JP2017174572A - Manufacturing method of membrane/electrode assembly for fuel cell - Google Patents

Manufacturing method of membrane/electrode assembly for fuel cell Download PDF

Info

Publication number
JP2017174572A
JP2017174572A JP2016057709A JP2016057709A JP2017174572A JP 2017174572 A JP2017174572 A JP 2017174572A JP 2016057709 A JP2016057709 A JP 2016057709A JP 2016057709 A JP2016057709 A JP 2016057709A JP 2017174572 A JP2017174572 A JP 2017174572A
Authority
JP
Japan
Prior art keywords
electrolyte membrane
solid polymer
polymer electrolyte
membrane
electrode assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016057709A
Other languages
Japanese (ja)
Other versions
JP6746994B2 (en
Inventor
友希 五十嵐
Yuuki Igarashi
友希 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2016057709A priority Critical patent/JP6746994B2/en
Publication of JP2017174572A publication Critical patent/JP2017174572A/en
Application granted granted Critical
Publication of JP6746994B2 publication Critical patent/JP6746994B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a membrane/electrode assembly capable of suppressing reduction of flatness caused by influences of a dimensional change in a solid polymer electrolyte membrane.SOLUTION: A manufacturing method includes: a sticking step of sticking laminate films 5 and 5 on a front face and a rear face of a solid polymer electrolyte membrane 10 in such a manner that a cross section of at least one side is exposed; a catalyst layer formation part removal step of removing a catalyst layer formation part 2 of the laminate film 5, thereby exposing the front face and the rear face of the solid polymer electrolyte membrane 10; an application step of applying a catalyst ink 3 to the exposed front and rear faces of the solid polymer catalyst membrane 10 while heating the catalyst ink on a heating part; and a drying step of drying the catalyst ink 3, thereby forming a catalyst layer 50. A drying time in the drying step is equal to or shorter than 30 seconds.SELECTED DRAWING: Figure 1

Description

本発明は、燃料電池の膜電極接合体(MEA:Membrane−Electrode Assembly)の製造方法に関する。   The present invention relates to a method for producing a membrane-electrode assembly (MEA) of a fuel cell.

従来の膜電極接合体の製造方法としては、所望の形状を有する触媒層が付与された転写基材と固体高分子電解質膜をホットプレス、熱ラミネートロールなどで熱圧着した後、基材を剥離する方法が提案されている。
例えば、特許文献1には、ホットプレスを用いる手法、及び熱ラミネートロールを用いる手法が開示されている。上記熱ラミネートロールを用いる手法は、長尺の固体高分子電解質膜とその両側に配された所望の形状を有する触媒層が付与された転写基材とを接触させ、一対の熱ラミネートロールで熱圧着することによって、固体高分子電解質膜と触媒層とを一体的に接合し、その後転写基材から基材のみを一対の剥離ロールを用いて触媒層から剥離し、触媒層を固体高分子電解質膜表面に転写している。
As a conventional method for producing a membrane electrode assembly, a transfer substrate provided with a catalyst layer having a desired shape and a solid polymer electrolyte membrane are subjected to thermocompression bonding with a hot press, a heat laminating roll, etc., and then the substrate is peeled off. A method has been proposed.
For example, Patent Document 1 discloses a technique using a hot press and a technique using a heat laminating roll. The above-described method using a heat laminating roll involves contacting a long solid polymer electrolyte membrane with a transfer substrate provided with a catalyst layer having a desired shape disposed on both sides thereof, and heating with a pair of heat laminating rolls. The solid polymer electrolyte membrane and the catalyst layer are integrally joined by pressure bonding, and then only the base material is peeled off from the catalyst layer using a pair of peeling rolls, and the catalyst layer is separated from the solid polymer electrolyte. Transferred to the film surface.

一方、特許文献2には、上記熱転写の後、固体高分子電解質膜表面の露出部にガスの漏洩、及び電解質における触媒層が形成されない領域の集中的な劣化を防ぐため、ガスケット部材を付与して膜電極接合体を得る技術が開示されている。
ここで、特許文献2のガスケット部材の付与方法では、既に形成された触媒層の外周を覆うため、完全に触媒層と固体高分子電解質膜との間の露出部がなくなるようにするには、触媒層上にガスケット部材を乗り上げるほか選択肢がない。乗り上げ部は燃料電池の発電に関与しないため、触媒層の利用効率が下がってしまうという懸念点がある。
On the other hand, Patent Document 2 is provided with a gasket member in order to prevent gas leakage at the exposed portion of the surface of the solid polymer electrolyte membrane and intensive deterioration of a region where the catalyst layer in the electrolyte is not formed after the thermal transfer. Thus, a technique for obtaining a membrane electrode assembly is disclosed.
Here, in the method for applying the gasket member of Patent Document 2, in order to completely cover the outer periphery of the catalyst layer that has already been formed, in order to completely eliminate the exposed portion between the catalyst layer and the solid polymer electrolyte membrane, There is no choice but to ride a gasket member on the catalyst layer. Since the riding section does not participate in the power generation of the fuel cell, there is a concern that the utilization efficiency of the catalyst layer is lowered.

また、上記熱転写による手法のほかに、特許文献3に示すような、固体高分子電解質膜に触媒インクを直接塗布・乾燥し、触媒層を形成する手法がある。この方法では、転写基材・転写工程を必要としないため、コスト削減、工程の簡略化が可能である。しかし、この方法でも、特許文献2同様、ガスケット部材を触媒層形成後に付与するため、触媒層の利用効率が下がってしまう。   In addition to the thermal transfer method described above, there is a method for forming a catalyst layer by directly applying and drying a catalyst ink on a solid polymer electrolyte membrane as disclosed in Patent Document 3. Since this method does not require a transfer substrate / transfer process, cost reduction and process simplification are possible. However, even in this method, as in Patent Document 2, the gasket member is applied after the formation of the catalyst layer, so that the utilization efficiency of the catalyst layer is lowered.

さらに、特許文献4のように、事前に電極形状にくりぬかれた開口部を有するマスク材を固体高分子電解質膜に貼合した後、触媒インクを特許文献3同様にして、触媒層を形成する手法もある。しかし、この方法では、塗布前に固体高分子電解質膜の表裏面に開口部が開いているため、固体高分子電解質膜部分が柔軟に動けてしまうため、触媒インクを塗布した場合、触媒インクに含まれる溶媒の浸透により固体高分子電解質膜に寸法変化が生じてしまう。この寸法変化した固体高分子電解質膜部分と、非開口部における電解質膜部分の寸法変化が大きく異なるため、得られるMEAに平面性の低下が発生してしまう。平面性の悪いMEAは発電セルに組み込むのが困難になるといった問題がある。   Further, as in Patent Document 4, after a mask material having an opening that has been hollowed into an electrode shape in advance is bonded to the solid polymer electrolyte membrane, the catalyst ink is formed in the same manner as Patent Document 3 to form a catalyst layer. There is also a technique. However, in this method, since the openings are opened on the front and back surfaces of the solid polymer electrolyte membrane before coating, the solid polymer electrolyte membrane portion moves flexibly. A dimensional change occurs in the solid polymer electrolyte membrane due to permeation of the contained solvent. Since the dimensional change of the solid polymer electrolyte membrane portion whose dimension has changed and the electrolyte membrane portion in the non-opening portion are greatly different, the planarity of the obtained MEA is deteriorated. An MEA with poor planarity has a problem that it is difficult to incorporate it into a power generation cell.

