JP6897017B2 - Catalyst ink for forming electrode catalyst layer of polymer electrolyte fuel cell, its manufacturing method, electrode catalyst layer of polymer electrolyte fuel cell and polymer electrolyte fuel cell - Google Patents

Catalyst ink for forming electrode catalyst layer of polymer electrolyte fuel cell, its manufacturing method, electrode catalyst layer of polymer electrolyte fuel cell and polymer electrolyte fuel cell Download PDF

Info

Publication number
JP6897017B2
JP6897017B2 JP2016135171A JP2016135171A JP6897017B2 JP 6897017 B2 JP6897017 B2 JP 6897017B2 JP 2016135171 A JP2016135171 A JP 2016135171A JP 2016135171 A JP2016135171 A JP 2016135171A JP 6897017 B2 JP6897017 B2 JP 6897017B2
Authority
JP
Japan
Prior art keywords
polymer electrolyte
fuel cell
mass
catalyst layer
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016135171A
Other languages
Japanese (ja)
Other versions
JP2018006265A (en
Inventor
直紀 浜田
直紀 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2016135171A priority Critical patent/JP6897017B2/en
Publication of JP2018006265A publication Critical patent/JP2018006265A/en
Application granted granted Critical
Publication of JP6897017B2 publication Critical patent/JP6897017B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、固体高分子形燃料電池の電極触媒層形成用の触媒インク、その触媒インクの製造方法、固体高分子形燃料電池の電極触媒層及び固体高分子形燃料電池に関する。 The present invention relates to a catalyst ink for forming an electrode catalyst layer of a polymer electrolyte fuel cell, a method for producing the catalyst ink, an electrode catalyst layer of the polymer electrolyte fuel cell, and a polymer electrolyte fuel cell.

高分子電解質膜をカソード電極触媒層及びアノード電極触媒層で挟持する構造を持つ固体高分子形燃料電池は、常温で作動し、起動時間が短いことから、自動車用電源、定置用電源などとして期待されている。
通常、電極触媒層は、高分子電解質膜に触媒インクを塗布・乾燥する方法や、触媒インクを一旦、転写基材に塗布し、その後、高分子電解質膜に転写する方法などにより製造される。
A polymer electrolyte fuel cell having a structure in which a polymer electrolyte membrane is sandwiched between a cathode electrode catalyst layer and an anode electrode catalyst layer operates at room temperature and has a short start-up time. Has been done.
Usually, the electrode catalyst layer is manufactured by a method of applying and drying the catalyst ink to the polymer electrolyte membrane, a method of applying the catalyst ink to the transfer base material once, and then transferring to the polymer electrolyte membrane.

この際、触媒インク中に含まれる高分子電解質によっては、触媒インクの塗膜にひび割れが生じることや、あるいは良好な発電性能が得られないことがある。
例えば、特許文献1には、高分子電解質として、プロトン供与性基1モル当たりの乾燥質量値(当量重量;以下、EW(Equivalent Weight)とも呼称する)が650〜750と比較的低いパーフルオロカーボンスルホン酸樹脂を使用することで、触媒担持炭素粒子の表面を高分子電解質で良好に被覆でき、塗膜のひび割れを抑制できると記載されている。しかし、EWの低い高分子電解質は保湿性が高いため、高加湿な条件で燃料電池の運転を行った場合、フラッディングによる性能低下を引き起こす原因となる。
At this time, depending on the polymer electrolyte contained in the catalyst ink, the coating film of the catalyst ink may be cracked or good power generation performance may not be obtained.
For example, Patent Document 1 states that as a polymer electrolyte, a perfluorocarbon sulfonate having a relatively low dry mass value (equivalent weight; hereinafter also referred to as EW (Equivalent Particle)) of 650 to 750 per mole of a proton donating group. It is described that by using an acid resin, the surface of the catalyst-supported carbon particles can be well coated with a polymer electrolyte, and cracks in the coating film can be suppressed. However, since the polymer electrolyte having a low EW has a high moisturizing property, when the fuel cell is operated under a highly humidified condition, it causes a deterioration in performance due to flooding.

一方、特許文献2や特許文献3には、EWの異なる触媒層を多層構成とすることや、EWの値が相対的に大きな部位とEWの値が相対的に小さな部位とを厚み方向に備えることで、フラッディングの発生を抑制すると記載されている。しかしこれらの方法は製造方法が複雑となり、生産性が低下する可能性がある。 On the other hand, in Patent Document 2 and Patent Document 3, catalyst layers having different EWs are provided in a multi-layer structure, and a portion having a relatively large EW value and a portion having a relatively small EW value are provided in the thickness direction. Therefore, it is described that the occurrence of flooding is suppressed. However, these methods complicate the manufacturing method and may reduce the productivity.

特開2012−69276号公報Japanese Unexamined Patent Publication No. 2012-69276 特開2011−228248号公報Japanese Unexamined Patent Publication No. 2011-228248 特開2010−182547号公報JP-A-2010-182547

本発明は、高加湿条件においても、フラッディングによる性能低下を抑制でき、かつ、触媒インクの塗布・乾燥時に塗布膜のひび割れが生じることをより抑制可能な固体高分子形燃料電池の電極触媒層形成用の触媒インクの提供を目的とする。 INDUSTRIAL APPLICABILITY The present invention forms an electrode catalyst layer of a polymer electrolyte fuel cell, which can suppress performance deterioration due to flooding even under high humidification conditions and can further suppress cracking of the coating film during coating and drying of the catalyst ink. It is an object of the present invention to provide a catalyst ink for use.

課題を解決するために、本発明の一態様である固体高分子形燃料電池の電極触媒層形成用の触媒インクは、EWが異なる第一の高分子電解質及び第二の高分子電解質の2種類の高分子電解質と、炭素粒子担体に触媒を担持させた触媒担持炭素粒子と、分散媒とを含み、前記第一の高分子電解質のEWが400(g/eq)以上700(g/eq)以下の範囲内であり、前記第二の高分子電解質のEWが750(g/eq)以上1000(g/eq)以下の範囲内であり、前記第一の高分子電解質の質量は、前記第一の高分子電解質及び第二の高分子電解質を合わせた質量の、5%以上50%以下の範囲であり、前記第一の高分子電解質と第二の高分子電解質を合わせた質量は、前記炭素粒子担体の質量に対する質量比が0.6以上1.5以下の範囲内である。 In order to solve the problem, there are two types of catalyst inks for forming the electrode catalyst layer of the solid polymer fuel cell, which is one aspect of the present invention, a first polymer electrolyte and a second polymer electrolyte having different EWs. The EW of the first polymer electrolyte is 400 (g / eq) or more and 700 (g / eq). The EW of the second polymer electrolyte is within the range of 750 (g / eq) or more and 1000 (g / eq) or less, and the mass of the first polymer electrolyte is the first. The total mass of the first polymer electrolyte and the second polymer electrolyte is in the range of 5% or more and 50% or less, and the combined mass of the first polymer electrolyte and the second polymer electrolyte is the above-mentioned The mass ratio to the mass of the carbon particle carrier is in the range of 0.6 or more and 1.5 or less.

