JP7235284B2 - polymer electrolyte fuel cell - Google Patents

polymer electrolyte fuel cell Download PDF

Info

Publication number
JP7235284B2
JP7235284B2 JP2018223295A JP2018223295A JP7235284B2 JP 7235284 B2 JP7235284 B2 JP 7235284B2 JP 2018223295 A JP2018223295 A JP 2018223295A JP 2018223295 A JP2018223295 A JP 2018223295A JP 7235284 B2 JP7235284 B2 JP 7235284B2
Authority
JP
Japan
Prior art keywords
electrode
fine powder
air electrode
metal
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018223295A
Other languages
Japanese (ja)
Other versions
JP2020087813A (en
Inventor
正己 奥山
Original Assignee
グローバル・リンク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by グローバル・リンク株式会社 filed Critical グローバル・リンク株式会社
Priority to JP2018223295A priority Critical patent/JP7235284B2/en
Publication of JP2020087813A publication Critical patent/JP2020087813A/en
Application granted granted Critical
Publication of JP7235284B2 publication Critical patent/JP7235284B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、複数のセルを有するセルスタックを備えた固体高分子形燃料電池に関する。 TECHNICAL FIELD The present invention relates to a polymer electrolyte fuel cell provided with a cell stack having a plurality of cells.

固体高分子電解質膜と、固体高分子電解質膜を両面から挟持するアノード電極及びカソード電極と、液体燃料を収容する燃料容器と、アノード電極とカソード電極との間に設けられる気液分離性多孔質体からなる燃料気化層と、燃料気化層を両面から挟持する有孔固定板とを有し、カソード電極側に配置した有孔固定板の開口率がアノード電極側に配置した有孔固定板の開口率よりも大きい個体高分子形燃料電池が開示されている(特許文献1参照)。 A solid polymer electrolyte membrane, an anode electrode and a cathode electrode sandwiching the solid polymer electrolyte membrane from both sides, a fuel container containing a liquid fuel, and a gas-liquid separating porous material provided between the anode electrode and the cathode electrode. and a perforated fixing plate sandwiching the fuel vaporizing layer from both sides. A polymer electrolyte fuel cell with a larger aperture ratio is disclosed (see Patent Document 1).

特開2011-222119号公報JP 2011-222119 A

前記特許文献1に開示の個体高分子形燃料電池のカソード電極及びアノード電極の作成方法は、以下のとおりである。炭素粒子に粒子径が3~5nmの範囲にある白金微粒子を重量比で55%担持させた触媒担持炭素微粒子を作り、その触媒担持炭素微粒子1gに5重量%ナフィオン溶液を適量加えて攪拌し、カソード電極用の触媒ペーストを作る。カソード電極用の触媒ペーストを基材としてのカーボンペーパー上に8mg/cmの量で塗布した後、乾燥させて4cm×4cmのカソード電極を作製する。次に、白金微粒子に替えて粒子径が3~5nmの範囲にある白金(Pt)-ルテニウム(Ru)合金微粒子(Ruの割合は60at%)を重量比で55%担持させた触媒担持炭素微粒子を作り、その触媒担持炭素微粒子1gに5重量%ナフィオン溶液を適量加えて攪拌し、アノード電極用の触媒ペーストを作る。アノード電極用の触媒ペーストを基材としてのカーボンペーパー上に8mg/cmの量で塗布した後、乾燥させて4cm×4cmのアノード電極を作製する。 The method for producing the cathode electrode and the anode electrode of the polymer electrolyte fuel cell disclosed in Patent Document 1 is as follows. Catalyst-carrying carbon fine particles are prepared by carrying 55% by weight of platinum fine particles having a particle diameter in the range of 3 to 5 nm on carbon particles, and an appropriate amount of 5% by weight Nafion solution is added to 1 g of the catalyst-carrying carbon fine particles and stirred, Make a catalyst paste for the cathode electrode. After applying the catalyst paste for the cathode electrode on carbon paper as a base material in an amount of 8 mg/cm 2 , it is dried to prepare a cathode electrode of 4 cm×4 cm. Next, instead of the platinum fine particles, platinum (Pt)-ruthenium (Ru) alloy fine particles (the ratio of Ru is 60 at%) having a particle diameter in the range of 3 to 5 nm are carried at 55% by weight of the catalyst-carrying carbon fine particles. A suitable amount of 5% by weight Nafion solution is added to 1 g of the catalyst-carrying carbon fine particles and stirred to prepare a catalyst paste for an anode electrode. After applying the catalyst paste for the anode electrode on carbon paper as a base material in an amount of 8 mg/cm 2 , it is dried to prepare an anode electrode of 4 cm×4 cm.

固体高分子形燃料電池の電極触媒として各種の白金担持カーボンが広く利用されている。しかし、白金は、貴金属であり、その生産量に限りがある希少な金属資源であることから、その使用を抑えることが求められている。さらに、今後の固体高分子形燃料電池の普及に向けて高価な白金の含有量を極力少なくするとともに、少ない量の白金とともに白金以外の金属を使用した電極の開発が求められている。 Various types of platinum-supported carbon are widely used as electrode catalysts for polymer electrolyte fuel cells. However, since platinum is a precious metal and a scarce metal resource with a limited production amount, it is required to suppress its use. Furthermore, in order to spread polymer electrolyte fuel cells in the future, it is required to reduce the content of expensive platinum as much as possible, and to develop electrodes using a small amount of platinum and a metal other than platinum.

本発明の目的は、白金族金属の含有量を極力少なくすることができ、白金族金属の含有量が少ないにもかかわらず、優れた触媒活性(触媒作用)を有する燃料極及び空気極を備え、その燃料極及び空気極を使用して十分な電気を発電することができ、負荷に十分な電気エネルギーを供給することができる固体高分子形燃料電池を提供することにある。 An object of the present invention is to provide a fuel electrode and an air electrode that can reduce the content of platinum group metals as much as possible and have excellent catalytic activity (catalytic action) despite the low content of platinum group metals. To provide a polymer electrolyte fuel cell capable of generating sufficient electricity using its fuel electrode and air electrode and supplying sufficient electrical energy to a load.

前記課題を解決するための本発明の固体高分子形燃料電池は、複数のセルを有するセルスタックを備え、セルが、燃料極及び空気極と、燃料極と空気極との間に位置する電極接合体膜と、燃料極の外側と空気極の外側とに位置するセパレータとから形成され、燃料極及び空気極が、Pt(白金)と、遷移金属であるNi(ニッケル)と、前記遷移金属であるFe(鉄)とから形成され、燃料極及び空気極は、Ptを微粉砕したPtの微粉体とNiを微粉砕したNiの遷移金属微粉体とFeを微粉砕したFeの遷移金属微粉体と所定のバインダーとを均一に混合・分散した金属微粉体混合物に所定の気孔形成材を添加し、所定面積の薄板状に成形した金属微粉体成形物を脱脂・焼結することで、多数の微細な気孔が形成されたマイクロポーラス構造の薄板状電極であり、Ptの微粉体の金属微粉体混合物の全重量に対する重量比が、4~10%の範囲、Niの遷移金属微粉体の金属微粉体混合物の全重量に対する重量比が、45%~48%の範囲、Feの遷移金属微粉体の金属微粉体混合物の全重量に対する重量比が、45%~48%の範囲にあることにある。 The polymer electrolyte fuel cell of the present invention for solving the above problems comprises a cell stack having a plurality of cells, the cells being electrodes positioned between a fuel electrode and an air electrode, and between the fuel electrode and the air electrode. The fuel electrode and the air electrode are formed from a bonded film and separators positioned outside the fuel electrode and the air electrode, and the fuel electrode and the air electrode are composed of Pt (platinum), Ni (nickel) as a transition metal, and the transition metal. The fuel electrode and the air electrode are composed of finely ground Pt powder, finely ground Ni transition metal powder, and finely ground Fe transition metal powder. A predetermined pore-forming material is added to a metal fine powder mixture in which a body and a predetermined binder are uniformly mixed and dispersed, and the metal fine powder molded product is formed into a thin plate of a predetermined area by degreasing and sintering. is a microporous structure thin plate electrode in which fine pores are formed, and the weight ratio of Pt fine powder to the total weight of the metal fine powder mixture is in the range of 4 to 10%, and Ni transition metal fine powder The weight ratio of the fine metal powder mixture to the total weight of the metal fine powder mixture is in the range of 45% to 48%, and the weight ratio of the transition metal fine powder of Fe to the total weight of the metal fine powder mixture is in the range of 45% to 48%. be.

本発明の固体高分子形燃料電池の一例としては、燃料極及び空気極に形成された気孔の平均径が、1~100μmの範囲にある。 In one example of the polymer electrolyte fuel cell of the present invention, the average diameter of pores formed in the fuel electrode and the air electrode is in the range of 1 to 100 μm.

本発明の固体高分子形燃料電池の他の一例としては、燃料極の厚み寸法と空気極の厚み寸法とが、0.03mm~1.5mmの範囲にある。 In another example of the polymer electrolyte fuel cell of the present invention, the thickness dimension of the fuel electrode and the thickness dimension of the air electrode are in the range of 0.03 mm to 1.5 mm.

本発明の固体高分子形燃料電池の他の一例としては、マイクロポーラス構造の薄板状に成形された燃料極及び空気極の気孔率が、70%~85%の範囲にある。 In another example of the polymer electrolyte fuel cell of the present invention, the porosity of the fuel electrode and the air electrode formed into thin plates of microporous structure is in the range of 70% to 85%.

本発明の固体高分子形燃料電池の他の一例としては、マイクロポーラス構造の薄板に成形された燃料極及び空気極の密度が、6.0g/cm~8.0g/cmの範囲にある。 As another example of the polymer electrolyte fuel cell of the present invention, the density of the fuel electrode and the air electrode formed into thin plates of microporous structure is in the range of 6.0 g/cm 2 to 8.0 g/cm 2 . be.

本発明の固体高分子形燃料電池の他の一例としては、白金族金属の白金族金属微粉体の粒径と遷移金属の遷移金属微粉体の粒径とが、1μm~100μmの範囲にある。 As another example of the polymer electrolyte fuel cell of the present invention, the particle size of the platinum group metal fine powder and the transition metal fine powder are in the range of 1 μm to 100 μm.

本発明の固体高分子形燃料電池の他の一例として、固体高分子形燃料電池では、燃料極に供給される水素の雰囲気が相対湿度95%~100%の範囲にあり、水素の温度が45℃~55℃の範囲にある。 As another example of the polymer electrolyte fuel cell of the present invention, in a polymer electrolyte fuel cell, the atmosphere of hydrogen supplied to the fuel electrode has a relative humidity range of 95% to 100%, and the hydrogen temperature is 45%. °C to 55 °C.

本発明の固体高分子形燃料電池の他の一例として、固体高分子形燃料電池では、燃料極に供給される水素の供給圧力が+0.06MPa~+0.08MPaの範囲にある。 As another example of the polymer electrolyte fuel cell of the present invention, in the polymer electrolyte fuel cell, the supply pressure of hydrogen supplied to the fuel electrode is in the range of +0.06 MPa to +0.08 MPa.

本発明に係る固体高分子形燃料電池によれば、それに使用される燃料極及び空気極が、各種の白金族金属から選択された少なくとも1種類の白金族金属と各種の遷移金属から選択された少なくとも2種類の遷移金属とから形成され、選択された少なくとも1種類の白金族金属を微粉砕した白金族金属微粉体と選択された少なくとも2種類の遷移金属を微粉砕した遷移金属微粉体と所定のバインダーとを均一に混合・分散した金属微粉体混合物に所定の気孔形成材を添加し、気孔形成材を添加した金属微粉体混合物を所定面積の薄板状に成形し、所定面積の薄板状に成形した金属微粉体成形物を脱脂・焼結することで、多数の微細な気孔が形成されたマイクロポーラス構造の薄板状電極であるから、白金族金属以外の遷移金属を使用することで、白金族金属の含有量を極力少なくすることができるとともに、白金族金属の触媒活性を利用するとともに遷移金属の触媒活性を利用した燃料極及び空気極を使用して十分な電気を発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを供給することができる。 According to the polymer electrolyte fuel cell according to the present invention, the fuel electrode and the air electrode used therein are selected from at least one platinum group metal selected from various platinum group metals and various transition metals. a platinum group metal fine powder formed from at least two types of transition metals, wherein at least one selected platinum group metal is finely ground; a transition metal fine powder is formed by finely grinding at least two selected transition metals; A predetermined pore-forming material is added to the metal fine powder mixture obtained by uniformly mixing and dispersing the binder of No., and the metal fine powder mixture to which the pore-forming material is added is formed into a thin plate having a predetermined area, and then formed into a thin plate having a predetermined area. By degreasing and sintering the molded metal fine powder molding, it is a thin plate electrode with a microporous structure in which a large number of fine pores are formed. The content of group metals can be reduced as much as possible, and sufficient electricity can be generated by using a fuel electrode and an air electrode that utilize the catalytic activity of platinum group metals and the catalytic activity of transition metals. , can supply sufficient electrical energy to the load connected to the fuel cell.

燃料極及び空気極において、選択された少なくとも2種類の遷移金属の仕事関数の合成仕事関数が白金族金属の仕事関数に近似するように、各種の遷移金属の中から少なくとも2種類の遷移金属が選択されている固体高分子形燃料電池は、合成仕事関数が白金族金属の仕事関数に近似するように各種の遷移金属の中から少なくとも2種類の遷移金属が選択されているから、白金族金属の含有量が少ないにもかかわらず、燃料極及び空気極が白金を担持した電極と略同一の仕事関数を備え、燃料極及び空気極が白金を担持した電極と略同様の触媒活性(触媒作用)を発揮し、選択された少なくとも2種類の遷移金属を含むとともに優れた触媒活性を有する燃料極及び空気極を使用して十分な電気を発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを供給することができる。 At least two transition metals selected from among various transition metals are added in the anode and the air electrode such that the composite work function of the work functions of the at least two selected transition metals approximates the work function of the platinum group metal. At least two transition metals are selected from various transition metals so that the composite work function of the selected polymer electrolyte fuel cell approximates the work function of the platinum group metal. Although the content of is small, the fuel electrode and the air electrode have substantially the same work function as the platinum-supported electrode, and the fuel electrode and the air electrode have substantially the same catalytic activity as the platinum-supported electrode (catalytic action ), and can generate sufficient electricity using a fuel electrode and an air electrode containing at least two selected transition metals and having excellent catalytic activity, and can be applied to a load connected to the fuel cell. Sufficient electrical energy can be supplied.

燃料極及び空気極に形成された気孔の平均径が1~100μmの範囲にある固体高分子形燃料電池は、燃料極及び空気極に形成された気孔の平均径が1~100μmの範囲にあるから、燃料極及び空気極の単位体積当たりに多数の気孔が形成され、燃料極及び空気極の比表面積を大きくすることができ、それら気孔を気体が通流することで気体を燃料極及び空気極の接触面に広範囲に接触させることができ、燃料極及び空気極の触媒作用を最大限に利用することができる。固体高分子形燃料電池は、平均径が1~100μmの範囲の気孔を有するとともに優れた触媒活性を有する燃料極及び空気極を使用して十分な電気を発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを供給することができる。 In a polymer electrolyte fuel cell in which the average diameter of pores formed in the fuel electrode and the air electrode is in the range of 1 to 100 μm, the average diameter of the pores formed in the fuel electrode and the air electrode is in the range of 1 to 100 μm. Therefore, a large number of pores are formed per unit volume of the fuel electrode and the air electrode, and the specific surface area of the fuel electrode and the air electrode can be increased. The contact surfaces of the electrodes can be extensively contacted, and the catalytic action of the anode and cathode can be maximized. A polymer electrolyte fuel cell can generate sufficient electricity by using a fuel electrode and an air electrode having pores with an average diameter of 1 to 100 μm and excellent catalytic activity. enough electrical energy to supply the loaded load.

燃料極の厚み寸法と空気極の厚み寸法とが0.03mm~1.5mmの範囲にある固体高分子形燃料電池は、燃料極及び空気極の厚み寸法を前記範囲にすることで、燃料極及び空気極の電気抵抗を小さくすることができ、燃料極や空気極に電流をスムースに流すことができる。固体高分子形燃料電池は、燃料極及び空気極が白金を担持した電極と略同様の触媒活性(触媒作用)を有するとともに、燃料極及び空気極の電気抵抗が小さく、燃料極及び空気極に電流がスムースに流れるから、優れた触媒活性を有するとともに電位抵抗が小さい燃料極及び空気極を使用して十分な電気を発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを供給することができる。 In a polymer electrolyte fuel cell in which the thickness of the fuel electrode and the thickness of the air electrode are in the range of 0.03 mm to 1.5 mm, the thickness of the fuel electrode and the air electrode are in the above range, so that the fuel electrode Also, the electric resistance of the air electrode can be reduced, and the current can flow smoothly through the fuel electrode and the air electrode. In polymer electrolyte fuel cells, the fuel electrode and the air electrode have substantially the same catalytic activity (catalytic action) as the platinum-supported electrode, and the electrical resistance of the fuel electrode and the air electrode is small. Since the current flows smoothly, sufficient electricity can be generated using the fuel electrode and the air electrode which have excellent catalytic activity and low potential resistance, and sufficient electric energy can be supplied to the load connected to the fuel cell. can supply.