特開平10−64574号公報Japanese Patent Laid-Open No. 10-64574 特許第5720810号公報Japanese Patent No. 5720810 特開2015−162308号公報JP 2015-162308 A 特許第4737924号公報Japanese Patent No. 4737924

本発明は、上記の点に鑑みてなされたものであって、ガスケット材の乗り上げによる触媒層の利用効率低下がなく、簡便な工程を用いながら、膜電極接合体の平面性の低下を抑制することができる膜電極接合体の製造方法を提供することを目的とする。   The present invention has been made in view of the above points, and there is no decrease in the utilization efficiency of the catalyst layer due to the rise of the gasket material, and the decrease in planarity of the membrane electrode assembly is suppressed while using a simple process. An object of the present invention is to provide a method for producing a membrane electrode assembly that can be used.

上記課題を解決するための膜電極接合体の製造方法の一態様は、少なくとも1辺の断面が露出するように固体高分子電解質膜の表面及び裏面にそれぞれ、積層フィルムを貼合する貼合工程と、
上記積層フィルムの触媒層形成部を除去して上記固体高分子電解質膜の表面及び裏面を露出させる触媒層形成部除去工程と、
加熱部上で加熱しながら、触媒インクを、露出した上記固体高分子電解質膜の表面及び裏面に塗布する塗布工程と、
上記触媒インクを乾燥させて触媒層を形成する乾燥工程とを含み、
上記乾燥工程における乾燥時間が30秒以下である。
One aspect of the method for producing a membrane / electrode assembly for solving the above problems is a bonding step in which a laminated film is bonded to the front and back surfaces of the solid polymer electrolyte membrane so that at least one side of the cross section is exposed. When,
Removing the catalyst layer forming part of the laminated film to expose the surface and the back surface of the solid polymer electrolyte membrane; and
An application step of applying the catalyst ink to the exposed front and back surfaces of the solid polymer electrolyte membrane while heating on the heating unit;
A drying step of drying the catalyst ink to form a catalyst layer,
The drying time in the drying step is 30 seconds or less.

ここで、上記膜電極接合体製造方法においては、上記塗布工程における触媒インクの揮発成分が、水、及び水より揮発性が高い溶媒であり、水と溶媒との質量比が6:4〜4:6であることが好ましい。
また、上記膜電極接合体製造方法においては、上記塗布工程における上記加熱部による加熱温度が、70℃以上120℃未満であることが好ましい。
また、上記膜電極接合体製造方法においては、上記塗布工程及び上記乾燥工程を、固体高分子電解質膜の表面及び裏面に順次行うが好ましい。
また、上記膜電極接合体製造方法においては、上記塗布工程及び上記乾燥工程を、固体高分子電解質膜の表面及び裏面に同時に行うことが好ましい。
Here, in the membrane electrode assembly manufacturing method, the volatile component of the catalyst ink in the coating step is water and a solvent having higher volatility than water, and the mass ratio of water to the solvent is 6: 4-4. : 6 is preferable.
Moreover, in the said membrane electrode assembly manufacturing method, it is preferable that the heating temperature by the said heating part in the said application | coating process is 70 degreeC or more and less than 120 degreeC.
Moreover, in the said membrane electrode assembly manufacturing method, it is preferable to perform the said application | coating process and the said drying process sequentially on the surface and back surface of a solid polymer electrolyte membrane.
Moreover, in the said membrane electrode assembly manufacturing method, it is preferable to perform the said application | coating process and the said drying process simultaneously on the surface and back surface of a solid polymer electrolyte membrane.

本発明の一態様によれば、固体高分子電解質膜の寸法変化の影響による平面性の低下を抑制することが出来る。   According to one embodiment of the present invention, it is possible to suppress a decrease in flatness due to an influence of a dimensional change of a solid polymer electrolyte membrane.

膜電極接合体の製造方法の一実施形態を示す概略図である。It is the schematic which shows one Embodiment of the manufacturing method of a membrane electrode assembly.

以下に、膜電極接合体の製造方法の実施形態について図面を参照して説明する。なお、本発明は、以下に記す実施形態に限定されるものではなく、当業者の知識に基づいて設計の変更などの変形を加えることも可能であり、そのような変形が加えられた実施形態も本発明の実施形態の範囲に含まれるものである。
本実施形態の膜電極接合体の製造方法は、貼合工程と、触媒層形成部除去工程と、塗布工程と、乾燥工程とを含む。
Hereinafter, an embodiment of a method for producing a membrane electrode assembly will be described with reference to the drawings. The present invention is not limited to the embodiments described below, and modifications such as design changes can be added based on the knowledge of those skilled in the art. Embodiments to which such modifications are added Are also included in the scope of the embodiments of the present invention.
The manufacturing method of the membrane electrode assembly of this embodiment includes a bonding step, a catalyst layer forming part removing step, a coating step, and a drying step.

貼合工程は、少なくとも1辺の断面が露出するように固体高分子電解質膜の表面及び裏面にそれぞれ、積層フィルムを貼合する工程である。
また、触媒層形成部除去工程は、上記積層フィルムの触媒層形成部を除去して上記固体高分子電解質膜の表面及び裏面を露出させる工程である。
また、塗布工程は、加熱部上で加熱しながら、触媒インクを、露出した上記固体高分子電解質膜の表面及び裏面に塗布する工程である。なお、触媒インクの揮発成分が、水、及び水より揮発性が高い溶媒であり、水と溶媒との質量比が6:4〜4:6であることが好ましい。また、上記加熱部による加熱温度が、70℃以上120℃未満であることが好ましい。
また、乾燥工程は、上記触媒インクを乾燥させて触媒層を形成する工程であり、この乾燥工程における乾燥時間は30秒以下である。
A pasting process is a process of pasting a lamination film on the surface and the back of a solid polymer electrolyte membrane, respectively, so that a section of at least one side may be exposed.
The catalyst layer forming portion removing step is a step of removing the catalyst layer forming portion of the laminated film to expose the front and back surfaces of the solid polymer electrolyte membrane.
The application step is a step of applying the catalyst ink to the exposed front and back surfaces of the solid polymer electrolyte membrane while heating on the heating unit. The volatile component of the catalyst ink is water and a solvent having higher volatility than water, and the mass ratio of water to the solvent is preferably 6: 4 to 4: 6. Moreover, it is preferable that the heating temperature by the said heating part is 70 degreeC or more and less than 120 degreeC.
The drying step is a step of drying the catalyst ink to form a catalyst layer, and the drying time in this drying step is 30 seconds or less.

