JP2020064784A - Electrode and electrode manufacturing method - Google Patents

Electrode and electrode manufacturing method Download PDF

Info

Publication number
JP2020064784A
JP2020064784A JP2018196797A JP2018196797A JP2020064784A JP 2020064784 A JP2020064784 A JP 2020064784A JP 2018196797 A JP2018196797 A JP 2018196797A JP 2018196797 A JP2018196797 A JP 2018196797A JP 2020064784 A JP2020064784 A JP 2020064784A
Authority
JP
Japan
Prior art keywords
fine powder
electrode
metal
platinum group
weight ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018196797A
Other languages
Japanese (ja)
Inventor
正己 奥山
Masami Okuyama
正己 奥山
鈴木 健治
Kenji Suzuki
健治 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Graviton KK
Original Assignee
Graviton KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Graviton KK filed Critical Graviton KK
Priority to JP2018196797A priority Critical patent/JP2020064784A/en
Priority to PCT/JP2019/041102 priority patent/WO2020080530A1/en
Publication of JP2020064784A publication Critical patent/JP2020064784A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

To provide an electrode which can have a platinum group metal content as low as possible, has excellent catalytic activity, and can be used as an anode or a cathode.SOLUTION: An electrode 10 is constituted by a platinum group metal and at least three kinds of transition metals from among various transition metals such that a synthetic work function approximates to a work function of the platinum group element, and is formed into a thin plate shape having a porous structure in which a large number of fine channels are formed by firing a compacted metal fine powder obtained by compressing, into a thin plate with a predetermined area, a metal fine powder mixture in which platinum group metal fine powder obtained by finely pulverizing the platinum group metal and a transition metal fine powder obtained by finely pulverizing at least three selected transition metals are uniformly mixed and dispersed. In the electrode 10, the weight ratio of the transition metals to the total weight of the fine metal powder mixture is set such that the synthetic work function approximates the work function of the platinum group element.SELECTED DRAWING: Figure 1

Description

本発明は、陽極または陰極として使用する電極及び陽極又は陰極として使用する電極を製造する電極製造方法に関する。   The present invention relates to an electrode used as an anode or a cathode and an electrode manufacturing method for manufacturing an electrode used as an anode or a cathode.

低沸点金属である亜鉛を含む多孔性金属錯体(PCP/MOF)を焼成した窒素ドープカーボンに白金を担持させた燃料電池電極が開示されている(特許文献1参照)。この燃料電池電極は、低沸点金属である亜鉛を含む多孔性金属錯体(PCP/MOF)を製造原料として用いるため、原料由来の金属をほとんど含まず、大きな比表面積を有するNDCである触媒担持体を得ることができ、少量の白金担持により高活性な白金触媒を得ることができる。さらに、製造原料である多孔性金属錯体(PCP/MOF)由来の金属が含まれていないため、焼成条件を自由に設定できる。すなわち、原料として用いる多孔性金属錯体(PCP/MOF)の有機化合物リンカーの変更や焼成温度の調節により、得られるNDC中の含窒素量や結晶化度をコントロールすることが可能となる。   A fuel cell electrode in which platinum is supported on nitrogen-doped carbon obtained by firing a porous metal complex (PCP / MOF) containing zinc which is a low boiling point metal is disclosed (see Patent Document 1). Since this fuel cell electrode uses a porous metal complex (PCP / MOF) containing zinc, which is a low boiling point metal, as a manufacturing raw material, it contains almost no metal derived from the raw material and is a catalyst carrier which is NDC having a large specific surface area. And a highly active platinum catalyst can be obtained by supporting a small amount of platinum. Further, since the metal derived from the porous metal complex (PCP / MOF), which is a manufacturing raw material, is not included, the firing conditions can be freely set. That is, by changing the organic compound linker of the porous metal complex (PCP / MOF) used as a raw material and adjusting the firing temperature, it becomes possible to control the nitrogen content and crystallinity in the obtained NDC.

特開2018−23929号公報JP, 2008-23929, A

固体高分子形燃料電池の電極触媒として各種の白金担持カーボンが広く利用されている。しかし、白金は、貴金属であり、その生産量に限りがある希少な金属資源であることから、その使用を抑えることが求められている。さらに、今後の固体高分子形燃料電池の普及に向けて高価な白金の含有量を極力少なくするとともに、少ない量の白金とともに白金以外の金属を使用した電極の開発が求められている。   Various platinum-supported carbons are widely used as electrode catalysts for polymer electrolyte fuel cells. However, since platinum is a precious metal and is a rare metal resource with a limited production amount, it is required to suppress its use. Further, in order to popularize polymer electrolyte fuel cells in the future, it is required to reduce the content of expensive platinum as much as possible and to develop an electrode using a metal other than platinum together with a small amount of platinum.

本発明の目的は、白金族金属の含有量を極力少なくすることができ、優れた触媒活性(触媒作用)を有して陽極または陰極として使用することできる電極及びその電極の電極製造方法を提供することにある。本発明の他の目的は、燃料電池において十分な電気を発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを供給することができるとともに、水素ガス発生装置において電気分解を効率よく行うことができ、短時間に多量の水素ガスを発生させることができる電極及びその電極の電極製造方法を提供することにある。   An object of the present invention is to provide an electrode which can be used as an anode or a cathode having a platinum group metal content as small as possible and has an excellent catalytic activity (catalytic action), and an electrode manufacturing method of the electrode. To do. Another object of the present invention is to be able to generate sufficient electricity in a fuel cell, to supply sufficient electric energy to a load connected to the fuel cell, and to efficiently perform electrolysis in a hydrogen gas generator. An object of the present invention is to provide an electrode that can be well performed and can generate a large amount of hydrogen gas in a short time, and an electrode manufacturing method of the electrode.

前記課題を解決するための本発明の第1の前提は、陽極又は陰極として使用する電極である。   The first premise of the present invention for solving the above problems is an electrode used as an anode or a cathode.

前記第1の前提における本発明の電極の特徴は、電極が、各種の白金族金属から選択された少なくとも1種類の白金族金属と、各種の遷移金属から選択された少なくとも3種類の遷移金属とから形成され、選択された少なくとも1種類の白金族金属を微粉砕した白金族金属微粉体と選択された少なくとも3種類の遷移金属を微粉砕した遷移金属微粉体とを均一に混合・分散した金属微粉体混合物を所定面積の薄板状に圧縮した後に焼成することで、多数の微細な流路が形成されたポーラス構造の薄板状に成形されていることにある。   The feature of the electrode of the present invention on the first premise is that the electrode is at least one platinum group metal selected from various platinum group metals, and at least three transition metal selected from various transition metals. A metal in which at least one selected platinum group metal is finely pulverized, and at least three selected transition metals are finely pulverized, and a transition metal fine powder is uniformly mixed and dispersed. This is because the fine powder mixture is compressed into a thin plate having a predetermined area and then fired to form a thin plate having a porous structure in which a large number of fine channels are formed.

本発明の電極の一例として、電極では、選択された少なくとも3種類の遷移金属の仕事関数の合成仕事関数が白金族元素の仕事関数に近似するように、各種の遷移金属の中から少なくとも3種類の遷移金属が選択されている。   As an example of the electrode of the present invention, in the electrode, at least three kinds of transition metals are selected so that the composite work function of the work functions of the selected at least three kinds of transition metals approximates the work function of the platinum group element. Selected transition metals.

本発明の電極の他の一例としては、電極の厚み寸法が、0.03mm〜0.8mmの範囲にある。   As another example of the electrode of the present invention, the thickness dimension of the electrode is in the range of 0.03 mm to 0.8 mm.

本発明の電極の他の一例としては、遷移金属が、Ni(ニッケル)とFe(鉄)と最も融点の低いCu(銅)とであり、電極では、Niの仕事関数とFeの仕事関数とCuの仕事関数との合成仕事関数が白金族元素の仕事関数に近似するように、Niの微粉体の金属微粉体混合物の全重量に対する重量比とFeの微粉体の金属微粉体混合物の全重量に対する重量比とCuの微粉体の金属微粉体混合物の全重量に対する重量比とが定められている。   As another example of the electrode of the present invention, the transition metals are Ni (nickel) and Fe (iron) and Cu (copper) having the lowest melting point, and the electrode has a work function of Ni and a work function of Fe. The weight ratio of the Ni fine powder to the total weight of the metal fine powder mixture and the total weight of the Fe fine powder to the metal fine powder mixture so that the composite work function with the work function of Cu approximates the work function of the platinum group element. And a weight ratio of Cu fine powder to the total weight of the metal fine powder mixture.

本発明の電極の他の一例としては、白金族金属の微粉体の金属微粉体混合物の全重量に対する重量比が、5〜10%の範囲、Niの微粉体の金属微粉体混合物の全重量に対する重量比が、30%〜45%の範囲、Feの微粉体の金属微粉体混合物の全重量に対する重量比が、30%〜45%の範囲、Cuの微粉体の金属微粉体混合物の全重量に対する重量比が、3%〜5%の範囲にある。   As another example of the electrode of the present invention, the weight ratio of the platinum group metal fine powder to the total weight of the metal fine powder mixture is in the range of 5 to 10%, and the weight ratio of the Ni fine powder to the total weight of the metal fine powder mixture is 5 to 10%. The weight ratio is in the range of 30% to 45%, the weight ratio of Fe fine powder to the total weight of the metal fine powder mixture is 30% to 45%, and the weight ratio of Cu fine powder is to the total weight of the metal fine powder mixture. The weight ratio is in the range of 3% to 5%.

本発明の電極の他の一例としては、ポーラス構造の薄板状に成形された電極の空隙率が、15%〜30%の範囲にある。   As another example of the electrode of the present invention, the porosity of the electrode formed into a thin plate having a porous structure is in the range of 15% to 30%.

本発明の電極の他の一例としては、ポーラス構造の薄板に成形された電極の密度が、5.0g/cm〜7.0g/cmの範囲にある。 As another example of the electrode of the present invention, the density of the electrode which is formed into a thin plate of a porous structure is in the range of 5.0g / cm 2 ~7.0g / cm 2 .

本発明の電極の他の一例としては、白金族金属の微粉体の粒径と遷移金属の微粉体の粒径とが、10μm〜200μmの範囲にある。   As another example of the electrode of the present invention, the particle size of the platinum group metal fine powder and the particle size of the transition metal fine powder are in the range of 10 μm to 200 μm.

本発明の電極の他の一例として、電極では、所定面積の薄板状に圧縮した金属微粉体混合物の焼成時に最も融点のCuの微粉体が溶融し、溶融したCuをバインダーとして白金族金属の微粉体とNiの微粉体とFeの微粉体とが接合されている。   As another example of the electrode of the present invention, in the electrode, the fine powder of Cu having the highest melting point is melted at the time of firing the metal fine powder mixture compressed into a thin plate having a predetermined area, and the fine powder of the platinum group metal is formed by using the molten Cu as a binder. The body, Ni fine powder, and Fe fine powder are joined together.

前記課題を解決するための本発明の第2の前提は、陽極又は陰極として使用する電極を製造する電極製造方法である。   The second premise of the present invention for solving the above problems is an electrode manufacturing method for manufacturing an electrode used as an anode or a cathode.

前記第2の前提における本発明の電極製造方法の特徴は、電極製造方法が、各種の白金族金属の中から少なくとも1種類の白金族金属を選択し、各種の遷移金属から選択する少なくとも3種類の遷移金属の仕事関数の合成仕事関数が白金族元素の仕事関数に近似するように、各種の遷移金属の中から少なくとも3種類の遷移金属を選択する遷移金属選択工程と、遷移金属選択工程によって選択された少なくとも1種類の白金族金属を微粉砕して白金族金属微粉体を作り、遷移金属選択工程によって選択された少なくとも3種類の遷移金属を微粉砕して遷移金属微粉体を作る金属微粉体作成工程と、金属微粉体作成工程によって作られた少なくとも3種類の遷移金属微粉体の仕事関数の合成仕事関数が白金族元素の仕事関数に近似するように、白金族金属微粉体の重量比と少なくとも3種類の遷移金属微粉体の重量比とを決定する微粉体重量比決定工程と、微粉体重量比決定工程によって決定した重量比の白金族金属微粉体と少なくとも3種類の遷移金属微粉体とを混合・分散した金属微粉体混合物を作る金属微粉体混合物作成工程と、金属微粉体混合物作成工程によって作られた金属微粉体混合物を所定圧力で加圧して金属微粉体圧縮物を作る金属微粉体圧縮物作成工程と、金属微粉体圧縮物作成工程によって作られた金属微粉体圧縮物を所定温度で焼成して多数の微細な流路を形成したポーラス構造の薄板状に成形された電極を作るポーラス構造薄板電極作成工程とを有することにある。   The feature of the electrode manufacturing method of the present invention in the second premise is that the electrode manufacturing method selects at least one kind of platinum group metal from among various kinds of platinum group metals, and selects at least three kinds from various kinds of transition metals. A transition metal selection step of selecting at least three kinds of transition metals from various transition metals so that the composite work function of the transition metals of A fine metal powder for finely pulverizing at least one selected platinum group metal to produce a fine platinum group metal powder, and finely pulverizing at least three kinds of transition metals selected in the transition metal selection step to produce a fine transition metal powder. So that the composite work function of at least three kinds of transition metal fine powders produced by the body forming step and the metal fine powder forming step approximates the work function of the platinum group element, A fine powder weight ratio determining step for determining a weight ratio of the gold group metal fine powder and a weight ratio of at least three kinds of transition metal fine powders; and a platinum group metal fine powder having a weight ratio determined by the fine powder weight ratio determining step. A metal fine powder mixture producing process for producing a metal fine powder mixture in which at least three kinds of transition metal fine powders are mixed and dispersed, and a metal fine powder mixture produced by the metal fine powder mixture producing process is pressurized at a predetermined pressure to produce a metal. It has a porous structure in which a large number of fine flow paths are formed by firing a metal fine powder compressed product for making a fine powder compressed product and firing the metal fine powder compressed product made by the metal fine powder compressed product production process at a predetermined temperature. And a step of producing a thin plate electrode having a porous structure for producing an electrode formed into a thin plate shape.

本発明の電極製造方法の一例としては、遷移金属選択工程によって選択された遷移金属が、Ni(ニッケル)とFe(鉄)と最も融点の低いCu(銅)とであり、微粉体重量比決定工程では、金属微粉体混合物の全重量に対する白金族金属の微粉体の重量比を5〜10%の範囲で決定し、金属微粉体混合物の全重量に対するNiの微粉体の重量比を30%〜45%の範囲で決定し、金属微粉体混合物の全重量に対するFeの微粉体の重量比を30%〜45%の範囲で決定するとともに、金属微粉体混合物の全重量に対するCuの微粉体の重量比を3%〜5%の範囲で決定する。   As an example of the electrode manufacturing method of the present invention, the transition metals selected in the transition metal selection step are Ni (nickel), Fe (iron), and Cu (copper) having the lowest melting point, and the fine powder weight ratio is determined. In the step, the weight ratio of the platinum group metal fine powder to the total weight of the metal fine powder mixture is determined in the range of 5 to 10%, and the weight ratio of Ni fine powder to the total weight of the metal fine powder mixture is 30% to 30%. The weight ratio of Fe fine powder to the total weight of the metal fine powder mixture is determined in the range of 45%, and the weight ratio of Cu fine powder to the total weight of the metal fine powder mixture is determined in the range of 30% to 45%. The ratio is determined in the range of 3% to 5%.

本発明の電極製造方法の他の一例としては、金属微粉体作成工程が、白金族金属を10μm〜200μmの粒径に微粉砕し、遷移金属を10μm〜200μmの粒径に微粉砕する。   As another example of the electrode manufacturing method of the present invention, in the metal fine powder forming step, the platinum group metal is finely pulverized to have a particle diameter of 10 μm to 200 μm, and the transition metal is finely pulverized to have a particle diameter of 10 μm to 200 μm.

本発明の電極製造方法の他の一例としては、金属微粉体圧縮物作成工程が、金属微粉体混合物作成工程によって作られた金属微粉体混合物を500Mpa〜800Mpaの圧力で加圧し、0.03mm〜0.8mmの厚み寸法を有して多数の微細な流路を形成したポーラス構造かつ薄板状の金属微粉体圧縮物を作る。   As another example of the electrode manufacturing method of the present invention, in the metal fine powder compressed material producing step, the metal fine powder mixture produced in the metal fine powder mixture producing step is pressurized at a pressure of 500 Mpa to 800 Mpa to give 0.03 mm to A thin plate-like compacted metal fine powder having a porous structure having a thickness of 0.8 mm and forming a large number of fine channels is produced.

本発明の電極製造方法の他の一例としては、ポーラス構造薄板電極作成工程が、最も融点の低いCuの微粉体を溶融させる温度で金属微粉体圧縮物を焼成し、溶融したCuの微粉体をバインダーとして白金族金属の微粉体とNiの微粉体とFeの微粉体とを接合する。   As another example of the electrode manufacturing method of the present invention, in the porous structure thin plate electrode forming step, the metal fine powder compact is fired at a temperature at which the Cu fine powder having the lowest melting point is melted, and the molten Cu fine powder is obtained. As a binder, a fine powder of platinum group metal, a fine powder of Ni and a fine powder of Fe are bonded together.

本発明に係る電極によれば、それが各種の白金族金属から選択された少なくとも1種類の白金族金属と各種の遷移金属から選択された少なくとも3種類の遷移金属とから形成され、選択された少なくとも1種類の白金族金属を微粉砕した白金族金属微粉体と選択された少なくとも3種類の遷移金属を微粉砕した遷移金属微粉体とを均一に混合・分散した金属微粉体混合物を所定面積の薄板状に圧縮した後に焼成して多数の微細な流路(通路孔)を形成したポーラス構造の薄板状電極であり、白金族金属以外の遷移金属を使用することで、白金族金属の含有量を極力少なくすることができ、白金族金属の触媒活性を利用するとともに遷移金属の触媒活性を利用することで、優れた触媒活性(触媒作用)を有する白金族金属少含有の陽極または陰極として使用することできる。   According to the electrode of the present invention, it is formed and selected from at least one platinum group metal selected from various platinum group metals and at least three transition metal selected from various transition metals. A metal fine powder mixture in which a platinum group metal fine powder obtained by finely pulverizing at least one kind of platinum group metal and a transition metal fine powder obtained by finely pulverizing at least three kinds of selected transition metals are uniformly mixed and dispersed in a predetermined area It is a thin plate electrode with a porous structure that is compressed into a thin plate and then fired to form a number of fine flow paths (passage holes). By using a transition metal other than the platinum group metal, the platinum group metal content can be increased. By using the catalytic activity of the platinum group metal and the catalytic activity of the transition metal, the anode or the cathode containing a small amount of the platinum group metal having excellent catalytic activity (catalysis) can be used. It can be used as a.

