10 nm. If it is less than 0.5 nm, the activity of the catalyst particles alone is too high, and handling becomes difficult. On the other hand, if it exceeds 20 nm, the activity may decrease because the surface area of the catalyst decreases and the number of reaction sites decreases.

白金触媒の代わりに、ロジウム、ルテニウム、イリジウム、パラジウム、およびオスミウムなどの白金族金属を用いたり、白金とそれら金属の合金を用いても構わない。特に燃料としてメタノールを用いる場合は、白金とルテニウムの合金を用いることが好ましい。   Instead of the platinum catalyst, a platinum group metal such as rhodium, ruthenium, iridium, palladium, and osmium may be used, or an alloy of platinum and those metals may be used. In particular, when methanol is used as a fuel, it is preferable to use an alloy of platinum and ruthenium.

導電性炭素は、その平均粒子径が5nm〜1000nmの範囲であることが好ましく、更には10nm〜100nmの範囲であることが好ましい。また前述した触媒を担持させるため、比表面積はある程度大きい方が良く、BET比表面積は50m2 /g〜3000m2 /g、更には100m2 /g〜2000m2 /gが好ましい。 The average particle diameter of the conductive carbon is preferably in the range of 5 nm to 1000 nm, and more preferably in the range of 10 nm to 100 nm. Further in order to carry the above-mentioned catalyst, the specific surface area may large to some degree, BET specific surface area of 50m 2 / g~3000m 2 / g, more 100m 2 / g~2000m 2 / g are preferred.

導電性炭素表面への触媒の担持方法は、公知の方法を広く用いることができる。例えば触媒として用いられる貴金属、具体的には白金および他の金属の溶液に導電性炭素を含浸した後、これら貴金属イオンを還元し導電性炭素表面に担持させる方法(湿式法)などが知られており、特開平2−111440号公報、特開2000−003712号公報などに開示されているが挙げられる。また担持させたい貴金属をターゲットとし導電性炭素にスパッタなどの真空成膜方法(乾式法)により担持させても構わない。   A known method can be widely used as a method for supporting the catalyst on the conductive carbon surface. For example, a method is known in which a solution of a noble metal used as a catalyst, specifically, platinum and other metals is impregnated with conductive carbon, and then these noble metal ions are reduced and supported on the conductive carbon surface (wet method). And those disclosed in JP-A-2-111440, JP-A-2000-003712 and the like. Further, the noble metal to be supported may be used as a target, and the conductive carbon may be supported by a vacuum film forming method (dry method) such as sputtering.

また導電性炭素は、その表面にイオン解離可能な有機基を結合させて、後述する電極触媒用組成物に調整した際に分散性を向上させても良い。好ましいイオン解離可能な有機基としては、スルホン酸基もしくはその塩、ホスホン酸基もしくはその塩、スルフィン酸基もしくはその塩、カルボン酸基もしくはその塩、第4級アンモニウム基などが挙げられる。   Further, the conductive carbon may have an ion-dissociable organic group bonded to its surface to improve dispersibility when it is adjusted to a composition for an electrode catalyst described later. Preferred ion-dissociable organic groups include sulfonic acid groups or salts thereof, phosphonic acid groups or salts thereof, sulfinic acid groups or salts thereof, carboxylic acid groups or salts thereof, and quaternary ammonium groups.

具体的な有機基の結合方法については、特表平10−510863号公報などに記載されている方法を用いることができる。
導電性炭素へ担持される触媒の担持量は、導電性炭素と触媒の合計の5〜80重量%、好ましくは10〜70重量%の範囲が望ましい。5重量%未満の場合には触媒性能が十分発現しないおそれがあり、80重量%を越えると、触媒の作製コストが上昇したり、製造工程上の取り扱いがきわめて困難になるため好ましくない。
As a specific method for bonding an organic group, a method described in Japanese Patent Application Laid-Open No. H10-510863 can be used.
The amount of the catalyst supported on the conductive carbon is desirably in the range of 5 to 80% by weight, preferably 10 to 70% by weight of the total of the conductive carbon and the catalyst. If the amount is less than 5% by weight, the catalyst performance may not be sufficiently exhibited. If the amount exceeds 80% by weight, the production cost of the catalyst increases and handling in the manufacturing process becomes extremely difficult, which is not preferable.

