JP6746977B2 - Method for producing catalyst ink - Google Patents
Method for producing catalyst ink Download PDFInfo
- Publication number
- JP6746977B2 JP6746977B2 JP2016050051A JP2016050051A JP6746977B2 JP 6746977 B2 JP6746977 B2 JP 6746977B2 JP 2016050051 A JP2016050051 A JP 2016050051A JP 2016050051 A JP2016050051 A JP 2016050051A JP 6746977 B2 JP6746977 B2 JP 6746977B2
- Authority
- JP
- Japan
- Prior art keywords
- polymer electrolyte
- catalyst
- catalyst ink
- carbon particles
- catalyst layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003054 catalyst Substances 0.000 title claims description 94
- 238000004519 manufacturing process Methods 0.000 title claims description 20
- 239000005518 polymer electrolyte Substances 0.000 claims description 49
- 239000002245 particle Substances 0.000 claims description 48
- 239000006185 dispersion Substances 0.000 claims description 41
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 32
- 229910052799 carbon Inorganic materials 0.000 claims description 32
- 239000011324 bead Substances 0.000 claims description 17
- 239000000446 fuel Substances 0.000 claims description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 7
- 239000012528 membrane Substances 0.000 description 21
- 238000010248 power generation Methods 0.000 description 11
- 238000000034 method Methods 0.000 description 10
- 238000012546 transfer Methods 0.000 description 9
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 8
- 238000001035 drying Methods 0.000 description 6
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 5
- 239000003792 electrolyte Substances 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 239000012495 reaction gas Substances 0.000 description 5
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 4
- 229910052731 fluorine Inorganic materials 0.000 description 4
- 239000011737 fluorine Substances 0.000 description 4
- 230000014759 maintenance of location Effects 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 3
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 3
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000007607 die coating method Methods 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- -1 polytetrafluoroethylene Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 229920000557 Nafion® Polymers 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229940035429 isobutyl alcohol Drugs 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920001643 poly(ether ketone) Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920005649 polyetherethersulfone Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920005597 polymer membrane Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920001021 polysulfide Polymers 0.000 description 1
- 239000005077 polysulfide Substances 0.000 description 1
- 150000008117 polysulfides Polymers 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Description
本発明は、触媒インクの製造方法に関するものである。 The present invention relates to a process for preparing a catalyst ink.
固体高分子形燃料電池は、一般に、高分子電解質膜を、電極触媒層と該電極触媒層に積層されたガス拡散層からなる一対の電極触媒層で挟持する構造を有する。このような構造を有する固体高分子形燃料電池は、常温で作動し、起動時間が短いことから、自動車、定置用電源などとして期待されている(特許文献1,2参照)。
上記電極触媒層では、炭素粒子に担持されている触媒の利用率を高めることが重要であり、そのためには炭素粒子の分散性を高め、出来るだけ炭素粒子の粒子径を小さくする等の方法が一般的である。
A polymer electrolyte fuel cell generally has a structure in which a polymer electrolyte membrane is sandwiched between a pair of electrode catalyst layers each composed of an electrode catalyst layer and a gas diffusion layer laminated on the electrode catalyst layer. The polymer electrolyte fuel cell having such a structure operates at room temperature and has a short start-up time, and thus is expected as an automobile, a stationary power source, and the like (see Patent Documents 1 and 2).
In the electrode catalyst layer, it is important to increase the utilization rate of the catalyst supported on the carbon particles, and for that purpose, a method of increasing the dispersibility of the carbon particles and reducing the particle size of the carbon particles as much as possible is used It is common.
しかし、炭素粒子の粒子径を小さくすることは、電極触媒層内の細孔率が小さくなり、その結果、反応ガスが電極触媒層内に供給されにくくなることや、反応により生成した水が滞留しやすくなる。すなわち、発電性能の低下や耐久性の低下を招かないためにも、電極触媒層内の粒子の分散状態や細孔率を適切な値とすることが重要である。
ここで、特許文献1では、ビーズミルによりメジアン径を変化させた炭素粒子を用いることで、異なる細孔率の電極触媒層を作製する方法が記載されているが、炭素粒子のメジアン径を変化させる方法については記載されていない。
However, reducing the particle size of the carbon particles reduces the porosity in the electrode catalyst layer, and as a result, it becomes difficult for the reaction gas to be supplied into the electrode catalyst layer, and the water generated by the reaction is retained. Easier to do. That is, it is important to set the dispersion state and the porosity of the particles in the electrode catalyst layer to appropriate values in order not to reduce the power generation performance and the durability.
