JP2008034191A - Manufacturing method for membrane-electrode assembly for fuel cell, and inspection method of catalyst grain for fuel cell - Google Patents

Manufacturing method for membrane-electrode assembly for fuel cell, and inspection method of catalyst grain for fuel cell Download PDF

Info

Publication number
JP2008034191A
JP2008034191A JP2006204836A JP2006204836A JP2008034191A JP 2008034191 A JP2008034191 A JP 2008034191A JP 2006204836 A JP2006204836 A JP 2006204836A JP 2006204836 A JP2006204836 A JP 2006204836A JP 2008034191 A JP2008034191 A JP 2008034191A
Authority
JP
Japan
Prior art keywords
catalyst
catalyst particles
membrane
region
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006204836A
Other languages
Japanese (ja)
Inventor
Mitsuaki Kato
充明 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006204836A priority Critical patent/JP2008034191A/en
Publication of JP2008034191A publication Critical patent/JP2008034191A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a membrane electrode assembly for a fuel cell having a hydrophilic distribution with the use of a plurality of catalyst ink consisting of catalyst grains having different water submersion PH as defined by JIS K1474. <P>SOLUTION: In the manufacturing method of a membrane electrode assembly for the fuel cell, when at least one of catalyst layers out of an anode side and a cathode side is formed by preparing at least two kinds of catalyst grains having mutually different submersion PH and by coating on a prescribed coating face, in case the region containing catalyst grains having different submersion PH is distributed in thickness direction and/or plane direction of the catalyst layer and is distributed in thickness direction of the catalyst layer, the relevant catalyst ink is coated on every region so that the region containing catalyst grains having relatively small submersion PH may be distributed at a position near the solid polymer electrolyte membrane. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、高分子電解質膜の一面側にアノード電極および他面側にカソード電極を設けた燃料電池用膜・電極接合体の製造方法、及び、当該膜・電極接合体を製造する前に予め行なわれる触媒粒の検査方法に関する。   The present invention relates to a method for producing a membrane / electrode assembly for a fuel cell in which an anode electrode is provided on one side of a polymer electrolyte membrane and a cathode electrode on the other side, and before the membrane / electrode assembly is produced, The present invention relates to a method for inspecting catalyst particles.

燃料電池は、電気的に接続された2つの電極に燃料と酸化剤を供給し、電気化学的に燃料の酸化を起こさせることで、化学エネルギーを直接電気エネルギーに変換する。火力発電とは異なり、燃料電池はカルノーサイクルの制約を受けないので、高いエネルギー変換効率を示す。燃料電池は、通常、電解質膜を一対の電極で挟持した膜・電極接合体(MEA:Membrane Electrode Assembly)を基本構造とする単セルを複数積層して構成されている。中でも、電解質膜として固体高分子電解質膜を用いた固体高分子電解質型燃料電池は、小型化が容易であること、低い温度で作動すること、などの利点があることから、特に携帯用、移動体用電源として注目されている。   A fuel cell directly converts chemical energy into electrical energy by supplying fuel and an oxidant to two electrically connected electrodes and causing the fuel to be oxidized electrochemically. Unlike thermal power generation, fuel cells are not subject to the Carnot cycle and thus exhibit high energy conversion efficiency. A fuel cell is usually configured by laminating a plurality of single cells each having a basic structure of a membrane / electrode assembly (MEA) in which an electrolyte membrane is sandwiched between a pair of electrodes. Among them, a solid polymer electrolyte fuel cell using a solid polymer electrolyte membrane as an electrolyte membrane has advantages such as being easy to downsize and operating at a low temperature. It is attracting attention as a power source for the body.

一例として、ナフィオン(商品名、デュポン製)等のプロトン伝導に水の同伴を必要とするタイプのプロトン伝導性固体電解質膜を用いる、固体高分子電解質型燃料電池においては、アノード(燃料極)で(1)式の反応が進行する。
→ 2H + 2e ・・・(1)
(1)式で生じる電子は、外部回路を経由し、外部の負荷で仕事をした後、カソード(酸化剤極)に到達する。そして、(1)式で生じたプロトンは、水と水和した状態で、電気浸透により固体高分子電解質膜内をアノード側からカソード側に移動する。
一方、カソードでは(2)式の反応が進行する。
4H + O + 4e → 2HO ・・・(2)
As an example, in a polymer electrolyte fuel cell using a proton conductive solid electrolyte membrane of a type that requires entrainment of water for proton conduction such as Nafion (trade name, manufactured by DuPont), an anode (fuel electrode) The reaction of formula (1) proceeds.
H 2 → 2H + + 2e (1)
The electrons generated by the equation (1) reach the cathode (oxidant electrode) after working with an external load via an external circuit. Then, the proton generated in the formula (1) moves in the solid polymer electrolyte membrane from the anode side to the cathode side by electroosmosis while being hydrated with water.
On the other hand, the reaction of the formula (2) proceeds at the cathode.
4H + + O 2 + 4e → 2H 2 O (2)

一般に、各電極(アノード、カソード)には、上記式(1)、(2)の反応を促進させるために電極触媒を含有する触媒層が設けられ、電極触媒としては、例えば白金や白金合金等が用いられる。
このタイプの燃料電池においては、単セル内の水管理が重要である。プロトン伝導に同伴させるための水は、必要に応じてアノード側を加湿することによって意図的に供給される。一方、カソード電極側では電気化学的反応によって水が生成し、且つ、アノード側からプロトンとともに水が拡散してくるので、水の量が過剰となりやすい。カソード側の水は、アノード側に逆拡散して再びプロトン伝導に利用されたり、カソード側のガス流路(空気等の酸化剤ガスの流路)に排出される。
In general, each electrode (anode, cathode) is provided with a catalyst layer containing an electrode catalyst to promote the reactions of the above formulas (1) and (2). Examples of the electrode catalyst include platinum and platinum alloys. Is used.
In this type of fuel cell, water management within a single cell is important. Water for entrainment in proton conduction is intentionally supplied by humidifying the anode side as necessary. On the other hand, water is generated by an electrochemical reaction on the cathode electrode side, and water diffuses with protons from the anode side, so that the amount of water tends to be excessive. The water on the cathode side is diffused back to the anode side and used again for proton conduction, or is discharged to the gas flow path (the flow path of an oxidant gas such as air) on the cathode side.

単セル内の水バランスが失われると、両極での電気化学反応のバランスが失われ、電池性能を低下させる原因となる。すなわち、アノード電極及び電解質膜のアノード側に近い領域で水分不足になると、ドライアップ状態となってプロトン供給に支障をきたすため電池性能が低下する。一方、カソード電極で水分量が過剰になると、電極内の細孔を閉塞するフラッディングが発生するため、ガス拡散性が低下し、酸化剤ガスの供給が滞るため電池性能が低下する。   If the water balance in the single cell is lost, the balance of the electrochemical reaction at both poles is lost, causing the battery performance to deteriorate. That is, when water is insufficient in a region close to the anode side of the anode electrode and the electrolyte membrane, the battery performance is deteriorated because it is in a dry-up state and impedes proton supply. On the other hand, when the amount of water is excessive at the cathode electrode, flooding that closes the pores in the electrode occurs, so that the gas diffusibility is lowered and the supply of the oxidant gas is delayed, so that the battery performance is lowered.

固体高分子電解質型燃料電池には、上記のような膜・電極接合体の積層方向における水分分布の他、さらに、膜・電極接合体の面方向における水分分布も形成される。ガス流路入口から単セル内に供給された反応ガス(燃料ガス、酸化剤ガス)は、膜・電極接合体表面に沿って反応ガスの入り口側から出口側へと単セル内を流れる間に、膜・電極接合体から水分を奪い、ガス流路出口側に到達する頃には、高湿度状態となっている。すなわち、膜・電極接合体において、反応ガス上流側は、反応ガスによる水分奪取により乾燥しやすく、反応ガス下流側は、高湿度状態となった反応ガスによる加湿により水分が多く存在しやすい。
酸化剤ガスとして一般的に用いられている空気は、燃料ガスとして一般的な水素ガスと比較して、電極反応の反応成分の含有量が低いため、流量を大きくする必要がある。そのため、カソードの酸化剤ガス上流側では、酸化剤ガスの流勢によって単セル内の水分が持ち去られ、乾燥しやすい傾向がある。一方、カソードの酸化剤ガス下流側は、生成水等の水分及び高湿度状態の酸化剤ガスにより、水分が過剰に存在しやすい。
In the solid polymer electrolyte fuel cell, in addition to the moisture distribution in the stacking direction of the membrane-electrode assembly as described above, a moisture distribution in the surface direction of the membrane-electrode assembly is also formed. While the reaction gas (fuel gas, oxidant gas) supplied from the gas flow path inlet into the single cell flows through the single cell from the inlet side to the outlet side of the reactive gas along the surface of the membrane / electrode assembly When the moisture is removed from the membrane / electrode assembly and reaches the gas channel outlet side, the humidity is in a high humidity state. That is, in the membrane / electrode assembly, the upstream side of the reaction gas is easily dried by deprivation of moisture by the reaction gas, and the downstream side of the reaction gas is likely to have a lot of moisture due to humidification by the reaction gas in a high humidity state.
Air that is generally used as an oxidant gas has a low content of reaction components of the electrode reaction as compared with hydrogen gas that is commonly used as a fuel gas, and therefore requires a large flow rate. Therefore, on the upstream side of the oxidant gas at the cathode, the moisture in the single cell is taken away by the flow of the oxidant gas and tends to be easily dried. On the other hand, on the downstream side of the oxidant gas of the cathode, moisture tends to exist excessively due to moisture such as produced water and oxidant gas in a high humidity state.

燃料電池は、低負荷域(すなわち低電流条件)から高負荷域(すなわち高電流条件)まで広範囲にわたり、高い電池性能(高電圧)を発揮することが求められている。
また、燃料電池内には複数のセルがスタックされており、燃料電池の作動中は、スタックされている各セルへ分配される反応ガスの量を完全に均一に維持することは難しく、スタックされているセルの位置及び/又は作動時間の経過に伴って反応ガスの分配量が変動するにもかかわらず、同じスタック内の各セルには同じ電流密度で通電している。そのため、燃料電池の作動中に、セル間のストイキ比がばらつくことがある。
従って、燃料電池の作動中に各セルのストイキ比が変動した場合でも常に高い電池性能が得られるように、各セルは、低ストイキ比から高ストイキ比まで広いストイキ条件の範囲にわたり、高い電池性能(高電圧)が得られることが望ましい。
Fuel cells are required to exhibit high battery performance (high voltage) over a wide range from a low load range (ie, a low current condition) to a high load range (ie, a high current condition).
In addition, a plurality of cells are stacked in the fuel cell. During operation of the fuel cell, it is difficult to keep the amount of reaction gas distributed to each stacked cell completely uniform. Each cell in the same stack is energized at the same current density, even though the amount of reactant gas distribution varies with the position of the cell and / or the operating time. Therefore, the stoichiometric ratio between the cells may vary during the operation of the fuel cell.
Therefore, each cell has high battery performance over a wide range of stoichiometric conditions from low stoichiometric ratio to high stoichiometric ratio, so that even if the stoichiometric ratio of each cell fluctuates during operation of the fuel cell, high battery performance is always obtained. It is desirable to obtain (high voltage).

特許文献1では、固体高分子電解質膜の両面に触媒層およびガス拡散層を配した電解質膜・電極接合体を用いて構成される固体高分子型燃料電池において、前記触媒層が、固体高分子電解質膜側に配された高含水量の第1の触媒層と、ガス拡散層側に配された低含水量の第2の触媒層からなることを特徴とする固体高分子型燃料電池を開示している。特許文献1には、触媒層をこのような二層構造とすると、固体高分子電解質膜側に配された高含水量の第一の触媒層によって固体高分子電解質膜が湿潤に保持され、高いプロトン伝導性が得られる、一方、ガス拡散層側に配された低含水量の第二の触媒層によってガス拡散通路の水分による閉塞が抑制されるので、発電が適切に行われると記載されている。
しかしながら、この技術では、ガス拡散層側に配する第二の触媒層を電解質樹脂のガラス転移温度以上で処理することで低含水量に調節するので、電解質樹脂のプロトン伝導性が低下し、触媒の利用効率が低下するおそれがある。
In Patent Document 1, in a polymer electrolyte fuel cell configured using an electrolyte membrane / electrode assembly in which a catalyst layer and a gas diffusion layer are disposed on both sides of a solid polymer electrolyte membrane, the catalyst layer is a solid polymer. Disclosed is a polymer electrolyte fuel cell comprising a first catalyst layer having a high water content disposed on the electrolyte membrane side and a second catalyst layer having a low water content disposed on the gas diffusion layer side. is doing. In Patent Document 1, when the catalyst layer has such a two-layer structure, the solid polymer electrolyte membrane is held wet by the first catalyst layer having a high water content disposed on the solid polymer electrolyte membrane side, and is high. On the other hand, proton conductivity can be obtained. On the other hand, the second catalyst layer having a low water content disposed on the gas diffusion layer side prevents the gas diffusion passage from being clogged with moisture. Yes.
However, in this technique, the second catalyst layer disposed on the gas diffusion layer side is adjusted to have a low water content by being treated at a temperature equal to or higher than the glass transition temperature of the electrolyte resin. There is a risk that the use efficiency of the system will decrease.

特許文献2には、電解質膜の一面に設けられた燃料極と、他面に設けられた酸化剤極とを備えた燃料電池であって、少なくとも一方の電極の触媒層は複数の分割触媒部から構成されており、互いに隣り合う分割触媒部の間に隙間が存在している燃料電池が開示されている。この技術では、互いに隣り合う複数の分割触媒部の間に隙間を設けることで、この隙間が過度に生成した水の流路となる結果、触媒層の水分拡散性が向上し、フラッディングの抑制が可能となる。すなわち、この技術は、分割触媒部の間の隙間を利用して、触媒層のフラッディングを防止しようとするものである。   Patent Document 2 discloses a fuel cell including a fuel electrode provided on one surface of an electrolyte membrane and an oxidant electrode provided on the other surface, wherein the catalyst layer of at least one electrode includes a plurality of divided catalyst portions. A fuel cell is disclosed in which a gap exists between adjacent divided catalyst portions. In this technique, by providing a gap between a plurality of adjacent divided catalyst parts, the gap becomes a flow path of excessively generated water, so that the moisture diffusibility of the catalyst layer is improved and flooding is suppressed. It becomes possible. That is, this technique is intended to prevent flooding of the catalyst layer by utilizing the gap between the divided catalyst portions.

また、この特許文献2には、前記触媒層を、少なくとも2種類以上の親水性の異なる分割触媒部から構成し、低い加湿状態で親水性の分割触媒部の周囲が乾燥してきた場合には、水を供給して電解質膜の乾燥を防止し、高い加湿状態で撥水性の分割触媒部に水が滞留してきた場合には、撥水性の分割触媒部の細孔を確保して水素及び空気を円滑に供給することができると記載されている。しかしながら、この技術では、親水性の分割触媒部を形成する方法としては固体高分子電解質を多量に用い、撥水性の分割触媒部を形成する方法としてはテフロン(登録商標)処理したカーボンブラックを焼成して用いるので、固体高分子電解質を多量に用いる場合には、触媒層の細孔を埋めてしまって三相界面が少なくなるおそれがあり、テフロン(登録商標)処理したカーボンブラックを焼成して用いる場合には、触媒相中の電子伝導性が低下するため、発電出力が低下するおそれがある。   Further, in this Patent Document 2, when the catalyst layer is composed of at least two or more types of split catalyst portions having different hydrophilicity, and the periphery of the hydrophilic split catalyst portion is dried in a low humidified state, When water is supplied to prevent drying of the electrolyte membrane and water stays in the water-repellent split catalyst part in a highly humidified state, hydrogen and air are supplied by securing the pores of the water-repellent split catalyst part. It is described that it can be supplied smoothly. However, in this technique, a large amount of a solid polymer electrolyte is used as a method for forming a hydrophilic divided catalyst portion, and Teflon (registered trademark) -treated carbon black is calcined as a method for forming a water-repellent divided catalyst portion. Therefore, when using a large amount of the solid polymer electrolyte, the pores of the catalyst layer may be filled and the three-phase interface may be reduced, and the carbon black treated with Teflon (registered trademark) is calcined. When used, the electron conductivity in the catalyst phase is lowered, so that the power generation output may be lowered.

また、この特許文献2には、前記触媒層が、金属触媒の組成が異なった2種類以上の分割触媒部から構成されていることを特徴とする燃料電池も開示されている。しかしながら、この技術は、燃料に含有される一酸化炭素に対する対策であり、具体的には、一酸化炭素を吸着しにくいが触媒活性が低いルテニウム含有比率が大きい白金−ルテニウム合金触媒を含む分割触媒部と、ルテニウム含有比率が少ない白金−ルテニウム合金触媒を含む分割触媒部との組み合わせが記載されているだけである。   Further, Patent Document 2 also discloses a fuel cell in which the catalyst layer is composed of two or more types of divided catalyst portions having different metal catalyst compositions. However, this technique is a measure against carbon monoxide contained in the fuel, and specifically, a split catalyst including a platinum-ruthenium alloy catalyst having a high ruthenium content ratio that hardly adsorbs carbon monoxide but has low catalytic activity. Only a combination of a part and a split catalyst part containing a platinum-ruthenium alloy catalyst with a low ruthenium content ratio is described.

