JP2001291520A - Manufacturing method of electrode for fuel cell - Google Patents

Manufacturing method of electrode for fuel cell

Info

Publication number
JP2001291520A
JP2001291520A JP2000104922A JP2000104922A JP2001291520A JP 2001291520 A JP2001291520 A JP 2001291520A JP 2000104922 A JP2000104922 A JP 2000104922A JP 2000104922 A JP2000104922 A JP 2000104922A JP 2001291520 A JP2001291520 A JP 2001291520A
Authority
JP
Japan
Prior art keywords
cation
electrode
fuel cell
exchange resin
trivalent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000104922A
Other languages
Japanese (ja)
Inventor
Naohiro Tsumura
直宏 津村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2000104922A priority Critical patent/JP2001291520A/en
Publication of JP2001291520A publication Critical patent/JP2001291520A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide am electrode and its manufacturing method for a fuel cell of a high performance which can carry an Pt-Ru alloy selectively on the interface of three phases and which has an anti-CO poisoning performance. SOLUTION: In the manufacturing method of an electrode for a fuel cell, first process to let tetramine Pt (divalent) positive ions and hexamine Ru (trivalent) positive ions adsorbed in a mixture containing cation-exchange resin and carbon particles, and a second process to chemically reduce the positive ions adsorbed in the mixture is conducted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池用電極の
製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for manufacturing an electrode for a fuel cell.

【0002】[0002]

【従来の技術】固体高分子電解質型燃料電池は、固体高
分子電解質膜の一方の面にアノ−ドを、もう一方の面に
カソ−ドを接合して構成され、例えばアノ−ドには燃料
として水素、カソ−ドには酸化剤として酸素を供給し
て、それぞれの電気化学反応によって電力を得る装置で
ある。
2. Description of the Related Art A solid polymer electrolyte fuel cell is constructed by joining an anode to one surface of a solid polymer electrolyte membrane and a cathode to the other surface. This is a device that supplies hydrogen as a fuel and oxygen as an oxidant to a cathode to obtain electric power by respective electrochemical reactions.

【0003】固体高分子電解質型燃料電池を作動させる
と、アノ−ドおよびカソ−ドにそれぞれ水素と酸素とを
供給した場合、次のような電気化学反応が進行する。
When a solid polymer electrolyte fuel cell is operated, the following electrochemical reaction proceeds when hydrogen and oxygen are supplied to an anode and a cathode, respectively.

【0004】アノ−ド:2H2→4H++4e- カソ−ド:O2+4H++4e-→H2O 上記のような電気化学反応は、各電極において、プロト
ン(H+)および電子(e-)授受を同時に行うことがで
きる三相界面でのみ進行する。
Anode: 2H 2 → 4H + + 4e Cathode: O 2 + 4H + + 4e → H 2 O The above-mentioned electrochemical reaction causes proton (H + ) and electron (e) at each electrode. - ) Progress only at the three-phase interface where transfer can be performed simultaneously.

【0005】固体高分子電解質型燃料電池におけるアノ
−ドおよびカソ−ドには、上記の三相界面を得るため
に、ガス拡散層と触媒層とで構成されるガス拡散電極が
用いられる。ガス拡散層には、外部から供給される反応
物質を触媒層へ十分に拡散させるために、その経路を備
えた撥水性を付与した多孔質なカーボンペーパーなどが
用いられる。触媒層には、ガス拡散層を経て供給される
反応物質の電気化学反応を円滑に進めるために触媒が備
えられる。
A gas diffusion electrode composed of a gas diffusion layer and a catalyst layer is used for an anode and a cathode in a solid polymer electrolyte fuel cell in order to obtain the three-phase interface. For the gas diffusion layer, porous carbon paper or the like provided with water repellency and provided with a path for sufficiently diffusing a reactant supplied from the outside into the catalyst layer is used. The catalyst layer is provided with a catalyst to smoothly promote an electrochemical reaction of a reactant supplied through the gas diffusion layer.

【0006】触媒としての白金を備えた電極を製作する
方法として、陽イオン交換樹脂とカーボン粒子とを含む
混合体を製作した後、その混合体を白金の陽イオンを含
む溶液に浸漬し、イオン交換反応により陽イオン交換樹
脂の対イオン(カチオン)を白金の陽イオンで置換し、
混合体に白金の陽イオンを吸着させる第1の工程と、混
合体内に吸着した白金の陽イオンを化学的に還元する第
2の工程とを経る方法がある(人見周二他、第40回電
池討論会要旨集、167−168、(1999))。
[0006] As a method for producing an electrode provided with platinum as a catalyst, a mixture containing a cation exchange resin and carbon particles is produced, and then the mixture is immersed in a solution containing a platinum cation. The exchange reaction replaces the counter ion (cation) of the cation exchange resin with the cation of platinum,
There is a method that includes a first step of adsorbing platinum cations to the mixture and a second step of chemically reducing platinum cations adsorbed in the mixture (Hitomi Shuji et al., 40th edition) Summary of Battery Symposium, 167-168, (1999)).

【0007】この方法で製作された電極は、白金を三相
界面に選択的に担持しているので、白金をあらかじめカ
−ボン粒子に担持した白金担持カ−ボンと陽イオン交換
樹脂とを混合して製作される電極よりも白金の利用率が
高く、少量の白金担持量で高出力を示すことが報告され
ている。
Since the electrode manufactured by this method selectively supports platinum on the three-phase interface, a platinum-supported carbon in which platinum is previously supported on carbon particles is mixed with a cation exchange resin. It has been reported that the utilization rate of platinum is higher than that of an electrode manufactured by a conventional method, and that a high output can be obtained with a small amount of platinum carried.