また、本発明の一態様である固体高分子形燃料電池の電極触媒層形成用の触媒インクの製造方法は、EWが異なる第一の高分子電解質及び第二の高分子電解質の2種類の高分子電解質と、炭素粒子担体に触媒を担持させた触媒担持炭素粒子とを、分散媒中に混合・分散させる工程を有する。 Further, in the method for producing a catalyst ink for forming an electrode catalyst layer of a polymer electrolyte fuel cell, which is one aspect of the present invention, there are two types of high molecular electrolytes, a first polymer electrolyte and a second polymer electrolyte having different EWs. It has a step of mixing and dispersing a molecular electrolyte and catalyst-supported carbon particles in which a catalyst is supported on a carbon particle carrier in a dispersion medium.

本発明の一態様によれば、EWの低い第一の高分子電解質で触媒担持炭素粒子の表面を良好に被覆することで、塗膜のひび割れを抑制すると同時に、EWの高い第二の高分子電解質を含むことで、フラッディングを抑制することが可能な電極触媒層形成用の触媒インクを提供できる。 According to one aspect of the present invention, by satisfactorily covering the surface of the catalyst-supported carbon particles with the first polymer electrolyte having a low EW, cracks in the coating film are suppressed, and at the same time, the second polymer having a high EW is suppressed. By including an electrolyte, it is possible to provide a catalyst ink for forming an electrode catalyst layer capable of suppressing flooding.

本発明の実施形態に係る固体高分子形燃料電池の内部構造の一例を示す分解斜視図である。It is an exploded perspective view which shows an example of the internal structure of the polymer electrolyte fuel cell which concerns on embodiment of this invention. 本発明の実施形態に係る触媒インクの製造工程を示す図である。It is a figure which shows the manufacturing process of the catalyst ink which concerns on embodiment of this invention.

以下、本発明の実施形態について、図面を参照しつつ説明する。
なお、本実施形態は、以下に記載する実施の形態に限定されるものではなく、当業者の知識に基づく設計の変更等の変形を加えることも可能であり、そのような変形が加えられた実施形態も本実施形態の範囲に含まれるものである。
また、以下の詳細な説明では、本発明の実施形態について、完全な理解を提供するように、特定の細部について記載する。しかしながら、かかる特定の細部が無くとも、一つ以上の実施形態が実施可能であることは明確である。また、図面を簡潔なものとするために、周知の構造及び装置を、略図で示す場合がある。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
It should be noted that the present embodiment is not limited to the embodiments described below, and modifications such as design changes based on the knowledge of those skilled in the art can be added, and such modifications have been added. The embodiment is also included in the scope of the present embodiment.
In addition, the following detailed description will describe specific details to provide a complete understanding of the embodiments of the present invention. However, it is clear that one or more embodiments are feasible without such specific details. Also, in order to simplify the drawings, well-known structures and devices may be shown in schematic drawings.

(固体高分子形燃料電池の構造)
固体高分子形燃料電池50は、図1中に示すように、高分子電解質膜51の両面に、当該高分子電解質膜51を挟んで互いに向い合う一対の電極触媒層52A、52Fが配置されている。
電極触媒層52Aの高分子電解質膜51と対向する面と反対側の面には、ガス拡散層53Aが配置されている。電極触媒層52Fの高分子電解質膜51と対向する面と反対側の面にはガス拡散層53Fが配置されている。また、高分子電解質膜51及び一対の電極触媒層52A、52Fを挟んで互いに向かい合うように配置されている。
(Structure of polymer electrolyte fuel cell)
In the polymer electrolyte fuel cell 50, as shown in FIG. 1, a pair of electrode catalyst layers 52A and 52F facing each other with the polymer electrolyte membrane 51 interposed therebetween are arranged on both sides of the polymer electrolyte membrane 51. There is.
A gas diffusion layer 53A is arranged on the surface of the electrode catalyst layer 52A opposite to the surface facing the polymer electrolyte membrane 51. A gas diffusion layer 53F is arranged on the surface of the electrode catalyst layer 52F opposite to the surface facing the polymer electrolyte membrane 51. Further, the polymer electrolyte membrane 51 and the pair of electrode catalyst layers 52A and 52F are arranged so as to face each other with the polymer electrolyte membrane 51 and the pair of electrode catalyst layers 52A and 52F interposed therebetween.

ガス拡散層53Aの電極触媒層52Aと対向する面と反対側の面に、セパレーター54Aが配置されている。セパレーター54Aは、ガス拡散層53Aの面に対向する面に反応ガス流通用のガス流路55Aを備えると共に、相対する主面に冷却水流通用の冷却水通路56Aを備える。
さらに、ガス拡散層53Fの電極触媒層52Fと対向する面と反対側の面にはセパレーター54Fが配置されている。セパレーター54Fは、ガス拡散層53Fの面に対向する面に反応ガス流通用のガス流路55Fを備えると友井、相対する主面に冷却水流通用の冷却水通路56Fを備える。
以下、電極触媒層52A及び52Fを区別する必要がない場合には、電極触媒層52A及び52Fを、単に「電極触媒層52」と記載する場合がある。
The separator 54A is arranged on the surface of the gas diffusion layer 53A opposite to the surface facing the electrode catalyst layer 52A. The separator 54A is provided with a gas flow path 55A for the reaction gas flow on the surface facing the surface of the gas diffusion layer 53A, and is provided with a cooling water passage 56A for the cooling water flow on the opposite main surface.
Further, a separator 54F is arranged on the surface of the gas diffusion layer 53F opposite to the surface facing the electrode catalyst layer 52F. The separator 54F is provided with a gas flow path 55F for the reaction gas flow on the surface facing the surface of the gas diffusion layer 53F, and is provided with a cooling water passage 56F for the cooling water flow on the opposite main surface.
Hereinafter, when it is not necessary to distinguish between the electrode catalyst layers 52A and 52F, the electrode catalyst layers 52A and 52F may be simply referred to as “electrode catalyst layer 52”.