<貼合工程>
まず、図1(a)に示すように、貼合工程として、固体高分子電解質膜10の表面及び裏面に一対の積層フィルム5,5を貼合してなる電解質膜基材12を作製する。
ここで、積層フィルム5は、粘着層を有するガスバリア性フィルム1と粘着層を有するプラスチックフィルム4とを積層してなる。積層フィルム5は、ガスバリア性フィルム1の粘着層を介して固体高分子電解質膜10の表面及び裏面に貼合される。
電解質膜基材12は、固体高分子電解質膜10の断面の少なくとも1辺が積層フィルム5,5に完全に覆われることなく露出した構成である。また、積層フィルム5は後述する触媒層の形状と一致した形状の触媒層形成部2を有する。
次に、図1(b)に示すように、この電解質膜基材12を平滑に保持した状態で加熱部20に積載する。
<Bonding process>
First, as shown to Fig.1 (a), as a bonding process, the electrolyte membrane base material 12 formed by bonding a pair of laminated films 5 and 5 to the surface and back surface of the solid polymer electrolyte membrane 10 is produced.
Here, the laminated film 5 is formed by laminating a gas barrier film 1 having an adhesive layer and a plastic film 4 having an adhesive layer. The laminated film 5 is bonded to the front and back surfaces of the solid polymer electrolyte membrane 10 through the adhesive layer of the gas barrier film 1.
The electrolyte membrane substrate 12 has a configuration in which at least one side of the cross section of the solid polymer electrolyte membrane 10 is exposed without being completely covered with the laminated films 5 and 5. The laminated film 5 has a catalyst layer forming portion 2 having a shape that matches the shape of the catalyst layer described later.
Next, as shown in FIG. 1B, the electrolyte membrane substrate 12 is loaded on the heating unit 20 in a state where the electrolyte membrane substrate 12 is held smoothly.

<触媒層形成部除去工程>
次に、触媒層形成部除去工程として、図1(c)に示すように、電解質膜基材12より上面の積層フィルム5の触媒層形成部2を除去し、固体高分子電解質膜10の一部を露出させる。
<塗布工程>
次に、塗布工程として、図1(d)に示すように、塗布装置にて液状の触媒インク3を電解質膜基材12上に塗布する。
<Catalyst layer formation part removal process>
Next, as the catalyst layer forming portion removing step, as shown in FIG. 1 (c), the catalyst layer forming portion 2 of the laminated film 5 on the upper surface from the electrolyte membrane substrate 12 is removed, and one of the solid polymer electrolyte membranes 10 is removed. Expose the part.
<Application process>
Next, as a coating process, as shown in FIG. 1 (d), the liquid catalyst ink 3 is coated on the electrolyte membrane substrate 12 with a coating device.

<乾燥工程>
次に、乾燥工程として、加熱部20の熱により触媒インク3の揮発成分を除去する。その後、図1(e)に示すように、プラスチックフィルム4を粘着層と共に剥離することにより、所望の形状を有する触媒層50を得る。
その後、電解質膜基材12を表裏逆転させ、平滑に保持した状態で加熱部20に積載する。
次に、図1(f)に示すように、再度、電解質膜基材12より上面の積層フィルム5の触媒層形成部2を除去した後、図1(g)に示すように、塗布装置にて液状の触媒インク3を電解質膜基材12上に塗布し、加熱部20の熱により揮発成分を除去する。
次に、図1(h)に示すように、既に加工済みの反対側の面と同様にプラスチックフィルム4を剥離することで所望の形状を有する触媒層50が得られる。
<Drying process>
Next, as a drying process, the volatile components of the catalyst ink 3 are removed by the heat of the heating unit 20. Then, as shown in FIG.1 (e), the catalyst layer 50 which has a desired shape is obtained by peeling the plastic film 4 with an adhesion layer.
Thereafter, the electrolyte membrane substrate 12 is turned upside down and loaded on the heating unit 20 while being kept smooth.
Next, as shown in FIG. 1 (f), after removing the catalyst layer forming portion 2 of the laminated film 5 on the upper surface from the electrolyte membrane substrate 12 again, as shown in FIG. Then, the liquid catalyst ink 3 is applied onto the electrolyte membrane substrate 12, and the volatile components are removed by the heat of the heating unit 20.
Next, as shown in FIG. 1H, the catalyst layer 50 having a desired shape is obtained by peeling off the plastic film 4 in the same manner as the already processed opposite surface.

以上の工程を経て、図1(i)に示すように、両面に触媒層50,50を有する膜電極接合体18を得る。
以上の工程は、上記塗布工程及び上記乾燥工程を、固体高分子電解質膜の表面及び裏面に順次行う例であるが、上記塗布工程及び上記乾燥工程を、固体高分子電解質膜の表面及び裏面に同時に行ってもよい。
ここで、固体高分子電解質膜10は、湿潤状態で良好なプロトン導電性を示す高分子材料である。触媒インク3は、白金又は白金と他の金属との合金からなる触媒を担持した粉末カーボンと樹脂により形成され、乾燥、固化により触媒層50を形成する。
Through the above steps, as shown in FIG. 1I, a membrane electrode assembly 18 having catalyst layers 50, 50 on both sides is obtained.
The above steps are examples in which the coating step and the drying step are sequentially performed on the front and back surfaces of the solid polymer electrolyte membrane, but the coating step and the drying step are performed on the front and back surfaces of the solid polymer electrolyte membrane. You may do it at the same time.
Here, the solid polymer electrolyte membrane 10 is a polymer material that exhibits good proton conductivity in a wet state. The catalyst ink 3 is formed of powdered carbon carrying a catalyst made of platinum or an alloy of platinum and another metal and a resin, and forms a catalyst layer 50 by drying and solidification.