【0008】[0008]

【発明が解決しようとする課題】上記のイオン交換反応
を用いて製作した電極を備えた燃料電池は、白金の利用
率が高いので純水素を燃料として供給したときには高い
出力を示す。しかし純水素以外の燃料、例えばメタノ−
ル水溶液あるいは一酸化炭素(CO)を微量含むメタノ
−ルの改質ガスを供給したとき、反応生成中間物として
のCOや燃料中のCO成分が触媒層中の白金表面へ強く
吸着するという、CO被毒がおこるので、燃料電池の出
力電圧が低下する。
A fuel cell provided with an electrode manufactured by using the above-mentioned ion exchange reaction has a high utilization rate of platinum and therefore exhibits a high output when pure hydrogen is supplied as a fuel. However, fuels other than pure hydrogen, such as methanol
When an aqueous solution of methanol or a reformed gas of methanol containing a trace amount of carbon monoxide (CO) is supplied, CO as a reaction intermediate and the CO component in the fuel are strongly adsorbed on the platinum surface in the catalyst layer. Since CO poisoning occurs, the output voltage of the fuel cell decreases.

【0009】高い耐CO被毒性能を有する電極を製作す
るためには、白金(Pt)にルテニウム(Ru)などの
第二の金属を合金化したものを触媒として担持すればよ
い(B.N.Grgur Electrochim.A
cta 43,(1998)3631)。上記のイオン
交換反応を用いた電極製作法によってPtとRuとの合
金を三相界面に選択的に担持するには、上述の第1の工
程において、Ptを含む陽イオンおよびRuを含む陽イ
オンが、陽イオン交換樹脂とカ−ボン粒子とを含む混合
体のイオンクラスタ−部に、イオン交換反応によって、
同時にそして選択的に吸着されて、その吸着した陽イオ
ンが化学的に還元できる必要ある。しかし、このような
条件を満たすPtを含む陽イオンとRuを含む陽イオン
との組み合わせは明らかとなっていない。
In order to manufacture an electrode having high resistance to CO poisoning, a catalyst obtained by alloying a second metal such as ruthenium (Ru) with platinum (Pt) may be supported as a catalyst (BN). Grgur Electrochim.A
cta 43 , (1998) 3631). In order to selectively support the alloy of Pt and Ru on the three-phase interface by the electrode manufacturing method using the above-mentioned ion exchange reaction, in the above-mentioned first step, the cation containing Pt and the cation containing Ru Is added to the ion cluster part of the mixture containing the cation exchange resin and the carbon particles by an ion exchange reaction.
Simultaneously and selectively adsorbed, the adsorbed cation needs to be able to be chemically reduced. However, a combination of a cation containing Pt and a cation containing Ru that satisfies such conditions has not been clarified.

【0010】そこで、本発明者は、種々のPtを含む陽
イオンとRuを含む陽イオンとの組み合わせを試すこと
によって、三相界面に選択的にPt−Ru合金を担持で
きることを見いだした。さらに少量のPt−Ru担持量
で、高い耐CO被毒性能を有する高性能な本発明の燃料
電池用電極、およびその製造方法を見出した。
Therefore, the present inventor has found that a Pt-Ru alloy can be selectively supported on a three-phase interface by trying various combinations of cations containing Pt and cations containing Ru. Furthermore, a high-performance electrode for a fuel cell according to the present invention having high CO poisoning resistance with a small amount of supported Pt—Ru and a method for producing the same have been found.

【0011】[0011]

【課題を解決するための手段】本発明の燃料電池用電極
の製造方法は、陽イオン交換樹脂とカ−ボン粒子とを含
む混合体に、テトラアンミンPt(2価)陽イオンとヘ
キサアンミンRu(3価)陽イオンとを吸着させる第1
の工程と、前記混合体に吸着した前記陽イオンを化学的
に還元する第2の工程とを経ることを特徴とする。
According to a method of manufacturing an electrode for a fuel cell of the present invention, a mixture containing a cation exchange resin and carbon particles is mixed with a tetraammine Pt (divalent) cation and hexaammine Ru ( First to adsorb trivalent) cations
And a second step of chemically reducing the cations adsorbed on the mixture.

【0012】また、本発明は、上記燃料電池用電極の製
造方法の第1の工程において、陽イオン交換樹脂とカ−
ボン粒子とを含む混合体を、テトラアンミンPt(2
価)陽イオンとヘキサアンミンRu(3価)陽イオンと
を含む溶液に浸漬することを特徴とする。
Further, the present invention provides a method of manufacturing an electrode for a fuel cell, comprising the steps of:
The mixture containing carbon particles and tetraammine Pt (2
(Valent) cation and hexaammine Ru (trivalent) cation.

【0013】また本発明は、上記燃料電池用電極の製造
方法の第1の工程で使用する溶液中のテトラアンミンP
t(2価)陽イオンとヘキサアンミンRu(3価)陽イ
オンとの合計モル数に対するヘキサアンミンRu(3
価)陽イオンのモル数の比率が2.3〜40 モル%で
あることを特徴とする。
The present invention also relates to a method for producing an electrode for a fuel cell, wherein the tetraammine P in the solution used in the first step is used.
Hexammine Ru (3) with respect to the total number of moles of the t (divalent) cation and hexaammine Ru (trivalent) cation.
The ratio of the number of moles of the (valent) cation is 2.3 to 40 mol%.

【0014】さらに本発明は、上記燃料電池用電極の製
造方法の第1の工程で使用する溶液中のPtイオンとR
uイオンとの総濃度が100 mmol/L以下である
ことを特徴とする。
Further, the present invention relates to a method for manufacturing a fuel cell electrode, wherein Pt ions and Rt ions in a solution used in the first step of the method are used.
It is characterized in that the total concentration with u ions is 100 mmol / L or less.