このようにして作製した電極触媒は、単独でまたはバインダー、高分子電解質、撥水剤、導電性炭素、界面活性剤などと共に溶剤、水などと混合、分散しインクジェット法により吐出できる電極触媒用組成物とする。電極触媒用組成物中に含有される電極触媒の含有量は0.5〜40重量%、好ましくは1〜30重量%が望ましい。   The electrode catalyst thus prepared can be used alone or in combination with a binder, a polymer electrolyte, a water repellent, a conductive carbon, a surfactant, etc., in a solvent, water, or the like, and dispersed and dispersed by an inkjet method. Things. The content of the electrode catalyst contained in the composition for an electrode catalyst is 0.5 to 40% by weight, preferably 1 to 30% by weight.

好ましい溶剤としては、例えばブチルアルコール、イソプロピルアルコール、エトキシエタノール、ペンチルアルコール、酢酸ブチル、グリセリン、ジエチレングリコールなどがよい。   Preferred solvents include, for example, butyl alcohol, isopropyl alcohol, ethoxyethanol, pentyl alcohol, butyl acetate, glycerin, diethylene glycol and the like.

作製した電極触媒用組成物を、インクジェット装置を用いたインクジェット法により高分子電解質膜および/または後述する拡散層表面に吐出して画素が形成される。
用いるインクジェット装置は、サーマル方式、ピエゾ方式などの吐出方式によるインクジェット法で行なわれるが、それらに特に制限されない。
The prepared composition for an electrode catalyst is discharged onto a polymer electrolyte membrane and / or the surface of a diffusion layer described later by an ink-jet method using an ink-jet device to form a pixel.
The ink jet device used is an ink jet method using a discharge method such as a thermal method or a piezo method, but is not particularly limited thereto.

本発明のインクジェット法は、通常インクの吐出により画像、文字などを形成するために使用されている方法を用いることができる。
画素の大きさ、形状は作製するセルの大きさ、仕様、用途などにより決まるが、数十ミクロンから数十cmまで任意の大きさ、形状で構わない。
The inkjet method of the present invention can use a method that is generally used for forming images, characters, and the like by discharging ink.
The size and shape of the pixel are determined by the size, specification, application and the like of the cell to be manufactured, but may be any size and shape from several tens of microns to several tens of cm.

また高分子電解質膜および/または後述する拡散層の同一面に複数個の画素を形成してそのまま用いても、画素ごとに切り離して用いても構わない。
インクジェット装置による電極触媒層の形成においては、同一画素内で膜厚ムラができたり、未塗布領域できてしまうことがある。そのため同一画素内に少なくとも2回以上の電極触媒用組成物を吐出する事が好ましい。
Further, a plurality of pixels may be formed on the same surface of the polymer electrolyte membrane and / or a diffusion layer described later and used as they are, or may be used separately for each pixel.
In the formation of the electrode catalyst layer by the ink jet device, there may be a case where the film thickness becomes uneven in the same pixel or an uncoated region is formed. Therefore, it is preferable to discharge the electrode catalyst composition at least twice or more in the same pixel.

1回に吐出する液滴量は、1pl(ピコリットル)〜100pl、更には1pl〜60plの範囲が好ましい。1plより少ないと、燃料電池としての性能上の問題はとくにないが、画素を形成するのに時間がかかり製造コストのアップになる。また100plより多いと細孔径が大きくなってしまい、発電効率の低下につながる。   The amount of droplets discharged at one time is preferably in a range of 1 pl (picoliter) to 100 pl, and more preferably in a range of 1 pl to 60 pl. If it is less than 1 pl, there is no particular problem in performance as a fuel cell, but it takes time to form a pixel, which increases the manufacturing cost. On the other hand, if it is more than 100 pl, the pore diameter becomes large, which leads to a decrease in power generation efficiency.

同一画素内で1pl〜100plの範囲において液滴量を変化させるのは構わない。
画素内に液滴を吐出すると、液滴が独立している部分と、一部重なっている部分が生じ、液滴を乾燥した後の電極触媒層に細孔が形成される。細孔の大きさは、平均直径が0.001〜0.05μm、好ましくは0.002〜0.04μmの範囲で規則的に形成されているのが好ましい。
It is permissible to change the droplet amount within the range of 1 pl to 100 pl within the same pixel.
When a droplet is discharged into a pixel, a portion where the droplet is independent and a portion where the droplet is partially overlapped are formed, and pores are formed in the electrode catalyst layer after the droplet is dried. The pores are preferably formed regularly with an average diameter in the range of 0.001 to 0.05 μm, preferably 0.002 to 0.04 μm.

画素が形成された高分子電解質膜や拡散層は、その後加熱しインク中に含まれている溶剤、水を乾燥させることが好ましい。また高分子電解質膜、拡散層を加熱しながらインクを吐出しても構わない。   It is preferable that the polymer electrolyte membrane and the diffusion layer on which the pixels are formed are subsequently heated to dry the solvent and water contained in the ink. The ink may be ejected while heating the polymer electrolyte membrane and the diffusion layer.