特許文献3には、アノード側触媒層とカソード側触媒層とが固体高分子電解質膜を介して配置された燃料電池において、カソード側触媒層は、酸素を還元する部分と、酸素を還元する部分に比較して高い撥水性を示す部分とを有し、前記高い撥水性を示す部分が面上を観察すると偏在していることを特徴とする燃料電池が開示されている。
この特許文献3には、前記高い撥水性を示す部分が固体電解質膜側からカソード側触媒層表面まで撥水性が均一であり、また、カソード側触媒層の面方向に分散しているので、カソード側触媒層は電極反応に寄与する部分と撥水性を付与し生成水の逸散を行う部分とに分かれており、高電流密度での運転時にも高出力を得ることが可能になると記載されている。しかしながら、前記高い撥水性を示す部分に触媒は存在しておらず、電気化学的反応に寄与しない部分であるため、電極の単位面積あたりの発電出力が低下するおそれがある。
In Patent Document 3, in a fuel cell in which an anode-side catalyst layer and a cathode-side catalyst layer are disposed via a solid polymer electrolyte membrane, the cathode-side catalyst layer includes a portion that reduces oxygen and a portion that reduces oxygen. And a portion exhibiting higher water repellency than the above, and the portion exhibiting high water repellency is unevenly distributed when observed on the surface.
In Patent Document 3, the portion exhibiting high water repellency is uniform in water repellency from the solid electrolyte membrane side to the cathode side catalyst layer surface, and is dispersed in the surface direction of the cathode side catalyst layer. The side catalyst layer is divided into a part that contributes to the electrode reaction and a part that imparts water repellency and dissipates the generated water, and it is described that it is possible to obtain a high output even during operation at a high current density. Yes. However, since no catalyst exists in the portion exhibiting high water repellency and does not contribute to the electrochemical reaction, the power generation output per unit area of the electrode may be reduced.

特許文献4には、アノードと、カソードと、前記アノードと前記カソードとの間に配置された高分子電解質膜と、前記カソードの前記高分子電解質膜と接する面の反対側に配置され入口と出口とを有するガス流素が前記カソードと接する面に形成されたセパレータと、を備える固体高分子型燃料電池であって、前記カソードは、白金又は白金合金を含む触媒とイオン交換樹脂とを含み前記高分子電解質膜と隣接する触媒層を有し、前記触媒層において、前記ガス流路の前記入口の近傍領域の単位面積あたりに含まれる白金の量が、前記出口の近傍領域の単位面積あたりに含まれる白金の量より多いことを特徴とする固体高分子型燃料電池が開示されている。
この特許文献4の技術は、カソード側触媒層の面内の各部位に合わせて触媒量を変えることにより、ガス流路の入口近傍領域と出口近傍領域においてほぼ均一に反応が起こって、カソード側触媒層内での電流密度をほぼ均一となるようにして、出力特性を向上させることを目的としている。
Patent Document 4 discloses an anode, a cathode, a polymer electrolyte membrane disposed between the anode and the cathode, and an inlet and an outlet disposed on the opposite side of the surface of the cathode in contact with the polymer electrolyte membrane. And a separator formed on a surface in contact with the cathode, wherein the cathode includes a catalyst containing platinum or a platinum alloy and an ion exchange resin. A catalyst layer adjacent to the polymer electrolyte membrane, wherein in the catalyst layer, the amount of platinum contained per unit area in the vicinity of the inlet of the gas flow path is per unit area in the vicinity of the outlet; A solid polymer fuel cell characterized in that it is greater than the amount of platinum contained is disclosed.
In the technique of Patent Document 4, by changing the amount of the catalyst in accordance with each part in the surface of the cathode side catalyst layer, the reaction occurs almost uniformly in the region near the inlet and the region near the outlet of the gas flow path. The object is to improve the output characteristics by making the current density in the catalyst layer substantially uniform.

特開2002−42824号公報Japanese Patent Laid-Open No. 2002-42824 特開2003−77480号公報JP 2003-77480 A 特開2004−171847号公報JP 2004-171847 A 特開2003−168443号公報JP 2003-168443 A 特開2004−47386号公報JP 2004-47386 A

本発明者らは、上記事情を鑑み、固体高分子電解質膜の一面側に触媒層を有するアノード電極を設け、他面側に触媒層を有するカソード電極を設けた燃料電池用膜・電極接合体であって、該アノード電極および該カソード電極のうち少なくとも一方の触媒層は、互いに親水性が異なる触媒粒を含有する2つ以上の領域を含んでおり、該各領域は触媒層の厚さ方向及び/又は面方向に分布し、且つ、触媒層の厚さ方向に分布がある場合は、固体高分子電解質膜に近い位置に親水性が相対的に大きな触媒粒を含有する領域が分布することを特徴とする燃料電池用膜・電極接合体を開発し、すでに特許出願した(特願2006−182178。但し、本願の出願時点において未公開である)。   In view of the above circumstances, the present inventors have provided a fuel cell membrane / electrode assembly in which an anode electrode having a catalyst layer is provided on one side of a solid polymer electrolyte membrane and a cathode electrode having a catalyst layer is provided on the other side. The catalyst layer of at least one of the anode electrode and the cathode electrode includes two or more regions containing catalyst particles having different hydrophilicity, and each region is in the thickness direction of the catalyst layer. And / or when distributed in the plane direction and in the thickness direction of the catalyst layer, a region containing catalyst particles having relatively large hydrophilicity is distributed near the solid polymer electrolyte membrane. Has been developed and has already filed a patent application (Japanese Patent Application No. 2006-182178, which has not been disclosed at the time of filing this application).

互いに親水性が異なる触媒粒を2種類以上用いて、触媒層の部位に合わせて適切な親水性を有する触媒粒を分布させることによって、(1)低負荷域〜中負荷域での電池性能を向上させ、且つ、高加湿・高負荷域での排水性とガス拡散性を改善し、低負荷域から高負荷域まで広範な運転条件に渡り、高い電池性能を発揮することが可能な燃料電池用膜・電極接合体が提供され、或いは、(2)低ストイキ比〜高ストイキ比での電池性能を向上させ、且つ、低ストイキ比の条件下で排水性とガス拡散性を改善し、低ストイキ比〜高ストイキ比まで広範な運転条件にわたり、或いは各セルの反応ガスの供給量がばらつくような運転条件の下でも、高い電池性能を常時発揮することが可能な燃料電池用膜・電極接合体が提供された。   By using two or more types of catalyst particles having different hydrophilicity and distributing catalyst particles having appropriate hydrophilicity according to the site of the catalyst layer, (1) battery performance in a low load region to a medium load region can be achieved. Fuel cell that can improve and improve drainage and gas diffusibility in high humidification and high load range, and can exhibit high cell performance over a wide range of operating conditions from low load range to high load range Membrane / electrode assembly is provided, or (2) improved battery performance at low stoichiometric ratio to high stoichiometric ratio, and improved drainage and gas diffusivity under low stoichiometric ratio Membrane / electrode bonding for fuel cells that can always demonstrate high battery performance over a wide range of operating conditions from stoichiometric ratio to high stoichiometric ratio, or even under operating conditions in which the amount of reactant gas supplied to each cell varies. The body was provided.

触媒粒の親水性は、XPS法(X線電子分光法)や水に対する接触角測定等の方法で測定できるが、装置が大掛かりであったり或いは測定の手間がかかったりして、製造コストを押し上げる一因となる。   The hydrophilicity of the catalyst particles can be measured by methods such as XPS (X-ray electron spectroscopy) and contact angle measurement with water. However, the manufacturing cost is increased due to the large size of the apparatus or the time required for measurement. It will contribute.

なお特許文献5には、カーボンブラックと該カーボンブラックに担持された白金または白金合金とからなる触媒粒を調製する際に酸処理を行うことにより、カーボンブラックと該カーボンブラックに担持された白金または白金合金とからなり、JIS K1474に記載の方法により測定されたpHが2〜7の範囲内に調節された固体高分子型燃料電池用電極触媒を開示している。
しかし、特許文献5は、触媒の担体として用いられるカーボンブラックを酸処理することにより、その表面を改質して電解質樹脂との親和性の高い触媒粒を調製し、触媒層中での電解質樹脂の凝集抑制と触媒表面への高分散状態での付着を実現するための発明である。特許文献5には、ただ1種類の触媒粒を用いて触媒層を形成することが記載されているだけであり、触媒層の部位に合わせて親水性が異なる触媒粒を分布させることにより触媒層の水分布を改善することは記載されていない。
In Patent Document 5, the catalyst particles composed of carbon black and platinum or a platinum alloy supported on the carbon black are subjected to an acid treatment, whereby carbon black and platinum or carbon supported on the carbon black are treated. An electrode catalyst for a polymer electrolyte fuel cell, which is made of a platinum alloy and has a pH measured by the method described in JIS K1474 within a range of 2 to 7 is disclosed.
However, Patent Document 5 discloses that by treating the carbon black used as a catalyst carrier with an acid, the surface thereof is modified to prepare catalyst particles having high affinity with the electrolyte resin, and the electrolyte resin in the catalyst layer It is an invention for realizing aggregation of the catalyst and adhesion to the catalyst surface in a highly dispersed state. Patent Document 5 only describes that a catalyst layer is formed by using only one type of catalyst particles, and by distributing catalyst particles having different hydrophilicity in accordance with the site of the catalyst layer, the catalyst layer There is no mention of improving the water distribution of the water.

本発明は、上記事情を鑑みてなされたものであり、その第一の目的は、燃料電池用膜・電極接合体を製造する際に、互いに親水性が異なる触媒粒を2種類以上用いて、触媒層の部位に合わせて適切な親水性を有する触媒粒を分布させることにより、燃料電池作動時の触媒層の水分布特性を改善すると共に、用いる触媒粒の親水性を簡便に測定することができる、燃料電池用膜・電極接合体の効率良い製造方法を提供することにある。
また、本発明の第二の目的は、燃料電池用膜・電極接合体を製造する前に、適切な親水性を有する触媒粒を予め準備するために適用される、触媒粒の簡便な検査方法を提供することにある。
The present invention has been made in view of the above circumstances, and its first object is to use two or more kinds of catalyst particles having different hydrophilicity when producing a membrane / electrode assembly for a fuel cell, By distributing catalyst particles having appropriate hydrophilicity according to the location of the catalyst layer, the water distribution characteristics of the catalyst layer during fuel cell operation can be improved and the hydrophilicity of the catalyst particles used can be easily measured. Another object of the present invention is to provide an efficient production method for a fuel cell membrane / electrode assembly.
The second object of the present invention is a simple inspection method of catalyst particles, which is applied to prepare catalyst particles having appropriate hydrophilicity in advance before producing a membrane / electrode assembly for a fuel cell. Is to provide.

本発明の燃料電池用膜・電極接合体の製造方法は、固体高分子電解質膜と、該固体高分子電解質膜の一方の面に設けられたアノード側触媒層と他方の面に設けられたカソード側触媒層とを備える燃料電池用膜・電極接合体の製造方法であって、触媒粒の水浸時pHを、JIS K1474に規定された測定法により確認し、互いに異なる所定範囲内の水浸時pHを有する触媒粒を、少なくとも2種類準備する触媒粒準備工程、準備した各触媒粒を用いて、それぞれ別個の触媒インクを調製する触媒インク調製工程、及び、調製した各触媒インクを、所定の塗布面に塗布してアノード側及びカソード側のうち少なくとも一方の触媒層を形成する際に、水浸時pHが異なる触媒粒を含む領域が、触媒層の厚さ方向及び/又は面方向に分布し、且つ、触媒層の厚さ方向に分布がある場合、固体高分子電解質膜に近い位置に水浸時pHが相対的に小さい触媒粒を含有する領域が分布するように、各領域ごとに該当する触媒インクを塗布する触媒インク塗布工程、を具備することを特徴とする。   The fuel cell membrane / electrode assembly production method of the present invention comprises a solid polymer electrolyte membrane, an anode-side catalyst layer provided on one surface of the solid polymer electrolyte membrane, and a cathode provided on the other surface. A method for producing a membrane-electrode assembly for a fuel cell comprising a side catalyst layer, wherein the pH at the time of water immersion of catalyst particles is confirmed by a measurement method defined in JIS K1474, and water immersion within a predetermined range different from each other A catalyst particle preparation step of preparing at least two types of catalyst particles having a pH, a catalyst ink preparation step of preparing a separate catalyst ink using each of the prepared catalyst particles, and each of the prepared catalyst inks When forming at least one catalyst layer of the anode side and the cathode side by coating on the coated surface, the region containing catalyst particles having different pH during water immersion is in the thickness direction and / or the surface direction of the catalyst layer. Distributed, and When there is a distribution in the thickness direction of the catalyst layer, the corresponding catalyst ink for each region so that the region containing catalyst particles having a relatively small pH when immersed in water is distributed near the solid polymer electrolyte membrane. And a catalyst ink coating process for coating the ink.

以上のように、触媒粒の親水性を水浸時pHにより確認する本発明の燃料電池用膜・電極接合体の製造方法によれば、簡便な方法で測定することができる。そして、親水性を確認した触媒粒を用いて、触媒層の厚さ方向及び/又は面方向に、互いに親水性の異なる触媒粒を含有する2種以上の領域を分布させることによって、触媒層の水分布特性が改善された発電性能に優れる燃料電池用膜・電極接合体を提供することが可能である。   As described above, according to the method for producing a membrane / electrode assembly for a fuel cell of the present invention in which the hydrophilicity of the catalyst particles is confirmed by the pH during water immersion, the measurement can be performed by a simple method. Then, by using catalyst particles whose hydrophilicity has been confirmed, by distributing two or more regions containing catalyst particles having different hydrophilicity in the thickness direction and / or the surface direction of the catalyst layer, It is possible to provide a fuel cell membrane / electrode assembly with improved water distribution characteristics and excellent power generation performance.

本発明の製造方法の具体的な態様の一つとして、前記触媒インク塗布工程において、水浸時pHの異なる触媒粒を含有する領域が触媒層の面方向に分布する場合、水浸時pHが相対的に小さい触媒粒を含有する領域が該触媒層に供給される反応ガスの上流側領域に分布し、且つ、水浸時pHが相対的に大きい触媒粒を含有する領域が該触媒層に供給される反応ガスの下流側領域に分布するように触媒インクを塗布する態様が挙げられる。
以上のように触媒層の各領域が分布するように触媒インクを塗布することによって、反応ガス上流側の乾燥及び反応ガス下流側でのフラッディングの発生を抑制することができる。
As one of the specific embodiments of the production method of the present invention, in the catalyst ink application step, when areas containing catalyst particles having different pHs during water immersion are distributed in the surface direction of the catalyst layer, the pH during water immersion is A region containing relatively small catalyst particles is distributed in the upstream region of the reaction gas supplied to the catalyst layer, and a region containing catalyst particles having a relatively large pH during water immersion is present in the catalyst layer. A mode in which the catalyst ink is applied so as to be distributed in the downstream region of the supplied reaction gas can be mentioned.
As described above, by applying the catalyst ink so that each region of the catalyst layer is distributed, drying on the upstream side of the reaction gas and occurrence of flooding on the downstream side of the reaction gas can be suppressed.

本発明において、水浸時pHが異なる2種以上の触媒粒の具体的な水浸時pHは特に限定されないが、ドライアップ及びフラッディングをより確実に防止する観点から、前記触媒粒準備工程において準備される触媒粒のうち、水浸時pHが最も小さい第一の触媒粒の水浸時pHが2〜5の範囲内であり、水浸時pHが最も大きい第二の触媒粒の水浸時pHが5〜7の範囲内であることが好ましい。このとき、前記第一の触媒粒と、前記第二の触媒粒の間での水浸時pHの差が0.5〜5の範囲内であることが特に好ましい。
触媒粒の水浸時pHは、例えば、前記触媒粒準備工程において、触媒粒に親水処理を行うことにより所定範囲内に調節することができる。
In the present invention, the specific pH during water immersion of two or more kinds of catalyst particles having different pHs during water immersion is not particularly limited, but is prepared in the catalyst particle preparation step from the viewpoint of more reliably preventing dry-up and flooding. Among the catalyst particles, the first catalyst particle having the smallest pH during water immersion is in the range of 2 to 5 and the second catalyst particle having the largest pH during water immersion is during water immersion. The pH is preferably in the range of 5-7. At this time, it is particularly preferable that the difference in pH during water immersion between the first catalyst particles and the second catalyst particles is in the range of 0.5 to 5.
The pH at the time of water immersion of the catalyst particles can be adjusted within a predetermined range, for example, by performing a hydrophilic treatment on the catalyst particles in the catalyst particle preparation step.

本発明の燃料電池用触媒粒の検査方法は、触媒粒の水浸時pHを、JIS K1474に規定された方法により測定し、互いに異なる所定範囲内の水浸時pHを有する少なくとも2種類の触媒粒を、それぞれ合格品と決定することを特徴とするものである。
本発明の燃料電池用触媒粒の検査方法によれば、触媒粒の親水性を簡便な方法で確認することができるため、所望の親水性を有する触媒粒かどうかを容易に判断し、適切な親水性を有する触媒粒を選び出すことが可能である。
The method for inspecting catalyst particles for a fuel cell according to the present invention is characterized in that the pH of the catalyst particles when immersed in water is measured by the method defined in JIS K1474, and at least two types of catalysts having different pH values when immersed in a predetermined range. Each grain is determined to be an acceptable product.
According to the method for inspecting catalyst particles for a fuel cell of the present invention, the hydrophilicity of the catalyst particles can be confirmed by a simple method. It is possible to select catalyst particles having hydrophilicity.

親水性の異なる触媒粒を含む2種以上の領域が分布した触媒層を作製する際には、水浸時pHが最も小さい第一の触媒粒として水浸時pHが2〜5の範囲内である触媒粒、及び、水浸時pHが最も大きい第二の触媒粒として水浸時pHが5〜7の範囲内である触媒粒を、それぞれ合格品と決定することで、フラッディング及びドライアップが効果的に防止された触媒層を形成することができる。さらに、前記第一の触媒粒と、前記第二の触媒粒の間での水浸時pHの差が0.5〜5の範囲内である時に、各触媒粒を合格品と決定することが好ましい。   When preparing a catalyst layer in which two or more regions including catalyst particles having different hydrophilicity are distributed, the first catalyst particle having the smallest pH at the time of water immersion is in the range of 2 to 5 at the time of water immersion. By determining a certain catalyst particle and a catalyst particle having a pH of 5 to 7 within the range of 5 to 7 as the second catalyst particle having the largest pH when immersed in water as flooding and dry-up, An effectively prevented catalyst layer can be formed. Further, when the difference in pH during water immersion between the first catalyst particles and the second catalyst particles is in the range of 0.5 to 5, each catalyst particle may be determined as an acceptable product. preferable.

