JP7384263B2 - catalyst ink - Google Patents

catalyst ink Download PDF

Info

Publication number
JP7384263B2
JP7384263B2 JP2022176228A JP2022176228A JP7384263B2 JP 7384263 B2 JP7384263 B2 JP 7384263B2 JP 2022176228 A JP2022176228 A JP 2022176228A JP 2022176228 A JP2022176228 A JP 2022176228A JP 7384263 B2 JP7384263 B2 JP 7384263B2
Authority
JP
Japan
Prior art keywords
catalyst
catalyst ink
catalyst layer
water
volatile components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022176228A
Other languages
Japanese (ja)
Other versions
JP2023002824A (en
Inventor
友希 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2022176228A priority Critical patent/JP7384263B2/en
Publication of JP2023002824A publication Critical patent/JP2023002824A/en
Application granted granted Critical
Publication of JP7384263B2 publication Critical patent/JP7384263B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

本発明は、燃料電池の膜電極接合体(MEA:membrane-electrode
assembly)の製造方法に関する。
The present invention relates to membrane-electrode assemblies (MEA) for fuel cells.
(assembly).

従来、膜電極接合体の製造方法としては、所望の形状を有する触媒層が付与された転写基材と固体高分子電解質膜をホットプレス、熱ラミネートロールなどで熱圧着した後、基材を剥離する熱転写方法が提案されている。 Conventionally, the manufacturing method for membrane electrode assemblies has been to bond a transfer base material provided with a catalyst layer having a desired shape with a solid polymer electrolyte membrane using a hot press, a hot laminating roll, etc., and then peel the base material. A thermal transfer method has been proposed.

例えば、特許文献1には、ホットプレスを用いる手法、及び熱ラミネートロールを用いる手法が開示されている。上記熱ラミネートロールを用いる手法は、長尺の固体高分子電解質膜とその表裏面に配された所望の形状を有する触媒層が付与された転写基材とを接触させ、一対の熱ラミネートロールで熱圧着することによって、固体高分子電解質膜と触媒層とを一体的に接合し、その後転写基材から基材のみを一対の剥離ロールを用いて触媒層から剥離し、触媒層を固体高分子電解質膜表面に転写している。 For example, Patent Document 1 discloses a method using a hot press and a method using a hot laminating roll. The above-mentioned method using thermal laminating rolls involves bringing a long solid polymer electrolyte membrane into contact with a transfer base material provided with a catalyst layer having a desired shape on the front and back surfaces of the long solid polymer electrolyte membrane, and using a pair of thermal laminating rolls. The solid polymer electrolyte membrane and the catalyst layer are integrally joined by thermocompression bonding, and then only the base material is peeled off from the catalyst layer using a pair of peeling rolls, and the catalyst layer is bonded to the solid polymer electrolyte membrane. It is transferred to the electrolyte membrane surface.

特開平10-64574号公報Japanese Patent Application Publication No. 10-64574

特許文献1のような触媒層を固体高分子電解質膜に熱転写する方式において、触媒インクの調製が必要である。
この触媒インク中には、触媒、電解質膜同様の導電性高分子、溶媒、水が含まれている。触媒インク中に含まれる水の比率が低く、かつ水分量が少ないと、触媒インク調製中や触媒インクの塗工・乾燥工程で、触媒の作用により溶媒が酸化され、発熱・発火してしまう危険性がある。
In the method of thermally transferring a catalyst layer to a solid polymer electrolyte membrane as in Patent Document 1, it is necessary to prepare a catalyst ink.
This catalyst ink contains a catalyst, a conductive polymer similar to an electrolyte membrane, a solvent, and water. If the proportion and amount of water contained in the catalyst ink is low, there is a risk that the solvent will be oxidized by the action of the catalyst during the preparation of the catalyst ink, or during the coating and drying process of the catalyst ink, causing heat generation and ignition. There is sex.

燃料電池の触媒インクに用いられる触媒はカーボンの粉末からなるのが一般的で、このカーボンは疎水性であるため、水との相性が悪い。また、導電性高分子においても、水との相溶性が低いため、触媒インク中の水の比率が高くなると、触媒インクを塗工・乾燥して形成された触媒層にクラックが発生しやすい。クラックのある触媒層が形成されたMEAは、燃料電池として用いた際に、固体高分子電解質膜が破膜する恐れがあるため、MEAの耐久性が劣るという問題がある。加えて、水の比率が高い触媒インク中では導電性高分子の高分子鎖が広がりにくいため、発電性能に寄与する導電パスの形成が不十分になるため、発電性能が低下するという問題がある。 Catalysts used in catalyst inks for fuel cells are generally made of carbon powder, and since carbon is hydrophobic, it has poor compatibility with water. Furthermore, since conductive polymers also have low compatibility with water, when the proportion of water in the catalyst ink increases, cracks are likely to occur in the catalyst layer formed by applying and drying the catalyst ink. When an MEA in which a cracked catalyst layer is formed is used as a fuel cell, there is a risk that the solid polymer electrolyte membrane may rupture, so there is a problem in that the durability of the MEA is poor. In addition, in a catalyst ink with a high proportion of water, the polymer chains of the conductive polymer are difficult to spread, resulting in insufficient formation of conductive paths that contribute to power generation performance, resulting in a decrease in power generation performance. .