選択された少なくとも3種類の遷移金属の仕事関数の合成仕事関数が白金族元素の仕事関数に近似するように、各種の遷移金属の中から少なくとも3種類の遷移金属が選択されている電極は、合成仕事関数が白金族元素の仕事関数に近似するように各種の遷移金属の中から少なくとも3種類の遷移金属が選択されているから、白金族金属の含有量が少ないにもかかわらず、電極が白金族元素を担持した電極と略同一の仕事関数を備え、白金族元素を担持した電極と略同様の触媒活性(触媒作用)を発揮することができ、触媒機能を十分かつ確実に利用することが可能であって優れた触媒活性(触媒作用)を有する白金族金属少含有の陽極又は陰極として好適に使用することができる。電極は、それが白金族元素を担持した電極と略同様の触媒活性(触媒作用)を発揮するから、電極を燃料電池に使用することで、燃料電池において十分な電気を発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを供給することができるとともに、電極を水素ガス発生装置に使用することで、水素ガス発生装置において電気分解を効率よく行うことができ、短時間に多量の水素ガスを発生させることができる。   An electrode in which at least three kinds of transition metals are selected from various kinds of transition metals so that the composite work function of the work functions of the selected at least three kinds of transition metals approximates the work function of the platinum group element, Since at least three kinds of transition metals are selected from among various kinds of transition metals so that the synthetic work function approximates to the work function of the platinum group element, the electrode has a small content even though the platinum group metal content is low. It has a work function that is almost the same as that of the electrode that supports the platinum group element, and it can exhibit the same catalytic activity (catalytic action) as the electrode that supports the platinum group element, so that the catalytic function can be used sufficiently and reliably. It can be used as an anode or a cathode containing a small amount of platinum group metal having excellent catalytic activity (catalytic action). Since the electrode exhibits substantially the same catalytic activity (catalytic action) as the electrode supporting the platinum group element, by using the electrode in the fuel cell, sufficient electricity can be generated in the fuel cell, Sufficient electric energy can be supplied to the load connected to the fuel cell, and by using the electrodes in the hydrogen gas generator, electrolysis can be efficiently performed in the hydrogen gas generator, and in a short time. A large amount of hydrogen gas can be generated.

厚み寸法が0.03mm〜0.8mmの範囲にある電極は、電極の厚み寸法を前記範囲にすることで、電極の電気抵抗を小さくすることができ、電極に電流をスムースに流すことができる。電極は、それが白金族元素を担持した電極と略同様の触媒活性(触媒作用)を有するとともに、それに電流がスムースに流れるから、電極を燃料電池に使用することで、燃料電池において十分な電気を発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを供給することができるとともに、電極を水素ガス発生装置に使用することで、水素ガス発生装置において電気分解を効率よく行うことができ、短時間に多量の水素ガスを発生させることができる。   An electrode having a thickness dimension in the range of 0.03 mm to 0.8 mm can reduce the electric resistance of the electrode by setting the thickness dimension of the electrode in the above range, and a current can be smoothly passed through the electrode. . The electrode has almost the same catalytic activity (catalytic action) as the electrode supporting the platinum group element, and the current flows smoothly through it, so using the electrode in the fuel cell ensures sufficient electricity in the fuel cell. Can generate electric power, can supply sufficient electric energy to the load connected to the fuel cell, and can efficiently perform electrolysis in the hydrogen gas generator by using the electrode in the hydrogen gas generator. Therefore, a large amount of hydrogen gas can be generated in a short time.

遷移金属がNi(ニッケル)とFe(鉄)と最も融点の低いCu(銅)とであり、Niの仕事関数とFeの仕事関数とCuの仕事関数との合成仕事関数が白金族元素の仕事関数に近似するように、Niの微粉体の金属微粉体混合物の全重量に対する重量比とFeの微粉体の金属微粉体混合物の全重量に対する重量比とCuの微粉体の金属微粉体混合物の全重量に対する重量比とが定められている電極は、合成仕事関数が白金族元素の仕事関数に近似するNi(ニッケル)とFe(鉄)とCu(銅)とを選択するとともに、合成仕事関数が白金族元素の仕事関数に近似するように、金属微粉体混合物の全重量に対するNiの微粉体の重量比やFeの微粉体の重量比、Cuの微粉体の重量比を定めているから、白金族金属の含有量が少ないにもかかわらず、電極が白金族元素を担持した電極と略同一の仕事関数を備え、白金族元素を担持した電極と略同様の触媒活性(触媒作用)を発揮することができ、触媒機能を十分かつ確実に利用することが可能であって優れた触媒活性(触媒作用)を有する白金族金属少含有の陽極又は陰極として好適に使用することができる。電極は、それが白金族元素を担持した電極と略同様の触媒活性(触媒作用)を発揮するから、電極を燃料電池に使用することで、燃料電池において十分な電気を発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを供給することができるとともに、電極を水素ガス発生装置に使用することで、水素ガス発生装置において電気分解を効率よく行うことができ、短時間に多量の水素ガスを発生させることができる。   The transition metals are Ni (nickel) and Fe (iron) and Cu (copper) having the lowest melting point, and the work function of the platinum group element is the composite work function of the work function of Ni, the work function of Fe and the work function of Cu. As approximate to the function, the weight ratio of the Ni fine powder to the total weight of the metal fine powder mixture, the weight ratio of the Fe fine powder to the total weight of the metal fine powder mixture, and the total weight ratio of the Cu fine powder to the metal fine powder mixture are For the electrode whose weight ratio to weight is determined, Ni (nickel), Fe (iron), and Cu (copper) whose synthetic work function approximates the work function of the platinum group element are selected, and the synthetic work function is Since the weight ratio of the Ni fine powder, the Fe fine powder, and the Cu fine powder to the total weight of the metal fine powder mixture is determined so as to approximate the work function of the platinum group element, Even if the content of group metals is low However, the electrode has substantially the same work function as the electrode supporting the platinum group element, and can exhibit substantially the same catalytic activity (catalytic action) as the electrode supporting the platinum group element, and the catalytic function is sufficient. It can be reliably used and can be suitably used as an anode or a cathode containing a small amount of platinum group metal having excellent catalytic activity (catalytic action). Since the electrode exhibits substantially the same catalytic activity (catalytic action) as the electrode supporting the platinum group element, by using the electrode in the fuel cell, sufficient electricity can be generated in the fuel cell, Sufficient electric energy can be supplied to the load connected to the fuel cell, and by using the electrodes in the hydrogen gas generator, electrolysis can be efficiently performed in the hydrogen gas generator, and in a short time. A large amount of hydrogen gas can be generated.

白金族金属の微粉体の金属微粉体混合物の全重量に対する重量比が5〜10%の範囲、Niの微粉体の金属微粉体混合物の全重量に対する重量比が30%〜45%の範囲、Feの微粉体の金属微粉体混合物の全重量に対する重量比が30%〜45%の範囲、Cuの微粉体の金属微粉体混合物の全重量に対する重量比が3%〜5%の範囲にある電極は、合成仕事関数が白金族元素の仕事関数に近似するNi(ニッケル)とFe(鉄)とCu(銅)とを選択するとともに、合成仕事関数が白金族元素の仕事関数に近似するように、金属微粉体混合物の全重量に対するNiの微粉体の重量比やFeの微粉体の重量比、Cuの微粉体の重量比を前記範囲で定めているから、白金族金属の含有量が少ないにもかかわらず、電極が白金族元素を担持した電極と略同一の仕事関数を備え、白金族元素を担持した電極と略同様の触媒活性(触媒作用)を発揮することができ、触媒機能を十分かつ確実に利用することが可能であって優れた触媒活性(触媒作用)を有する白金族金属少含有の陽極又は陰極として好適に使用することができる。電極は、それが各種の遷移金属から選択された廉価な遷移金属を含み、金属微粉体混合物の全重量に対するNiの微粉体の重量比やFeの微粉体の重量比、Cuの微粉体の重量比が前記範囲にあり、金属微粉体混合物の全重量に対する白金族金属の微粉体の重量比が前記範囲にあり、高価な白金族金属の含有量が少ないから、陽極または陰極を廉価に作ることができる。電極は、それが白金族元素を担持した電極と略同様の触媒活性(触媒作用)を発揮するから、電極を燃料電池に使用することで、燃料電池において十分な電気を発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを供給することができるとともに、電極を水素ガス発生装置に使用することで、水素ガス発生装置において電気分解を効率よく行うことができ、短時間に多量の水素ガスを発生させることができる。   The weight ratio of the platinum group metal fine powder to the total weight of the metal fine powder mixture is in the range of 5 to 10%, the weight ratio of Ni fine powder to the total weight of the metal fine powder mixture is in the range of 30% to 45%, Fe An electrode having a weight ratio of the fine powder of 3 to 5% to the total weight of the metal fine powder mixture and a weight ratio of Cu fine powder to the total weight of the metal fine powder mixture of 3% to 5% is , Ni (nickel), Fe (iron), and Cu (copper) whose synthetic work function approximates the work function of the platinum group element, and so that the synthetic work function approximates the work function of the platinum group element, Since the weight ratio of the Ni fine powder, the Fe fine powder, and the Cu fine powder to the total weight of the metal fine powder mixture is determined within the above range, even if the platinum group metal content is low. However, the electrode is It has a work function almost the same as the above, and can exhibit a catalytic activity (catalytic action) similar to that of an electrode supporting a platinum group element, and it is possible to sufficiently and surely utilize the catalytic function, which is excellent. It can be suitably used as an anode or a cathode containing a small amount of platinum group metal having catalytic activity (catalytic action). The electrode contains an inexpensive transition metal selected from various transition metals, and the weight ratio of the fine Ni powder, the fine Fe powder, and the fine Cu powder to the total weight of the fine metal powder mixture. The ratio is in the above range, the weight ratio of the fine powder of the platinum group metal to the total weight of the fine metal powder mixture is in the range, and the content of the expensive platinum group metal is small, so that the anode or the cathode can be made inexpensively. You can Since the electrode exhibits substantially the same catalytic activity (catalytic action) as the electrode supporting the platinum group element, by using the electrode in the fuel cell, sufficient electricity can be generated in the fuel cell, Sufficient electric energy can be supplied to the load connected to the fuel cell, and by using the electrodes in the hydrogen gas generator, electrolysis can be efficiently performed in the hydrogen gas generator, and in a short time. A large amount of hydrogen gas can be generated.

ポーラス構造の薄板状に成形された電極の空隙率が15%〜30%の範囲にある電極は、電極の空隙率を前記範囲にすることで、薄板状の電極が多数の微細な流路(通路孔)を有する多孔質に成形され、電極の比表面積を大きくすることができ、それら流路を気体や液体が通流しつつ気体や液体を電極の接触面に広く接触させることが可能となり、白金族元素を担持した電極と略同様の触媒活性(触媒作用)を確実に発揮することができる。電極は、その触媒機能を十分かつ確実に利用することが可能であって優れた触媒活性(触媒作用)を有する白金族金属少含有の陽極または陰極として好適に使用することができる。   For an electrode having a porous structure formed in the shape of a thin plate and having a porosity in the range of 15% to 30%, by setting the porosity of the electrode within the above range, the thin plate-shaped electrode has a large number of fine flow paths ( It is possible to increase the specific surface area of the electrode by allowing the gas or the liquid to flow through these channels and widely contact the contact surface of the electrode with the gas or the liquid. It is possible to reliably exhibit substantially the same catalytic activity (catalytic action) as the electrode supporting the platinum group element. The electrode can be suitably used as an anode or a cathode containing a small amount of a platinum group metal that can sufficiently and reliably utilize its catalytic function and has excellent catalytic activity (catalytic action).

ポーラス構造の薄板に成形された電極の密度が5.0g/cm〜7.0g/cmの範囲にある電極は、電極の密度を前記範囲にすることで、薄板状の電極が多数の微細な流路(通路孔)を有する多孔質に成形され、電極の比表面積を大きくすることができ、それら流路を気体や液体が通流しつつ気体や液体を電極の接触面に広く接触させることが可能となり、白金族元素を担持した電極と略同様の触媒活性(触媒作用)を確実に発揮することができる。電極は、その触媒機能を十分かつ確実に利用することが可能であって優れた触媒活性(触媒作用)を有する白金族金属少含有の陽極または陰極として好適に使用することができる。 The density of thin plate shaped electrodes of porous structure is in the range of 5.0g / cm 2 ~7.0g / cm 2 electrode, by the density of the electrode in the range, thin plate-like electrodes are a number of Molded into a porous structure with minute flow passages (passage holes), the specific surface area of the electrode can be increased, and while the gas or liquid flows through these flow passages, the gas or liquid is brought into wide contact with the contact surface of the electrode. Therefore, it is possible to surely exhibit substantially the same catalytic activity (catalytic action) as the electrode supporting the platinum group element. The electrode can be suitably used as an anode or a cathode containing a small amount of a platinum group metal that can sufficiently and reliably utilize its catalytic function and has excellent catalytic activity (catalytic action).

白金族金属の微粉体の粒径と遷移金属の微粉体の粒径とが10μm〜200μmの範囲にある電極は、白金族金属や遷移金属の微粉体の粒径を前記範囲にすることで、薄板状の電極が多数の微細な流路(通路孔)を有する多孔質に成形され、電極の比表面積を大きくすることができ、それら流路を気体や液体が通流しつつ気体や液体を電極の接触面に広く接触させることが可能となり、白金族元素を担持した電極と略同様の触媒活性(触媒作用)を確実に発揮することができる。電極は、その触媒機能を十分かつ確実に利用することが可能であって優れた触媒活性(触媒作用)を有する白金族金属少含有の陽極または陰極として好適に使用することができる。   An electrode in which the particle size of the fine powder of the platinum group metal and the particle size of the fine powder of the transition metal are in the range of 10 μm to 200 μm is obtained by setting the particle size of the fine powder of the platinum group metal and the transition metal in the above range, The thin plate-shaped electrode is formed into a porous structure having a large number of minute flow paths (passage holes), and the specific surface area of the electrode can be increased. It is possible to make a wide contact with the contact surface of, and it is possible to reliably exhibit substantially the same catalytic activity (catalytic action) as the electrode carrying the platinum group element. The electrode can be suitably used as an anode or a cathode containing a small amount of a platinum group metal that can sufficiently and reliably utilize its catalytic function and has excellent catalytic activity (catalytic action).

所定面積の薄板状に圧縮した金属微粉体混合物の焼成時に最も融点のCuの微粉体が溶融し、溶融したCuをバインダーとして白金族金属の微粉体とNiの微粉体とFeの微粉体とが接合されている電極は、最も融点の低いCuの微粉体をバインダーとして白金族金属の微粉体とNiの微粉体とFeの微粉体とを接合することで、電極が高い強度を有してその形状を維持することができ、電極に衝撃が加えられたときの電極の破損や損壊を防ぐことができる。電極は、その形状を維持することができるから、その触媒機能を十分かつ確実に利用することが可能であって優れた触媒活性(触媒作用)を有する白金族金属少含有の陽極または陰極として好適に使用することができる。   The fine powder of Cu having the highest melting point is melted at the time of firing the metal fine powder mixture compressed into a thin plate having a predetermined area, and the fine powder of platinum group metal, the fine powder of Ni and the fine powder of Fe are formed by using the molten Cu as a binder. The electrode to be joined has high strength by joining the fine powder of platinum group metal, the fine powder of Ni and the fine powder of Fe with Cu fine powder having the lowest melting point as a binder. The shape can be maintained, and damage or destruction of the electrode when a shock is applied to the electrode can be prevented. Since the electrode can maintain its shape, it is suitable as an anode or a cathode containing a small amount of platinum group metal that can sufficiently and reliably utilize its catalytic function and has excellent catalytic activity (catalytic action). Can be used for

本発明に係る電極製造方法によれば、各種の白金族金属の中から少なくとも1種類の白金族金属を選択し、各種の遷移金属から選択する少なくとも3種類の遷移金属の仕事関数の合成仕事関数が白金族元素の仕事関数に近似するように、各種の遷移金属の中から少なくとも3種類の遷移金属を選択する遷移金属選択工程と、遷移金属選択工程によって選択された少なくとも1種類の白金族金属を微粉砕して白金族金属微粉体を作り、遷移金属選択工程によって選択された少なくとも3種類の遷移金属を微粉砕して遷移金属微粉体を作る金属微粉体作成工程と、金属微粉体作成工程によって作られた少なくとも3種類の遷移金属微粉体の仕事関数の合成仕事関数が白金族元素の仕事関数に近似するように、白金族金属微粉体の重量比と少なくとも3種類の遷移金属微粉体の重量比とを決定する微粉体重量比決定工程と、微粉体重量比決定工程によって決定した重量比の白金族金属微粉体と少なくとも3種類の遷移金属微粉体とを混合・分散した金属微粉体混合物を作る金属微粉体混合物作成工程と、金属微粉体混合物作成工程によって作られた金属微粉体混合物を所定圧力で加圧して金属微粉体圧縮物を作る金属微粉体圧縮物作成工程と、金属微粉体圧縮物作成工程によって作られた金属微粉体圧縮物を所定温度で焼成して多数の微細な流路を形成したポーラス構造の薄板状に成形された電極を作るポーラス構造薄板電極作成工程との各工程によって電極を製造するから、電極を廉価に作ることができ、優れた触媒活性(触媒作用)を有して触媒機能を十分かつ確実に利用することが可能な白金族金属少含有の電極(陽極又は陰極)を作ることができる。電極製造方法は、それによって作られた電極が白金族元素を担持した電極と略同様の触媒活性(触媒作用)を発揮するから、燃料電池において十分な電気を発電することが可能な電極を作ることができ、水素ガス発生装置において電気分解を効率よく行うことが可能であって短時間に多量の水素ガスを発生させることが可能な電極を作ることができる。   According to the electrode manufacturing method of the present invention, at least one kind of platinum group metal is selected from various kinds of platinum group metals, and the work function of at least three kinds of transition metals selected from various kinds of transition metals is a composite work function. So as to approximate the work function of the platinum group element, a transition metal selecting step of selecting at least three kinds of transition metals from various transition metals, and at least one kind of platinum group metal selected by the transition metal selecting step. And a fine metal powder to produce a platinum group metal fine powder, and finely pulverize at least three kinds of transition metals selected in the transition metal selection step to produce a fine transition metal powder, and a fine metal powder production step Of the work function of at least three kinds of transition metal fine powders produced by the method, so that the work function approximates to the work function of the platinum group element, and the weight ratio of the platinum group metal fine powder and at least A fine powder weight ratio determining step of determining a weight ratio of three kinds of transition metal fine powders; a platinum group metal fine powder having a weight ratio determined by the fine powder weight ratio determining step and at least three kinds of transition metal fine powders. Metal fine powder mixture making process to make mixed and dispersed metal fine powder mixture, and metal fine powder mixture made by the metal fine powder mixture making process to press metal fine powder mixture at a predetermined pressure to make metal fine powder compressed product Porous substance forming process and porous metal thin electrode compacted product produced by the fine metal powder compressed product producing process are fired at a predetermined temperature to form a thin plate-like electrode having a porous structure in which a large number of fine flow paths are formed. Since the electrode is manufactured by each process of the structural thin plate electrode manufacturing process, the electrode can be manufactured at low cost, and it has excellent catalytic activity (catalytic action) and can fully and reliably utilize the catalytic function. You can make ability platinum group metal small-containing electrode (anode or cathode). The electrode manufacturing method produces an electrode capable of generating sufficient electricity in a fuel cell because the electrode produced thereby exhibits substantially the same catalytic activity (catalytic action) as the electrode carrying the platinum group element. Therefore, it is possible to produce an electrode that can efficiently perform electrolysis in the hydrogen gas generator and can generate a large amount of hydrogen gas in a short time.