白金族金属がPt(白金)であり、遷移金属がNi(ニッケル)とFe(鉄)とであり、Niの仕事関数とFeの仕事関数との合成仕事関数が白金族金属の仕事関数に近似するように、Ptの白金族金属微粉体の金属微粉体混合物の全重量に対する重量比とNiの遷移金属微粉体の金属微粉体混合物の全重量に対する重量比とFeの遷移金属微粉体の金属微粉体混合物の全重量に対する重量比とが定められている固体高分子形燃料電池は、遷移金属の合成仕事関数が白金族金属の仕事関数に近似するように、金属微粉体混合物の全重量に対するPtの白金族金属微粉体の重量比や金属微粉体混合物の全重量に対するNiの遷移金属微粉体の重量比、金属微粉体混合物の全重量に対するFeの遷移金属微粉体の重量比が決定されているから、燃料極や空気極が白金を担持した電極と略同一の仕事関数を備え、燃料極や空気極が優れた触媒活性(触媒作用)を有し、燃料極や空気極が白金を担持した電極と略同様の触媒活性(触媒作用)を発揮することで、その燃料極及び空気極を使用して十分な電気を発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを供給することができる。固体高分子形燃料電池は、燃料極及び空気極がNi(ニッケル)とFe(鉄)とを含み、Pt(白金)の含有量が少ないから、燃料極や空気極の材料費を低減させることができ、固体高分子形燃料電池を廉価に作ることができるとともに、固体高分子形燃料電池の運転コストを下げることができる。 The platinum group metal is Pt (platinum), the transition metals are Ni (nickel) and Fe (iron), and the composite work function of the work function of Ni and the work function of Fe approximates the work function of the platinum group metal. The weight ratio of the platinum group metal fine powder of Pt to the total weight of the metal fine powder mixture, the weight ratio of the transition metal fine powder of Ni to the total weight of the metal fine powder mixture, and the metal fine powder of the transition metal fine powder of Fe In a polymer electrolyte fuel cell for which the weight ratio to the total weight of the fine metal powder mixture is specified, Pt The weight ratio of platinum group metal fine powder, the weight ratio of Ni transition metal fine powder to the total weight of the metal fine powder mixture, and the weight ratio of Fe transition metal fine powder to the total weight of the metal fine powder mixture are determined. Therefore, the fuel electrode and the air electrode have substantially the same work function as the platinum-supported electrode, the fuel electrode and the air electrode have excellent catalytic activity (catalytic action), and the fuel electrode and the air electrode support platinum. By exhibiting approximately the same catalytic activity (catalytic action) as the electrodes, sufficient electricity can be generated using the fuel electrode and air electrode, and sufficient electrical energy can be supplied to the load connected to the fuel cell. can supply. In the polymer electrolyte fuel cell, the fuel electrode and the air electrode contain Ni (nickel) and Fe (iron), and the content of Pt (platinum) is small, so that the material cost of the fuel electrode and the air electrode can be reduced. Therefore, the polymer electrolyte fuel cell can be manufactured at low cost, and the operating cost of the polymer electrolyte fuel cell can be reduced.

Ptの白金族金属微粉体の金属微粉体混合物の全重量に対する重量比が4~10%の範囲、Niの遷移金属微粉体の金属微粉体混合物の全重量に対する重量比が45%~48%の範囲、Feの遷移金属微粉体の金属微粉体混合物の全重量に対する重量比が45%~48%の範囲にある固体高分子形燃料電池は、合成仕事関数が白金族金属の仕事関数に近似するNi(ニッケル)とFe(鉄)とを選択するとともに、金属微粉体混合物の全重量に対するPtの白金族金属微粉体の重量比や金属微粉体混合物の全重量に対するNiの遷移金属微粉体の重量比、金属微粉体混合物の全重量に対するFeの遷移金属微粉体の重量比を前記範囲にすることで、Niの遷移金属微粉体とFeの遷移金属微粉体との仕事関数の合成仕事関数を白金族金属の仕事関数に近似させることができ、Ptの含有量が少ないにもかかわらず、燃料極や空気極が優れた触媒活性(触媒作用)を有し、燃料極や空気極が白金を担持した電極と略同様の触媒活性(触媒作用)を発揮することで、その燃料極及び空気極を使用して十分な電気を発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを供給することができる。固体高分子形燃料電池は、燃料極及び空気極が前記重量比のNi(ニッケル)とFe(鉄)とを含み、金属微粉体混合物の全重量に対するPt(白金)の重量比が小さく、Pt(白金)の含有量が少ないから、燃料極や空気極の材料費を低減させることができ、固体高分子形燃料電池を廉価に作ることができるとともに、固体高分子形燃料電池の運転コストを下げることができる。 The weight ratio of the platinum group metal fine powder of Pt to the total weight of the metal fine powder mixture is in the range of 4 to 10%, and the weight ratio of the transition metal fine powder of Ni to the total weight of the metal fine powder mixture is in the range of 45% to 48%. A polymer electrolyte fuel cell in which the weight ratio of the transition metal fine powder of Fe to the total weight of the metal fine powder mixture is in the range of 45% to 48%, the composite work function approximates that of the platinum group metal. In addition to selecting Ni (nickel) and Fe (iron), the weight ratio of Pt platinum group metal fine powder to the total weight of the metal fine powder mixture and the weight of Ni transition metal fine powder to the total weight of the metal fine powder mixture By setting the weight ratio of the Fe transition metal fine powder to the total weight of the metal fine powder mixture in the above range, the combined work function of the Ni transition metal fine powder and the Fe transition metal fine powder is the work function of platinum. It is possible to approximate the work function of group metals, and despite the low Pt content, the fuel electrode and air electrode have excellent catalytic activity (catalytic action), and the fuel electrode and air electrode support platinum. By exhibiting approximately the same catalytic activity (catalytic action) as the electrodes, the fuel electrode and air electrode can be used to generate sufficient electricity, and sufficient electrical energy can be supplied to the load connected to the fuel cell. can be supplied. In the polymer electrolyte fuel cell, the fuel electrode and the air electrode contain Ni (nickel) and Fe (iron) in the above weight ratio, and the weight ratio of Pt (platinum) to the total weight of the fine metal powder mixture is small. Since the content of (platinum) is small, the material cost of the fuel electrode and the air electrode can be reduced, and the polymer electrolyte fuel cell can be manufactured at low cost, and the operating cost of the polymer electrolyte fuel cell can be reduced. can be lowered.

マイクロポーラス構造の薄板状に成形された燃料極及び空気極の気孔率が70%~85%の範囲にある固体高分子形燃料電池は、燃料極及び空気極の気孔率を前記範囲にすることで、燃料極及び空気極が多数の微細な気孔(通路孔)を有する多孔質(気孔の平均径1~100μmのマイクロポーラス構造)に成形され、燃料極及び空気極の比表面積を大きくすることができ、それら気孔を気体が通流しつつ気体を燃料極や空気極のそれら気孔における接触面に広範囲に接触させることが可能となり、燃料極や空気極が白金を担持した電極と略同様の触媒活性(触媒作用)を確実に発揮し、触媒機能を十分かつ確実に利用することが可能であって優れた触媒活性(触媒作用)を有する燃料極及び空気極を使用して十分な電気を発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを供給することができる。 In a polymer electrolyte fuel cell in which the porosity of the fuel electrode and the air electrode formed into a thin plate with a microporous structure is in the range of 70% to 85%, the porosity of the fuel electrode and the air electrode should be within the above range. The fuel electrode and the air electrode are formed into a porous structure having a large number of fine pores (passage holes) (microporous structure with an average pore diameter of 1 to 100 μm), and the specific surface area of the fuel electrode and the air electrode is increased. It is possible to cause the gas to contact the contact surface of the pores of the fuel electrode and the air electrode over a wide range while the gas flows through the pores, and the fuel electrode and the air electrode are almost the same catalyst as the platinum-supported electrode. Sufficient electricity is generated by using fuel electrodes and air electrodes with excellent catalytic activity (catalytic action) that can reliably exhibit activity (catalytic action) and fully and reliably utilize the catalytic function. and can supply sufficient electrical energy to the load connected to the fuel cell.

マイクロポーラス構造の薄板に成形された燃料極及び空気極の密度が6.0g/cm~8.0g/cmの範囲にある固体高分子形燃料電池は、燃料極及び空気極の密度を前記範囲にすることで、燃料極及び空気極が多数の微細な気孔(通路孔)を有する多孔質(気孔の平均径1~100μmのマイクロポーラス構造)に成形され、燃料極及び空気極の比表面積を大きくすることができ、それら気孔を気体が通流しつつ気体を燃料極や空気極のそれら気孔における接触面に広範囲に接触させることが可能となり、燃料極や空気極が白金を担持した電極と略同様の触媒活性(触媒作用)を確実に発揮し、触媒機能を十分かつ確実に利用することが可能であって優れた触媒活性(触媒作用)を有する燃料極及び空気極を使用して十分な電気を発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを供給することができる。 A polymer electrolyte fuel cell in which the densities of the fuel and air electrodes formed into a thin plate with a microporous structure are in the range of 6.0 g/cm 2 to 8.0 g/cm 2 have the densities of the fuel and air electrodes. By setting the above range, the fuel electrode and the air electrode are formed into a porous structure having a large number of fine pores (passage holes) (microporous structure with an average pore diameter of 1 to 100 μm), and the ratio of the fuel electrode and the air electrode The surface area can be increased, and while the gas flows through the pores, the gas can be brought into contact with the contact surfaces of the pores of the fuel electrode and the air electrode over a wide range. Using a fuel electrode and an air electrode that can reliably exhibit substantially the same catalytic activity (catalytic action) and can fully and reliably utilize the catalytic function and have excellent catalytic activity (catalytic action) Sufficient electricity can be generated and sufficient electrical energy can be supplied to the load connected to the fuel cell.

白金族金属の白金族金属微粉体の粒径と遷移金属の遷移金属微粉体の粒径とが1μm~100μmの範囲にある固体高分子形燃料電池は、白金族金属の白金族金属微粉体や遷移金属の遷移金属微粉体の粒径を前記範囲にすることで、燃料極及び空気極が多数の微細な気孔(通路孔)を有する多孔質(気孔の平均径1~100μmのマイクロポーラス構造)に成形され、燃料極及び空気極の比表面積を大きくすることができ、それら気孔を気体が通流しつつ気体を燃料極や空気極のそれら気孔における接触面に広範囲に接触させることが可能となり、燃料極や空気極が白金を担持した電極と略同様の触媒活性(触媒作用)を確実に発揮し、触媒機能を十分かつ確実に利用することが可能であって優れた触媒活性(触媒作用)を有する燃料極及び空気極を使用して十分な電気を発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを供給することができる。 A polymer electrolyte fuel cell in which the particle size of the platinum group metal fine powder of the platinum group metal and the particle size of the transition metal fine powder of the transition metal are in the range of 1 μm to 100 μm, By setting the particle size of the transition metal fine powder of the transition metal within the above range, the fuel electrode and the air electrode are porous with a large number of fine pores (passage pores) (microporous structure with an average pore diameter of 1 to 100 μm). It is possible to increase the specific surface area of the fuel electrode and the air electrode, and it is possible for the gas to contact the contact surface of the pores of the fuel electrode and the air electrode over a wide range while the gas flows through the pores. Excellent catalytic activity (catalytic action) in which the fuel electrode and the air electrode reliably exhibit substantially the same catalytic activity (catalytic action) as the platinum-supported electrode, and the catalytic function can be fully and reliably utilized. Sufficient electricity can be generated using anodes and cathodes having a , sufficient electrical energy to supply a load connected to the fuel cell.

燃料極に供給される水素の雰囲気が相対湿度95%~100%の範囲にあり、水素の温度が45℃~55℃の範囲にある固体高分子形燃料電池は、相対湿度95%~100%の雰囲気で燃料極に水素を供給するとともに、45℃~55℃の温度で燃料極に水素を供給することで、燃料極の触媒活性が増加し、燃料電池の起電力が向上し、燃料極や空気極を利用して十分な電気を確実に発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを確実に供給することができる。 In a polymer electrolyte fuel cell in which the atmosphere of hydrogen supplied to the fuel electrode is in the range of 95% to 100% relative humidity and the temperature of hydrogen is in the range of 45°C to 55°C, the relative humidity is 95% to 100%. By supplying hydrogen to the fuel electrode at a temperature of 45 ° C. to 55 ° C., the catalyst activity of the fuel electrode increases, the electromotive force of the fuel cell improves, and the fuel electrode Sufficient electricity can be reliably generated using the fuel cell and the air electrode, and sufficient electrical energy can be reliably supplied to the load connected to the fuel cell.

燃料極に供給される水素の供給圧力が+0.06MPa~+0.08MPaの範囲にある固体高分子形燃料電池は、+0.06MPa~+0.08MPaの供給圧力で燃料極に水素を供給することで、燃料極の触媒活性が増加し、燃料電池の起電力が向上し、燃料極や空気極を利用して十分な電気を確実に発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを確実に供給することができる。 In a polymer electrolyte fuel cell in which the supply pressure of hydrogen supplied to the fuel electrode is in the range of +0.06 MPa to +0.08 MPa, hydrogen is supplied to the fuel electrode at a supply pressure of +0.06 MPa to +0.08 MPa. , the catalytic activity of the anode is increased, the electromotive force of the fuel cell is enhanced, and sufficient electricity can be reliably generated using the anode and cathode, sufficient for the load connected to the fuel cell. Electric energy can be reliably supplied.

一例として示す固体高分子形燃料電池の斜視図。1 is a perspective view of a polymer electrolyte fuel cell shown as an example; FIG. セルスタックを形成するセルの一例を示す分解斜視図。FIG. 2 is an exploded perspective view showing an example of cells forming a cell stack; セルの側面図。Side view of the cell. 一例として示す燃料極及び空気極の斜視図。The perspective view of the fuel electrode and air electrode which are shown as an example. 燃料極及び空気極の一例として示す部分拡大正面図。FIG. 2 is a partially enlarged front view showing an example of a fuel electrode and an air electrode; 固体高分子形燃料電池の発電を説明する図。FIG. 4 is a diagram for explaining power generation of a polymer electrolyte fuel cell; 燃料極及び空気極の起電圧試験の結果を示す図。The figure which shows the result of the electromotive force test of a fuel electrode and an air electrode. 燃料極及び空気極のI-V特性試験の結果を示す図。FIG. 4 is a diagram showing results of an IV characteristic test of the fuel electrode and the air electrode; 固体高分子形燃料電池に使用する燃料極及び空気極の製造方法を説明する図。FIG. 4 is a diagram for explaining a method of manufacturing a fuel electrode and an air electrode used in a polymer electrolyte fuel cell;

一例として示す固体高分子形燃料電池10の斜視図である図1等の添付の図面を参照し、本発明に係る固体高分子形燃料電池の詳細を説明すると、以下のとおりである。なお、図2は、セルスタック12を形成するセル11の一例を示す分解斜視図であり、図3は、セル11の側面図である。図4は、一例として示す燃料極13及び空気極14の斜視図であり、図5は、燃料極13及び空気極14の一例として示す部分拡大図である。図4では、厚み方向を矢印Xで示し、径方向を矢印Yで示す。 The details of the polymer electrolyte fuel cell according to the present invention will be described below with reference to the accompanying drawings such as FIG. 1, which is a perspective view of a polymer electrolyte fuel cell 10 shown as an example. 2 is an exploded perspective view showing an example of the cells 11 forming the cell stack 12, and FIG. 3 is a side view of the cells 11. As shown in FIG. FIG. 4 is a perspective view of the fuel electrode 13 and the air electrode 14 as an example, and FIG. 5 is a partially enlarged view of the fuel electrode 13 and the air electrode 14 as an example. In FIG. 4, arrow X indicates the thickness direction, and arrow Y indicates the radial direction.