本発明は、上記の点に鑑みてなされたものであって、触媒層にクラックのない外観が良好な膜電極接合体が得られる膜電極接合体の製造方法および触媒インクを提供することを目的とする。 The present invention has been made in view of the above points, and an object of the present invention is to provide a method for manufacturing a membrane electrode assembly and a catalyst ink that can obtain a membrane electrode assembly with a good appearance and no cracks in the catalyst layer. shall be.

上記の課題を解決するための手段として、本発明の一態様に係る膜電極接合体の製造方法は、触媒インクを調液する工程と、転写基材上に上記触媒インクを塗工して触媒層を形成する工程と、熱転写方式により固体高分子電解質膜の表面に前記触媒層を転写する工程とを含み、
上記触媒インクを調液する工程は、揮発成分の重量比が、90%以上95%以下であり、且つ、上記揮発成分中の水の比率が15%以上40%未満の触媒インクを調製する工程である。
As a means for solving the above problems, a method for manufacturing a membrane electrode assembly according to one embodiment of the present invention includes a step of preparing a catalyst ink, and a step of coating the catalyst ink on a transfer substrate to catalyze the catalyst. a step of forming a layer; and a step of transferring the catalyst layer to the surface of the solid polymer electrolyte membrane by a thermal transfer method,
The step of preparing the catalyst ink is a step of preparing a catalyst ink in which the weight ratio of volatile components is 90% or more and 95% or less, and the ratio of water in the volatile components is 15% or more and less than 40%. It is.

また、本発明の一態様に係る膜電極接合体の製造方法においては、上記膜電極接合体の製造方法における上記触媒インクの揮発成分が、水及びアルコールであり、上記アルコールは水よりも揮発性が高いことが好ましい。 Further, in the method for manufacturing a membrane electrode assembly according to one aspect of the present invention, volatile components of the catalyst ink in the method for manufacturing a membrane electrode assembly are water and alcohol, and the alcohol is more volatile than water. is preferably high.

また、本発明の一態様に係る膜電極接合体の製造方法においては、上記触媒インクを調液する工程を除く全工程又は一部工程が連続であってもよい。 Further, in the method for manufacturing a membrane electrode assembly according to one aspect of the present invention, all or some of the steps except the step of preparing the catalyst ink may be continuous.

また、本発明の一態様に係る膜電極接合体の製造方法においては、全工程が不連続であってもよい。 Furthermore, in the method for manufacturing a membrane electrode assembly according to one embodiment of the present invention, all steps may be discontinuous.

また、上記の課題を解決するための手段として、本発明の一態様に係る触媒インクは、含有する揮発成分の重量比が、90%以上95%以下であり、且つ、前記揮発成分中の水の比率が15%以上40%未満である。 Further, as a means for solving the above problems, the catalyst ink according to one aspect of the present invention contains a volatile component having a weight ratio of 90% or more and 95% or less, and water in the volatile component. The ratio is 15% or more and less than 40%.

本発明の膜電極接合体の製造方法の一態様によれば、触媒層にクラックのない外観が良好なMEAを製造することができる。外観が良好なMEAが得られることによって、発電性能や耐久性の低下を抑制することができ且つ触媒の作用による発火の危険性を低減することができる。 According to one aspect of the method for manufacturing a membrane electrode assembly of the present invention, an MEA with a good appearance and no cracks in the catalyst layer can be manufactured. By obtaining an MEA with a good appearance, deterioration in power generation performance and durability can be suppressed, and the risk of ignition due to the action of the catalyst can be reduced.

膜電極接合体の製造方法の一実施形態の概略図である。FIG. 1 is a schematic diagram of an embodiment of a method for manufacturing a membrane electrode assembly. 膜電極接合体の実施例及び比較例における発電性能を示すグラフである。It is a graph showing power generation performance in Examples and Comparative Examples of membrane electrode assemblies.

以下、本発明の実施形態について、図面を用いて説明する。ただし、以下に説明する各図において相互に対応する部分には同一符号を付し、重複部分においては後述での説明を適宜省略する。また、本発明の実施形態は、本発明の技術的思想を具体化するための構成を例示するものであって、各部の材質、形状、構造、配置、寸法等を下記のものに特定するものでない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。 Embodiments of the present invention will be described below with reference to the drawings. However, in each of the figures described below, mutually corresponding parts are given the same reference numerals, and descriptions of overlapping parts will be omitted as appropriate. In addition, the embodiments of the present invention are examples of configurations for embodying the technical idea of the present invention, and the materials, shapes, structures, arrangements, dimensions, etc. of each part are specified as follows. Not. The technical idea of the present invention can be modified in various ways within the technical scope defined by the claims.

図1は、本発明の膜電極接合体の製造方法の一実施形態を説明するための概略図である。本実施形態の膜電極接合体の製造方法は、触媒インク(以下、インクということがある)を調液する工程(触媒インク調液工程)と、触媒インクを塗工する工程(触媒インク塗工工程)と、触媒層を転写する工程(熱転写工程)とを含む。 FIG. 1 is a schematic diagram for explaining one embodiment of the method for manufacturing a membrane electrode assembly of the present invention. The method for manufacturing a membrane electrode assembly of the present embodiment includes a step of preparing a catalyst ink (hereinafter sometimes referred to as ink) (catalyst ink preparation step) and a step of coating the catalyst ink (catalyst ink coating). step) and a step of transferring the catalyst layer (thermal transfer step).