Here, Patent Document 1 describes a method of producing an electrode catalyst layer having different porosities by using carbon particles whose median diameter is changed by a bead mill, but the median diameter of carbon particles is changed. The method is not described.
また、特許文献2では、炭素粒子の分散の際に大きな衝撃を加える事で炭素粒子を再凝集させ粒子径を大きくすることで、大きな細孔率を得る方法が提案されているが、炭素粒子の種類や触媒インクの組成等により再凝集に必要となる衝撃力は異なり、毎回狙い通りの細孔率を有する電極触媒層を製造することは困難である。
本発明は、上記の問題を解決するためになされたものであり、反応ガスの供給不足や生成水の滞留、あるいは触媒利用率の低下等を抑制する触媒インクの製造方法を提供することを目的とする。
In addition, Patent Document 2 proposes a method of obtaining a large porosity by re-aggregating the carbon particles to increase the particle diameter by applying a large impact during the dispersion of the carbon particles. The impact force required for re-aggregation varies depending on the type of the ink, the composition of the catalyst ink, and the like, and it is difficult to produce the electrode catalyst layer having the desired porosity each time.
The present invention has been made to solve the above problems, and an object of the present invention is to provide a method for producing a catalyst ink that suppresses supply shortage of reaction gas, retention of generated water, or reduction in catalyst utilization rate. And
上記課題を解決するための、本発明に係る触媒インクの製造方法は、固体高分子形燃料電池用の電極触媒層を形成する触媒インクの製造方法において、高分子電解質の炭素粒子に対する重量比(I/C)が0.6以上1.5以下となるように、高分子電解質を水あるいはアルコール中に分散させた高分子電解質溶液を触媒担持炭素粒子に加えた後、ディゾルバー、あるいは0.5mmより大きい直径のボールまたはビーズによるメディア型の分散を行う第一の分散工程と、前記第一の分散工程後に、0.1mm以上0.5mm以下の直径のボールまたはビーズを用いたビーズミルを使用する第二の分散工程と、の2工程のみによって、前記触媒担持炭素粒子のメジアン径が0.5μm以上5μm以下となる触媒インクを作製することを特徴とする。 In order to solve the above problems, a method for producing a catalyst ink according to the present invention is a method for producing a catalyst ink for forming an electrode catalyst layer for a polymer electrolyte fuel cell, wherein the weight ratio of the polymer electrolyte to the carbon particles ( I/C) is 0.6 or more and 1.5 or less, and a polymer electrolyte solution in which a polymer electrolyte is dispersed in water or alcohol is added to the catalyst-supporting carbon particles, and then the dissolver or 0.5 mm is used. A first dispersion step for performing media type dispersion with balls or beads having a larger diameter, and a bead mill using balls or beads having a diameter of 0.1 mm or more and 0.5 mm or less after the first dispersion step. A catalyst ink in which the median diameter of the catalyst-carrying carbon particles is 0.5 μm or more and 5 μm or less is produced by only two steps of the second dispersion step.
本発明に係る触媒インクの製造方法によれば、反応ガスの供給不足や生成水の滞留、あるいは触媒利用率の低下等を抑制する触媒インクを得ることができる。 According to the method for producing a catalyst ink according to the present invention , it is possible to obtain a catalyst ink that suppresses insufficient supply of reaction gas, retention of generated water, reduction in catalyst utilization rate, and the like.
本発明に係る触媒インクの製造方法の実施形態について、図面を参照して以下に説明する。 An embodiment of the manufacturing method of the catalyst ink according to the present invention will be described below with reference to the drawings.