固体高分子形燃料電池10は、複数のセル11を有するセルスタック12(燃料電池スタック)を備え、水素と酸素とを供給することで電気エネルギーを生成する。セルスタック12では、複数のセル11(単セル)が一方向へ重なり合って直列に接続されている。セル11の一例としては、図2に示すように、燃料極13(アノード)及び空気極14(カソード)と、燃料極13及び空気極14の間に位置(介在)する固体高分子電解質膜15(電極接合体膜)(スルホン酸基を有するフッ素系イオン交換膜)と、燃料極13の厚み方向外側に位置するセパレータ16(バイポーラプレート)と、空気極14の厚み方向外側に位置するセパレータ17(バイポーラプレート)とから形成されている。 A polymer electrolyte fuel cell 10 includes a cell stack 12 (fuel cell stack) having a plurality of cells 11, and generates electrical energy by supplying hydrogen and oxygen. In the cell stack 12, a plurality of cells 11 (single cells) are stacked in one direction and connected in series. As an example of the cell 11, as shown in FIG. (Electrode assembly membrane) (fluorinated ion exchange membrane having sulfonic acid groups), separator 16 (bipolar plate) located outside the fuel electrode 13 in the thickness direction, and separator 17 located outside the air electrode 14 in the thickness direction (bipolar plate).

それらセパレータ16,17には、反応ガス(水素や酸素等)の供給流路が刻設されている(彫り込まれている)。セル11では、図3に示すように、燃料極13や空気極14、固体高分子電解質膜15が厚み方向へ重なり合って一体化し、膜/電極接合体18(Membrane Electrode Assembly, MEA)を構成し、膜/電極接合体18をそれらセパレータ16,17が挟み込んでいる。膜/電極接合体18では、ホットプレスによって固体高分子電解質膜15の一方の面に燃料極13の面が隙間なく密着し、固体高分子電解質膜15の他方の面に空気極14の面が隙間なく密着している。固体高分子電解質膜15は、プロトン導電性があり、電子導電性がない。 The separators 16 and 17 are provided with (engraved) supply channels for reactant gases (hydrogen, oxygen, etc.). In the cell 11, as shown in FIG. 3, the fuel electrode 13, the air electrode 14, and the solid polymer electrolyte membrane 15 are overlapped in the thickness direction and integrated to form a membrane electrode assembly (MEA). , the membrane/electrode assembly 18 is sandwiched between the separators 16 and 17 . In the membrane/electrode assembly 18, the surface of the fuel electrode 13 is closely attached to one surface of the solid polymer electrolyte membrane 15 by hot pressing, and the surface of the air electrode 14 is attached to the other surface of the solid polymer electrolyte membrane 15. They are in close contact with each other without gaps. The solid polymer electrolyte membrane 15 has proton conductivity and no electronic conductivity.

燃料極13とセパレータ16との間には、ガス拡散層19が形成され、空気極14とセパレータ17との間には、ガス拡散層20が形成されている。燃料極13とセパレータ16との間であってガス拡散層20の上部及び下部には、ガスシール21が設置されている。空気極14とセパレータ17との間であってガス拡散層20の上部及び下部には、ガスシール22が設置されている。 A gas diffusion layer 19 is formed between the fuel electrode 13 and the separator 16 , and a gas diffusion layer 20 is formed between the air electrode 14 and the separator 17 . Gas seals 21 are installed above and below the gas diffusion layer 20 between the fuel electrode 13 and the separator 16 . Gas seals 22 are installed above and below the gas diffusion layer 20 between the air electrode 14 and the separator 17 .

固体高分子形燃料電池10(セル11)に使用する燃料極13(触媒電極)及び空気極14(触媒電極)は、前面23及び後面24を有するとともに、所定の面積及び所定の厚み寸法L1を有し、その平面形状が四角形に成形されている。燃料極13及び空気極14は、多数の微細な気孔25(流路)(連続かつ独立通路孔)を有する多孔質(マイクロポーラス構造)の薄板状電極26(薄板状発泡金属電極)である。気孔25には、ガス(気体)が通流する。なお、燃料極13や空気極14の平面形状に特に制限はなく、四角形の他に、その用途にあわせて円形や楕円形等の他のあらゆる平面形状に成形することができる。 The fuel electrode 13 (catalyst electrode) and the air electrode 14 (catalyst electrode) used in the polymer electrolyte fuel cell 10 (cell 11) have a front surface 23 and a rear surface 24, and have a predetermined area and a predetermined thickness L1. It has a quadrangular planar shape. The fuel electrode 13 and the air electrode 14 are porous (microporous structure) thin plate electrodes 26 (thin plate foam metal electrodes) having a large number of fine pores 25 (channels) (continuous and independent passage holes). Gas flows through the pores 25 . The planar shapes of the fuel electrode 13 and the air electrode 14 are not particularly limited, and they can be formed into any other planar shape such as a circle or an ellipse in accordance with the application, in addition to the quadrangle.

燃料極13及び空気極14(マイクロポーラス構造の薄板状電極26)は、粉状に加工された白金族金属31と、粉状に加工された遷移金属32の中から選択された少なくとも2種類の遷移金属32とから形成されている。白金族金属31としては、白金(Pt)、パラジウム(Pb)、ロジウム(Rh)、ルテニウム(Ru)、イリジウム(Ir)、オスミウム(Os)を使用することができる。白金族金属31には、それらのうちの少なくとも1種類が使用される。遷移金属32としては、3d遷移金属や4d遷移金属が使用される。3d遷移金属には、Ti(チタン)、Cr(クロム)、Cu(銅)、Mn(マンガン)、Fe(鉄)、Co(コバルト)、Ni(ニッケル)、Zn(亜鉛)が使用される。4d遷移金属には、Nb(ニオブ)、Mo(モリブデン)、Ag(銀)が使用される。遷移金属32には、それらのうちの少なくとも2種類が使用される。 The fuel electrode 13 and the air electrode 14 (microporous thin plate electrode 26) are made of at least two metals selected from powdered platinum group metal 31 and powdered transition metal 32. It is formed from a transition metal 32 . Platinum (Pt), palladium (Pb), rhodium (Rh), ruthenium (Ru), iridium (Ir), and osmium (Os) can be used as the platinum group metal 31 . At least one of them is used for the platinum group metal 31 . A 3d transition metal or a 4d transition metal is used as the transition metal 32 . Ti (titanium), Cr (chromium), Cu (copper), Mn (manganese), Fe (iron), Co (cobalt), Ni (nickel), and Zn (zinc) are used as 3d transition metals. Nb (niobium), Mo (molybdenum), and Ag (silver) are used as 4d transition metals. At least two of them are used for the transition metal 32 .

燃料極13及び空気極14では、選択された少なくとも2種類の遷移金属32の仕事関数(物質から電子を取り出すのに必要なエネルギー)の合成仕事関数が白金族金属の仕事関数に近似するように、遷移金属32の中から少なくとも2種類の遷移金属32が選択されている。白金の仕事関数は、5.65(eV)である。Tiの仕事関数は、4.14(eV)、Crの仕事関数は、4.5(eV)、Cuの仕事関数は、5.10(eV)、Mnの仕事関数は、4.1(eV)、Feの仕事関数は、4.67(eV)、Coの仕事関数は、5.0(eV)、Niの仕事関数は、5.22(eV)、Znの仕事関数は、3.63(eV)、Nbの仕事関数は、4.01(eV)、Moの仕事関数は、4.45(eV)、Agの仕事関数は、4.31(eV)である。 In the fuel electrode 13 and the air electrode 14, the composite work function of the work functions (the energy required to extract electrons from the substance) of the at least two selected transition metals 32 is adjusted to approximate the work function of the platinum group metals. , transition metals 32 are selected. The work function of platinum is 5.65 (eV). The work function of Ti is 4.14 (eV), the work function of Cr is 4.5 (eV), the work function of Cu is 5.10 (eV), and the work function of Mn is 4.1 (eV). ), the work function of Fe is 4.67 (eV), the work function of Co is 5.0 (eV), the work function of Ni is 5.22 (eV), and the work function of Zn is 3.63 (eV), the work function of Nb is 4.01 (eV), the work function of Mo is 4.45 (eV), and the work function of Ag is 4.31 (eV).

燃料極13及び空気極14は、白金族金属31の白金族金属微粉体(微粉状に加工されたPt(白金)、微粉状に加工されたPb(パラジウム)、微粉状に加工されたRh(ロジウム)、微粉状に加工されたRu(ルテニウム)、微粉状に加工されたIr(イリジウム)、微粉状に加工されたOs(オスミウム))と、各種の遷移金属32から選択された少なくとも2種類のそれら遷移金属32の遷移金属微粉体(微粉状に加工されたTi(チタン)、微粉状に加工されたCr(クロム)、微粉状に加工されたCu(銅)、微粉状に加工されたMn(マンガン)、微粉状に加工されたFe(鉄)、微粉状に加工されたCo(コバルト)、微粉状に加工されたNi(ニッケル)、微粉状に加工されたZn(亜鉛)、微粉状に加工されたNb(ニオブ)、微粉状に加工されたMo(モリブデン)、微粉状に加工されたAg(銀))と、所定のバインダー33(紛状の樹脂系バインダー)とを均一に混合・分散した金属微粉体混合物41を作り、金属微粉体混合物41に所定の気孔形成材40(発泡剤)を添加し(加え)、気孔形成材40を添加した金属微粉体混合物41を所定面積の薄板状に成形(押し出し成形又は射出成形)して薄板状の金属微粉体成形物42を作り、その金属微粉体成形物42を脱脂及び所定温度で焼結(焼成)することから作られている(図9参照)。 The fuel electrode 13 and the air electrode 14 are made of platinum group metal fine powder of the platinum group metal 31 (Pt (platinum) processed into fine powder, Pb (palladium) processed into fine powder, Rh (processed into fine powder) ( rhodium), finely powdered Ru (ruthenium), finely powdered Ir (iridium), finely powdered Os (osmium)), and at least two selected from various transition metals 32 Transition metal fine powder of those transition metals 32 (Ti (titanium) processed into fine powder, Cr (chromium) processed into fine powder, Cu (copper) processed into fine powder, Mn (manganese), Fe (iron) processed into fine powder, Co (cobalt) processed into fine powder, Ni (nickel) processed into fine powder, Zn (zinc) processed into fine powder, fine powder Nb (niobium) processed into fine powder, Mo (molybdenum) processed into fine powder, Ag (silver) processed into fine powder) and a predetermined binder 33 (powder resin binder) are uniformly mixed. A metal fine powder mixture 41 is prepared by mixing and dispersing, a predetermined pore forming material 40 (foaming agent) is added (added) to the metal fine powder mixture 41, and the metal fine powder mixture 41 added with the pore forming material 40 is spread over a predetermined area. is formed into a thin plate (extrusion molding or injection molding) to make a thin plate-like metal fine powder molding 42, and the metal fine powder molding 42 is degreased and sintered (fired) at a predetermined temperature. (See Figure 9).

燃料極13及び空気極14では、選択された2種類の遷移金属32の仕事関数の合成仕事関数が白金族金属の仕事関数に近似するように、白金族金属31の白金族金属微粉体の金属微粉体混合物41の全重量に対する重量比が決定され、それら遷移金属32の遷移金属微粉体の金属微粉体混合物41の全重量に対する重量比が決定されている。 In the fuel electrode 13 and the air electrode 14, the metal of the platinum group metal fine powder of the platinum group metal 31 is used so that the composite work function of the work functions of the two selected transition metals 32 approximates the work function of the platinum group metal. The weight ratio to the total weight of the fine powder mixture 41 is determined, and the weight ratio of the transition metal fine powder of those transition metals 32 to the total weight of the metal fine powder mixture 41 is determined.

具体的には、白金族金属31の白金族金属微粉体の金属微粉体混合物41の全重量(100%)に対する重量比が4%~10%の範囲、好ましくは、6%~8%の範囲にあり、選択された遷移金属32のうちの1種類の遷移金属微粉体の金属微粉体混合物41の全重量(100%)に対する重量比が45%~48%の範囲にあり、選択された遷移金属32のうちの他の1種類の遷移金属微粉体の金属微粉体混合物41の全重量(100%)に対する重量比が45%~48%の範囲にある。 Specifically, the weight ratio of the platinum group metal fine powder of the platinum group metal 31 to the total weight (100%) of the metal fine powder mixture 41 is in the range of 4% to 10%, preferably in the range of 6% to 8%. and the weight ratio of one type of transition metal fine powder among the selected transition metals 32 to the total weight (100%) of the metal fine powder mixture 41 is in the range of 45% to 48%, and the selected transition The weight ratio of the other transition metal fine powder of the metal 32 to the total weight (100%) of the metal fine powder mixture 41 is in the range of 45% to 48%.

白金族金属31の白金族金属微粉体の重量比、選択された1種類の遷移金属32の遷移金属微粉体の重量比、選択された他の1種類の遷移金属32の遷移金属微粉体の重量比が前記範囲外になると、それら遷移金属32の遷移金属微粉体の合成仕事関数を白金族金属の仕事関数に近似させることができないとともに、金属微粉体混合物41を成形した金属微粉体成形物42を脱脂・焼結(焼成)して作られた電極10が白金を担持した電極と略同様の触媒活性(触媒作用)を発揮することができない。 Weight ratio of platinum group metal fine powder of platinum group metal 31, weight ratio of transition metal fine powder of one selected transition metal 32, weight of transition metal fine powder of another selected transition metal 32 If the ratio is out of the above range, the synthetic work function of the transition metal fine powder of the transition metals 32 cannot be approximated to the work function of the platinum group metal, and the metal fine powder molding 42 formed by molding the metal fine powder mixture 41 cannot be obtained. The electrode 10 made by degreasing and sintering (firing) cannot exhibit substantially the same catalytic activity (catalytic action) as an electrode supporting platinum.

固体高分子形燃料電池17は、白金族金属31の微粉体の金属微粉体混合物41の全重量に対する重量比や選択された1種類の遷移金属32の微粉体の金属微粉体混合物41の全重量に対する重量比、選択された他の1種類の遷移金属32の微粉体の金属微粉体混合物41の全重量に対する重量比を前記範囲にすることで、選択された少なくとも2種類の遷移金属32の仕事関数の合成仕事関数が白金族金属の仕事関数に近似させることができ、燃料極13及び空気極14が白金を担持した電極と略同一の仕事関数を備え、燃料極13や空気極14が優れた触媒活性(触媒作用)を有し、燃料極13や空気極14が白金を担持した電極と略同様の触媒活性(触媒作用)を発揮することで、燃料極13や空気極14を使用して十分な電気を発電することができ、燃料電池17に接続された負荷30に十分な電気エネルギーを供給することができる。 The polymer electrolyte fuel cell 17 has a weight ratio of the fine powder of the platinum group metal 31 to the total weight of the fine metal powder mixture 41 and the total weight of the fine metal powder mixture 41 of fine powder of the selected one transition metal 32. By setting the weight ratio of the fine powder of the other selected transition metal 32 to the total weight of the metal fine powder mixture 41 in the above range, the work of at least two selected transition metals 32 The composite work function of the function can be approximated to the work function of the platinum group metal, and the fuel electrode 13 and the air electrode 14 have substantially the same work function as the platinum-supported electrode, and the fuel electrode 13 and the air electrode 14 are excellent. The fuel electrode 13 and the air electrode 14 have catalytic activity (catalytic action), and the fuel electrode 13 and the air electrode 14 exhibit substantially the same catalytic activity (catalytic action) as the platinum-supported electrode, so that the fuel electrode 13 and the air electrode 14 can be used. can generate enough electricity to supply sufficient electrical energy to the load 30 connected to the fuel cell 17 .

燃料極13及び空気極14には、径が異なる多数の微細な気孔25(流路)(連続かつ独立通路孔)が形成されている。燃料極13及び空気極14は、多数の微細な気孔25が形成されているから、その比表面積が大きい。それら気孔25は、燃料極13及び空気極14の前面23に開口する複数の通流口27と、燃料極13及び空気極14の後面24に開口する複数の通流口27とを有し、燃料極13及び空気極14の前面23から後面24に向かって燃料極13や空気極14をその厚み方向に貫通している。 A large number of fine pores 25 (flow paths) (continuous and independent passage holes) having different diameters are formed in the fuel electrode 13 and the air electrode 14 . Since the fuel electrode 13 and the air electrode 14 are formed with a large number of fine pores 25, their specific surface areas are large. The pores 25 have a plurality of flow holes 27 that open to the front surface 23 of the fuel electrode 13 and the air electrode 14, and a plurality of flow holes 27 that open to the rear surface 24 of the fuel electrode 13 and the air electrode 14, It penetrates the fuel electrode 13 and the air electrode 14 in the thickness direction from the front surface 23 to the rear surface 24 of the fuel electrode 13 and the air electrode 14 .