【0015】また本発明は、上記燃料電池用電極の製造
方法における第2の工程において、テトラアンミンPt
(2価)陽イオンとヘキサアンミンRu(3価)陽イオ
ンを水素ガスまたは水素混合ガスによって還元すること
を特徴とする。この場合、水素ガスまたは水素混合ガス
の温度が150〜250℃であることが好ましい。
Further, according to the present invention, in the second step of the method for producing an electrode for a fuel cell, the tetraammine Pt
(Divalent) cations and hexaammine Ru (trivalent) cations are reduced by hydrogen gas or hydrogen mixed gas. In this case, it is preferable that the temperature of the hydrogen gas or the hydrogen mixed gas be 150 to 250 ° C.

【0016】[0016]

【発明の実施の形態】本発明の製造方法によって得られ
る燃料電池用電極の構造を、図面を参照して説明する。
図1は本発明による燃料電池用電極の、陽イオン交換樹
脂と接触したカ−ボン粒子の表層の状態を示す概念図で
ある。図1において、1はカ−ボン粒子、2は陽イオン
交換樹脂のプロトン伝導経路、3は陽イオン交換樹脂の
テフロン(登録商標)骨格部、4は触媒金属粒子であ
り、Pt−Ru合金からなる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure of a fuel cell electrode obtained by the manufacturing method of the present invention will be described with reference to the drawings.
FIG. 1 is a conceptual diagram showing a state of a surface layer of carbon particles in contact with a cation exchange resin in a fuel cell electrode according to the present invention. In FIG. 1, 1 is a carbon particle, 2 is a proton conduction path of a cation exchange resin, 3 is a Teflon (registered trademark) skeleton of the cation exchange resin, 4 is a catalytic metal particle, and is a Pt-Ru alloy. Become.

【0017】本発明の燃料電池用電極は、陽イオン交換
樹脂とカ−ボン粒子と触媒金属とを含む多孔性の電極で
あり、カ−ボン粒子により形成された電子伝導チャンネ
ル、陽イオン交換樹脂により形成されたプロトン伝導チ
ャンネル、多数の細孔により形成された活物質および生
成物の供給、排出チャンネルを有するものであって、図
1に示すように、カ−ボン粒子1の表層をプロトン伝導
経路2とテフロン骨格部3とで構成される陽イオン交換
樹脂が被覆し、陽イオン交換樹脂のプロトン伝導経路2
に接するカ−ボン粒子1の表面に粒子状の触媒金属(P
t−Ru合金)4が担持された構造を有するものであ
る。
The fuel cell electrode of the present invention is a porous electrode containing a cation exchange resin, carbon particles and a catalyst metal, and comprises an electron conduction channel formed by the carbon particles, a cation exchange resin. And a supply channel and a discharge channel for an active material and a product formed by a large number of pores, as shown in FIG. 1, and the surface layer of the carbon particles 1 is proton-conductive as shown in FIG. A cation exchange resin composed of the path 2 and the Teflon skeleton 3 is coated, and the proton conduction path 2 of the cation exchange resin is
The surface of the carbon particles 1 in contact with
(t-Ru alloy) 4 is supported.

【0018】このような燃料電池用電極は、たとえば、
陽イオン交換樹脂とカ−ボン粒子とを含む混合体に、テ
トラアンミンPt(2価)陽イオンとヘキサアンミンR
u(3価)陽イオンとを吸着させる第1の工程と、前記
混合体に吸着したそれら陽イオンを化学的に還元する第
2の工程とを経ることにより製作できる。
Such a fuel cell electrode is, for example,
In a mixture containing a cation exchange resin and carbon particles, a tetraammine Pt (divalent) cation and hexaammine R
It can be manufactured through a first step of adsorbing u (trivalent) cations and a second step of chemically reducing the cations adsorbed on the mixture.

【0019】このような本発明の電極製作法は、第1の
工程において、テトラアンミンPt(2価)陽イオンと
ヘキサアンミンRu(3価)陽イオンとを、上述の混合
体内の陽イオン交換樹脂のイオンクラスタ−部にイオン
交換反応によって同時にそして選択的に吸着できるこ
と、第2の工程においてその吸着した陽イオンが化学的
に還元され、Pt−Ru合金の生成が可能であることに
着目することによってなされたものであり、固体高分子
電解質型燃料電池用の電極に限らず、他の燃料電池用電
極の製造方法としても用いることのできるものである。
In the electrode manufacturing method according to the present invention, in the first step, the tetraammine Pt (divalent) cation and hexaammine Ru (trivalent) cation are combined with the cation exchange resin in the above-mentioned mixture. And that the cations adsorbed in the second step can be chemically reduced to form a Pt-Ru alloy in the second step. The present invention is not limited to electrodes for solid polymer electrolyte fuel cells, but can be used as a method for manufacturing other fuel cell electrodes.

【0020】本発明の燃料電池用電極の製造方法によれ
ば、第1の工程において、テトラアンミンPt(2価)
陽イオンとヘキサアンミンRu(3価)陽イオンとが陽
イオン交換樹脂のイオンクラスタ−部にイオン交換反応
によって同時に吸着されるので、第2の工程を経て生成
するPt−Ru合金は、陽イオン交換樹脂のプロトン伝
導経路に接するカ−ボン粒子表面に担持された触媒金属
量が全触媒金属担持量の50wt%以上となり、カ−ボ
ン粒子表層に形成された三相界面に多くの触媒金属(P
t−Ru合金)が担持されていることとなって、その利
用率が向上する。また、本発明の製造方法によって得ら
れるPt−Ru合金は、耐CO被毒性に優れたものであ
る。
According to the method for manufacturing an electrode for a fuel cell of the present invention, in the first step, tetraammine Pt (divalent) is used.
Since the cation and the hexaammine Ru (trivalent) cation are simultaneously adsorbed to the ion cluster part of the cation exchange resin by the ion exchange reaction, the Pt-Ru alloy produced through the second step is a cation. The amount of the catalyst metal supported on the surface of the carbon particles in contact with the proton conduction path of the exchange resin is 50 wt% or more of the total amount of the supported catalyst metal, and many catalyst metals (at the three-phase interface formed on the surface layer of the carbon particles) P
(t-Ru alloy) is carried, and the utilization factor is improved. Moreover, the Pt-Ru alloy obtained by the production method of the present invention has excellent resistance to CO poisoning.