(固体高分子形燃料電池)
まず、図1に示すように、固体高分子形燃料電池50は、高分子電解質膜51と、その両面に、ガス拡散層53A,53F、及びセパレータ54A,54Fがこの順でそれぞれ配設されてなる。すなわち、高分子電解質膜51の表裏面にそれぞれ形成された一対の電極触媒層52A,52Fに対向するように、一対のガス拡散層53A,53Fが配置されている。また、一対のガス拡散層53A,53Fに対向するように、セパレータ54A,54Fが配置されている。
そして、電極触媒層52A,52Fは、通常、高分子電解質膜51に触媒インクを塗布・乾燥する方法や、触媒インクを転写基材に塗布し、その後、高分子電解質膜51に転写する方法などにより製造される。
(Polymer fuel cell)
First, as shown in FIG. 1, a polymer
The
(触媒インクの製造方法)
本実施形態の触媒インクの製造方法は、固体高分子形燃料電池50用の電極触媒層52を形成する触媒インクの製造方法である。なお、本実施形態は、以下に記載する実施の形態に限定されるものではなく、当業者の知識に基づく設計の変更等の変形を加えることも可能であり、そのような変形が加えられた実施形態も本実施形態の範囲に含まれるものである。
本実施形態の触媒インクの製造方法は、第一の分散工程と、第二の分散工程とを含む。
(Method for producing catalyst ink)
The method for producing the catalyst ink of the present embodiment is a method for producing the catalyst ink for forming the electrode catalyst layer 52 for the polymer
The method for producing the catalyst ink of the present embodiment includes a first dispersion step and a second dispersion step.
<第一の分散工程>
第一の分散工程は、高分子電解質を水あるいはアルコール中に分散させた高分子電解質溶液を触媒担持炭素粒子に加えた後、ディゾルバー、あるいは第一の直径のボールまたはビーズによるメディア型の分散を行う工程である。具体的には、高分子電解質を水あるいはアルコール中に分散させた高分子電解質溶液を触媒担持炭素粒子に加えた後、分散媒を加え第一の分散を行う。第一の分散には、ディゾルバー、あるいは第一の直径のボールまたはビーズによるメディア型の分散を行うことが挙げられる。メディア型の分散とは、ボールミルやビーズミルの総称である。
<First dispersion step>
In the first dispersion step, a polymer electrolyte solution prepared by dispersing a polymer electrolyte in water or alcohol is added to the catalyst-supporting carbon particles, and then a dissolver, or media-type dispersion with balls or beads having a first diameter is performed. This is a process to be performed. Specifically, a polymer electrolyte solution prepared by dispersing a polymer electrolyte in water or alcohol is added to the catalyst-supporting carbon particles, and then a dispersion medium is added to perform the first dispersion. The first dispersion may include performing media type dispersion with a dissolver or balls or beads of a first diameter. Media type dispersion is a general term for ball mills and bead mills.
ここで、第一の直径としては0.5mmより大きいことが好ましい。第一の直径が0.5mm未満であった場合、炭素粒子を解砕するのに十分な衝突力が足りず、所望の粒子径が得られないことがあるため、第一の分散工程が必要となる。また、触媒担持炭素粒子としては、白金を担持させたカーボンブラックを用いることが好ましい。
また、上記高分子電解質としては、プロトン伝導性を有する高分子材料、例えば、フッ素系高分子電解質や炭化水素系高分子電解質が用いられる。
また、上記分散媒としては、例えば、メタノール、エタノール、1−プロパノ―ル、2−プロパノ―ル、1−ブタノ−ル、2−ブタノ−ル、イソブチルアルコール、tert−ブチルアルコール、ペンタノ−ル等のアルコール類の中から選ばれることが望ましい。また、上述した溶剤のうち二種以上が混合された溶媒を用いることが可能である。
Here, the first diameter is preferably larger than 0.5 mm. If the first diameter is less than 0.5 mm, the collision force sufficient to crush the carbon particles is insufficient and the desired particle size may not be obtained, so the first dispersion step is required. Becomes Further, as the catalyst-supporting carbon particles, it is preferable to use platinum-supported carbon black.
Moreover, as the above-mentioned polymer electrolyte, a polymer material having proton conductivity, for example, a fluorine-based polymer electrolyte or a hydrocarbon-based polymer electrolyte is used.
Examples of the dispersion medium include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, pentanole and the like. It is desirable to be selected from the above alcohols. Further, it is possible to use a solvent in which two or more of the above-mentioned solvents are mixed.