それら気孔25は、燃料極13及び空気極14の前面23と後面24との間において燃料極13や空気極14の厚み方向へ不規則に曲折しながら延びているとともに、燃料極13及び空気極14の外周縁28から中心に向かって燃料極13及び空気極14の径方向へ不規則に曲折しながら延びている。径方向へ隣接して厚み方向へ曲折して延びるそれら気孔25(流路)(連続かつ独立通路孔)は、径方向において部分的につながり、一方の気孔25と他方の気孔25とが互いに連通している。厚み方向へ隣接して径方向へ曲折して延びるそれら気孔25(流路)(連続かつ独立通路孔)は、厚み方向において部分的につながり、一方の気孔25と他方の気孔25とが互いに連通している。 The pores 25 extend between the front surface 23 and the rear surface 24 of the fuel electrode 13 and the air electrode 14 while irregularly bending in the thickness direction of the fuel electrode 13 and the air electrode 14. It extends from the outer peripheral edge 28 of the fuel electrode 14 toward the center while being irregularly bent in the radial direction of the fuel electrode 13 and the air electrode 14 . The pores 25 (channels) (continuous and independent passage holes) that are adjacent in the radial direction and extend in a curved manner in the thickness direction are partially connected in the radial direction, and the pores 25 on one side and the pores 25 on the other side communicate with each other. are doing. The pores 25 (channels) (continuous and independent passage holes) that are adjacent to each other in the thickness direction and extend in a radial direction are partially connected in the thickness direction, and the pores 25 on one side and the pores 25 on the other side communicate with each other. are doing.

それら気孔25(通路孔)の開口面積(開口径)は、厚み方向に向かって一様ではなく、厚み方向に向かって不規則に変化しているとともに、径方向に向かって一様ではなく、径方向に向かって不規則に変化している。それら気孔25は、その開口面積(開口径)が大きくなったり、小さくなったりしながら厚み方向と径方向とへ不規則に開口している。また、燃料極13及び空気極14の前面23に開口する通流口27と後面24に開口する通流口27とは、その開口面積(開口径)が一様ではなく、その面積がすべて相違している。そそれら気孔13(通路孔)の平均径(平均開口径)や前後面23,24の通流口27の開口径(平均開口径)は、1μm~100μmの範囲にある。 The opening areas (opening diameters) of the pores 25 (passage holes) are not uniform in the thickness direction, but vary irregularly in the thickness direction and are not uniform in the radial direction. It varies irregularly in the radial direction. The pores 25 open irregularly in the thickness direction and the radial direction while their opening areas (opening diameters) increase and decrease. In addition, the opening areas (opening diameters) of the flow holes 27 that open to the front surface 23 and the flow holes 27 that open to the rear surface 24 of the fuel electrode 13 and the air electrode 14 are not uniform, and the areas are all different. are doing. The average diameter (average opening diameter) of the pores 13 (passage holes) and the opening diameter (average opening diameter) of the flow ports 27 of the front and rear surfaces 23 and 24 are in the range of 1 μm to 100 μm.

固体高分子形燃料電池17は、それに使用する燃料極13及び空気極14に厚み方向や径方向へ不規則に曲折しながら延びる複数の気孔25(連続かつ独立通路孔)が形成され、その気孔の平均径が1~100μmの範囲にあるから、燃料極13や空気極14の単位体積当たりに多数の気孔25が形成され、燃料極13や空気極14の比表面積が大きく、それら気孔25をガス(気体)が通流しつつガス(気体)を燃料極13及び空気極14のそれら気孔25における接触面に広範囲に接触させることができ、燃料極13や空気極14の触媒活性(触媒作用)を有効かつ最大限に利用することができる。 A polymer electrolyte fuel cell 17 has a plurality of pores 25 (continuous and independent passage pores) formed in the fuel electrode 13 and the air electrode 14 used therein and extending while irregularly bending in the thickness direction and the radial direction. Since the average diameter of is in the range of 1 to 100 μm, a large number of pores 25 are formed per unit volume of the fuel electrode 13 and the air electrode 14, and the specific surface area of the fuel electrode 13 and the air electrode 14 is large. While the gas (gas) is flowing, the gas (gas) can be brought into contact with the contact surfaces of the pores 25 of the fuel electrode 13 and the air electrode 14 in a wide range, and the catalytic activity (catalysis) of the fuel electrode 13 and the air electrode 14 can be used effectively and to the maximum.

燃料極13及び空気極14(マイクロポーラス構造の薄板状電極26)は、その厚み寸法L1が0.03mm~1.5mmの範囲、好ましくは、0.05mm~1.0mmの範囲にある。燃料極13及び空気極14の厚み寸法L1が0.03mm(0.05mm)未満では、その強度が低下し、衝撃が加えられたときに燃料極13や空気極14が容易に破損又は損壊し、その形状を維持することができない場合がある。燃料極13及び空気極14の厚み寸法L1が1.5mm(1.0mm)を超過すると、燃料極13や空気極14の電気抵抗が大きくなり、燃料極13及び空気極14に電流がスムースに流れず、燃料極13や空気極14が固体高分子形燃料電池17に使用されたときに燃料電池17において十分な電気を発電することができず、燃料電池17に接続された負荷29に十分な電気エネルギーを供給することができない。 The thickness L1 of the fuel electrode 13 and air electrode 14 (microporous thin plate electrode 26) is in the range of 0.03 mm to 1.5 mm, preferably in the range of 0.05 mm to 1.0 mm. If the thickness dimension L1 of the fuel electrode 13 and the air electrode 14 is less than 0.03 mm (0.05 mm), the strength thereof decreases, and the fuel electrode 13 and the air electrode 14 are easily broken or damaged when an impact is applied. , it may not be able to maintain its shape. When the thickness dimension L1 of the fuel electrode 13 and the air electrode 14 exceeds 1.5 mm (1.0 mm), the electrical resistance of the fuel electrode 13 and the air electrode 14 increases, and the current flows smoothly through the fuel electrode 13 and the air electrode 14. When the fuel electrode 13 and the air electrode 14 are used in the polymer electrolyte fuel cell 17, sufficient electricity cannot be generated in the fuel cell 17 and sufficient electricity is not supplied to the load 29 connected to the fuel cell 17. cannot supply sufficient electrical energy.

固体高分子形燃料電池17は、それに使用する燃料極13及び空気極14の厚み寸法L1が0.03mm~1.5mmの範囲、好ましくは、0.05mm~1.0mmの範囲にあるから、燃料極13及び空気極14が高い強度を有してその形状を維持することができ、燃料極13や空気極14に衝撃が加えられたときの燃料極13や空気極14の破損や損壊を防ぐことができる。更に、燃料極13及び空気極14の電気抵抗を小さくすることができ、燃料極13や空気極14に電流がスムースに流れ、燃料極13及び空気極14が固体高分子形燃料電池17に使用されたときに燃料電池17において十分な電気を発電することができ、燃料電池17に接続された負荷30に十分な電気エネルギーを供給することができる。 Since the thickness dimension L1 of the fuel electrode 13 and the air electrode 14 used in the polymer electrolyte fuel cell 17 is in the range of 0.03 mm to 1.5 mm, preferably in the range of 0.05 mm to 1.0 mm, The fuel electrode 13 and the air electrode 14 have high strength and can maintain their shape, and the fuel electrode 13 and the air electrode 14 are prevented from being damaged or damaged when an impact is applied to the fuel electrode 13 or the air electrode 14. can be prevented. Furthermore, the electrical resistance of the fuel electrode 13 and the air electrode 14 can be reduced, the current flows smoothly through the fuel electrode 13 and the air electrode 14, and the fuel electrode 13 and the air electrode 14 can be used in the polymer electrolyte fuel cell 17. Sufficient electricity can be generated in the fuel cell 17 when the fuel cell 17 is turned on, and sufficient electrical energy can be supplied to the load 30 connected to the fuel cell 17 .

燃料極13及び空気極14(マイクロポーラス構造の薄板状電極26)は、その気孔率が70%~85%の範囲にある。燃料極13及び空気極14の気孔率が70%未満では、燃料極13及び空気極14に多数の微細な気孔25(連続かつ独立通路孔)が形成されず、燃料極13及び空気極14の比表面積を大きくすることができない。燃料極13及び空気極14の気孔率が90%を超過すると、気孔25(連続かつ独立通路孔)の開口面積(開口径)や前後面23,24の通流口27の開口面積(開口径)が必要以上に大きくなり、燃料極13及び空気極14の強度が低下し、衝撃が加えられたときに燃料極13や空気極14が容易に破損又は損壊し、その形状を維持することができない場合があるとともに、燃料極13及び空気極14の触媒作用が低下し、触媒活性を発揮することができない。 The porosity of the fuel electrode 13 and the air electrode 14 (microporous thin plate electrode 26) is in the range of 70% to 85%. If the porosity of the fuel electrode 13 and the air electrode 14 is less than 70%, a large number of fine pores 25 (continuous and independent passage holes) are not formed in the fuel electrode 13 and the air electrode 14, and the fuel electrode 13 and the air electrode 14 are not formed. The specific surface area cannot be increased. When the porosity of the fuel electrode 13 and the air electrode 14 exceeds 90%, the opening area (opening diameter) of the pores 25 (continuous and independent passage holes) and the opening area (opening diameter) of the flow holes 27 of the front and rear surfaces 23 and 24 ) becomes unnecessarily large, the strength of the fuel electrode 13 and the air electrode 14 is lowered, and the fuel electrode 13 and the air electrode 14 are easily damaged or damaged when an impact is applied, and the shape cannot be maintained. In addition, the catalytic action of the fuel electrode 13 and the air electrode 14 is lowered, and the catalytic activity cannot be exhibited.

固体高分子形燃料電池17は、それに使用する燃料極13及び空気極14の気孔率が前記範囲にあるから、燃料極13及び空気極14が開口面積(開口径)の異なる多数の微細な気孔25(平均径が1~100μmの範囲の気孔25)や開口面積(開口径)の異なる多数の微細な前後面23,24の通流口27(平均径が1~100μmの範囲の通流口27)を有する多孔質(マイクロポーラス構造)に成形され、燃料極13や空気極14の比表面積を大きくすることができ、それら気孔25をガス(気体)が通流しつつガス(気体)を燃料極13や空気極14のそれら気孔25における接触面に広範囲に接触させることができることができるとともに、燃料極13及び空気極14の触媒活性(触媒作用)を有効かつ最大限に利用することができる。更に、燃料極13及び空気極14の触媒作用が向上し、燃料極13及び空気極14に優れた触媒活性を発揮させることができ、燃料極13及び空気極14が固体高分子形燃料電池17に使用されたときに燃料電池17において十分な電気を発電することができ、燃料電池17に接続された負荷30に十分な電気エネルギーを供給することができる。 Since the porosities of the fuel electrode 13 and the air electrode 14 used in the polymer electrolyte fuel cell 17 are within the above range, the fuel electrode 13 and the air electrode 14 have many fine pores with different opening areas (opening diameters). 25 (pores 25 with an average diameter in the range of 1 to 100 μm) and a large number of flow ports 27 (flow ports with an average diameter in the range of 1 to 100 μm) on the front and rear surfaces 23 and 24 with different opening areas (opening diameters). 27), and the specific surface area of the fuel electrode 13 and the air electrode 14 can be increased. The contact surfaces of the pores 25 of the electrode 13 and the air electrode 14 can be brought into contact in a wide range, and the catalytic activity (catalysis) of the fuel electrode 13 and the air electrode 14 can be effectively and maximized. . Furthermore, the catalytic action of the fuel electrode 13 and the air electrode 14 is improved, and the fuel electrode 13 and the air electrode 14 can exhibit excellent catalytic activity. can generate sufficient electricity in the fuel cell 17 to supply sufficient electrical energy to the load 30 connected to the fuel cell 17.

燃料極13及び空気極14(マイクロポーラス構造の薄板状電極26)は、その密度が6.0g/cm~8.0g/cmの範囲、好ましくは、6.5g/cm~7.5g/cmの範囲にある。燃料極13及び空気極14の密度が6.0g/cm(6.5g/cm)未満では、燃料極13や空気極14の強度が低下し、衝撃が加えられたときに燃料極13や空気極14が容易に破損または損壊し、その形状を維持することができない場合があるとともに、燃料極13及び空気極14の触媒作用が低下し、触媒活性を発揮することができない。燃料極13及び空気極14の密度が8.0g/cm(7.5g/cm)を超過すると、燃料極13や空気極14に多数の微細な気孔25や多数の微細な通流口27が形成されず、燃料極13や空気極14の比表面積を大きくすることができず、燃料極13や空気極14の触媒活性(触媒作用)を有効に利用することができない。 The density of the fuel electrode 13 and the air electrode 14 (thin plate electrode 26 with microporous structure) is in the range of 6.0 g/cm 2 to 8.0 g/cm 2 , preferably 6.5 g/cm 2 to 7.0 g/cm 2 . It is in the range of 5 g/cm 2 . If the densities of the fuel electrode 13 and the air electrode 14 are less than 6.0 g/cm 2 (6.5 g/cm 2 ), the strength of the fuel electrode 13 and the air electrode 14 is lowered, and the fuel electrode 13 is damaged when an impact is applied. In some cases, the air electrode 14 is easily damaged or destroyed, and its shape cannot be maintained. When the density of the fuel electrode 13 and the air electrode 14 exceeds 8.0 g/cm 2 (7.5 g/cm 2 ), the fuel electrode 13 and the air electrode 14 have many fine pores 25 and many fine flow openings. 27 is not formed, the specific surface area of the fuel electrode 13 and the air electrode 14 cannot be increased, and the catalytic activity (catalysis) of the fuel electrode 13 and the air electrode 14 cannot be effectively utilized.

固体高分子形燃料電池17は、それに使用する燃料極13及び空気極14の密度が前記範囲にあるから、燃料極13や空気極14が開口面積(開口径)の異なる多数の微細な気孔25(通路孔)や開口面積(開口径)の異なる多数の微細な前後面23,24の通流口27を有する多孔質(マイクロポーラス構造)に成形され、燃料極13や空気極14の比表面積を大きくすることができ、それら流路25をガス(気体)が通流しつつガス(気体)を燃料極13及び空気極14のそれら流路25における接触面に広く接触させることができ、燃料極13や空気極14の触媒活性(触媒作用)を有効かつ最大限に利用することができる。更に、燃料極13や空気極14の触媒作用が向上し、燃料極13や空気極14に優れた触媒活性を発揮させることができる。 Since the density of the fuel electrode 13 and the air electrode 14 used in the polymer electrolyte fuel cell 17 is within the above range, the fuel electrode 13 and the air electrode 14 have many fine pores 25 with different opening areas (opening diameters). The specific surface area of the fuel electrode 13 and the air electrode 14 is formed into a porous (microporous structure) having a large number of fine flow openings 27 on the front and rear surfaces 23 and 24 with different opening areas (opening diameters). can be increased, and the gas (gas) can be widely contacted with the contact surfaces of the fuel electrode 13 and the air electrode 14 in the flow paths 25 while the gas (gas) flows through the flow paths 25. The catalytic activity (catalytic action) of 13 and air electrode 14 can be effectively and maximally utilized. Furthermore, the catalytic action of the fuel electrode 13 and the air electrode 14 is improved, and the fuel electrode 13 and the air electrode 14 can exhibit excellent catalytic activity.

固体高分子形燃料電池17は、それに使用する燃料極13及び空気極14の密度を前記範囲にすることで、燃料極13及び空気極14が開口面積(開口径)の異なる多数の微細な気孔25(通路孔)や開口面積(開口径)の異なる多数の微細な前後面23,24の通流口27を有する多孔質(マイクロポーラス構造)に成形され、燃料極13及び空気極14の比表面積を大きくすることができ、それら流路25をガス(気体)が通流しつつガス(気体)を燃料極13や空気極14のそれら流路25における接触面に広範囲に接触させることが可能となり、燃料極13や空気極14が白金族金属を含む電極と略同様の触媒活性(触媒作用)を確実に発揮し、燃料極13及び空気極14を使用して十分な電気を発電することができ、燃料電池17に接続された負荷29に十分な電気エネルギーを供給することができる。 By setting the densities of the fuel electrode 13 and the air electrode 14 used therein in the above range, the polymer electrolyte fuel cell 17 has a large number of fine pores with different opening areas (opening diameters). 25 (passage hole) and a large number of fine flow openings 27 on the front and rear surfaces 23 and 24 with different opening areas (opening diameters). The surface area can be increased, and while the gas (gas) flows through the flow paths 25, the gas (gas) can be brought into contact with the contact surfaces of the flow paths 25 of the fuel electrode 13 and the air electrode 14 over a wide range. , the fuel electrode 13 and the air electrode 14 can reliably exhibit substantially the same catalytic activity (catalytic action) as an electrode containing a platinum group metal, and the fuel electrode 13 and the air electrode 14 can be used to generate sufficient electricity. and can supply sufficient electrical energy to the load 29 connected to the fuel cell 17 .