<触媒インクを調液する工程>
まず、触媒インク1を調液(調製)する。触媒インク1には、不揮発成分として、触媒担持カーボン、導電性高分子、揮発成分として、水、溶媒が含まれる。この触媒インク1に含まれる揮発成分の重量比は、90%以上95%以下であり、且つ、上記揮発成分中の水の比率が15%以上40%未満である。
<Process of preparing catalyst ink>
First, the catalyst ink 1 is prepared. The catalyst ink 1 contains catalyst-supporting carbon and a conductive polymer as non-volatile components, and water and a solvent as volatile components. The weight ratio of volatile components contained in this catalyst ink 1 is 90% or more and 95% or less, and the ratio of water in the volatile components is 15% or more and less than 40%.

上記触媒には、白金、パラジウム、ルテニウム、イリジウム、ロジウム、オスミウムの白金族元素のほか、鉄、鉛、銅、クロム、コバルト、ニッケル、マンガン、バナジウム、モリブデン、ガリウム、アルミニウムなどの金属もしくは白金とこれらの合金、又はこれ
らの酸化物、複酸化物などを用いることができる。これらの中でも、白金や白金合金がより好ましい。
The above catalysts include platinum group elements such as platinum, palladium, ruthenium, iridium, rhodium, and osmium, as well as metals such as iron, lead, copper, chromium, cobalt, nickel, manganese, vanadium, molybdenum, gallium, and aluminum, or platinum and other metals. An alloy of these, or an oxide, a double oxide, or the like of these can be used. Among these, platinum and platinum alloys are more preferred.

上記触媒の粒径は、大きすぎると触媒の活性が低下し、小さすぎると触媒の安定性が低下するため、0.5nm以上20nm以下が好ましい。 The particle size of the catalyst is preferably 0.5 nm or more and 20 nm or less, because if it is too large, the activity of the catalyst will be reduced, and if it is too small, the stability of the catalyst will be reduced.

上記触媒担持カーボンとしては、微粒子状で導電性を有し、触媒に侵さないものであれば特に限定されない。具体的には、カーボンブラックやグラファイト、黒鉛、活性炭、カーボンファイバー、カーボンナノチューブ、フラーレンなどを用いることができる。上記触媒担持カーボンの粒径は、10nm以上100nm以下程度が好適に用いられる。 The above-mentioned catalyst-supporting carbon is not particularly limited as long as it is in the form of fine particles, has conductivity, and does not attack the catalyst. Specifically, carbon black, graphite, graphite, activated carbon, carbon fiber, carbon nanotubes, fullerene, etc. can be used. The particle size of the catalyst-supporting carbon is preferably about 10 nm or more and 100 nm or less.

初めに、上記触媒担持カーボンに水を加え、十分にカーボンの表面が水に濡れた状態になるように混錬する。最初の段階で十分に表面が濡れることにより、発火の危険性が低減する。次に良好なプロトン導電性を示す導電性高分子を加え、更に攪拌し、ペースト状にする。 First, water is added to the catalyst-supported carbon and kneaded so that the surface of the carbon becomes sufficiently wet with water. Sufficient surface wetting at the initial stage reduces the risk of ignition. Next, a conductive polymer exhibiting good proton conductivity is added and further stirred to form a paste.

上記導電性高分子材料としては、具体的には、炭化水素系高分子電解質、フッ素系高分子電解質といった材料を用いることができる。
上記炭化水素系高分子電解質材料としては、スルホン化ポリエーテルケトン、スルホン化ポリエーテルスルホン、スルホン化ポリエーテルエーテルスルホン、スルホン化ポリスルフィド、スルホン化ポリフェニレンなどの電解質材料を用いることができる。
Specifically, as the conductive polymer material, a material such as a hydrocarbon polymer electrolyte or a fluorine polymer electrolyte can be used.
As the hydrocarbon polymer electrolyte material, electrolyte materials such as sulfonated polyether ketone, sulfonated polyether sulfone, sulfonated polyether ether sulfone, sulfonated polysulfide, and sulfonated polyphenylene can be used.

上記フッ素系高分子電解質材料としては、例えば、デュポン製Nafion(登録商標)、旭硝子製Flemion(登録商標)、旭化成製Aciplex(登録商標)、ゴア製Gore Select(登録商標)などを用いることができる。 As the fluorine-based polymer electrolyte material, for example, Nafion (registered trademark) manufactured by DuPont, Flemion (registered trademark) manufactured by Asahi Glass, Aciplex (registered trademark) manufactured by Asahi Kasei, Gore Select (registered trademark) manufactured by Gore, etc. can be used. .

その後、ペースト状の混合物に溶媒を加えて、更に攪拌、分散することで、触媒インク1を調液する。溶媒には、水よりも沸点の低いアルコールであることが好ましく、更にエタノール、1-プロパノール、2-プロパノールなどの低級アルコール類を用いることがより好ましい。低級アルコール類は水との相溶性が比較的高いため、安定な触媒インク1を作製することができる。触媒インクを調液するための分散方法には、各種分散方法を用いることができる。分散方法としては、例えば、超音波分散、ボールミル分散、ビーズミル分散、ホモジナイザー分散などを用いることができる。 Thereafter, a solvent is added to the paste-like mixture, and the mixture is further stirred and dispersed to prepare the catalyst ink 1. The solvent is preferably an alcohol having a boiling point lower than water, and more preferably lower alcohols such as ethanol, 1-propanol, and 2-propanol. Since lower alcohols have relatively high compatibility with water, a stable catalyst ink 1 can be produced. Various dispersion methods can be used to prepare the catalyst ink. As a dispersion method, for example, ultrasonic dispersion, ball mill dispersion, bead mill dispersion, homogenizer dispersion, etc. can be used.