【0021】本発明の燃料電池用電極の製造方法におい
て用いられる上記陽イオン交換樹脂とカ−ボン粒子とを
含む混合体は、陽イオン交換樹脂の溶液とカ−ボン粒子
と必要に応じてPTFE粒子分散液とからなるペ−スト
を高分子フィルム上に製膜(好ましくは膜厚3.0〜3
0μm)して乾燥して、または、カ−ボン粒子とPTF
E粒子分散溶液とからなるペ−ストを高分子フィルム上
に製膜(好ましくは膜厚3.0〜30μm)し乾燥した
のち陽イオン交換樹脂溶液を塗布し含浸した後乾燥し
て、または、陽イオン交換樹脂溶液、カ−ボン粒子、さ
らに必要に応じてPTFE粒子分散溶液とからなるペ−
ストを導電性多孔質体のカ−ボン電極基材上に塗布し乾
燥して、または、カ−ボン粒子とPTFE粒子分散溶液
とからなるペ−ストを導電性多孔質体のカ−ボン電極基
材上に塗布して加熱乾燥した後、陽イオン交換樹脂溶液
を塗布し含浸した後乾燥して製作されるのが好ましい。
さらに、この混合体は、陽イオン交換樹脂とカ−ボン粒
子とを含む混合体をイオン交換膜の両面、または片面に
接合した形態としてもよい。
The mixture containing the cation exchange resin and the carbon particles used in the method for producing an electrode for a fuel cell according to the present invention comprises a solution of the cation exchange resin, the carbon particles, and, if necessary, PTFE. A paste comprising the particle dispersion is formed on a polymer film (preferably, a film thickness of 3.0 to 3).
0 μm) and dried, or carbon particles and PTF
A paste comprising the E particle dispersion is formed on a polymer film (preferably, 3.0 to 30 μm), dried, and then coated with a cation exchange resin solution, impregnated, and dried, or A paper comprising a cation exchange resin solution, carbon particles, and, if necessary, a PTFE particle dispersion solution.
The paste is coated on a conductive porous carbon electrode substrate and dried, or a paste composed of carbon particles and a PTFE particle dispersion is applied to a conductive porous carbon electrode. It is preferable that the cation-exchange resin solution is coated on a substrate, heated and dried, coated with a cation exchange resin solution, impregnated, and then dried.
Further, the mixture may have a form in which a mixture containing a cation exchange resin and carbon particles is bonded to both sides or one side of an ion exchange membrane.

【0022】本発明に用いる陽イオン交換樹脂として
は、パ−フルオロカ−ボンスルフォン酸型またはスチレ
ン−ジビニルベンゼン系のスルフォン酸型陽イオン交換
樹脂を用いることができる。また、上記混合体を製作す
る際に用いる陽イオン交換樹脂の溶液は、上記陽イオン
交換樹脂をアルコ−ル等で溶解した溶液を用いる。
As the cation exchange resin used in the present invention, a perfluorocarbon sulfonic acid type or a styrene-divinylbenzene type sulfonic acid type cation exchange resin can be used. The solution of the cation exchange resin used in producing the above mixture is a solution obtained by dissolving the cation exchange resin in an alcohol or the like.

【0023】本発明に用いるカ−ボン粒子としては、P
tやRuを含む陽イオンなどの還元反応に対して高い活
性を示すカ−ボンブラックが好ましく、たとえば、Vu
lcan XC−72、Denka Black、Bla
ck Pearl 2000などが好ましい。
The carbon particles used in the present invention include P
Carbon black exhibiting high activity against reduction reactions of cations including t and Ru is preferable.
lcan XC-72, Denka Black, Bla
ck Pearl 2000 and the like are preferred.

【0024】また、本発明の燃料電池用電極の製造方法
においては、第1の工程で、陽イオン交換樹脂とカーボ
ン粒子とを含む混合体を、テトラアンミンPt(2価)
陽イオンとヘキサアンミンRu(3価)陽イオンを含む
溶液に浸漬することが好ましい。この方法によれば、前
記混合体にテトラアンミンPt(2価)陽イオンとヘキ
サアンミンRu(3価)陽イオンとを吸着させることが
できる。
In the method for producing an electrode for a fuel cell according to the present invention, in the first step, a mixture containing a cation exchange resin and carbon particles is mixed with tetraammine Pt (divalent).
It is preferable to immerse in a solution containing a cation and hexaammine Ru (trivalent) cation. According to this method, tetraammine Pt (divalent) cation and hexaammine Ru (trivalent) cation can be adsorbed on the mixture.

【0025】本発明の第1の工程で使用する溶液中の、
テトラアンミンPt(2価)陽イオンとヘキサアンミン
Ru(3価)陽イオンとの混合比は、どのような組成比
のものを用いても本発明の効果が得られるが、耐CO被
毒性を示す5.0〜60 原子%のRuを含むPt−R
u合金を備えた電極を製作できることから、テトラアン
ミンPt(2価)陽イオンとヘキサアンミンRu(3
価)陽イオンとの合計モル数に対するヘキサアンミンR
u(3価)陽イオンのモル数が、2.3〜40モル%で
あることが好ましい。
In the solution used in the first step of the present invention,
Regardless of the mixing ratio of the tetraammine Pt (divalent) cation and the hexaammine Ru (trivalent) cation, the effect of the present invention can be obtained by using any composition ratio, but it exhibits CO poisoning resistance. Pt-R containing 5.0-60 atomic% Ru
Since an electrode having a u-alloy can be manufactured, a tetraammine Pt (divalent) cation and a hexaammine Ru (3
Hexammine R based on the total number of moles with the cation
The number of moles of the u (trivalent) cation is preferably 2.3 to 40 mol%.