本発明の燃料電池用膜・電極接合体の製造方法によれば、互いに親水性が異なる触媒粒を2種類以上用いて、触媒層の部位に合わせて適切な親水性を有する触媒粒を分布させることにより、燃料電池作動時の触媒層の水分布特性を改善すると共に、用いる触媒粒の親水性を簡便に測定することができる。また、本発明の検査方法によれば、燃料電池用膜・電極接合体を製造する前に、適切な親水性を有する触媒粒を、予め簡便に準備することができる。   According to the method for producing a membrane / electrode assembly for a fuel cell of the present invention, two or more types of catalyst particles having different hydrophilicity are used, and catalyst particles having appropriate hydrophilicity are distributed according to the site of the catalyst layer. Thereby, while improving the water distribution characteristic of the catalyst layer at the time of fuel cell operation | movement, the hydrophilic property of the catalyst particle to be used can be measured easily. Further, according to the inspection method of the present invention, catalyst particles having appropriate hydrophilicity can be easily prepared in advance before manufacturing a fuel cell membrane-electrode assembly.

本発明の燃料電池用膜・電極接合体の製造方法は、固体高分子電解質膜と、該固体高分子電解質膜の一方の面に設けられたアノード側触媒層と他方の面に設けられたカソード側触媒層とを備える燃料電池用膜・電極接合体の製造方法であって、触媒粒の水浸時pHを、JIS K1474に規定された測定法により確認し、互いに異なる所定範囲内の水浸時pHを有する触媒粒を、少なくとも2種類準備する触媒粒準備工程、準備した各触媒粒を用いて、それぞれ別個の触媒インクを調製する触媒インク調製工程、及び、調製した各触媒インクを、所定の塗布面に塗布してアノード側及びカソード側のうち少なくとも一方の触媒層を形成する際に、水浸時pHが異なる触媒粒を含む領域が、触媒層の厚さ方向及び/又は面方向に分布し、且つ、触媒層の厚さ方向に分布がある場合、固体高分子電解質膜に近い位置に水浸時pHが相対的に小さい触媒粒を含有する領域が分布するように、各領域ごとに該当する触媒インクを塗布する触媒インク塗布工程、を具備することを特徴とする。   The fuel cell membrane / electrode assembly production method of the present invention comprises a solid polymer electrolyte membrane, an anode-side catalyst layer provided on one surface of the solid polymer electrolyte membrane, and a cathode provided on the other surface. A method for producing a membrane-electrode assembly for a fuel cell comprising a side catalyst layer, wherein the pH at the time of water immersion of catalyst particles is confirmed by a measurement method defined in JIS K1474, and water immersion within a predetermined range different from each other A catalyst particle preparation step of preparing at least two types of catalyst particles having a pH, a catalyst ink preparation step of preparing a separate catalyst ink using each of the prepared catalyst particles, and each of the prepared catalyst inks When forming at least one catalyst layer of the anode side and the cathode side by coating on the coated surface, the region containing catalyst particles having different pH during water immersion is in the thickness direction and / or the surface direction of the catalyst layer. Distributed, and When there is a distribution in the thickness direction of the catalyst layer, the corresponding catalyst ink for each region so that the region containing catalyst particles having a relatively small pH when immersed in water is distributed near the solid polymer electrolyte membrane. And a catalyst ink coating process for coating the ink.

既述したように、本発明者らの一部は、膜・電極接合体内の水の分布状態に起因する発電性能の低下を抑制するべく、互いに親水性が異なる2種以上の触媒粒を触媒層の部位に合わせて適切に分布させ、膜・電極接合体内の水分布特性を改善することによって、高い電池性能を発揮することが可能な燃料電池用膜・電極接合体を既に提案している。触媒粒の親水性は、触媒成分そのものが元来有する親水性や該触媒成分を担持する担体粒子が元来有する親水性によって異なる他、触媒成分や担体粒子に表面処理を施すことによって調整することもできる。
触媒粒の親水性は、XPS法や水接触角法等により測定することができるが、XPS法は手間を要し、また、装置が大掛かりで高価であるといった問題点がある。
As described above, some of the present inventors catalyzed two or more types of catalyst particles having different hydrophilicity in order to suppress a decrease in power generation performance due to the distribution of water in the membrane-electrode assembly. We have already proposed a membrane / electrode assembly for a fuel cell that can achieve high battery performance by distributing it appropriately according to the layer site and improving the water distribution characteristics in the membrane / electrode assembly. . The hydrophilicity of the catalyst particles varies depending on the hydrophilicity inherent in the catalyst component itself and the hydrophilicity inherent in the carrier particles supporting the catalyst component, and is adjusted by subjecting the catalyst component and carrier particles to a surface treatment. You can also.
The hydrophilicity of the catalyst particles can be measured by the XPS method, the water contact angle method, or the like. However, the XPS method is troublesome and has a problem that the apparatus is large and expensive.

水接触角法による測定としては、以下のような方法が挙げられる。まず、測定対象である触媒粒と共に電解質樹脂を適当な溶媒中に混合したペーストを調製する。そして、該ペーストを基板上に塗布、乾燥した後、熱プレスを実施して接触角測定面を作製し、該接触角測定面における水接触角を測定する。対比すべき2種以上の触媒粒について、同一の電解質樹脂材料を用いて接触角測定面を作製し、それぞれ水接触角測定を行い、接触角の対比から親水性の大小を判断することができる。このように、水接触角法は、触媒粒ごとにペースト調製、測定面作製、水接触角測定を行うため、手間を要する。   Examples of the measurement by the water contact angle method include the following methods. First, a paste is prepared by mixing an electrolyte resin in an appropriate solvent together with catalyst particles to be measured. And after apply | coating and drying this paste on a board | substrate, a hot press is implemented, a contact angle measurement surface is produced, and the water contact angle in this contact angle measurement surface is measured. For two or more types of catalyst particles to be compared, a contact angle measurement surface can be prepared using the same electrolyte resin material, water contact angle measurement can be performed, and the hydrophilicity can be determined from the contact angle comparison. . Thus, since the water contact angle method performs paste preparation, measurement surface preparation, and water contact angle measurement for each catalyst particle, it requires labor.

これに対して、本発明の燃料電池用膜・電極接合体の製造方法では、触媒粒の親水性を、該触媒粒の水浸時pH測定により確認し、互いに異なる水浸時pHを有する触媒粒2種以上を準備する。   On the other hand, in the method for producing a membrane / electrode assembly for a fuel cell according to the present invention, the hydrophilicity of the catalyst particles is confirmed by measuring the pH of the catalyst particles when immersed in water, and catalysts having different pH values when immersed in water. Prepare two or more grains.

ここで、触媒粒の水浸時pHとは、触媒粒の水溶液(懸濁液)のpH値であり、JIS K1474に規定された測定法に準じて測定することができる。具体的には、まず、乾燥質量換算した触媒粒1.0gを水100mlに加え、静かに沸騰が続くように5分間加熱する。続いて、室温まで冷却後、水を加えて100mlとし、よく攪拌し、得られる溶液のpHを、pH計を用いて測定温度(液温)25℃で測定する。
尚、2種以上の触媒粒(水浸時pHが同じでも、異なっていてもよい)を混合した触媒インクを用いて触媒層の一部領域を形成するような場合、「触媒粒の水浸時pH」は、触媒インク中に含有されるのと同じ混合比で混合した触媒粒混合物の水浸時pHとする。
Here, the pH of the catalyst particles during water immersion is the pH value of the aqueous solution (suspension) of the catalyst particles, and can be measured according to the measurement method defined in JIS K1474. Specifically, first, 1.0 g of catalyst particles in terms of dry mass is added to 100 ml of water, and heated for 5 minutes so that boiling continues gently. Subsequently, after cooling to room temperature, water is added to make 100 ml, and the mixture is thoroughly stirred. The pH of the resulting solution is measured at a measurement temperature (liquid temperature) of 25 ° C. using a pH meter.
In the case where a partial region of the catalyst layer is formed using a catalyst ink in which two or more types of catalyst particles (the pH during water immersion may be the same or different) is used, The “time pH” is the water-immersion pH of the catalyst particle mixture mixed at the same mixing ratio as that contained in the catalyst ink.

水浸時pH8未満の範囲で水浸時pHが異なる2種以上の触媒粒間において、水浸時pHが相対的に小さい触媒粒は、触媒粒表面に比較的多量の酸性基が存在しているので親水性が高く、水浸時pHが大きい触媒粒は、触媒粒表面に存在している酸性基が比較的少量なので親水性が低い。
以上のように、触媒粒の水浸時pHの測定は非常に簡便であり、特別な装置等も必要としない。従って、本発明に係る膜・電極接合体の製造方法の触媒粒準備工程においては、多くの触媒粒の中から、所望の親水性を有する触媒粒を容易に選択、組み合わせることが可能であり、また、表面処理等により触媒粒の親水性を調整する際にも表面処理の度合い等を簡便に測定できるので親水処理をコントロールしやすいという利点がある。
Between two or more types of catalyst particles having different pHs during water immersion within a range of less than pH 8 during water immersion, catalyst particles having a relatively low pH during water immersion have a relatively large amount of acidic groups on the surface of the catalyst particles. Therefore, catalyst particles having a high hydrophilicity and a large pH during water immersion have a low hydrophilicity because a relatively small amount of acidic groups are present on the surface of the catalyst particles.
As described above, the measurement of the pH of the catalyst particles during water immersion is very simple and does not require a special device. Therefore, in the catalyst particle preparation step of the method for producing a membrane / electrode assembly according to the present invention, it is possible to easily select and combine catalyst particles having desired hydrophilicity from among many catalyst particles, In addition, there is an advantage that the hydrophilic treatment can be easily controlled since the degree of the surface treatment can be easily measured when adjusting the hydrophilicity of the catalyst particles by the surface treatment or the like.

なお、本発明において用いる「水浸時pHが相対的に小さい」、「水浸時pHが相対的に大きい」とは、触媒層に含まれる水浸時pHの異なる2以上の領域の中で相対的に比較される水浸時pHの大小について言及している。以下の実施形態において、単に「水浸時pHが大きい」、「水浸時pHが小さい」と表現される場合は、このように相対的意味での大小を意味している。
また、本発明において用いる「相対的に親水性が小さい」、「相対的に親水性が大きい」とは、触媒層に含まれる親水性の異なる2以上の領域の中で相対的に比較される親水性の大小について言及している。以下の実施形態において、単に「親水性が大きい」、「親水性が小さい」と表現される場合は、このように相対的意味での大小を意味している。
In the present invention, “the pH at the time of water immersion is relatively small” and “the pH at the time of water immersion is relatively large” are used in two or more regions having different pH values during water immersion included in the catalyst layer. It refers to the magnitude of the pH during water immersion, which is relatively compared. In the following embodiments, the expressions “high pH during water immersion” and “low pH during water immersion” mean the relative size as described above.
Further, “relatively low hydrophilicity” and “relatively high hydrophilicity” used in the present invention are relatively compared among two or more regions having different hydrophilicities contained in the catalyst layer. It refers to the size of hydrophilicity. In the following embodiments, when simply expressed as “high hydrophilicity” or “low hydrophilicity”, it means the relative size.

本発明にかかる燃料電池用膜・電極接合体の製造方法では、上記のような水浸時pH測定により、互いに異なる所定範囲の水浸時pHを有する触媒粒を少なくとも2種以上選び出し、これら水浸時pHが異なる触媒粒を含む2種以上の領域が分布した触媒層を形成する。   In the method for producing a membrane / electrode assembly for a fuel cell according to the present invention, at least two or more kinds of catalyst particles having different predetermined pH values for water immersion are selected by measuring the pH during water immersion as described above. A catalyst layer is formed in which two or more regions including catalyst particles having different pHs during immersion are distributed.

本発明において、触媒粒とは、担体粒子に触媒成分を担持させたもの又は触媒成分そのものの粒子である。触媒成分としては、電極反応[燃料極(アノード)における水素の酸化反応又は酸化剤極(カソード)における酸素の還元反応]に対して触媒作用を有するものであれば特に限定されず、例えば、白金、或いは、ルテニウム、鉄、ニッケル、マンガン、コバルト、クロム、イリジウム、モリブデン等の金属と白金との合金等が挙げられる。担体粒子としては、例えば、炭素質粒子、炭素質繊維等の炭素質材料からなるものや、金属や無機化合物等の導電性材料が用いられる。担体粒子は、通常、担持する触媒成分よりも粒径が大きい。   In the present invention, the catalyst particles are particles of a catalyst component supported on carrier particles or particles of the catalyst component itself. The catalyst component is not particularly limited as long as it has a catalytic action for an electrode reaction [hydrogen oxidation reaction at the fuel electrode (anode) or oxygen reduction reaction at the oxidizer electrode (cathode)]. Alternatively, an alloy of platinum and a metal such as ruthenium, iron, nickel, manganese, cobalt, chromium, iridium, and molybdenum can be given. As the carrier particles, for example, those made of carbonaceous materials such as carbonaceous particles and carbonaceous fibers, and conductive materials such as metals and inorganic compounds are used. The carrier particles usually have a larger particle size than the supported catalyst component.

触媒粒準備工程において準備される2種以上の触媒粒は、互いに異なる水浸時pHを有していれば、各触媒粒の水浸時pHの範囲は特に限定されない。ただし、膜・電極接合体の水分布特性を効果的に改善するためには、触媒粒準備工程において準備される触媒粒のうち、水浸時pHが最も小さい第一の触媒粒の水浸時pHが2以上5以下、特に3.5以上4.5以下であることが好ましく、水浸時pHが最も大きい第二の触媒粒の水浸時pHが5以上7以下、特に6以上7以下であることが好ましい。   As long as the two or more types of catalyst particles prepared in the catalyst particle preparation step have different water immersion pHs, the pH range of each catalyst particle during water immersion is not particularly limited. However, in order to effectively improve the water distribution characteristics of the membrane / electrode assembly, among the catalyst particles prepared in the catalyst particle preparation step, the first catalyst particle having the smallest pH during water immersion is immersed in water. The pH is preferably 2 or more and 5 or less, particularly 3.5 or more and 4.5 or less, and the pH of the second catalyst particle having the largest pH during water immersion is 5 or more and 7 or less, particularly 6 or more and 7 or less. It is preferable that

水浸時pHが最も小さい第一の触媒粒の水浸時pHが2未満であると、高負荷運転時や低ストイキ比での運転時においてフラッディングが発生するおそれがある。また、第一の触媒粒の水浸時pHが5より大きいと、低負荷運転時や高ストイキ比での運転時におけるドライアップや反応ガス上流側におけるドライアップを充分に抑制できないおそれがある。   If the pH of the first catalyst particle having the smallest pH during water immersion is less than 2, flooding may occur during high load operation or operation at a low stoichiometric ratio. Further, if the pH of the first catalyst particles when immersed in water is greater than 5, there is a possibility that dry-up during low load operation or operation at a high stoichiometric ratio and dry up on the upstream side of the reaction gas cannot be sufficiently suppressed.

一方、水浸時pHが最も大きい第二の触媒粒の水浸時pHが5未満であると、高負荷運転時や低ストイキ比での運転時におけるフラッディングや、反応ガス下流側におけるフラッディングを充分に抑制できないおそれがある。また、第二の触媒粒の水浸時pHが7より大きいと、低負荷運転時や高ストイキ比での運転時におけるドライアップを充分に抑制できないおそれがある。   On the other hand, if the pH of the second catalyst particle having the highest pH during water immersion is less than 5, flooding during high load operation or operation at a low stoichiometric ratio, or flooding downstream of the reaction gas is sufficient. May not be able to be suppressed. On the other hand, if the pH of the second catalyst particles during water immersion is greater than 7, dry-up during low load operation or operation at a high stoichiometric ratio may not be sufficiently suppressed.

以上のように第一の触媒粒が2以上5以下の水浸時pHを有し、第二の触媒粒が5以上7以下の水浸時pHを有する場合、該第一の触媒粒と該第二の触媒粒間の水浸時pHの差は、膜・電極接合体の水分布特性をより効果的に改善する観点から、0.5〜5の範囲内であることが好ましく、特に1〜3の範囲内であることが好ましい。   As described above, when the first catalyst particles have a water immersion pH of 2 to 5, and the second catalyst particles have a water immersion pH of 5 to 7, the first catalyst particles and the The difference in pH during water immersion between the second catalyst particles is preferably in the range of 0.5 to 5, particularly 1 from the viewpoint of more effectively improving the water distribution characteristics of the membrane-electrode assembly. It is preferable to be within the range of ~ 3.

触媒粒準備工程において、所望の水浸時pHを有する触媒粒を準備するため、必要に応じて触媒粒の水浸時pHの調整を行ってもよい。触媒粒の水浸時pHは、例えば、触媒粒又は触媒成分を担持する前の担体粒子又は担体粒子に担持される前の触媒成分に親水処理や撥水処理を施すことによって調節することができる。上記したように、触媒粒準備工程において準備される触媒粒のうち、水浸時pHが最も小さい第一の触媒粒の好ましい水浸時pHが2〜5であり、水浸時pHが最も大きい第二の触媒粒の好ましい水浸時pHが5〜7であるから、触媒粒の水浸時pHの調整は通常、親水処理によって行われる。   In the catalyst particle preparation step, in order to prepare catalyst particles having a desired pH during water immersion, the pH during catalyst water immersion may be adjusted as necessary. The pH at the time of water immersion of the catalyst particles can be adjusted by, for example, subjecting the catalyst particles before supporting the catalyst particles or catalyst components or the catalyst components before supporting the catalyst particles to a hydrophilic treatment or a water repellent treatment. . As described above, of the catalyst particles prepared in the catalyst particle preparation step, the preferred water pH of the first catalyst particle having the smallest pH during water immersion is 2 to 5, and the pH during water immersion is the highest. Since the preferred pH at the time of water immersion of the second catalyst particles is 5 to 7, adjustment of the pH at the time of water immersion of the catalyst particles is usually performed by hydrophilic treatment.