Ptの微粉体(粉状に加工されたPt)、Pbの微粉状(粉状に加工されたPb)、Rhの微粉状(粉状に加工されたRh)、Ruの微粉状(粉状に加工されたRu)、Irの微粉状(粉状に加工されたIr)、Osの微粉状(粉状に加工されたOs)、Tiの微粉体(粉状に加工されたTi)、Crの微粉体(粉状に加工されたCr)、Mnの微粉体(粉状に加工されたMn)、Feの微粉体(粉状に加工されたFe)、Coの微粉体(粉状に加工されたCo)、Niの微粉体(粉状に加工されたNi)、Znの微粉体(粉状に加工されたZn)、Nbの微粉体(粉状に加工されたNb)、Moの微粉体(粉状に加工されたMo)、Agの微粉体(粉状に加工されたAg)、Cuの微粉体(粉状に加工されたCu)の粒径は、1μm~100μmの範囲にある。 Pt fine powder (powder processed Pt), Pb fine powder (powder processed Pb), Rh fine powder (powder processed Rh), Ru fine powder (powder processed Ru), fine powder of Ir (Ir processed into powder), fine powder of Os (Os processed into powder), fine powder of Ti (Ti processed into powder), Cr fine powder (Cr processed into powder), fine powder of Mn (Mn processed into powder), fine powder of Fe (Fe processed into powder), fine powder of Co (processed into powder) Co), fine powder of Ni (Ni processed into powder), fine powder of Zn (Zn processed into powder), fine powder of Nb (Nb processed into powder), fine powder of Mo (Mo processed into powder), fine Ag powder (Ag processed into powder), and fine Cu powder (Cu processed into powder) have a particle size in the range of 1 μm to 100 μm.

それら白金族金属31の白金族金属微粉体の粒径やそれら遷移金属32の遷移金属微粉体が1μm未満では、それら金属の微粉体によって気孔25(通路孔)が塞がれ、燃料極13及び空気極14に多数の微細な気孔25を形成することができず、燃料極13や空気極14の比表面積を大きくすることができないとともに、燃料極13及び空気極14の触媒作用が低下し、燃料極13や空気極14の触媒活性(触媒作用)を有効に利用することができない。それら白金族金属31の白金族金属微粉体の粒径やそれら遷移金属32の遷移金属微粉体の粒径が100μmを超過すると、気孔25(通路孔)の開口面積(開口径)や前後面23,24の通流口27の開口面積(開口径)が必要以上に大きくなり、燃料極13及び空気極14に多数の微細な気孔25を形成することができず、燃料極13や空気極14の比表面積を大きくすることができないとともに、燃料極13及び空気極14の触媒作用が低下し、燃料極13や空気極14の触媒活性(触媒作用)を有効に利用することができない。 If the particle size of the platinum group metal fine powder of the platinum group metal 31 or the transition metal fine powder of the transition metal 32 is less than 1 μm, the pores 25 (passage holes) are blocked by the fine powder of these metals, and the fuel electrode 13 and A large number of fine pores 25 cannot be formed in the air electrode 14, the specific surface area of the fuel electrode 13 and the air electrode 14 cannot be increased, and the catalytic action of the fuel electrode 13 and the air electrode 14 decreases, The catalytic activity (catalytic action) of the fuel electrode 13 and the air electrode 14 cannot be effectively utilized. If the particle size of the platinum group metal fine powder of the platinum group metal 31 or the particle size of the transition metal fine powder of the transition metal 32 exceeds 100 μm, the opening area (opening diameter) of the pores 25 (passage holes) and the front and rear surfaces 23 , 24, the opening area (opening diameter) of the flow opening 27 becomes larger than necessary, and many fine pores 25 cannot be formed in the fuel electrode 13 and the air electrode 14. In addition, the catalytic action of the fuel electrode 13 and the air electrode 14 is lowered, and the catalytic activity (catalytic action) of the fuel electrode 13 and the air electrode 14 cannot be effectively used.

固体高分子形燃料電池17は、燃料極13及び空気極14を形成する白金族金属31の白金族金属微粉体の粒径や遷移金属32の遷移金属微粉体の粒径が前記範囲にあるから、燃料極13や空気極14が開口面積(開口径)の異なる多数の微細な気孔25(平均径が1~100μmの範囲の気孔25)や開口面積(開口径)の異なる多数の微細な前後面23,24の通流口27(平均径が1~100μmの範囲の通流口27)を有する多孔質(マイクロポーラス構造)に成形され、燃料極13や空気極14の比表面積を大きくすることができ、それら気孔25をガス(気体)が通流しつつガス(気体)を燃料極13や空気極14のそれら気孔25における接触面に広く接触させることができるとともに、燃料極13や空気極14の触媒活性(触媒作用)を有効かつ最大限に利用することができる。更に、燃料極13及び空気極14の触媒作用が向上し、燃料極13及び空気極14に優れた触媒活性を発揮させることができ、燃料極13及び空気極14が固体高分子形燃料電池17に使用されたときに燃料電池17において十分な電気を発電することができ、燃料電池17に接続された負荷30に十分な電気エネルギーを供給することができる。 In the polymer electrolyte fuel cell 17, the particle size of the fine platinum group metal powder of the platinum group metal 31 and the particle size of the fine transition metal powder of the transition metal 32 forming the fuel electrode 13 and the air electrode 14 are within the above ranges. , the fuel electrode 13 and the air electrode 14 have a large number of fine pores 25 with different opening areas (opening diameters) (pores 25 with an average diameter in the range of 1 to 100 μm) and a large number of fine front and rear pores with different opening areas (opening diameters). The surfaces 23 and 24 are formed into a porous (microporous structure) having flow holes 27 (flow holes 27 with an average diameter in the range of 1 to 100 μm) to increase the specific surface areas of the fuel electrode 13 and the air electrode 14. The gas (gas) flows through the pores 25 and can be brought into contact with the contact surfaces of the pores 25 of the fuel electrode 13 and the air electrode 14 widely. The catalytic activity (catalysis) of 14 can be effectively and maximally utilized. Furthermore, the catalytic action of the fuel electrode 13 and the air electrode 14 is improved, and the fuel electrode 13 and the air electrode 14 can exhibit excellent catalytic activity. can generate sufficient electricity in the fuel cell 17 to supply sufficient electrical energy to the load 30 connected to the fuel cell 17.

燃料極13及び空気極14(マイクロポーラス構造の薄板状電極26)に使用する白金族金属31や遷移金属32の具体例としては、図9に示すように、粉状に加工されたPt34(白金)の白金族金属微粉体38(粒径:1μm~100μm)と、粉状に加工されたNi35(ニッケル)の遷移金属微粉体39(粒径:1μm~100μm)と、粉状に加工されたFe36(鉄)の遷移金属微粉体40(粒径:1μm~100μm)とを原料としている。 As a specific example of the platinum group metal 31 and the transition metal 32 used for the fuel electrode 13 and the air electrode 14 (microporous thin plate electrode 26), as shown in FIG. 9, powdered Pt 34 (platinum ) of platinum group metal fine powder 38 (particle size: 1 μm to 100 μm), powdered transition metal fine powder 39 of Ni 35 (nickel) (particle size: 1 μm to 100 μm), and powdered powder A transition metal fine powder 40 (particle size: 1 μm to 100 μm) of Fe36 (iron) is used as a raw material.

燃料極13及び空気極14は、Pt34やNi35、Fe36の微粉体37~38と所定のバインダー33とを均一に混合・分散した金属微粉体混合物41を作り、金属微粉体混合物41に気孔形成材40(発泡剤)を添加し、気孔形成材40を添加した金属微粉体混合物41を所定面積の薄板状に成形(押し出し成形又は射出成形)して金属微粉体成形物42を作り、その金属微粉体成形物42を脱脂するとともに所定温度で焼結(焼成)することで、多数の微細な気孔25(平均径が1~100μmの範囲の気孔25)が形成されたマイクロポーラス構造かつ薄板状の電極(燃料極13及び空気極14)に成形される。 For the fuel electrode 13 and the air electrode 14, a metal fine powder mixture 41 is prepared by uniformly mixing and dispersing fine powders 37 to 38 of Pt 34, Ni 35, and Fe 36 and a predetermined binder 33, and a pore forming material is added to the metal fine powder mixture 41. 40 (foaming agent) is added, and the metal fine powder mixture 41 to which the pore forming material 40 is added is molded (extrusion molding or injection molding) into a thin plate having a predetermined area to make a metal fine powder molding 42, and the metal fine powder By degreasing the body molding 42 and sintering (firing) it at a predetermined temperature, a microporous structure and a thin plate-like structure in which a large number of fine pores 25 (pores 25 having an average diameter in the range of 1 to 100 μm) are formed. The electrodes (anode 13 and cathode 14) are formed.

燃料極13及び空気極14では、Ni35の仕事関数とFe36の仕事関数との合成仕事関数が白金族金属の仕事関数に近似するように、Pt34の白金族金属微粉体37の金属微粉体混合物41の全重量に対する重量比、Ni35の遷移金属微粉体38の金属微粉体混合物41の全重量に対する重量比、Fe36の遷移金属微粉体39の金属微粉体混合物41の全重量に対する重量比が決定されている。 In the fuel electrode 13 and the air electrode 14, a metal fine powder mixture 41 of platinum group metal fine powder 37 of Pt 34 is added so that the composite work function of the work function of Ni 35 and the work function of Fe 36 approximates the work function of the platinum group metal. , the weight ratio of the transition metal fine powder 38 of Ni35 to the total weight of the metal fine powder mixture 41, and the weight ratio of the transition metal fine powder 39 of Fe36 to the total weight of the metal fine powder mixture 41 were determined. there is

金属微粉体混合物41の全重量(100%)に対するPt34(白金族金属31)の白金族金属微粉体37の重量比は、4%~10%の範囲、好ましくは、5%~8%の範囲であり、金属微粉体混合物41の全重量(100%)に対するNi35(遷移金属32)の遷移金属微粉体38の重量比は、45%~48%の範囲である。金属微粉体混合物41の全重量(100%)に対するFe36(遷移金属32)の遷移金属微粉体39の重量比は、45~48%の範囲である。 The weight ratio of the platinum group metal fine powder 37 of Pt34 (platinum group metal 31) to the total weight (100%) of the metal fine powder mixture 41 is in the range of 4% to 10%, preferably in the range of 5% to 8%. and the weight ratio of the fine transition metal powder 38 of Ni 35 (transition metal 32) to the total weight (100%) of the fine metal powder mixture 41 is in the range of 45% to 48%. The weight ratio of the transition metal fine powder 39 of Fe 36 (transition metal 32) to the total weight (100%) of the metal fine powder mixture 41 is in the range of 45-48%.

Pt34の微粉体37の重量比、Ni35の微粉体38の重量比、Fe36の微粉体39の重量比が前記範囲外になると、Ni35の微粉体38とFe36の微粉体39との合成仕事関数を白金族金属の仕事関数に近似させることができないとともに、金属微粉体混合物41を成形した金属微粉体成形物42を脱脂・焼結して作られた燃料極13及び空気極14が白金を担持した電極と略同様の触媒活性(触媒作用)を発揮することができない。 When the weight ratio of the fine powder 37 of Pt 34, the weight ratio of the fine powder 38 of Ni 35, and the weight ratio of the fine powder 39 of Fe 36 are outside the above ranges, the composite work function of the fine powder 38 of Ni 35 and the fine powder 39 of Fe 36 is The work function of the platinum group metal cannot be approximated, and the fuel electrode 13 and the air electrode 14, which are made by degreasing and sintering the metal fine powder molding 42 formed by molding the metal fine powder mixture 41, carry platinum. It cannot exhibit substantially the same catalytic activity (catalytic action) as an electrode.

固体高分子形燃料電池17は、金属微粉体混合物41の全重量に対するPt34の微粉体37の重量比やNi35の微粉体38の重量比、Fe36の微粉体39の重量比を前記範囲にすることで、Ni35の微粉体38とFe36の微粉体39との仕事関数の合成仕事関数を白金族金属の仕事関数に近似させることができ、燃料極13及び空気極14が白金を担持した電極と略同一の仕事関数を備え、燃料極13や空気極14が優れた触媒活性(触媒作用)を有し、燃料極13や空気極14が白金を担持した電極と略同様の触媒活性(触媒作用)を発揮することで、燃料極13や空気極14を使用して十分な電気を発電することができ、燃料電池17に接続された負荷30に十分な電気エネルギーを供給することができる。 In the polymer electrolyte fuel cell 17, the weight ratio of the Pt 34 fine powder 37, the weight ratio of the Ni 35 fine powder 38, and the weight ratio of the Fe 36 fine powder 39 to the total weight of the metal fine powder mixture 41 are set within the above ranges. Therefore, the composite work function of the work functions of the fine powder 38 of Ni35 and the fine powder 39 of Fe36 can be approximated to the work function of the platinum group metal, and the fuel electrode 13 and the air electrode 14 are substantially platinum-supported electrodes. It has the same work function, the fuel electrode 13 and the air electrode 14 have excellent catalytic activity (catalytic action), and the fuel electrode 13 and the air electrode 14 have substantially the same catalytic activity (catalytic action) as the platinum-supported electrode. , sufficient electricity can be generated using the fuel electrode 13 and the air electrode 14 , and sufficient electrical energy can be supplied to the load 30 connected to the fuel cell 17 .

図6は、固体高分子形燃料電池10の発電を説明する図であり、図7は、燃料極13及び空気極14の起電圧試験の結果を示す図である。図8は、燃料極13及び空気極14のI-V特性試験の結果を示す図である。固体高分子形燃料電池10では、図6に示すように、燃料極13(電極)に水素(燃料)が供給され、空気極14(電極)に空気(酸素)が供給される。 FIG. 6 is a diagram for explaining the power generation of the polymer electrolyte fuel cell 10, and FIG. 7 is a diagram showing the results of an electromotive force test on the fuel electrode 13 and the air electrode 14. As shown in FIG. FIG. 8 is a diagram showing the results of an IV characteristic test of the anode 13 and the cathode 14. In FIG. In the polymer electrolyte fuel cell 10, as shown in FIG. 6, hydrogen (fuel) is supplied to the fuel electrode 13 (electrode), and air (oxygen) is supplied to the air electrode 14 (electrode).

燃料極13に供給される水素(燃料)の雰囲気(燃料の相対湿度)は、相対湿度95%~100%の範囲、好ましくは、100%であり、水素の温度は、45℃~55℃の範囲、好ましくは、49℃~51℃の範囲にある。燃料極13に供給される水素には、燃料極13に供給される前に蒸気発生器(図示せず)から蒸気が供給され、その雰囲(燃料の相対湿度)が95%~100%(好ましくは、100%)に上昇するとともに、その温度が45℃~55℃(好ましくは、49℃~51℃)に上昇する。 The hydrogen (fuel) atmosphere (relative humidity of the fuel) supplied to the fuel electrode 13 is in the range of 95% to 100% relative humidity, preferably 100%, and the temperature of the hydrogen is 45°C to 55°C. range, preferably between 49°C and 51°C. The hydrogen supplied to the fuel electrode 13 is supplied with steam from a steam generator (not shown) before being supplied to the fuel electrode 13, and the atmosphere (relative humidity of the fuel) is 95% to 100% ( preferably 100%) and the temperature rises to 45° C.-55° C. (preferably 49° C.-51° C.).

燃料極13に供給される水素の供給圧力及び空気極14に供給される空気の供給圧力は、+0.06MPa~+0.08MPaの範囲、好ましくは、+0.07MPaである。固体高分子形燃料電池10では、燃料極13に供給する水素及び空気極14に供給する空気を(給気)圧送する給気ポンプ(図示せず)が設置され、給気ポンプによって燃料極13に供給される水素の供給圧力が+0.06MPa~+0.08MPaの範囲、好ましくは、+0.07MPaに昇圧されるとともに、給気ポンプによって空気極14に供給する空気の供給圧力が+0.06MPa~+0.08MPaの範囲、好ましくは、+0.07MPaに昇圧される。 The supply pressure of hydrogen supplied to the fuel electrode 13 and the supply pressure of air supplied to the air electrode 14 are in the range of +0.06 MPa to +0.08 MPa, preferably +0.07 MPa. In the polymer electrolyte fuel cell 10, an air supply pump (not shown) is installed to pressure-feed hydrogen to be supplied to the fuel electrode 13 and air to be supplied to the air electrode 14. The supply pressure of hydrogen supplied to is in the range of +0.06 MPa to +0.08 MPa, preferably increased to +0.07 MPa, and the supply pressure of air supplied to the air electrode 14 by the air supply pump is +0.06 MPa to It is boosted to a range of +0.08 MPa, preferably +0.07 MPa.

燃料極13(電極)では、水素がH→2H+2eの反応(触媒作用)によってプロトン(水素イオン、H)と電子とに分解される。その後、プロトンが固体高分子電解質膜15内を通って空気極14へ移動し、電子が導線29内を通って空気極14へ移動する。固体高分子電解質膜15には、燃料極13で生成されたプロトンが通流する。空気極14(電極)では、固体高分子電解質膜15から移動したプロトンと導線29を移動した電子とが空気中の酸素と反応し、4H+O+4e→2HOの反応によって水が生成される。 At the fuel electrode 13 (electrode), hydrogen is decomposed into protons (hydrogen ions, H + ) and electrons by the reaction (catalysis) of H 2 →2H + +2e . After that, protons move through the solid polymer electrolyte membrane 15 to the air electrode 14 , and electrons move through the conducting wire 29 to the air electrode 14 . Protons generated at the fuel electrode 13 flow through the solid polymer electrolyte membrane 15 . At the air electrode 14 (electrode), the protons transferred from the solid polymer electrolyte membrane 15 and the electrons transferred through the conducting wire 29 react with oxygen in the air, and the reaction of 4H + +O 2 +4e→2H 2 O produces water. be done.