(触媒インクの製造方法)
次に、図2を参照しつつ、本実施形態に係る固体高分子形燃料電池50の電極触媒層52形成用の触媒インクの製造方法について説明する。図2は、本実施形態に係る触媒インクの製造工程を示す図である。
本実施形態の電極触媒層形成用の触媒インクは、第一の高分子電解質と、第一の高分子電解質よりもEWが大きな第二の高分子電解質と、炭素粒子担体に触媒を担持させた触媒担持炭素粒子と、分散媒とを含んで構成されている。以下の例では、触媒として白金を使用する場合を例に挙げて説明するが、他の公知の触媒を使用しても構わない。
(Manufacturing method of catalyst ink)
Next, with reference to FIG. 2, a method for producing a catalyst ink for forming the electrode catalyst layer 52 of the polymer electrolyte fuel cell 50 according to the present embodiment will be described. FIG. 2 is a diagram showing a manufacturing process of the catalyst ink according to the present embodiment.
The catalyst ink for forming the electrode catalyst layer of the present embodiment has a first polymer electrolyte, a second polymer electrolyte having a larger EW than the first polymer electrolyte, and a carbon particle carrier supporting the catalyst. It is composed of catalyst-supported carbon particles and a dispersion medium. In the following example, the case where platinum is used as the catalyst will be described as an example, but other known catalysts may be used.

図2に示すように、まず第1の工程として、白金担持炭素粒子と第一の高分子電解質を分散媒中に混合・分散させる。混合・分散には、例えばホモジナイザー、プラネタリーミキサー、ディゾルバー、ビーズミル等が使用できる。また、本実施形態では、触媒担持炭素粒子の一例として、炭素粒子担体に触媒として白金を担持させたカーボンブラック(白金担持炭素粒子)を用いる。 As shown in FIG. 2, as the first step, the platinum-supported carbon particles and the first polymer electrolyte are mixed and dispersed in the dispersion medium. For mixing / dispersing, for example, a homogenizer, a planetary mixer, a dissolver, a bead mill and the like can be used. Further, in the present embodiment, as an example of the catalyst-supported carbon particles, carbon black (platinum-supported carbon particles) in which platinum is supported on the carbon particle carrier as a catalyst is used.

第一の高分子電解質としては、EWが400(g/eq)以上700(g/eq)以下の範囲内の高分子電解質を用いる。ここで、プロトン供与性基1モル当たりの乾燥質量値(当量重量;EW)とは、導入されたプロトン供与性基の単位モル当たりのプロトン伝導材の質量であり、値が小さいほどプロトン伝導材中のプロトン供与性基の割合が高いことを示す。高分子電解質のEWが低いほど、白金担持炭素粒子の表面をより良好に被覆することができる。そのため、第二の高分子電解質よりEWの低い、第一の高分子電解質を先に白金担持炭素粒子と混合させておくことで、塗膜のひび割れを抑制することができる。塗膜のひび割れは、クロスリークの原因となり、発電性能の低下や、耐久性の低下を引き起こす原因となる。また、第一の高分子電解質は、予め第一の高分子電解質を溶液中に分散させた、高分子電解質分散液の状態で使用することができる。 As the first polymer electrolyte, a polymer electrolyte having an EW in the range of 400 (g / eq) or more and 700 (g / eq) or less is used. Here, the dry mass value (equivalent weight; EW) per mole of the proton-donating group is the mass of the proton-conducting material per unit mole of the introduced proton-donating group, and the smaller the value, the more the proton-conducting material. It shows that the proportion of proton donating groups in the medium is high. The lower the EW of the polymer electrolyte, the better the surface of the platinum-supported carbon particles can be coated. Therefore, cracking of the coating film can be suppressed by first mixing the first polymer electrolyte, which has a lower EW than the second polymer electrolyte, with the platinum-supported carbon particles. Cracks in the coating film cause cross leaks, which causes deterioration of power generation performance and durability. Further, the first polymer electrolyte can be used in the state of a polymer electrolyte dispersion liquid in which the first polymer electrolyte is dispersed in a solution in advance.

分散媒としては、例えば、水やメタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、イソブチルアルコール、tert−ブチルアルコール、ペンタノール等のアルコール類(有機溶媒)の中からいずれかを選択して用いることが可能である。また、上述した溶媒のうち二種以上が混合された溶媒を用いることが可能である。 Examples of the dispersion medium include water, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, pentanol and other alcohols (organic solvents). Either one can be selected and used. Further, it is possible to use a solvent in which two or more of the above-mentioned solvents are mixed.

次に、第2の工程として、第1の工程で製造された第一高分子電解質を含む触媒インクに、第二の高分子電解質を混合・分散を行う。混合・分散には、例えばホモジナイザー、プラネタリーミキサー、ディゾルバー、ビーズミル等が使用できる。
第二の高分子電解質としては、EWが750(g/eq)以上1000(g/eq)以下の範囲内の高分子電解質を用いる。EWが750〜1000と第一の高分子電解質より高い第二の高分子電解質では、保湿性が第一の高分子電解質と比べ低いため、第二の高分子電解質を加える事でフラッディングによる性能低下を抑制することができる。また、第二の高分子電解質は、予め第二の高分子電解質を溶液中に分散させた、高分子電解質分散液の状態で使用することができる。
Next, as the second step, the second polymer electrolyte is mixed and dispersed in the catalyst ink containing the first polymer electrolyte produced in the first step. For mixing / dispersing, for example, a homogenizer, a planetary mixer, a dissolver, a bead mill and the like can be used.
As the second polymer electrolyte, a polymer electrolyte having an EW in the range of 750 (g / eq) or more and 1000 (g / eq) or less is used. The second polymer electrolyte, which has an EW of 750 to 1000, which is higher than that of the first polymer electrolyte, has lower moisturizing properties than the first polymer electrolyte. Therefore, adding the second polymer electrolyte reduces the performance due to flooding. Can be suppressed. Further, the second polymer electrolyte can be used in the state of a polymer electrolyte dispersion liquid in which the second polymer electrolyte is dispersed in the solution in advance.