【0026】また本発明の第1の工程で使用する溶液と
してはどのような濃度のものでも用いることができる
が、第1の工程において混合体の陽イオン交換樹脂で被
覆されていないカ−ボン粒子表面への物理吸着を防ぐた
めに、この溶液のPtイオンとRuイオンとの総濃度が
100 mmol/L以下であることが好ましく、上記
混合体にイオン交換反応によって吸着できる最大mol
量以上のテトラアンミンPt(2価)陽イオンとヘキサ
アンミンRu(3価)陽イオンとを含んでいることが好
ましい。
As the solution used in the first step of the present invention, any concentration can be used, but the carbon which is not coated with the mixture of the cation exchange resin in the first step can be used. In order to prevent physical adsorption on the particle surface, the total concentration of Pt ions and Ru ions in this solution is preferably 100 mmol / L or less, and the maximum mol that can be adsorbed to the above mixture by ion exchange reaction.
It is preferable to include the tetraammine Pt (divalent) cation and the hexaammine Ru (trivalent) cation in an amount of not less than the amount.

【0027】また、本発明に用いるテトラアンミンPt
(2価)陽イオンとヘキサアンミンRu(3価)陽イオ
ンとを含む溶液は、PtおよびRuのアンミン錯体の塩
化物塩、水酸化物塩、硫酸塩、硝酸塩、炭酸塩などの電
解質を溶媒に溶解して用いることができる。溶媒として
は、上記電解質が電離するものであればよく、水、水と
アルコ−ルとの混合溶液を用いることができる。
The tetraammine Pt used in the present invention
A solution containing a (divalent) cation and a hexaammineRu (trivalent) cation is formed by dissolving an electrolyte such as chloride, hydroxide, sulfate, nitrate, and carbonate of an ammine complex of Pt and Ru in a solvent. Can be dissolved and used. Any solvent may be used as long as the electrolyte is ionized, and water or a mixed solution of water and alcohol can be used.

【0028】さらに、本発明に用いるテトラアンミンP
t陽イオンとしては、安定性が優れていることから、2
価の陽イオンが好ましく、ヘキサアンミンRu陽イオン
は、安定性がよいことや混合体へのイオン交換による吸
着反応が進行しやすいことから3価のものが好ましい。
Further, tetraammine P used in the present invention
As the t cation, because of its excellent stability,
A valent cation is preferable, and the hexaammine Ru cation is preferably a trivalent cation because it has good stability and the adsorption reaction by ion exchange to the mixture easily proceeds.

【0029】本発明における第2の工程において、混合
体中に吸着した陽イオンを還元するには、量産に適した
還元剤を用いる化学的な還元方法を用いることが好まし
く、特に水素ガスまたは水素混合ガスによって気相還元
する方法またはヒドラジンを含む不活性ガスによって気
相還元する方法が好ましい。
In the second step of the present invention, in order to reduce the cations adsorbed in the mixture, it is preferable to use a chemical reduction method using a reducing agent suitable for mass production, especially hydrogen gas or hydrogen gas. A method of performing a gas phase reduction with a mixed gas or a method of performing a gas phase reduction with an inert gas containing hydrazine is preferable.

【0030】また、本発明における第2の工程におい
て、混合体に吸着した陽イオンを水素ガスまたは水素混
合ガスを用いて還元する際の温度は、カ−ボン粒子表面
近傍のPtあるいはRuを含む陽イオンを還元すること
ができる温度である約150℃以上であることが好まし
く、また、陽イオン交換樹脂を劣化させないために、2
50℃以下であることが好ましい。
In the second step of the present invention, the temperature at which the cations adsorbed on the mixture are reduced using hydrogen gas or a hydrogen mixed gas includes Pt or Ru near the surface of the carbon particles. The temperature is preferably about 150 ° C. or higher, which is a temperature at which cations can be reduced.
It is preferably 50 ° C. or lower.

【0031】[0031]

【実施例】以下、本発明を好適な実施例を用いて説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to preferred embodiments.

【0032】〔実施例1〕陽イオン交換樹脂溶液(アル
ドリッチ社製、ナフィオン5wt%溶液)11gとカ−
ボン粒子(Vulcan XC−72)1.0gとを混
合し、70℃で撹拌しながら濃縮した後、高分子フィル
ム(テトラフルオロエチレン−ヘキサフルオロプロピレ
ン共重合フィルム)上にスクリ−ン印刷法を用いて膜状
に成形し乾燥して、陽イオン交換樹脂とカ−ボン粒子と
を含む混合体を製作した。
Example 1 11 g of a cation exchange resin solution (Alfrich, Nafion 5 wt% solution) and car
The mixture was mixed with 1.0 g of carbon particles (Vulcan XC-72) and concentrated at 70 ° C. with stirring, and then screen-printed on a polymer film (tetrafluoroethylene-hexafluoropropylene copolymer film). Then, the mixture was formed into a film and dried to prepare a mixture containing a cation exchange resin and carbon particles.