燃料極13及び空気極14は、白金族金属31の微粉体を含み、更に、遷移金属32の仕事関数の合成仕事関数が白金族金属の仕事関数に近似するように、遷移金属32の中から少なくとも2種類の遷移金属32が選択され、選択された遷移金属32の仕事関数の合成仕事関数が白金族金属の仕事関数に近似するように、白金族金属31の金属微粉体混合物43の全重量に対する重量比が決定され、選択された遷移金属32の微粉体の金属微粉体混合物43の全重量に対する重量比が決定されているから、燃料極13及び空気極14が白金を担持した電極と略同一の仕事関数を備え、白金を担持した電極と略同様の触媒活性(触媒作用)を示し、水素がプロトンと電子とに効率よく分解される。 The anode 13 and the cathode 14 include fine powder of a platinum group metal 31, and further, from among the transition metals 32 such that the composite work function of the work function of the transition metals 32 approximates the work function of the platinum group metals. total weight of metal fine powder mixture 43 of platinum group metals 31 wherein at least two transition metals 32 are selected such that the composite work function of the work function of the selected transition metals 32 approximates the work function of the platinum group metals , and the weight ratio of the fine powder of the selected transition metal 32 to the total weight of the fine metal powder mixture 43 is determined. It has the same work function, exhibits almost the same catalytic activity (catalytic action) as the platinum-supported electrode, and efficiently decomposes hydrogen into protons and electrons.

具体例として示した燃料極13及び空気極14は、Pt34の微粉体37を含み、更に、仕事関数の合成仕事関数が白金族金属の仕事関数に近似するように、Ni35とFe36とが選択され、選択されたNi35とFe36との仕事関数の合計仕事関数が白金族金属の仕事関数に近似するように、金属微粉体混合物41の全重量に対するPt34の微粉体37の重量比が決定され、金属微粉体混合物41の全重量に対するNi35の微粉体38の重量比と金属微粉体混合物41の全重量に対するFe36の微粉体39の重量比とが決定されているから、燃料極13や空気極14が白金を担持した電極と略同一の仕事関数を備え、白金を担持した電極と略同様の触媒活性(触媒作用)を示し、水素がプロトンと電子とに効率よく分解される。 The fuel electrode 13 and air electrode 14 shown as specific examples include fine powder 37 of Pt 34, and Ni 35 and Fe 36 are selected so that the composite work function of the work function approximates that of the platinum group metals. , the weight ratio of the fine powder 37 of Pt 34 to the total weight of the fine metal powder mixture 41 is determined such that the sum of the work functions of the selected Ni 35 and Fe 36 approximates the work function of the platinum group metal; Since the weight ratio of the Ni35 fine powder 38 to the total weight of the fine powder mixture 41 and the weight ratio of the Fe36 fine powder 39 to the total weight of the metal fine powder mixture 41 are determined, the fuel electrode 13 and the air electrode 14 are determined. It has substantially the same work function as the platinum-supported electrode, exhibits substantially the same catalytic activity (catalytic action) as the platinum-supported electrode, and efficiently decomposes hydrogen into protons and electrons.

起電圧試験では、水素ガスを注入してから15分の間、燃料極13と空気極14との間の電圧(V)を測定した。図7の起電圧試験の結果を示す図では、横軸に測定時間(min)を表し、縦軸に燃料極13と空気極13との間の電圧(V)を表す。燃料極13及び空気極14を使用した固体高分子形燃料電池10では、図7に示すように、電極間の電圧が1.07(V)~1.088(V)であった。 In the electromotive voltage test, the voltage (V) between the fuel electrode 13 and the air electrode 14 was measured for 15 minutes after the hydrogen gas was injected. In FIG. 7 showing the results of the electromotive voltage test, the horizontal axis represents the measurement time (min) and the vertical axis represents the voltage (V) between the fuel electrode 13 and the air electrode 13 . In the polymer electrolyte fuel cell 10 using the fuel electrode 13 and the air electrode 14, the voltage between the electrodes was 1.07 (V) to 1.088 (V), as shown in FIG.

I-V特性試験では、燃料極13と空気極14との間に負荷30を接続し、電圧と電流との関係を測定した。図8のI-V特性試験の結果を示す図では、横軸に電流(A)を表し、縦軸に電圧(V)を表す。燃料極13及び空気極14を使用した固体高分子形燃料電池10では、図8に示すように、緩やかな電圧降下が認められた。図7の起電圧試験の結果や図8のI-V特性試験の結果に示すように、燃料極13及び空気極13が電子を放出させて水素イオンとなる反応を促進させる優れた触媒作用を有するとともに、優れた酸素還元機能(触媒作用)を有することが確認された。 In the IV characteristic test, a load 30 was connected between the fuel electrode 13 and the air electrode 14, and the relationship between voltage and current was measured. In FIG. 8 showing the results of the IV characteristic test, the horizontal axis represents current (A) and the vertical axis represents voltage (V). In the polymer electrolyte fuel cell 10 using the fuel electrode 13 and the air electrode 14, a moderate voltage drop was observed as shown in FIG. As shown in the electromotive voltage test results of FIG. 7 and the IV characteristic test results of FIG. It was confirmed that it has an excellent oxygen reduction function (catalytic action).

固体高分子形燃料電池10は、それに使用される燃料極13及び空気極14が白金族金属31の微粉体と所定の遷移金属32の仕事関数の合成仕事関数が白金族金属の仕事関数に近似するように選択された少なくとも2種類の遷移金属32の微粉体と所定のバインダー33(紛状の樹脂系バインダー)とを均一に混合・分散した金属微粉体混合物41を作り、金属微粉体混合物41に所定の気孔形成材40(発泡剤)を添加し(加え)、気孔形成材40を添加した金属微粉体混合物41を所定面積の薄板状に成形(押し出し成形又は射出成形)して薄板状の金属微粉体成形物42を作り、その金属微粉体成形物42を脱脂及び所定温度で焼結(焼成)することから作られて多数の微細な気孔25や通流口27を有するマイクロポーラス構造の薄板状電極26であり、選択された遷移金属32の仕事関数の合成仕事関数が白金族金属の仕事関数に近似するように、白金族金属31の微粉体の金属微粉体混合物41の全重量に対する重量比が決定され、選択された遷移金属32の微粉体の金属微粉体混合物41の全重量に対する重量比が決定されているから、燃料極13や空気極14が白金を担持した電極と略同一の仕事関数を備え、燃料極13や空気極14が優れた触媒活性(触媒作用)を有し、燃料極13や空気極14が白金を担持した電極と略同様の触媒活性(触媒作用)を発揮することで、その燃料極13及び空気極14を使用して十分な電気を発電することができ、燃料電池10に接続された負荷30に十分な電気エネルギーを供給することができる。 In the polymer electrolyte fuel cell 10, the fuel electrode 13 and the air electrode 14 used therein are composed of fine powder of the platinum group metal 31 and the work function of the predetermined transition metal 32. The work function is similar to the work function of the platinum group metal. A metal fine powder mixture 41 is prepared by uniformly mixing and dispersing fine powders of at least two kinds of transition metals 32 selected to A predetermined pore-forming material 40 (foaming agent) is added (added), and the metal fine powder mixture 41 to which the pore-forming material 40 is added is molded into a thin plate having a predetermined area (extrusion molding or injection molding) to form a thin plate. A microporous structure having a large number of fine pores 25 and flow openings 27 is produced by making a metal fine powder molding 42, degreasing the metal fine powder molding 42, and sintering (firing) the metal fine powder molding 42 at a predetermined temperature. The thin plate electrode 26, the fine powder of the platinum group metal 31 relative to the total weight of the metal fine powder mixture 41, such that the composite work function of the work function of the selected transition metal 32 approximates the work function of the platinum group metal The weight ratio is determined, and the weight ratio of the fine powder of the selected transition metal 32 to the total weight of the metal fine powder mixture 41 is determined, so that the fuel electrode 13 and the air electrode 14 are substantially the same as the electrode carrying platinum. has a work function of , the fuel electrode 13 and the air electrode 14 have excellent catalytic activity (catalytic action), and the fuel electrode 13 and the air electrode 14 have substantially the same catalytic activity (catalytic action) as the platinum-supported electrode When the fuel cell 10 is activated, sufficient electricity can be generated using the fuel electrode 13 and the air electrode 14, and sufficient electrical energy can be supplied to the load 30 connected to the fuel cell 10.

また、白金族金属31としてPt34(白金)を原料とし、遷移金属32としてNi35(ニッケル)とFe36(鉄)とを原料とした燃料極13及び空気極14を使用した固体高分子形燃料電池10は、遷移金属32の仕事関数の合成仕事関数が白金族金属の仕事関数に近似するように、Ni35とFe36が選択され、選択されたNi35とFe36との仕事関数の合計仕事関数が白金族金属の仕事関数に近似するように、金属微粉体混合物41の全重量に対するPt34の微粉体37の重量比が決定され、金属微粉体混合物41の全重量に対するNi35の微粉体38の重量比と金属微粉体混合物41の全重量に対するFe36の微粉体39の重量比とが決定されているから、燃料極13や空気極14が白金を担持した電極と略同一の仕事関数を備え、燃料極13や空気極14が優れた触媒活性(触媒作用)を有し、燃料極13や空気極14が白金を担持した電極と略同様の触媒活性(触媒作用)を発揮することで、その燃料極13及び空気極14を使用して十分な電気を発電することができ、燃料電池10に接続された負荷30に十分な電気エネルギーを供給することができる。 In addition, the polymer electrolyte fuel cell 10 uses the fuel electrode 13 and the air electrode 14 using Pt34 (platinum) as the raw material for the platinum group metal 31 and Ni35 (nickel) and Fe36 (iron) as the transition metals 32. Ni35 and Fe36 are selected such that the composite work function of the work function of the transition metal 32 approximates the work function of the platinum group metal, and the sum of the work functions of the selected Ni35 and Fe36 is the platinum group metal The weight ratio of Pt34 fine powder 37 to the total weight of the metal fine powder mixture 41 is determined so as to approximate the work function of Since the weight ratio of the Fe 36 fine powder 39 to the total weight of the solid mixture 41 is determined, the fuel electrode 13 and the air electrode 14 have substantially the same work function as the platinum-supported electrode, and the fuel electrode 13 and the air The electrode 14 has excellent catalytic activity (catalytic action), and the fuel electrode 13 and the air electrode 14 exhibit substantially the same catalytic activity (catalytic action) as the platinum-supported electrode, so that the fuel electrode 13 and the air Sufficient electricity can be generated using the poles 14 to supply sufficient electrical energy to the load 30 connected to the fuel cell 10 .

固体高分子形燃料電池10は、燃料極13及び空気極14が各種の遷移金属32から選択された廉価な遷移金属32(たとえば、Ni35、Fe36)を含み、金属微粉体混合物41の全重量に対するそれら遷移金属32の微粉体の重量比(Ni35の微粉体39の重量比、Fe36の微粉体40の重量比)が前記範囲にあり、金属微粉体混合物41の全重量に対する白金族金属31の微粉体の重量比(Pt34の微粉体37の重量比)が前記範囲にあり、高価な白金族金属31(Pt34)の含有量が少ないから、燃料極13や空気極14の材料費を低減させることができ、固体高分子形燃料電池10を廉価に作ることができるとともに、固体高分子形燃料電池10の運転コストを下げることができる。 In the polymer electrolyte fuel cell 10, the fuel electrode 13 and the air electrode 14 contain inexpensive transition metals 32 (eg, Ni35, Fe36) selected from various transition metals 32, and the total weight of the metal fine powder mixture 41 is The weight ratio of the fine powder of the transition metal 32 (the weight ratio of the fine powder 39 of Ni 35 and the weight ratio of the fine powder 40 of Fe 36) is within the above range, and the fine powder of the platinum group metal 31 with respect to the total weight of the fine metal powder mixture 41 The material cost of the fuel electrode 13 and the air electrode 14 can be reduced because the weight ratio of the solid (weight ratio of the fine powder 37 of Pt 34) is within the above range and the content of the expensive platinum group metal 31 (Pt 34) is small. Therefore, the polymer electrolyte fuel cell 10 can be manufactured at low cost, and the operating cost of the polymer electrolyte fuel cell 10 can be reduced.

固体高分子形燃料電池10は、相対湿度95%~100%の雰囲気の水素(燃料)を燃料極13に供給し、45℃~55℃の温度の水素を燃料極13に供給し、+0.06MPa~+0.08MPaの供給圧力で燃料極13に水素を供給するとともに+0.06MPa~+0.08MPaの供給圧力で空気極14に空気(酸素)を供給することで、燃料極13や空気極14の触媒活性が増加し、燃料電池10の起電力が向上し、非白金の燃料極13や空気極14を使用して十分な電気を確実に発電することができ、燃料電池10に接続された負荷30に十分な電気エネルギーを確実に供給することができる。 The polymer electrolyte fuel cell 10 supplies hydrogen (fuel) in an atmosphere with a relative humidity of 95% to 100% to the fuel electrode 13, supplies hydrogen at a temperature of 45° C. to 55° C. to the fuel electrode 13, and supplies +0. By supplying hydrogen to the fuel electrode 13 at a supply pressure of 06 MPa to +0.08 MPa and supplying air (oxygen) to the air electrode 14 at a supply pressure of +0.06 MPa to +0.08 MPa, the fuel electrode 13 and the air electrode 14 increases the catalytic activity of the fuel cell 10, improves the electromotive force of the fuel cell 10, can reliably generate sufficient electricity using the non-platinum fuel electrode 13 and the air electrode 14, and is connected to the fuel cell 10 Sufficient electrical energy can be reliably supplied to the load 30 .

図9は、固体高分子形燃料電池10に使用する燃料極13及び空気極14の製造方法を説明する図である。燃料極13及び空気極14は、図9に示すように、金属選択工程S1、金属微粉体作成工程S2、微粉体重量比決定工程S3、金属微粉体混合物作成工程S4、金属微粉体成形物作成工程S5、マイクロポーラス構造薄板電極作成工程S6を有する電極製造方法によって製造される。電極製造方法では、白金族金属31と少なくとも2種類の遷移金属32とを原料として固体高分子形燃料電池10に使用する燃料極13及び空気極14を製造する。 FIG. 9 is a diagram illustrating a method of manufacturing the fuel electrode 13 and the air electrode 14 used in the polymer electrolyte fuel cell 10. As shown in FIG. As shown in FIG. 9, the fuel electrode 13 and the air electrode 14 are subjected to a metal selection step S1, a fine metal powder preparation step S2, a fine powder weight ratio determination step S3, a fine metal powder mixture preparation step S4, and a fine metal powder molding preparation step S4. It is manufactured by an electrode manufacturing method having step S5 and microporous structure thin plate electrode manufacturing step S6. In the electrode manufacturing method, a platinum group metal 31 and at least two kinds of transition metals 32 are used as raw materials to manufacture the fuel electrode 13 and the air electrode 14 used in the polymer electrolyte fuel cell 10 .

金属選択工程S1では、各種の白金族金属31の中から少なくとも1種類の白金族金属31(白金(Pt)、パラジウム(Pb)、ロジウム(Rh)、ルテニウム(Ru)、イリジウム(Ir)、オスミウム(Os))を選択し、各種の遷移金属32から選択する少なくとも2種類の遷移金属32の仕事関数の合成仕事関数が白金族金属の仕事関数に近似するように、各種の遷移金属32の中から少なくとも2種類の遷移金属32(Ti(チタン)、Cr(クロム)、Mn(マンガン)、Fe(鉄)、Co(コバルト)、Ni(ニッケル)、Cu(銅)、Zn(亜鉛)、Nb(ニオブ)、Mo(モリブデン)、Ag(銀))を選択する。なお、燃料極13及び空気極14に使用する白金族金属31としてPt34(白金)が選択され、燃料極13及び空気極14に使用する遷移金属32としてNi35(ニッケル)、Fe36(鉄)が選択されたものとする。 In the metal selection step S1, at least one platinum group metal 31 (platinum (Pt), palladium (Pb), rhodium (Rh), ruthenium (Ru), iridium (Ir), osmium (Os)), and among the various transition metals 32 such that the composite work function of the work functions of at least two transition metals 32 selected from the various transition metals 32 approximates the work function of the platinum group metals. at least two transition metals 32 (Ti (titanium), Cr (chromium), Mn (manganese), Fe (iron), Co (cobalt), Ni (nickel), Cu (copper), Zn (zinc), Nb (niobium), Mo (molybdenum), Ag (silver)). Pt34 (platinum) is selected as the platinum group metal 31 used for the fuel electrode 13 and the air electrode 14, and Ni35 (nickel) and Fe36 (iron) are selected as the transition metal 32 used for the fuel electrode 13 and the air electrode 14. shall have been

金属微粉体作成工程S2では、微粉砕機によって白金34(Pt)を1μm~100μmの粒径に微粉砕し、粒径が1μm~100μmのPt34の白金族金属微粉体37を作り、微粉砕機によってNi35(ニッケル)を1μm~100μmの粒径に微粉砕し、粒径が1μm~100μmのNi35の遷移金属微粉体38を作るとともに、微粉砕機によってFe36(鉄)を1μm~100μmの粒径に微粉砕し、粒径が1μm~100μmのFe36の遷移金属微粉体39を作る。 In the metal fine powder preparation step S2, platinum 34 (Pt) is finely pulverized to a particle size of 1 μm to 100 μm by a fine pulverizer to produce platinum group metal fine powder 37 of Pt 34 having a particle size of 1 μm to 100 μm. Ni35 (nickel) is finely pulverized to a particle size of 1 μm to 100 μm by using a fine pulverizer to make transition metal fine powder 38 of Ni35 with a particle size of 1 μm to 100 μm. , to make Fe36 transition metal fine powder 39 with a particle size of 1 μm to 100 μm.