触媒粒の親水処理としては、例えば、触媒粒又は触媒成分を担持する前の担体粒子を、酸溶液に浸漬、必要に応じて加熱等する方法が挙げられる。このような酸処理に用いる酸溶液としては、特に限定されず、硝酸、塩酸、硫酸等の無機酸を用いることができる。酸溶液の溶媒としては、例えば、水等を用いることができる。酸溶液の濃度、浸漬時間、加熱温度等は適宜設定すればよい。また、触媒粒又は触媒成分を担持する前の担体粒子を過酸化水素水に浸漬することによっても、触媒粒の水浸時pHを小さくすることができる。
通常、触媒粒を構成する触媒成分や担体粒子は水浸時pHが7より大きく、親水基を持たないが、酸処理における酸濃度、温度、処理時間等をコントロールすることで、触媒粒の水浸時pHを容易にコントロールすることが可能である。
Examples of the hydrophilic treatment of the catalyst particles include a method in which carrier particles before supporting the catalyst particles or catalyst components are immersed in an acid solution and heated as necessary. It does not specifically limit as an acid solution used for such an acid treatment, Inorganic acids, such as nitric acid, hydrochloric acid, a sulfuric acid, can be used. As the solvent of the acid solution, for example, water or the like can be used. What is necessary is just to set the density | concentration of an acid solution, immersion time, heating temperature, etc. suitably. Moreover, the pH at the time of water immersion of a catalyst particle can also be made small by immersing the carrier particle before carrying | supporting a catalyst particle or a catalyst component in hydrogen peroxide water.
Normally, catalyst components and carrier particles constituting the catalyst particles have a pH greater than 7 when immersed in water and have no hydrophilic groups. However, by controlling the acid concentration, temperature, treatment time, etc. in the acid treatment, It is possible to easily control the pH during immersion.

触媒粒の撥水処理としては、特に限定されず、例えば、触媒粒又は触媒成分を担持する前の担体粒子を熱処理することによって親水基を除去する方法や、触媒粒又は触媒成分を担持する前の担体粒子を水素還元処理する方法等が挙げられる。このような撥水処理により、触媒粒の水浸時pHを大きくすることができる。   The water repellent treatment of the catalyst particles is not particularly limited. For example, a method of removing the hydrophilic group by heat-treating the carrier particles before supporting the catalyst particles or the catalyst component, or before supporting the catalyst particles or the catalyst component And the like, and the like. By such a water repellent treatment, the pH of the catalyst particles during water immersion can be increased.

親水処理や撥水処理を施さなくても、水浸時pHが異なる触媒粒の組み合わせとしては、例えば、白金合金(水浸時pH小さい)と純白金(水浸時pH大きい)との組み合わせが挙げられる。具体的には、Pt−Co合金(水浸時pH小さい)と純Pt(水浸時pH大きい)、Pt−Fe合金(水浸時pH小さい)と純白金(水浸時pH大きい)、Pt−Cr合金(水浸時pH小さい)と純Pt(水浸時pH大きい)の組み合わせが挙げられる。   As a combination of catalyst particles having different pH at the time of water immersion without performing hydrophilic treatment or water repellent treatment, for example, a combination of a platinum alloy (low pH at the time of water immersion) and pure platinum (high pH at the time of water immersion) may be used. Can be mentioned. Specifically, Pt—Co alloy (low pH during water immersion) and pure Pt (high pH during water immersion), Pt—Fe alloy (low pH during water immersion) and pure platinum (high pH during water immersion), Pt -A combination of a Cr alloy (low pH during water immersion) and pure Pt (high pH during water immersion).

触媒インク調製工程においては、上記触媒粒準備工程において準備した水浸時pHの異なる2種以上の触媒粒を用いて、それぞれ別個の触媒インク(すなわち、2種以上の触媒インク)を調製する。互いに水浸時pHの異なる触媒粒を含有する各触媒インクは、触媒層の異なる領域を形成するために用いられ、水浸時pHの異なる触媒粒を含む領域が触媒層の厚さ方向及び/又は面方向に分布するように所定の塗布面に塗布される。   In the catalyst ink preparation step, separate catalyst inks (that is, two or more types of catalyst inks) are prepared using two or more types of catalyst particles having different pH during water immersion prepared in the catalyst particle preparation step. Each catalyst ink containing catalyst particles having different pHs when immersed in water is used to form different regions of the catalyst layer, and regions including catalyst particles having different pHs when immersed in the catalyst layer in the thickness direction and / or Alternatively, it is applied to a predetermined application surface so as to be distributed in the surface direction.

触媒インクは、触媒粒の他、通常、プロトン伝導性樹脂を含有し、触媒粒とプロトン伝導性樹脂とを適当な溶媒中に溶解又は分散させることで得られる。
プロトン伝導性材料としては、電解質膜として用いられる材料の中から、適宜選択することができ、具体的には、ナフィオン(商品名)パーフルオロカーボンスルホン酸樹脂に代表されるフッ素系電解質樹脂やポリエーテルスルホン、ポリイミド、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリフェニレン等の炭化水素系樹脂に、スルホン酸基、ボロン酸基、ホスホン酸基、水酸基、カルボン酸基等のプロトン伝導性基を導入した炭化水素系電解質樹脂が挙げられる。また、触媒インクの溶媒としては、例えば、エタノール、メタノール、プロパノール、プロピレングリコール等のアルコール類と水との混合物、その他有機溶媒及びその他有機溶媒と水との混合物等が挙げられる。
The catalyst ink usually contains a proton conductive resin in addition to the catalyst particles, and is obtained by dissolving or dispersing the catalyst particles and the proton conductive resin in an appropriate solvent.
The proton conductive material can be appropriately selected from materials used as electrolyte membranes. Specifically, fluorine-based electrolyte resins and polyethers represented by Nafion (trade name) perfluorocarbon sulfonic acid resin can be used. Hydrocarbons in which proton conductive groups such as sulfonic acid groups, boronic acid groups, phosphonic acid groups, hydroxyl groups, and carboxylic acid groups are introduced into hydrocarbon resins such as sulfones, polyimides, polyether ketones, polyether ether ketones, and polyphenylenes. System electrolyte resin. Examples of the solvent for the catalyst ink include a mixture of alcohols such as ethanol, methanol, propanol, and propylene glycol and water, other organic solvents, and a mixture of other organic solvents and water.

触媒インクには、必要に応じて、撥水性高分子や結着剤等その他の材料を添加してもよい。また、触媒インクにおける各成分の濃度や、触媒インク調製時の混合手順、方法等は特に限定されない。   Other materials such as a water repellent polymer and a binder may be added to the catalyst ink as necessary. Further, the concentration of each component in the catalyst ink, the mixing procedure and method when preparing the catalyst ink are not particularly limited.

触媒インク調製工程において調製した触媒インクを用い、互いに水浸時pHの異なる触媒粒を含む領域が分布した触媒層が形成される。すなわち、水浸時pHの異なる触媒粒を含む領域が、触媒層の厚さ方向及び/又は面方向に分布するように、各領域ごとに該当する触媒インクを所定の塗布面(高分子電解質膜表面、ガス拡散層シート表面、転写基材表面など)に塗布する(触媒インク塗布工程)。水浸時pHの異なる触媒粒を含む領域の分布形態は特に限定されず、所望の発電特性を示す膜・電極接合体が得られるよう、適宜設計することができる。具体的な分布形態については、実施形態例をいくつか(第一〜第四実施形態)挙げて後で詳細に説明する。   Using the catalyst ink prepared in the catalyst ink preparation step, a catalyst layer is formed in which regions containing catalyst particles having different pHs during water immersion are distributed. That is, the catalyst ink corresponding to each region is applied to a predetermined application surface (polymer electrolyte membrane) so that regions containing catalyst particles having different pHs during water immersion are distributed in the thickness direction and / or the surface direction of the catalyst layer. (Catalyst ink coating step). The distribution form of the region containing catalyst particles having different pH during water immersion is not particularly limited, and can be appropriately designed so as to obtain a membrane / electrode assembly exhibiting desired power generation characteristics. Specific distribution forms will be described in detail later by giving some embodiment examples (first to fourth embodiments).

触媒インク塗布工程において、触媒インクを塗布する塗布面は、触媒層の形成方法によって異なり、例えば、電解質膜表面でもよいし、ガス拡散層となるガス拡散層シート表面でもよいし、或いは、転写基材表面であってもよい。所定の塗布面(電解質膜、ガス拡散層シート、基材の表面等)に触媒インクを塗布する方法は特に限定されず、例えば、スプレー法、スクリーン印刷法、ドクターブレード法、グラビア印刷法、ダイコート法等が挙げられる。触媒インクを所定のパターン状に塗布する方法としては、スクリーン印刷やグラビア印刷が好ましい。
触媒インクの塗布量は、触媒インクの組成や、電極触媒に用いられる触媒金属の触媒性能等によって異なるが、単位面積当りの触媒成分量が、0.1〜1.0mg/cm程度となるようにすればよい。また、触媒層の膜厚は、特に限定されないが、1〜50μm程度とすればよい。
In the catalyst ink application step, the application surface on which the catalyst ink is applied differs depending on the method of forming the catalyst layer, and may be, for example, the electrolyte membrane surface, the gas diffusion layer sheet surface that becomes the gas diffusion layer, or the transfer group. It may be the material surface. The method for applying the catalyst ink to a predetermined application surface (electrolyte film, gas diffusion layer sheet, substrate surface, etc.) is not particularly limited. For example, spray method, screen printing method, doctor blade method, gravure printing method, die coating Law. As a method for applying the catalyst ink in a predetermined pattern, screen printing or gravure printing is preferable.
The amount of catalyst ink applied varies depending on the composition of the catalyst ink and the catalyst performance of the catalyst metal used for the electrode catalyst, but the amount of catalyst component per unit area is about 0.1 to 1.0 mg / cm 2. What should I do? The thickness of the catalyst layer is not particularly limited, but may be about 1 to 50 μm.

ここで、触媒インクを塗布又は触媒層を接合する電解質膜としては、一般的な燃料電池に用いられているものを挙げることができ、例えば、ナフィオン(商品名、デュポン社製)、フレミオン(商品名、旭硝子社製)、アシプレックス(商品名、旭化成社製)、ダウ膜(ダウケミカル社製)等のパーフルオロカーボンスルホン酸樹脂に代表されるフッ素系電解質樹脂膜の他、ポリエーテルスルホン、ポリイミド、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリフェニレン等の炭化水素系樹脂に、スルホン酸基、ボロン酸基、ホスホン酸基、水酸基、カルボン酸基等のプロトン伝導性基を導入した炭化水素系電解質樹脂膜等の高分子電解質膜、ポリベンゾイミダゾール、ポリピリミジン、ポリベンゾオキサゾールなどの塩基性高分子に強酸をドープした塩基性高分子と強酸との複合電解質膜等が挙げられる。中でも好ましい電解質膜としては、パーフルオロカーボンスルホン酸樹脂膜が挙げられる。電解質膜の膜厚は特に限定されないが、通常、15〜150μm程度でよい。   Here, examples of the electrolyte membrane for applying the catalyst ink or joining the catalyst layer include those used in general fuel cells. For example, Nafion (trade name, manufactured by DuPont), Flemion (product) Name, manufactured by Asahi Glass Co., Ltd.), Aciplex (trade name, manufactured by Asahi Kasei Co., Ltd.), Dow membrane (manufactured by Dow Chemical Co., Ltd.), and other fluorine-based electrolyte resin membranes represented by perfluorocarbon sulfonic acid resins, as well as polyethersulfone and polyimide Hydrocarbon electrolyte resin in which proton conductive groups such as sulfonic acid group, boronic acid group, phosphonic acid group, hydroxyl group and carboxylic acid group are introduced into hydrocarbon resin such as polyetherketone, polyetheretherketone and polyphenylene Polymer electrolyte membranes such as membranes, basic polymers such as polybenzimidazole, polypyrimidine, polybenzoxazole Composite electrolyte membrane with basic polymer and the strong acid doped with a strong acid and the like. Among them, a preferable electrolyte membrane is a perfluorocarbon sulfonic acid resin membrane. Although the thickness of the electrolyte membrane is not particularly limited, it is usually about 15 to 150 μm.

ガス拡散層シートとしては、触媒層に効率良くガスを供給することができるガス拡散性、導電性、及びガス拡散層を構成する材料として要求される強度を有するもの、例えば、カーボンペーパー、カーボンクロス、カーボンフェルト等の炭素質多孔質体や、チタン、アルミニウム、銅、ニッケル、ニッケル−クロム合金、銅及びその合金、銀、アルミ合金、亜鉛合金、鉛合金、チタン、ニオブ、タンタル、鉄、ステンレス、金、白金等の金属から構成される金属メッシュ又は金属多孔質体等の導電性多孔質体からなるものが挙げられる。導電性多孔質体の厚さは、50〜300μm程度であることが好ましい。   The gas diffusion layer sheet has gas diffusibility, conductivity, and a strength required as a material constituting the gas diffusion layer, for example, carbon paper, carbon cloth, which can efficiently supply gas to the catalyst layer. Carbonaceous porous bodies such as carbon felt, titanium, aluminum, copper, nickel, nickel-chromium alloy, copper and its alloys, silver, aluminum alloy, zinc alloy, lead alloy, titanium, niobium, tantalum, iron, stainless steel , Metal mesh composed of a metal such as gold or platinum, or a conductive porous material such as a metal porous material. The thickness of the conductive porous body is preferably about 50 to 300 μm.

ガス拡散層を形成するガス拡散層シートは、上記したような導電性多孔質体の単層からなるものであってもよいが、触媒層に面する側に撥水層を設けることもできる。撥水層は、通常、炭素粒子や炭素繊維等の導電性粉粒体、ポリテトラフルオロエチレン(PTFE)等の撥水性樹脂等を含む多孔質構造を有するものである。撥水層は、必ずしも必要なものではないが、触媒層及び電解質膜内の水分量を適度に保持しつつ、ガス拡散層の排水性を高めることができる上に、触媒層とガス拡散層間の電気的接触を改善することができるという利点がある。   The gas diffusion layer sheet forming the gas diffusion layer may be composed of a single layer of the conductive porous body as described above, but a water repellent layer may be provided on the side facing the catalyst layer. The water-repellent layer usually has a porous structure containing conductive particles such as carbon particles and carbon fibers, water-repellent resin such as polytetrafluoroethylene (PTFE), and the like. The water-repellent layer is not necessarily required, but it can improve the drainage of the gas diffusion layer while maintaining an appropriate amount of water in the catalyst layer and the electrolyte membrane. There is an advantage that electrical contact can be improved.

撥水層を導電性多孔質体上に形成する方法は特に限定されない。例えば、炭素粒子等の導電性粉粒体と撥水性樹脂、及び必要に応じてその他の成分を、エタノール、プロパノール、プロピレングリコール等の有機溶剤、水又はこれらの混合物等の溶剤と混合した撥水層インクを、導電性多孔質体の少なくとも触媒層に面する側に塗布し、その後、乾燥及び/又は焼成すればよい。   The method for forming the water repellent layer on the conductive porous body is not particularly limited. For example, water repellent obtained by mixing conductive particles such as carbon particles, water repellent resin, and other components as necessary with an organic solvent such as ethanol, propanol, propylene glycol, water or a mixture thereof. The layer ink may be applied to at least the side facing the catalyst layer of the conductive porous body, and then dried and / or fired.

このとき撥水層インクは、導電性多孔質体の内部に含浸してもよい。また、撥水層の形状は特に限定されず、例えば、導電性多孔質層の触媒層側の面全体を覆うような形状でもよいし、格子状等の所定パターンを有する形状でもよい。撥水層の厚さは、通常、1〜50μm程度でよい。撥水層インクを導電性多孔質体に塗布する方法としては、例えば、スクリーン印刷法、スプレー法、ドクターブレード法、グラビア印刷法、ダイコート法等が挙げられる。   At this time, the water repellent layer ink may be impregnated inside the conductive porous body. Further, the shape of the water repellent layer is not particularly limited, and may be, for example, a shape that covers the entire surface of the conductive porous layer on the catalyst layer side or a shape having a predetermined pattern such as a lattice shape. The thickness of the water repellent layer may usually be about 1 to 50 μm. Examples of the method for applying the water repellent layer ink to the conductive porous body include a screen printing method, a spray method, a doctor blade method, a gravure printing method, and a die coating method.

また、導電性多孔質体は、触媒層と面する側に、ポリテトラフルオロエチレン等の撥水性樹脂をバーコーター等によって含浸塗布することによって、触媒層内の水分がガス拡散層の外へ効率良く排出されるように加工されていてもよい。   In addition, the conductive porous body is formed by impregnating and applying a water-repellent resin such as polytetrafluoroethylene to the side facing the catalyst layer with a bar coater, etc. It may be processed so as to be discharged well.

触媒インク塗布工程において、例えば、電解質膜の表面に触媒インクを塗布した場合には、触媒インクを乾燥することによって、電解質膜表面に触媒層が形成される。このように表面に触媒層が形成された電解質膜は、該触媒層をガス拡散層シートと電解質膜とで挟み込むようにして、触媒層とガス拡散層シートとを接合することによって、触媒層とガス拡散層とから構成される電極を備えた膜・電極接合体を作製することができる。   In the catalyst ink application step, for example, when the catalyst ink is applied to the surface of the electrolyte membrane, the catalyst layer is formed on the surface of the electrolyte membrane by drying the catalyst ink. The electrolyte membrane having the catalyst layer formed on the surface in this manner is obtained by joining the catalyst layer and the gas diffusion layer sheet so as to sandwich the catalyst layer between the gas diffusion layer sheet and the electrolyte membrane. A membrane / electrode assembly including an electrode composed of a gas diffusion layer can be produced.