<触媒インクを塗工する工程>
次いで、触媒インク1を高分子フィルムからなる転写フィルム2上に、ダイコーター10を用いて塗工する。塗工には大量且つ安定して触媒層塗工が可能なダイコート方式が好ましい。転写フィルム2には触媒インク1の濡れが良好で、乾燥後に形成される触媒層5a(アノード)及び5c(カソード)を固体高分子電解質膜4表面に熱転写装置20にて熱転写することができれば、特に限定されるものではない。
転写フィルムとしては、例えば、ポリイミド、ポリエチレンテレフタラート、ポリパルバン酸アラミド、ポリアミド(ナイロン)、ポリサルホン、ポリエーテルサルホン、ポリエーテルサルホン、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリアクリレート、ポリエチレンナフタレート等の高分子フィルムを用いることができる。また、エチレンテトラフルオロエチレン共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、テトラフルオロパーフルオロアルキルビニルエーテル共重合体、ポリテトラフルオロエチレン等の耐熱性フッ素樹脂を用いることもできる。
<Process of applying catalyst ink>
Next, the catalyst ink 1 is applied onto the transfer film 2 made of a polymer film using a die coater 10. For coating, a die coating method is preferred as it allows for stable coating of the catalyst layer in large quantities. If the transfer film 2 is well wetted with the catalyst ink 1 and the catalyst layers 5a (anode) and 5c (cathode) formed after drying can be thermally transferred onto the surface of the solid polymer electrolyte membrane 4 by the thermal transfer device 20, It is not particularly limited.
Examples of transfer films include polyimide, polyethylene terephthalate, polyparvanic aramid, polyamide (nylon), polysulfone, polyethersulfone, polyethersulfone, polyphenylene sulfide, polyetheretherketone, polyetherimide, polyacrylate, and polyethylene. Polymer films such as naphthalate can be used. Furthermore, heat-resistant fluororesins such as ethylene-tetrafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroperfluoroalkyl vinyl ether copolymer, and polytetrafluoroethylene can also be used.

<触媒層を転写する工程>
次に、固体高分子電解質膜4の対向する表面に、上記で作製した触媒層付き転写基材3a及び3cを配置し、熱転写装置20により、熱加圧を行った後、転写基材2のみを剥離し、固体高分子電解質膜4表面に触媒層5a及び5cが形成された膜電極接合体6を得る。熱加圧による熱転写には、熱ラミネートロールによる方法、熱プレスによる方法などを用いることができる。また、固体高分子電解質膜材料としては、触媒インク1に含まれる導電性高分子材料と同様の材料を用いることができる。
<Step of transferring the catalyst layer>
Next, the catalyst layer-coated transfer substrates 3a and 3c prepared above are placed on the opposing surfaces of the solid polymer electrolyte membrane 4, and after thermal pressure is applied by the thermal transfer device 20, only the transfer substrate 2 is placed. is peeled off to obtain a membrane electrode assembly 6 in which catalyst layers 5a and 5c are formed on the surface of the solid polymer electrolyte membrane 4. For thermal transfer by hot pressing, a method using a hot laminating roll, a method using a hot press, etc. can be used. Further, as the solid polymer electrolyte membrane material, the same material as the conductive polymer material contained in the catalyst ink 1 can be used.

ここで、上記触媒インク調液工程を除く工程は、全て連続であることが、生産性を考慮した場合好ましい。しかし、歩留まりを考慮した場合には、全工程は不連続であるが、各工程がロールtoロールで連続した工程であっても良い。また、材料のロスなどを考慮した場合は、全ての工程が不連続であっても良い。 Here, in consideration of productivity, it is preferable that all steps except the catalyst ink preparation step are continuous. However, in consideration of yield, all the steps are discontinuous, but each step may be continuous roll-to-roll. Moreover, if material loss is taken into account, all steps may be discontinuous.

以下に、本発明の製造方法を実施例によって具体的に説明する。しかし、本発明はこれらの実施例にのみ限定されるものではない。 The manufacturing method of the present invention will be specifically explained below using Examples. However, the present invention is not limited only to these examples.

(実施例1)
<膜電極接合体の製造>
触媒インク1の調液は、白金触媒(田中貴金属製TEC10E50E)に水を加えて触媒を混錬する。次に、フッ素系高分子電解質膜分散溶液(ケマーズ製20%Nafion分散液 DE2020CS)を加えた後、攪拌装置にて攪拌を行った。次に、1-プロパノールを追加し、再度攪拌を行った後、ビーズミル分散装置を用いて分散を行った。このとき、揮発成分の重量比が90%、揮発成分中の水の比率が15%になるよう、各材料の量を調整した。
(Example 1)
<Manufacture of membrane electrode assembly>
The catalyst ink 1 is prepared by adding water to a platinum catalyst (TEC10E50E manufactured by Tanaka Kikinzoku) and kneading the catalyst. Next, after adding a fluoropolymer electrolyte membrane dispersion solution (20% Nafion dispersion DE2020CS manufactured by Chemours), stirring was performed using a stirring device. Next, 1-propanol was added and stirring was performed again, followed by dispersion using a bead mill dispersion device. At this time, the amounts of each material were adjusted so that the weight ratio of volatile components was 90% and the ratio of water in the volatile components was 15%.

転写基材(旭硝子製アフレックス、厚み50μm)上にダイコーター10にて触媒インク1を塗工し、乾燥し、アノード用カソード用触媒層付き転写基材3a及び3cを得た。 Catalyst ink 1 was applied onto a transfer substrate (Aflex, manufactured by Asahi Glass Co., Ltd., thickness 50 μm) using a die coater 10 and dried to obtain transfer substrates 3a and 3c with catalyst layers for anodes and cathodes.

アノード触媒層用には、不揮発成分中に含まれる白金量が0.1mg/cmになるように厚み調整をし、触媒層付き転写基材3aを、カソード触媒層用には、0.4mg/cmになるように厚みを調整し、触媒層付き転写基材3cを作製した。得られた触媒層付き転写基材3a及び3cでフッ素系電解質膜4(ケマーズ製Nafion HP)の表面を狭持し、130℃の熱ラミネートロール20で加圧した後、転写基材2のみを剥離し、膜電極接合体6を得た。 For the anode catalyst layer, the thickness was adjusted so that the amount of platinum contained in the nonvolatile component was 0.1 mg/cm 2 , and for the cathode catalyst layer, the thickness was adjusted so that the amount of platinum contained in the catalyst layer was 0.4 mg/cm2. The thickness was adjusted so as to be /cm 2 , and a transfer base material 3c with a catalyst layer was produced. The surface of the fluoroelectrolyte membrane 4 (Nafion HP manufactured by Chemours) was sandwiched between the obtained catalyst layer-coated transfer substrates 3a and 3c, and after pressurizing with a thermal laminating roll 20 at 130° C., only the transfer substrate 2 was held. The membrane electrode assembly 6 was obtained by peeling.

(実施例2)
実施例2として、触媒インクの揮発成分中の水の比率が35%にした以外には実施例1と同様の方法で、触媒層付き転写基材を作製した後、膜電極接合体を作製した。
(Example 2)
As Example 2, a transfer substrate with a catalyst layer was prepared in the same manner as in Example 1, except that the proportion of water in the volatile components of the catalyst ink was 35%, and then a membrane electrode assembly was prepared. .

(実施例3)
実施例3として、触媒インクの揮発成分の重量比95%にした以外には実施例1と同様の方法で、触媒層付き転写基材を作製した後、膜電極接合体を作製した。
(Example 3)
As Example 3, a transfer substrate with a catalyst layer was prepared in the same manner as in Example 1, except that the weight ratio of the volatile components of the catalyst ink was 95%, and then a membrane electrode assembly was prepared.

(比較例1~3)
触媒インクの水の比率を12%(比較例1)、40%(比較例2)、58%(比較例3)とした以外には実施例1と同様の方法で、触媒層付き転写基材を作製した後、膜電極接合体を作製した。実施例1と同様の方法で評価を行った結果を表1、図2に示す。
(Comparative Examples 1 to 3)
A transfer substrate with a catalyst layer was prepared in the same manner as in Example 1, except that the proportion of water in the catalyst ink was 12% (Comparative Example 1), 40% (Comparative Example 2), and 58% (Comparative Example 3). After that, a membrane electrode assembly was produced. The results of evaluation performed in the same manner as in Example 1 are shown in Table 1 and FIG. 2.

(比較例4,5)
触媒インクの揮発成分の重量比を88%(比較例4)、96%(比較例5)にした以外
には実施例1と同様の方法で、触媒層付き転写基材を作製した後、膜電極接合体を作製した。
(Comparative Examples 4 and 5)
After preparing a transfer substrate with a catalyst layer in the same manner as in Example 1 except that the weight ratio of volatile components of the catalyst ink was changed to 88% (Comparative Example 4) and 96% (Comparative Example 5), An electrode assembly was produced.

Figure 0007384263000001
Figure 0007384263000001

(評価結果1)
実施例1,2、および比較例1~3について、「触媒インクの揮発成分中の水の比率」による触媒インク温度および外観を評価した。触媒インク調液時の触媒インクの発熱の目安である温度の評価結果、および触媒層の外観の評価結果を表1に示し、膜電極接合体の発電性能結果を図2に示す。
表1における触媒インク温度の良否判断は、ビーズミル分散中の触媒インクの温度上昇が10℃未満であるケースを○、10℃以上であるケースを×判断とした。これは、触媒インク温度が上昇することで溶媒の揮発が進みやすく、触媒インクの組成に変化が生じる恐れがあることによる。
実施例1より、揮発成分における水の比率が15%以上であると触媒インク温度評価が良好なのは、最初に触媒が水で十分濡れるため、溶媒を混合したときの触媒反応による触媒インクの発熱が抑制されたのが原因である。
比較例1の水の比率12%の場合では、10℃以上の触媒インクの温度上昇がみられたため、×評価とした。また、最初に投入する水の量が少なかったため、調液容器底部に触媒のダマ残りの発生が確認された。
(Evaluation result 1)
For Examples 1 and 2 and Comparative Examples 1 to 3, the catalyst ink temperature and appearance were evaluated based on the "ratio of water in the volatile components of the catalyst ink." Table 1 shows the evaluation results of the temperature, which is a measure of the heat generation of the catalyst ink when preparing the catalyst ink, and the evaluation result of the appearance of the catalyst layer, and the power generation performance results of the membrane electrode assembly are shown in FIG. 2.
Regarding the quality of the catalyst ink temperature in Table 1, cases where the temperature rise of the catalyst ink during bead mill dispersion was less than 10°C were evaluated as ○, and cases where it was 10°C or higher were evaluated as ×. This is because as the temperature of the catalyst ink increases, the solvent tends to evaporate, which may cause a change in the composition of the catalyst ink.
From Example 1, the reason why the catalyst ink temperature evaluation is good when the proportion of water in the volatile components is 15% or more is because the catalyst is sufficiently wetted with water at the beginning, so that the heat generated by the catalyst ink due to the catalytic reaction when the solvent is mixed is reduced. This is because it was suppressed.
In the case of Comparative Example 1 with a water ratio of 12%, the temperature of the catalyst ink increased by 10° C. or more, so it was rated as ×. In addition, because the amount of water initially added was small, catalyst lumps were observed at the bottom of the liquid preparation container.

次に外観の評価では、実施例1、2、比較例1では外観に不良が確認されなかったため、○評価とした。しかし、比較例2の水の比率40%以上であると、触媒層付き転写基材の外観にクラックが多数確認されたため、×評価とした。 Next, in the evaluation of appearance, Examples 1 and 2 and Comparative Example 1 were given a rating of ○ because no defects were observed in their appearance. However, when the proportion of water in Comparative Example 2 was 40% or more, many cracks were observed in the appearance of the transfer substrate with a catalyst layer, so it was rated as ×.

実施例1、2、および比較例1~3の膜電極接合体の発電性能をそれぞれ評価したところ、図2の発電評価結果が得られた。クラックの多い比較例2及び3において顕著に性能低下が生じた。 When the power generation performance of the membrane electrode assemblies of Examples 1 and 2 and Comparative Examples 1 to 3 was evaluated, the power generation evaluation results shown in FIG. 2 were obtained. In Comparative Examples 2 and 3, which had many cracks, the performance deteriorated significantly.

(評価結果2)
次に、実施例1,3、および比較例1~3について、「触媒インクの揮発成分の重量比」による触媒インク温度および外観を評価した。評価結果を表2に示す。なお、評価基準は表1と同様である。
(Evaluation result 2)
Next, for Examples 1 and 3 and Comparative Examples 1 to 3, the catalyst ink temperature and appearance were evaluated based on the "weight ratio of volatile components of the catalyst ink". The evaluation results are shown in Table 2. Note that the evaluation criteria are the same as in Table 1.

Figure 0007384263000002
Figure 0007384263000002

表2に示すように、重量比が90%以上95%以下である実施例1,3は、ビーズミル分散中の触媒インクの温度上昇が10℃未満であり良好であった。また、触媒層付き転写基材の外観にも不良は発見されなかった。 As shown in Table 2, Examples 1 and 3 in which the weight ratio was 90% or more and 95% or less were good, with the temperature rise of the catalyst ink during bead mill dispersion being less than 10°C. Furthermore, no defects were found in the appearance of the catalyst layer-equipped transfer base material.

一方、比較例4に示すように、重量比が90%より小さいと、触媒表面を水で十分に濡らすことができないため、触媒インク温度が上昇した。また、分散時にダマになりやすく、塗工時に凹凸が生じ、乾燥後の触媒層にムラが発生したため、外観評価を×評価とした。
また、比較例5に示すように重量比が95%より大きいと、水の絶対量が増えすぎてしまい、乾燥の過程で水比率が上がってしまい、クラックが生じてしまったため、外観評価を×評価とした。
On the other hand, as shown in Comparative Example 4, when the weight ratio was less than 90%, the catalyst surface could not be sufficiently wetted with water, so the catalyst ink temperature rose. In addition, the appearance was rated as x because it was easy to form lumps during dispersion, unevenness occurred during coating, and unevenness occurred in the catalyst layer after drying.
In addition, as shown in Comparative Example 5, when the weight ratio is greater than 95%, the absolute amount of water increases too much, and the water ratio increases during the drying process, resulting in cracks, so the appearance evaluation is It was evaluated.

以上説明したように、本発明の一実施形態によれば、触媒インクの水比率を低く維持することで、膜電極接合体の外観及び発電性能低下を抑制し、揮発成分の比率を高くすることで安全性を考慮した、膜電極接合体の製造方法およびそれに用いられる有用な触媒インクを提供することができる。 As explained above, according to one embodiment of the present invention, by keeping the water ratio of the catalyst ink low, deterioration in the appearance and power generation performance of the membrane electrode assembly can be suppressed, and the ratio of volatile components can be increased. It is possible to provide a method for manufacturing a membrane electrode assembly and a useful catalyst ink used therein, which takes safety into consideration.