電極製造方法は、Pt34(白金族金属31)やNi35(遷移金属32)、Fe36(遷移金属32)を1μm~100μmの粒径に微粉砕することで、多数の微細な気孔25(通路孔)を有する多孔質に成形されて比表面積が大きいマイクロポーラス構造かつ薄板状の燃料極13や空気極14を作ることができ、それら気孔25をガス(気体)が通流しつつ気体を燃料極13や空気極14のそれら気孔25における接触面に広範囲に接触させることが可能な燃料極13及び空気極14を作ることができる。 In the electrode manufacturing method, Pt 34 (platinum group metal 31), Ni 35 (transition metal 32), and Fe 36 (transition metal 32) are pulverized to a particle size of 1 μm to 100 μm to form a large number of fine pores 25 (passage holes). It is possible to make the fuel electrode 13 and the air electrode 14 having a microporous structure and a thin plate shape with a large specific surface area, and the gas (gas) flows through the pores 25 while the gas is passed through the fuel electrode 13 and the air electrode 14. It is possible to make the anode 13 and the cathode 14 capable of extensively contacting the contact surfaces of the pores 25 of the cathode 14 .

微粉体重量比決定工程S3では、金属微粉体作成工程S2によって作られたNi35の微粉体38とFe36の微粉体39との仕事関数の合成仕事関数が白金族金属の仕事関数に近似するように、金属微粉体混合物41の全重量に対するPt34の微粉体37の重量比を決定し、金属微粉体混合物41の全重量に対するNi35の微粉体38の重量比を決定するとともに、金属微粉体混合物41の全重量に対するFe36の微粉体39の重量比を決定する。 In the fine powder weight ratio determining step S3, the composite work function of the work functions of the Ni35 fine powder 38 and the Fe36 fine powder 39 produced in the metal fine powder producing step S2 is adjusted so as to approximate the work function of the platinum group metal. , the weight ratio of the fine powder 37 of Pt 34 to the total weight of the fine metal powder mixture 41 is determined, the weight ratio of the fine powder 38 of Ni 35 to the total weight of the fine metal powder mixture 41 is determined, and the weight ratio of the fine metal powder mixture 41 is determined. Determine the weight ratio of Fe36 fine powder 39 to the total weight.

微粉体重量比決定工程S3では、金属微粉体混合物41の全重量(100%)に対するPt34(白金族金属31)の微粉体37の重量比を4%~10%の範囲、好ましくは、5%~8%の範囲で決定する。微粉体重量比決定工程S3では、金属微粉体混合物41の全重量(100%)に対するNi35(遷移金属32)の微粉体38の重量比を45%~48%の範囲で決定し、金属微粉体混合物41の全重量(100%)に対するFe36(遷移金属32)の微粉体39の重量比を45%~48%の範囲で決定する。 In the fine powder weight ratio determination step S3, the weight ratio of the fine powder 37 of Pt34 (platinum group metal 31) to the total weight (100%) of the fine metal powder mixture 41 is set in the range of 4% to 10%, preferably 5%. Determined in the range of ~8%. In the fine powder weight ratio determination step S3, the weight ratio of the fine powder 38 of Ni35 (transition metal 32) to the total weight (100%) of the fine metal powder mixture 41 is determined in the range of 45% to 48%, and the fine metal powder The weight ratio of the fine powder 39 of Fe36 (transition metal 32) to the total weight (100%) of the mixture 41 is determined in the range of 45% to 48%.

電極製造方法は、合成仕事関数が白金族金属の仕事関数に近似するように遷移金属32のNi35(ニッケル)とFe36(鉄)とを選択するとともに、合成仕事関数が白金族金属の仕事関数に近似するように、金属微粉体混合物41の全重量に対するPt34の微粉体38の重量比や金属微粉体混合物41の全重量に対するNi35の微粉体39の重量比、金属微粉体混合物41の全重量に対するFe36の微粉体39の重量比を前記範囲において決定することで、Ni35の微粉体38とFe36の微粉体39との仕事関数の合成仕事関数を白金族金属の仕事関数に近似させることができ、白金族金属31(Pt34)の含有量が少ないにもかかわらず、白金を担持した電極と略同一の仕事関数を備え、白金を担持した電極と略同様の触媒活性(触媒作用)を発揮することができ、優れた触媒活性(触媒作用)を有して触媒機能を十分かつ確実に利用することが可能な白金族金属少含有の燃料極13及び空気極14を作ることができる。 In the electrode manufacturing method, Ni35 (nickel) and Fe36 (iron) of the transition metal 32 are selected so that the composite work function approximates the work function of the platinum group metal, and the composite work function is similar to that of the platinum group metal. As an approximation, the weight ratio of the Pt34 fine powder 38 to the total weight of the metal fine powder mixture 41, the weight ratio of the Ni35 fine powder 39 to the total weight of the metal fine powder mixture 41, and the weight ratio of the Ni35 fine powder 39 to the total weight of the metal fine powder mixture 41 By determining the weight ratio of the Fe36 fine powder 39 in the above range, the composite work function of the work functions of the Ni35 fine powder 38 and the Fe36 fine powder 39 can be approximated to the work function of the platinum group metal, Although the content of the platinum group metal 31 (Pt34) is small, it has substantially the same work function as the platinum-supported electrode and exhibits substantially the same catalytic activity (catalytic action) as the platinum-supported electrode. It is possible to produce the fuel electrode 13 and the air electrode 14 containing a small amount of platinum group metal, which have excellent catalytic activity (catalytic action) and can fully and reliably utilize the catalytic function.

電極製造方法は、金属微粉体混合物41の全重量に対するNi35(遷移金属32)の微粉体38の重量比や金属微粉体混合物41の全重量に対するFe36(遷移金属32)の微粉体39の重量比が前記範囲にあり、金属微粉体混合物41の全重量に対するPt34(白金族金属31)の微粉体37の重量比が前記範囲にあるから、高価な白金族金属31(Pt34)の含有量が少なく、燃料極13及び空気極14を廉価に作ることができる。 In the electrode manufacturing method, the weight ratio of Ni35 (transition metal 32) fine powder 38 to the total weight of metal fine powder mixture 41 and the weight ratio of Fe36 (transition metal 32) fine powder 39 to the total weight of metal fine powder mixture 41 are determined. is within the above range, and the weight ratio of the fine powder 37 of Pt34 (platinum group metal 31) to the total weight of the metal fine powder mixture 41 is within the above range, so the content of the expensive platinum group metal 31 (Pt34) is small. , the fuel electrode 13 and the air electrode 14 can be manufactured at low cost.

金属微粉体混合物作成工程S4では、微粉体重量比決定工程S3によって決定した重量比のPt34の微粉体37と微粉体重量比決定工程S3によって決定した重量比のNi35の微粉体38と微粉体重量比決定工程S3によって決定した重量比のFe36の微粉体39とバインダー33(粉状の樹脂系バインダー)とを混合機に投入し、混合機によってPt34の微粉体37、Ni35の微粉体38、Fe36の微粉体39、バインダー33を攪拌・混合し、Pt34の微粉体37、Ni35の微粉体38、Fe36の微粉体39、バインダー33が均一に混合・分散した金属微粉体混合物41(発泡金属成形材)を作る。次に、金属微粉体混合物41に所定量の気孔形成材42(粉体の発泡剤)を添加する。所定量の気孔形成材42を混合機又は攪拌機に投入し、混合機又は攪拌機によって金属微粉体混合物41に気孔形成材42を均一に混合・分散させた金属微粉体混合物41(発泡金属成形材料)を作る。気孔形成材42(粉体の発泡剤)の添加量によって燃料極13及び空気極14に形成される気孔25の平均径や気孔率が決まる。 In the metal fine powder mixture preparation step S4, the fine powder 37 of Pt34 having the weight ratio determined in the fine powder weight ratio determining step S3 and the fine powder 38 of Ni35 having the weight ratio determined in the fine powder weight ratio determining step S3 and the fine powder weight. The Fe36 fine powder 39 and the binder 33 (powder resin binder) having the weight ratio determined in the ratio determination step S3 are put into a mixer, and the mixer is used to mix Pt34 fine powder 37, Ni35 fine powder 38, and Fe36. Fine powder 39 of Pt 34, fine powder 38 of Ni 35, fine powder 39 of Fe 36, fine powder 39 of Fe 36, and fine metal powder mixture 41 in which binder 33 is uniformly mixed and dispersed (metal foam molding material )make. Next, a predetermined amount of pore forming material 42 (powder foaming agent) is added to the metal fine powder mixture 41 . A metal fine powder mixture 41 (foamed metal molding material) is obtained by putting a predetermined amount of pore forming material 42 into a mixer or stirrer, and uniformly mixing and dispersing the pore forming material 42 in the metal fine powder mixture 41 by the mixer or stirrer. make. The average diameter and porosity of the pores 25 formed in the fuel electrode 13 and the air electrode 14 are determined by the addition amount of the pore forming material 42 (powder foaming agent).

金属微粉体成形物作成工程S5では、金属微粉体混合物作成工程S4によって作られた金属微粉体混合物41(発泡金属成形材料)を射出成形機(図示せず)や押出成形機(図示せず)に投入し、金属微粉体混合物41を射出成形機によって射出成形(金属粉末射出成形)し、又は、金属微粉体混合物41を押出成形機によって押し出し成形(金属粉末押出成形)し、金属微粉体混合物41を所定面積の薄板状(厚み寸法L1が0.03mm~1.5mmの範囲、好ましくは、0.05mm~1.0mmの範囲)に成形した金属微粉体成形物42(発泡金属成形物)を作る。 In the metal fine powder molding production process S5, the metal fine powder mixture 41 (foamed metal molding material) produced in the metal fine powder mixture production process S4 is injected into an injection molding machine (not shown) or an extrusion molding machine (not shown). Then, the metal fine powder mixture 41 is injection molded (metal powder injection molding) by an injection molding machine, or the metal fine powder mixture 41 is extruded by an extruder (metal powder extrusion molding), and the metal fine powder mixture Metal fine powder molding 42 (foamed metal molding) obtained by molding 41 into a thin plate having a predetermined area (thickness dimension L1 is in the range of 0.03 mm to 1.5 mm, preferably in the range of 0.05 mm to 1.0 mm). make.

マイクロポーラス構造薄板電極作成工程S6では、金属微粉体成形物作成工程S5の金属粉末射出成形や金属粉末押出成形によって作られた金属微粉体成形物42(発泡金属成形物)を脱脂し、脱脂した金属微粉体成形物42を焼成炉(燃焼炉、電気炉等)に投入し、金属微粉体成形物42を焼成炉において所定温度で所定時間焼結(焼成)して多数の微細な気孔25(通路孔)を形成したマイクロポーラス構造かつ薄板状(厚み寸法L1が0.03mm~1.5mmの範囲、好ましくは、0.05mm~1.0mmの範囲)の燃料極13及び空気極14を作る。 In the microporous structure thin plate electrode producing step S6, the metal fine powder molding 42 (foamed metal molding) produced by metal powder injection molding or metal powder extrusion molding in the metal fine powder molding producing step S5 is degreased and degreased. The metal fine powder molding 42 is put into a firing furnace (combustion furnace, electric furnace, etc.), and the metal fine powder molding 42 is sintered (fired) in the firing furnace at a predetermined temperature for a predetermined time to form a large number of fine pores 25 ( A fuel electrode 13 and an air electrode 14 having a microporous structure and a thin plate shape (thickness dimension L1 is in the range of 0.03 mm to 1.5 mm, preferably 0.05 mm to 1.0 mm) with passage holes are formed. .

焼結温度は、900℃~1400℃である。焼結(焼成)時間は、2時間~6時間である。マイクロポーラス構造薄板電極作成工程S6では、所定面積の薄板状に成形した金属微粉体成形物42の焼結時において、金属微粉体成形物42の内部において気孔形成材40(粉体の発泡剤)が発泡した後、気孔形成材40が金属微粉体成形物42の内部から消失し、多数の微細な気孔25(流路)(連続かつ独立通路孔)が形成されたマイクロポーラス構造かつ薄板状の燃料極13及び空気極14が製造される。 The sintering temperature is between 900°C and 1400°C. The sintering (firing) time is 2 to 6 hours. In the microporous structure thin plate electrode preparation step S6, during the sintering of the fine metal powder molding 42 formed into a thin plate having a predetermined area, the pore forming material 40 (powder foaming agent) is added inside the fine metal powder molding 42. After foaming, the pore forming material 40 disappears from the inside of the metal fine powder molding 42, and a microporous structure and thin plate-like structure in which a large number of fine pores 25 (channels) (continuous and independent passage holes) are formed is formed. Anode 13 and cathode 14 are manufactured.

電極製造方法は、金属粉末射出成形や金属粉末押出成形によってPt34の微粉体37とNi35の微粉体38とFe36の微粉体39とがバインダー40を介して連結され、金属粉末射出成形や金属粉末押出成形によって作られた金属微粉体成形物42(発泡金属成形物)が所定の強度を有するとともに、金属微粉体成形物42を焼結することで、多数の微細な気孔25(通路孔)を有するマイクロポーラス構造かつ薄板状の燃料極13及び空気極14を作ることができるとともに、高い強度を有して形状を維持することができ、衝撃が加えられたときの破損や損壊を防ぐことが可能な非白金の燃料極13及び空気極14を作ることができる。 In the electrode manufacturing method, Pt 34 fine powder 37, Ni 35 fine powder 38, and Fe 36 fine powder 39 are connected via a binder 40 by metal powder injection molding or metal powder extrusion molding. The metal fine powder molding 42 (foam metal molding) produced by molding has a predetermined strength, and by sintering the metal fine powder molding 42, it has a large number of fine pores 25 (passage holes). The fuel electrode 13 and the air electrode 14 having a microporous structure and a thin plate shape can be produced, and the shape can be maintained with high strength, and breakage and damage when impact is applied can be prevented. Non-platinum anodes 13 and cathodes 14 can be made.