また、ガス拡散層シートの触媒層側の面に、触媒インクを塗布した場合には、触媒インクを乾燥することによって、ガス拡散層シート表面に触媒層が形成される。このように表面に触媒層が形成されたガス拡散層シートは、該触媒層を電解質膜とガス拡散層シートで挟み込むようにして、触媒層と電解質膜を接合することによって、膜・電極接合体を作製することができる。   Further, when the catalyst ink is applied to the surface of the gas diffusion layer sheet on the catalyst layer side, the catalyst layer is formed on the surface of the gas diffusion layer sheet by drying the catalyst ink. In this way, the gas diffusion layer sheet having the catalyst layer formed on the surface is obtained by joining the catalyst layer and the electrolyte membrane so that the catalyst layer is sandwiched between the electrolyte membrane and the gas diffusion layer sheet. Can be produced.

また、触媒インクを、ポリテトラフルオロエチレン等の転写基材上に塗布した場合には、該転写基材表面の触媒インクを乾燥させた触媒層シートを電解質膜又はガス拡散層シートと接合し、基材を剥離後、触媒層が電解質膜とガス拡散層に挟まれるように、ガス拡散層シート又は電解質膜と接合することによって、膜・電極接合体を作製することができる。
上記膜・電極接合体における電解質膜、各層間の接合は、例えば、ホットプレス等によって行うことができる。
Further, when the catalyst ink is applied onto a transfer substrate such as polytetrafluoroethylene, the catalyst layer sheet obtained by drying the catalyst ink on the surface of the transfer substrate is joined to the electrolyte membrane or the gas diffusion layer sheet, After the substrate is peeled off, the membrane / electrode assembly can be produced by joining the gas diffusion layer sheet or the electrolyte membrane so that the catalyst layer is sandwiched between the electrolyte membrane and the gas diffusion layer.
Bonding between the electrolyte membrane and each layer in the membrane / electrode assembly can be performed, for example, by hot pressing.

尚、本発明にかかる燃料電池用膜・電極接合体の製造方法において、上記のような互いに水浸時pHの異なる触媒粒を含有する領域が分布した触媒層は、アノード側のみに形成されても、カソード側のみに形成されても、或いは、アノード側とカソード側の両方に形成されてもよい。一般的に、カソード側触媒層は、高加湿・高負荷域の運転条件において水分による悪影響を受けやすいため、本発明をカソード側触媒層に適用することによって電池性能を効果的に向上させることができる。アノード側触媒層でも電池の設計や運転条件によっては高加湿・高負荷域において水分過剰となるおそれがあり、本発明を適用することによって電池性能を向上させることができる。
上記のような2種以上の領域が分布していない触媒層は、一般的な方法に準じて、一種の触媒インクを用いて形成することができる。
In the method for producing a membrane / electrode assembly for a fuel cell according to the present invention, the catalyst layer in which the regions containing catalyst particles having different pHs from each other as described above are distributed is formed only on the anode side. Alternatively, it may be formed only on the cathode side, or may be formed on both the anode side and the cathode side. In general, since the cathode side catalyst layer is easily affected by moisture under operating conditions in a high humidification / high load range, application of the present invention to the cathode side catalyst layer can effectively improve battery performance. it can. Even in the anode side catalyst layer, there is a risk of excessive moisture in a high humidification / high load range depending on the design and operating conditions of the battery. By applying the present invention, the battery performance can be improved.
The catalyst layer in which two or more kinds of regions as described above are not distributed can be formed using a kind of catalyst ink according to a general method.

以下、本発明の製造方法により提供される燃料電池用膜・電極接合体を含む単セルの構成例について図を参照しながら説明する。
<第一実施形態>
図1は、単セルの一実施形態(第一実施形態。単セル101)を模式的に示す横断面図である。本実施形態では、カソード側の触媒層が、互いに水浸時pHが異なる触媒粒を含有する2つの層からなり、固体高分子電解質膜に近い側に水浸時pHが小さい、すなわち、親水性が大きい触媒粒を含有する層が配置した積層構造を有している。
Hereinafter, a configuration example of a single cell including a fuel cell membrane-electrode assembly provided by the manufacturing method of the present invention will be described with reference to the drawings.
<First embodiment>
FIG. 1 is a cross-sectional view schematically showing an embodiment of a single cell (first embodiment, single cell 101). In this embodiment, the catalyst layer on the cathode side is composed of two layers containing catalyst particles having different pHs when immersed in water, and the pH close to the solid polymer electrolyte membrane is low when immersed in water, that is, hydrophilic. Has a laminated structure in which layers containing large catalyst particles are arranged.

単セル101は、固体高分子電解質膜(以下、単に電解質膜ということがある)1の一面側にアノード5、および他面側にカソード10が設けられた膜・電極接合体11を有している。アノード5は、電解質膜1に近い側からアノード側触媒層2、アノード側ガス拡散層4がこの順序で積層して構成される。一方、カソード10は、電解質膜1に近い側から第一のカソード側触媒層6a、第二のカソード側触媒層6b、カソード側ガス拡散層9がこの順序で積層して構成される。尚、本実施形態において、各電極(燃料極、酸化剤極)は、共に、触媒層とガス拡散層とが積層した構造を有しているが、触媒層のみからなる単層構造であってもよいし、触媒層とガス拡散層の他に機能層を設けた構造でもよい。   The unit cell 101 includes a membrane / electrode assembly 11 in which an anode 5 is provided on one surface side of a solid polymer electrolyte membrane (hereinafter, simply referred to as an electrolyte membrane) 1 and a cathode 10 is provided on the other surface side. Yes. The anode 5 is configured by laminating an anode side catalyst layer 2 and an anode side gas diffusion layer 4 in this order from the side close to the electrolyte membrane 1. On the other hand, the cathode 10 is configured by laminating a first cathode side catalyst layer 6a, a second cathode side catalyst layer 6b, and a cathode side gas diffusion layer 9 in this order from the side close to the electrolyte membrane 1. In this embodiment, each electrode (fuel electrode, oxidant electrode) has a structure in which a catalyst layer and a gas diffusion layer are laminated, but has a single-layer structure composed of only the catalyst layer. Alternatively, a structure in which a functional layer is provided in addition to the catalyst layer and the gas diffusion layer may be used.

この膜・電極接合体11は、2つのセパレータ12、14で挟持され、単セル101が構成される。各セパレータ12、14の片面には、反応ガス(燃料ガス、酸化剤ガス)の流路を形成する溝が設けられており、これらの溝とアノード5、カソード10の外面とで燃料ガス流路13、酸化剤ガス流路15が画成されている。燃料ガス流路13は、アノード5に燃料ガス(水素を含む又は水素を発生させる気体)を供給するための流路であり、酸化剤ガス流路15は、カソード10に酸化剤ガス(酸素を含む又は酸素を発生させる気体)を供給するための流路である。   The membrane / electrode assembly 11 is sandwiched between two separators 12 and 14 to form a single cell 101. On one side of each separator 12, 14, a groove for forming a flow path for a reaction gas (fuel gas, oxidant gas) is provided, and a fuel gas flow path is formed between these grooves and the outer surfaces of the anode 5 and the cathode 10. 13. An oxidant gas flow path 15 is defined. The fuel gas channel 13 is a channel for supplying fuel gas (a gas containing hydrogen or generating hydrogen) to the anode 5, and the oxidant gas channel 15 is an oxidant gas (oxygen gas) to the cathode 10. A flow path for supplying a gas that contains or generates oxygen.

各セパレータには、反応ガス流路用の溝が形成された面とは反対側の面に、冷却水流路を形成する溝(図示せず)が設けられていてもよい。セパレータとしては、例えば、炭素繊維を高濃度に含有し、樹脂との複合材からなるカーボンセパレータや、金属材料を用いた金属セパレータ等を用いることができる。金属セパレータとしては、耐腐食性に優れた金属材料からなるものや、表面をカーボンや耐腐食性に優れた金属材料等で被覆し、耐腐食性を高めるコーティングが施されたもの等が挙げられる。   Each separator may be provided with a groove (not shown) for forming a cooling water channel on the surface opposite to the surface on which the groove for the reaction gas channel is formed. As the separator, for example, a carbon separator containing a high concentration of carbon fiber and made of a composite material with a resin, a metal separator using a metal material, or the like can be used. Examples of the metal separator include those made of a metal material excellent in corrosion resistance, and those coated with a coating that enhances the corrosion resistance by coating the surface with carbon or a metal material excellent in corrosion resistance. .

第一実施形態において、カソード側触媒層6は電解質膜側から順に第一の触媒層6a及び第二の触媒層6bが積層した2層構造を有し、第一の触媒層6aは水浸時pHが相対的に小さい(すなわち、親水性が相対的に大きい)触媒粒を含有し、第二の触媒層6bは水浸時pHが相対的に大きい(すなわち、親水性が相対的に小さい)触媒粒を含有する。   In the first embodiment, the cathode side catalyst layer 6 has a two-layer structure in which the first catalyst layer 6a and the second catalyst layer 6b are laminated in order from the electrolyte membrane side, and the first catalyst layer 6a is immersed in water. The catalyst particles contain relatively small pH (that is, relatively high hydrophilicity), and the second catalyst layer 6b has relatively high pH when immersed in water (that is, relatively low hydrophilicity). Contains catalyst particles.

第一のカソード側触媒層6aは、電解質膜1に隣接しているので、プロトン供給量が豊富である。触媒層中ではプロトン伝導性が電気化学的反応の律速要因となるが、プロトン供給量が豊富な位置の触媒層に親水性が大きい触媒粒を含有させることによって、第一のカソード側の触媒層6aにおいて、水を同伴するプロトンが多量に触媒粒表面に到達し、電気化学的反応が活発に行われる。そのため、本実施形態の膜・電極接合体によれば、低負荷域から中負荷域にかけての運転条件において高い電池性能が発揮される。
また、第一のカソード側触媒層6a内で生成した水は、電解質膜1から遠い側に位置する第二のカソード側触媒層6bの空隙を拡散して酸化剤ガス流路に排出されるが、第二のカソード側触媒層6bに含まれる触媒粒は第一のカソード側触媒層に含まれる触媒粒よりも親水性が小さいので、第一のカソード側触媒層から拡散してきた水は触媒粒の周囲に滞留せず、円滑に排出され、且つ、第二のカソード側触媒層6b内では、水分量が過剰な状態でも触媒粒の周囲が水によって閉塞されず、電気化学的反応が活発に行われる。従って、本実施形態の膜・電極接合体によれば、高加湿・高負荷域の運転条件においても水分による悪影響を受けずに高い電池性能が発揮される。
Since the first cathode catalyst layer 6a is adjacent to the electrolyte membrane 1, the proton supply amount is abundant. In the catalyst layer, proton conductivity becomes a rate-determining factor for the electrochemical reaction, but the catalyst layer on the first cathode side is made to contain catalyst particles having high hydrophilicity in the catalyst layer at a position where the amount of proton supply is abundant. In 6a, a large amount of protons accompanying water reach the surface of the catalyst particles, and an electrochemical reaction is actively performed. Therefore, according to the membrane / electrode assembly of the present embodiment, high battery performance is exhibited under operating conditions from the low load range to the medium load range.
In addition, the water generated in the first cathode catalyst layer 6a diffuses through the gaps in the second cathode catalyst layer 6b located on the side far from the electrolyte membrane 1 and is discharged to the oxidant gas flow path. Since the catalyst particles contained in the second cathode side catalyst layer 6b are less hydrophilic than the catalyst particles contained in the first cathode side catalyst layer, the water diffused from the first cathode side catalyst layer is catalyst particles. In the second cathode side catalyst layer 6b, the surroundings of the catalyst particles are not clogged with water even in an excessive amount of water, and the electrochemical reaction is active. Done. Therefore, according to the membrane / electrode assembly of the present embodiment, high battery performance is exhibited without being adversely affected by moisture even under high humidification / high load operating conditions.

第一実施形態においては、親水性が大きい触媒粒に担持される触媒成分の量と親水性が小さい触媒粒に担持される触媒成分の量の割合は、フラッディングを防止し、低負荷域から高負荷域の広い範囲にわたって電池性能を向上させる観点から、親水性が大きい触媒粒に担持される触媒成分の量の方が大きいことが好ましい。具体的には、親水性が大きい触媒粒に担持される触媒成分と親水性が小さい触媒粒に担持される触媒成分の単位面積あたりの担持量割合[親水性大:親水性小(重量比)]は、1:1以上であることが好ましく、3:1以上であることがさらに好ましい。   In the first embodiment, the ratio between the amount of the catalyst component supported on the catalyst particles having high hydrophilicity and the amount of the catalyst component supported on the catalyst particles having low hydrophilicity prevents flooding and increases from a low load range to a high level. From the viewpoint of improving battery performance over a wide load range, it is preferable that the amount of the catalyst component supported on the highly hydrophilic catalyst particles is larger. Specifically, the ratio of supported amount per unit area of catalyst component supported on catalyst particles having high hydrophilicity and catalyst component supported on catalyst particles having low hydrophilicity [high hydrophilicity: low hydrophilicity (weight ratio) ] Is preferably 1: 1 or more, and more preferably 3: 1 or more.

本実施形態ではカソード側触媒層が2層構造を有しているが、触媒層が3層以上の積層構造を有する場合であっても、電解質膜に近い層ほど親水性が大きな触媒粒を含有するような積層順序とすることによって、同様の効果が得られる。
また、本発明においては、互いに水浸時pHが異なる(親水性が異なる)触媒粒を含有する2つ以上の領域が明確な多層構造を形成している必要はない。例えば、カソード側触媒層が、厚さ方向に関して、電解質膜に近い位置ほど親水性が大きな触媒粒の量が徐々に多くなり、電解質膜から遠く離れるほど親水性が小さい触媒粒の量が徐々に多くなるような傾斜分布になっていていてもよい。
また、第一実施形態においては、第一のカソード側触媒層6aと第二のカソード側触媒層6bの親水性は、低負荷域から高負荷域にわたり高い電池性能を発揮させる観点から、触媒層全体として対比した場合にも第一のカソード側触媒層6aの方が大きいことが好ましい。
In this embodiment, the cathode-side catalyst layer has a two-layer structure, but even when the catalyst layer has a laminated structure of three or more layers, the layer closer to the electrolyte membrane contains catalyst particles that are more hydrophilic. By adopting such a stacking order, the same effect can be obtained.
In the present invention, it is not necessary that two or more regions containing catalyst particles having different pHs (different in hydrophilicity) when immersed in water form a clear multilayer structure. For example, as the cathode side catalyst layer is closer to the electrolyte membrane in the thickness direction, the amount of catalyst particles having higher hydrophilicity gradually increases, and as the distance from the electrolyte membrane increases, the amount of catalyst particles having lower hydrophilicity gradually increases. The gradient distribution may be increased.
In the first embodiment, the hydrophilicity of the first cathode side catalyst layer 6a and the second cathode side catalyst layer 6b is the catalyst layer from the viewpoint of exhibiting high battery performance from a low load range to a high load range. Even when compared as a whole, the first cathode-side catalyst layer 6a is preferably larger.

本実施形態におけるカソード側触媒層のように、触媒層を2層構造とする場合には、第一の触媒層のための触媒インクを基材上に塗布した後、その上に第二の触媒層のための触媒インクを重ねて塗布するか、或いは、第一の触媒層及び第二の触媒層を別々の基材上に形成し、これらを重ね合わせて熱圧着するなどの方法で接合してもよい。また、上記したような傾斜分布を触媒層の厚さ方向にもたせる一方法としては、一方の触媒インクを所定位置に塗布して形成したインク層がまだ乾燥していないうちに、もう一方の触媒インクを先に形成したインク層上に隣接して塗布する方法が挙げられる。   When the catalyst layer has a two-layer structure like the cathode side catalyst layer in the present embodiment, after applying the catalyst ink for the first catalyst layer on the substrate, the second catalyst is formed thereon. The catalyst inks for the layers are applied in layers, or the first catalyst layer and the second catalyst layer are formed on separate substrates and bonded together by a method such as stacking and thermocompression bonding. May be. In addition, as one method for providing the above-described gradient distribution in the thickness direction of the catalyst layer, the other catalyst is applied while the ink layer formed by applying one catalyst ink to a predetermined position is not yet dried. There is a method in which the ink is applied adjacent to the previously formed ink layer.

<第二実施形態>
図2は、本発明に係る製造方法により提供される燃料電池用膜・電極接合体を含む単セルの第二実施形態(単セル102)を模式的に示す横断面図である。また、図3は、第二実施形態(単セル102)のカソード側触媒層の平面図である。
第二実施形態においては、カソード側触媒層が単層構造であるが、互いに水浸時pHが異なる(親水性が異なる)触媒粒を含有する2種類の領域7a、7bが面方向に交互に分散配置(この例では市松模様状に分布)した構造を有している。その他の点は第一実施形態の単セル101と同様である。
<Second embodiment>
FIG. 2 is a cross-sectional view schematically showing a second embodiment (unit cell 102) of a unit cell including a fuel cell membrane-electrode assembly provided by the manufacturing method according to the present invention. FIG. 3 is a plan view of the cathode side catalyst layer of the second embodiment (unit cell 102).
In the second embodiment, the cathode-side catalyst layer has a single-layer structure, but two types of regions 7a and 7b containing catalyst particles having different pHs (different hydrophilicity) when immersed in water are alternately arranged in the plane direction. The structure is distributed (in this example, distributed in a checkered pattern). Other points are the same as those of the single cell 101 of the first embodiment.

第二実施形態において、カソード側触媒層の第一の領域7aは、水浸時pHが相対的に小さい(すなわち、親水性が大きい)触媒粒を含有し、第二の領域7bは、水浸時pHが相対的に大きい(すなわち、親水性が小さい)触媒粒を含有する。   In the second embodiment, the first region 7a of the cathode-side catalyst layer contains catalyst particles having a relatively low pH during water immersion (that is, high hydrophilicity), and the second region 7b is immersed in water. It contains catalyst particles having a relatively high pH (ie, low hydrophilicity).