<第二の分散工程>
第二の分散工程は、前記第一の分散工程後に、前記第一の直径より小さい第二の直径のボールまたはビーズを用いたビーズミルを使用する分散工程である。具体的には、第一の分散を行った触媒インクをビーズミル分散機により第二の分散を行う。炭素粒子の最終到達粒子径は、ビーズミル分散に用いるボール径によって、影響を受け、小さいボールを使用する程、粒子径は小さくなり、大きなボールを使用すれば、粒子径も大きくなる。本実施形態では、用いるボール径を0.1mm〜0.5mmとすることで、炭素粒子のメジアン径は0.4μm〜5μmの範囲内となる。
<Second dispersion step>
The second dispersion step is a dispersion step using a bead mill using balls or beads having a second diameter smaller than the first diameter after the first dispersion step. Specifically, the catalyst ink that has been subjected to the first dispersion is subjected to the second dispersion using a bead mill disperser. The final particle size of the carbon particles is influenced by the ball size used for the bead mill dispersion. The smaller the ball, the smaller the particle size, and the larger the ball, the larger the particle size. In this embodiment, the median diameter of the carbon particles is in the range of 0.4 μm to 5 μm by setting the ball diameter used to be 0.1 mm to 0.5 mm.
高分子電解質は、上記第一分散工程及び第二分散工程において、分散剤のような役割を担うため、高分子電解質の炭素粒子に対する重量比(I/C)は小さすぎると、分散が進行せず、粒子径が小さくならず、電極触媒層52の細孔率が大きくなる。また高分子電解質の炭素粒子に対する重量比(I/C)が大きすぎると、高分子電解質が細孔を塞ぎ細孔率が小さくなるため、高分子電解質の炭素粒子に対する重量比(I/C)は0.6〜1.5の範囲、中でも特に0.9〜1.4の範囲とすることが好ましい。 Since the polymer electrolyte plays a role of a dispersant in the first dispersion step and the second dispersion step, if the weight ratio (I/C) of the polymer electrolyte to the carbon particles is too small, the dispersion will proceed. As a result, the particle size does not decrease, and the porosity of the electrode catalyst layer 52 increases. Further, if the weight ratio (I/C) of the polymer electrolyte to the carbon particles is too large, the polymer electrolyte closes the pores and the porosity becomes small, so the weight ratio of the polymer electrolyte to the carbon particles (I/C). Is preferably in the range of 0.6 to 1.5, and particularly preferably in the range of 0.9 to 1.4.
<電極触媒層の製造方法>
上記の方法により作製された触媒インクを転写基材に塗布、乾燥させ、高分子電解質膜51に転写する方法や、高分子電解質膜51に直接、上記触媒インクを塗布、乾燥させることで電極触媒層52が製造出来る。この時、塗布方式としては、ダイコート法、ドクターブレード法、ディッピング法、スクリーン印刷法、ロールコーティング法、スプレー法などを用いることが出来るがダイコート法によるものが好ましい。
上記転写基材は、電極触媒層52を剥離可能な材料からなるシートである。例えば、エチレンテトラフルオロエチレン共重合体(ETFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロパーフルオロアルキルビニルエーテル共重合体(PFA)、ポリテトラフルオロエチレン(PTFE)などのフッ素系樹脂の他、ポリスチレン系耐熱フィルム等を用いることができる。
<Method for producing electrode catalyst layer>
A method of applying the catalyst ink prepared by the above method to a transfer substrate and drying it to transfer it to the
The transfer base material is a sheet made of a material capable of peeling the electrode catalyst layer 52. For example, fluorine such as ethylene tetrafluoroethylene copolymer (ETFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroperfluoroalkyl vinyl ether copolymer (PFA), and polytetrafluoroethylene (PTFE). In addition to resin, polystyrene heat resistant film or the like can be used.