1・・・触媒インク
2・・・転写基材
3a、3c・・・触媒層付き転写基材
4・・・固体高分子電解質膜
5a、5c・・・触媒層
6・・・膜電極接合体
10・・・ダイコーター
20・・・熱転写装置
1... Catalyst ink 2... Transfer base material 3a, 3c... Transfer base material with catalyst layer 4... Solid polymer electrolyte membrane 5a, 5c... Catalyst layer 6... Membrane electrode assembly 10...Die coater 20...Thermal transfer device

Claims (4)

転写基材上に触媒層が形成された触媒層付き転写基材で固体高分子電解質膜の表面を狭持し、熱ラミネートロールで加圧した後、前記転写基材のみを剥離して、前記固体高分子電解質膜の表面に前記触媒層を転写し、その後乾燥工程を経ることなく形成された膜電極接合体に備わる前記触媒層を形成するための触媒インクであって、
前記触媒インクは、揮発成分と、触媒担持カーボンとを含み、
含有する揮発成分の重量比が、90%以上95%以下であり、
且つ、前記揮発成分中の水の比率が15%以上40%未満であり、
前記揮発成分は、水及びアルコールであり、
前記アルコールは1-プロパノールであることを特徴とする触媒インク。
After sandwiching the surface of the solid polymer electrolyte membrane with a transfer substrate with a catalyst layer on which a catalyst layer is formed and applying pressure with a hot laminating roll, only the transfer substrate is peeled off, and the A catalyst ink for forming the catalyst layer provided in a membrane electrode assembly formed by transferring the catalyst layer onto the surface of a solid polymer electrolyte membrane and then performing a drying process, the catalyst ink comprising:
The catalyst ink includes volatile components and catalyst-supported carbon,
The weight ratio of the volatile components contained is 90% or more and 95% or less,
and the ratio of water in the volatile component is 15% or more and less than 40%,
The volatile components are water and alcohol,
A catalyst ink characterized in that the alcohol is 1-propanol.
転写基材上に触媒インクを塗工して触媒層を形成し、前記転写基材上に前記触媒層が形成された触媒層付き転写基材で固体高分子電解質膜の表面を狭持し、熱ラミネートロールで加圧した後、前記転写基材のみを剥離して、前記固体高分子電解質膜の表面に前記触媒層を転写し、その後乾燥工程を経ることなく膜電極接合体を形成するための触媒層形成用触媒インクであって、
前記触媒インクは、揮発成分と、触媒担持カーボンとを含み、
含有する揮発成分の重量比が、90%以上95%以下であり、
且つ、前記揮発成分中の水の比率が15%以上40%未満であり、
前記揮発成分は、水及びアルコールであり、
前記アルコールは1-プロパノールであることを特徴とする触媒インク。
Coating a catalyst ink on a transfer base material to form a catalyst layer, sandwiching the surface of the solid polymer electrolyte membrane with a catalyst layer-attached transfer base material on which the catalyst layer is formed on the transfer base material, After applying pressure with a hot laminating roll, only the transfer base material is peeled off, and the catalyst layer is transferred to the surface of the solid polymer electrolyte membrane, and then a membrane electrode assembly is formed without going through a drying process. A catalyst ink for forming a catalyst layer, comprising:
The catalyst ink includes volatile components and catalyst-supported carbon,
The weight ratio of the volatile components contained is 90% or more and 95% or less,
and the ratio of water in the volatile component is 15% or more and less than 40%,
The volatile components are water and alcohol,
A catalyst ink characterized in that the alcohol is 1-propanol.
前記触媒インクは、導電性高分子をさらに含むことを特徴とする請求項1または請求項2に記載の触媒インク。 The catalyst ink according to claim 1 or 2, wherein the catalyst ink further contains a conductive polymer. 前記触媒インクは、フッ素系高分子電解質をさらに含むことを特徴とする請求項1または請求項2に記載の触媒インク。 The catalyst ink according to claim 1 or 2, wherein the catalyst ink further contains a fluoropolymer electrolyte.
JP2022176228A 2017-03-27 2022-11-02 catalyst ink Active JP7384263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022176228A JP7384263B2 (en) 2017-03-27 2022-11-02 catalyst ink

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017061191A JP7172021B2 (en) 2017-03-27 2017-03-27 METHOD FOR MANUFACTURING MEMBRANE ELECTRODE ASSEMBLY
JP2022176228A JP7384263B2 (en) 2017-03-27 2022-11-02 catalyst ink

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017061191A Division JP7172021B2 (en) 2017-03-27 2017-03-27 METHOD FOR MANUFACTURING MEMBRANE ELECTRODE ASSEMBLY

Publications (2)

Publication Number Publication Date
JP2023002824A JP2023002824A (en) 2023-01-10
JP7384263B2 true JP7384263B2 (en) 2023-11-21

Family

ID=63860975

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017061191A Active JP7172021B2 (en) 2017-03-27 2017-03-27 METHOD FOR MANUFACTURING MEMBRANE ELECTRODE ASSEMBLY
JP2022176228A Active JP7384263B2 (en) 2017-03-27 2022-11-02 catalyst ink

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017061191A Active JP7172021B2 (en) 2017-03-27 2017-03-27 METHOD FOR MANUFACTURING MEMBRANE ELECTRODE ASSEMBLY

Country Status (1)

Country Link
JP (2) JP7172021B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003331863A (en) 2002-05-14 2003-11-21 Toyota Motor Corp Method for manufacturing membrane-catalyst layer assembly
JP2006309953A (en) 2005-04-26 2006-11-09 Toppan Printing Co Ltd Electrode, battery and its manufacturing method
JP2007059376A (en) 2005-07-29 2007-03-08 Toyobo Co Ltd Proton conductive polymer composite
JP2007234469A (en) 2006-03-02 2007-09-13 Toshiba Fuel Cell Power Systems Corp Electrode for solid polyelectrolyte fuel cell and its process of manufacture
JP2008140763A (en) 2006-11-06 2008-06-19 Toyota Motor Corp Manufacturing method of fuel cell
JP2009021236A (en) 2007-06-15 2009-01-29 Sumitomo Chemical Co Ltd Membrane-electrode assembly, membrane-electrode-gas diffusion layer assembly having the same, and solid polymer fuel cell
JP2013206638A (en) 2012-03-28 2013-10-07 Toyo Ink Sc Holdings Co Ltd Electrode-electrolyte membrane assembly forming sheet
JP2014216228A (en) 2013-04-26 2014-11-17 日産自動車株式会社 Electrode transfer sheet for fuel cell, and device and method for manufacturing membrane electrode assembly

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003331863A (en) 2002-05-14 2003-11-21 Toyota Motor Corp Method for manufacturing membrane-catalyst layer assembly
JP2006309953A (en) 2005-04-26 2006-11-09 Toppan Printing Co Ltd Electrode, battery and its manufacturing method
JP2007059376A (en) 2005-07-29 2007-03-08 Toyobo Co Ltd Proton conductive polymer composite
JP2007234469A (en) 2006-03-02 2007-09-13 Toshiba Fuel Cell Power Systems Corp Electrode for solid polyelectrolyte fuel cell and its process of manufacture
JP2008140763A (en) 2006-11-06 2008-06-19 Toyota Motor Corp Manufacturing method of fuel cell
JP2009021236A (en) 2007-06-15 2009-01-29 Sumitomo Chemical Co Ltd Membrane-electrode assembly, membrane-electrode-gas diffusion layer assembly having the same, and solid polymer fuel cell
JP2013206638A (en) 2012-03-28 2013-10-07 Toyo Ink Sc Holdings Co Ltd Electrode-electrolyte membrane assembly forming sheet
JP2014216228A (en) 2013-04-26 2014-11-17 日産自動車株式会社 Electrode transfer sheet for fuel cell, and device and method for manufacturing membrane electrode assembly

Also Published As

Publication number Publication date
JP7172021B2 (en) 2022-11-16
JP2018163842A (en) 2018-10-18
JP2023002824A (en) 2023-01-10

Similar Documents

Publication Publication Date Title
JP5208773B2 (en) Method for producing membrane electrode assembly for polymer electrolyte fuel cell and method for producing polymer electrolyte fuel cell
JP7083003B2 (en) A method for manufacturing an electrode, an electrode manufactured thereby, a membrane-electrode assembly including the electrode, and a fuel cell including the membrane-electrode assembly.
US11931724B2 (en) Catalyst, method for producing same, electrode comprising same, membrane-electrode assembly comprising same, and fuel cell comprising same
JP7027704B2 (en) Membrane-electrode assembly
JP4318316B2 (en) Manufacturing method of fuel cell
JP7385014B2 (en) membrane electrode assembly
JP5082239B2 (en) Catalyst layer-electrolyte membrane laminate and method for producing the same
JP6225468B2 (en) Fuel cell electrode
JP5332294B2 (en) Manufacturing method of membrane electrode assembly
JP5375898B2 (en) Method for producing catalyst layer-electrolyte membrane laminate
WO2017154475A1 (en) Catalyst composition, method for producing polymer electrolyte membrane electrode assembly, and polymer electrolyte membrane electrode assembly
JP5423062B2 (en) Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell
JP5207607B2 (en) Paste composition for forming catalyst layer and catalyst layer-electrolyte membrane laminate
JP2007103083A (en) Transfer sheet for manufacturing catalyst layer-electrolyte film laminate for fuel cell, and catalyst layer-electrolyte film laminate
JP7384263B2 (en) catalyst ink
JP4826190B2 (en) Catalyst layer forming paste composition, catalyst layer-electrolyte membrane laminate transfer sheet, and catalyst layer-electrolyte membrane laminate
JP2011070984A (en) Method of manufacturing electrode catalyst layer for fuel cell, and membrane-electrode assembly having the electrode catalyst layer
JP6661979B2 (en) Membrane electrode assembly
JP2009043692A (en) Manufacturing method and membrane electrode assembly for fuel cell, and membrane electrode assembly
JP2008269847A (en) Ink for fuel cell catalyst layer, its manufacturing method, and membrane electrode assembly for fuel cell
JP5585036B2 (en) How to use catalyst ink for fuel cell
JP2018022587A (en) Manufacturing method for membrane electrode assembly
JP2009151980A (en) Diffusion electrode for fuel cell, and electrolyte membrane-electrode assembly
JP2007103291A (en) Manufacturing method of membrane/electrode assembly for direct methanol fuel cell
JP2007080548A (en) Method of manufacturing electrolyte membrane-electrode assembly and direct methanol fuel cell using it

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231023

R150 Certificate of patent or registration of utility model

Ref document number: 7384263

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150