遷移金属選択工程によって選択された遷移金属がNi(ニッケル)とFe(鉄)と最も融点の低いCu(銅)とであり、微粉体重量比決定工程において、金属微粉体混合物の全重量に対する白金族金属の微粉体の重量比を5〜10%の範囲で決定し、金属微粉体混合物の全重量に対するNiの微粉体の重量比を30%〜45%の範囲で決定し、金属微粉体混合物の全重量に対するFeの微粉体の重量比を30%〜45%の範囲で決定するとともに、金属微粉体混合物の全重量に対するCuの微粉体の重量比を3%〜5%の範囲で決定する電極製造方法は、合成仕事関数が白金族元素の仕事関数に近似するNi(ニッケル)とFe(鉄)とCu(銅)とを選択するとともに、合成仕事関数が白金族元素の仕事関数に近似するように、金属微粉体混合物の全重量に対するNiの微粉体の重量比やFeの微粉体の重量比、Cuの微粉体の重量比を前記範囲で定めているから、白金族金属の含有量が少ないにもかかわらず、電極が白金族元素を担持した電極と略同一の仕事関数を備え、白金族元素を担持した電極と略同様の触媒活性(触媒作用)を発揮することができるとともに、優れた触媒活性(触媒作用)を有して触媒機能を十分かつ確実に利用することが可能な白金族金属少含有の電極(陽極又は陰極)を作ることができる。電極製造方法は、金属微粉体混合物の全重量に対するNiの微粉体の重量比やFeの微粉体の重量比、Cuの微粉体の全重量が前記範囲にあり、金属微粉体混合物の全重量に対する白金族金属の微粉体の重量比が前記範囲にあるから、高価な白金族金属の含有量が少なく、陽極または陰極を廉価に作ることができる。   The transition metals selected in the transition metal selection step are Ni (nickel), Fe (iron), and Cu (copper) having the lowest melting point, and platinum is used for the total weight of the metal fine powder mixture in the fine powder weight ratio determination step. The weight ratio of the fine powder of the group metal is determined in the range of 5 to 10%, and the weight ratio of the fine powder of Ni to the total weight of the fine metal powder mixture is determined in the range of 30% to 45%. The weight ratio of the fine Fe powder to the total weight of Fe is determined in the range of 30% to 45%, and the weight ratio of the fine Cu powder to the total weight of the metal fine powder mixture is determined in the range of 3% to 5%. The electrode manufacturing method selects Ni (nickel), Fe (iron), and Cu (copper) whose synthetic work function approximates the work function of the platinum group element, and the synthetic work function approximates the work function of the platinum group element. So that the fine metal powder The weight ratio of the fine Ni powder, the fine Fe powder, and the fine Cu powder relative to the total weight of the compound is determined within the above range, so that the platinum group metal content is low. The electrode has a work function substantially the same as that of the electrode supporting the platinum group element, and can exhibit substantially the same catalytic activity (catalytic action) as the electrode supporting the platinum group element and excellent catalytic activity (catalyst). It is possible to produce an electrode (anode or cathode) containing a small amount of platinum group metal that has a function) and can utilize the catalytic function sufficiently and reliably. The electrode manufacturing method is such that the weight ratio of the Ni fine powder to the total weight of the metal fine powder mixture, the weight ratio of the Fe fine powder, and the total weight of the Cu fine powder are within the above ranges, and the total weight of the metal fine powder mixture is Since the weight ratio of the platinum group metal fine powder is within the above range, the content of the expensive platinum group metal is small, and the anode or the cathode can be manufactured at low cost.

金属微粉体作成工程において、白金族金属を10μm〜200μmの粒径に微粉砕し、遷移金属を10μm〜200μmの粒径に微粉砕する電極製造方法は、白金族金属を前記範囲の粒径に微粉砕し、遷移金属を前記範囲の粒径に微粉砕することで、多数の微細な流路(通路孔)を有する多孔質に成形されて比表面積が大きいポーラス構造の薄板状の電極を作ることができ、それら流路を気体や液体が通流しつつ気体や液体を電極の接触面に広く接触させることが可能となり、白金族元素を担持した電極と略同様の触媒活性(触媒作用)を確実に発揮することが可能な電極を作ることができる。電極製造方法は、触媒機能を十分かつ確実に利用することが可能であって優れた触媒活性(触媒作用)を有して陽極または陰極として使用することが可能な白金族金属少含有の電極を作ることができる。   In the metal fine powder preparation step, the platinum group metal is pulverized to a particle size of 10 μm to 200 μm, and the transition metal is pulverized to a particle size of 10 μm to 200 μm. By pulverizing and pulverizing the transition metal to a particle size within the above range, a thin plate-like electrode having a porous structure with a large specific surface area is formed by forming a porous structure having a large number of fine channels (passage holes). It is possible to bring the gas or liquid into wide contact with the contact surface of the electrode while allowing the gas or liquid to flow through these flow paths, and to achieve substantially the same catalytic activity (catalytic action) as the electrode carrying the platinum group element. It is possible to make an electrode that can surely exhibit. The electrode manufacturing method is an electrode containing a small amount of a platinum group metal that can sufficiently and surely utilize a catalytic function and has excellent catalytic activity (catalytic action) and can be used as an anode or a cathode. Can be made.

金属微粉体圧縮物作成工程において、金属微粉体混合物作成工程によって作られた金属微粉体混合物を500Mpa〜800Mpaの圧力で加圧し、0.03mm〜0.8mmの厚み寸法を有して多数の微細な流路を形成したポーラス構造かつ薄板状の金属微粉体圧縮物を作る電極製造方法は、金属微粉体混合物を前記範囲の圧力で加圧(圧縮)することで、厚み寸法が0.03mm〜0.8mmであって多数の微細な流路(通路孔)を有するポーラス構造かつ薄板状の電極を作ることができ、ポーラス構造かつ薄板状の電極を廉価に作ることができるとともに、優れた触媒活性(触媒作用)を有して触媒機能を十分かつ確実に利用することが可能な白金族金属少含有の電極(陽極又は陰極)を作ることができる。電極製造方法は、厚み寸法が0.03mm〜0.8mmの範囲の電極を作ることができるから、電気抵抗を小さく電流をスムースに流すことが可能な電極(陽極又は陰極)を作ることができる。   In the metal fine powder compressed material producing step, the metal fine powder mixture produced in the metal fine powder mixture producing step is pressurized at a pressure of 500 Mpa to 800 Mpa, and has a thickness dimension of 0.03 mm to 0.8 mm and a large number of fine particles. An electrode manufacturing method for producing a compressed metal fine powder having a porous structure and a thin plate in which various flow paths are formed is such that the metal fine powder mixture is pressed (compressed) at a pressure within the above range to have a thickness dimension of 0.03 mm to It is possible to form a thin plate electrode having a porous structure of 0.8 mm and having a large number of fine flow passages (passage holes), and it is possible to inexpensively manufacture a thin plate electrode having a porous structure and an excellent catalyst. An electrode (anode or cathode) containing a small amount of platinum group metal that has an activity (catalyst action) and can sufficiently and reliably utilize the catalytic function can be produced. In the electrode manufacturing method, an electrode having a thickness dimension in the range of 0.03 mm to 0.8 mm can be manufactured, and thus an electrode (anode or cathode) having a small electric resistance and capable of smoothly flowing a current can be manufactured. .

ポーラス構造薄板電極作成工程において、最も融点の低いCuの微粉体を溶融させる温度で金属微粉体圧縮物を焼成し、溶融したCuの微粉体をバインダーとして白金族金属の微粉体とNiの微粉体とFeの微粉体とを接合する電極製造方法は、最も融点の低いCuの微粉体をバインダーとして白金族金属の微粉体やNiの微粉体、Feの微粉体を接合することで、多数の微細な流路(通路孔)を有するポーラス構造の薄板状の電極を作ることができるとともに、高い強度を有して形状を維持することができ、衝撃が加えられたときの破損や損壊を防ぐことが可能な電極を作ることができる。   In the step of forming a thin plate electrode having a porous structure, a compressed metal fine powder is fired at a temperature at which the fine Cu powder having the lowest melting point is melted, and the molten Cu fine powder is used as a binder for the platinum group metal fine powder and the Ni fine powder. The electrode manufacturing method for joining the fine powder of Fe and the fine powder of Fe is performed by joining fine powder of platinum group metal, fine powder of Ni, and fine powder of Fe with Cu fine powder having the lowest melting point as a binder. It is possible to make a thin plate-shaped electrode with a porous structure having various flow passages (passage holes), maintain the shape with high strength, and prevent damage or damage when shock is applied. It is possible to make an electrode that can

一例として示す電極の斜視図。The perspective view of the electrode shown as an example. 電極の一例として示す部分拡大正面図。The partial enlarged front view shown as an example of an electrode. 電極の他の一例として示す部分拡大正面図。The partial expanded front view shown as another example of an electrode. 電極を使用したセルの一例を示す分解斜視図。FIG. 3 is an exploded perspective view showing an example of a cell using electrodes. 電極を使用したセルの側面図。The side view of the cell using an electrode. 電極を使用した固体高分子形燃料電池の発電を説明する図。The figure explaining the electric power generation of the polymer electrolyte fuel cell using an electrode. 電極の起電圧試験の結果を示す図。The figure which shows the result of the electromotive voltage test of an electrode. 電極のI−V特性試験の結果を示す図。The figure which shows the result of the IV characteristic test of an electrode. 電極を使用した水素ガス発生装置の電気分解を説明する図。The figure explaining electrolysis of the hydrogen gas generator which uses an electrode. 電極の製造方法を説明する図。6A to 6C are views illustrating a method of manufacturing an electrode.

一例として示す電極10の斜視図である図1等の添付の図面を参照し、本発明に係る電極の詳細を説明すると、以下のとおりである。なお、図2は、電極10の一例として示す部分拡大正面図であり、図3は、電極10の他の一例として示す部分拡大正面図である。図1では、厚み方向を矢印Xで示し、径方向を矢印Yで示す。   Details of the electrode according to the present invention will be described below with reference to the accompanying drawings such as FIG. 1 which is a perspective view of the electrode 10 shown as an example. 2 is a partially enlarged front view showing an example of the electrode 10, and FIG. 3 is a partially enlarged front view showing another example of the electrode 10. In FIG. 1, the thickness direction is indicated by arrow X, and the radial direction is indicated by arrow Y.

電極10は、陽極又は陰極として使用され、固体高分子形燃料電池17の燃料極18(触媒電極)や空気極19(触媒電極)(図6参照)、水素ガス発生装置30のアノード31(電極触媒)やカソード32(電極触媒)(図9参照)として利用される。電極10は、前面11及び後面12を有するとともに、所定の面積及び所定の厚み寸法L1を有し、その平面形状が四角形に成形されている。電極10は、多数の微細な流路13(通路孔)を有するポーラス構造(多孔質)の薄板電極である。流路13(通路孔)には、気体又は液体が通流する。なお、電極10の平面形状に特に制限はなく、四角形の他に、その用途にあわせて円形や楕円形、多角形等の他のあらゆる平面形状に成形することができる。   The electrode 10 is used as an anode or a cathode, and is used as a fuel electrode 18 (catalyst electrode) or an air electrode 19 (catalyst electrode) of the polymer electrolyte fuel cell 17 (see FIG. 6) and an anode 31 (electrode of the hydrogen gas generator 30). It is used as a catalyst) or a cathode 32 (electrode catalyst) (see FIG. 9). The electrode 10 has a front surface 11 and a rear surface 12, has a predetermined area and a predetermined thickness dimension L1, and its planar shape is formed into a quadrangle. The electrode 10 is a thin plate electrode having a porous structure (porous) having many fine flow paths 13 (passage holes). Gas or liquid flows through the flow path 13 (passage hole). The planar shape of the electrode 10 is not particularly limited, and in addition to the quadrangle, the electrode 10 can be molded into any other planar shape such as a circle, an ellipse, or a polygon according to the application.

電極10は、粉状に加工された白金族金属41と、粉状に加工された遷移金属42の中から選択された少なくとも3種類の遷移金属42とから形成されている。白金族金属41としては、白金(Pt)、パラジウム(Pb)、ロジウム(Rh)、ルテニウム(Ru)、イリジウム(Ir)、オスミウム(Os)を使用することができる。白金族金属41には、それらのうちの少なくとも1種類が使用される。遷移金属42としては、3d遷移金属や4d遷移金属が使用される。3d遷移金属には、Ti(チタン)、Cr(クロム)、Mn(マンガン)、Fe(鉄)、Co(コバルト)、Ni(ニッケル)、Cu(銅)、Zn(亜鉛)が使用される。4d遷移金属には、Nb(ニオブ)、Mo(モリブデン)、Ag(銀)が使用される。遷移金属42には、それらのうちの少なくとも3種類が使用される。   The electrode 10 is formed of a powder-processed platinum group metal 41 and at least three kinds of transition metals 42 selected from powder-processed transition metals 42. As the platinum group metal 41, platinum (Pt), palladium (Pb), rhodium (Rh), ruthenium (Ru), iridium (Ir), osmium (Os) can be used. At least one of them is used for the platinum group metal 41. As the transition metal 42, 3d transition metal or 4d transition metal is used. Ti (titanium), Cr (chromium), Mn (manganese), Fe (iron), Co (cobalt), Ni (nickel), Cu (copper), and Zn (zinc) are used as the 3d transition metal. Nb (niobium), Mo (molybdenum), and Ag (silver) are used as the 4d transition metal. At least three of them are used for the transition metal 42.

電極10(ポーラス構造の薄板電極)では、選択された少なくとも3種類の遷移金属42の仕事関数(物質から電子を取り出すのに必要なエネルギー)の合成仕事関数が白金族元素の仕事関数に近似するように、遷移金属42の中から少なくとも3種類の遷移金属42が選択されている。白金の仕事関数は、5.65(eV)である。Tiの仕事関数は、4.14(eV)、Crの仕事関数は、4.5(eV)、Mnの仕事関数は、4.1(eV)、Feの仕事関数は、4.67(eV)、Coの仕事関数は、5.0(eV)、Niの仕事関数は、5.22(eV)、Cuの仕事関数は、5.10(eV)、Znの仕事関数は、3.63(eV)、Nbの仕事関数は、4.01(eV)、Moの仕事関数は、4.45(eV)、Agの仕事関数は、4.31(eV)である。   In the electrode 10 (thin plate electrode having a porous structure), the composite work function of the work functions (energy necessary to extract electrons from the substance) of at least three types of selected transition metals 42 approximates the work function of the platinum group element. As described above, at least three kinds of transition metals 42 are selected from the transition metals 42. The work function of platinum is 5.65 (eV). The work function of Ti is 4.14 (eV), the work function of Cr is 4.5 (eV), the work function of Mn is 4.1 (eV), and the work function of Fe is 4.67 (eV). ), Co has a work function of 5.0 (eV), Ni has a work function of 5.22 (eV), Cu has a work function of 5.10 (eV), and Zn has a work function of 3.63. (EV) and Nb have work functions of 4.01 (eV), Mo has a work function of 4.45 (eV), and Ag has a work function of 4.31 (eV).

電極10は、白金族金属41の白金族金属微粉体(微粉状に加工されたPt(白金)、微粉状に加工されたPb(パラジウム)、微粉状に加工されたRh(ロジウム)、微粉状に加工されたRu(ルテニウム)、微粉状に加工されたIr(イリジウム)、微粉状に加工されたOs(オスミウム))と、各種の遷移金属42から選択された少なくとも3種類のそれら遷移金属42の遷移金属微粉体(微粉状に加工されたTi(チタン)、微粉状に加工されたCr(クロム)、微粉状に加工されたMn(マンガン)、微粉状に加工されたFe(鉄)、微粉状に加工されたCo(コバルト)、微粉状に加工されたNi(ニッケル)、微粉状に加工されたCu(銅)、微粉状に加工されたZn(亜鉛)、微粉状に加工されたNb(ニオブ)、微粉状に加工されたMo(モリブデン)、微粉状に加工されたAg(銀))とを均一に混合・分散した金属微粉体混合物51を所定面積の薄板状に圧縮して薄板状の金属微粉体圧縮物52とし、その金属微粉体圧縮物52を所定温度で焼成することから作られている(図10参照)。   The electrode 10 is a platinum group metal fine powder of the platinum group metal 41 (Pt (platinum) finely processed, Pb (palladium) finely powdered, Rh (rhodium) finely powdered, fine powdery) Processed into Ru (ruthenium), pulverized into Ir (iridium), pulverized into Os (osmium)), and at least three transition metals 42 selected from various transition metals 42. Fine powder of transition metal (Ti (titanium) processed into fine powder, Cr (chrome) processed into fine powder, Mn (manganese) processed into fine powder, Fe (iron) processed into fine powder, Fine powder processed Co (cobalt), fine powder processed Ni (nickel), fine powder processed Cu (copper), fine powder processed Zn (zinc), fine powder processed Nb (niobium) in fine powder form A fine metal powder compact compressed in a thin plate by compressing a fine metal powder mixture 51 obtained by uniformly mixing and dispersing processed Mo (molybdenum) and finely powdered Ag (silver) into a thin plate having a predetermined area. No. 52, and the fine metal powder compact 52 is fired at a predetermined temperature (see FIG. 10).

電極10では、選択された3種類の遷移金属42の仕事関数の合成仕事関数が白金族元素の仕事関数に近似するように、白金族金属41の微粉体の金属微粉体混合物51の全重量に対する重量比が決定され、それら遷移金属42の微粉体の金属微粉体混合物51の全重量に対する重量比が決定されている。具体的には、白金族金属41の微粉体の金属微粉体混合物51の全重量(100%)に対する重量比が5〜10%の範囲、好ましくは、5〜6%の範囲にあり、選択された遷移金属42のうちの1種類の微粉体の金属微粉体混合物51の全重量(100%)に対する重量比が30%〜45%の範囲、好ましくは、40%〜45%の範囲にあり、選択された遷移金属42のうちの他の1種類の微粉体の金属微粉体混合物51の全重量(100%)に対する重量比が30%〜45%の範囲、好ましくは、40%〜45%の範囲にあるとともに、選択された遷移金属42のうちの前記2種類を除く他の1種類の微粉体の金属微粉体混合物51の全重量(100%)に対する重量比が3%〜5%の範囲、好ましくは、4%である。なお、重量比が3%〜5%の遷移金属42は、その融点が他の2種類の遷移金属42のそれよりも低く、他の2種類の遷移金属42を接合するバインダー(接合成分)となる。   In the electrode 10, the composite work function of the work functions of the selected three kinds of transition metals 42 is close to the work function of the platinum group element, with respect to the total weight of the fine metal powder mixture 51 of the fine particles of the platinum group metal 41. The weight ratio is determined, and the weight ratio of the fine powder of the transition metal 42 to the total weight of the fine metal powder mixture 51 is determined. Specifically, the weight ratio of the fine powder of platinum group metal 41 to the total weight (100%) of the fine metal powder mixture 51 is in the range of 5 to 10%, preferably in the range of 5 to 6%. The weight ratio of one kind of fine particles of the transition metal 42 to the total weight (100%) of the fine metal powder mixture 51 is in the range of 30% to 45%, preferably in the range of 40% to 45%. The weight ratio of the fine powder of the other one of the selected transition metals 42 to the total weight (100%) of the fine metal powder mixture 51 is in the range of 30% to 45%, preferably 40% to 45%. Within the range, the weight ratio of one type of fine powder other than the two types of the selected transition metals 42 to the total weight (100%) of the metal fine powder mixture 51 is in the range of 3% to 5%. , Preferably 4%. The transition metal 42 having a weight ratio of 3% to 5% has a melting point lower than that of the other two types of transition metals 42, and is used as a binder (joining component) for joining the other two types of transition metals 42. Become.