高分子電解質膜51は、プロトン伝導性を有する高分子膜で、この高分子電解質膜51の材料としては、例えばフッ素系高分子電解質や炭化水素系高分子電解質を用いることができる。フッ素系高分子電解質としては、例えばデュポン社製NAFION(登録商標)、旭硝子(株)製FLEMION(登録商標)、旭化成(株)製ACIPLEX(登録商標)、ゴア社製GORE−SELECT(登録商標)を用いることができる、炭化水素系高分子電解質としては、スルホン化ポリエーテルケトン、スルホン化ポリエーテルスルホン、スルホン化ポリエーテルエーテルスルホン、スルホン化ポリスルフィド、スルホン化ポリフェニレンなどの電解質を用いることができる。
The
上記の方法により製造した触媒インクを転写基材あるいは、高分子電解質膜に塗布、乾燥して得られる電極触媒層の表面の細孔率は、10%〜35%の範囲となり、この範囲内であれば、触媒の利用率が著しく低下することなく、また、反応ガスの供給不足や生成水の滞留を抑制することが出来る。
以上説明したように、本実施形態によれば、ボール径や高分子電解質の炭素粒子に対する重量比を最適化することで、触媒層の細孔率を適切な値で製造する事ができ、発電性能の低下を抑制することができる。
The porosity of the surface of the electrode catalyst layer obtained by applying the catalyst ink produced by the above method to the transfer substrate or the polymer electrolyte membrane and drying it is in the range of 10% to 35%. If so, it is possible to prevent the supply rate of the catalyst from being significantly reduced, and to suppress the supply shortage of the reaction gas and the retention of the produced water.
As described above, according to the present embodiment, by optimizing the ball diameter and the weight ratio of the polymer electrolyte to the carbon particles, the porosity of the catalyst layer can be produced at an appropriate value, and power generation can be performed. It is possible to suppress deterioration of performance.
(実施例1)
以下、本発明の実施例を説明する。
<触媒インクの製造方法>
白金を50wt%担持した触媒担持炭素粒子に、水分散高分子電解質溶液を加え、次に、1−プロパノールを加え、ディゾルバーで分散を行った。この時、高分子電解質の炭素粒子に対する重量比(I/C)は1.0とした。
次に、ディゾルバーにより分散を行った触媒インクをビーズミル分散機を使用し分散を行った。この時ボールとしてボール径0.2mmのジルコニアボールを使用した。
(Example 1)
Examples of the present invention will be described below.
<Catalyst Ink Manufacturing Method>
A water-dispersed polymer electrolyte solution was added to the catalyst-supporting carbon particles carrying 50 wt% of platinum, then 1-propanol was added, and dispersion was performed by a dissolver. At this time, the weight ratio (I/C) of the polymer electrolyte to the carbon particles was 1.0.
Next, the catalyst ink dispersed by the dissolver was dispersed using a bead mill disperser. At this time, a zirconia ball having a ball diameter of 0.2 mm was used as the ball.
<電極触媒層の製造方法>
次いで、上記の触媒インクをダイコーティング法により転写シートに塗布し、転写シート上に塗布された触媒インクを、温度80℃で5分間乾燥させることにより、電極触媒層52を得た。
(粒子径及び細孔率の測定)
触媒インク中の触媒担持炭素粒子の粒子径を測定した結果、メジアン径は0.6μmとなった。また、図2に示すように、転写基材に塗工した転写前の電極触媒層表面を走査型電子顕微鏡により撮影した画像を画像処理ソフト(ImageJ)を使用し、電極触媒層表面の細孔率を測定した結果、30%となった。この電極触媒層を電解質膜に転写し膜電極接合体を製造し発電性能を評価した結果、良好な結果が得られることを確認した。
<Method for producing electrode catalyst layer>
Then, the above catalyst ink was applied to a transfer sheet by a die coating method, and the catalyst ink applied on the transfer sheet was dried at a temperature of 80° C. for 5 minutes to obtain an electrode catalyst layer 52.
(Measurement of particle size and porosity)
As a result of measuring the particle diameter of the catalyst-supporting carbon particles in the catalyst ink, the median diameter was 0.6 μm. In addition, as shown in FIG. 2, the image of the surface of the electrode catalyst layer before transfer which was applied to the transfer substrate was photographed with a scanning electron microscope, and the image processing software (ImageJ) was used to obtain pores As a result of measuring the rate, it was 30%. As a result of transferring this electrode catalyst layer to an electrolyte membrane to produce a membrane electrode assembly and evaluating the power generation performance, it was confirmed that good results were obtained.