電極製造方法は、各種の白金族金属31の中から少なくとも1種類の白金族金属31(Pt34)を選択し、各種の遷移金属32から選択する少なくとも2種類の遷移金属32の仕事関数の合成仕事関数が白金族金属の仕事関数に近似するように、各種の遷移金属32の中から少なくとも2種類の遷移金属32(たとえば、Ni35、Fe36)を選択する金属選択工程S1と、金属選択工程S1によって選択された少なくとも1種類の白金族金属31(Pt34)を微粉砕して白金族金属微粉体(Pt34の微粉体37)を作り、金属選択工程S1によって選択された少なくとも2種類の遷移金属32を微粉砕して遷移金属微粉体(Ni35の微粉体38、Fe36の微粉体39)を作る金属微粉体作成工程S2と、金属微粉体作成工程S2によって作られた少なくとも2種類の遷移金属微粉体の仕事関数の合成仕事関数が白金族金属の仕事関数に近似するように、白金族金属微粉体(Pt34の微粉体37)の重量比と少なくとも2種類の遷移金属微粉体(Ni35の微粉体38、Fe36の微粉体39)の重量比とを決定する微粉体重量比決定工程S3と、微粉体重量比決定工程S3によって決定した重量比の白金族金属微粉体(Pt34の微粉体37)及び少なくとも2種類の遷移金属微粉体(Ni35の微粉体38、Fe36の微粉体39)に所定のバインダー33を加え、それらを均一に混合・分散して金属微粉体混合物41(発泡金属成形材料)を作り、金属微粉体混合物41に所定の気孔形成材40を添加する金属微粉体混合物作成工程S4と、金属微粉体混合物作成工程S4によって作られた金属微粉体混合物41を薄板状に成形(金属粉末押出成形又は金属粉末射出成形)して金属微粉体成形物42(発泡金属成形物)を作る金属微粉体成形物作成工程S5と、金属微粉体成形物作成工程S5によって作られた金属微粉体成形物42を脱脂するとともに金属微粉体成形物42を所定温度で焼結して多数の微細な気孔25が形成されたマイクロポーラス構造の薄板状の燃料極13及び空気極14を作るマイクロポーラス構造薄板電極作成工程S6との各工程によって燃料極13及び空気極14を製造するから、それら工程S1~S6によって厚み寸法L1が0.03mm~1.5mmの範囲(好ましくは、0.05mm~1.0mmの範囲)であって多数の微細な気孔25(通路孔)を形成した燃料極13及び空気極14(マイクロポーラス構造薄板状電極)を製造することができ、燃料極13や空気極14を廉価に作ることができるとともに、優れた触媒活性(触媒作用)を有して触媒機能を十分かつ確実に利用することが可能な白金族金属少含有の燃料極13及び空気極14を作ることができる。 In the electrode manufacturing method, at least one platinum group metal 31 (Pt34) is selected from various platinum group metals 31, and at least two types of transition metals 32 selected from various transition metals 32 are combined. By a metal selection step S1 of selecting at least two transition metals 32 (for example, Ni35, Fe36) from various transition metals 32 such that the function approximates the work function of a platinum group metal, and a metal selection step S1 At least one selected platinum group metal 31 (Pt34) is pulverized to produce platinum group metal fine powder (fine powder 37 of Pt34), and at least two transition metals 32 selected by a metal selection step S1 are A metal fine powder preparation step S2 for pulverizing to make transition metal fine powders (Ni35 fine powder 38, Fe36 fine powder 39), and at least two kinds of transition metal fine powders prepared by the metal fine powder preparation step S2. The weight ratio of the platinum group metal fine powder (Pt34 fine powder 37) and at least two transition metal fine powders (Ni35 fine powder 38, a fine powder weight ratio determining step S3 for determining the weight ratio of the fine powder 39) of Fe36; A predetermined binder 33 is added to various types of transition metal fine powder (Ni35 fine powder 38, Fe36 fine powder 39), and they are uniformly mixed and dispersed to prepare a metal fine powder mixture 41 (foam metal molding material), A metal fine powder mixture preparation step S4 of adding a predetermined pore forming material 40 to the metal fine powder mixture 41, and the metal fine powder mixture 41 prepared by the metal fine powder mixture preparation step S4 is formed into a thin plate (metal powder extrusion molding). or metal powder injection molding) to form a metal fine powder molded article 42 (foamed metal molded article), and the metal fine powder molded article 42 produced by the metal fine powder molded article preparing step S5. is degreased and the metal fine powder molding 42 is sintered at a predetermined temperature to produce a microporous structure thin plate fuel electrode 13 and air electrode 14 having a large number of fine pores 25 formed therein. Since the fuel electrode 13 and the air electrode 14 are manufactured by each step including step S6, the thickness dimension L1 is in the range of 0.03 mm to 1.5 mm (preferably 0.05 mm to 1.0 mm) by these steps S1 to S6. range) and a large number of fine pores 25 (passage holes) are formed in the fuel electrode 1 3 and the air electrode 14 (microporous structure thin plate electrode) can be manufactured, the fuel electrode 13 and the air electrode 14 can be manufactured at low cost, and it has excellent catalytic activity (catalytic action) and has a catalytic function. It is possible to make the fuel electrode 13 and the air electrode 14 containing a small amount of platinum group metal that can fully and reliably utilize the.

電極製造方法は、優れた触媒活性(触媒作用)を有して触媒機能を十分かつ確実に利用することが可能な白金族金属少含有の燃料極13及び空気極14を作ることができ、固体高分子形燃料電池10に好適に使用することが可能な燃料極13及び空気極14を作ることができる。電極製造方法は、工程S1~S6によって作られた燃料極13及び空気極14が白金族金属を担持した電極と略同様の触媒活性(触媒作用)を発揮するから、固体高分子形燃料電池10において十分な電気を発電することが可能であって固体高分子形燃料電池10に接続された負荷30に十分な電気エネルギーを供給することが可能な白金族金属少含有の燃料極13及び空気極14を作ることができる。 The electrode manufacturing method can produce the fuel electrode 13 and the air electrode 14 containing a small amount of platinum group metals that have excellent catalytic activity (catalytic action) and can fully and reliably utilize the catalytic function. The fuel electrode 13 and the air electrode 14 that can be suitably used in the polymer fuel cell 10 can be made. In the electrode manufacturing method, the fuel electrode 13 and the air electrode 14 manufactured by steps S1 to S6 exhibit substantially the same catalytic activity (catalytic action) as the electrode supporting the platinum group metal, so the polymer electrolyte fuel cell 10 A fuel electrode 13 containing little platinum group metal and an air electrode capable of generating sufficient electricity at and supplying sufficient electrical energy to the load 30 connected to the polymer electrolyte fuel cell 10 14 can be made.

10 固体高分子形燃料電池
11 セル
12 セルスタック
13 燃料極
14 空気極
15 固体高分子電解質膜(電極接合体膜)
16 セパレータ
17 セパレータ
18 膜/電極接合体
19 ガス拡散層
20 ガス拡散層
21 ガスシール
22 ガスシール
23 前面
24 後面
25 流路(連続かつ独立通路孔)
26 薄板金属電極
27 通流口
28 外周縁
29 導線
30 負荷
31 白金族金属
32 遷移金属
33 バインダー
34 Pt(白金)
35 Ni(ニッケル)
36 Fe(鉄)
37 Pt(白金)の微粉体(白金族金属微粉体)
38 Ni(ニッケル)の微粉体(遷移金属微粉体)
39 Fe(鉄)の微粉体(遷移金属微粉体)
40 気孔形成材(発泡剤)
41 金属微粉体混合物
42 金属微粉体成形物
L1 厚み寸法
S1 金属選択工程
S2 金属微粉体作成工程
S3 微粉体重量比決定工程
S4 金属微粉体混合物作成工程
S5 金属微粉体成形物作成工程
S6 マイクロポーラス構造薄板電極作成工程


REFERENCE SIGNS LIST 10 polymer electrolyte fuel cell 11 cell 12 cell stack 13 fuel electrode 14 air electrode 15 solid polymer electrolyte membrane (electrode assembly membrane)
16 Separator 17 Separator 18 Membrane/electrode assembly 19 Gas diffusion layer 20 Gas diffusion layer 21 Gas seal 22 Gas seal 23 Front surface 24 Rear surface 25 Flow path (continuous and independent passage holes)
26 Thin plate metal electrode 27 Flow port 28 Peripheral edge 29 Lead wire 30 Load 31 Platinum group metal 32 Transition metal 33 Binder 34 Pt (platinum)
35 Ni (nickel)
36 Fe (iron)
37 Pt (platinum) fine powder (platinum group metal fine powder)
38 Ni (nickel) fine powder (transition metal fine powder)
39 Fe (iron) fine powder (transition metal fine powder)
40 pore former (foaming agent)
41 Fine metal powder mixture 42 Fine metal powder molding L1 Thickness dimension S1 Metal selection step S2 Fine metal powder preparation step S3 Fine powder weight ratio determination step S4 Fine metal powder mixture preparation step S5 Fine metal powder molding preparation step S6 Microporous structure Thin plate electrode making process


Claims (8)

複数のセルを有するセルスタックを備え、前記セルが、燃料極及び空気極と、前記燃料極と前記空気極との間に位置する電極接合体膜と、前記燃料極の外側と前記空気極の外側とに位置するセパレータとから形成され、
前記燃料極及び前記空気極が、Pt(白金)と、遷移金属であるNi(ニッケル)と、前記遷移金属であるFe(鉄)とから形成され、
前記燃料極及び前記空気極は、前記Ptを微粉砕した該Ptの微粉体と前記Niを微粉砕した該Niの遷移金属微粉体と前記Feを微粉砕した該Feの遷移金属微粉体と所定のバインダーとを均一に混合・分散した金属微粉体混合物に所定の気孔形成材を添加し、所定面積の薄板状に成形した金属微粉体成形物を脱脂・焼結することで、多数の微細な気孔が形成されたマイクロポーラス構造の薄板状電極であり、
前記Ptの微粉体の前記金属微粉体混合物の全重量に対する重量比が、4~10%の範囲、前記Niの遷移金属微粉体の前記金属微粉体混合物の全重量に対する重量比が、45%~48%の範囲、前記Feの遷移金属微粉体の前記金属微粉体混合物の全重量に対する重量比が、45%~48%の範囲にあることを特徴とする固体高分子形燃料電池。
a cell stack having a plurality of cells, the cells comprising an anode and a cathode; an electrode assembly membrane positioned between the anode and the cathode; formed from a separator located on the outside and
The fuel electrode and the air electrode are formed of Pt (platinum), Ni (nickel) as a transition metal, and Fe (iron) as a transition metal,
The fuel electrode and the air electrode are composed of the Pt fine powder obtained by finely pulverizing the Pt, the transition metal fine powder of Ni obtained by finely pulverizing the Ni, and the transition metal fine powder of Fe obtained by finely pulverizing the Fe. A predetermined pore-forming material is added to a fine metal powder mixture obtained by uniformly mixing and dispersing a A thin plate electrode with a microporous structure in which pores are formed,
The weight ratio of the Pt fine powder to the total weight of the metal fine powder mixture is in the range of 4 to 10%, and the weight ratio of the Ni transition metal fine powder to the total weight of the metal fine powder mixture is 45% to 45%. A polymer electrolyte fuel cell, wherein a weight ratio of the transition metal fine powder of Fe to the total weight of the metal fine powder mixture is in the range of 45% to 48%.
前記燃料極及び前記空気極に形成された気孔の平均径が、1~100μmの範囲にある請求項1に記載の固体高分子形燃料電池。 2. The polymer electrolyte fuel cell according to claim 1, wherein the average diameter of pores formed in said fuel electrode and said air electrode is in the range of 1 to 100 μm. 前記燃料極の厚み寸法と前記空気極の厚み寸法とが、0.03mm~1.5mmの範囲にある請求項1又は請求項2に記載の固体高分子形燃料電池。 3. The polymer electrolyte fuel cell according to claim 1, wherein the thickness dimension of the fuel electrode and the thickness dimension of the air electrode are in the range of 0.03 mm to 1.5 mm. 前記マイクロポーラス構造の薄板状に成形された前記燃料極及び前記空気極の気孔率が、70%~85%の範囲にある請求項1ないし請求項3いずれかに記載の固体高分子形燃料電池。 4. The polymer electrolyte fuel cell according to claim 1, wherein said fuel electrode and said air electrode formed into thin plates of microporous structure have a porosity in the range of 70% to 85%. . 前記マイクロポーラス構造の薄板に成形された前記燃料極及び前記空気極の密度が、6.0g/cm~8.0g/cmの範囲にある請求項1ないし請求項4いずれかに記載の固体高分子形燃料電池。 5. The method according to any one of claims 1 to 4, wherein the density of the fuel electrode and the air electrode formed into the microporous thin plate is in the range of 6.0 g/cm 2 to 8.0 g/cm 2 . Polymer electrolyte fuel cell. 前記白金族金属の白金族金属微粉体の粒径と前記遷移金属の遷移金属微粉体の粒径とが、1μm~100μmの範囲にある請求項1ないし請求項5いずれかに記載の固体高分子形燃料電池。


6. The solid polymer according to any one of claims 1 to 5, wherein the particle size of the platinum group metal fine powder of the platinum group metal and the particle size of the transition metal fine powder of the transition metal are in the range of 1 µm to 100 µm. shaped fuel cell.


前記固体高分子形燃料電池では、前記燃料極に供給される水素の雰囲気が相対湿度95%~100%の範囲にあり、前記水素の温度が45℃~55℃の範囲にある請求項1ないし請求項6いずれかに記載の固体高分子形燃料電池。 In the polymer electrolyte fuel cell, the atmosphere of hydrogen supplied to the fuel electrode has a relative humidity of 95% to 100%, and the temperature of the hydrogen is in the range of 45°C to 55°C. 7. The polymer electrolyte fuel cell according to claim 6. 前記固体高分子形燃料電池では、前記燃料極に供給される水素の供給圧力が+0.06MPa~+0.08MPaの範囲にある請求項1ないし請求項7いずれかに記載の固体高分子形燃料電池。


8. The polymer electrolyte fuel cell according to claim 1, wherein the supply pressure of hydrogen supplied to the fuel electrode is in the range of +0.06 MPa to +0.08 MPa. .


JP2018223295A 2018-11-29 2018-11-29 polymer electrolyte fuel cell Active JP7235284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018223295A JP7235284B2 (en) 2018-11-29 2018-11-29 polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018223295A JP7235284B2 (en) 2018-11-29 2018-11-29 polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2020087813A JP2020087813A (en) 2020-06-04
JP7235284B2 true JP7235284B2 (en) 2023-03-08

Family

ID=70908715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018223295A Active JP7235284B2 (en) 2018-11-29 2018-11-29 polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP7235284B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008016338A (en) 2006-07-06 2008-01-24 Toyota Motor Corp Fuel cell, porous platinum sheet, and manufacturing method of fuel cell
JP2010505043A (en) 2006-09-29 2010-02-18 モット コーポレイション Sinter bonded porous metal coating
JP2017010738A (en) 2015-06-20 2017-01-12 株式会社健明 Electrode material for fuel cell, manufacturing method therefor, and fuel cell
JP2018522365A (en) 2015-10-22 2018-08-09 コーチョアン リン Fuel cell electrode material and apparatus
WO2020080530A1 (en) 2018-10-18 2020-04-23 株式会社グラヴィトン Electrode and electrode manufacturing method
JP2020064786A (en) 2018-10-18 2020-04-23 株式会社グラヴィトン Polymer electrolyte fuel cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008016338A (en) 2006-07-06 2008-01-24 Toyota Motor Corp Fuel cell, porous platinum sheet, and manufacturing method of fuel cell
JP2010505043A (en) 2006-09-29 2010-02-18 モット コーポレイション Sinter bonded porous metal coating
JP2017010738A (en) 2015-06-20 2017-01-12 株式会社健明 Electrode material for fuel cell, manufacturing method therefor, and fuel cell
JP2018522365A (en) 2015-10-22 2018-08-09 コーチョアン リン Fuel cell electrode material and apparatus
WO2020080530A1 (en) 2018-10-18 2020-04-23 株式会社グラヴィトン Electrode and electrode manufacturing method
JP2020064786A (en) 2018-10-18 2020-04-23 株式会社グラヴィトン Polymer electrolyte fuel cell

Also Published As

Publication number Publication date
JP2020087813A (en) 2020-06-04

Similar Documents

Publication Publication Date Title
KR20100068029A (en) Method for preparing catalyst slurry for fuel cell
WO2019244840A1 (en) Electrode
WO2020080530A1 (en) Electrode and electrode manufacturing method
JP7281157B2 (en) Polymer electrolyte fuel cell and electrode manufacturing method
ul Hassan et al. Stable, high-performing bifunctional electrodes for anion exchange membrane-based unitized regenerative fuel cells
JP7235284B2 (en) polymer electrolyte fuel cell
JP7171024B2 (en) Method for manufacturing fuel electrode and air electrode for polymer electrolyte fuel cell
JP7171030B2 (en) Manufacturing method for anode and cathode of electrolyzer
EP2273589A1 (en) Membrane electrode assembly and fuel cell
JP7193109B2 (en) Electrode and electrode manufacturing method
JP7281158B2 (en) Polymer electrolyte fuel cell and electrode manufacturing method
JP7199080B2 (en) Electrolyzer and electrode manufacturing method
JP2020064786A (en) Polymer electrolyte fuel cell
JP7171027B2 (en) Method for manufacturing fuel electrode and air electrode for polymer electrolyte fuel cell
JP2020004527A (en) Solid polymer electrolyte fuel cell and electrode manufacturing method
JP7262739B2 (en) Manufacturing method for anode and cathode of electrolyzer
JP7411920B2 (en) Method for manufacturing anode and cathode of electrolyzer
JP7179314B2 (en) Manufacturing method for anode and cathode of electrolyzer
JP2020140844A (en) Solid polymer type fuel battery
JP2020167064A (en) Solid polymer fuel cell
JP2020087812A (en) Electrode and electrode manufacturing method
KR100610262B1 (en) Preparation Method of Membrane Electrode Assembly with Perfluoro-ionomer powder
JP2020140843A (en) Electrode and method for manufacturing the same
JP2020167041A (en) Electrode and manufacturing method thereof
JP7193111B2 (en) Carbon nanotube electrode or carbon nanohorn electrode and electrode manufacturing method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200617

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210512

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230216

R150 Certificate of patent or registration of utility model

Ref document number: 7235284

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150