【0033】上記混合体を38.3 mmol/L[P
t(NH34]Cl2と12.8mmol/L[Ru
(NH36]Cl3との水溶液中に15時間浸漬するこ
とにより、陽イオン交換樹脂のイオンクラスタ−部のイ
オン交換基に[Pt(NH34 2+および[Ru(NH
363+をイオン交換反応により吸着させた後、精製水
で充分洗浄・乾燥後、1気圧、200℃の水素雰囲気中
で約7時間還元して、PtとRuとの合金を陽イオン交
換樹脂のイオンクラスタ−部に接するカ−ボン粒子表面
に生成させた。
The above mixture was added to 38.3 mmol / L [P
t (NHThree)Four] ClTwoAnd 12.8 mmol / L [Ru
(NHThree)6] ClThreeFor 15 hours in an aqueous solution of
As a result, the ion cluster part of the cation exchange resin
[Pt (NHThree)Four] 2+And [Ru (NH
Three)6]3+Is adsorbed by ion exchange reaction and purified water
After sufficient washing and drying in a hydrogen atmosphere at 1 atm and 200 ° C
For about 7 hours, and cation exchange of the alloy of Pt and Ru
Surface of carbon particles in contact with ion cluster part of exchange resin
Was generated.

【0034】つぎに、0.50mol/Lの硫酸に15
時間浸漬することによって上記還元工程で還元されなか
った陽イオンを溶出し、乾燥して5.0cm2正方形に
裁断し、実施例1の触媒層A(Pt担持量0.0080
mg/cm2、Ru担持量0.0040mg/cm2)を
得た。
Next, 150 mol / L sulfuric acid was added to 15
The cations not reduced in the above reduction step were eluted by immersion for a time, dried, cut into 5.0 cm 2 squares, and the catalyst layer A of Example 1 (Pt supported amount 0.0080
mg / cm 2, Ru supported amount 0.0040mg / cm 2) was obtained.

【0035】[比較例1]比較例1として、実施例1と
同様にして、触媒金属としてPtのみを担持した燃料電
池用電極を製作した。
Comparative Example 1 As Comparative Example 1, an electrode for a fuel cell supporting only Pt as a catalytic metal was produced in the same manner as in Example 1.

【0036】実施例1と同様に陽イオン交換樹脂とカ−
ボン粒子とを含む混合体を製作した。上記混合体を5
1.0mmol/L[Pt(NH34]Cl2の水溶液
中に15時間浸漬することよって、陽イオン交換樹脂の
イオンクラスタ−部のイオン交換基に[Pt(N
342+をイオン交換反応により吸着させた後、精製
水で充分洗浄・乾燥後、1気圧、200℃の水素雰囲気
中で約7時間還元して、Ptを陽イオン交換樹脂のイオ
ンクラスタ−部に接するカ−ボン粒子表面に析出・担持
させた。
In the same manner as in Example 1, the cation exchange resin and the car
A mixture containing carbon particles was produced. 5 of the above mixture
By immersing in an aqueous solution of 1.0 mmol / L [Pt (NH 3 ) 4 ] Cl 2 for 15 hours, [Pt (Nt) was added to the ion exchange group of the ion cluster part of the cation exchange resin.
After adsorbing H 3 ) 4 ] 2+ by ion exchange reaction, it is sufficiently washed and dried with purified water, and then reduced in a hydrogen atmosphere at 1 atm and 200 ° C. for about 7 hours to convert Pt into a cation exchange resin. Precipitated and supported on the surface of carbon particles in contact with the ion cluster part.

【0037】つぎに、実施例1と同様に0.50mol
/Lの硫酸に15時間浸漬することによって還元工程で
還元されなかった不要な陽イオンを溶出し、乾燥して裁
断し比較例1の触媒層B(Pt担持量0.013mg/
cm2)を得た。
Next, in the same manner as in Example 1, 0.50 mol
/ L sulfuric acid for 15 hours to elute unnecessary cations that were not reduced in the reduction step, dried and cut, and the catalyst layer B of Comparative Example 1 (Pt carrying amount 0.013 mg /
cm 2 ).

【0038】[比較例2]比較例2として、Pt−Ru
合金担持カ−ボンを用いた電極を製作した。
Comparative Example 2 As Comparative Example 2, Pt-Ru
An electrode using an alloy-supporting carbon was manufactured.

【0039】Pt−Ru合金担持カ−ボン1.0g(P
t18.6wt%、Ru14.4wt%、カ−ボン:V
ulcan XC−72、田中貴金属工業(株)社製)
と陽イオン交換樹脂溶液(アルドリッチ社製、ナフィオ
ン5wt%溶液)7.2gとを混錬したペ−ストを70
℃で撹拌しながら濃縮した後、高分子フィルム(テトラ
フルオロエチレン−ヘキサフルオロプロピレン共重合フ
ィルム)上にスクリ−ン印刷法を用いて膜状に成形して
乾燥し、裁断して比較例2の触媒層C(Pt担持量0.
077mg/cm2、Ruの担持量0.059mg/c
2)を得た。
1.0 g of Pt-Ru alloy-supported carbon (P
t 18.6 wt%, Ru 14.4 wt%, carbon: V
ulcan XC-72, manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.)
70 g of a paste obtained by kneading 7.2 g of a cation exchange resin solution (Aldrich Co., Ltd., Nafion 5 wt% solution) with 70 g
After concentrating while stirring at a temperature of ° C., it was formed into a film on a polymer film (tetrafluoroethylene-hexafluoropropylene copolymer film) using a screen printing method, dried, cut, and cut to obtain Comparative Example 2. Catalyst layer C (Pt carried amount 0.
077 mg / cm 2 , Ru loading 0.059 mg / c
m 2 ) was obtained.