(実施例2)
第二の分散工程で使用するボールを0.5mmのジルコニアボールとした以外は実施例1と同様の方法で触媒インク及び電極触媒層52を得た。この時、触媒インク中の触媒担素粒子のメジアン径は1.2μmとなった。また、電極触媒層表面の細孔率は35%となり、この電極触媒層52を高分子電解質膜51に転写した膜電極接合体の発電性能が良好であることを確認した。
(Example 2)
A catalyst ink and an electrode catalyst layer 52 were obtained in the same manner as in Example 1 except that the balls used in the second dispersion step were 0.5 mm zirconia balls. At this time, the median diameter of the catalyst-supporting particles in the catalyst ink was 1.2 μm. Further, the porosity on the surface of the electrode catalyst layer was 35%, and it was confirmed that the power generation performance of the membrane electrode assembly obtained by transferring the electrode catalyst layer 52 to the
(実施例3)
高分子電解質の炭素粒子に対する重量比(I/C)を1.4とした以外は実施例1と同様の方法で触媒インク及び電極触媒層52を得た。この時、触媒インク中の触媒担素粒子のメジアン径は0.5μmとなった。また、電極触媒層52の表面の細孔率は20%となり、この電極触媒層52を高分子電解質膜51に転写した膜電極接合体の発電性能が良好であることを確認した。
(Example 3)
A catalyst ink and an electrode catalyst layer 52 were obtained in the same manner as in Example 1 except that the weight ratio (I/C) of the polymer electrolyte to the carbon particles was 1.4. At this time, the median diameter of the catalyst-supporting particles in the catalyst ink was 0.5 μm. Further, the porosity of the surface of the electrode catalyst layer 52 was 20%, and it was confirmed that the power generation performance of the membrane electrode assembly obtained by transferring the electrode catalyst layer 52 to the
(比較例1)
第一の分散工程を行わず、0.1mmのジルコニアボールを使用したビーズミル分散でのみ分散処理を行った以外、実施例1と同様の方法で触媒インク及び電極触媒層を得た。この時、触媒インク中の触媒担素粒子のメジアン径は10μm以上と分散が進行せず、このインクを塗布乾燥させ作製した電極触媒層にはクラックや炭素粒子の凝集体の残存が確認された。この電極触媒層を電解質膜に転写した膜電極接合体のでは良好な発電性能が得られず、特に低加湿時での運転において、大きな発電性能の低下が生じた。
(Comparative Example 1)
A catalyst ink and an electrode catalyst layer were obtained in the same manner as in Example 1 except that the first dispersion step was not performed and the dispersion treatment was performed only by bead mill dispersion using zirconia balls of 0.1 mm. At this time, the median diameter of the catalyst-supporting particles in the catalyst ink was 10 μm or more, and the dispersion did not proceed, and it was confirmed that cracks and aggregates of carbon particles remained in the electrode catalyst layer produced by applying and drying this ink. .. The membrane-electrode assembly in which the electrode catalyst layer was transferred to the electrolyte membrane did not provide good power generation performance, and particularly during operation at low humidification, a large reduction in power generation performance occurred.
(比較例2)
第二の分散工程で、3mmのジルコニアボールを使用したボールミル分散で分散処理を行った以外、実施例1と同様の方法で触媒インク及び電極触媒層を得た。この時、触媒インク中の触媒担素粒子のメジアン径は10μm以上となり、このインクを塗布乾燥させ作製した電極触媒層にはクラックや炭素粒子の凝集体の残存が確認された。この電極触媒層を電解質膜に転写した膜電極接合体のでは良好な発電性能が得られず、特に低加湿時での運転において、大きな発電性能の低下が生じた。
(Comparative example 2)
A catalyst ink and an electrode catalyst layer were obtained in the same manner as in Example 1 except that the dispersion treatment was performed by a ball mill dispersion using 3 mm zirconia balls in the second dispersion step. At this time, the median diameter of the catalyst-bearing particles in the catalyst ink was 10 μm or more, and it was confirmed that the electrode catalyst layer produced by applying and drying this ink had cracks and residual carbon particle aggregates. The membrane-electrode assembly in which the electrode catalyst layer was transferred to the electrolyte membrane did not provide good power generation performance, and particularly during operation at low humidification, a large reduction in power generation performance occurred.