高分子電解質のEWは小さいと、触媒層の保湿性が高まり、特に高加湿の条件での動作において、フラッディングを引き起こす原因となる。一方、EWが高い際には、白金担持炭素粒子の表面を高分子電解質で良好に被覆できず、塗膜にひび割れが生じる原因となる。したがって、第一の高分子電解質のEWは400(g/eq)以上700(g/eq)以下、第二の高分子電解質のEWは750(g/eq)以上1000(g/eq)以下とする。 If the EW of the polymer electrolyte is small, the moisturizing property of the catalyst layer is enhanced, which causes flooding, especially in operation under high humidification conditions. On the other hand, when the EW is high, the surface of the platinum-supported carbon particles cannot be well coated with the polymer electrolyte, which causes cracks in the coating film. Therefore, the EW of the first polymer electrolyte is 400 (g / eq) or more and 700 (g / eq) or less, and the EW of the second polymer electrolyte is 750 (g / eq) or more and 1000 (g / eq) or less. To do.

高分子電解質としては、プロトン伝導性を有する高分子材料、例えば、フッ素系高分子電解質や炭化水素系高分子電解質を用いる。
第一の高分子電解質の質量は、第一の高分子電解質及び第二の高分子電解質を合わせた質量の5%以上50%以下の範囲とする。
第一の高分子電解質の質量割合が5%より小さい場合、白金担持炭素粒子の表面を高分子電解質で良好に被覆できず、塗膜にひび割れが生じる原因となる。
一方、第一の高分子電解質の質量割合が50%より高い場合には、触媒層の保湿性が高まり、特に高加湿の条件での動作において、フラッディングを引き起こす原因となる。
As the polymer electrolyte, a polymer material having proton conductivity, for example, a fluorine-based polymer electrolyte or a hydrocarbon-based polymer electrolyte is used.
The mass of the first polymer electrolyte shall be in the range of 5% or more and 50% or less of the total mass of the first polymer electrolyte and the second polymer electrolyte.
When the mass ratio of the first polymer electrolyte is less than 5%, the surface of the platinum-supported carbon particles cannot be well coated with the polymer electrolyte, which causes cracks in the coating film.
On the other hand, when the mass ratio of the first polymer electrolyte is higher than 50%, the moisturizing property of the catalyst layer is enhanced, which causes flooding particularly in the operation under the condition of high humidification.

高分子電解質の炭素粒子担体に対する質量割合(高分子電解質/炭素粒子担体)が小さすぎると、具体的には0.6より小さいと、プロトン輸送抵抗が増加し、発電性能の低下を引き起こすことや、塗布時に塗膜の強度が弱くなり、ひび割れの発生原因となる。また、高分子電解質の炭素粒子担体に対する質量割合(高分子電解質/炭素粒子担体)が大きすぎると、具体的には1.5を超えると、ガス透過性の低下を引き起こすことや、フラッディングによる発電性能の低下を引き起こす原因となる。
以上のことから、本実施形態では、第一の高分子電解質と第二の高分子電解質を合わせた質量は、炭素粒子担体の質量に対する質量比が0.6以上1.5以下の範囲内とする。
If the mass ratio of the polymer electrolyte to the carbon particle carrier (polymer electrolyte / carbon particle carrier) is too small, specifically, if it is less than 0.6, the proton transport resistance increases, causing a decrease in power generation performance. , The strength of the coating film becomes weak at the time of application, which causes cracks. Further, if the mass ratio of the polymer electrolyte to the carbon particle carrier (polymer electrolyte / carbon particle carrier) is too large, specifically, if it exceeds 1.5, the gas permeability is lowered and power generation by flooding is caused. It causes deterioration of performance.
From the above, in the present embodiment, the total mass of the first polymer electrolyte and the second polymer electrolyte is within the range of 0.6 or more and 1.5 or less in mass ratio to the mass of the carbon particle carrier. To do.

(触媒層の製造方法)
電極触媒層52は、上記の方法により作製された触媒インクを転写基材に塗布、乾燥させ、高分子電解質膜51に転写する方法や、高分子電解質膜51に直接、上記触媒インクを塗布、乾燥させることで製造出来る。塗布方式としては、ダイコート法、ドクターブレード法、ディッピング法、スクリーン印刷法、ロールコーティング法、スプレー法などを用いることが出来るがダイコート法によるものが好ましい。
(Manufacturing method of catalyst layer)
The electrode catalyst layer 52 can be obtained by applying the catalyst ink produced by the above method to a transfer substrate, drying the electrode catalyst layer 52, and transferring the catalyst ink to the polymer electrolyte membrane 51, or by directly applying the catalyst ink to the polymer electrolyte membrane 51. It can be manufactured by drying. As the coating method, a die coating method, a doctor blade method, a dipping method, a screen printing method, a roll coating method, a spray method and the like can be used, but the die coating method is preferable.

上記転写基材は、電極触媒層52を剥離可能な材料からなるシートである。例えば、エチレンテトラフルオロエチレン共重合体(ETFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロパーフルオロアルキルビニルエーテル共重合体(PFA)、ポリテトラフルオロエチレン(PTFE)などのフッ素系樹脂の他、ポリスチレン系耐熱フィルム等を用いることができる。 The transfer base material is a sheet made of a material from which the electrode catalyst layer 52 can be peeled off. For example, fluorine such as ethylene tetrafluoroethylene copolymer (ETFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroperfluoroalkyl vinyl ether copolymer (PFA), and polytetrafluoroethylene (PTFE). In addition to the based resin, a polystyrene-based heat-resistant film or the like can be used.

(実施例1)
以下、本発明に基づく実施例1を説明する。
(触媒インクの製造)
触媒である白金を50質量%担持した触媒担持炭素粒子(商品名:TEC10F50E、田中貴金属社製)に、EWが700の高分子電解質分散液を加え、1−プロパノール中に混合・分散させた。このとき、混合・分散にはプラネタリーミキサーを使用した。
(Example 1)
Hereinafter, Example 1 based on the present invention will be described.
(Manufacturing of catalyst ink)
A polymer electrolyte dispersion having an EW of 700 was added to catalyst-supported carbon particles (trade name: TEC10F50E, manufactured by Tanaka Kikinzoku Co., Ltd.) carrying 50% by mass of platinum as a catalyst, and mixed and dispersed in 1-propanol. At this time, a planetary mixer was used for mixing and dispersion.

上記EWが700の高分子電解質は、次に加える第二の高分子電解質を合わせた質量に対して、20質量%となるよう調製を行った。
次に、上記混合・分散を行ったEW700の第一の高分子電解質を含むスラリーに対し、EW1000の高分子電解質を加え、ビーズミルにて分散を行った。このとき、EW700の第一の高分子電解質とEW1000の第二の高分子電解質を合わせた質量は、炭素粒子担体の質量に対する質量比(I/C)が1.0となるよう調製を行った。
The polymer electrolyte having an EW of 700 was prepared so as to be 20% by mass with respect to the total mass of the second polymer electrolyte to be added next.
Next, the polymer electrolyte of EW1000 was added to the slurry containing the first polymer electrolyte of EW700 that had been mixed and dispersed, and the slurry was dispersed by a bead mill. At this time, the total mass of the first polymer electrolyte of EW700 and the second polymer electrolyte of EW1000 was prepared so that the mass ratio (I / C) to the mass of the carbon particle carrier was 1.0. ..

(電極触媒層形成工程)
次いで、上記の触媒インクをダイコーティング法により転写シートに塗布し、転写シート上に塗布された触媒インクを、温度80℃の大気雰囲気中で5分間乾燥させることにより、電極触媒層52を得た。この際、触媒物質の担持量が0.3mg/cmとなるように、電極触媒層52の厚さを調節した。
(Electrode catalyst layer forming step)
Next, the above-mentioned catalyst ink was applied to a transfer sheet by a die coating method, and the catalyst ink applied on the transfer sheet was dried in an air atmosphere at a temperature of 80 ° C. for 5 minutes to obtain an electrode catalyst layer 52. .. At this time, the thickness of the electrode catalyst layer 52 was adjusted so that the amount of the catalyst substance supported was 0.3 mg / cm 2.

このとき、電極触媒層にひび割れがないことを確認した。
また、この電極触媒層を電解質膜に転写し膜電極接合体を製造して発電性能を評価した。その評価として、低加湿及び高加湿のいずれの条件においても、良好な発電性能が得られることを確認した。
At this time, it was confirmed that the electrode catalyst layer had no cracks.
In addition, this electrode catalyst layer was transferred to an electrolyte membrane to produce a membrane electrode assembly, and the power generation performance was evaluated. As an evaluation, it was confirmed that good power generation performance can be obtained under both low humidification and high humidification conditions.

(実施例2)
次に、本発明に基づく実施例2を説明する。
EWが700の第一の高分子電解質の、第二の高分子電解質を合わせた質量に対しての質量割合を、40%となるよう調製を行った。また、EW700の第一の高分子電解質とEW1000の第二の高分子電解質を合わせたI/C(炭素粒子担体に対する質量比)を1.2とした。それ以外は、上記実施例1と同様として、実施例2の触媒インクを得た。
このとき、電極触媒層にひび割れがないことを確認した。この電極触媒層を電解質膜に転写し膜電極接合体を製造して発電性能を評価した。その評価として、低加湿及び高加湿のいずれの条件においても、良好な発電性能が得られることを確認した。
(Example 2)
Next, Example 2 based on the present invention will be described.
The mass ratio of the first polymer electrolyte having an EW of 700 to the total mass of the second polymer electrolyte was adjusted to be 40%. The combined I / C (mass ratio to carbon particle carrier) of the first polymer electrolyte of EW700 and the second polymer electrolyte of EW1000 was set to 1.2. Other than that, the catalyst ink of Example 2 was obtained in the same manner as in Example 1 above.
At this time, it was confirmed that the electrode catalyst layer had no cracks. This electrode catalyst layer was transferred to an electrolyte membrane to produce a membrane electrode assembly, and the power generation performance was evaluated. As an evaluation, it was confirmed that good power generation performance can be obtained under both low humidification and high humidification conditions.

(実施例3)
次に、本発明に基づく実施例3を説明する。
第一の高分子電解質のEWを400とし、第一の高分子電解質の質量を、第一の高分子電解質と第二の高分子電解質を合わせた質量に対する割合を10質量%としたこと以外は、上記実施例1と同様として、実施例3の触媒インクを得た。
このとき、電極触媒層にひび割れがないことを確認した。この電極触媒層を電解質膜に転写し膜電極接合体を製造して発電性能を評価した。その評価として、低加湿及び高加湿のいずれの条件においても、良好な発電性能が得られることを確認した。
(Example 3)
Next, Example 3 based on the present invention will be described.
Except that the EW of the first polymer electrolyte was 400, and the mass of the first polymer electrolyte was 10% by mass as a ratio to the total mass of the first polymer electrolyte and the second polymer electrolyte. , The catalyst ink of Example 3 was obtained in the same manner as in Example 1 above.
At this time, it was confirmed that the electrode catalyst layer had no cracks. This electrode catalyst layer was transferred to an electrolyte membrane to produce a membrane electrode assembly, and the power generation performance was evaluated. As an evaluation, it was confirmed that good power generation performance can be obtained under both low humidification and high humidification conditions.

(比較例1)
第一の高分子電解質の第二の高分子電解質を合わせた質量に対しての割合を、60%とした以外は、上記実施例1と同様として、比較例1の触媒インクを得た。
このとき、電極触媒層にひび割れがないことを確認した。しかし、この電極触媒層を電解質膜に転写し膜電極接合体を製造して発電性能を評価した。その評価は、高加湿条件において、フラッディングの影響による発電性能の低下が生じる結果となった。
(Comparative Example 1)
The catalyst ink of Comparative Example 1 was obtained in the same manner as in Example 1 above, except that the ratio of the first polymer electrolyte to the total mass of the second polymer electrolyte was 60%.
At this time, it was confirmed that the electrode catalyst layer had no cracks. However, this electrode catalyst layer was transferred to an electrolyte membrane to produce a membrane electrode assembly, and the power generation performance was evaluated. The evaluation resulted in a decrease in power generation performance due to the influence of flooding under high humidification conditions.

(比較例2)
第一の高分子電解質の質量を、第一の高分子電解質と第二の高分子電解質を合わせた質量に対しての質量割合を1%とした以外は、上記実施例1と同様として、比較例2の触媒インクを得た。このとき、電極触媒層にひび割れが生じる結果となった。
(Comparative Example 2)
The comparison was made in the same manner as in Example 1 above, except that the mass of the first polymer electrolyte was 1% with respect to the total mass of the first polymer electrolyte and the second polymer electrolyte. The catalyst ink of Example 2 was obtained. At this time, the result was that the electrode catalyst layer was cracked.