以下、固体高分子電解質膜10、触媒層50、粘着層を有するガスバリア性フィルム1及び粘着層を有するプラスチックフィルム4を構成する材料の具体例を挙げるが、本発明はこれらに限定されない。
固体高分子電解質膜10を構成する高分子材料としては、具体的には、炭化水素系高分子電解質、フッ素系高分子電解質を用いることができる。炭化水素系高分子電解質膜としては、スルホン化ポリエーテルケトン、スルホン化ポリエーテルスルホン、スルホン化ポリエーテルエーテルスルホン、スルホン化ポリスルフィド、スルホン化ポリフェニレンなどの電解質膜を用いることができる。フッ素系高分子電解質としては、例えば、デュポン製Nafion(登録商標)、旭硝子製Flemion(登録商標)、旭化成製Aciplex(登録商標)、ゴア製Gore Select(登録商標)などを用いることができる。炭化水素系電解質膜は、フッ素系高分子電解質に比べ、溶媒による浸透、膨潤が少ないため、触媒インクを固体電解質膜に塗布するのにより好ましい。固体高分子電解質膜10の厚みは、5μm以上100μm以下程度に形成される。
Hereinafter, although the specific example of the material which comprises the solid polymer electrolyte membrane 10, the catalyst layer 50, the gas barrier film 1 which has an adhesion layer, and the plastic film 4 which has an adhesion layer is given, this invention is not limited to these.
As the polymer material constituting the solid polymer electrolyte membrane 10, specifically, a hydrocarbon polymer electrolyte or a fluorine polymer electrolyte can be used. As the hydrocarbon polymer electrolyte membrane, electrolyte membranes such as sulfonated polyether ketone, sulfonated polyethersulfone, sulfonated polyetherethersulfone, sulfonated polysulfide, and sulfonated polyphenylene can be used. As the fluorine-based polymer electrolyte, for example, Nafion (registered trademark) manufactured by DuPont, Flemion (registered trademark) manufactured by Asahi Glass, Aciplex (registered trademark) manufactured by Asahi Kasei, Gore Select (registered trademark) manufactured by Gore, etc. can be used. Since the hydrocarbon electrolyte membrane is less permeable and swelled by the solvent than the fluorine polymer electrolyte, it is more preferable to apply the catalyst ink to the solid electrolyte membrane. The thickness of the solid polymer electrolyte membrane 10 is about 5 μm to 100 μm.

触媒層50を構成する樹脂としては、上記高分子材料と同様のものを用いることができる。
また、触媒層50を構成する触媒としては、白金、パラジウム、ルテニウム、イリジウム、ロジウム、オスミウムの白金族元素のほか、鉄、鉛、銅、クロム、コバルト、ニッケル、マンガン、バナジウム、モリブデン、ガリウム、アルミニウムなどの金属若しくは白金とこれらの合金、又はこれらの酸化物、複酸化物などを用いることができる。その中でも、白金や白金合金がより好ましい。また、触媒の粒径は、大きすぎると触媒の活性が低下し、小さすぎると触媒の安定性が低下するため、0.5nm以上20nm以下が好ましい。
As resin which comprises the catalyst layer 50, the thing similar to the said polymeric material can be used.
The catalyst constituting the catalyst layer 50 includes platinum, palladium, ruthenium, iridium, rhodium, osmium, platinum group elements, iron, lead, copper, chromium, cobalt, nickel, manganese, vanadium, molybdenum, gallium, A metal such as aluminum or platinum and an alloy thereof, or an oxide or double oxide thereof can be used. Among these, platinum and platinum alloys are more preferable. Moreover, since the activity of a catalyst will fall when the particle size of a catalyst is too large, and stability of a catalyst will fall when it is too small, 0.5 nm or more and 20 nm or less are preferable.

また、触媒層50を構成する粉末カーボンとしては、微粒子状で導電性を有し、触媒に侵さないものであれば特に限定されない。具体的には、カーボンブラックやグラファイト、黒鉛、活性炭、カーボンファイバー、カーボンナノチューブ、フラーレンなどを用いることができる。粉末カーボンの粒径は、触媒より小さい10nm以上100nm以下程度が好適に用いられる。
触媒層50は上記材料を溶媒及び水に分散させて調合した触媒インク3を固体高分子電解質膜10上に塗布・乾燥することで得ることができる。上記溶媒は上記材料を好適に分散させるため、又、水よりも低沸点の溶媒の方が固体高分子電解質膜10に浸透し膨潤してしまう前に乾燥させることができるため、水よりも低沸点のエタノール、1−プロパノール、2−プロパノールなどの低級アルコール類を用いることがより好ましい。
The powder carbon constituting the catalyst layer 50 is not particularly limited as long as it is in the form of fine particles and has conductivity and does not attack the catalyst. Specifically, carbon black, graphite, graphite, activated carbon, carbon fiber, carbon nanotube, fullerene, or the like can be used. The particle size of the powder carbon is preferably about 10 nm to 100 nm smaller than the catalyst.
The catalyst layer 50 can be obtained by applying and drying the catalyst ink 3 prepared by dispersing the above materials in a solvent and water on the solid polymer electrolyte membrane 10. In order to disperse the above-mentioned material suitably, the solvent having a lower boiling point than water can be dried before penetrating into the solid polymer electrolyte membrane 10 and swells, so that it is lower than water. It is more preferable to use lower alcohols such as ethanol having a boiling point, 1-propanol, and 2-propanol.

さらに、触媒インク3は加熱部20上で30秒以下の速さで表面が乾燥することが好ましい。30秒を越える乾燥が必要なインクでは、含有するアルコールが固体高分子電解質膜10に浸透し、電解質膜が膨潤してしまうため、好ましくない。
ガスバリア性フィルム1及びプラスチックフィルム4の基材層は、加熱部20での加熱温度以上のガラス転移温度を有していれば特に限定されないが、例えば、ポリエチレンナフタレート、ポリエチレンテレフタラート、ポリイミド、ポリパルバン酸アラミド、ポリアミド(ナイロン)、ポリサルホン、ポリエーテルサルホン、ポリエーテルサルホン、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリアクリレート等の高分子フィルムを用いることができる。また、エチレンテトラフルオロエチレン共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、テトラフルオロパーフルオロアルキルビニルエーテル共重合体、ポリテトラフルオロエチレン等の耐熱性フッ素樹脂を用いることもできる。
Furthermore, the surface of the catalyst ink 3 is preferably dried on the heating unit 20 at a speed of 30 seconds or less. Ink that needs to be dried for more than 30 seconds is not preferable because the contained alcohol penetrates into the solid polymer electrolyte membrane 10 and the electrolyte membrane swells.
The base material layer of the gas barrier film 1 and the plastic film 4 is not particularly limited as long as it has a glass transition temperature equal to or higher than the heating temperature in the heating unit 20. For example, polyethylene naphthalate, polyethylene terephthalate, polyimide, polyparban Polymer films such as acid aramid, polyamide (nylon), polysulfone, polyethersulfone, polyethersulfone, polyphenylene sulfide, polyetheretherketone, polyetherimide, and polyacrylate can be used. Moreover, heat resistant fluororesins such as ethylene tetrafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroperfluoroalkyl vinyl ether copolymer, and polytetrafluoroethylene can also be used.