【0040】触媒層A、BおよびCをホットプレス(8
5℃)にてイオン交換膜(デュポン社製、ナフィオン、
膜厚約50μm)の片面に、対面には比較例2と同様に
して製作したPt担持カ−ボンと陽イオン交換樹脂とか
らなる触媒層を接合し、高分子フィルムのみをはがし
て、さらにその触媒層の外側から挟むように撥水性を付
与した導電性多孔質体のカ−ボンペ−パ−をホットプレ
ス(130℃)にて接合し、それぞれを燃料電池の単セ
ルホルダ−に組んで、燃料電池A、BおよびCを得た。
The catalyst layers A, B and C were hot pressed (8
5 ° C.) ion exchange membrane (Dupont, Nafion,
A catalyst layer composed of a Pt-supported carbon and a cation exchange resin manufactured in the same manner as in Comparative Example 2 was joined to one surface of a film having a thickness of about 50 μm), and only the polymer film was peeled off. A carbon paper made of a conductive porous material having water repellency so as to be sandwiched from the outside of the catalyst layer is joined by a hot press (130 ° C.), and each of them is assembled into a single cell holder of a fuel cell. Batteries A, B and C were obtained.

【0041】用意した各セルの触媒層A、B、Cを備え
た面に水素を供給したときの電流−電圧特性を図2に、
水素にかえて100ppmのCOを含む水素を供給した
ときの電流−電圧特性を図3に示した。なお、それぞれ
の対極には酸素を供給した。
FIG. 2 shows current-voltage characteristics when hydrogen was supplied to the surface of each prepared cell provided with the catalyst layers A, B, and C.
FIG. 3 shows current-voltage characteristics when hydrogen containing 100 ppm of CO was supplied instead of hydrogen. Oxygen was supplied to each counter electrode.

【0042】図2および図3より、燃料にCOが含まれ
た場合、CO被毒によってセルBの出力電圧が大きく低
下したが、燃料電池Aおよび燃料電池Cの出力低下は小
さかった。また、本発明の電極を備えた燃料電池AのP
t−Ru合金担持量は、燃料電池Cの約1/9であっ
た。
2 and 3, when CO was contained in the fuel, the output voltage of the cell B was greatly reduced due to CO poisoning, but the output of the fuel cells A and C was small. Further, P of fuel cell A provided with the electrode of the present invention
The carried amount of the t-Ru alloy was about 1/9 of that of the fuel cell C.

【0043】これらのことから、本発明によって得られ
た燃料電池用電極は、Pt−Ru合金触媒が三相界面に
選択的に担持されているので、少量のPt−Ru合金担
持量で高い耐CO被毒性能を有していることがわかっ
た。
From these facts, in the fuel cell electrode obtained by the present invention, the Pt-Ru alloy catalyst is selectively supported on the three-phase interface, so that a small amount of the Pt-Ru alloy is supported and a high withstand resistance is obtained. It was found to have CO poisoning performance.

【0044】[0044]

【発明の効果】本発明の燃料電池用電極によれば、高い
触媒利用率と高い耐CO被毒性能とを有する高性能な燃
料電池の製造が可能となる。
According to the fuel cell electrode of the present invention, it is possible to manufacture a high-performance fuel cell having a high catalyst utilization and a high resistance to CO poisoning.

【0045】また、本発明の燃料電池用電極の製造方法
によれば、三相界面にPt−Ru合金を担持することが
できるので、少ないPt−Ru合金担持量で高い耐CO
被毒性能を有する燃料電池用電極の製造が可能となり、
高性能な燃料電池の製造が可能となる。
In addition, according to the method for producing an electrode for a fuel cell of the present invention, a Pt—Ru alloy can be supported on a three-phase interface, so that a small amount of Pt—Ru alloy is supported and a high CO resistance.
It becomes possible to manufacture fuel cell electrodes with poisoning performance,
High-performance fuel cells can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の燃料電池用電極の、カ−ボン粒子の表
層の状態を示す概念図。
FIG. 1 is a conceptual diagram showing a state of a surface layer of carbon particles in an electrode for a fuel cell of the present invention.

【図2】固体高分子電解質型燃料電池A、B、Cの、触
媒層A、B、Cを備えた面に水素を供給した場合の電流
−電圧特性を示す図。
FIG. 2 is a diagram showing current-voltage characteristics when hydrogen is supplied to the surfaces of the solid polymer electrolyte fuel cells A, B, and C on which the catalyst layers A, B, and C are provided.

【図3】固体高分子電解質型燃料電池A、B、Cの、触
媒層A、B、Cを備えた面に100ppmのCOを含む
水素を供給した場合の電流−電圧特性を示す図。
FIG. 3 is a diagram showing current-voltage characteristics when hydrogen containing 100 ppm of CO is supplied to the surfaces of the solid polymer electrolyte fuel cells A, B, and C on which the catalyst layers A, B, and C are provided.

【符号の説明】[Explanation of symbols]