白金族金属41の微粉体の重量比、選択された1種類の遷移金属42の微粉体の重量比、選択された他の1種類の遷移金属42の微粉体の重量比、2種類を除く選択された他の1種類の遷移金属42の微粉体の重量比が前記範囲外になると、それら遷移金属42の微粉体の合成仕事関数を白金族元素の仕事関数に近似させることができないとともに、金属微粉体混合物51を圧縮した金属微粉体圧縮物52を焼成して作られた電極10が白金族元素を担持した電極と略同様の触媒活性(触媒作用)を発揮することができない。   Platinum group metal 41 fine powder weight ratio, selected one kind of transition metal 42 fine powder weight ratio, other selected one kind of transition metal 42 fine powder weight ratio, selection excluding two kinds If the weight ratio of the fine powder of the other transition metal 42 is out of the above range, the synthetic work function of the fine powder of the transition metal 42 cannot be approximated to the work function of the platinum group element, and the metal The electrode 10 formed by firing the compressed metal fine powder 52 obtained by compressing the fine powder mixture 51 cannot exhibit substantially the same catalytic activity (catalytic action) as the electrode supporting the platinum group element.

電極10には、径が異なる多数の微細な流路13(通路孔)が形成されている。電極10は、多数の微細な流路13(通路孔)が形成されているから、その比表面積が大きい。それら流路13(通路孔)は、電極10の前面11に開口する複数の通流口14と、電極10の後面12に開口する複数の通流口14とを有し、電極10の前面11から後面12に向かって電極10をその厚み方向に貫通している。   A large number of minute flow paths 13 (passage holes) having different diameters are formed in the electrode 10. The electrode 10 has a large specific surface area because a large number of fine flow paths 13 (passage holes) are formed therein. The flow paths 13 (passage holes) have a plurality of through holes 14 that open to the front surface 11 of the electrode 10 and a plurality of through holes 14 that open to the rear surface 12 of the electrode 10. The electrode 10 penetrates in the thickness direction toward the rear surface 12.

それら流路13は、電極10の前面11と後面12との間において電極10の厚み方向へ不規則に曲折しながら延びているとともに、電極10の外周縁15から中心に向かって電極10の径方向へ不規則に曲折しながら延びている。径方向へ隣接して厚み方向へ曲折して延びるそれら流路13は、径方向において部分的につながり、一方の流路13と他方の流路13とが互いに連通している。厚み方向へ隣接して径方向へ曲折して延びるそれら流路13は、厚み方向において部分的につながり、一方の流路13と他方の流路13とが互いに連通している。   The flow paths 13 extend between the front surface 11 and the rear surface 12 of the electrode 10 while irregularly bending in the thickness direction of the electrode 10, and the diameter of the electrode 10 increases from the outer peripheral edge 15 of the electrode 10 toward the center. It bends in an irregular direction and extends. The flow passages 13 that are adjacent to each other in the radial direction and extend by bending in the thickness direction are partially connected in the radial direction, and one flow passage 13 and the other flow passage 13 communicate with each other. The flow paths 13 that are adjacent to each other in the thickness direction and bend and extend in the radial direction are partially connected in the thickness direction, and one flow path 13 and the other flow path 13 communicate with each other.

それら流路13(通路孔)の開口面積(開口径)は、厚み方向に向かって一様ではなく、厚み方向に向かって不規則に変化しているとともに、径方向に向かって一様ではなく、径方向に向かって不規則に変化している。それら流路13は、その開口面積(開口径)が大きくなったり、小さくなったりしながら厚み方向と径方向とへ不規則に開口している。また、電極10の前面11に開口する通流口14と後面12に開口する通流口14とは、その開口面積(開口径)が一様ではなく、その面積がすべて相違している。それら流路13(通路孔)の開口径や前後面11,12の通流口14の開口径は、1μm〜100μmの範囲にある。
電極10は、厚み方向や径方向へ不規則に曲折しながら延びる複数の流路13(通路孔)が形成されているから、電極10の比表面積が大きく、それら流路13(通路孔)をガス(気体)や液体が通流しつつガス(気体)や液体を電極10のそれら流路25における接触面に広く接触させることができ、電極10の触媒活性(触媒作用)を有効かつ最大限に利用することができる。
The opening areas (opening diameters) of the flow paths 13 (passage holes) are not uniform in the thickness direction, are irregularly changed in the thickness direction, and are not uniform in the radial direction. , Irregularly changing in the radial direction. The flow paths 13 are irregularly opened in the thickness direction and the radial direction while the opening area (opening diameter) increases or decreases. Further, the opening area (opening diameter) of the through hole 14 opening to the front surface 11 of the electrode 10 and the opening area (opening diameter) of the opening surface to the rear surface 12 are not uniform, and the areas are all different. The opening diameters of the flow paths 13 (passage holes) and the opening diameters of the flow ports 14 of the front and rear surfaces 11 and 12 are in the range of 1 μm to 100 μm.
Since the electrode 10 is formed with a plurality of flow paths 13 (passage holes) that extend while irregularly bending in the thickness direction and the radial direction, the electrode 10 has a large specific surface area, and these flow paths 13 (passage holes) are formed. While the gas (gas) or liquid flows, the gas (gas) or liquid can be widely contacted with the contact surfaces of the flow paths 25 of the electrode 10, and the catalytic activity (catalytic action) of the electrode 10 can be effectively and maximized. Can be used.

電極10(ポーラス構造の薄板電極)は、その厚み寸法L1が0.03mm〜0.8mmの範囲、好ましくは、0.05mm〜0.5mmの範囲にある。電極10の厚み寸法L1が0.03mm(0.05mm)未満では、その強度が低下し、衝撃が加えられたときに電極10が容易に破損又は損壊し、その形状を維持することができない場合がある。電極10の厚み寸法L1が0.8mm(0.5mm)を超過すると、電極10の電気抵抗が大きくなり、電極10に電流がスムースに流れず、電極10が固体高分子形燃料電池17に使用されたときに燃料電池17において十分な電気を発電することができず、燃料電池17に接続された負荷29に十分な電気エネルギーを供給することができない。また、電極10が水素ガス発生装置30に使用されたときに電気分解を効率よく行うことができず、水素ガス発生装置30において短時間に多量の水素ガスを発生させることができない。   The electrode 10 (thin plate electrode having a porous structure) has a thickness dimension L1 in the range of 0.03 mm to 0.8 mm, preferably in the range of 0.05 mm to 0.5 mm. When the thickness dimension L1 of the electrode 10 is less than 0.03 mm (0.05 mm), its strength decreases, and the electrode 10 is easily broken or damaged when an impact is applied, and its shape cannot be maintained. There is. When the thickness dimension L1 of the electrode 10 exceeds 0.8 mm (0.5 mm), the electric resistance of the electrode 10 increases and the current does not flow smoothly to the electrode 10, and the electrode 10 is used for the polymer electrolyte fuel cell 17. In this case, the fuel cell 17 cannot generate sufficient electricity and the load 29 connected to the fuel cell 17 cannot be supplied with sufficient electric energy. Moreover, when the electrode 10 is used in the hydrogen gas generator 30, electrolysis cannot be efficiently performed, and the hydrogen gas generator 30 cannot generate a large amount of hydrogen gas in a short time.

電極10(ポーラス構造の薄板電極)は、その厚み寸法L1が0.03mm〜0.8mmの範囲、好ましくは、0.05mm〜0.5mmの範囲にあるから、電極10が高い強度を有してその形状を維持することができ、電極10に衝撃が加えられたときの電極10の破損や損壊を防ぐことができる。さらに、電極10の電気抵抗を小さくすることができ、電極10に電流がスムースに流れ、電極10が固体高分子形燃料電池17に使用されたときに燃料電池17において十分な電気を発電することができ、燃料電池17に接続された負荷29に十分な電気エネルギーを供給することができる。また、電極10が水素ガス発生装置30に使用されたときに電気分解を効率よく行うことができ、水素ガス発生装置30において短時間に多量の水素ガスを発生させることができる。   The electrode 10 (thin plate electrode having a porous structure) has a thickness dimension L1 of 0.03 mm to 0.8 mm, preferably 0.05 mm to 0.5 mm, and thus the electrode 10 has high strength. The shape of the electrode 10 can be maintained, and damage or destruction of the electrode 10 when a shock is applied to the electrode 10 can be prevented. Further, the electric resistance of the electrode 10 can be reduced, a current smoothly flows through the electrode 10, and when the electrode 10 is used in the polymer electrolyte fuel cell 17, sufficient electricity can be generated in the fuel cell 17. As a result, sufficient electric energy can be supplied to the load 29 connected to the fuel cell 17. Moreover, when the electrode 10 is used in the hydrogen gas generator 30, electrolysis can be efficiently performed, and a large amount of hydrogen gas can be generated in the hydrogen gas generator 30 in a short time.

電極10は、その空隙率が15%〜30%の範囲、好ましくは、20%〜25%の範囲にあり、その相対密度が70%〜85%の範囲、好ましくは、75%〜80%の範囲にある。電極10の空隙率が15%未満であって相対密度が85%を超過すると、電極10に多数の微細な流路13(通路孔)が形成されず、電極10の比表面積を大きくすることができない。電極10の空隙率が30%を超過し、相対密度が70%未満では、流路13(通路孔)の開口面積(開口径)や前後面11,12の通流口14の開口面積(開口径)が必要以上に大きくなり、電極10の強度が低下し、衝撃が加えられたときに電極10が容易に破損又は損壊し、その形状を維持することができない場合があるとともに、電極10の触媒作用が低下し、触媒活性を発揮することができない。   The electrode 10 has a porosity of 15% to 30%, preferably 20% to 25%, and a relative density of 70% to 85%, preferably 75% to 80%. In range. When the porosity of the electrode 10 is less than 15% and the relative density exceeds 85%, a large number of minute flow paths 13 (passage holes) are not formed in the electrode 10 and the specific surface area of the electrode 10 can be increased. Can not. When the porosity of the electrode 10 exceeds 30% and the relative density is less than 70%, the opening area (opening diameter) of the flow path 13 (passage hole) and the opening area (opening area) of the flow passages 14 of the front and rear surfaces 11, 12 are set. The diameter of the electrode 10 becomes unnecessarily large, the strength of the electrode 10 is reduced, and the electrode 10 may be easily damaged or damaged when an impact is applied, and its shape may not be maintained. The catalytic action is lowered and the catalytic activity cannot be exhibited.

電極10は、その空隙率及び相対密度が前記範囲にあるから、電極10が開口面積(開口径)の異なる多数の微細な流路13(通路孔)や開口面積(開口径)の異なる多数の微細な前後面11,12の通流口14を有する多孔質に成形され、電極10の比表面積を大きくすることができ、それら流路13(通路孔)を気体や液体が通流しつつ気体や液体を電極10のそれら流路13における接触面に広く接触させることができる。更に、電極10の触媒作用が向上し、優れた触媒活性を発揮することができる。   Since the porosity and the relative density of the electrode 10 are within the above ranges, the electrode 10 has a large number of minute flow paths 13 (passage holes) having different opening areas (opening diameters) and a large number of different opening areas (opening diameters). The electrode 10 is formed into a porous body having minute front and rear surfaces 11 and 12 through which the gas flows, and the specific surface area of the electrode 10 can be increased. The liquid can widely contact the contact surfaces of the electrodes 10 in the flow paths 13. Further, the catalytic action of the electrode 10 is improved, and excellent catalytic activity can be exhibited.

電極10は、その密度が5.0g/cm〜7.0g/cmの範囲、好ましくは、5.5g/cm〜6.5g/cmの範囲にある。電極10の密度が5.0g/cm未満では、電極10の強度が低下し、衝撃が加えられたときに電極10が容易に破損又は損壊し、その形状を維持することができない場合があるとともに、電極10の触媒作用が低下し、触媒活性を発揮することができない。電極10の密度が7.0g/cmを超過すると、電極10に多数の微細な流路13(通路孔)が形成されず、電極10の比表面積を大きくすることができないとともに、電極10の触媒作用が低下し、触媒活性を発揮することができない。 Electrode 10 ranges its density is 5.0g / cm 2 ~7.0g / cm 2 , preferably in the range of 5.5g / cm 2 ~6.5g / cm 2 . When the density of the electrode 10 is less than 5.0 g / cm 2 , the strength of the electrode 10 is reduced, and the electrode 10 may be easily broken or damaged when an impact is applied, and the shape thereof may not be maintained. At the same time, the catalytic action of the electrode 10 is lowered and the catalytic activity cannot be exhibited. When the density of the electrode 10 exceeds 7.0 g / cm 2 , many fine flow paths 13 (passage holes) are not formed in the electrode 10, the specific surface area of the electrode 10 cannot be increased, and The catalytic action is lowered and the catalytic activity cannot be exhibited.

電極10は、その密度が前記範囲にあるから、電極10が開口面積(開口径)の異なる多数の微細な流路13(通路孔)や開口面積(開口径)の異なる多数の微細な前後面11,12の通流口14を有する多孔質に成形され、電極10の比表面積を大きくすることができ、それら流路13(通路孔)を気体や液体が通流しつつ気体や液体を電極10のそれら流路13における接触面に広く接触させることができる。更に、電極10の触媒作用が向上し、電極10に優れた触媒活性を発揮させることができる。   Since the density of the electrode 10 is within the above range, the electrode 10 has a large number of fine flow paths 13 (passage holes) having different opening areas (opening diameters) and a large number of fine front and rear surfaces having different opening areas (opening diameters). The electrode 10 is formed into a porous material having the flow ports 14 of 11 and 12, and can increase the specific surface area of the electrode 10. While the gas or liquid flows through the flow passages 13 (passage holes), the electrode 10 can pass the gas or liquid. It is possible to make wide contact with the contact surfaces of those flow paths 13. Further, the catalytic action of the electrode 10 is improved, and the electrode 10 can exhibit excellent catalytic activity.

Ptの微粉体(粉状に加工されたPt)、Pbの微粉状(粉状に加工されたPb)、Rhの微粉状(粉状に加工されたRh)、Ruの微粉状(粉状に加工されたRu)、Irの微粉状(粉状に加工されたIr)、Osの微粉状(粉状に加工されたOs)、Tiの微粉体(粉状に加工されたTi)、Crの微粉体(粉状に加工されたCr)、Mnの微粉体(粉状に加工されたMn)、Feの微粉体(粉状に加工されたFe)、Coの微粉体(粉状に加工されたCo)、Niの微粉体(粉状に加工されたNi)、Cuの微粉体(粉状に加工されたCu)、Znの微粉体(粉状に加工されたZn)、Nbの微粉体(粉状に加工されたNb)、Moの微粉体(粉状に加工されたMo)、Agの微粉体(粉状に加工されたAg)の粒径は、10μm〜200μmの範囲にある。   Fine powder of Pt (Pt processed into powder), Fine powder of Pb (Pb processed into powder), Fine powder of Rh (Rh processed into powder), Fine powder of Ru (in powder form) Processed Ru), Ir fine powder (Ir processed into powder), Os fine powder (Os processed into powder), Ti fine powder (Ti processed into powder), Cr Fine powder (Cr processed into powder), Mn fine powder (Mn processed into powder), Fe fine powder (Fe processed into powder), Co fine powder (processed into powder) Co), fine Ni powder (Ni processed into powder), Cu fine powder (Cu processed into powder), Zn fine powder (Zn processed into powder), Nb fine powder The particle size of (powder-processed Nb), Mo fine powder (powder-processed Mo), and Ag fine powder (powder-processed Ag) is 10 μm to 2 It is in the range of 0μm.

それら白金族金属41の微粉体の粒径やそれら遷移金属42の微粉体の粒径が10μm未満では、それら金属の微粉体によって流路13(通路孔)が塞がれ、電極10に多数の微細な流路13を形成することができず、電極10の比表面積を大きくすることができないとともに、電極10の触媒作用が低下し、触媒活性を発揮することができない。それら白金族金属41の微粉体の粒径やそれら遷移金属42の微粉体の粒径が200μmを超過すると、流路13(通路孔)の開口面積(開口径)や前後面11,12の通流口15の開口面積(開口径)が必要以上に大きくなり、電極10に多数の微細な流路13を形成することができず、電極10の比表面積を大きくすることができないとともに、電極10の触媒作用が低下し、触媒活性を発揮することができない。   When the particle size of the fine particles of the platinum group metal 41 or the particle size of the fine particles of the transition metal 42 is less than 10 μm, the fine particles of these metals block the flow paths 13 (passage holes), and a large number of electrodes 10 are formed. The fine flow path 13 cannot be formed, the specific surface area of the electrode 10 cannot be increased, and the catalytic action of the electrode 10 decreases, so that the catalytic activity cannot be exhibited. When the particle size of the fine particles of the platinum group metal 41 or the particle size of the fine particles of the transition metal 42 exceeds 200 μm, the opening area (opening diameter) of the flow path 13 (passage hole) and the passage of the front and rear surfaces 11, 12 are obtained. The opening area (opening diameter) of the flow opening 15 becomes larger than necessary, a large number of minute flow paths 13 cannot be formed in the electrode 10, the specific surface area of the electrode 10 cannot be increased, and the electrode 10 However, the catalytic activity of is reduced and the catalytic activity cannot be exhibited.

電極10は、それら白金族金属41の微粉体の粒径やそれら遷移金属42の微粉体の粒径が前記範囲にあるから、電極10が開口面積(開口径)の異なる多数の微細な流路13(通路孔)や開口面積(開口径)の異なる多数の微細な前後面11,12の通流口14を有する多孔質に成形され、電極10の比表面積を大きくすることができ、それら流路13を気体や液体が通流しつつ気体や液体を電極10のそれら流路13における接触面に広く接触させることができる。更に、電極10の触媒作用が向上し、電極10に優れた触媒活性を発揮させることができる。   In the electrode 10, since the particle size of the fine powder of the platinum group metal 41 and the particle size of the fine powder of the transition metal 42 are within the above range, the electrode 10 has a large number of fine flow paths having different opening areas (opening diameters). 13 (passage hole) and a large number of minute front and rear surfaces 11 and 12 having different opening areas (opening diameters) through which the flow ports 14 are formed, and the specific surface area of the electrode 10 can be increased. While the gas or liquid flows through the passage 13, the gas or liquid can be widely brought into contact with the contact surfaces of the electrodes 10 in the passages 13. Further, the catalytic action of the electrode 10 is improved, and the electrode 10 can exhibit excellent catalytic activity.

電極10に使用する白金族金属や遷移金属の具体例としては、図10に示すように、粉状に加工されたPt43(白金)の微粉体47(粒径:10μm〜200μm)と、粉状に加工されたNi44(ニッケル)の微粉体48(粒径:10μm〜200μm)と、粉状に加工されたFe45(鉄)の微粉体49(粒径:10μm〜200μm)と、粉状に加工されたCu46(銅)の微粉体50(粒径:10μm〜200μm)とを原料としている。電極10は、Pt43やNi44、Fe45、Cu46の微粉体47〜50を均一に混合・分散した金属微粉体混合物51を所定面積の薄板状に圧縮して金属微粉体圧縮物52を作り、その金属微粉体圧縮物52を所定温度で焼成することで、多数の微細な流路13(通路孔)が形成されたポーラス構造かつ薄板状に成形される。   As a specific example of the platinum group metal or the transition metal used for the electrode 10, as shown in FIG. 10, a powdered Pt43 (platinum) fine powder 47 (particle size: 10 μm to 200 μm) and powdered Ni44 (nickel) fine powder 48 (particle size: 10 μm to 200 μm) processed into powder, and Fe45 (iron) fine powder 49 (particle size: 10 μm to 200 μm) processed into powder, and powder processed The Cu 46 (copper) fine powder 50 (particle size: 10 μm to 200 μm) is used as a raw material. The electrode 10 is formed by compressing a metal fine powder mixture 51, which is a uniform mixture and dispersion of fine powders 47 to 50 of Pt43, Ni44, Fe45, and Cu46, into a thin plate having a predetermined area to form a metal fine powder compressed product 52. By firing the fine powder compact 52 at a predetermined temperature, it is formed into a thin plate shape having a porous structure in which a large number of fine flow paths 13 (passage holes) are formed.