ガスバリア性フィルム1の基材においては、ガスケットとして膜電極接合体になるため、ガスバリア性、耐熱性ともに考慮した場合、ポリエチレンナフタレートであることが特に好ましい。プラスチックフィルム4の基材においては、触媒インクにより侵されないこと、剥離除去してしまうことを考慮した場合、ポリエチレンテレフタラートであることが特に好ましい。
ガスバリア性フィルム1及びプラスチックフィルム4の粘着層は、アクリル系、ウレタン系、シリコーン系、ゴム系などの粘着剤であればよく、基材層及び固体高分子電解質膜10との密着性と、加熱部20における耐熱性を考慮するとアクリル系であることがより好ましい。
Since the base material of the gas barrier film 1 becomes a membrane electrode assembly as a gasket, polyethylene naphthalate is particularly preferable in consideration of both gas barrier properties and heat resistance. In consideration of the fact that the base material of the plastic film 4 is not affected by the catalyst ink and is peeled off, it is particularly preferable to use polyethylene terephthalate.
The pressure-sensitive adhesive layers of the gas barrier film 1 and the plastic film 4 may be acrylic, urethane-based, silicone-based, rubber-based, or the like, such as adhesion to the base material layer and the solid polymer electrolyte membrane 10, and heating. In view of the heat resistance in the part 20, it is more preferable that it is acrylic.

積層フィルム5と塗布前に除去する触媒層形成部2の重なりや隙間の発生を抑制するには、積層フィルム5に切り込みを入れ、積層フィルム5に触媒層形成部2を付与した後、固体高分子電解質膜10と貼合し、電解質膜基材12を得ることが好ましい。これにより、触媒インク3の塗布直前まで、固体高分子電解質膜10が直接空気に触れることがないため、吸湿による寸法変化を抑制できるだけでなく、薄膜の固体高分子電解質膜10を用いた際にも剛性を担保することができる。   In order to suppress the overlap and the generation of gaps between the laminated film 5 and the catalyst layer forming part 2 to be removed before coating, a cut is made in the laminated film 5 and the catalyst layer forming part 2 is applied to the laminated film 5, and then the It is preferable to obtain the electrolyte membrane base material 12 by pasting with the molecular electrolyte membrane 10. As a result, the solid polymer electrolyte membrane 10 does not directly contact air until immediately before the application of the catalyst ink 3, so that not only can the dimensional change due to moisture absorption be suppressed, but also when the thin solid polymer electrolyte membrane 10 is used. Can also ensure rigidity.

更に、触媒インク3を塗布した際にも固体高分子電解質膜10の表裏面に積層フィルム5,5が存在するため、触媒インク3に触れた固体高分子電解質膜部分の寸法変化を抑制することができる。また、上記方法で付与された触媒層形成部2には重なりや隙間がないため、電解質膜基材12をロール状に巻いても、固体高分子電解質膜10に巻き跡が発生することがないため、大量に同じ品質で作製するのに適したロールtoロールで作製することが可能である。   Furthermore, since the laminated films 5 and 5 exist on the front and back surfaces of the solid polymer electrolyte membrane 10 even when the catalyst ink 3 is applied, the dimensional change of the portion of the solid polymer electrolyte membrane that touches the catalyst ink 3 is suppressed. Can do. Further, since there is no overlap or gap in the catalyst layer forming part 2 applied by the above method, even if the electrolyte membrane substrate 12 is wound in a roll shape, no trace is generated in the solid polymer electrolyte membrane 10. Therefore, it is possible to manufacture in a large amount with a roll-to-roll suitable for manufacturing with the same quality.

積層フィルム5と固体高分子電解質膜10を貼合して得られる電解質膜基材12の断面において、固体高分子電解質膜10の一辺の断面が露出している。この露出部により、加熱部20における加熱乾燥、冷却時に水分の出入りが可能になり、得られる膜電極接合体18の平面性の低下を抑制することができる。
加熱部20における加熱温度は触媒インク3に含まれる溶媒の沸点程度であるため、70℃以上であることが好ましく、水を含んでいるため、加えて30秒以下で乾燥させるため、100℃以上であることがより好ましい。更に、120℃以上だと、溶媒と触媒の反応により、発火の恐れがあるため好ましくないため、120℃未満であることが好ましい。また、加熱部20は平板状またはロール状でもよく、電解質膜基材12を吸着又は張力により、平滑にすることが好ましい。
In the cross section of the electrolyte membrane substrate 12 obtained by bonding the laminated film 5 and the solid polymer electrolyte membrane 10, the cross section of one side of the solid polymer electrolyte membrane 10 is exposed. By this exposed portion, moisture can enter and exit during heating drying and cooling in the heating portion 20, and the flatness of the obtained membrane electrode assembly 18 can be suppressed.
Since the heating temperature in the heating unit 20 is about the boiling point of the solvent contained in the catalyst ink 3, it is preferably 70 ° C. or higher, and since it contains water, it is dried in 30 seconds or less. It is more preferable that Furthermore, if it is 120 ° C. or higher, it is not preferable because there is a risk of ignition due to the reaction between the solvent and the catalyst. Moreover, the heating part 20 may be flat or roll-shaped, and it is preferable to smooth the electrolyte membrane substrate 12 by adsorption or tension.

電解質膜基材12上に触媒層50を形成する塗布装置は、触媒層を均一な厚みで塗布が可能であれば良く、ダイコーター方式、ロールコーター方式等の方式を用いることができる。膜電極接合体18を得るには、固体高分子電解質膜10の表裏面に触媒層50,50を形成する必要があるが、固体高分子電解質膜10の片面ずつ順次形成でも良いが、コストダウンが可能な一度の加工で行える両面同時でも良い。
膜電極接合体製造方法は、製造効率を考慮すると全工程が連続であることが好ましいが、触媒層50の塗布工程の歩留まりを考慮すると全工程が不連続であっても良い。
The coating apparatus that forms the catalyst layer 50 on the electrolyte membrane substrate 12 may be any coating device as long as the catalyst layer can be coated with a uniform thickness, and a method such as a die coater method or a roll coater method can be used. In order to obtain the membrane electrode assembly 18, it is necessary to form the catalyst layers 50, 50 on the front and back surfaces of the solid polymer electrolyte membrane 10, but the solid polymer electrolyte membrane 10 may be sequentially formed on each side. It is possible to perform both sides at the same time.
In the method for manufacturing a membrane electrode assembly, it is preferable that all processes are continuous in consideration of manufacturing efficiency, but all processes may be discontinuous in consideration of the yield of the coating process of the catalyst layer 50.

以上説明した膜電極接合体製造方法によれば、固体高分子電解質膜10の寸法変化が抑えられるため、平面性に優れた高品質の膜電極接合体18を製造することができる。加えて、固体高分子電解質膜10の表裏面に不連続な平面を有するシートを貼合することで、シワのないロールtoロール方式で固体高分子電解質膜を使用しても不要な巻き跡の発生を抑制することができる膜電極接合体の製造方法を提供することができる。
本実施形態で得られる平面性の良好な膜電極接合体は、燃料電池における各電極に反応ガスを供給し、且つ電気化学反応により生成する水分や余剰のガスを排出するためのセパレーターを積層したときに隙間が生じることない。すなわち、本実施形態により、発電性能が低下することがない膜電極接合体を得ることができる。
According to the membrane electrode assembly manufacturing method described above, since the dimensional change of the solid polymer electrolyte membrane 10 can be suppressed, the high quality membrane electrode assembly 18 having excellent flatness can be manufactured. In addition, by sticking a sheet having a discontinuous plane on the front and back surfaces of the solid polymer electrolyte membrane 10, even if the solid polymer electrolyte membrane is used in a roll-to-roll method without wrinkles, unnecessary winding marks The manufacturing method of the membrane electrode assembly which can suppress generation | occurrence | production can be provided.
The membrane electrode assembly with good flatness obtained in the present embodiment is a laminate of separators for supplying reaction gas to each electrode in the fuel cell and discharging moisture generated by electrochemical reaction and excess gas. Sometimes there are no gaps. That is, according to this embodiment, it is possible to obtain a membrane electrode assembly in which the power generation performance does not deteriorate.

以下、本発明の実施例について具体的に説明する。しかし、本発明はこれらの実施例にのみ限定されるものではない。
(実施例1)
<膜電極接合体の製造>
ロールtoロール方式で、90mm幅のポリエチレンナフタレート(帝人デュポンフィルム製テオネックスQ51、厚み12μm)上にアクリル系の粘着層(厚み10μm)を形成し、セパレーターでラミネートして得たガスバリア性フィルムのポリエチレンナフタレート面と同じく90mm幅のポリエチレンテレフタラート上にアクリル系の粘着層を付与したプラスチックフィルム(きもと製プロセーブ25CBFS2)をポリエチレンテレフタラートの粘着層を介して貼合する。更に、ポリエチレンテレフタラート面に表面保護フィルム(サンエー化研製サニテクトPAC−3−60T)を貼合し、5cm×5cmの正方形形状の打抜き加工によりポリエチレンテレフタラートのセパレーター側からポリエチレンナフタレートまで切り込みを入れた後、触媒層形成部を有する積層フィルムを得た。更に、ロールtoロール方式で、この積層フィルムのポリエチレンテレフタラート上のセパレーターを剥離し、95mm幅の固体高分子電解質膜に炭化水素系フィルム(厚み11μm)の両面に位置合わせして貼合し、両面の表面保護フィルムを剥離することにより、固体高分子電解質膜の断面が露出した電解質膜基材のロールを得た。得られたロール形態の電解質膜基材を幅方向で切り出し、加熱部として100℃の吸着ステージ上で加熱した後、触媒層形成部を除去し、触媒インクをダイコーターにて塗布し、30秒間乾燥し、片面に触媒層を付与した。このとき、触媒インクの組成は、フッ素系高分子電解質膜分散溶液(旭化成イーマテリアルズ製SS700C/25)、白金触媒(田中貴金属製TEC10F50E−HT)、水、1−プロパノールからなり、水と溶媒の比率(質量比)は6:4とし、インク中の固形分濃度は8%とした。この電解質膜基材を100℃の吸着ステージ上で表裏逆転して、不連続な平面を有する積層フィルム5の触媒層形成部2を除去した後、同様にして触媒インクを塗布・乾燥し、両面に触媒層が付与された膜電極接合体を得た。得られた膜電極接合体の平面性の評価結果を表1に示す。
Examples of the present invention will be specifically described below. However, the present invention is not limited only to these examples.
Example 1
<Manufacture of membrane electrode assembly>
Polyethylene of gas barrier film obtained by forming an acrylic adhesive layer (thickness 10 μm) on polyethylene naphthalate 90 mm wide (Teonex Q51 made by Teijin DuPont Film, thickness 12 μm) by roll-to-roll method, and laminating with a separator Similar to the naphthalate surface, a plastic film (Kimoto Prosave 25CBFS2) provided with an acrylic adhesive layer on polyethylene terephthalate having a width of 90 mm is bonded via a polyethylene terephthalate adhesive layer. Furthermore, a surface protective film (Sanect PAC-3-60T manufactured by Sanei Kaken Co., Ltd.) is bonded to the polyethylene terephthalate surface, and a 5cm x 5cm square punching process is used to cut from the polyethylene terephthalate separator side to the polyethylene naphthalate. After that, a laminated film having a catalyst layer forming part was obtained. Furthermore, in a roll-to-roll method, the separator on the polyethylene terephthalate of this laminated film is peeled off, and bonded to both sides of a hydrocarbon film (thickness 11 μm) on a solid polymer electrolyte membrane with a width of 95 mm, The roll of the electrolyte membrane base material in which the cross section of the solid polymer electrolyte membrane was exposed was obtained by peeling off the surface protective films on both sides. The obtained roll-shaped electrolyte membrane base material was cut out in the width direction and heated on the adsorption stage at 100 ° C. as a heating part, then the catalyst layer forming part was removed, and the catalyst ink was applied with a die coater for 30 seconds. Dried and provided a catalyst layer on one side. At this time, the composition of the catalyst ink consists of a fluorine-based polymer electrolyte membrane dispersion solution (SS700C / 25 manufactured by Asahi Kasei E-Materials), a platinum catalyst (TEC10F50E-HT manufactured by Tanaka Kikinzoku), water, and 1-propanol. The ratio (mass ratio) of the ink was 6: 4, and the solid content concentration in the ink was 8%. This electrolyte membrane substrate was reversed on the adsorption stage at 100 ° C., and after removing the catalyst layer forming portion 2 of the laminated film 5 having a discontinuous plane, the catalyst ink was applied and dried in the same manner. A membrane electrode assembly to which a catalyst layer was applied was obtained. Table 1 shows the evaluation results of the flatness of the obtained membrane / electrode assembly.

(実施例2)
触媒インクの水と溶媒の比率、及び乾燥完了時間を表1に示すように変更した以外は実施例1と同様の方法で実施例2の膜電極接合体を作製した。得られた膜電極接合体の平面性の評価結果を表1に示す。
なお、表1中の乾燥完了時間とは、固体高分子電解質膜上の触媒インクの表面が十分に乾燥したことを目視にて確認し、その際にかかった時間を乾燥完了時間として示している。
(Example 2)
A membrane / electrode assembly of Example 2 was produced in the same manner as in Example 1 except that the ratio of water and solvent in the catalyst ink and the drying completion time were changed as shown in Table 1. Table 1 shows the evaluation results of the flatness of the obtained membrane / electrode assembly.
In addition, the drying completion time in Table 1 indicates that the surface of the catalyst ink on the solid polymer electrolyte membrane has been sufficiently dried by visual observation, and the time taken at that time is shown as the drying completion time. .

(実施例3)
乾燥温度及び乾燥完了時間を表1に示すように変更した以外は実施例1と同様の方法で実施例3の膜電極接合体を作製した。得られた膜電極接合体の平面性の評価結果を表1に示す。
(実施例4)
触媒インク中のアルコール種のみを変更した以外は実施例1と同様の方法で実施例4の膜電極接合体を作製した。得られた膜電極接合体の平面性の評価結果を表1に示す。
(比較例1)
固体高分子電解質膜の幅を80mmとし、固体高分子電解質膜の断面が露出していない電解質膜基材のロールを作製した以外は実施例1と同様の方法で比較例1の膜電極接合体を作製した。実施例1と同様の評価を行った結果を表1に示す。
(Example 3)
A membrane / electrode assembly of Example 3 was produced in the same manner as in Example 1 except that the drying temperature and drying completion time were changed as shown in Table 1. Table 1 shows the evaluation results of the flatness of the obtained membrane / electrode assembly.
Example 4
A membrane / electrode assembly of Example 4 was produced in the same manner as in Example 1 except that only the alcohol species in the catalyst ink was changed. Table 1 shows the evaluation results of the flatness of the obtained membrane / electrode assembly.
(Comparative Example 1)
The membrane / electrode assembly of Comparative Example 1 was prepared in the same manner as in Example 1 except that the solid polymer electrolyte membrane had a width of 80 mm and a roll of an electrolyte membrane substrate in which the cross section of the solid polymer electrolyte membrane was not exposed was produced. Was made. The results of the same evaluation as in Example 1 are shown in Table 1.

(比較例2)
触媒インクの水と溶媒の比率、乾燥完了時間を表1に示すように変更した以外は実施例1と同様の方法で比較例2の膜電極接合体を作製した。得られた膜電極接合体の平面性の評価結果を表1に示す。
(比較例3)
乾燥温度、乾燥完了時間を表1に示すように変更した以外は実施例1と同様の方法で比較例3の膜電極接合体を作製した。得られた膜電極接合体の平面性の評価結果を表1に示す。
(比較例4)
触媒インク中のアルコール種のみを変更した以外は実施例1と同様の方法で比較例4の膜電極接合体を作製した。得られた膜電極接合体の平面性の評価結果を表1に示す。
(Comparative Example 2)
A membrane / electrode assembly of Comparative Example 2 was produced in the same manner as in Example 1 except that the ratio of the catalyst ink water and solvent and the drying completion time were changed as shown in Table 1. Table 1 shows the evaluation results of the flatness of the obtained membrane / electrode assembly.
(Comparative Example 3)
A membrane / electrode assembly of Comparative Example 3 was produced in the same manner as in Example 1 except that the drying temperature and drying completion time were changed as shown in Table 1. Table 1 shows the evaluation results of the flatness of the obtained membrane / electrode assembly.
(Comparative Example 4)
A membrane / electrode assembly of Comparative Example 4 was produced in the same manner as in Example 1 except that only the alcohol type in the catalyst ink was changed. Table 1 shows the evaluation results of the flatness of the obtained membrane / electrode assembly.

Figure 2017174572
Figure 2017174572

<評価>
表1に示すように、固体高分子電解質膜と積層フィルムの貼合時に固体高分子電解質膜の断面が露出する(実施例1)ことで、平面性が低下していないことが確認された。これにより、実施例1でのみ、燃料電池の発電セルに膜電極接合体を組み込むことが容易になった。
また、実施例1、2の水と溶媒の比率では、触媒インク塗布・加熱後30秒程度で乾燥が完了しているため、固体高分子電解質膜への浸透が抑えられ、膨潤による平面性の低下も抑えられている。しかし、比較例2では、乾燥完了までに40秒となり、膜電極接合体の平面性の低下が確認された。この平面性の低下は溶媒が多くなったことによる、固体高分子電解質膜への浸透が原因である。
<Evaluation>
As shown in Table 1, it was confirmed that the planarity was not lowered by exposing the cross section of the solid polymer electrolyte membrane when the solid polymer electrolyte membrane and the laminated film were bonded (Example 1). Thereby, only in Example 1, it became easy to incorporate the membrane electrode assembly into the power generation cell of the fuel cell.
Further, in the ratio of water and solvent in Examples 1 and 2, since the drying was completed in about 30 seconds after the application and heating of the catalyst ink, the permeation into the solid polymer electrolyte membrane was suppressed, and the flatness due to swelling was reduced. The decline is also suppressed. However, in Comparative Example 2, it took 40 seconds to complete the drying, and it was confirmed that the planarity of the membrane electrode assembly was lowered. This decrease in planarity is caused by penetration into the solid polymer electrolyte membrane due to an increase in the amount of solvent.

また、実施例1、3の乾燥温度では、触媒インク塗布・加熱後30秒程度で乾燥が完了しているため、固体高分子電解質膜への浸透が抑えられ、膨潤による平面性の低下も抑えられている。しかし、比較例3では、乾燥完了までに50秒となり、得られた膜電極接合体の平面性の低下が確認された。この平面性の低下は乾燥完了までに長い時間を要したことによる、固体高分子電解質膜への浸透が原因である。
また、実施例1、4のアルコールは、水よりも優先的に揮発するため、塗布・乾燥の間に固体高分子電解質膜への浸透が抑えられ、膨潤による平面性の低下も抑えられている。しかし、比較例4に用いた1−ブタノールは水よりも揮発性が低いため、塗布・乾燥の間に固体高分子電解質膜へ浸透してしまい、得られた膜電極接合体の平面性の低下が確認された。
Further, at the drying temperatures of Examples 1 and 3, since the drying was completed in about 30 seconds after the application and heating of the catalyst ink, the penetration into the solid polymer electrolyte membrane was suppressed, and the decrease in flatness due to swelling was also suppressed. It has been. However, in Comparative Example 3, it took 50 seconds to complete the drying, and it was confirmed that the planarity of the obtained membrane electrode assembly was lowered. This decrease in flatness is caused by the penetration into the solid polymer electrolyte membrane due to the long time required for completion of drying.
In addition, since the alcohols of Examples 1 and 4 volatilize preferentially over water, penetration into the solid polymer electrolyte membrane during application and drying is suppressed, and deterioration in flatness due to swelling is also suppressed. . However, since 1-butanol used in Comparative Example 4 is less volatile than water, it penetrates into the solid polymer electrolyte membrane during coating and drying, and the planarity of the membrane electrode assembly obtained is reduced. Was confirmed.