このように作製された高分子電解質膜と拡散層は形成された電極触媒層を挟んで密着される。特に高分子電解質膜と拡散層の両方に電極触媒層を設けた場合は、その電極触媒層同士を密着しても構わない。
密着する方法は特に問わないが、熱と圧力を同時にかけながら挟む方法が一般的である。
The polymer electrolyte membrane and the diffusion layer thus manufactured are adhered to each other with the electrode catalyst layer formed therebetween. In particular, when an electrode catalyst layer is provided on both the polymer electrolyte membrane and the diffusion layer, the electrode catalyst layers may be in close contact with each other.
The method of contact is not particularly limited, but a method of sandwiching while simultaneously applying heat and pressure is generally used.

拡散層3a、3bは、燃料である水素、改質水素、メタノール、ジメチルエーテルおよび酸化剤である空気や酸素を効率よく、均一に電極触媒層に導入できかつ電極に接触し電子の受け渡しを行う。一般的には、導電性の多孔質膜が好ましく、カーボンペーパー、カーボンクロス、カーボンとポリテトラフルオロエチレンとの複合シートなどを用いる。   The diffusion layers 3a and 3b can efficiently and uniformly introduce hydrogen as fuel, reformed hydrogen, methanol, dimethyl ether, and air and oxygen as oxidants into the electrode catalyst layer, and contact and transfer electrons with the electrodes. Generally, a conductive porous film is preferable, and carbon paper, carbon cloth, a composite sheet of carbon and polytetrafluoroethylene, or the like is used.

この拡散層の表面および内部をフッソ系塗料でコーティングし撥水化処理をして用いても構わない。
電極4a、4bは各拡散層に燃料、酸化剤を効率よく供給できかつ拡散層と電子の授受が行えるものであれば従来から用いられているものを特に限定することなく用いることができる。
The surface and inside of the diffusion layer may be coated with a fluorine-based paint and subjected to a water-repellent treatment before use.
As the electrodes 4a and 4b, those conventionally used can be used without particular limitation as long as they can efficiently supply fuel and oxidant to each diffusion layer and can exchange electrons with the diffusion layers.

本発明における燃料電池は、高分子電解質、電極触媒層、拡散層、電極を図1のように積層して作成するが、その形状は任意であり作製方法についても特に限定はなく従来の方法を用いることができる。   The fuel cell of the present invention is prepared by laminating a polymer electrolyte, an electrode catalyst layer, a diffusion layer, and an electrode as shown in FIG. 1, but the shape is arbitrary and the method of preparation is not particularly limited, and the conventional method is used. Can be used.

以下、実施例により本発明をさらに詳しく説明する。本発明は以下の実施例に限定されるものではない。
(電極触媒インクの製造例)
製造例1
導電性炭素としてバルカンXC72−R(キャボット社製、平均粒子径30nm)(55重量%)を用い、その表面に白金(30重量%)−ルテニウム(15重量%)合金を湿式法により、担持させ触媒とした。さらに分散性を向上するために炭素の表面にフェニルスルホン酸ナトリウムを特表平10−510862号公報例6の方法により、結合した。
Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited to the following examples.
(Production example of electrode catalyst ink)
Production Example 1
Vulcan XC72-R (Cabot, average particle size 30 nm) (55% by weight) is used as conductive carbon, and a platinum (30% by weight) -ruthenium (15% by weight) alloy is supported on its surface by a wet method. The catalyst was used. In order to further improve the dispersibility, sodium phenylsulfonate was bonded to the surface of carbon by the method of Example 6 of Japanese Patent Application Laid-Open No. 10-510862.

この触媒を担持させた導電性カーボン10gに5%ナフィオン・ブタノール溶液(和光純薬製)50g、ブタノール250gをよく混合、分散した後、水160gと界面活性剤数滴を混合し電極触媒用組成物を得た。   50 g of a 5% Nafion / butanol solution (manufactured by Wako Pure Chemical Industries, Ltd.) and 250 g of butanol are mixed and dispersed well in 10 g of the conductive carbon carrying the catalyst, and then 160 g of water and a few drops of a surfactant are mixed to obtain a composition for an electrode catalyst. I got something.