電極10では、Ni44の仕事関数とFe45の仕事関数とCu46の仕事関数との合成仕事関数が白金族元素の仕事関数に近似するように、Pt43の微粉体47の金属微粉体混合物51の全重量に対する重量比、Ni44の微粉体48の金属微粉体混合物51の全重量に対する重量比、Fe45の微粉体49の金属微粉体混合物51の全重量に対する重量比、Cu46の微粉体50の金属微粉体混合物51の全重量に対する重量比が決定されている。なお、Cu46の微粉体50は、その融点がPt43の微粉体47やNi44の微粉体48、Fe45の微粉体49のそれよりも低く、Pt43の微粉体47やNi44の微粉体48、Fe46の微粉体49を接合するバインダー(接合成分)となる。電極10では、所定面積の薄板状に圧縮した金属微粉体圧縮物52の焼成時に最も融点のCu46の微粉体50が溶融し、溶融したCu46をバインダーとしてPt43の微粉体47とNi44の微粉体48とFe45の微粉体49とが接合されている。   In the electrode 10, the total weight of the fine metal powder mixture 51 of the fine powder 47 of Pt43 is set so that the combined work function of the work function of Ni44, the work function of Fe45, and the work function of Cu46 approximates the work function of the platinum group element. To the total weight of the metal fine powder mixture 51 of the fine powder 48 of Ni44, the weight ratio of the fine powder 49 of Fe45 to the total weight of the metal fine powder mixture 51, and the metal fine powder mixture of the fine powder 50 of Cu46. The weight ratio of 51 to the total weight has been determined. The fine powder 50 of Cu46 has a lower melting point than that of the fine powder 47 of Pt43, the fine powder 48 of Ni44, and the fine powder 49 of Fe45, and the fine powder 47 of Pt43, the fine powder 48 of Ni44, and the fine powder of Fe46. It serves as a binder (bonding component) for bonding the body 49. In the electrode 10, the fine powder 50 of Cu46 having the highest melting point is melted during the firing of the metal fine powder compact 52 compressed into a thin plate having a predetermined area, and the fine Cu powder 46 is used as a binder to form the fine powder 47 of Pt43 and the fine powder 48 of Ni44. And a fine powder 49 of Fe45 are joined.

金属微粉体混合物51の全重量(100%)に対するPt43(白金族金属41)の微粉体47の重量比は、5〜10%の範囲、好ましくは、5〜6%の範囲であり、金属微粉体混合物51の全重量(100%)に対するNi44(遷移金属42)の微粉体48の重量比は、30%〜45%の範囲、好ましくは、40%〜45%である。金属微粉体混合物51の全重量(100%)に対するFe45(遷移金属42)の微粉体49の重量比は、30〜45%の範囲、好ましくは、40%〜45%であり、金属微粉体混合物51の全重量(100%)に対するCu46(遷移金属42)の微粉体50の重量比は、3%〜5%の範囲、好ましくは、4%である。Pt43の微粉体47の重量比、Ni44の微粉体48の重量比、Fe45の微粉体49の重量比、Cu46の微粉体50の重量比が前記範囲外になると、それらの微粉体48〜50の合成仕事関数を白金族元素の仕事関数に近似させることができないとともに、金属微粉体混合物51を圧縮した金属微粉体圧縮物52を焼成して作られた電極10が白金族元素を担持した電極と略同様の触媒活性(触媒作用)を発揮することができない。   The weight ratio of the fine powder 47 of Pt43 (platinum group metal 41) to the total weight (100%) of the fine metal powder mixture 51 is in the range of 5 to 10%, preferably in the range of 5 to 6%. The weight ratio of the fine powder of Ni44 (transition metal 42) to the total weight (100%) of the body mixture 51 is in the range of 30% to 45%, preferably 40% to 45%. The weight ratio of the fine powder 49 of Fe45 (transition metal 42) to the total weight (100%) of the fine metal powder mixture 51 is in the range of 30 to 45%, preferably 40% to 45%. The weight ratio of the fine powder 50 of Cu46 (transition metal 42) to the total weight of 51 (100%) is in the range of 3% to 5%, preferably 4%. When the weight ratio of the fine powder 47 of Pt43, the weight ratio of the fine powder 48 of Ni44, the weight ratio of the fine powder 49 of Fe45, and the weight ratio of the fine powder 50 of Cu46 are out of the above ranges, the fine powders 48 to 50 The composite work function cannot be approximated to the work function of the platinum group element, and the electrode 10 made by firing the metal fine powder compact 52 obtained by compressing the metal fine powder mixture 51 is an electrode supporting the platinum group element. It is not possible to exhibit substantially the same catalytic activity (catalytic action).

図4は、電極10を使用したセル16の一例を示す分解斜視図であり、図5は、電極10を使用したセル16の側面図である。図6は、電極10を使用した固体高分子形燃料電池17の発電を説明する図であり、図7は、電極10の起電圧試験の結果を示す図である。図8は、電極10のI−V特性試験の結果を示す図である。   FIG. 4 is an exploded perspective view showing an example of the cell 16 using the electrode 10, and FIG. 5 is a side view of the cell 16 using the electrode 10. FIG. 6 is a diagram for explaining the power generation of the polymer electrolyte fuel cell 17 using the electrode 10, and FIG. 7 is a diagram showing the result of the electromotive voltage test of the electrode 10. FIG. 8 is a diagram showing a result of the IV characteristic test of the electrode 10.

電極10を使用したセル16の一例としては、図4に示すように、電極10を使用した燃料極18(陽極)と、電極10を使用した空気極19(陰極)と、燃料極18及び空気極19に介在する固体高分子電解質膜20(電極接合体膜)(フッ素系イオン交換膜)と、燃料極18の厚み方向外側に位置するセパレータ21(バイポーラプレート)と、空気極19の厚み方向外側に位置するセパレータ22(バイポーラプレート)とから形成されている。それらセパレータ21,22には、反応ガス(水素や酸素等)の供給流路が刻設されている(彫り込まれている)。   As an example of the cell 16 using the electrode 10, as shown in FIG. 4, a fuel electrode 18 (anode) using the electrode 10, an air electrode 19 (cathode) using the electrode 10, a fuel electrode 18 and an air A solid polymer electrolyte membrane 20 (electrode assembly membrane) (fluorine-based ion exchange membrane) interposed in the electrode 19, a separator 21 (bipolar plate) located outside the fuel electrode 18 in the thickness direction, and a thickness direction of the air electrode 19 It is formed of a separator 22 (bipolar plate) located outside. A supply channel for a reaction gas (hydrogen, oxygen, etc.) is engraved (engraved) on the separators 21 and 22.

セル16では、図5に示すように、燃料極18や空気極19、固体高分子電解質膜20が厚み方向へ重なり合って一体化し、膜/電極接合体23(Membrane Electrode Assembly, MEA)を構成し、膜/電極接合体23をそれらセパレータ21,22が挟み込んでいる。膜/電極接合体23では、ホットプレスによって固体高分子電解質膜20の一方の面に燃料極18の面が密着し、固体高分子電解質膜20の一方の面に空気極19の面が密着している。固体高分子形燃料電池17では、複数のセル16(単セル)が一方向へ重なり合って直列につながれてセルスタック(燃料電池スタック)を形成する。固体高分子電解質膜20は、プロトン導電性があり、電子導電性がない。   In the cell 16, as shown in FIG. 5, the fuel electrode 18, the air electrode 19, and the solid polymer electrolyte membrane 20 are overlapped and integrated in the thickness direction to form a membrane / electrode assembly 23 (Membrane Electrode Assembly, MEA). The membrane / electrode assembly 23 is sandwiched by the separators 21 and 22. In the membrane / electrode assembly 23, the surface of the fuel electrode 18 adheres to one surface of the solid polymer electrolyte membrane 20 and the surface of the air electrode 19 adheres to one surface of the solid polymer electrolyte membrane 20 by hot pressing. ing. In the polymer electrolyte fuel cell 17, a plurality of cells 16 (single cells) are overlapped in one direction and connected in series to form a cell stack (fuel cell stack). The solid polymer electrolyte membrane 20 has proton conductivity and no electron conductivity.

燃料極18とセパレータ21との間には、ガス拡散層24が形成され、空気極19とセパレータ22との間には、ガス拡散層25が形成されている。燃料極18とセパレータ21との間であってガス拡散層24の上部及び下部には、ガスシール26が設置されている。空気極19とセパレータ22との間であってガス拡散層25の上部及び下部には、ガスシール27が設置されている。   A gas diffusion layer 24 is formed between the fuel electrode 18 and the separator 21, and a gas diffusion layer 25 is formed between the air electrode 19 and the separator 22. Gas seals 26 are installed between the fuel electrode 18 and the separator 21 and above and below the gas diffusion layer 24. Gas seals 27 are installed between the air electrode 19 and the separator 22 and above and below the gas diffusion layer 25.

固体高分子形燃料電池17では、図6に示すように、燃料極18(電極10)に水素(燃料)が供給され、空気極19(電極10)に空気(酸素)が供給される。燃料極18(電極10)では、水素がH→2H+2eの反応(触媒作用)によってプロトン(水素イオン、H)と電子とに分解される。その後、プロトンが固体高分子電解質膜20内を通って空気極19(電極10)へ移動し、電子が導線28内を通って空気極19へ移動する。固体高分子電解質膜20には、燃料極18で生成されたプロトンが通流する。空気極19では、固体高分子電解質膜20から移動したプロトンと導線28を移動した電子とが空気中の酸素と反応し、4H+O+4e→2HOの反応によって水が生成される。 In the polymer electrolyte fuel cell 17, as shown in FIG. 6, hydrogen (fuel) is supplied to the fuel electrode 18 (electrode 10) and air (oxygen) is supplied to the air electrode 19 (electrode 10). At the fuel electrode 18 (electrode 10), hydrogen is decomposed into protons (hydrogen ions, H + ) and electrons by the reaction (catalytic action) of H 2 → 2H + + 2e . After that, protons move to the air electrode 19 (electrode 10) through the solid polymer electrolyte membrane 20, and electrons move to the air electrode 19 through the lead wire 28. Protons generated at the fuel electrode 18 flow through the solid polymer electrolyte membrane 20. At the air electrode 19, the protons that have moved from the solid polymer electrolyte membrane 20 and the electrons that have moved through the conductor 28 react with oxygen in the air, and water is produced by the reaction of 4H + + O 2 + 4e → 2H 2 O.

電極10は、遷移金属42の仕事関数の合成仕事関数が白金族元素の仕事関数に近似するように、遷移金属42の中から少なくとも3種類の遷移金属42が選択され、選択された遷移金属42の仕事関数の合成仕事関数が白金族元素の仕事関数に近似するように、白金族金属41の金属微粉体混合物51の全重量に対する重量比が決定され、選択された遷移金属42の金属微粉体混合物51の全重量に対する重量比が決定されているから、電極10が白金族元素を担持した電極と略同一の仕事関数を備え、白金族元素を担持した電極と略同様の触媒活性(触媒作用)を示し、水素がプロトンと電子とに効率よく分解される。   In the electrode 10, at least three kinds of transition metals 42 are selected from the transition metals 42 so that the composite work function of the work functions of the transition metals 42 approximates the work function of the platinum group element, and the selected transition metals 42 are selected. The weight ratio of the platinum group metal 41 to the total weight of the fine metal powder mixture 51 of the platinum group metal 41 is determined so that the combined work function of Since the weight ratio of the mixture 51 to the total weight is determined, the electrode 10 has substantially the same work function as the electrode supporting the platinum group element, and the same catalytic activity (catalyst action) as the electrode supporting the platinum group element. ), Hydrogen is efficiently decomposed into protons and electrons.

具体例として示した燃料極18(電極10)や空気極19(電極10)は、仕事関数の合成仕事関数が白金族元素の仕事関数に近似するように、Ni44とFe45とCu46とが選択され、選択されたNi44とFe45とCu46との仕事関数の合計仕事関数が白金族元素の仕事関数に近似するように、金属微粉体混合物51の全重量に対するPt43の重量比が決定され、金属微粉体混合物51の全重量に対するNi44の微粉体48の重量比とFe45の微粉体49の重量比とCu46の微粉体50の重量比とが決定されているから、燃料極18(電極10)や空気極19(電極10)が白金族元素を担持した電極と略同一の仕事関数を備え、白金族元素を担持した電極と略同様の触媒活性(触媒作用)を示し、水素がプロトンと電子とに効率よく分解される。   For the fuel electrode 18 (electrode 10) and the air electrode 19 (electrode 10) shown as specific examples, Ni44, Fe45, and Cu46 are selected so that the composite work function of the work functions approximates the work function of the platinum group element. The weight ratio of Pt43 to the total weight of the fine metal powder mixture 51 is determined so that the total work function of the selected Ni44, Fe45, and Cu46 is close to the work function of the platinum group element. Since the weight ratio of the fine powder 48 of Ni44, the fine powder 49 of Fe45, and the fine powder 50 of Cu46 with respect to the total weight of the mixture 51 is determined, the fuel electrode 18 (electrode 10) and the air electrode. 19 (electrode 10) has substantially the same work function as the electrode supporting the platinum group element and exhibits substantially the same catalytic activity (catalytic action) as the electrode supporting the platinum group element, and hydrogen and protons Efficiency is often broken down into door.

起電圧試験では、水素ガスを注入してから15分の間、燃料極18(電極10)と空気極19(電極10)との間の電圧(V)を測定した。図7の起電圧試験の結果を示す図では、横軸に測定時間(min)を表し、縦軸に燃料極18(電極10)と空気極19(電極10)との間の電圧(V)を表す。電極10を使用した固体高分子形燃料電池17では、図7に示すように、電極間の電圧が1.05(V)〜1.079(V)であった。   In the electromotive voltage test, the voltage (V) between the fuel electrode 18 (electrode 10) and the air electrode 19 (electrode 10) was measured for 15 minutes after hydrogen gas was injected. In the diagram showing the results of the electromotive force test in FIG. 7, the horizontal axis represents the measurement time (min), and the vertical axis represents the voltage (V) between the fuel electrode 18 (electrode 10) and the air electrode 19 (electrode 10). Represents In the polymer electrolyte fuel cell 17 using the electrode 10, the voltage between the electrodes was 1.05 (V) to 1.079 (V) as shown in FIG. 7.

I−V特性試験では、燃料極18(電極10)と空気極19(電極10)との間に負荷29を接続し、電圧と電流との関係を測定した。図8のI−V特性試験の結果を示す図では、横軸に電流(A)を表し、縦軸に電圧(V)を表す。電極10を使用した固体高分子形燃料電池17では、図8に示すように、緩やかな電圧降下が認められた。図7の起電圧試験の結果や図8のI−V特性試験の結果に示すように、電極10が電子を放出させて水素イオンとなる反応を促進させる優れた触媒作用を有するとともに、優れた酸素還元機能(触媒作用)を有することが確認された。   In the IV characteristic test, a load 29 was connected between the fuel electrode 18 (electrode 10) and the air electrode 19 (electrode 10), and the relationship between voltage and current was measured. In the diagram showing the results of the IV characteristic test in FIG. 8, the horizontal axis represents current (A) and the vertical axis represents voltage (V). In the polymer electrolyte fuel cell 17 using the electrode 10, a gradual voltage drop was observed as shown in FIG. As shown in the results of the electromotive voltage test of FIG. 7 and the results of the IV characteristic test of FIG. 8, the electrode 10 has an excellent catalytic action for promoting the reaction of releasing electrons to become hydrogen ions, and it is excellent. It was confirmed to have an oxygen reduction function (catalytic action).

電極10は、遷移金属42の仕事関数の合成仕事関数が白金族元素の仕事関数に近似するように、遷移金属42の中から少なくとも3種類の遷移金属42が選択され、選択された遷移金属42の仕事関数の合成仕事関数が白金族元素の仕事関数に近似するように、白金族金属41の金属微粉体混合物51の全重量に対する重量比が決定され、選択された遷移金属42の微粉体の金属微粉体混合物51の全重量に対する重量比が決定されているから、電極10が白金族元素を担持した電極と略同一の仕事関数を備え、白金族元素を担持した電極と略同様の触媒活性(触媒作用)を発揮することができ、その触媒機能を十分かつ確実に利用することが可能であって優れた触媒活性(触媒作用)を有する燃料極18(陽極)や空気極19(陰極)として好適に使用することができる。   In the electrode 10, at least three kinds of transition metals 42 are selected from the transition metals 42 so that the composite work function of the work functions of the transition metals 42 approximates the work function of the platinum group element, and the selected transition metals 42 are selected. The weight ratio of the platinum group metal 41 to the total weight of the metal fine powder mixture 51 is determined so that the combined work function of the above-mentioned work functions approximates the work function of the platinum group element, and Since the weight ratio of the metal fine powder mixture 51 to the total weight is determined, the electrode 10 has substantially the same work function as the electrode supporting the platinum group element, and the same catalytic activity as the electrode supporting the platinum group element. A fuel electrode 18 (anode) or an air electrode 19 (cathode) capable of exerting (catalytic action), sufficiently and reliably utilizing its catalytic function, and having excellent catalytic activity (catalytic action). When It can be suitably used Te.

また、遷移金属42としてNi44とFe45とCu46とを原料とした電極10は、仕事関数の合成仕事関数が白金族元素の仕事関数に近似するように、Ni44とFe45とCu46とが選択され、選択されたNi44とFe45とCu46との仕事関数の合計仕事関数が白金族元素の仕事関数に近似するように、金属微粉体混合物51の全重量に対するPt43の微粉体47の重量比が決定され、金属微粉体混合物51の全重量に対するNi44の微粉体48の重量比とFe45の微粉体49の重量比とCu46の微粉体50の重量比とが決定されているから、電極10が白金族元素を担持した電極と略同一の仕事関数を備え、白金族元素を担持した電極と略同様の触媒活性(触媒作用)を発揮することができ、その触媒機能を十分かつ確実に利用することが可能であって優れた触媒活性(触媒作用)を有する燃料極18(陽極)や空気極19(陰極)として好適に使用することができる。   Further, in the electrode 10 made of Ni44, Fe45 and Cu46 as the transition metal 42, Ni44, Fe45 and Cu46 are selected and selected so that the composite work function of the work functions approximates the work function of the platinum group element. The weight ratio of the fine powder 47 of Pt43 to the total weight of the fine metal powder mixture 51 is determined so that the total work function of the work functions of Ni44, Fe45, and Cu46 approximated to the work function of the platinum group element is Since the weight ratio of the fine powder 48 of Ni44, the fine powder 49 of Fe45 and the fine powder 50 of Cu46 to the total weight of the fine powder mixture 51 is determined, the electrode 10 carries the platinum group element. The electrode has a work function almost the same as that of the electrode, and can exhibit the same catalytic activity (catalytic action) as the electrode supporting the platinum group element. Can be suitably used as a fuel electrode 18 (anode) and an air electrode 19 with a can be reliably utilized excellent catalytic activity (catalytic) (cathode).

電極10は、それが白金族元素を担持した電極と略同様の触媒活性(触媒作用)を発揮するから、電極10を固体高分子形燃料電池17に使用することで、燃料電池17において十分な電気を発電することができ、燃料電池17に接続された負荷29に十分な電気エネルギーを供給することができる。電極10は、それが各種の遷移金属から選択された廉価な遷移金属(たとえば、Ni44、Fe45、Cu46)を含み、金属微粉体混合物51の全重量に対するそれら遷移金属42の微粉体の重量比(Ni44の微粉体48の重量比、Fe45の微粉体49の重量比、Cu46の微粉体50の重量比)が前記範囲にあり、金属微粉体混合物51の全重量に対する白金族金属41の微粉体の重量比(Pt43の微粉体47の重量比)が前記範囲にあり、高価な白金族金属41の含有量が少ないから、燃料極19(陽極)や空気極18(陰極)を廉価に作ることができる。   Since the electrode 10 exhibits substantially the same catalytic activity (catalytic action) as the electrode supporting the platinum group element, the use of the electrode 10 in the polymer electrolyte fuel cell 17 is sufficient for the fuel cell 17. Electricity can be generated and sufficient electric energy can be supplied to the load 29 connected to the fuel cell 17. The electrode 10 contains inexpensive transition metals (eg, Ni44, Fe45, Cu46) selected from various transition metals, and the weight ratio of the fine particles of the transition metal 42 to the total weight of the fine metal powder mixture 51 ( The weight ratio of the fine powder 48 of Ni44, the weight ratio of the fine powder 49 of Fe45, the weight ratio of the fine powder 50 of Cu46) is within the above range, and the ratio of the fine powder of the platinum group metal 41 to the total weight of the fine metal powder mixture 51 is Since the weight ratio (the weight ratio of the fine powder 47 of Pt43) is in the above range and the content of the expensive platinum group metal 41 is small, the fuel electrode 19 (anode) and the air electrode 18 (cathode) can be manufactured at low cost. it can.

図9は、電極10を使用した水素ガス発生装置30の電気分解を説明する図である。電極10を使用した水素ガス発生装置30の一例としては、図9に示すように、電極10を使用したアノード31(陽極)と、電極10を使用したカソード32(陰極)と、アノード31及びカソード32の間に介在する固体高分子電解質膜33(電極接合体膜)(フッ素系イオン交換膜)と、陽極給電部材34及び陰極給電部材35と、陽極用貯水槽36及び陰極用貯水槽37と、陽極主電極38及び陰極主電極39とから形成されている。   FIG. 9 is a diagram for explaining electrolysis of the hydrogen gas generator 30 using the electrode 10. As an example of the hydrogen gas generator 30 using the electrode 10, as shown in FIG. 9, an anode 31 (anode) using the electrode 10, a cathode 32 (cathode) using the electrode 10, an anode 31 and a cathode A solid polymer electrolyte membrane 33 (electrode assembly membrane) (fluorine-based ion exchange membrane) interposed between 32, an anode power feeding member 34 and a cathode power feeding member 35, an anode water storage tank 36 and a cathode water storage tank 37. , An anode main electrode 38 and a cathode main electrode 39.

水素ガス発生装置30では、アノード31(陽極)やカソード32(陰極)、固体高分子電解質膜33が厚み方向へ重なり合って一体化し、膜/電極接合体40 (Membrane Electrode Assembly, MEA)を構成し、膜/電極接合体40を陽極給電部材34と陰極給電部材35とが挟み込んでいる。固体高分子電解質膜33は、プロトン導電性があり、電子導電性がない。膜/電極接合体40では、ホットプレスによって固体高分子電解質膜33の一方の面にカソード32(陰極)の面が密着し、固体高分子電解質膜20の一方の面にアノード31(陽極)の面が密着している。   In the hydrogen gas generator 30, the anode 31 (anode), the cathode 32 (cathode), and the solid polymer electrolyte membrane 33 are overlapped and integrated in the thickness direction to form a membrane / electrode assembly 40 (Membrane Electrode Assembly, MEA). The membrane / electrode assembly 40 is sandwiched between the anode power feeding member 34 and the cathode power feeding member 35. The solid polymer electrolyte membrane 33 has proton conductivity and no electron conductivity. In the membrane / electrode assembly 40, the surface of the cathode 32 (cathode) is brought into close contact with one surface of the solid polymer electrolyte membrane 33 by hot pressing, and the anode 31 (anode) is bonded to one surface of the solid polymer electrolyte membrane 20. The surfaces are in close contact.

陽極給電部材34は、アノード31(陽極)の外側に位置してアノード31に密着し、アノード31に+の電流を給電する。陽極用貯水槽36は、陽極給電部材34の外側に位置して陽極給電部材34に密着している。陽極主電極38は、陽極用貯水槽36の外側に位置して陽極給電部材34に+の電流を給電する。陰極給電部材35は、カソード32(陰極)の外側に位置してカソード32に密着し、カソード32に−の電流を給電する。陰極用貯水槽37は、陰極給電部材35の外側に位置して陰極給電部材35に密着している。陰極主電極239は、陰極用貯水槽37の外側に位置して陰極給電部材35に−の電流を給電する。   The anode power supply member 34 is located outside the anode 31 (anode) and is in close contact with the anode 31, and supplies a positive current to the anode 31. The anode water storage tank 36 is located outside the anode power supply member 34 and is in close contact with the anode power supply member 34. The anode main electrode 38 is located outside the anode water storage tank 36 and supplies a positive current to the anode power supply member 34. The cathode power supply member 35 is located outside the cathode 32 (cathode), is in close contact with the cathode 32, and supplies a negative current to the cathode 32. The cathode water storage tank 37 is located outside the cathode power supply member 35 and is in close contact with the cathode power supply member 35. The cathode main electrode 239 is located outside the cathode water storage tank 37 and supplies a negative current to the cathode power supply member 35.

水素ガス発生装置30では、図9に矢印で示すように、陽極用貯水槽36及び陰極用貯水槽37に水(HO)が給水され、陽極主電極38に電源から+の電流が給電されるとともに、陰極主電極39に電源から−の電流が給電される。陽極主電極38に給電された+の電流が陽極給電部材34からアノード31(陽極)に給電され、陰極主電極39に給電された−の電流が陰極給電部材35からカソード32(陰極)に給電される。 In the hydrogen gas generator 30, as shown by the arrow in FIG. 9, water (H 2 O) is supplied to the anode water storage tank 36 and the cathode water storage tank 37, and a positive current is supplied from the power supply to the anode main electrode 38. At the same time, a negative current is supplied from the power supply to the cathode main electrode 39. The positive current supplied to the anode main electrode 38 is supplied from the anode power supply member 34 to the anode 31 (anode), and the negative current supplied to the cathode main electrode 39 is supplied from the cathode power supply member 35 to the cathode 32 (cathode). To be done.

アノード31(陽極)(電極10)では、2HO→4H+4e+Oの陽極反応(触媒作用)によって酸素が生成され、カソード32(陰極)(電極10)では、4H+4e→2Hの陰極反応(触媒作用)によって酸素が生成される。プロトン(水素イオン:H)は、固体高分子電解質膜33内を通ってカソード32へ移動する。固体高分子電解質膜33には、アノード31で生成されたプロトンが通流する。 In the anode 31 (anode) (electrode 10), oxygen is generated by the anodic reaction (catalysis) of 2H 2 O → 4H + + 4e + O 2 , and in the cathode 32 (cathode) (electrode 10), 4H + + 4e → Oxygen is produced by the cathodic reaction (catalysis) of 2H 2 . Protons (hydrogen ions: H + ) move to the cathode 32 through the solid polymer electrolyte membrane 33. Protons generated at the anode 31 flow through the solid polymer electrolyte membrane 33.

電極10(アノード31及びカソード32)は、遷移金属42の仕事関数の合成仕事関数が白金族元素の仕事関数に近似するように、遷移金属42の中から少なくとも3種類の遷移金属42が選択され、選択された遷移金属42の仕事関数の合成仕事関数が白金族元素の仕事関数に近似するように、金属微粉体混合物51の全重量に対する白金族金属41の微粉体47の重量比が決定され、選択された遷移金属42の金属微粉体混合物51の全重量に対する重量比が決定されているから、電極10(アノード31及びカソード32)が白金族元素を担持した電極と略同一の仕事関数を備え、白金族元素を担持した電極と略同様の触媒活性(触媒作用)を発揮することができ、その触媒機能を十分かつ確実に利用することが可能であって優れた触媒活性(触媒作用)を有するアノード31(陽極)やカソード32(陰極)として好適に使用することができる。   For the electrode 10 (anode 31 and cathode 32), at least three kinds of transition metals 42 are selected from the transition metals 42 so that the composite work function of the work functions of the transition metals 42 approximates the work function of the platinum group element. The weight ratio of the fine powder 47 of the platinum group metal 41 to the total weight of the fine metal powder mixture 51 is determined so that the composite work function of the work functions of the selected transition metals 42 approximates the work function of the platinum group element. Since the weight ratio of the selected transition metal 42 to the total weight of the fine metal powder mixture 51 is determined, the electrode 10 (anode 31 and cathode 32) has substantially the same work function as the electrode carrying the platinum group element. In addition, it is possible to exhibit substantially the same catalytic activity (catalytic action) as the electrode supporting the platinum group element, and it is possible to utilize its catalytic function sufficiently and reliably, which is excellent. It can be suitably used as an anode 31 (anode) and a cathode 32 having a medium activity (catalytic) (cathode).

また、遷移金属42としてNi44とFe45とCu46とを原料とした電極10(アノード31及びカソード32)は、仕事関数の合成仕事関数が白金族元素の仕事関数に近似するように、Ni44とFe45とCu46とが選択され、選択されたNi44とFe45とCu46との仕事関数の合計仕事関数が白金族元素の仕事関数に近似するように、金属微粉体混合物51の全重量に対するPt43の微粉体47の重量比が決定され、金属微粉体混合物51の全重量に対するNi44の微粉体48の重量比とFe45の微粉体49の重量比とCu46の微粉体50の重量比とが決定されているから、電極10(アノード31及びカソード32)が白金族元素を担持した電極と略同一の仕事関数を備え、白金族元素を担持した電極と略同様の触媒活性(触媒作用)を発揮することができ、その触媒機能を十分かつ確実に利用することが可能であって優れた触媒活性(触媒作用)を有するアノード31(陽極)やカソード32(陰極)として好適に使用することができる。   Further, the electrode 10 (anode 31 and cathode 32) using Ni44, Fe45, and Cu46 as the transition metals 42 as raw materials is composed of Ni44 and Fe45 so that the combined work function of the work functions approximates the work function of the platinum group element. Cu46 and Pt43 fine powder 47 with respect to the total weight of the metal fine powder mixture 51 is selected so that the total work function of the selected Ni44, Fe45 and Cu46 approximates the work function of the platinum group element. The weight ratio is determined, and the weight ratio of the fine powder of Ni44, the weight ratio of the fine powder 49 of Fe45, and the weight ratio of the fine powder of Cu46 to the total weight of the metal fine powder mixture 51 is determined. 10 (anode 31 and cathode 32) has substantially the same work function as the electrode supporting the platinum group element, and is substantially the same as the electrode supporting the platinum group element. An anode 31 (anode) and a cathode 32 (cathode) that can exhibit catalytic activity (catalyst action), can fully and surely utilize the catalytic function, and have excellent catalytic activity (catalyst action). Can be preferably used as.

電極10(アノード31及びカソード32)は、それが白金族元素を担持した電極と略同様の触媒活性(触媒作用)を発揮するから、電極10(アノード31及びカソード32)を水素ガス発生装置30に使用することで、水素ガス発生装置30において電気分解を効率よく行うことができ、短時間に多量の水素ガスを発生させることができる。電極10(アノード31及びカソード32)は、それが各種の遷移金属から選択された廉価な遷移金属(Ni44、Fe45、Cu46)を含み、金属微粉体混合物51の全重量に対するそれら遷移金属42の微粉体の重量比(Ni44の微粉体48の重量比、Fe45の微粉体49の重量比、Cu46の微粉体50の重量比)が前記範囲にあり、金属微粉体混合物51の全重量に対する白金族金属41の微粉体の重量比(Pt43の微粉体47の重量比)が前記範囲にあり、高価な白金族金属41の含有量が少ないから、アノード31(陽極)やカソード32(陰極)を廉価に作ることができる。   Since the electrode 10 (anode 31 and cathode 32) exhibits substantially the same catalytic activity (catalytic action) as the electrode carrying the platinum group element, the electrode 10 (anode 31 and cathode 32) is connected to the hydrogen gas generator 30. The electrolysis can be efficiently performed in the hydrogen gas generation device 30 by using the hydrogen gas generation device, and a large amount of hydrogen gas can be generated in a short time. The electrode 10 (anode 31 and cathode 32) contains inexpensive transition metals (Ni44, Fe45, Cu46) selected from various transition metals, and fine particles of the transition metals 42 based on the total weight of the metal fine powder mixture 51. The weight ratio of the body (the weight ratio of the fine powder 48 of Ni44, the weight ratio of the fine powder 49 of Fe45, the weight ratio of the fine powder 50 of Cu46) is within the above range, and the platinum group metal relative to the total weight of the metal fine powder mixture 51. Since the weight ratio of the fine powder of 41 (the weight ratio of the fine powder 47 of Pt43) is within the above range and the content of the expensive platinum group metal 41 is small, the anode 31 (anode) and the cathode 32 (cathode) can be made inexpensive. Can be made.

図10は、電極10の製造方法を説明する図である。電極10(燃料極18及び空気極19、アノード31及びカソード32)は、図10に示すように、遷移金属選択工程S1、金属微粉体作成工程S2、微粉体重量比決定工程S3、金属微粉体混合物作成工程S4、金属微粉体圧縮物作成工程S5、薄板電極作成工程S6を有する電極製造方法によって製造される。電極製造方法では、白金族金属41と少なくとも3種類の遷移金属42とを原料として電極10(燃料極18及び空気極19、アノード31及びカソード32)を製造する。   FIG. 10 is a diagram illustrating a method of manufacturing the electrode 10. As shown in FIG. 10, the electrode 10 (fuel electrode 18 and air electrode 19, anode 31 and cathode 32) has a transition metal selection step S1, a fine metal powder preparation step S2, a fine powder weight ratio determination step S3, and a fine metal powder. It is manufactured by an electrode manufacturing method including a mixture preparation step S4, a fine metal powder compact preparation step S5, and a thin plate electrode preparation step S6. In the electrode manufacturing method, the electrode 10 (fuel electrode 18 and air electrode 19, anode 31 and cathode 32) is manufactured using the platinum group metal 41 and at least three kinds of transition metals 42 as raw materials.

遷移金属選択工程S1では、各種の白金族金属41の中から少なくとも1種類の白金族金属41(白金(Pt)、パラジウム(Pb)、ロジウム(Rh)、ルテニウム(Ru)、イリジウム(Ir)、オスミウム(Os))を選択し、各種の遷移金属42から選択する少なくとも3種類の遷移金属42の仕事関数の合成仕事関数が白金族元素の仕事関数に近似するように、各種の遷移金属42の中から少なくとも3種類の遷移金属42(Ti(チタン)、Cr(クロム)、Mn(マンガン)、Fe(鉄)、Co(コバルト)、Ni(ニッケル)、Cu(銅)、Zn(亜鉛)、Nb(ニオブ)、Mo(モリブデン)、Ag(銀))を選択する。なお、電極10に使用する白金族金属41としてPt43(白金)が選択され、電極10に使用する遷移金属42としてNi44(ニッケル)、Fe45(鉄)、Cu46(銅)が選択されたものとする。   In the transition metal selection step S1, at least one platinum group metal 41 (platinum (Pt), palladium (Pb), rhodium (Rh), ruthenium (Ru), iridium (Ir), among the various platinum group metals 41, Osmium (Os) is selected and selected from various transition metals 42. At least three kinds of transition metals 42 are selected so that the composite work function of the work functions approximates the work function of the platinum group element. At least three types of transition metals 42 (Ti (titanium), Cr (chrome), Mn (manganese), Fe (iron), Co (cobalt), Ni (nickel), Cu (copper), Zn (zinc), Nb (niobium), Mo (molybdenum), Ag (silver)) is selected. Note that Pt43 (platinum) is selected as the platinum group metal 41 used for the electrode 10, and Ni44 (nickel), Fe45 (iron), and Cu46 (copper) are selected as the transition metal 42 used for the electrode 10. .

金属微粉体作成工程S2では、微粉砕機によって白金43(Pt)を10μm〜200μmの粒径に微粉砕し、粒径が10μm〜200μmのPt43の微粉体47を作り、微粉砕機によってNi44(ニッケル)を10μm〜200μmの粒径に微粉砕し、粒径が10μm〜200μmのNi44の微粉体48を作るとともに、微粉砕機によってFe45(鉄)を10μm〜200μmの粒径に微粉砕し、粒径が10μm〜200μmのFe45の微粉体49を作り、微粉砕機によってCu46(銅)を10μm〜200μmの粒径に微粉砕し、粒径が10μm〜200μmのCu46の微粉体50を作る。   In the metal fine powder preparation step S2, platinum 43 (Pt) is finely pulverized by a fine pulverizer to a particle size of 10 μm to 200 μm to produce Pt43 fine powder 47 having a particle size of 10 μm to 200 μm, and Ni44 ( Nickel) is finely pulverized to a particle size of 10 μm to 200 μm to form a fine powder 48 of Ni44 having a particle size of 10 μm to 200 μm, and Fe45 (iron) is finely ground to a particle size of 10 μm to 200 μm by a fine pulverizer. A fine powder 49 of Fe45 having a particle diameter of 10 μm to 200 μm is produced, and Cu46 (copper) is finely pulverized to a particle diameter of 10 μm to 200 μm by a fine pulverizer to produce a fine powder 50 of Cu46 having a particle diameter of 10 μm to 200 μm.

電極製造方法は、Pt43(白金族金属41)やNi44(遷移金属42)、Fe45(遷移金属42)、Cu46(遷移金属42)を10μm〜200μmの粒径に微粉砕することで、多数の微細な流路13(通路孔)を有する多孔質に成形されて比表面積が大きいポーラス構造かつ薄板状の電極10を作ることができ、それら流路13をガス(気体)や液体が通流しつつ気体や液体を電極10のそれら流路13における接触面に広く接触させることが可能な電極10を作ることができる。   The electrode manufacturing method is to finely pulverize Pt43 (platinum group metal 41), Ni44 (transition metal 42), Fe45 (transition metal 42), and Cu46 (transition metal 42) to a particle size of 10 μm to 200 μm to obtain a large number of fine particles. It is possible to form a thin plate-shaped electrode 10 having a porous structure having a large specific surface area by being formed into a porous material having various flow passages 13 (passage holes). It is possible to make the electrode 10 capable of widely contacting the liquid or the liquid with the contact surfaces of the flow paths 13 of the electrode 10.

微粉体重量比決定工程S3では、金属微粉体作成工程S2によって作られたNi44の微粉体48とFe45の微粉体49とCu46の微粉体50との仕事関数の合成仕事関数が白金族元素の仕事関数に近似するように、金属微粉体混合物51の全重量に対するPt43の微粉体47の重量比を決定し、金属微粉体混合物51の全重量に対するNi44の微粉体48の重量比を決定し、金属微粉体混合物51の全重量に対するFe45の微粉体49の重量比を決定するとともに、金属微粉体混合物51の全重量に対するCu46の微粉体50の重量比を決定する。   In the fine powder weight ratio determination step S3, the combined work function of the work powders of the fine powder 48 of Ni44, the fine powder 49 of Fe45, and the fine powder 50 of Cu46 produced in the fine metal powder producing step S2 is the work of the platinum group element. The weight ratio of the Pt43 fine powder 47 to the total weight of the metal fine powder mixture 51 is determined so as to approximate the function, and the weight ratio of the Ni44 fine powder 48 to the total weight of the metal fine powder mixture 51 is determined. The weight ratio of the Fe45 fine powder 49 to the total weight of the fine powder mixture 51 is determined, and the weight ratio of the Cu46 fine powder 50 to the total weight of the metal fine powder mixture 51 is determined.

微粉体重量比決定工程S3では、金属微粉体混合物51の全重量(100%)に対するPt43(白金族金属41)の微粉体47の重量比を5〜10%の範囲、好ましくは、5〜6%の範囲で決定する。微粉体重量比決定工程S3では、金属微粉体混合物51の全重量(100%)に対するNi44(遷移金属42)の微粉体48の重量比を30%〜45%の範囲、好ましくは、40%〜45%の範囲で決定し、金属微粉体混合物51の全重量(100%)に対するFe45(遷移金属42)の微粉体49の重量比を30%〜45%の範囲、好ましくは、40%〜45%の範囲で決定するとともに、金属微粉体混合物51の全重量に(100%)対するCu46(遷移金属42)の微粉体50の重量比を3%〜5%の範囲、好ましくは、4%で決定する。   In the fine powder weight ratio determining step S3, the weight ratio of the fine powder 47 of Pt43 (platinum group metal 41) to the total weight (100%) of the metal fine powder mixture 51 is in the range of 5 to 10%, preferably 5 to 6%. Determine in the range of%. In the fine powder weight ratio determining step S3, the weight ratio of the fine powder 48 of Ni44 (transition metal 42) to the total weight (100%) of the metal fine powder mixture 51 is in the range of 30% to 45%, preferably 40%. Determined in the range of 45%, the weight ratio of the fine powder 49 of Fe45 (transition metal 42) to the total weight (100%) of the metal fine powder mixture 51 is in the range of 30% to 45%, preferably 40% to 45%. %, And the weight ratio of the fine powder 50 of Cu46 (transition metal 42) to the total weight of the fine metal powder mixture 51 (100%) is in the range of 3% to 5%, preferably 4%. decide.

電極製造方法は、合成仕事関数が白金族元素の仕事関数に近似するように遷移金属42のNi44(ニッケル)とFe45(鉄)とCu46(銅)とを選択するとともに、合成仕事関数が白金族元素の仕事関数に近似するように、金属微粉体混合物51の全重量に対するPt43の微粉体47の重量比やNi44の微粉体48の重量比、Fe45の微粉体49の重量比、Cu46の微粉体50の重量比を前記範囲において決定することで、Ni44の微粉体48とFe45の微粉体49とCu46の微粉体50との仕事関数の合成仕事関数を白金族元素の仕事関数に近似させることができ、白金族金属41(Pt43)の含有量が少ないにもかかわらず、白金族元素を担持した電極と略同一の仕事関数を備え、白金族元素を担持した電極と略同様の触媒活性(触媒作用)を発揮することができ、優れた触媒活性(触媒作用)を有して触媒機能を十分かつ確実に利用することが可能な白金族金属少含有の電極10(燃料極18及び空気極19、アノード31及びカソード32)を作ることができる。   The electrode manufacturing method selects Ni44 (nickel), Fe45 (iron), and Cu46 (copper) of the transition metal 42 so that the synthetic work function is close to the work function of the platinum group element, and the synthetic work function is the platinum group. The weight ratio of the fine powder 47 of Pt43, the fine powder 48 of Ni44, the weight ratio of the fine powder 49 of Fe45, and the fine powder of Cu46 to the total weight of the fine metal powder mixture 51 so as to approximate the work function of the element. By determining the weight ratio of 50 within the above range, the composite work function of the work functions of the fine powder 48 of Ni44, the fine powder 49 of Fe45, and the fine powder 50 of Cu46 can be approximated to the work function of the platinum group element. In spite of the small content of the platinum group metal 41 (Pt43), it has a work function substantially the same as that of the electrode supporting the platinum group element, and is substantially the same as the electrode supporting the platinum group element. 10 containing a small amount of platinum group metal (fuel) capable of exhibiting similar catalytic activity (catalytic action) and having excellent catalytic activity (catalytic action) and being able to utilize the catalytic function sufficiently and reliably. The pole 18 and the cathode 19, the anode 31 and the cathode 32) can be made.

電極製造方法は、金属微粉体混合物51の全重量に対するNi44(遷移金属42)の微粉体48の重量比やFe45(遷移金属42)の微粉体49の重量比、Cu46(遷移金属42)の微粉体50の全重量が前記範囲にあり、金属微粉体混合物51の全重量に対するPt43(白金族金属41)の微粉体47の重量比が前記範囲にあるから、高価な白金族金属41の含有量が少なく、電極10(燃料極18及び空気極19、アノード31及びカソード32)を廉価に作ることができる。   The electrode manufacturing method is as follows: the weight ratio of the fine powder 48 of Ni44 (transition metal 42), the weight ratio of the fine powder 49 of Fe45 (transition metal 42), and the fine powder of Cu46 (transition metal 42) with respect to the total weight of the fine metal powder mixture 51. Since the total weight of the body 50 is in the above range and the weight ratio of the fine powder 47 of Pt43 (platinum group metal 41) to the total weight of the fine metal powder mixture 51 is in the above range, the content of the expensive platinum group metal 41 is high. Therefore, the electrode 10 (fuel electrode 18 and air electrode 19, anode 31 and cathode 32) can be manufactured at low cost.

金属微粉体混合物作成工程S4では、微粉体重量比決定工程S3によって決定した重量比のPt43の微粉体47と微粉体重量比決定工程S3によって決定した重量比のNi44の微粉体48と微粉体重量比決定工程S3によって決定した重量比のFe45の微粉体49と微粉体重量比決定工程S3によって決定した重量比のCu46の微粉体50とを混合機に投入し、混合機によってPt43の微粉体47、Ni44の微粉体48、Fe45の微粉体49、Cu46の微粉体50を攪拌・混合し、Pt43の微粉体47、Ni44の微粉体48、Fe45の微粉体49、Cu46の微粉体50が均一に混合・分散した金属微粉体混合物51を作る。   In the metal fine powder mixture preparing step S4, the fine powder 47 of Pt43 having the weight ratio determined in the fine powder weight ratio determining step S3 and the fine powder 48 of Ni44 and the fine powder weight having the weight ratio determined in the fine powder weight ratio determining step S3. The fine powder 49 of Fe45 having the weight ratio determined by the ratio determining step S3 and the fine powder 50 of Cu46 having the weight ratio determined by the weight ratio determining step S3 are put into a mixer, and the fine powder 47 of Pt43 47 is mixed by the mixer. , Ni44 fine powder 48, Fe45 fine powder 49, and Cu46 fine powder 50 are agitated and mixed to uniformly obtain Pt43 fine powder 47, Ni44 fine powder 48, Fe45 fine powder 49, and Cu46 fine powder 50. A mixed and dispersed metal fine powder mixture 51 is prepared.

金属微粉体圧縮物作成工程S5では、金属微粉体混合物作成工程S4によって作られた金属微粉体混合物51を所定圧力で加圧し、金属微粉体混合物51を所定面積の薄板状に圧縮した金属微粉体圧縮物52を作る。金属微粉体圧縮物作成工程S5では、金属微粉体混合物51を金型に入れ、金型をプレス機によって加圧(プレス)するプレス加工によって薄板状の金属微粉体圧縮物52を作る。   In the metal fine powder compressed material producing step S5, the metal fine powder mixture 51 produced in the metal fine powder mixture producing step S4 is pressurized with a predetermined pressure to compress the metal fine powder mixture 51 into a thin plate having a predetermined area. Make a compact 52. In the metal fine powder compressed material producing step S5, a thin plate-shaped metal fine powder compressed material 52 is produced by pressing the metal fine powder mixture 51 into a mold and pressing the mold with a press machine.

プレス加工時におけるプレス圧(圧力)は、500Mpa〜800Mpaの範囲にある。プレス圧(圧力)が500Mpa未満では、金属微粉体圧縮物52(薄板電極)に形成される流路13(通路孔)の開口面積(開口径)が大きくなり、金属微粉体圧縮物52の厚み寸法L1を0.03mm〜0.8mm(好ましくは、0.05mm〜0.5mm)にしつつ、開口径が1μm〜100μmの範囲の多数の微細な流路13(通路孔)を金属微粉体圧縮物52(薄板電極)に形成することができない。   The press pressure (pressure) during the press working is in the range of 500 Mpa to 800 Mpa. When the pressing pressure (pressure) is less than 500 MPa, the opening area (opening diameter) of the flow path 13 (passage hole) formed in the metal fine powder compact 52 (thin plate electrode) becomes large, and the thickness of the metal fine powder compact 52 is increased. While the dimension L1 is set to 0.03 mm to 0.8 mm (preferably 0.05 mm to 0.5 mm), a large number of fine flow paths 13 (passage holes) having an opening diameter in the range of 1 μm to 100 μm are compressed with metal fine powder. It cannot be formed on the object 52 (thin plate electrode).

プレス圧(圧力)が800Mpaを超過すると、金属微粉体圧縮物52(薄板電極)に形成される流路13(通路孔)の開口面積(開口径)が必要以上に小さくなり、金属微粉体圧縮物52の厚み寸法L1を0.03mm〜0.8mm(好ましくは、0.05mm〜0.5mm)にしつつ、開口径が1μm〜100μmの範囲の多数の微細な流路13(通路孔)を金属微粉体圧縮物52(薄板電極)に形成することができない。   If the pressing pressure (pressure) exceeds 800 MPa, the opening area (opening diameter) of the flow path 13 (passage hole) formed in the metal fine powder compact 52 (thin plate electrode) becomes smaller than necessary, and the metal fine powder compression While the thickness dimension L1 of the object 52 is 0.03 mm to 0.8 mm (preferably 0.05 mm to 0.5 mm), a large number of fine flow paths 13 (passage holes) having an opening diameter in the range of 1 μm to 100 μm are formed. It cannot be formed on the metal fine powder compact 52 (thin plate electrode).

電極製造方法は、金属微粉体混合物51を前記範囲の圧力で加圧(圧縮)することで、金属微粉体圧縮物52(薄板電極)の厚み寸法L1を0.03mm〜0.8mm(好ましくは、0.05mm〜0.5mm)にしつつ、開口径が1μm〜100μmの範囲の多数の微細な流路13(通路孔)を形成した金属微粉体圧縮物52を作ることができる。電極製造方法は、厚み寸法L1が0.03mm〜0.8mmの範囲(好ましくは、0.05mm〜0.5mmの範囲)の電極10を作ることができるから、電気抵抗を小さくすることができ、電流をスムースに流すことが可能な電極10(燃料極18及び空気極19、アノード31及びカソード32)を作ることができる。   In the electrode manufacturing method, the metal fine powder mixture 51 is pressed (compressed) at a pressure within the above range, and the thickness dimension L1 of the metal fine powder compressed material 52 (thin plate electrode) is 0.03 mm to 0.8 mm (preferably , 0.05 mm to 0.5 mm) and a large number of fine flow paths 13 (passage holes) having an opening diameter in the range of 1 μm to 100 μm are formed. In the electrode manufacturing method, since the electrode 10 having the thickness dimension L1 in the range of 0.03 mm to 0.8 mm (preferably in the range of 0.05 mm to 0.5 mm) can be manufactured, the electric resistance can be reduced. The electrode 10 (the fuel electrode 18 and the air electrode 19, the anode 31 and the cathode 32) capable of passing the current smoothly can be formed.

薄板電極作成工程S6では、金属微粉体圧縮物作成工程S5によって作られた金属微粉体圧縮物52を焼成炉(燃焼炉、電気炉等)に投入し、金属微粉体圧縮物52を焼成炉において所定温度で焼成(焼結)して多数の微細な流路13(通路孔)を形成したポーラス構造かつ薄板状の(燃料極18及び空気極19、アノード31及びカソード32)を作る。   In the thin plate electrode producing step S6, the metal fine powder compact 52 produced in the metal fine powder compact producing step S5 is put into a firing furnace (combustion furnace, electric furnace, etc.), and the metal fine powder compact 52 is placed in the firing oven. By firing (sintering) at a predetermined temperature, a thin plate-like structure (fuel electrode 18 and air electrode 19, anode 31 and cathode 32) in which a large number of fine flow paths 13 (passage holes) are formed is produced.

薄板電極作成工程S6では、最も融点の低いCu46(融点:1084.5℃)の微粉体50を溶融させる温度(例えば、1100℃〜1400℃)で金属微粉体圧縮物52を長時間焼成する。焼成(焼結)時間は、3時間〜6時間である。薄板電極作成工程S5では、所定面積の薄板状に圧縮した金属微粉体圧縮物52の焼成時において、最も融点の低いCu46の微粉体50が溶融し、溶融したCu46の微粉体50をバインダーとしてPt43の微粉体47とNi44の微粉体48とFe45の微粉体49とを接合(固着)する。なお、Pt43の融点は、1774℃、Ni44の融点は、1455℃、Fe45の融点は、1539℃である。薄板電極作成工程S6では、金属微粉体圧縮物52を所定温度で焼成することで、多数の微細な流路13(通路孔)が形成されたポーラス構造かつ薄板状の電極10(燃料極18及び空気極19、アノード31及びカソード32)が製造される。   In the thin plate electrode forming step S6, the metal fine powder compact 52 is fired for a long time at a temperature (for example, 1100 ° C to 1400 ° C) for melting the fine powder 50 of Cu46 (melting point: 1084.5 ° C) having the lowest melting point. The firing (sintering) time is 3 hours to 6 hours. In the thin plate electrode forming step S5, the fine powder 50 of Cu46 having the lowest melting point is melted at the time of firing the fine metal powder compact 52 compressed into a thin plate having a predetermined area, and the fine powder 50 of Cu46 is used as a binder for Pt43. The fine powder 47, the fine powder 48 of Ni44, and the fine powder 49 of Fe45 are joined (fixed). The melting point of Pt43 is 1774 ° C, the melting point of Ni44 is 1455 ° C, and the melting point of Fe45 is 1539 ° C. In the thin plate electrode forming step S6, the metal fine powder compact 52 is fired at a predetermined temperature to form a thin plate-shaped electrode 10 (a fuel electrode 18 and a porous plate) in which a large number of fine flow paths 13 (passage holes) are formed. The air electrode 19, the anode 31 and the cathode 32) are manufactured.

電極製造方法は、最も融点の低いCu46の微粉体50をバインダーとしてPt43の微粉体47とNi44の微粉体48とFe45の微粉体49とを接合することで、多数の微細な流路13(通路孔)を有するポーラス構造かつ薄板状の電極10(燃料極18及び空気極19、アノード31及びカソード32)を作ることができるとともに、高い強度を有して形状を維持することができ、衝撃が加えられたときの破損や損壊を防ぐことが可能な非白金の電極10(燃料極18及び空気極19、アノード31及びカソード32)を作ることができる。   In the electrode manufacturing method, the fine powder 50 of Cu46 having the lowest melting point is used as a binder to bond the fine powder 47 of Pt43, the fine powder 48 of Ni44, and the fine powder 49 of Fe45 to each other so that a large number of fine flow paths 13 (passages) can be formed. It is possible to form a thin plate-shaped electrode 10 (fuel electrode 18 and air electrode 19, anode 31 and cathode 32) having a porous structure, and to maintain the shape with high strength and to prevent impact. The non-platinum electrode 10 (the fuel electrode 18 and the air electrode 19, the anode 31 and the cathode 32) capable of preventing breakage and damage when added can be manufactured.

電極製造方法は、各種の遷移金属42から選択する少なくとも3種類の遷移金属42の仕事関数の合成仕事関数が白金族元素の仕事関数に近似するように、各種の遷移金属42の中から少なくとも3種類の遷移金属42(たとえば、Ni44、Fe45、Cu46)を選択する遷移金属選択工程S1と、白金族金属41(Pt43)を微粉砕して白金族金属微粉体(Pt43の微粉体47)を作り、遷移金属選択工程S1によって選択された少なくとも3種類の遷移金属42を微粉砕して遷移金属微粉体(Ni44の微粉体48、Fe45の微粉体49、Cu46の微粉体50)を作る金属微粉体作成工程S2と、金属微粉体作成工程S2によって作られた少なくとも3種類の遷移金属微粉体の仕事関数の合成仕事関数が白金族元素の仕事関数に近似するように、白金族金属微粉体(Pt43の微粉体47)の重量比と少なくとも3種類の遷移金属微粉体(Ni44の微粉体48、Fe45の微粉体49、Cu46の微粉体50)の重量比とを決定する微粉体重量比決定工程S3と、微粉体重量比決定工程S3によって決定した重量比の白金族金属微粉体と少なくとも3種類の遷移金属微粉体とを混合・分散した金属微粉体混合物51を作る金属微粉体混合物作成工程S4と、金属微粉体混合物作成工程S4によって作られた金属微粉体混合物51を所定圧力で加圧して金属微粉体圧縮物52を作る金属微粉体圧縮物作成工程S5と、金属微粉体圧縮物作成工程S5によって作られた金属微粉体圧縮物52を所定温度で焼成して多数の微細な流路13を形成したポーラス構造の薄板状に成形された電極10を作るポーラス構造薄板電極作成工程S6との各工程によって、厚み寸法L1が0.03mm〜0.8mmの範囲(好ましくは、0.03mm〜0.5mmの範囲)であって多数の微細な流路13(通路孔)を形成した電極10を製造することができ、電極10を廉価に作ることができるとともに、優れた触媒活性(触媒作用)を有して触媒機能を十分かつ確実に利用することが可能な白金族金属少含有の電極10(燃料極18及び空気極19、アノード31及びカソード32)を作ることができる。   The electrode manufacturing method uses at least 3 kinds of transition metals 42 so that the composite work function of the work functions of at least 3 kinds of transition metals 42 selected from various kinds of transition metals 42 approximates the work function of the platinum group element. A transition metal selection step S1 for selecting a type of transition metal 42 (for example, Ni44, Fe45, Cu46), and pulverizing the platinum group metal 41 (Pt43) to produce a platinum group metal fine powder (fine powder 47 of Pt43). A fine metal powder for producing a fine transition metal powder (fine powder 48 of Ni44, fine powder 49 of Fe45, fine powder 50 of Cu46) by finely pulverizing at least three kinds of transition metals 42 selected in the transition metal selection step S1. The composite work function of the production process S2 and the work function of at least three kinds of transition metal fine powders produced by the metal fine powder production process S2 is the work function of the platinum group element. To the weight ratio of the platinum group metal fine powder (Pt43 fine powder 47) and at least three kinds of transition metal fine powders (Ni44 fine powder 48, Fe45 fine powder 49, Cu46 fine powder 50). Fine powder weight ratio determining step S3 for determining the weight ratio, and fine metal powder obtained by mixing and dispersing the platinum group metal fine powder and the at least three kinds of transition metal fine powder in the weight ratio determined in the fine powder weight ratio determining step S3. Metal fine powder mixture producing step S4 for producing the body mixture 51, and metal fine powder compressed article 52 for producing the metal fine powder compressed article 52 by pressurizing the metal fine powder mixture 51 produced by the metal fine powder mixture producing step S4 with a predetermined pressure. A thin plate having a porous structure in which a large number of fine channels 13 are formed by firing the metal fine powder compressed material 52 produced in the production step S5 and the metal fine powder compressed material production step S5 at a predetermined temperature. The thickness dimension L1 is in the range of 0.03 mm to 0.8 mm (preferably, in the range of 0.03 mm to 0.5 mm) by the steps of the porous structure thin plate electrode forming step S6 for forming the electrode 10 formed in FIG. It is possible to manufacture the electrode 10 in which a large number of fine flow paths 13 (passage holes) are formed, the electrode 10 can be manufactured at low cost, and also the catalyst 10 has an excellent catalytic activity (catalytic action). The electrode 10 (fuel electrode 18 and air electrode 19, the anode 31 and the cathode 32) containing a small amount of platinum group metal that can be used sufficiently and reliably can be manufactured.