親水性が大きい触媒粒を含有するカソード側触媒層の第一の領域7aでは、水を同伴するプロトンが多量に触媒粒表面に到達し、電気化学的反応が活発に行われるので、本実施形態の膜・電極接合体によれば、低負荷域から中負荷域にかけての運転条件において高い電池性能が発揮される。
また、カソード側触媒層の第二の領域7bに含まれる触媒粒は第一の領域に含まれる触媒粒よりも親水性が小さいので、第一の領域で生成した水の排水路として機能し、且つ、第二の領域内では水分量が過剰な状態でも触媒粒の周囲が水によって閉塞されず、電気化学的反応が活発に行われる。従って、本実施形態の膜・電極接合体によれば、高加湿・高負荷域の運転条件においても水分による悪影響を受けずに高い電池性能が発揮される。
In the first region 7a of the cathode side catalyst layer containing catalyst particles having high hydrophilicity, a large amount of protons accompanying water reaches the surface of the catalyst particles, and an electrochemical reaction is actively performed. According to this membrane / electrode assembly, high battery performance is exhibited under operating conditions from a low load region to a medium load region.
Moreover, since the catalyst particles contained in the second region 7b of the cathode side catalyst layer are less hydrophilic than the catalyst particles contained in the first region, it functions as a drainage channel for water generated in the first region, In the second region, even if the amount of water is excessive, the periphery of the catalyst particles is not blocked by water, and the electrochemical reaction is actively performed. Therefore, according to the membrane / electrode assembly of the present embodiment, high battery performance is exhibited without being adversely affected by moisture even under high humidification / high load operating conditions.

第二実施形態において、親水性が大きい触媒粒を含有する第一の領域7aと親水性が小さい触媒粒を含有する第二の領域7bの面積割合は、フラッディングを防止し、低負荷域から高負荷域の広い範囲にわたって電池性能を向上させる観点から、第一の領域7aの方が大きいことが好ましい。具体的には、第一の領域7aと第二の領域7bの面積割合(第一の領域:第二の領域)が1:1以上であることが好ましく、3:1以上であることが更に好ましい。図3は、面積割合(第一の領域:第二の領域)が1:1の市松模様であり、図4は、面積割合(第一の領域:第二の領域)が3:1の市松模様である。   In the second embodiment, the area ratio between the first region 7a containing catalyst particles having high hydrophilicity and the second region 7b containing catalyst particles having low hydrophilicity prevents flooding and increases from a low load region to a high region. From the viewpoint of improving battery performance over a wide load range, the first region 7a is preferably larger. Specifically, the area ratio (first region: second region) of the first region 7a and the second region 7b is preferably 1: 1 or more, and more preferably 3: 1 or more. preferable. FIG. 3 shows a checkered pattern with an area ratio (first region: second region) of 1: 1, and FIG. 4 shows a checkered pattern with an area ratio (first region: second region) of 3: 1. It is a pattern.

本実施形態では2種類の領域が面方向に市松模様状に分布しているが、第一及び第二の各領域は図5に示すような縦ストライプや横ストライプ等、2種類の領域が交互に隣り合うように分散配置される態様であれば、様々なパターンで組み合わせることができる。またカソード側触媒層は、互いに親水性が異なる触媒粒を含有する3種類以上の領域が面方向に分布していても、同様の効果が得られる。いずれの場合も、親水性が異なる触媒粒を含有する複数の領域が存在し、それらが面方向において交互に隣り合うように配列されることによって、良好な排水性が得られる。   In this embodiment, two types of regions are distributed in a checkered pattern in the plane direction, but the first and second regions are alternately two types of regions such as vertical stripes and horizontal stripes as shown in FIG. As long as they are arranged in a distributed manner so as to be adjacent to each other, they can be combined in various patterns. In addition, the cathode-side catalyst layer can obtain the same effect even when three or more types of regions containing catalyst particles having different hydrophilicity are distributed in the plane direction. In any case, there are a plurality of regions containing catalyst particles having different hydrophilicity, and good drainage can be obtained by arranging them so as to be alternately adjacent in the surface direction.

また、触媒層の厚さ方向に分布する領域を有する第一の実施形態同様、触媒層の面方向に分布する領域を有する本実施形態においても、互いに親水性が異なる触媒粒を含有する2つ以上の領域が明確な境界で区分されている必要はない。例えば、面方向に分布する上記第一の領域7aと第二の領域7bの隣接部位において、親水性が大きな触媒粒が徐々に少なくなり且つ親水性が小さな触媒粒が徐々に多くなるような傾斜分布になっていてもよい。
また、第二実施形態において、第一の領域7aと第二の領域7bの親水性は、低負荷域から高負荷域にわたり高い電池性能を発揮させる観点から、各領域全体として対比した場合にも第一の領域7aの方が大きいことが好ましい。
Similarly to the first embodiment having the region distributed in the thickness direction of the catalyst layer, this embodiment having the region distributed in the surface direction of the catalyst layer also contains two catalyst particles having different hydrophilicity from each other. These areas do not have to be separated by clear boundaries. For example, in an adjacent portion of the first region 7a and the second region 7b distributed in the plane direction, the inclination is such that the catalyst particles having a large hydrophilicity gradually decrease and the catalyst particles having a small hydrophilicity gradually increase. It may be distributed.
Further, in the second embodiment, the hydrophilicity of the first region 7a and the second region 7b is also the case where the entire region is compared from the viewpoint of exhibiting high battery performance from the low load region to the high load region. The first region 7a is preferably larger.

第二実施形態のように2種類の領域が面方向に分布する触媒層は、第一の領域のための触媒層インクと第二の領域のための触媒層インクを、基材上に所定のパターン状に塗布することによって形成できる。また、上記したような傾斜分布を触媒層の面方向にもたせる一方法としては、一方の触媒インクを所定位置に塗布して形成したインク層がまだ乾燥していないうちに、もう一方の触媒インクを先に形成したインク層の横に隣接して塗布する方法が挙げられる。   As in the second embodiment, the catalyst layer in which two types of regions are distributed in the plane direction includes a catalyst layer ink for the first region and a catalyst layer ink for the second region on a substrate. It can be formed by applying in a pattern. In addition, as one method for providing the above-described inclination distribution also in the surface direction of the catalyst layer, the other catalyst ink is applied while the ink layer formed by applying one catalyst ink to a predetermined position is not yet dried. May be applied adjacent to the side of the previously formed ink layer.

上記第一実施形態には2種類以上の領域が触媒層の厚さ方向に分布する例を示し、上記第二実施形態には2種類以上の領域が触媒層の面方向に分布する例を示したが、本発明においては、触媒層内に2種類以上の領域を厚さ方向と面方向の両方に分布させてもよい。   The first embodiment shows an example in which two or more regions are distributed in the thickness direction of the catalyst layer, and the second embodiment shows an example in which two or more regions are distributed in the surface direction of the catalyst layer. However, in the present invention, two or more types of regions may be distributed in both the thickness direction and the surface direction in the catalyst layer.

以下、本発明に係る製造方法により提供される膜・電極接合体を含む単セルの他の構成例として、第三実施形態及び第四実施形態を例示する。第三実施形態及び第四実施形態の膜・電極接合体では、触媒層の前記各領域が触媒層の面方向に分布する場合において、水浸時pHが小さい(親水性が大きい)触媒粒を含有する領域は、水分の滞留が比較的少ない領域であり、水浸時pHが大きい(親水性が小さい)触媒粒を含有する領域は、水分の滞留が比較的多い領域であることを特徴とする。   Hereinafter, the third embodiment and the fourth embodiment will be exemplified as other configuration examples of the unit cell including the membrane-electrode assembly provided by the manufacturing method according to the present invention. In the membrane / electrode assembly of the third embodiment and the fourth embodiment, when each region of the catalyst layer is distributed in the surface direction of the catalyst layer, catalyst particles having a low pH (high hydrophilicity) at the time of water immersion are used. The containing region is a region with relatively little moisture retention, and the region containing catalyst particles having a large pH during water immersion (low hydrophilicity) is a region with relatively much moisture retention. To do.

<第三実施形態>
図6は、第三実施形態(単セル103)を模式的に示す横断面図である。また、図7は、第三実施形態(単セル103)のカソード側触媒層の平面図である。カソード側において、酸化剤ガスは、酸化剤ガス入口3から単セル内の酸化剤ガス流路15に入り、酸化剤ガス出口8から単セル外へと排出される。一方、アノード側において、燃料ガスは、燃料ガス入口17から単セル内の燃料ガス流路13に入り、燃料ガス出口16から単セル外へと排出される。
第三実施形態においては、カソード側触媒層の水分の滞留が比較的少ない反応ガス上流側(特にカソード側ガス流路の上流側)の領域に存在する第一の領域7aと、カソード側触媒層の水分の滞留が比較的多い反応ガス下流側(特にカソード側ガス流路の下流側)の領域に存在する第二の領域が面方向に分布した構造を有している。その他の点は第一実施形態の単セル101ならびに第二実施形態2の単セル102と同様である。
<Third embodiment>
FIG. 6 is a cross-sectional view schematically showing the third embodiment (unit cell 103). FIG. 7 is a plan view of the cathode side catalyst layer of the third embodiment (single cell 103). On the cathode side, the oxidant gas enters the oxidant gas flow path 15 in the single cell from the oxidant gas inlet 3 and is discharged out of the single cell from the oxidant gas outlet 8. On the other hand, on the anode side, the fuel gas enters the fuel gas flow path 13 in the single cell from the fuel gas inlet 17 and is discharged out of the single cell from the fuel gas outlet 16.
In the third embodiment, the cathode-side catalyst layer has a first region 7a existing in the region on the upstream side of the reaction gas (particularly the upstream side of the cathode-side gas flow channel) where the moisture retention in the cathode-side catalyst layer is relatively small, and the cathode-side catalyst layer The second region present in the region on the downstream side of the reactive gas (especially the downstream side of the cathode-side gas flow channel) where the moisture stays relatively is distributed in the surface direction. The other points are the same as the single cell 101 of the first embodiment and the single cell 102 of the second embodiment 2.

第三実施形態において、カソード側触媒層の第一の領域7aは、水浸時pHが相対的に小さい(すなわち、親水性が大きい)触媒粒を含有し、第二の領域7bは、水浸時pHが相対的に大きい(すなわち、親水性が小さい)触媒粒を含有する。   In the third embodiment, the first region 7a of the cathode-side catalyst layer contains catalyst particles having a relatively low pH during water immersion (that is, high hydrophilicity), and the second region 7b is immersed in water. It contains catalyst particles having a relatively high pH (ie, low hydrophilicity).

カソード側触媒層の第一の領域7aは、反応ガス上流側に位置するので乾燥しやすい環境であるが、この第一の領域7aに親水性が相対的に大きな触媒粒を含有させることによって、電解質膜の乾燥を抑制し、且つ、水を同伴してアノード側から移動してきたプロトンが触媒粒表面に到達し易くなる。そのため、この第一の領域7aでは電気化学的反応が活発に行われるので、本実施形態の膜・電極接合体によれば高ストイキ比の運転条件において高い電池性能が発揮される。   Since the first region 7a of the cathode side catalyst layer is located on the upstream side of the reaction gas and is an environment that is easy to dry, by adding catalyst particles having relatively large hydrophilicity to the first region 7a, Drying of the electrolyte membrane is suppressed, and protons that have moved from the anode side accompanying water easily reach the surface of the catalyst particles. For this reason, an electrochemical reaction is actively performed in the first region 7a. Therefore, according to the membrane / electrode assembly of the present embodiment, high battery performance is exhibited under operating conditions with a high stoichiometric ratio.

また、カソード側触媒層の第二の領域7bは、反応ガス下流側に位置するので湿潤過剰となりやすいが、この第二の領域7bに親水性が相対的に小さな触媒粒を含有させることによって、カソード側触媒層の反応ガス下流域で滞留した水が触媒層から反応ガス流路へ排出されやすくなり、且つ、第二の領域内では水分量が過剰な状態でも触媒粒が水によって閉塞されず、電気化学的反応が活発に行われる。従って、本実施形態の膜・電極接合体によれば、低ストイキ比の運転条件においても水分による悪影響を受けずに高い電池性能が発揮される。   Further, since the second region 7b of the cathode side catalyst layer is located on the downstream side of the reaction gas, it tends to be excessively wet. By adding catalyst particles having relatively small hydrophilicity to the second region 7b, Water staying in the reaction gas downstream area of the cathode side catalyst layer is easily discharged from the catalyst layer to the reaction gas flow path, and the catalyst particles are not blocked by water even in an excessive amount of water in the second area. Electrochemical reaction is actively performed. Therefore, according to the membrane / electrode assembly of the present embodiment, high battery performance is exhibited without being adversely affected by moisture even under low stoichiometric operating conditions.

第三実施形態において、前記相対的に親水性が小さな触媒粒を含有する領域に対する前記相対的に親水性が大きな触媒粒を含有する領域の面積比は1以下とすることが、フラッディングを防止し、低ストイキ比から高ストイキ比の運転条件までの広範囲にわたって電池性能を向上させる観点から好ましく、とりわけウェット性能に優れる点、すなわちカソードストイキ比を小さくできる点から好ましい。
また、第三実施形態において、相対的に親水性が大きな触媒粒を含有させる領域は、反応ガス流路の流路長の上流側1/4以上且つ1/2以内の領域とすることが更に好ましい。
In the third embodiment, the area ratio of the region containing catalyst particles having relatively high hydrophilicity to the region containing catalyst particles having relatively low hydrophilicity may be 1 or less to prevent flooding. From the viewpoint of improving battery performance over a wide range from low stoichiometric ratio to high stoichiometric operating conditions, it is particularly preferable from the viewpoint that wet performance is excellent, that is, the cathode stoichiometric ratio can be reduced.
In the third embodiment, the region containing catalyst particles having relatively high hydrophilicity may be a region that is not less than ¼ and not more than ½ of the upstream side of the reaction gas channel length. preferable.

ここで、「水分の滞留が比較的少ない領域」又は「水分の滞留が比較的多い領域」の一節中の「比較的」とは、「ある領域が、平面的に又は立体的に周囲に存在する領域との関係で相対的に」という意味である。
また、「水分の滞留が比較的少ない領域」とは、燃料電池内での作動環境の局部的なばらつきによって、周囲の領域に比べて水分が滞留しづらいか又は、水分が周囲の領域へ排出されやすいことから、周囲よりも乾燥速度が速く、従って、燃料電池を作動させた時に水分の含有量が少なくなる領域を意味する。一方、「水分の滞留が比較的多い領域」とは、燃料電池内での作動環境の局部的なばらつきによって、周囲の領域に比べて水分が滞留しやすいか又は、水分が周囲の領域へ排出されにくいことから、周囲よりも乾燥速度が遅く、従って、燃料電池を作動させた時に水分の含有量が多くなる領域を意味する。
Here, “relatively” in a section of “region where water retention is relatively small” or “region where water retention is relatively high” means “a certain region exists in a plane or three-dimensionally surroundings” It means "relatively in relation to the area to do".
In addition, the “region with relatively little moisture retention” means that it is difficult for moisture to stay in the surrounding area due to local variations in the operating environment within the fuel cell, or moisture is discharged to the surrounding region. Since it is easy to be done, it means a region where the drying rate is faster than the surroundings, and therefore the water content decreases when the fuel cell is operated. On the other hand, the “region where water stays relatively much” means that water tends to stay in the surrounding area due to local variations in the operating environment within the fuel cell, or moisture is discharged to the surrounding region. This means that the drying rate is slower than that of the surroundings, and thus the moisture content increases when the fuel cell is operated.

本実施形態では、カソード側触媒層が2種類の領域を具備しているが、反応ガス流路の上流側に近い領域ほど、相対的に親水性が大きな触媒粒を含有し、反応ガス流路の下流側に近い領域ほど、相対的に親水性が小さな触媒粒を含有するような順序をとるならば、互いに親水性が異なる触媒粒を含有する3種類以上の領域が反応ガスの流れに沿って面方向に分布していても、同様の効果が得られる。また、本実施形態では、第一の領域7aと第二の領域7bが同一直線上に分布しているが、例えば、図8に示すように、反応ガス流路の形態に合わせたサーペンタイン型であってもよい。   In the present embodiment, the cathode side catalyst layer has two types of regions, but the region closer to the upstream side of the reaction gas channel contains catalyst particles having relatively higher hydrophilicity, and the reaction gas channel If the order is such that the closer to the downstream side of the catalyst, the catalyst particles having relatively small hydrophilicity are contained, three or more types of regions containing catalyst particles having different hydrophilicity follow the flow of the reaction gas. Even if distributed in the plane direction, the same effect can be obtained. In the present embodiment, the first region 7a and the second region 7b are distributed on the same straight line. For example, as shown in FIG. 8, a serpentine type that matches the form of the reaction gas channel is used. There may be.

<第四実施形態>
図9は第四実施形態(単セル104)を模式的に示す横断面図である。第四実施形態においては、カソード側触媒層の水分の滞留が比較的少ない、比較的押圧力を受けない領域に存在する第一の領域7aと、水分の滞留が比較的多い、比較的押圧力を受ける領域に存在する第二の領域7bが面方向に分布した構造を有している。その他の点は第一実施形態の単セル101や第二実施形態2の単セル102、第三実施形態の単セル103と同様である。
<Fourth embodiment>
FIG. 9 is a cross-sectional view schematically showing the fourth embodiment (unit cell 104). In the fourth embodiment, the cathode-side catalyst layer has a relatively small moisture retention, a first region 7a that exists in a region not subjected to a relatively pressing force, and a relatively large moisture retention. The second region 7b existing in the region receiving the light has a structure distributed in the plane direction. Other points are the same as the single cell 101 of the first embodiment, the single cell 102 of the second embodiment 2, and the single cell 103 of the third embodiment.

上記比較的押圧力を受けない領域としては、具体的には、反応ガス流路と接する領域が挙げられる。また、比較的押圧力を受ける領域としてはセパレータと接する領域が挙げられる(図9参照)。   Specific examples of the region that is not subjected to the relatively pressing force include a region in contact with the reaction gas flow path. Moreover, the area | region which contact | connects a separator is mentioned as an area | region which receives comparatively pressing force (refer FIG. 9).

第四実施形態において、カソード側触媒層の第一の領域7aは、水浸時pHが相対的に小さい(すなわち、親水性が大きい)触媒粒を含有し、第二の領域7bは、水浸時pHが相対的に大きい(すなわち、親水性が小さい)触媒粒を含有する。   In the fourth embodiment, the first region 7a of the cathode-side catalyst layer contains catalyst particles having a relatively low pH during water immersion (that is, high hydrophilicity), and the second region 7b is immersed in water. It contains catalyst particles having a relatively high pH (ie, low hydrophilicity).

カソード側触媒層の第一の領域7aは、セパレータの押圧力を受けず且つガス流路に面しているので乾燥しやすい環境であるが、この第一の領域7aに相対的に親水性が大きな触媒粒を含有させることで、電解質膜の乾燥を抑制し、且つ、水を同伴してアノード側から移動してきたプロトンが触媒粒表面に到達し易くなる。そのため、この第一の領域7aで電気化学的反応が活発に行われるので、本実施形態の膜・電極接合体によれば高ストイキ比の運転条件において高い電池性能が発揮される。
また、カソード側触媒層の第二の領域7bは、セパレータの押圧力を受け且つガス流路に面していないで、水の流通が悪く湿潤過剰となりやすいが、この第二の領域7bに相対的に親水性が小さな触媒粒を含有させることで、滞留した水が周囲の領域へ排出されやすくなり、且つ、第二の領域内では水分量が過剰な状態でも触媒粒が水によって閉塞されず、電気化学的反応が活発に行われる。従って、本実施形態の膜・電極接合体によれば、低ストイキ比の運転条件においても水分による悪影響を受けずに高い電池性能が発揮される。
The first region 7a of the cathode side catalyst layer does not receive the pressing force of the separator and faces the gas flow path, so that it is easy to dry. However, the first region 7a is relatively hydrophilic. By including large catalyst particles, drying of the electrolyte membrane is suppressed, and protons that have moved from the anode side accompanying water easily reach the surface of the catalyst particles. For this reason, an electrochemical reaction is actively performed in the first region 7a. Therefore, according to the membrane / electrode assembly of the present embodiment, high battery performance is exhibited under operating conditions with a high stoichiometric ratio.
In addition, the second region 7b of the cathode side catalyst layer is subjected to the pressing force of the separator and does not face the gas flow path. In addition, the inclusion of catalyst particles with low hydrophilicity makes it easier for the accumulated water to be discharged to the surrounding area, and the catalyst particles are not clogged with water even in an excessive amount of water in the second region. Electrochemical reaction is actively performed. Therefore, according to the membrane / electrode assembly of the present embodiment, high battery performance is exhibited without being adversely affected by moisture even under low stoichiometric operating conditions.

上記第三実施形態には、相対的に親水性が大きな触媒粒を含有する領域は、反応ガス流路の上流側の領域であり、相対的に親水性が小さな触媒粒を含有する領域は、反応ガス流路の下流側の領域である膜・電極接合体の例を示し、上記第四実施形態では、相対的に親水性が大きな触媒粒を含有する領域は、比較的押圧力を受けない領域であり、相対的に親水性が小さな触媒粒を含有する領域は、比較的押圧力を受ける領域である膜・電極接合体の例を示したが、本発明においては上記第三及び第四実施形態を組み合わせても良い。すなわち、反応ガス流路の上流側で且つ比較的押圧力を受けない領域が、親水性が最も大きな触媒粒を含有する領域となり、反応ガス下流側で且つ比較的押圧力を受ける領域が、親水性が最も小さな触媒粒を含有する領域となり、その他の領域は、水の滞留傾向の相対的な強さ、弱さに従って親水性の異なる触媒粒を分布させればよい。   In the third embodiment, the region containing catalyst particles having relatively high hydrophilicity is a region on the upstream side of the reaction gas flow path, and the region containing catalyst particles having relatively low hydrophilicity is An example of a membrane / electrode assembly, which is a downstream region of the reaction gas flow path, is shown. In the fourth embodiment, a region containing catalyst particles having relatively high hydrophilicity is relatively not subjected to a pressing force. An example of a membrane / electrode assembly in which the region containing catalyst particles having relatively small hydrophilicity is a region that receives a relatively pressing force is shown in the present invention. You may combine embodiment. That is, the region on the upstream side of the reaction gas flow path that is relatively free of pressing force is a region containing catalyst particles having the greatest hydrophilicity, and the region on the downstream side of the reaction gas that is relatively free of pressing force is hydrophilic. In other regions, catalyst particles having different hydrophilicities may be distributed in accordance with the relative strength and weakness of the water retention tendency.

本発明の燃料電池用触媒粒の検査方法は、触媒粒の水浸時pHを、JIS K1474に規定された方法により測定し、互いに異なる所定範囲内の水浸時pHを有する少なくとも2種類の触媒粒を、それぞれ合格品と決定することを特徴とするものである。   The method for inspecting catalyst particles for a fuel cell according to the present invention is characterized in that the pH of the catalyst particles when immersed in water is measured by the method defined in JIS K1474, and at least two types of catalysts having different pH values when immersed in a predetermined range. Each grain is determined to be an acceptable product.

本発明の燃料電池用触媒粒の検査方法によれば、触媒粒の親水性を簡便な方法で確認することができるため、所望の親水性を有する触媒粒かどうかを容易に判断し、選び出すことが可能である。また、触媒粒に親水処理や撥水処理等を行って親水性を調節する際、親水処理や撥水処理の条件変更等による親水性の制御が容易になるという利点もある。   According to the method for inspecting catalyst particles for a fuel cell of the present invention, since the hydrophilicity of the catalyst particles can be confirmed by a simple method, it is easy to determine and select whether the catalyst particles have a desired hydrophilicity. Is possible. Further, when the hydrophilicity is adjusted by subjecting the catalyst particles to a hydrophilic treatment or a water repellent treatment, the hydrophilicity can be easily controlled by changing the conditions of the hydrophilic treatment or the water repellent treatment.

本発明の触媒粒の検査方法は、上記した本発明にかかる燃料電池用膜・電極接合体の製造方法の触媒粒準備工程において、適切な親水性を有する触媒粒を準備するために採用できる他、上記のような製造工程における一連の工程とは独立した、製造前の手順として実施してもよい。例えば、燃料電池の設計変更に伴う新規触媒粒の選択の際に、触媒粒を選定する判断基準の一つとして用いたり、或いは、新規触媒粒の開発の判断基準の一つとして用いることもできる。さらには、多数の触媒粒のサンプルの中から最適なものを選択するためのスクリーニング法として用いてもよい。また、製造に備えて触媒粒を貯蔵する際に、既に決定された燃料電池の仕様に合致する触媒粒であることを予め確認するための検査方法として採用することもできる。   The method for inspecting catalyst particles of the present invention can be employed to prepare catalyst particles having appropriate hydrophilicity in the catalyst particle preparation step of the method for producing a membrane / electrode assembly for a fuel cell according to the present invention described above. Alternatively, it may be carried out as a pre-manufacturing procedure independent of the series of steps in the manufacturing process as described above. For example, it can be used as one of the criteria for selecting the catalyst particles when selecting new catalyst particles accompanying a change in the design of the fuel cell, or it can be used as one of the criteria for developing new catalyst particles. . Furthermore, it may be used as a screening method for selecting an optimum sample from a large number of catalyst particle samples. In addition, when storing the catalyst particles in preparation for production, it can be adopted as an inspection method for confirming in advance that the catalyst particles meet the specifications of the fuel cell that have already been determined.

(実施例1)
<触媒インクの調製>
(1)水浸時pH4.0の触媒粒を含有する触媒インクAの調製
市販のPt/C触媒(Pt担持率:50wt%)5gを、1N硝酸1000ml中に浸漬し、80℃で30分間酸処理を行った。酸処理を行ったPt/C触媒1.0gを水100mlに加え、静かに沸騰が続くように5分間加熱し、室温まで冷却後、水を加えて100mlとし、よく攪拌した。得られた溶液のpHをpH計を用いて測定し、酸処理後のPt/C触媒の水浸時pHを確認したところ、4.0だった。
パーフルオロカーボンスルホン酸樹脂の水/アルコール混合溶液(濃度:20wt%、商品名:DE2020、デュポン社製)2gに水5gとエタノール7gを混合し、電解質樹脂溶液を調製した。この電解質樹脂溶液に、上記水浸時pH4.0のPt/C触媒1gを加え、攪拌機により分散し、触媒インクAとした。
(Example 1)
<Preparation of catalyst ink>
(1) Preparation of catalyst ink A containing catalyst particles having pH 4.0 at the time of water immersion 5 g of commercially available Pt / C catalyst (Pt loading: 50 wt%) was immersed in 1000 ml of 1N nitric acid, and at 80 ° C. for 30 minutes. Acid treatment was performed. The acid-treated Pt / C catalyst (1.0 g) was added to 100 ml of water, heated for 5 minutes so that boiling continued gently, cooled to room temperature, water was added to make 100 ml, and the mixture was stirred well. The pH of the resulting solution was measured using a pH meter, and the pH during immersion of the Pt / C catalyst after acid treatment was confirmed to be 4.0.
5 g of water and 7 g of ethanol were mixed with 2 g of a water / alcohol mixed solution of perfluorocarbon sulfonic acid resin (concentration: 20 wt%, trade name: DE2020, manufactured by DuPont) to prepare an electrolyte resin solution. To this electrolyte resin solution, 1 g of Pt / C catalyst having a pH of 4.0 when immersed in water was added and dispersed with a stirrer to obtain catalyst ink A.

(2)水浸時pH6.5の触媒粒を含有する触媒インクBの調製
市販のPt/C触媒(Pt担持率:50wt%)1.0gを水100mlに加え、静かに沸騰が続くように5分間加熱し、室温まで冷却後、水を加えて100mlとし、よく攪拌した。得られた溶液のpHをpH計を用いて測定し、Pt/C触媒(未処理)の水浸時pHを確認したところ、6.5だった。
触媒インクA同様、パーフルオロカーボンスルホン酸樹脂の水/アルコール混合溶液(濃度:20wt%、商品名:DE2020、デュポン社製)2gに水5gとエタノール7gを混合し、電解質樹脂溶液を調製した。この電解質樹脂溶液に、上記水浸時pH6.5のPt/C触媒1gを加え、攪拌機により分散し、触媒インクBとした。
(2) Preparation of catalyst ink B containing catalyst particles having pH 6.5 at the time of water immersion 1.0 g of commercially available Pt / C catalyst (Pt loading: 50 wt%) was added to 100 ml of water so that boiling continued gently. After heating for 5 minutes and cooling to room temperature, water was added to make 100 ml and stirred well. The pH of the obtained solution was measured using a pH meter, and the pH of the Pt / C catalyst (untreated) at the time of water immersion was confirmed to be 6.5.
Similarly to catalyst ink A, 5 g of water and 7 g of ethanol were mixed with 2 g of a water / alcohol mixed solution of perfluorocarbon sulfonic acid resin (concentration: 20 wt%, trade name: DE2020, manufactured by DuPont) to prepare an electrolyte resin solution. To this electrolyte resin solution, 1 g of Pt / C catalyst having a pH of 6.5 at the time of water immersion was added and dispersed with a stirrer to obtain catalyst ink B.

<燃料電池用単セルの作製>
まず、PTFEとカーボンブラックを質量比1:1で含有するディスパージョンを調製し、ガス拡散層用カーボンペーパー(厚み:200μm)に塗布し、乾燥させた後、約350℃で焼いて、該ガス拡散層用カーボンペーパーを撥水処理した。
フッ素系固体高分子電解質膜(商品名ナフィオン、膜厚50μm、デュポン製)の一面側に、触媒インクBをスプレー塗布し、該インクを揮発乾固させてアノード側触媒層(触媒粒の水浸時pH分布なし)を形成した。アノード側触媒層の単位面積あたりの白金量は、0.2mg/cmとした。
<Fabrication of single cell for fuel cell>
First, a dispersion containing PTFE and carbon black at a mass ratio of 1: 1 is prepared, applied to a carbon paper for gas diffusion layer (thickness: 200 μm), dried, and baked at about 350 ° C. The carbon paper for the diffusion layer was subjected to water repellent treatment.
One side of a fluorine-based solid polymer electrolyte membrane (trade name Nafion, film thickness 50 μm, manufactured by DuPont) is spray-coated with catalyst ink B, and the ink is volatilized and dried to form an anode catalyst layer (catalyst particles immersed in water). No pH distribution). The amount of platinum per unit area of the anode catalyst layer was 0.2 mg / cm 2 .

一方、上記フッ素系固体高分子電解質膜の他面側に、触媒インクAと触媒インクBをスプレー塗布、乾燥させてカソード側触媒層を形成した。このとき、カソード側触媒層において、水浸時pHが相対的に小さい(4.0)触媒粒を含む領域が反応ガス上流側に分布し、且つ、水浸時pHが相対的に大きい(6.5)触媒粒を含む領域が反応ガス下流側に分布するよう、触媒インクAを反応ガス上流側となる領域(図7の7a参照。反応ガス入口側半分の領域)に塗布し、触媒インクBを反応ガス下流側となる領域(図7の7b参照。反応ガス出口側半分の領域)に塗布した。水浸時pH4.0の触媒粒を含む領域と水浸時pH6.5の触媒粒を含む領域の面積比は、1:1とした。また、カソード側触媒層における各領域の単位面積あたりの白金量は、0.2mg/cmとした。 On the other hand, the catalyst ink A and the catalyst ink B were spray-coated and dried on the other side of the fluorine-based solid polymer electrolyte membrane to form a cathode-side catalyst layer. At this time, in the cathode side catalyst layer, a region containing catalyst particles having a relatively low pH during water immersion (4.0) is distributed upstream of the reaction gas, and the pH during water immersion is relatively high (6 .5) The catalyst ink A is applied to the region upstream of the reaction gas (see 7a in FIG. 7; the region on the reaction gas inlet side half) so that the region including the catalyst particles is distributed downstream of the reaction gas. B was applied to the region on the downstream side of the reaction gas (see 7b in FIG. 7; the region on the reaction gas outlet side half). The area ratio of the region containing catalyst particles having pH 4.0 during water immersion to the region containing catalyst particles having pH 6.5 during water immersion was 1: 1. Moreover, the platinum amount per unit area of each area | region in a cathode side catalyst layer was 0.2 mg / cm < 2 >.

次に、上記2枚のカーボンペーパーと、上記にてアノード側触媒層とカソード側触媒層を形成したフッ素系固体高分子電解質膜とを重ね合わせて、熱圧着(プレス圧:5MPa、プレス温度:130℃)し、膜・電極接合体を作製した。
さらに、炭素繊維と熱硬化性樹脂の複合材料からなり、ガス流路となる溝が形成された2枚のセパレータで上記膜・電極接合体を挟持し、単セルを作製した。
Next, the two carbon papers and the fluorine-based solid polymer electrolyte membrane on which the anode-side catalyst layer and the cathode-side catalyst layer are formed as described above are overlapped and thermocompression bonded (press pressure: 5 MPa, press temperature: 130 ° C.) to prepare a membrane / electrode assembly.
Furthermore, the membrane / electrode assembly was sandwiched between two separators made of a composite material of carbon fiber and a thermosetting resin and having a groove serving as a gas flow path, thereby producing a single cell.

(比較例1)
前記実施例1において、カソード側触媒層を触媒インクBのみを用いて形成(触媒粒の水浸時pH分布なし)したこと以外は、実施例1と同様にして単セルを作製した。
(Comparative Example 1)
A single cell was produced in the same manner as in Example 1, except that the cathode side catalyst layer was formed using only the catalyst ink B (no pH distribution when the catalyst particles were immersed in water).

(比較例2)
前記実施例1において、カソード側触媒層を触媒インクAのみを用いて形成(触媒粒の水浸時pH分布なし)したこと以外は、実施例1と同様にして単セルを作製した。
(Comparative Example 2)
A single cell was produced in the same manner as in Example 1 except that the cathode side catalyst layer was formed using only the catalyst ink A (no pH distribution when the catalyst particles were immersed in water).

<単セルの発電性能評価>
実施例1及び比較例1〜2の単セルについて、以下の条件でストイキ比特性の評価を行った。結果を図10に示す。
運転条件
・セル温度:80℃
・水素/空気への加湿露点:45℃/55℃
・電流密度:1.0A/cm
<Evaluation of single-cell power generation performance>
For the single cells of Example 1 and Comparative Examples 1 and 2, the stoichiometric ratio characteristics were evaluated under the following conditions. The results are shown in FIG.
Operating conditions / cell temperature: 80 ° C
・ Humidity dew point to hydrogen / air: 45 ℃ / 55 ℃
Current density: 1.0 A / cm 2

図10に示すように、カソード側触媒層全面が水浸時pH6.5の触媒粒のみを含有する比較例1の単セルは、反応ガス下流側においてフラッディングが特に発生しやすい低ストイキ比条件下では良好な発電特性を示したものの、反応ガス上流側が特に乾燥しやすい高ストイキ比条件下では発電特性に劣るものだった。
一方、カソード側触媒層全面が水浸時pH4.0の触媒粒のみを含有する比較例2の単セルは、反応ガス上流側が特に乾燥しやすい高ストイキ比条件下では優れた発電特性を示したものの、反応ガス下流側においてフラッディングが特に発生しやすい低ストイキ比条件下では発電特性が大きく低下した。
As shown in FIG. 10, the single cell of Comparative Example 1 in which the entire surface of the cathode-side catalyst layer contains only catalyst particles having a pH of 6.5 at the time of water immersion is under low stoichiometric ratio conditions where flooding is particularly likely to occur on the downstream side of the reaction gas. Shows good power generation characteristics, but it was inferior to the power generation characteristics under the high stoichiometric conditions where the upstream side of the reaction gas is particularly easy to dry.
On the other hand, the single cell of Comparative Example 2 in which the entire surface of the cathode side catalyst layer contains only catalyst particles having a pH of 4.0 at the time of water immersion showed excellent power generation characteristics under a high stoichiometric condition where the reaction gas upstream side is particularly easy to dry. However, the power generation characteristics greatly deteriorated under low stoichiometric conditions where flooding is particularly likely to occur on the downstream side of the reaction gas.

これら比較例の単セルに対して、乾燥しやすい反応ガス上流側に水浸時pH4.0の触媒粒を含有する領域が分布し、フラッディングが発生しやすい反応ガス下流側に水浸時pH6.5の触媒粒を含有する領域が分布する実施例1の単セルは、低ストイキ比から高ストイキ比の広い運転条件において電圧が高く、優れた発電特性を有することが確認された。実施例1の単セルは、特に低ストイキ比における性能低下が少なく、空気流量が小さい条件下でも発電可能であることがわかった。   With respect to the single cells of these comparative examples, a region containing catalyst particles having pH 4.0 at the time of water immersion is distributed on the upstream side of the reaction gas that is easily dried, and pH 6. It was confirmed that the single cell of Example 1 in which the region containing 5 catalyst particles is distributed has a high voltage under a wide range of operating conditions from a low stoichiometric ratio to a high stoichiometric ratio and has excellent power generation characteristics. The single cell of Example 1 was found to be capable of generating power even under conditions with a small air flow rate, particularly with little performance degradation at a low stoichiometric ratio.

本発明に係る製造方法により提供される膜・電極接合体を備えた単セルの一実施形態を模式的に示す断面図である。It is sectional drawing which shows typically one Embodiment of the single cell provided with the membrane electrode assembly provided by the manufacturing method which concerns on this invention. 本発明に係る製造方法により提供される膜・電極接合体を備えた単セルの別の実施形態を模式的に示す断面図である。It is sectional drawing which shows typically another embodiment of the single cell provided with the membrane electrode assembly provided by the manufacturing method which concerns on this invention. 本発明に係る製造方法により提供される膜・電極接合体に含まれる触媒層の面方向分布の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the surface direction distribution of the catalyst layer contained in the membrane electrode assembly provided by the manufacturing method which concerns on this invention. 本発明に係る製造方法により提供される膜・電極接合体に含まれる触媒層の面方向分布の別の例を模式的に示す断面図である。It is sectional drawing which shows typically another example of the surface direction distribution of the catalyst layer contained in the membrane electrode assembly provided by the manufacturing method which concerns on this invention. 本発明に係る製造方法により提供される膜・電極接合体に含まれる触媒層の面方向分布の別の例(縦ストライプ、横ストライプ)を模式的に示す断面図である。It is sectional drawing which shows typically another example (vertical stripe, horizontal stripe) of the surface direction distribution of the catalyst layer contained in the membrane electrode assembly provided by the manufacturing method which concerns on this invention. 本発明に係る製造方法により提供される膜・電極接合体の別の実施形態(反応ガス流路の上流側の領域と反応ガス流路の下流側の領域に親水性の異なる2種類の触媒層が分布する)を模式的に示す断面図である。Another embodiment of the membrane / electrode assembly provided by the production method according to the present invention (two types of catalyst layers having different hydrophilicity in the upstream region of the reaction gas channel and the downstream region of the reaction gas channel) Is a cross-sectional view schematically illustrating 本発明に係る製造方法により提供される膜・電極接合体に含まれる触媒層の面方向の例(反応ガス流路の上流側の領域と反応ガス流路の下流側の領域に親水性の異なる2種類の触媒層が分布する)を模式的に示す断面図である。Example of the surface direction of the catalyst layer included in the membrane / electrode assembly provided by the production method according to the present invention (the hydrophilicity is different between the upstream region of the reaction gas channel and the downstream region of the reaction gas channel) It is sectional drawing which shows typically 2 types of catalyst layers are distributed. 本発明に係る製造方法により提供される膜・電極接合体に含まれる触媒層の面方向の別の例(反応ガス流路の上流側の領域と反応ガス流路の下流側の領域に親水性の異なる2種類の触媒層が分布する)を模式的に示す断面図である。Another example of the surface direction of the catalyst layer included in the membrane / electrode assembly provided by the production method according to the present invention (the region upstream of the reaction gas channel and the region downstream of the reaction gas channel are hydrophilic) 2 is a cross-sectional view schematically showing the distribution of two different catalyst layers. 本発明に係る製造方法により提供される膜・電極接合体の別の実施形態(比較的押圧力を受ける領域と比較的押圧力を受けない領域に水性の異なる2種類の触媒層が分布する)を模式的に示す断面図である。Another embodiment of the membrane / electrode assembly provided by the production method according to the present invention (two types of catalyst layers having different aqueous properties are distributed in a region that receives relatively pressing force and a region that does not receive relatively pressing force) It is sectional drawing which shows this typically. 実施例及び比較例で得られた単セルの発電性能評価結果を示すグラフである。It is a graph which shows the power generation performance evaluation result of the single cell obtained by the Example and the comparative example.

符号の説明Explanation of symbols

1…電解質膜
2…アノード側触媒層
3…酸化剤ガス流路入口
4…アノード側ガス拡散層
5…アノード
6a…第一のカソード側触媒層
6b…第二のカソード側触媒層
7a…カソード側触媒層の第一の領域
7b…カソード側触媒層の第二の領域
8…酸化剤ガス流路出口
9…カソード側ガス拡散層
10…カソード
11…膜・電極接合体
12、14…セパレータ
13…燃料ガス流路
15…酸化剤ガス流路
16…燃料ガス流路出口
17…燃料ガス流路入口
101、102、103、104…単セル
DESCRIPTION OF SYMBOLS 1 ... Electrolyte membrane 2 ... Anode side catalyst layer 3 ... Oxidant gas flow path inlet 4 ... Anode side gas diffusion layer 5 ... Anode 6a ... First cathode side catalyst layer 6b ... Second cathode side catalyst layer 7a ... Cathode side 1st area | region of catalyst layer 7b ... 2nd area | region of cathode side catalyst layer 8 ... Oxidant gas flow path exit 9 ... Cathode side gas diffusion layer 10 ... Cathode 11 ... Membrane / electrode assembly 12, 14 ... Separator 13 ... Fuel gas flow path 15 ... Oxidant gas flow path 16 ... Fuel gas flow path outlet 17 ... Fuel gas flow path inlet 101, 102, 103, 104 ... Single cell

Claims (8)

固体高分子電解質膜と、該固体高分子電解質膜の一方の面に設けられたアノード側触媒層と他方の面に設けられたカソード側触媒層とを備える燃料電池用膜・電極接合体の製造方法であって、
触媒粒の水浸時pHを、JIS K1474に規定された測定法により確認し、互いに異なる所定範囲内の水浸時pHを有する触媒粒を、少なくとも2種類準備する触媒粒準備工程、
準備した各触媒粒を用いて、それぞれ別個の触媒インクを調製する触媒インク調製工程、及び、
調製した各触媒インクを、所定の塗布面に塗布してアノード側及びカソード側のうち少なくとも一方の触媒層を形成する際に、水浸時pHが異なる触媒粒を含む領域が、触媒層の厚さ方向及び/又は面方向に分布し、且つ、触媒層の厚さ方向に分布がある場合、固体高分子電解質膜に近い位置に水浸時pHが相対的に小さい触媒粒を含有する領域が分布するように、各領域ごとに該当する触媒インクを塗布する触媒インク塗布工程、を具備することを特徴とする、燃料電池用膜・電極接合体の製造方法。
Production of fuel cell membrane / electrode assembly comprising a solid polymer electrolyte membrane, an anode side catalyst layer provided on one surface of the solid polymer electrolyte membrane, and a cathode side catalyst layer provided on the other surface A method,
The catalyst particle preparation step of confirming the pH of the catalyst particles when immersed in water by a measurement method stipulated in JIS K1474, and preparing at least two types of catalyst particles having different pH values when immersed in water.
A catalyst ink preparation step of preparing a separate catalyst ink using each prepared catalyst particle, and
When each prepared catalyst ink is applied to a predetermined application surface to form at least one of the catalyst layer on the anode side and the cathode side, a region containing catalyst particles having different pH during water immersion is the thickness of the catalyst layer. When distributed in the vertical direction and / or the plane direction and distributed in the thickness direction of the catalyst layer, a region containing catalyst particles having a relatively small pH at the time of water immersion is located near the solid polymer electrolyte membrane. A method for producing a membrane / electrode assembly for a fuel cell, comprising a catalyst ink application step of applying a catalyst ink corresponding to each region so as to be distributed.
前記触媒インク塗布工程において、前記各領域が触媒層の面方向に分布する場合、水浸時pHが相対的に小さい触媒粒を含有する領域が該触媒層に供給される反応ガスの上流側領域に分布し、且つ、水浸時pHが相対的に大きい触媒粒を含有する領域が該触媒層に供給される反応ガスの下流側領域に分布するように触媒インクを塗布する、請求項1に記載の燃料電池用膜・電極接合体の製造方法。   In the catalyst ink application step, when each of the regions is distributed in the surface direction of the catalyst layer, a region containing catalyst particles having a relatively small pH during water immersion is an upstream region of the reaction gas supplied to the catalyst layer. The catalyst ink is applied so that a region containing catalyst particles having a relatively high pH during water immersion is distributed in a downstream region of the reaction gas supplied to the catalyst layer. The manufacturing method of the membrane-electrode assembly for fuel cells as described in this article. 前記触媒粒準備工程において準備される触媒粒のうち、水浸時pHが最も小さい第一の触媒粒の水浸時pHが2〜5の範囲内であり、水浸時pHが最も大きい第二の触媒粒の水浸時pHが5〜7の範囲内である、請求項1又は2に記載の燃料電池用膜・電極接合体の製造方法。   Of the catalyst particles prepared in the catalyst particle preparation step, the first catalyst particle having the smallest pH during water immersion is in the range of 2 to 5 and the second pH having the largest pH during water immersion. The method for producing a membrane / electrode assembly for a fuel cell according to claim 1 or 2, wherein the pH of the catalyst particles when immersed in water is in the range of 5-7. 前記第一の触媒粒と、前記第二の触媒粒の間での水浸時pHの差が0.5〜5の範囲内である、請求項3に記載の燃料電池用膜・電極接合体の製造方法。   The membrane-electrode assembly for a fuel cell according to claim 3, wherein the difference in pH during water immersion between the first catalyst particles and the second catalyst particles is in the range of 0.5 to 5. Manufacturing method. 前記触媒粒準備工程において、触媒粒に親水処理を行うことにより、当該触媒粒の水浸時pHを所定範囲内に調節することを特徴とする、請求項1乃至4のいずれかに記載の燃料電池用膜・電極接合体の製造方法。   The fuel according to any one of claims 1 to 4, wherein in the catalyst particle preparation step, the catalyst particle is subjected to a hydrophilic treatment to adjust the pH of the catalyst particle when immersed in a predetermined range. Manufacturing method of battery membrane / electrode assembly. 触媒粒の水浸時pHを、JIS K1474に規定された方法により測定し、互いに異なる所定範囲内の水浸時pHを有する少なくとも2種類の触媒粒を、それぞれ合格品と決定することを特徴とする、燃料電池用触媒粒の検査方法。   The pH at the time of water immersion of the catalyst particles is measured by a method defined in JIS K1474, and at least two types of catalyst particles having pH at the time of water immersion within a predetermined range different from each other are determined as acceptable products, respectively. A method for inspecting fuel cell catalyst particles. 水浸時pHが最も小さい第一の触媒粒として水浸時pHが2〜5の範囲内である触媒粒、及び、水浸時pHが最も大きい第二の触媒粒として水浸時pHが5〜7の範囲内である触媒粒を、それぞれ合格品と決定する、請求項6に記載の燃料電池用触媒粒の検査方法。   As the first catalyst particle having the smallest pH during water immersion, the catalyst particle having a pH within the range of 2 to 5 when immersed in water, and as the second catalyst particle having the largest pH during water immersion, the pH during water immersion is 5 The method for inspecting catalyst particles for a fuel cell according to claim 6, wherein the catalyst particles within a range of ˜7 are determined as acceptable products, respectively. 前記第一の触媒粒と、前記第二の触媒粒の間での水浸時pHの差が0.5〜5の範囲内である時に、各触媒粒を合格品と決定する、請求項7に記載の燃料電池用触媒粒の検査方法。   The catalyst particles are determined to be acceptable products when the difference in pH during water immersion between the first catalyst particles and the second catalyst particles is in the range of 0.5 to 5. The inspection method of the catalyst particle | grain for fuel cells as described in any one of.
JP2006204836A 2006-07-27 2006-07-27 Manufacturing method for membrane-electrode assembly for fuel cell, and inspection method of catalyst grain for fuel cell Pending JP2008034191A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006204836A JP2008034191A (en) 2006-07-27 2006-07-27 Manufacturing method for membrane-electrode assembly for fuel cell, and inspection method of catalyst grain for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006204836A JP2008034191A (en) 2006-07-27 2006-07-27 Manufacturing method for membrane-electrode assembly for fuel cell, and inspection method of catalyst grain for fuel cell

Publications (1)

Publication Number Publication Date
JP2008034191A true JP2008034191A (en) 2008-02-14

Family

ID=39123396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006204836A Pending JP2008034191A (en) 2006-07-27 2006-07-27 Manufacturing method for membrane-electrode assembly for fuel cell, and inspection method of catalyst grain for fuel cell

Country Status (1)

Country Link
JP (1) JP2008034191A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008152794A1 (en) * 2007-06-08 2008-12-18 Panasonic Corporation Polymer electrolyte fuel cell
JP2010009761A (en) * 2008-06-24 2010-01-14 Yokogawa Electric Corp Solid polymer fuel battery
KR101153062B1 (en) 2008-04-03 2012-06-04 주식회사 엘지화학 Test electrode of fuel cell for measuring performance and Method of preparing the same and Membrane electrode assembly comprising the same
GB2535150A (en) * 2015-02-05 2016-08-17 Intelligent Energy Ltd Component for a fuel cell system
WO2022080674A1 (en) * 2020-10-15 2022-04-21 코오롱인더스트리 주식회사 Membrane-electrode assembly capable of satisfying both of two requirements of excellent performance and high durability, and fuel cell including same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008152794A1 (en) * 2007-06-08 2008-12-18 Panasonic Corporation Polymer electrolyte fuel cell
KR101153062B1 (en) 2008-04-03 2012-06-04 주식회사 엘지화학 Test electrode of fuel cell for measuring performance and Method of preparing the same and Membrane electrode assembly comprising the same
JP2010009761A (en) * 2008-06-24 2010-01-14 Yokogawa Electric Corp Solid polymer fuel battery
GB2535150A (en) * 2015-02-05 2016-08-17 Intelligent Energy Ltd Component for a fuel cell system
WO2022080674A1 (en) * 2020-10-15 2022-04-21 코오롱인더스트리 주식회사 Membrane-electrode assembly capable of satisfying both of two requirements of excellent performance and high durability, and fuel cell including same
JP2023502895A (en) * 2020-10-15 2023-01-26 コーロン インダストリーズ インク MEMBRANE ELECTRODE ASSEMBLY AND FUEL CELL INCLUDING THE SAME, WHICH CAN MEET THE REQUIREMENTS OF HIGH PERFORMANCE AND HIGH DURABILITY
TWI797755B (en) * 2020-10-15 2023-04-01 南韓商可隆股份有限公司 Membrane-electrode assembly capable of satisfying both requirements of excellent performance and high durability and fuel cell comprising the same
JP7387895B2 (en) 2020-10-15 2023-11-28 コーロン インダストリーズ インク Membrane electrode assembly and fuel cell containing the same that can meet the requirements of both excellent performance and high durability

Similar Documents

Publication Publication Date Title
JP2008004453A (en) Membrane electrode assembly for fuel cell
JP2007141588A (en) Membrane-electrode assembly for fuel cell, and polymer electrolyte fuel cell using it
JP2007123235A (en) Membrane-electrode assembly for fuel cell
JP4133654B2 (en) Polymer electrolyte fuel cell
JP2006339124A (en) Membrane-electrode assembly for fuel cell, and solid polymer fuel cell using this
KR20220057565A (en) membrane electrode assembly
EP2144318B1 (en) Method for producing polymer electrolyte membrane for solid polymer fuel cell, membrane electrode assembly for solid polymer fuel cell, and solid polymer fuel cell
US6946214B2 (en) Manufacturing method of fuel cell electrode and fuel cell using thereof
JP2008176990A (en) Membrane electrode assembly for fuel cell, and fuel cell using it
JP2008034191A (en) Manufacturing method for membrane-electrode assembly for fuel cell, and inspection method of catalyst grain for fuel cell
JP2008204664A (en) Membrane-electrode assembly for fuel cell, and fuel cell using it
KR20230118074A (en) Electrode Catalyst Layer, Membrane Electrode Assembly, and Solid Polymer Fuel Cell
JP4919005B2 (en) Method for producing electrode for fuel cell
KR20200081030A (en) Polymer electrolyte membrane that suppresses side reactions caused by gas crossover phenomenon and manufacturing method of the same
JP2007265898A (en) Electrolyte membrane for polymer electrolyte fuel cell, and polymer electrolyte fuel cell equipped with it
JP2006344428A (en) Solid polymer fuel cell
JP2005025974A (en) High polymer fuel cell and its manufacturing method
US8377601B2 (en) Direct oxidation fuel cell
JP2009009724A (en) Fuel cell
JP2020068148A (en) Electrode catalyst layer, membrane electrode assembly, and solid polymer fuel cell
JP2005183263A (en) Porous structure
JP2008269847A (en) Ink for fuel cell catalyst layer, its manufacturing method, and membrane electrode assembly for fuel cell
JP2005197195A (en) Solid polymer fuel cell
JP2008258060A (en) Manufacturing method of membrane-electrode assembly
JP2006339125A (en) Solid polymer fuel cell