1 カ−ボン粒子 2 陽イオン交換樹脂のプロトン伝導経路 3 陽イオン交換樹脂のテフロン骨格部 4 触媒金属(Pt−Ru合金)粒子。 1 Carbon particles 2 Proton conduction pathway of cation exchange resin 3 Teflon skeleton of cation exchange resin 4 Catalytic metal (Pt-Ru alloy) particles.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 陽イオン交換樹脂とカ−ボン粒子とを含
む混合体に、テトラアンミンPt(2価)陽イオンとヘ
キサアンミンRu(3価)陽イオンとを吸着させる第1
の工程と、前記混合体に吸着した前記陽イオンを化学的
に還元する第2の工程とを経ることを特徴とする燃料電
池用電極の製造方法。
1. A method of adsorbing a tetraammine Pt (divalent) cation and a hexaammine Ru (trivalent) cation onto a mixture containing a cation exchange resin and carbon particles.
And a second step of chemically reducing the cations adsorbed on the mixture. A method for producing an electrode for a fuel cell, comprising the steps of:
【請求項2】 第1の工程において、陽イオン交換樹脂
とカ−ボン粒子とを含む混合体を、テトラアンミンPt
(2価)陽イオンとヘキサアンミンRu(3価)陽イオ
ンとを含む溶液に浸漬することを特徴とする請求項1記
載の燃料電池用電極の製造方法。
2. In a first step, a mixture containing a cation exchange resin and carbon particles is mixed with tetraammine Pt.
2. The method for producing an electrode for a fuel cell according to claim 1, wherein the electrode is immersed in a solution containing (divalent) cations and hexaammine Ru (trivalent) cations.
【請求項3】 溶液中のテトラアンミンPt(2価)陽
イオンとヘキサアンミンRu(3価)陽イオンとの合計
モル数に対するヘキサアンミンRu(3価)陽イオンの
モル数の比率が2.3〜40 モル%であることを特徴
とする請求項2記載の燃料電池用電極の製造方法。
3. The ratio of the number of moles of hexaammine Ru (trivalent) cation to the total number of moles of tetraammine Pt (divalent) cation and hexaammine Ru (trivalent) cation in the solution is 2.3. 3. The method for producing an electrode for a fuel cell according to claim 2, wherein the amount is from about 40 mol%.
【請求項4】 溶液中のPtイオンとRuイオンとの総
濃度が100 mmol/L以下であることを特徴とす
る請求項2または3記載の燃料電池用電極の製造方法。
4. The method for producing an electrode for a fuel cell according to claim 2, wherein the total concentration of Pt ions and Ru ions in the solution is 100 mmol / L or less.
【請求項5】 第2の工程において、テトラアンミンP
t(2価)陽イオンとヘキサアンミンRu(3価)陽イ
オンを水素ガスまたは水素混合ガスによって還元するこ
とを特徴とする請求項2、3または4記載の燃料電池用
電極の製造方法。
5. In a second step, tetraamine P
5. The method for producing an electrode for a fuel cell according to claim 2, wherein the t (divalent) cation and the hexaammine Ru (trivalent) cation are reduced by hydrogen gas or hydrogen mixed gas.
【請求項6】 水素ガスまたは水素混合ガスの温度が1
50〜250℃であることを特徴とする請求項5記載の
燃料電池用電極の製造方法。
6. The temperature of the hydrogen gas or the hydrogen mixed gas is 1
The method for producing an electrode for a fuel cell according to claim 5, wherein the temperature is 50 to 250C.
JP2000104922A 2000-04-06 2000-04-06 Manufacturing method of electrode for fuel cell Pending JP2001291520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000104922A JP2001291520A (en) 2000-04-06 2000-04-06 Manufacturing method of electrode for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000104922A JP2001291520A (en) 2000-04-06 2000-04-06 Manufacturing method of electrode for fuel cell

Publications (1)

Publication Number Publication Date
JP2001291520A true JP2001291520A (en) 2001-10-19

Family

ID=18618384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000104922A Pending JP2001291520A (en) 2000-04-06 2000-04-06 Manufacturing method of electrode for fuel cell

Country Status (1)

Country Link
JP (1) JP2001291520A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005174861A (en) * 2003-12-15 2005-06-30 Asahi Glass Co Ltd Manufacturing method for membrane electrode assembly for solid polymer fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005174861A (en) * 2003-12-15 2005-06-30 Asahi Glass Co Ltd Manufacturing method for membrane electrode assembly for solid polymer fuel cell

Similar Documents

Publication Publication Date Title
US6528201B1 (en) Electrode for fuel cell and process for producing the same
JP2000173626A (en) Electrode for fuel cell and manufacture thereof
CA2497105A1 (en) Fuel cell electrode
US6866960B2 (en) Electrodes for fuel cell and processes for producing the same
JP2002100374A (en) Electrode for fuel cell and its manufacturing method
JP3649061B2 (en) Fuel cell electrode and manufacturing method thereof
JP4400177B2 (en) Fuel cell electrode
JP3523484B2 (en) Fuel cell
JP2001167770A (en) Electrode for fuel cell, and method of fabricating the same
JP2000012041A (en) Fuel cell electrode and its manufacture
JP2001126738A (en) Method for preparing electrode for fuel cell and direct methanol fuel cell using the same
JP5092381B2 (en) Catalyst powder for fuel cell, method for producing catalyst powder for fuel cell, and fuel cell
JP2002358971A (en) Fuel cell electrode and its manufacturing method and fuel cell using the same
JP3788490B2 (en) Direct methanol fuel cell with solid polymer electrolyte and method for producing the same
JP2001291520A (en) Manufacturing method of electrode for fuel cell
JPH1116588A (en) Direct methanol fuel cell having solid high polymer electrolyte and its manufacture
JP2007103175A (en) Electrode for polymeric fuel cell and polymeric fuel cell using the same
JP2006331845A (en) Catalyst powder for polymer electrolyte fuel cell and its manufacturing method, and electrode for polymer electrolyte fuel cell containing catalyst powder
JP2001283867A (en) Manufacturing method of catalyst body and electrode for fuel cell using same
JP2002134119A (en) Fuel cell and electrode for fuel cell
JP2007213947A (en) Manufacturing method of catalyst support powder for polymer electrolyte fuel cell, and polymer electrolyte fuel cell having catalyst support powder provided by same
JP2006344441A (en) Manufacturing method for catalyst mixture for polymer electrolyte fuel cell and polymer electrolyte fuel cell using the catalyst mixture obtained by the manufacturing method
JP4355921B2 (en) Fuel cell electrode and manufacturing method thereof
JP2005302554A (en) Polymer electrolyte fuel cell and its manufacturing method
JP2002373662A (en) Electrode for solid polymer fuel cell

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213