製造例2
製造例1と同様の方法で、導電性炭素としてバルカンXC72−R(キャボット社製)(60重量%)を用い、その表面に白金(40重量%)を担持させ触媒とした。さらに分散性を向上するために炭素の表面にフェニルスルホン酸ナトリウムを結合した。
Production Example 2
In the same manner as in Production Example 1, Vulcan XC72-R (manufactured by Cabot Corporation) (60% by weight) was used as conductive carbon, and platinum (40% by weight) was supported on its surface to form a catalyst. In order to further improve the dispersibility, sodium phenylsulfonate was bonded to the surface of carbon.

この触媒を担持させた導電性カーボン10gに5%ナフィオン溶液(和光純薬製)50g、ブタノール250gをよく混合、分散した後、水160gと界面活性剤数滴を混合し電極触媒用組成物を得た。   50 g of a 5% Nafion solution (manufactured by Wako Pure Chemical Industries, Ltd.) and 250 g of butanol are thoroughly mixed and dispersed in 10 g of conductive carbon carrying the catalyst, and then 160 g of water and a few drops of a surfactant are mixed to prepare a composition for an electrode catalyst. Obtained.

製造例3
製造例1と同様の方法で、導電性炭素としてケッチェンブラックEC600JD(ライオン社製、平均粒子径35nm)(60重量%)を用い、その表面に白金(25重量%)−ルテニウム(15重量%)合金を担持させ触媒とした。さらにこの導電性炭素に特表平10−510863号公報の例1の方法により、フェニルスルホン酸アンモニウムを結合させた。
Production Example 3
In the same manner as in Production Example 1, Ketjen Black EC600JD (manufactured by Lion Corporation, average particle diameter 35 nm) (60% by weight) was used as conductive carbon, and platinum (25% by weight) -ruthenium (15% by weight) was formed on the surface thereof. ) The alloy was supported and used as a catalyst. Further, ammonium phenylsulfonate was bound to this conductive carbon by the method of Example 1 of Japanese Patent Application Laid-Open No. H10-510863.

この触媒を担持させた導電性カーボン10gに5%ナフィオン溶液(和光純薬製)50g、ブタノール250gをよく混合、分散した後、水150gと界面活性剤数滴を混合し電極触媒用組成物を得た。   50 g of a 5% Nafion solution (manufactured by Wako Pure Chemical Industries) and 250 g of butanol are mixed and dispersed well in 10 g of conductive carbon carrying the catalyst, and then 150 g of water and several drops of a surfactant are mixed to prepare a composition for an electrode catalyst. Obtained.

製造例4
製造例1と同様の方法で、導電性炭素としてケッチェンブラックEC(ライオン社製)(60重量%)を用い、その表面に白金(40重量%)を担持させ触媒とした。さらにこの導電性炭素に特表平10−510863の例1の方法によりベンゼンカルボン酸ナトリウムを結合させた。
Production Example 4
In the same manner as in Production Example 1, Ketjen Black EC (manufactured by Lion Corporation) (60% by weight) was used as conductive carbon, and platinum (40% by weight) was supported on the surface thereof to form a catalyst. Further, sodium benzenecarboxylate was bound to the conductive carbon by the method of Example 1 of Japanese Patent Application Laid-Open No. H10-510863.

この触媒を担持させた導電性カーボン10gに5%ナフィオン溶液(和光純薬製)50g、ブタノール250gをよく混合、分散した後、水150gと界面活性剤数滴を混合し電極触媒用組成物を得た。   50 g of a 5% Nafion solution (manufactured by Wako Pure Chemical Industries, Ltd.) and 250 g of butanol are mixed and dispersed well in 10 g of conductive carbon carrying the catalyst, and then 150 g of water and several drops of a surfactant are mixed to prepare a composition for an electrode catalyst. Obtained.

実施例1〜4および比較例1〜2
実施例1〜4の電解質膜としてナフィオン112(デュポン社製 膜厚約50μm)を、拡散層のカーボンペーパーとしてTGP−H−030(東レ製、膜厚190μm)を用い、製造例1〜5の電極触媒用組成物をインクタンクに充填し、インクジェット方式により吐出させ画素を形成させた。
Examples 1-4 and Comparative Examples 1-2
Using Nafion 112 (a film thickness of about 50 μm manufactured by DuPont) as an electrolyte membrane of Examples 1 to 4, and TGP-H-030 (a film thickness of 190 μm manufactured by Toray) as a carbon paper for a diffusion layer. The composition for an electrode catalyst was filled in an ink tank, and discharged by an inkjet method to form a pixel.

電解質膜には片面に電極触媒用組成物を吐出し、画素形成後、50℃の真空乾燥機で乾燥させ、その後形成した画素の裏面に画素が重なるように電極触媒用組成物を吐出させて画素を形成した。
電極触媒用組成物の吐出は、1回の液滴量が10〜15plで行った。
画素形成時の条件などを表1に示す。吐出量(総液滴量)は触媒とした白金、ルテニウムなどの金属触媒が約10mg/cm2相当になるよう吐出した。
Discharge the electrode catalyst composition on one side of the electrolyte membrane, after forming the pixels, dry with a vacuum dryer at 50 ° C., and then discharge the electrode catalyst composition such that the pixels overlap the back surface of the formed pixels. Pixels were formed.
The discharge of the composition for an electrode catalyst was performed with a single droplet amount of 10 to 15 pl.
Table 1 shows conditions at the time of pixel formation. The ejection amount (total droplet amount) was such that a metal catalyst such as platinum or ruthenium as a catalyst was equivalent to about 10 mg / cm 2 .

ナフィオン膜は両面に、カーボンペーパーは片面に画素を形成後、50℃の真空乾燥機に入れて乾燥させた。その後電解質膜を中心にしてカーボンペーパーの画素を電解質膜の画素と合わせて密着させた後、120℃、4.9MPa(50kg/cm2 )の圧力でさらに密着させ、MEA(Membrane Electrode Assembly)を作製した。 After forming pixels on both sides of the Nafion film and forming one pixel on the carbon paper, the film was dried in a vacuum dryer at 50 ° C. After that, the pixel of the carbon paper is brought into close contact with the pixel of the electrolyte membrane around the electrolyte membrane, and further adhered at 120 ° C. and a pressure of 4.9 MPa (50 kg / cm 2 ), and MEA (Membrane Electrode Assembly) is applied. Produced.

また比較例1および2として、実施例3および2においてインクジェットを用いずにインクをスプレー塗工機(ノズル孔径1mm 霧化圧力1kgf/cm2 )を用い、ノズル高さ10cmの条件で同様に画素を形成した後、MEAを作製した。この際同様の画素を形成するためにマスクを用いて行った。
画素形成時の条件を表1に示す。
Also, as Comparative Examples 1 and 2, the ink was spray-coated (nozzle hole diameter: 1 mm, atomization pressure: 1 kgf / cm 2 ) without using an ink jet in Examples 3 and 2, and the pixel height was similarly set at a nozzle height of 10 cm. Was formed, and then an MEA was manufactured. At this time, a mask was used to form similar pixels.
Table 1 shows the conditions at the time of pixel formation.

Figure 2004158446
Figure 2004158446

評価
上記で作製したMEAを燃料電池のセルに組み込みそれぞれ燃料電池(セル)を作製した。それぞれの燃料電池(セル)について、燃料極側には、5wt%のメタノール水溶液を10ml/min/cm2 で供給し、空気極側には常圧の空気を200ml/min/cm2 で供給し、セル全体を75℃にて保温しながら発電をおこなった。実施例1〜4、比較例1,2のセルの電流と電圧の関係を図2に示す。
Evaluation The MEA prepared as described above was incorporated into a cell of a fuel cell to prepare a fuel cell (cell). For each fuel cell (cell), a 5 wt% methanol aqueous solution is supplied at 10 ml / min / cm 2 to the fuel electrode side, and normal pressure air is supplied at 200 ml / min / cm 2 to the air electrode side. Power was generated while keeping the entire cell at 75 ° C. FIG. 2 shows the relationship between the current and voltage of the cells of Examples 1 to 4 and Comparative Examples 1 and 2.

実施例1〜4の本発明の燃料電池においては0.5A/cm2 まで安定して出力が取り出せるが、比較例1,2においては実施例に比べ取り出せる出力が小さいことがわかる。
本実施例では、電極触媒を吐出後、洗浄、焼成などの工程を行わなかった。また本実施例では、画素のサイズ分のみ電極触媒用組成物を用いたが、比較例では、マスクの上に堆積された電極触媒が無駄となった。
In the fuel cells of the present invention in Examples 1 to 4, the output can be taken out stably up to 0.5 A / cm 2, but in Comparative Examples 1 and 2, the output that can be taken out is small compared to the example.
In this example, after discharging the electrode catalyst, steps such as washing and firing were not performed. In this example, the composition for the electrode catalyst was used only for the size of the pixel, but in the comparative example, the electrode catalyst deposited on the mask was wasted.

また形成された電極触媒層を電子顕微鏡で観察したところ、実施例1〜4は平均直径が0.03μm前後の細孔が規則正しく形成されていたが、比較例1〜2では平均直径が数十μm〜数百μmの細孔であった。   When the formed electrode catalyst layer was observed with an electron microscope, Examples 1 to 4 had regularly formed pores having an average diameter of about 0.03 μm, whereas Comparative Examples 1 and 2 had an average diameter of several tens of micrometers. The pores were from μm to several hundred μm.