1 ガスバリア性フィルム
2 触媒層形成部
3 触媒インク
4 プラスチックフィルム
5 積層フィルム
10 固体高分子電解質膜
12 電解質膜基材
18 膜電極接合体
20 加熱部
50 触媒層
DESCRIPTION OF SYMBOLS 1 Gas barrier film 2 Catalyst layer formation part 3 Catalyst ink 4 Plastic film 5 Laminated | multilayer film 10 Solid polymer electrolyte membrane 12 Electrolyte membrane base material 18 Membrane electrode assembly 20 Heating part 50 Catalyst layer

Claims (5)

少なくとも1辺の断面が露出するように固体高分子電解質膜の表面及び裏面にそれぞれ、積層フィルムを貼合する貼合工程と、
前記積層フィルムの触媒層形成部を除去して前記固体高分子電解質膜の表面及び裏面を露出させる触媒層形成部除去工程と、
加熱部上で加熱しながら、触媒インクを、露出した前記固体高分子電解質膜の表面及び裏面に塗布する塗布工程と、
前記触媒インクを乾燥させて触媒層を形成する乾燥工程とを含み、
前記乾燥工程における乾燥時間が30秒以下であることを特徴とする燃料電池の膜電極接合体の製造方法。
A laminating step of laminating a laminated film on each of the front and back surfaces of the solid polymer electrolyte membrane so that a cross section of at least one side is exposed;
A catalyst layer forming part removing step of removing the catalyst layer forming part of the laminated film and exposing the front and back surfaces of the solid polymer electrolyte membrane;
An application step of applying the catalyst ink to the exposed front and back surfaces of the solid polymer electrolyte membrane while heating on the heating unit;
Drying the catalyst ink to form a catalyst layer,
A method for producing a membrane electrode assembly for a fuel cell, wherein the drying time in the drying step is 30 seconds or less.
前記塗布工程における触媒インクの揮発成分が、水、及び水より揮発性が高い溶媒であり、水と溶媒との質量比が6:4〜4:6である請求項1に記載の燃料電池の膜電極接合体の製造方法。   2. The fuel cell according to claim 1, wherein a volatile component of the catalyst ink in the coating step is water and a solvent having higher volatility than water, and a mass ratio of water to the solvent is 6: 4 to 4: 6. Manufacturing method of membrane electrode assembly. 前記塗布工程における前記加熱部による加熱温度が、70℃以上120℃未満である請求項1又は2に記載の燃料電池の膜電極接合体の製造方法。   3. The method of manufacturing a membrane electrode assembly for a fuel cell according to claim 1, wherein a heating temperature by the heating unit in the coating step is 70 ° C. or higher and lower than 120 ° C. 4. 前記塗布工程及び前記乾燥工程を、固体高分子電解質膜の表面及び裏面に順次行う請求項1〜3の何れか一項に記載の燃料電池の膜電極接合体の製造方法。   The manufacturing method of the membrane electrode assembly of the fuel cell as described in any one of Claims 1-3 which performs the said application | coating process and the said drying process sequentially on the surface and back surface of a solid polymer electrolyte membrane. 前記塗布工程及び前記乾燥工程を、固体高分子電解質膜の表面及び裏面に同時に行う請求項1〜3の何れか一項に記載の燃料電池の膜電極接合体の製造方法。   The manufacturing method of the membrane electrode assembly of the fuel cell as described in any one of Claims 1-3 which performs the said application | coating process and the said drying process simultaneously on the surface and back surface of a solid polymer electrolyte membrane.
JP2016057709A 2016-03-22 2016-03-22 Method for manufacturing membrane electrode assembly of fuel cell Active JP6746994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016057709A JP6746994B2 (en) 2016-03-22 2016-03-22 Method for manufacturing membrane electrode assembly of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016057709A JP6746994B2 (en) 2016-03-22 2016-03-22 Method for manufacturing membrane electrode assembly of fuel cell

Publications (2)

Publication Number Publication Date
JP2017174572A true JP2017174572A (en) 2017-09-28
JP6746994B2 JP6746994B2 (en) 2020-08-26

Family

ID=59971346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016057709A Active JP6746994B2 (en) 2016-03-22 2016-03-22 Method for manufacturing membrane electrode assembly of fuel cell

Country Status (1)

Country Link
JP (1) JP6746994B2 (en)

Also Published As

Publication number Publication date
JP6746994B2 (en) 2020-08-26

Similar Documents

Publication Publication Date Title
JP5772813B2 (en) Manufacturing method of fuel cell membrane electrode assembly and manufacturing apparatus of fuel cell membrane electrode assembly
JP5122149B2 (en) Manufacturing method of membrane electrode assembly for polymer electrolyte fuel cell
JP6396706B2 (en) Thin layer transfer sheet, sheet transfer sheet with electrode catalyst layer, method for manufacturing thin layer transfer sheet, and method for manufacturing membrane electrode assembly
WO2012124518A1 (en) Manufacturing method and manufacturing device for membrane electrode assembly for polymer electrolyte fuel cell, and polymer electrolyte fuel cell
JP5196717B2 (en) Catalyst layer transfer sheet, method for producing catalyst layer-electrolyte membrane laminate, method for producing electrode-electrolyte membrane assembly, and method for producing fuel cell
WO2002005371A1 (en) Method for producing film electrode jointed product and method for producing solid polymer type fuel cell
JP2009193860A (en) Membrane-electrode assembly for polymer electrolyte fuel cell and method of manufacturing the same
JP2007299551A (en) Manufacturing method of membrane electrode junction for fuel cell
JP7027704B2 (en) Membrane-electrode assembly
JP6641812B2 (en) Manufacturing method of membrane electrode assembly
WO2021132138A1 (en) Method and apparatus for producing membrane electrode assembly
JP5957930B2 (en) Membrane / electrode assembly manufacturing method for polymer electrolyte fuel cell, membrane / electrode assembly manufacturing apparatus for polymer electrolyte fuel cell
JP4852894B2 (en) Method for producing electrolyte membrane-electrode assembly
JP6746994B2 (en) Method for manufacturing membrane electrode assembly of fuel cell
CN106256039A (en) Method
WO2021132137A1 (en) Manufacturing method and manufacturing device for film/catalyst assembly
JP2016076366A (en) Method of manufacturing fuel battery membrane - electrode assembly, and membrane - electrode assembly
JP6550917B2 (en) Membrane-electrode assembly manufacturing method and membrane-electrode assembly
JP2016201175A (en) Method of manufacturing catalyst layer sheet for fuel battery, catalyst layer sheet for fuel battery, membrane electrode assembly and solid polymer type fuel battery
JP2010062062A (en) Method of manufacturing membrane electrode assembly, membrane electrode assembly, and polymer electrolyte fuel cell
JP2013084427A (en) Method for manufacturing membrane-catalyst layer assembly and method for manufacturing membrane electrode assembly
JP2018022587A (en) Manufacturing method for membrane electrode assembly
JP2013004390A (en) Method of manufacturing assembly of electrolytic membrane and catalyst layer for fuel cell
KR20200119203A (en) Method for manufacturing membrane electrode assembly for fuel cell
JP2018163745A (en) Membrane electrode assembly for fuel battery, manufacturing method thereof, unit battery cell, fuel battery stack, and solid polymer fuel battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200720

R150 Certificate of patent or registration of utility model

Ref document number: 6746994

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250