(比較例3)
第一の高分子電解質と第二の高分子電解質を合わせたI/Cを1.7としたこと以外は、上記実施例1と同様として、比較例3の触媒インクを得た。
このとき、電極触媒層にひび割れがないことを確認した。しかし、この電極触媒層を電解質膜に転写し膜電極接合体を製造して発電性能を評価した。その評価は、高加湿条件において、フラッディングの影響による発電性能の低下が生じる結果となった。
以上のように、本発明に基づく触媒インクを用いた場合、電極触媒層にひび割れがなく、この電極触媒層を有する固体高分子形燃料電池は、低加湿及び高加湿のいずれの条件においても、良好な発電性能が得られる。
(Comparative Example 3)
The catalyst ink of Comparative Example 3 was obtained in the same manner as in Example 1 above, except that the I / C of the combination of the first polymer electrolyte and the second polymer electrolyte was set to 1.7.
At this time, it was confirmed that the electrode catalyst layer had no cracks. However, this electrode catalyst layer was transferred to an electrolyte membrane to produce a membrane electrode assembly, and the power generation performance was evaluated. The evaluation resulted in a decrease in power generation performance due to the influence of flooding under high humidification conditions.
As described above, when the catalyst ink based on the present invention is used, the electrode catalyst layer is not cracked, and the polymer electrolyte fuel cell having this electrode catalyst layer can be used under both low humidification and high humidification conditions. Good power generation performance can be obtained.

50…固体高分子形燃料電池
51…高分子電解質膜
52A、52F…電極触媒層
53A、53F…ガス拡散層
54A、54F…セパレーター
55A、55F…ガス流路
56A、56F…冷却水通路
50 ... Solid polymer fuel cell 51 ... Polymer electrolyte membrane 52A, 52F ... Electrode catalyst layer 53A, 53F ... Gas diffusion layer 54A, 54F ... Separator 55A, 55F ... Gas flow path 56A, 56F ... Cooling water passage

Claims (11)

固体高分子形燃料電池の電極触媒層形成用の触媒インクであって、
プロトン供与性基1モル当たりの乾燥質量値(当量重量;以下、EW(Equivalent Weight)とも呼称する)が異なる第一の高分子電解質及び第二の高分子電解質の2種類の高分子電解質と、炭素粒子担体に触媒を担持させた触媒担持炭素粒子と、分散媒とを含み、
前記第一の高分子電解質のEWが400(g/eq)以上700(g/eq)以下の範囲内であり、前記第二の高分子電解質のEWが750(g/eq)以上1000(g/eq)以下の範囲内であり、
前記第一の高分子電解質の質量は、前記第一の高分子電解質及び第二の高分子電解質を合わせた質量の、40%以上50%以下の範囲であり、
前記第一の高分子電解質と第二の高分子電解質を合わせた質量は、前記炭素粒子担体の質量に対する質量比が0.6以上1.5以下の範囲内であり、
前記第一の高分子電解質は、前記触媒担持炭素粒子の表面を被覆していることを特徴とする固体高分子形燃料電池の電極触媒層形成用の触媒インク。
A catalyst ink for forming an electrode catalyst layer of a polymer electrolyte fuel cell.
Two types of polymer electrolytes having different dry mass values (equivalent weight; hereinafter also referred to as EW (Equivalent Particle)) per mole of proton-donating groups, a first polymer electrolyte and a second polymer electrolyte, It contains catalyst-supported carbon particles in which a catalyst is supported on a carbon particle carrier and a dispersion medium.
The EW of the first polymer electrolyte is in the range of 400 (g / eq) or more and 700 (g / eq) or less, and the EW of the second polymer electrolyte is 750 (g / eq) or more and 1000 (g) or less. / Eq) Within the following range,
The mass of the first polymer electrolyte is in the range of 40% or more and 50% or less of the total mass of the first polymer electrolyte and the second polymer electrolyte.
The total mass of the first polymer electrolyte and the second polymer electrolyte is such that the mass ratio to the mass of the carbon particle carrier is in the range of 0.6 or more and 1.5 or less.
The first polymer electrolyte is a catalyst ink for forming an electrode catalyst layer of a polymer electrolyte fuel cell, which covers the surface of the catalyst-supporting carbon particles.
固体高分子形燃料電池の電極触媒層形成用の触媒インクであって、
プロトン供与性基1モル当たりの乾燥質量値(当量重量;以下、EW(Equivalent Weight)とも呼称する)が異なる第一の高分子電解質及び第二の高分子電解質の2種類の高分子電解質と、炭素粒子担体に触媒を担持させた触媒担持炭素粒子と、分散媒とを含み、
前記第一の高分子電解質のEWが400(g/eq)以上700(g/eq)以下の範囲内であり、前記第二の高分子電解質のEWが750(g/eq)以上1000(g/eq)以下の範囲内であり、
前記第一の高分子電解質の質量は、前記第一の高分子電解質及び第二の高分子電解質を合わせた質量の、5%以上10%以下の範囲であり、
前記第一の高分子電解質と第二の高分子電解質を合わせた質量は、前記炭素粒子担体の質量に対する質量比が0.6以上1.5以下の範囲内であり、
前記第一の高分子電解質は、前記触媒担持炭素粒子の表面を被覆していることを特徴とする固体高分子形燃料電池の電極触媒層形成用の触媒インク。
A catalyst ink for forming an electrode catalyst layer of a polymer electrolyte fuel cell.
Two types of polymer electrolytes having different dry mass values (equivalent weight; hereinafter also referred to as EW (Equivalent Particle)) per mole of proton-donating groups, a first polymer electrolyte and a second polymer electrolyte, It contains catalyst-supported carbon particles in which a catalyst is supported on a carbon particle carrier and a dispersion medium.
The EW of the first polymer electrolyte is in the range of 400 (g / eq) or more and 700 (g / eq) or less, and the EW of the second polymer electrolyte is 750 (g / eq) or more and 1000 (g) or less. / Eq) Within the following range,
The mass of the first polymer electrolyte is in the range of 5% or more and 10% or less of the total mass of the first polymer electrolyte and the second polymer electrolyte.
The total mass of the first polymer electrolyte and the second polymer electrolyte is such that the mass ratio to the mass of the carbon particle carrier is in the range of 0.6 or more and 1.5 or less.
The first polymer electrolyte is a catalyst ink for forming an electrode catalyst layer of a polymer electrolyte fuel cell, which covers the surface of the catalyst-supporting carbon particles.
前記第一の高分子電解質と第二の高分子電解質を合わせた質量は、前記炭素粒子担体の質量に対する質量比が1.0以上1.5以下の範囲内であることを特徴とする請求項1又は請求項2に記載した固体高分子形燃料電池の電極触媒層形成用の触媒インク。 The claim is that the total mass of the first polymer electrolyte and the second polymer electrolyte is in the range of 1.0 or more and 1.5 or less in terms of the mass ratio with respect to the mass of the carbon particle carrier. 1 or the catalyst ink for forming an electrode catalyst layer of a polymer electrolyte fuel cell according to claim 2. 前記第一の高分子電解質と第二の高分子電解質を合わせた質量は、前記炭素粒子担体の質量に対する質量比が1.2以上1.5以下の範囲内であることを特徴とする請求項1又は請求項2に記載した固体高分子形燃料電池の電極触媒層形成用の触媒インク。 A claim that the total mass of the first polymer electrolyte and the second polymer electrolyte is such that the mass ratio of the carbon particle carrier to the mass is in the range of 1.2 or more and 1.5 or less. 1 or the catalyst ink for forming an electrode catalyst layer of a polymer electrolyte fuel cell according to claim 2. 固体高分子形燃料電池の電極触媒層形成用の触媒インクの製造方法であって、
プロトン供与性基1モル当たりの乾燥質量値(当量重量;以下、EW(Equivalent Weight)とも呼称する)が異なる第一の高分子電解質及び第二の高分子電解質の2種類の高分子電解質と、炭素粒子担体に触媒を担持させた触媒担持炭素粒子とを、分散媒中に混合・分散させる工程を有し、
前記第一の高分子電解質のEWが400(g/eq)以上700(g/eq)以下の範囲内であり、前記第二の高分子電解質のEWが750(g/eq)以上1000(g/eq)以下の範囲内であり
前記混合・分散させる工程において、前記第一の高分子電解質と前記触媒担持炭素粒子とを前記分散媒中に混合して、前記第一の高分子電解質で前記触媒担持炭素粒子の表面を被覆した後に、前記第二の高分子電解質を前記分散媒中に混合し、
前記第一の高分子電解質の質量を、前記第一の高分子電解質及び第二の高分子電解質を合わせた質量の40%以上50%以下の範囲とすることを特徴とする固体高分子形燃料電池の電極触媒層形成用の触媒インクの製造方法。
A method for producing a catalyst ink for forming an electrode catalyst layer of a polymer electrolyte fuel cell.
Two types of polymer electrolytes having different dry mass values (equivalent weight; hereinafter also referred to as EW (Equivalent Particle)) per mole of proton-donating groups, a first polymer electrolyte and a second polymer electrolyte, It has a step of mixing and dispersing the catalyst-supported carbon particles in which a catalyst is supported on a carbon particle carrier in a dispersion medium.
The EW of the first polymer electrolyte is in the range of 400 (g / eq) or more and 700 (g / eq) or less, and the EW of the second polymer electrolyte is 750 (g / eq) or more and 1000 (g) or less. / Eq) Within the following range ,
In the step of mixing and dispersing, the first polymer electrolyte and the catalyst-supporting carbon particles were mixed in the dispersion medium, and the surface of the catalyst-supporting carbon particles was coated with the first polymer electrolyte. Later, the second polymeric electrolyte was mixed into the dispersion medium and
The polymer electrolyte fuel having a mass of the first polymer electrolyte in the range of 40% or more and 50% or less of the total mass of the first polymer electrolyte and the second polymer electrolyte. A method for producing a catalyst ink for forming an electrode catalyst layer of a battery.
固体高分子形燃料電池の電極触媒層形成用の触媒インクの製造方法であって、
プロトン供与性基1モル当たりの乾燥質量値(当量重量;以下、EW(Equivalent Weight)とも呼称する)が異なる第一の高分子電解質及び第二の高分子電解質の2種類の高分子電解質と、炭素粒子担体に触媒を担持させた触媒担持炭素粒子とを、分散媒中に混合・分散させる工程を有し、
前記第一の高分子電解質のEWが400(g/eq)以上700(g/eq)以下の範囲内であり、前記第二の高分子電解質のEWが750(g/eq)以上1000(g/eq)以下の範囲内であり
前記混合・分散させる工程において、前記第一の高分子電解質と前記触媒担持炭素粒子とを前記分散媒中に混合して、前記第一の高分子電解質で前記触媒担持炭素粒子の表面を被覆した後に、前記第二の高分子電解質を前記分散媒中に混合し、
前記第一の高分子電解質の質量を、前記第一の高分子電解質及び第二の高分子電解質を合わせた質量の5%以上10%以下の範囲とすることを特徴とする固体高分子形燃料電池の電極触媒層形成用の触媒インクの製造方法。
A method for producing a catalyst ink for forming an electrode catalyst layer of a polymer electrolyte fuel cell.
Two types of polymer electrolytes having different dry mass values (equivalent weight; hereinafter also referred to as EW (Equivalent Particle)) per mole of proton-donating groups, a first polymer electrolyte and a second polymer electrolyte, It has a step of mixing and dispersing the catalyst-supported carbon particles in which a catalyst is supported on a carbon particle carrier in a dispersion medium.
The EW of the first polymer electrolyte is in the range of 400 (g / eq) or more and 700 (g / eq) or less, and the EW of the second polymer electrolyte is 750 (g / eq) or more and 1000 (g) or less. / Eq) Within the following range ,
In the step of mixing and dispersing, the first polymer electrolyte and the catalyst-supporting carbon particles were mixed in the dispersion medium, and the surface of the catalyst-supporting carbon particles was coated with the first polymer electrolyte. Later, the second polymeric electrolyte was mixed into the dispersion medium and
The polymer electrolyte fuel having a mass of the first polymer electrolyte in a range of 5% or more and 10% or less of the total mass of the first polymer electrolyte and the second polymer electrolyte. A method for producing a catalyst ink for forming an electrode catalyst layer of a battery.
前記第一の高分子電解質と第二の高分子電解質を合わせた質量を、前記炭素粒子担体の質量に対する質量比が0.6以上1.5以下の範囲内とすることを特徴とする請求項5又は請求項に記載した固体高分子形燃料電池の電極触媒層形成用の触媒インクの製造方法。 The claim is characterized in that the mass ratio of the total mass of the first polymer electrolyte and the second polymer electrolyte to the mass of the carbon particle carrier is in the range of 0.6 or more and 1.5 or less. 5 or the method for producing a catalyst ink for forming an electrode catalyst layer of a polymer electrolyte fuel cell according to claim 6. 前記第一の高分子電解質と第二の高分子電解質を合わせた質量を、前記炭素粒子担体の質量に対する質量比が1.0以上1.5以下の範囲内とすることを特徴とする請求項5又は請求項に記載した固体高分子形燃料電池の電極触媒層形成用の触媒インクの製造方法。 The claim is characterized in that the mass ratio of the total mass of the first polymer electrolyte and the second polymer electrolyte to the mass of the carbon particle carrier is in the range of 1.0 or more and 1.5 or less. 5 or the method for producing a catalyst ink for forming an electrode catalyst layer of a polymer electrolyte fuel cell according to claim 6. 前記第一の高分子電解質と第二の高分子電解質を合わせた質量を、前記炭素粒子担体の質量に対する質量比が1.2以上1.5以下の範囲内とすることを特徴とする請求項5又は請求項に記載した固体高分子形燃料電池の電極触媒層形成用の触媒インクの製造方法。 The claim is characterized in that the mass ratio of the total mass of the first polymer electrolyte and the second polymer electrolyte to the mass of the carbon particle carrier is in the range of 1.2 or more and 1.5 or less. 5 or the method for producing a catalyst ink for forming an electrode catalyst layer of a polymer electrolyte fuel cell according to claim 6. 請求項1〜請求項4のいずれか1項に記載した固体高分子形燃料電池の電極触媒層形成用の触媒インクからなる固体高分子形燃料電池の電極触媒層。 The electrode catalyst layer of a polymer electrolyte fuel cell, which comprises the catalyst ink for forming the electrode catalyst layer of the polymer electrolyte fuel cell according to any one of claims 1 to 4. 請求項1に記載された固体高分子形燃料電池の電極触媒層を備える固体高分子形燃料電池。 A solid polymer fuel cell comprising a claim 1 0 electrode catalyst layer of the polymer electrolyte fuel cell according to.
JP2016135171A 2016-07-07 2016-07-07 Catalyst ink for forming electrode catalyst layer of polymer electrolyte fuel cell, its manufacturing method, electrode catalyst layer of polymer electrolyte fuel cell and polymer electrolyte fuel cell Active JP6897017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016135171A JP6897017B2 (en) 2016-07-07 2016-07-07 Catalyst ink for forming electrode catalyst layer of polymer electrolyte fuel cell, its manufacturing method, electrode catalyst layer of polymer electrolyte fuel cell and polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016135171A JP6897017B2 (en) 2016-07-07 2016-07-07 Catalyst ink for forming electrode catalyst layer of polymer electrolyte fuel cell, its manufacturing method, electrode catalyst layer of polymer electrolyte fuel cell and polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2018006265A JP2018006265A (en) 2018-01-11
JP6897017B2 true JP6897017B2 (en) 2021-06-30

Family

ID=60949712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016135171A Active JP6897017B2 (en) 2016-07-07 2016-07-07 Catalyst ink for forming electrode catalyst layer of polymer electrolyte fuel cell, its manufacturing method, electrode catalyst layer of polymer electrolyte fuel cell and polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP6897017B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114050277A (en) * 2021-11-17 2022-02-15 武汉理工氢电科技有限公司 Preparation method of catalyst slurry for fuel cell and preparation method of membrane electrode

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006134752A (en) * 2004-11-08 2006-05-25 Nissan Motor Co Ltd Solid polymer fuel cell and vehicle
US20140261981A1 (en) * 2013-03-15 2014-09-18 GM Global Technology Operations LLC Cathode composite structure and methods thereof for improved fuel cell performance under high humidity

Also Published As

Publication number Publication date
JP2018006265A (en) 2018-01-11

Similar Documents

Publication Publication Date Title
US7285354B2 (en) Polymer electrolyte fuel cell, fuel cell electrode, method for producing electrode catalyst layer, and method for producing polymer electrolyte fuel cell
JP5332294B2 (en) Manufacturing method of membrane electrode assembly
JP2008159320A (en) Membrane electrode assembly
JP2003178780A (en) Polymer electrolyte type fuel cell system and operating method of polymer electrolyte type fuel cell
KR100832213B1 (en) Direct oxidation fuel cell and production method thereof
JP2007103089A (en) Electrode catalyst layer, transfer sheet for manufacturing catalyst layer-electrolyte film laminate, and catalyst layer-electrolyte film laminate
KR20140082971A (en) Catalyst particles, catalyst ink, electrode catalyst layer for fuel cells, membrane electrode assembly, solid polymer fuel cell, method for producing catalyst particles, and method for producing catalyst ink
JP6897017B2 (en) Catalyst ink for forming electrode catalyst layer of polymer electrolyte fuel cell, its manufacturing method, electrode catalyst layer of polymer electrolyte fuel cell and polymer electrolyte fuel cell
JP2013020816A (en) Membrane electrode assembly and manufacturing method therefor, and fuel cell
JP2005294175A (en) Electrode catalyst layer and its manufacturing method
JP5423062B2 (en) Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell
JP6661979B2 (en) Membrane electrode assembly
JP5217256B2 (en) Conductive porous sheet and method for producing the same
JP6364821B2 (en) Catalyst ink production method, polymer electrolyte fuel cell production method, and platinum-supported carbon particles
JP5262156B2 (en) Solid polymer fuel cell and manufacturing method thereof
JP6569251B2 (en) Catalyst ink for forming electrode catalyst layer of polymer electrolyte fuel cell and method for producing the same
JP6746977B2 (en) Method for producing catalyst ink
TWI398982B (en) Modified carbonized substrate and its manufacturing method and use
JP2009048936A (en) Repair method of electrolyte membrane with catalyst layer, and transcription film for repair
JP2001126737A (en) Electrode for a fuel cell, method for preparing the fuel cell, and the fuel cell
WO2017154475A1 (en) Catalyst composition, method for producing polymer electrolyte membrane electrode assembly, and polymer electrolyte membrane electrode assembly
JP6855821B2 (en) Manufacturing method of membrane electrode assembly for polymer electrolyte fuel cell
JP2013084427A (en) Method for manufacturing membrane-catalyst layer assembly and method for manufacturing membrane electrode assembly
WO2023153454A1 (en) Membrane electrode assembly and solid polymer fuel cell
JP2009245932A (en) Electrode catalyst ink for fuel cell, electrode catalyst layer, membrane-electrode assembly, and polymer electrolyte fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210524

R150 Certificate of patent or registration of utility model

Ref document number: 6897017

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150