(比較例3)
高分子電解質の炭素粒子に対する重量比(I/C)を1.7とした以外は実施例1と同様の方法で触媒インク及び電極触媒層を得た。この時、触媒インク中の触媒担素粒子のメジアン径は0.4μmとなった。また、電極触媒層表面の細孔率は8%となり、この電極触媒層を電解質膜に転写した膜電極接合体では、生成水の水詰まりによるフラッディングが生じ、発電性能の低下が生じる結果となった。
(Comparative example 3)
A catalyst ink and an electrode catalyst layer were obtained in the same manner as in Example 1 except that the weight ratio (I/C) of the polymer electrolyte to the carbon particles was 1.7. At this time, the median diameter of the catalyst-supporting particles in the catalyst ink was 0.4 μm. Further, the porosity of the surface of the electrode catalyst layer was 8%, and in the membrane electrode assembly in which the electrode catalyst layer was transferred to the electrolyte membrane, flooding occurred due to water clogging of the generated water, resulting in deterioration of power generation performance. It was
実施例1〜3の評価結果から明らかなように、本発明によれば、電極触媒層の細孔率を制御することが出来、良好な発電性能が得られる電極触媒層、電極触媒層、及び固体高分子形燃料電池を得ることが出来る。すなわち、電極触媒層の細孔率を制御することで、細孔率が低くなることにより生じる反応ガスの供給不足や生成水の滞留、あるいは細孔率が大きくなることによる触媒利用率の低下等を抑制する触媒インクの製造方法、電極触媒層、固体高分子形燃料電池を提供することができる。 As is clear from the evaluation results of Examples 1 to 3, according to the present invention, the porosity of the electrode catalyst layer can be controlled, and a good power generation performance can be obtained with the electrode catalyst layer, the electrode catalyst layer, and A polymer electrolyte fuel cell can be obtained. That is, by controlling the porosity of the electrode catalyst layer, insufficient supply of reaction gas caused by a decrease in the porosity, retention of generated water, or decrease in catalyst utilization rate due to an increase in the porosity, etc. It is possible to provide a method for producing a catalyst ink that suppresses the above, an electrode catalyst layer, and a polymer electrolyte fuel cell.
50…固体高分子形燃料電池
51…高分子電解質膜
52(52A、52F)…電極触媒層
53(53A、53F)…ガス拡散層
54(54A、54F)…セパレータ
50... Solid
Claims (4)
高分子電解質の炭素粒子に対する重量比(I/C)が0.6以上1.5以下となるように、高分子電解質を水あるいはアルコール中に分散させた高分子電解質溶液を触媒担持炭素粒子に加えた後、ディゾルバー、あるいは0.5mmより大きい直径のボールまたはビーズによるメディア型の分散を行う第一の分散工程と、
前記第一の分散工程後に、0.1mm以上0.5mm以下の直径のボールまたはビーズを用いたビーズミルを使用する第二の分散工程と、
の2工程のみによって、前記触媒担持炭素粒子のメジアン径が0.5μm以上5μm以下となる触媒インクを作製する
ことを特徴とする触媒インクの製造方法。 In a method for producing a catalyst ink for forming an electrode catalyst layer for a polymer electrolyte fuel cell,
A polymer electrolyte solution obtained by dispersing the polymer electrolyte in water or alcohol is used as the catalyst-supporting carbon particles so that the weight ratio (I/C) of the polymer electrolyte to the carbon particles is 0.6 or more and 1.5 or less. After the addition, a first dispersion step of performing media type dispersion with a dissolver or balls or beads having a diameter larger than 0.5 mm;
A second dispersion step using a bead mill using balls or beads having a diameter of 0.1 mm or more and 0.5 mm or less after the first dispersion step ;
The method for producing a catalyst ink, wherein the catalyst ink in which the median diameter of the catalyst-supporting carbon particles is 0.5 μm or more and 5 μm or less is produced by only the two steps .
ことを特徴とする請求項1に記載の触媒インクの製造方法。 The method for producing a catalyst ink according to claim 1, wherein the weight ratio (I/C) in the first dispersion step is 0.9 or more and 1.4 or less .
ことを特徴とする請求項1又は2に記載の触媒インクの製造方法。 The method for producing a catalyst ink according to claim 1 , wherein the diameter of the balls or the beads in the second dispersion step is 0.2 mm or more and 0.5 mm or less .