本発明は、電極触媒層の塗布量を正確に制御しながら、かつ細孔を簡易な方法で設けることのでき、良好な発電効率が達成できる燃料電池の製造方法に利用することができる。また、良好な発電効率が達成できる燃料電池を用いた燃料電池装置を提供するのに利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used in a method for manufacturing a fuel cell in which fine holes can be provided by a simple method while accurately controlling the coating amount of the electrode catalyst layer, and good power generation efficiency can be achieved. Further, it can be used to provide a fuel cell device using a fuel cell that can achieve good power generation efficiency.

本発明における燃料電池の一例を示す部分概略図である。FIG. 2 is a partial schematic view illustrating an example of a fuel cell according to the present invention. 本発明の実施例1〜4および比較例1〜2における電流と電圧の関係を表すグラフである。It is a graph showing the relationship between the current and voltage in Examples 1-4 of this invention, and Comparative Examples 1-2.

符号の説明Explanation of reference numerals

1 高分子電解質膜
2a、2b 電極触媒層
3a、3b 拡散層
4a 電極(燃料極)
4b 電極(酸化剤極)
DESCRIPTION OF SYMBOLS 1 Polymer electrolyte membrane 2a, 2b Electrode catalyst layer 3a, 3b Diffusion layer 4a Electrode (fuel electrode)
4b electrode (oxidizer electrode)

Claims (13)

燃料極と、酸化剤極と、前記両極に狭持される高分子電解質膜とを有し、前記両極と前記高分子電解質膜との間に電極触媒層が形成されている燃料電池の製造方法であって、少なくとも触媒を担持した導電性粒子を含む電極触媒用組成物を電極触媒層を形成する形成面上にインクジェット法により吐出する工程を有することを特徴とする燃料電池の製造方法。   A method for manufacturing a fuel cell, comprising: a fuel electrode, an oxidizer electrode, and a polymer electrolyte membrane sandwiched between the two electrodes, wherein an electrode catalyst layer is formed between the two electrodes and the polymer electrolyte membrane A method for producing a fuel cell, comprising a step of discharging, by an inkjet method, an electrode catalyst composition containing at least a conductive particle carrying a catalyst onto a surface on which an electrode catalyst layer is formed. 少なくとも触媒粒子を担持した導電性粒子を含む電極触媒用組成物を、電極触媒層を形成する形成面上の同一画素内に、インクジェット法により複数回吐出する工程を含む請求項1記載の燃料電池の製造方法。   2. The fuel cell according to claim 1, further comprising a step of discharging the composition for an electrode catalyst containing at least the conductive particles carrying the catalyst particles into the same pixel on the surface on which the electrode catalyst layer is to be formed a plurality of times by an inkjet method. Manufacturing method. 吐出される電極触媒用組成物の1滴あたりの液滴量が、1pl〜100plである請求項1記載の燃料電池の製造方法。   2. The method for producing a fuel cell according to claim 1, wherein the amount of the discharged electrode catalyst composition per droplet is 1 pl to 100 pl. 前記電極触媒層を形成する形成面が、前記高分子電解質膜の表面である請求項1記載の燃料電池の製造方法。   The method for manufacturing a fuel cell according to claim 1, wherein a surface on which the electrode catalyst layer is formed is a surface of the polymer electrolyte membrane. 前記燃料電池が、前記燃料極および前記酸化剤極の少なくと一方と、高分子電解質膜との間に拡散層をさらに有しており、前記電極触媒層を形成する形成面が、前記高分子電解質膜および前記拡散層の表面の少なくとも一方である請求項1記載の燃料電池の製造方法。   The fuel cell further includes a diffusion layer between at least one of the fuel electrode and the oxidant electrode and a polymer electrolyte membrane, and a formation surface on which the electrode catalyst layer is formed is formed of the polymer catalyst. The method for manufacturing a fuel cell according to claim 1, wherein the fuel cell is at least one of an electrolyte membrane and a surface of the diffusion layer. 前記導電性粒子が導電性炭素である請求項1記載の燃料電池の製造方法。   2. The method according to claim 1, wherein the conductive particles are conductive carbon. 請求項1乃至6のいずれかに記載の方法により製造された燃料電池と、前記燃料電池を格納する筐体と、前記筐体に設けられ、前記燃料電池において生じた電力を外部に取り出すための外部取り出し電極とを少なくとも備えることを特徴とする燃料電池装置。   A fuel cell manufactured by the method according to any one of claims 1 to 6, a housing for storing the fuel cell, and a housing provided in the housing for taking out electric power generated in the fuel cell to the outside. A fuel cell device comprising at least an external extraction electrode. 燃料極と、酸化剤極と、これら両極に狭持される高分子電解質膜と、前記両極と前記高分子電解質膜との間に電極触媒層とを有する燃料電池の製造方法であって、少なくとも触媒粒子を担持した導電性粒子を含む電極触媒用組成物を、電極触媒層を形成する形成面上の同一画素内に、1滴あたりの液滴量が1pl〜100plで複数回吐出する工程を含むことを特徴とする燃料電池の製造方法。   A fuel electrode, an oxidizer electrode, a polymer electrolyte membrane sandwiched between these two electrodes, and a method for manufacturing a fuel cell having an electrode catalyst layer between the two electrodes and the polymer electrolyte membrane, at least Discharging the electrode catalyst composition including the conductive particles carrying the catalyst particles a plurality of times in the same pixel on the formation surface on which the electrode catalyst layer is formed, with a droplet amount per drop of 1 pl to 100 pl. A method for manufacturing a fuel cell, comprising: 前記電極触媒層を形成する形成面が、前記高分子電解質膜の表面である請求項8記載の燃料電池の製造方法。   9. The method for manufacturing a fuel cell according to claim 8, wherein the surface on which the electrode catalyst layer is formed is a surface of the polymer electrolyte membrane. 前記燃料電池が、前記燃料極および前記酸化剤極の少なくと一方と、高分子電解質膜との間に拡散層をさらに有しており、前記電極触媒層を形成する形成面が、前記高分子電解質膜および前記拡散層の表面の少なくとも一方である請求項8記載の燃料電池の製造方法。   The fuel cell further includes a diffusion layer between at least one of the fuel electrode and the oxidant electrode and a polymer electrolyte membrane, and a formation surface on which the electrode catalyst layer is formed is formed of the polymer catalyst. 9. The method for manufacturing a fuel cell according to claim 8, wherein the method is at least one of an electrolyte membrane and a surface of the diffusion layer. 前記導電性粒子が導電性炭素である請求項8記載の燃料電池の製造方法。   9. The method according to claim 8, wherein the conductive particles are conductive carbon. 前記燃料電池は、固体高分子型燃料電池である請求項8記載の燃料電池の製造方法。   9. The method according to claim 8, wherein the fuel cell is a polymer electrolyte fuel cell. 請求項8乃至12のいずれかに記載の方法により製造された燃料電池と、前記燃料電池を格納する筐体と、前記筐体に設けられ、前記燃料電池において生じた電力を外部に取り出すための外部取り出し電極とを少なくとも備えることを特徴とする燃料電池装置。   A fuel cell manufactured by the method according to any one of claims 8 to 12, a housing for housing the fuel cell, and a housing provided in the housing for taking out electric power generated in the fuel cell to the outside. A fuel cell device comprising at least an external extraction electrode.
JP2003356131A 2002-10-16 2003-10-16 Manufacturing method of fuel cell and fuel cell device Withdrawn JP2004158446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003356131A JP2004158446A (en) 2002-10-16 2003-10-16 Manufacturing method of fuel cell and fuel cell device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002302230 2002-10-16
JP2003356131A JP2004158446A (en) 2002-10-16 2003-10-16 Manufacturing method of fuel cell and fuel cell device

Publications (1)

Publication Number Publication Date
JP2004158446A true JP2004158446A (en) 2004-06-03

Family

ID=32827937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003356131A Withdrawn JP2004158446A (en) 2002-10-16 2003-10-16 Manufacturing method of fuel cell and fuel cell device

Country Status (1)

Country Link
JP (1) JP2004158446A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006236881A (en) * 2005-02-28 2006-09-07 Toppan Printing Co Ltd Electrode and its manufacturing method
JP2007165075A (en) * 2005-12-13 2007-06-28 Toppan Printing Co Ltd Manufacturing method of catalyst electrode for fuel cell, polymer electrolyte membrane for fuel cell, and mancufaturing method of electrode assembly, and manufacturing method of fuel cell
WO2007074934A1 (en) * 2005-12-27 2007-07-05 Toyota Jidosha Kabushiki Kaisha Method for producing diffusion layer for fuel cell and diffusion layer for fuel cell
JP2007214102A (en) * 2006-02-07 2007-08-23 Samsung Sdi Co Ltd Membrane electrode assembly, manufacturing method of membrane electrode assembly, and fuel cell
JP2007258051A (en) * 2006-03-24 2007-10-04 Toppan Printing Co Ltd Anode, its manufacturing method, polymer electrolyte membrane-electrode assembly for fuel cell, and fuel cell
JP2007265734A (en) * 2006-03-28 2007-10-11 Toppan Printing Co Ltd Catalyst electrode for fuel cell, its manufacturing method, polymer electrolyte membrane/electrode assembly for fuel cell, and fuel cell
KR101132459B1 (en) 2007-11-15 2012-03-30 주식회사 엘지화학 Method of preparing an electrode for fuel cell and Electrode prepared by the method and Membrane electrode assembly and Fuel cell comprising the same
JP2013016474A (en) * 2011-06-06 2013-01-24 Sumitomo Chemical Co Ltd Positive electrode catalyst for air secondary battery and air secondary battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006236881A (en) * 2005-02-28 2006-09-07 Toppan Printing Co Ltd Electrode and its manufacturing method
JP2007165075A (en) * 2005-12-13 2007-06-28 Toppan Printing Co Ltd Manufacturing method of catalyst electrode for fuel cell, polymer electrolyte membrane for fuel cell, and mancufaturing method of electrode assembly, and manufacturing method of fuel cell
WO2007074934A1 (en) * 2005-12-27 2007-07-05 Toyota Jidosha Kabushiki Kaisha Method for producing diffusion layer for fuel cell and diffusion layer for fuel cell
JP2007214102A (en) * 2006-02-07 2007-08-23 Samsung Sdi Co Ltd Membrane electrode assembly, manufacturing method of membrane electrode assembly, and fuel cell
JP2007258051A (en) * 2006-03-24 2007-10-04 Toppan Printing Co Ltd Anode, its manufacturing method, polymer electrolyte membrane-electrode assembly for fuel cell, and fuel cell
JP2007265734A (en) * 2006-03-28 2007-10-11 Toppan Printing Co Ltd Catalyst electrode for fuel cell, its manufacturing method, polymer electrolyte membrane/electrode assembly for fuel cell, and fuel cell
KR101132459B1 (en) 2007-11-15 2012-03-30 주식회사 엘지화학 Method of preparing an electrode for fuel cell and Electrode prepared by the method and Membrane electrode assembly and Fuel cell comprising the same
JP2013016474A (en) * 2011-06-06 2013-01-24 Sumitomo Chemical Co Ltd Positive electrode catalyst for air secondary battery and air secondary battery

Similar Documents

Publication Publication Date Title
JP4144686B2 (en) Method for producing polymer electrolyte fuel cell
JP4228911B2 (en) Fuel cell and manufacturing method thereof
JP2008004453A (en) Membrane electrode assembly for fuel cell
JP4093439B2 (en) Method for producing electrode for polymer electrolyte fuel cell
JP5349598B2 (en) Direct methanol fuel cell and anode used therefor
WO2007074934A1 (en) Method for producing diffusion layer for fuel cell and diffusion layer for fuel cell
JP2009117248A (en) Fuel cell
TWI230483B (en) Manufacturing process for fuel cell, and fuel cell apparatus
JP5428493B2 (en) Method for producing polymer electrolyte fuel cell
US20080299431A1 (en) Membrane electrode assembly for fuel cell
JP2005228755A (en) Polymer electrolyte fuel cell
JP5581583B2 (en) Membrane electrode assembly and polymer electrolyte fuel cell
JP2004158446A (en) Manufacturing method of fuel cell and fuel cell device
JP2006344517A (en) Manufacturing method of fuel cell
JP4919005B2 (en) Method for producing electrode for fuel cell
JP2003109605A (en) Electrode for high molecular electrolyte fuel cell and method of manufacturing the same
KR100612233B1 (en) A membrane electrode assembly for fuel cell, a method for preparing the same and a fuel cell comprising the same
JP2006079904A (en) Polymer electrolyte fuel cell and its manufacturing method
JP2010225560A (en) Separator for fuel cell, fuel cell, and method of manufacturing separator for fuel cell
JP2004139789A (en) Catalyst powder for fuel cell and its manufacturing method as well as polyelectrolyte membrane/electrode joint body and polyelectrolyte fuel cell equipped with the same
JP2003282074A (en) Electrode for fuel cell, and manufacturing method of the same
JP2005285670A (en) Manufacturing method of film/electrode assembly for polymer electrolyte type fuel cell
JP4229209B2 (en) Fuel cell and manufacturing method thereof
JP2003132898A (en) Electrode for fuel cell and manufacturing method therefor
JP2003282075A (en) Fuel cell, and manufacturing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060913

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080418