電極製造方法は、それによって作られた電極10が白金族元素を担持した電極と略同様の触媒活性(触媒作用)を発揮するから、固体高分子形燃料電池17において十分な電気を発電することが可能であって固体高分子形燃料電池17に接続された負荷29に十分な電気エネルギーを供給することが可能な非白金の電極10(燃料極18及び空気極19、アノード31及びカソード32)を作ることができる。電極製造方法は、水素ガス発生装置30において電気分解を効率よく行うことが可能であって短時間に多量の水素ガスを発生させることが可能な非白金の電極10(燃料極18及び空気極19、アノード31及びカソード32)を作ることができる。   In the electrode manufacturing method, since the electrode 10 produced thereby exhibits substantially the same catalytic activity (catalytic action) as the electrode supporting the platinum group element, the polymer electrolyte fuel cell 17 should generate sufficient electricity. And a non-platinum electrode 10 (fuel electrode 18 and air electrode 19, anode 31 and cathode 32) capable of supplying sufficient electric energy to the load 29 connected to the polymer electrolyte fuel cell 17. Can be made. The electrode manufacturing method includes a non-platinum electrode 10 (a fuel electrode 18 and an air electrode 19) that can efficiently perform electrolysis in the hydrogen gas generator 30 and can generate a large amount of hydrogen gas in a short time. , Anode 31 and cathode 32) can be made.

10 電極
11 前面
12 後面
13 流路(通路孔)
14 通流口
15 外周縁
16 セル
17 固体高分子形燃料電池
18 燃料極(陽極)
19 空気極(陰極)
20 固体高分子電解質膜
21 セパレータ(バイポーラプレート)
22 セパレータ(バイポーラプレート)
23 膜/電極接合体
24 ガス拡散層
25 ガス拡散層
26 ガスシール
27 ガスシール
28 導線
29 負荷
30 水素ガス発生装置
31 アノード(陽極)
32 カソード(陰極)
33 固体高分子電解質膜
34 陽極給電部材
35 陰極給電部材
36 陽極用貯水槽
37 陰極用貯水槽
38 陽極主電極
39 陰極主電極
40 膜/電極接合体
41 白金族金属
42 遷移金属
43 Pt(白金)
44 Ni(ニッケル)
45 Fe(鉄)
46 Cu(銅)
47 Pt(白金)の微粉体
48 Ni(ニッケル)の微粉体
49 Fe(鉄)の微粉体
50 Cu(銅)の微粉体
51 金属微粉体混合物
52 金属微粉体圧縮物
L1 厚み寸法
S1 遷移金属選択工程
S2 金属微粉体作成工程
S3 微粉体重量比決定工程
S4 金属微粉体混合物作成工程
S5 金属微粉体圧縮物作成工程
S6 薄板電極作成工程
10 electrode 11 front surface 12 rear surface 13 flow path (passage hole)
14 flow port 15 outer peripheral edge 16 cell 17 polymer electrolyte fuel cell 18 fuel electrode (anode)
19 Air electrode (cathode)
20 solid polymer electrolyte membrane 21 separator (bipolar plate)
22 Separator (bipolar plate)
23 Membrane / electrode assembly 24 Gas diffusion layer 25 Gas diffusion layer 26 Gas seal 27 Gas seal 28 Conductive wire 29 Load 30 Hydrogen gas generator 31 Anode (anode)
32 cathode (cathode)
33 Solid Polymer Electrolyte Membrane 34 Anode Power Feeding Member 35 Cathode Power Feeding Member 36 Anode Water Tank 37 Cathode Water Tank 38 Anode Main Electrode 39 Cathode Main Electrode 40 Membrane / Electrode Assembly 41 Platinum Group Metal 42 Transition Metal 43 Pt (Platinum)
44 Ni (nickel)
45 Fe (iron)
46 Cu (copper)
47 Pt (platinum) fine powder 48 Ni (nickel) fine powder 49 Fe (iron) fine powder 50 Cu (copper) fine powder 51 Metal fine powder mixture 52 Metal fine powder compressed product L1 Thickness dimension S1 Transition metal selection Step S2 Metal fine powder preparation step S3 Fine powder weight ratio determination step S4 Metal fine powder mixture preparation step S5 Metal fine powder compressed material preparation step S6 Thin plate electrode preparation step

Claims (14)

陽極又は陰極として使用する電極において、
前記電極が、各種の白金族金属から選択された少なくとも1種類の白金族金属と、各種の遷移金属から選択された少なくとも3種類の遷移金属とから形成され、前記選択された少なくとも1種類の白金族金属を微粉砕した白金族金属微粉体と前記選択された少なくとも3種類の遷移金属を微粉砕した遷移金属微粉体とを均一に混合・分散した金属微粉体混合物を所定面積の薄板状に圧縮した後に焼成することで、多数の微細な流路が形成されたポーラス構造の薄板状に成形されていることを特徴とする電極。
In the electrode used as an anode or a cathode,
The electrode is formed from at least one platinum group metal selected from various platinum group metals and at least three transition metals selected from various transition metals, and the selected at least one platinum group A metal fine powder mixture obtained by uniformly mixing and dispersing a platinum group metal fine powder obtained by finely pulverizing a group metal and a transition metal fine powder obtained by finely pulverizing at least three selected transition metals is compressed into a thin plate having a predetermined area. An electrode characterized by being formed into a thin plate having a porous structure in which a large number of fine flow paths are formed by baking after that.
前記電極では、前記選択された少なくとも3種類の遷移金属の仕事関数の合成仕事関数が白金族元素の仕事関数に近似するように、前記各種の遷移金属の中から少なくとも3種類の遷移金属が選択されている請求項1に記載の電極。   In the electrode, at least three kinds of transition metals are selected from the various kinds of transition metals so that the composite work function of the work functions of the selected at least three kinds of transition metals approximates the work function of the platinum group element. The electrode according to claim 1, which is provided. 前記電極の厚み寸法が、0.03mm〜0.8mmの範囲にある請求項1又は請求項2に記載の電極。   The electrode according to claim 1 or 2, wherein a thickness dimension of the electrode is in a range of 0.03 mm to 0.8 mm. 前記遷移金属が、Ni(ニッケル)とFe(鉄)と最も融点の低いCu(銅)とであり、前記電極では、前記Niの仕事関数と前記Feの仕事関数と前記Cuの仕事関数との合成仕事関数が前記白金族元素の仕事関数に近似するように、前記Niの微粉体の前記金属微粉体混合物の全重量に対する重量比と前記Feの微粉体の該金属微粉体混合物の全重量に対する重量比と前記Cuの微粉体の該金属微粉体混合物の全重量に対する重量比とが定められている請求項1ないし請求項3いずれかに記載の電極。   The transition metals are Ni (nickel), Fe (iron), and Cu (copper) having the lowest melting point, and the electrode has a work function of Ni, a work function of Fe, and a work function of Cu. The weight ratio of the Ni fine powder to the total weight of the metal fine powder mixture and the total work weight of the Fe fine powder to the total weight of the metal fine powder mixture so that the synthetic work function approximates the work function of the platinum group element. The electrode according to any one of claims 1 to 3, wherein a weight ratio and a weight ratio of the Cu fine powder to the total weight of the metal fine powder mixture are defined. 前記白金族金属の微粉体の前記金属微粉体混合物の全重量に対する重量比が、5〜10%の範囲、前記Niの微粉体の前記金属微粉体混合物の全重量に対する重量比が、30%〜45%の範囲、前記Feの微粉体の前記金属微粉体混合物の全重量に対する重量比が、30%〜45%の範囲、前記Cuの微粉体の前記金属微粉体混合物の全重量に対する重量比が、3%〜5%の範囲にある請求項4に記載の電極。   The weight ratio of the platinum group metal fine powder to the total weight of the metal fine powder mixture is in the range of 5 to 10%, and the weight ratio of the Ni fine powder to the total weight of the metal fine powder mixture is 30% to 45% range, the weight ratio of the Fe fine powder to the total weight of the metal fine powder mixture is 30% to 45%, the weight ratio of the Cu fine powder to the total weight of the metal fine powder mixture is The electrode according to claim 4, which is in the range of 3% to 5%. 前記ポーラス構造の薄板状に成形された電極の空隙率が、15%〜30%の範囲にある請求項1ないし請求項5いずれかに記載の電極。   The electrode according to any one of claims 1 to 5, wherein the porosity of the thin plate-shaped electrode having the porous structure is in the range of 15% to 30%. 前記ポーラス構造の薄板に成形された電極の密度が、5.0g/cm〜7.0g/cmの範囲にある請求項1ないし請求項6いずれかに記載の電極。 The density of the thin plate shaped electrodes of porous structure, the electrode according to any claims 1 to 6 in the range of 5.0g / cm 2 ~7.0g / cm 2 . 前記白金族金属の微粉体の粒径と前記遷移金属の微粉体の粒径とが、10μm〜200μmの範囲にある請求項1ないし請求項7いずれかに記載の電極。   The electrode according to any one of claims 1 to 7, wherein the particle size of the platinum group metal fine powder and the particle size of the transition metal fine powder are in the range of 10 µm to 200 µm. 前記電極では、所定面積の薄板状に圧縮した前記金属微粉体混合物の焼成時に最も融点のCuの微粉体が溶融し、溶融したCuをバインダーとして前記白金族金属の微粉体と前記Niの微粉体と前記Feの微粉体とが接合されている請求項4ないし請求項8いずれかに記載の電極。   In the electrode, the fine powder of Cu having the highest melting point is melted during firing of the fine metal powder mixture compressed into a thin plate having a predetermined area, and the fine powder of the platinum group metal and the fine powder of Ni are used with the molten Cu as a binder. The electrode according to any one of claims 4 to 8, wherein the electrode and the fine powder of Fe are bonded together. 陽極又は陰極として使用する電極を製造する電極製造方法において、
前記電極製造方法が、各種の白金族金属の中から少なくとも1種類の白金族金属を選択し、各種の遷移金属から選択する少なくとも3種類の遷移金属の仕事関数の合成仕事関数が白金族元素の仕事関数に近似するように、前記各種の遷移金属の中から少なくとも3種類の遷移金属を選択する遷移金属選択工程と、前記遷移金属選択工程によって選択された少なくとも1種類の白金族金属を微粉砕して白金族金属微粉体を作り、前記遷移金属選択工程によって選択された少なくとも3種類の遷移金属を微粉砕して遷移金属微粉体を作る金属微粉体作成工程と、前記金属微粉体作成工程によって作られた少なくとも3種類の遷移金属微粉体の仕事関数の合成仕事関数が白金族元素の仕事関数に近似するように、前記白金族金属微粉体の重量比と少なくとも3種類の遷移金属微粉体の重量比とを決定する微粉体重量比決定工程と、前記微粉体重量比決定工程によって決定した重量比の前記白金族金属微粉体と少なくとも3種類の遷移金属微粉体とを混合・分散した金属微粉体混合物を作る金属微粉体混合物作成工程と、前記金属微粉体混合物作成工程によって作られた金属微粉体混合物を所定圧力で加圧して金属微粉体圧縮物を作る金属微粉体圧縮物作成工程と、前記金属微粉体圧縮物作成工程によって作られた金属微粉体圧縮物を所定温度で焼成して多数の微細な流路を形成したポーラス構造の薄板状に成形された前記電極を作るポーラス構造薄板電極作成工程とを有することを特徴とする電極製造方法。
In an electrode manufacturing method for manufacturing an electrode used as an anode or a cathode,
In the electrode manufacturing method, at least one platinum group metal is selected from various platinum group metals, and a composite work function of work functions of at least three transition metals selected from various transition metals is a platinum group element. A transition metal selection step of selecting at least three kinds of transition metals from the various transition metals so as to approximate the work function, and finely pulverizing at least one kind of platinum group metal selected by the transition metal selection step. To produce a platinum group metal fine powder and finely pulverize at least three kinds of transition metals selected in the transition metal selection step to produce a transition metal fine powder; and a fine metal powder producing step. The weight ratio of the platinum group metal fine powder and the weight ratio of the platinum group metal fine powder are set so that the composite work function of the work functions of at least three kinds of transition metal fine powders produced is close to the work function of the platinum group element. A fine powder weight ratio determining step for determining a weight ratio of at least three kinds of transition metal fine powders, and at least three kinds of transition metal fine powders having the weight ratios determined by the fine powder weight ratio determining step A fine metal powder mixture producing step of producing a fine metal powder mixture in which fine powder is mixed and dispersed, and a fine metal powder compact prepared by pressurizing the fine metal powder mixture produced by the fine metal powder mixture producing step with a predetermined pressure to obtain a fine metal powder compact. A process for producing a compressed metal fine powder, and a process for producing a compressed metal fine powder produced by the process for producing a compressed metal fine powder at a predetermined temperature to form a thin plate having a porous structure in which a large number of fine channels are formed. And a porous structure thin plate electrode producing step of producing the formed electrode.
前記遷移金属選択工程によって選択された遷移金属が、Ni(ニッケル)とFe(鉄)と最も融点の低いCu(銅)とであり、前記微粉体重量比決定工程では、前記金属微粉体混合物の全重量に対する前記白金族金属の微粉体の重量比を5〜10%の範囲で決定し、前記金属微粉体混合物の全重量に対する前記Niの微粉体の重量比を30%〜45%の範囲で決定し、前記金属微粉体混合物の全重量に対する前記Feの微粉体の重量比を30%〜45%の範囲で決定するとともに、前記金属微粉体混合物の全重量に対する前記Cuの微粉体の重量比を3%〜5%の範囲で決定する請求項10に記載の電極製造方法。   The transition metals selected in the transition metal selection step are Ni (nickel), Fe (iron), and Cu (copper) having the lowest melting point, and in the fine powder weight ratio determination step, the metal fine powder mixture The weight ratio of the platinum group metal fine powder to the total weight is determined in the range of 5 to 10%, and the weight ratio of the Ni fine powder to the total weight of the metal fine powder mixture is in the range of 30% to 45%. The weight ratio of the Fe fine powder to the total weight of the metal fine powder mixture is determined in the range of 30% to 45%, and the weight ratio of the Cu fine powder to the total weight of the metal fine powder mixture is determined. The method for producing an electrode according to claim 10, wherein is determined in the range of 3% to 5%. 前記金属微粉体作成工程が、前記白金族金属を10μm〜200μmの粒径に微粉砕し、前記遷移金属を10μm〜200μmの粒径に微粉砕する請求項10又は請求項11に記載の電極製造方法。   The electrode production according to claim 10 or 11, wherein the step of forming the fine metal powder pulverizes the platinum group metal to a particle size of 10 µm to 200 µm and pulverizes the transition metal to a particle size of 10 µm to 200 µm. Method. 前記金属微粉体圧縮物作成工程が、前記金属微粉体混合物作成工程によって作られた金属微粉体混合物を500Mpa〜800Mpaの圧力で加圧し、0.03mm〜0.8mmの厚み寸法を有して多数の微細な流路を形成したポーラス構造かつ薄板状の前記金属微粉体圧縮物を作る請求項10ないし請求項12いずれかに記載の電極製造方法。   The metal fine powder compressed material producing step pressurizes the metal fine powder mixture produced by the metal fine powder mixture producing step at a pressure of 500 Mpa to 800 Mpa, and has a thickness dimension of 0.03 mm to 0.8 mm and a large number. 13. The method for producing an electrode according to claim 10, wherein the thin metal powder compact having a porous structure in which the fine flow path is formed is formed. 前記ポーラス構造薄板電極作成工程が、最も融点の低い前記Cuの微粉体を溶融させる温度で前記金属微粉体圧縮物を焼成し、溶融したCuの微粉体をバインダーとして前記白金族金属の微粉体と前記Niの微粉体と前記Feの微粉体とを接合する請求項10ないし請求項13いずれかに記載の電極製造方法。   In the porous structure thin plate electrode forming step, the metal fine powder compact is fired at a temperature that melts the Cu fine powder having the lowest melting point, and the molten Cu fine powder is used as a binder to form the platinum group metal fine powder. The electrode manufacturing method according to claim 10, wherein the Ni fine powder and the Fe fine powder are joined together.
JP2018196797A 2018-10-18 2018-10-18 Electrode and electrode manufacturing method Pending JP2020064784A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018196797A JP2020064784A (en) 2018-10-18 2018-10-18 Electrode and electrode manufacturing method
PCT/JP2019/041102 WO2020080530A1 (en) 2018-10-18 2019-10-18 Electrode and electrode manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018196797A JP2020064784A (en) 2018-10-18 2018-10-18 Electrode and electrode manufacturing method

Publications (1)

Publication Number Publication Date
JP2020064784A true JP2020064784A (en) 2020-04-23

Family

ID=70283096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018196797A Pending JP2020064784A (en) 2018-10-18 2018-10-18 Electrode and electrode manufacturing method

Country Status (2)

Country Link
JP (1) JP2020064784A (en)
WO (1) WO2020080530A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020064786A (en) * 2018-10-18 2020-04-23 株式会社グラヴィトン Polymer electrolyte fuel cell

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7235284B2 (en) * 2018-11-29 2023-03-08 グローバル・リンク株式会社 polymer electrolyte fuel cell

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102039536B1 (en) * 2015-10-22 2019-11-01 커창 린 Fuel cell electrode materials and devices
JP6412485B2 (en) * 2015-11-20 2018-10-24 株式会社健明 Fuel cell electrode material and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020064786A (en) * 2018-10-18 2020-04-23 株式会社グラヴィトン Polymer electrolyte fuel cell

Also Published As

Publication number Publication date
WO2020080530A1 (en) 2020-04-23

Similar Documents

Publication Publication Date Title
WO2019244840A1 (en) Electrode
JP5833786B1 (en) ELECTRODE MATERIAL FOR FUEL CELL, ITS MANUFACTURING METHOD, AND FUEL CELL
WO2020080530A1 (en) Electrode and electrode manufacturing method
EP3041082A1 (en) Air battery and battery pack
JP7281157B2 (en) Polymer electrolyte fuel cell and electrode manufacturing method
US3441390A (en) Fuel cell electrode
JP7193109B2 (en) Electrode and electrode manufacturing method
JP7171024B2 (en) Method for manufacturing fuel electrode and air electrode for polymer electrolyte fuel cell
JP7171030B2 (en) Manufacturing method for anode and cathode of electrolyzer
JP7281158B2 (en) Polymer electrolyte fuel cell and electrode manufacturing method
JP2020064786A (en) Polymer electrolyte fuel cell
JP7199080B2 (en) Electrolyzer and electrode manufacturing method
JP2020004527A (en) Solid polymer electrolyte fuel cell and electrode manufacturing method
JP7171027B2 (en) Method for manufacturing fuel electrode and air electrode for polymer electrolyte fuel cell
JP7193111B2 (en) Carbon nanotube electrode or carbon nanohorn electrode and electrode manufacturing method
WO2020045643A1 (en) Electrode
JP7235284B2 (en) polymer electrolyte fuel cell
JP7179314B2 (en) Manufacturing method for anode and cathode of electrolyzer
JP2020087812A (en) Electrode and electrode manufacturing method
JP7141695B2 (en) Manufacturing method for anode and cathode of electrolyzer
WO2020059783A1 (en) Electrode
JP2020002397A (en) Electrolysis apparatus and electrode manufacturing method
JP7262739B2 (en) Manufacturing method for anode and cathode of electrolyzer
JP2020019980A (en) Electrolysis device, and method of producing electrode
JP7411920B2 (en) Method for manufacturing anode and cathode of electrolyzer

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200617