ことを特徴とする請求項1から3のいずれか一項に記載の触媒インクの製造方法。 Method for producing a catalyst ink according to any one of claims 1 3, wherein the median diameter of the catalyst-carrying carbon particles by the two steps is 0.5μm or more 1.2μm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016050051A JP6746977B2 (en) | 2016-03-14 | 2016-03-14 | Method for producing catalyst ink |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016050051A JP6746977B2 (en) | 2016-03-14 | 2016-03-14 | Method for producing catalyst ink |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017168222A JP2017168222A (en) | 2017-09-21 |
JP6746977B2 true JP6746977B2 (en) | 2020-08-26 |
Family
ID=59913918
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016050051A Active JP6746977B2 (en) | 2016-03-14 | 2016-03-14 | Method for producing catalyst ink |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6746977B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2021020300A1 (en) * | 2019-08-01 | 2021-02-04 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3558021B2 (en) * | 2000-08-18 | 2004-08-25 | 松下電器産業株式会社 | MEMBRANE ELECTRODE ASSEMBLY FOR FUEL CELL, PROCESS FOR PRODUCING THE SAME, AND FUEL CELL USING THE SAME |
JP4326973B2 (en) * | 2004-01-29 | 2009-09-09 | アイシン化工株式会社 | Catalyst paste for fuel cell and method for producing the same |
JP2008234910A (en) * | 2007-03-19 | 2008-10-02 | Aisin Chem Co Ltd | Ink for fuel cell electrode catalyst layer, and its manufacturing method |
JP2011171120A (en) * | 2010-02-18 | 2011-09-01 | Toyota Motor Corp | Manufacturing method of electrode catalyst |
-
2016
- 2016-03-14 JP JP2016050051A patent/JP6746977B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017168222A (en) | 2017-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7455703B2 (en) | Method for manufacturing polymer electrolyte fuel cell | |
JP5188872B2 (en) | Direct oxidation fuel cell | |
JP5481820B2 (en) | Microporous layer and gas diffusion layer having the same | |
JP2008186798A (en) | Electrolyte membrane-electrode assembly | |
US10547062B2 (en) | Polymer electrolyte fuel cell | |
JP5332294B2 (en) | Manufacturing method of membrane electrode assembly | |
JP2005235706A (en) | Electrode for solid polymer fuel cell | |
JP6746977B2 (en) | Method for producing catalyst ink | |
JP4918753B2 (en) | Electrode, battery, and manufacturing method thereof | |
WO2017154475A1 (en) | Catalyst composition, method for producing polymer electrolyte membrane electrode assembly, and polymer electrolyte membrane electrode assembly | |
US20110256472A1 (en) | Catalyst Slurry Composition for Fuel Cell Electrode, Catalytic Layer for Fuel Cell Electrode Using the Catalyst Slurry Composition, Method for Producing the Catalytic Layer and Membrane-Electrode Assembly Including the Catalytic Layer | |
JP6661979B2 (en) | Membrane electrode assembly | |
US20220311016A1 (en) | Catalyst layer and method for producing the same | |
JP2011070984A (en) | Method of manufacturing electrode catalyst layer for fuel cell, and membrane-electrode assembly having the electrode catalyst layer | |
KR102550369B1 (en) | Method for preparing membrane electrode assembly for water electrolysis using nanodispersed ionomer binder and the membrane electrode assembly prepared therefrom | |
US11990625B2 (en) | Electrode catalyst layer, membrane electrode assembly, and polymer electrolyte fuel cell | |
JP2010205657A (en) | Membrane electrode assembly, method for manufacturing the same, and polymer electrolyte fuel cell | |
JP5672645B2 (en) | Electrocatalyst ink for fuel cell | |
JP5262156B2 (en) | Solid polymer fuel cell and manufacturing method thereof | |
JP2015191704A (en) | Method for manufacturing membrane-electrode assembly, membrane-electrode assembly and solid polymer fuel cell having membrane-electrode assembly | |
JP6897017B2 (en) | Catalyst ink for forming electrode catalyst layer of polymer electrolyte fuel cell, its manufacturing method, electrode catalyst layer of polymer electrolyte fuel cell and polymer electrolyte fuel cell | |
JP5790049B2 (en) | Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell | |
JP5501044B2 (en) | Membrane electrode assembly and fuel cell | |
JP6569251B2 (en) | Catalyst ink for forming electrode catalyst layer of polymer electrolyte fuel cell and method for producing the same | |
JP2009245932A (en) | Electrode catalyst ink for fuel cell, electrode catalyst layer, membrane-electrode assembly, and polymer electrolyte fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190221 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20191227 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200114 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200310 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200707 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200720 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6746977 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |