JP2020087813A - Solid polymer fuel cell - Google Patents

Solid polymer fuel cell Download PDF

Info

Publication number
JP2020087813A
JP2020087813A JP2018223295A JP2018223295A JP2020087813A JP 2020087813 A JP2020087813 A JP 2020087813A JP 2018223295 A JP2018223295 A JP 2018223295A JP 2018223295 A JP2018223295 A JP 2018223295A JP 2020087813 A JP2020087813 A JP 2020087813A
Authority
JP
Japan
Prior art keywords
electrode
fine powder
air electrode
metal
platinum group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018223295A
Other languages
Japanese (ja)
Other versions
JP7235284B2 (en
Inventor
正己 奥山
Masami Okuyama
正己 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Graviton KK
Original Assignee
Graviton KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Graviton KK filed Critical Graviton KK
Priority to JP2018223295A priority Critical patent/JP7235284B2/en
Publication of JP2020087813A publication Critical patent/JP2020087813A/en
Application granted granted Critical
Publication of JP7235284B2 publication Critical patent/JP7235284B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

To provide a solid polymer fuel cell having a fuel electrode and an air electrode which indicate an excellent catalytic activity (catalytic action) in regardless to have less content amount of a platinum group metal.SOLUTION: A fuel electrode and an air electrode used for a solid polymer fuel cell 10, are formed by at least one kind of a less platinum group metal selected from each kind of the platinum group metals, and at least two kinds of transition metals. Each of the fuel electrode and the air electrode are a thin-plate like electrode having a microporous structure in which multiple fine pores are formed by adding a prescribed pore formation material into a metal fine powder mixture obtained by uniformly mixing and scattering a transition metal fine powder body obtained by finely crushing at least one kind platinum group metal to be selected, a transition metal fine powder body obtained by finely crushing at least two kinds transition metals to be selected, and a prescribed binder, forms the metal fine powder mixture into which the pore formation material is added to a thin-plate shape having a prescribed area, and performs defatting and sintering of the metal fine powder formation material formed in the thin-plate shape of the prescribed area.SELECTED DRAWING: Figure 1

Description

本発明は、複数のセルを有するセルスタックを備えた固体高分子形燃料電池に関する。 TECHNICAL FIELD The present invention relates to a polymer electrolyte fuel cell including a cell stack having a plurality of cells.

固体高分子電解質膜と、固体高分子電解質膜を両面から挟持するアノード電極及びカソード電極と、液体燃料を収容する燃料容器と、アノード電極とカソード電極との間に設けられる気液分離性多孔質体からなる燃料気化層と、燃料気化層を両面から挟持する有孔固定板とを有し、カソード電極側に配置した有孔固定板の開口率がアノード電極側に配置した有孔固定板の開口率よりも大きい個体高分子形燃料電池が開示されている(特許文献1参照)。 Solid polymer electrolyte membrane, anode electrode and cathode electrode sandwiching the solid polymer electrolyte membrane from both sides, fuel container containing liquid fuel, gas-liquid separating porous material provided between the anode electrode and cathode electrode A perforated fixing plate disposed on the cathode electrode side has an aperture ratio of a perforated fixing plate having a fuel vaporized layer composed of a body and a perforated fixing plate sandwiching the fuel vaporized layer from both sides. A solid polymer fuel cell having a larger aperture ratio is disclosed (see Patent Document 1).

特開2011−222119号公報JP, 2011-222119, A

前記特許文献1に開示の個体高分子形燃料電池のカソード電極及びアノード電極の作成方法は、以下のとおりである。炭素粒子に粒子径が3〜5nmの範囲にある白金微粒子を重量比で55%担持させた触媒担持炭素微粒子を作り、その触媒担持炭素微粒子1gに5重量%ナフィオン溶液を適量加えて攪拌し、カソード電極用の触媒ペーストを作る。カソード電極用の触媒ペーストを基材としてのカーボンペーパー上に8mg/cmの量で塗布した後、乾燥させて4cm×4cmのカソード電極を作製する。次に、白金微粒子に替えて粒子径が3〜5nmの範囲にある白金(Pt)−ルテニウム(Ru)合金微粒子(Ruの割合は60at%)を重量比で55%担持させた触媒担持炭素微粒子を作り、その触媒担持炭素微粒子1gに5重量%ナフィオン溶液を適量加えて攪拌し、アノード電極用の触媒ペーストを作る。アノード電極用の触媒ペーストを基材としてのカーボンペーパー上に8mg/cmの量で塗布した後、乾燥させて4cm×4cmのアノード電極を作製する。 The method for producing the cathode electrode and the anode electrode of the solid polymer fuel cell disclosed in Patent Document 1 is as follows. A catalyst-supporting carbon microparticle was prepared by supporting 55% by weight of platinum microparticles having a particle diameter in the range of 3 to 5 nm on carbon particles, and an appropriate amount of a 5% by weight Nafion solution was added to 1 g of the catalyst-supporting carbon microparticle and stirred, Make a catalyst paste for the cathode electrode. A catalyst paste for a cathode electrode is applied on a carbon paper as a base material in an amount of 8 mg/cm 2 , and then dried to prepare a 4 cm×4 cm cathode electrode. Next, in place of the platinum fine particles, platinum (Pt)-ruthenium (Ru) alloy fine particles (Ru ratio of 60 at%) having a particle diameter in the range of 3 to 5 nm were loaded on the catalyst-supporting carbon fine particles in a weight ratio of 55%. Then, an appropriate amount of a 5 wt% Nafion solution is added to 1 g of the catalyst-supporting carbon fine particles and the mixture is stirred to prepare a catalyst paste for an anode electrode. A catalyst paste for an anode electrode is applied on a carbon paper as a base material in an amount of 8 mg/cm 2 , and then dried to prepare a 4 cm×4 cm anode electrode.

固体高分子形燃料電池の電極触媒として各種の白金担持カーボンが広く利用されている。しかし、白金は、貴金属であり、その生産量に限りがある希少な金属資源であることから、その使用を抑えることが求められている。さらに、今後の固体高分子形燃料電池の普及に向けて高価な白金の含有量を極力少なくするとともに、少ない量の白金とともに白金以外の金属を使用した電極の開発が求められている。 Various platinum-supported carbons are widely used as electrode catalysts for polymer electrolyte fuel cells. However, since platinum is a precious metal and is a rare metal resource with a limited production amount, it is required to suppress its use. Furthermore, in order to spread the polymer electrolyte fuel cell in the future, it is required to reduce the content of expensive platinum as much as possible and to develop an electrode using a metal other than platinum together with a small amount of platinum.

本発明の目的は、白金族金属の含有量を極力少なくすることができ、白金族金属の含有量が少ないにもかかわらず、優れた触媒活性(触媒作用)を有する燃料極及び空気極を備え、その燃料極及び空気極を使用して十分な電気を発電することができ、負荷に十分な電気エネルギーを供給することができる固体高分子形燃料電池を提供することにある。 An object of the present invention is to provide a fuel electrode and an air electrode which can minimize the platinum group metal content and have excellent catalytic activity (catalytic action) in spite of the low platinum group metal content. Another object of the present invention is to provide a polymer electrolyte fuel cell capable of generating sufficient electricity by using the fuel electrode and the air electrode and supplying sufficient electric energy to a load.

前記課題を解決するための本発明の固体高分子形燃料電池は、複数のセルを有するセルスタックを備え、セルが、燃料極及び空気極と、燃料極と空気極との間に位置する電極接合体膜と、燃料極の外側と空気極の外側とに位置するセパレータとから形成され、燃料極及び空気極が、各種の白金族金属から選択された少なくとも1種類の少量の白金族金属と、各種の遷移金属から選択された少なくとも2種類の遷移金属とから形成され、燃料極及び空気極は、選択された少なくとも1種類の白金族金属を微粉砕した白金族金属微粉体と選択された少なくとも2種類の遷移金属を微粉砕した遷移金属微粉体と所定のバインダーとを均一に混合・分散した金属微粉体混合物に所定の気孔形成材を添加し、気孔形成材を添加した金属微粉体混合物を所定面積の薄板状に成形し、所定面積の薄板状に成形した金属微粉体成形物を脱脂・焼結することで、多数の微細な気孔が形成されたマイクロポーラス構造の薄板状電極であることを特徴とする。 The polymer electrolyte fuel cell of the present invention for solving the above-mentioned problems comprises a cell stack having a plurality of cells, and the cells are electrodes positioned between a fuel electrode and an air electrode, and between the fuel electrode and the air electrode. It is formed of a bonded film and a separator located outside the fuel electrode and outside the air electrode, and the fuel electrode and the air electrode are at least one small amount of platinum group metal selected from various platinum group metals. And at least two kinds of transition metals selected from various kinds of transition metals, and the fuel electrode and the air electrode were selected from finely pulverized platinum group metal powder of at least one selected platinum group metal. A fine metal powder mixture obtained by adding a predetermined pore forming material to a fine metal powder mixture obtained by uniformly mixing and dispersing a fine transition metal powder obtained by finely pulverizing at least two kinds of transition metals and a predetermined binder, and adding the fine pore forming material. Is a thin plate electrode having a microporous structure in which a large number of fine pores are formed by degreasing and sintering a metal fine powder molded product formed into a thin plate shape having a predetermined area It is characterized by

本発明の固体高分子形燃料電池の一例として、燃料極及び空気極では、選択された少なくとも2種類の遷移金属の仕事関数の合成仕事関数が白金族金属の仕事関数に近似するように、各種の遷移金属の中から少なくとも2種類の遷移金属が選択されている。 As an example of the polymer electrolyte fuel cell of the present invention, in the fuel electrode and the air electrode, various types are used so that the composite work function of the work functions of at least two selected transition metals approximates to the work function of the platinum group metal. At least two kinds of transition metals are selected from among the above transition metals.

本発明の固体高分子形燃料電池の他の一例としては、燃料極及び空気極に形成された気孔の平均径が、1〜100μmの範囲にある。 As another example of the polymer electrolyte fuel cell of the present invention, the average diameter of the pores formed in the fuel electrode and the air electrode is in the range of 1 to 100 μm.

本発明の固体高分子形燃料電池の他の一例としては、燃料極の厚み寸法と空気極の厚み寸法とが、0.03mm〜1.5mmの範囲にある。 As another example of the polymer electrolyte fuel cell of the present invention, the thickness dimension of the fuel electrode and the thickness dimension of the air electrode are in the range of 0.03 mm to 1.5 mm.

本発明の固体高分子形燃料電池の他の一例としては、白金族金属が、Pt(白金)であり、遷移金属が、Ni(ニッケル)とFe(鉄)とであり、燃料極及び空気極では、Niの仕事関数とFeの仕事関数との合成仕事関数が白金族金属の仕事関数に近似するように、Ptの白金族金属微粉体の金属微粉体混合物の全重量に対する重量比とNiの遷移金属微粉体の金属微粉体混合物の全重量に対する重量比とFeの遷移金属微粉体の金属微粉体混合物の全重量に対する重量比とが定められている。 As another example of the polymer electrolyte fuel cell of the present invention, the platinum group metal is Pt (platinum), the transition metals are Ni (nickel) and Fe (iron), and the fuel electrode and the air electrode are Then, in order that the composite work function of the work function of Ni and the work function of Fe approximates the work function of the platinum group metal, the weight ratio of the platinum group metal fine powder of Pt to the total weight of the metal fine powder mixture and the Ni A weight ratio of the transition metal fine powder to the total weight of the metal fine powder mixture and a weight ratio of Fe to the total weight of the transition metal fine powder to the metal fine powder mixture are defined.

本発明の固体高分子形燃料電池の他の一例としては、Ptの白金族金属微粉体の金属微粉体混合物の全重量に対する重量比が、4〜10%の範囲、Niの遷移金属微粉体の金属微粉体混合物の全重量に対する重量比が、45%〜48%の範囲、Feの遷移金属微粉体の金属微粉体混合物の全重量に対する重量比が、45%〜48%の範囲にある。 As another example of the polymer electrolyte fuel cell of the present invention, the weight ratio of the platinum group metal fine powder of Pt to the total weight of the metal fine powder mixture is in the range of 4 to 10%, and the transition metal fine powder of Ni is The weight ratio of the metal fine powder mixture to the total weight is in the range of 45% to 48%, and the weight ratio of the transition metal fine powder of Fe to the total weight of the metal fine powder mixture is in the range of 45% to 48%.

本発明の固体高分子形燃料電池の他の一例としては、マイクロポーラス構造の薄板状に成形された燃料極及び空気極の気孔率が、70%〜85%の範囲にある。 As another example of the polymer electrolyte fuel cell of the present invention, the porosity of the fuel electrode and the air electrode formed in the shape of a microporous thin plate is in the range of 70% to 85%.

本発明の固体高分子形燃料電池の他の一例としては、マイクロポーラス構造の薄板に成形された燃料極及び空気極の密度が、6.0g/cm〜8.0g/cmの範囲にある。 As another example of the polymer electrolyte fuel cell of the present invention, the density of the fuel electrode and the air electrode, which is formed into a thin sheet of microporous structure, the range of 6.0g / cm 2 ~8.0g / cm 2 is there.

本発明の固体高分子形燃料電池の他の一例としては、白金族金属の白金族金属微粉体の粒径と遷移金属の遷移金属微粉体の粒径とが、1μm〜100μmの範囲にある。 As another example of the polymer electrolyte fuel cell of the present invention, the particle size of the platinum group metal fine powder of the platinum group metal and the particle size of the transition metal fine powder of the transition metal are in the range of 1 μm to 100 μm.

本発明の固体高分子形燃料電池の他の一例として、固体高分子形燃料電池では、燃料極に供給される水素の雰囲気が相対湿度95%〜100%の範囲にあり、水素の温度が45℃〜55℃の範囲にある。 As another example of the polymer electrolyte fuel cell of the present invention, in the polymer electrolyte fuel cell, the hydrogen atmosphere supplied to the fuel electrode has a relative humidity of 95% to 100% and a hydrogen temperature of 45%. It is in the range of ℃ to 55 ℃.

本発明の固体高分子形燃料電池の他の一例として、固体高分子形燃料電池では、燃料極に供給される水素の供給圧力が+0.06MPa〜+0.08MPaの範囲にある。 As another example of the polymer electrolyte fuel cell of the present invention, in the polymer electrolyte fuel cell, the supply pressure of hydrogen supplied to the fuel electrode is in the range of +0.06 MPa to +0.08 MPa.

本発明に係る固体高分子形燃料電池によれば、それに使用される燃料極及び空気極が、各種の白金族金属から選択された少なくとも1種類の白金族金属と各種の遷移金属から選択された少なくとも2種類の遷移金属とから形成され、選択された少なくとも1種類の白金族金属を微粉砕した白金族金属微粉体と選択された少なくとも2種類の遷移金属を微粉砕した遷移金属微粉体と所定のバインダーとを均一に混合・分散した金属微粉体混合物に所定の気孔形成材を添加し、気孔形成材を添加した金属微粉体混合物を所定面積の薄板状に成形し、所定面積の薄板状に成形した金属微粉体成形物を脱脂・焼結することで、多数の微細な気孔が形成されたマイクロポーラス構造の薄板状電極であるから、白金族金属以外の遷移金属を使用することで、白金族金属の含有量を極力少なくすることができるとともに、白金族金属の触媒活性を利用するとともに遷移金属の触媒活性を利用した燃料極及び空気極を使用して十分な電気を発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを供給することができる。 According to the polymer electrolyte fuel cell of the present invention, the fuel electrode and the air electrode used therein are selected from at least one platinum group metal selected from various platinum group metals and various transition metals. Platinum group metal fine powder formed of at least two kinds of transition metals and finely pulverized at least one selected platinum group metal and transition metal fine powder obtained by finely pulverized at least two kinds of selected transition metals Add a specified pore forming material to the metal fine powder mixture that is uniformly mixed and dispersed with the binder of, and mold the metal fine powder mixture with the added pore forming material into a thin plate shape with a predetermined area, Since it is a thin plate electrode with a microporous structure in which a large number of fine pores are formed by degreasing and sintering the formed metal fine powder molded product, by using a transition metal other than the platinum group metal, platinum It is possible to reduce the content of group metals as much as possible, and to generate sufficient electricity by using the fuel electrode and air electrode that utilize the catalytic activity of platinum group metals and the catalytic activity of transition metals. It is possible to supply sufficient electric energy to the load connected to the fuel cell.

燃料極及び空気極において、選択された少なくとも2種類の遷移金属の仕事関数の合成仕事関数が白金族金属の仕事関数に近似するように、各種の遷移金属の中から少なくとも2種類の遷移金属が選択されている固体高分子形燃料電池は、合成仕事関数が白金族金属の仕事関数に近似するように各種の遷移金属の中から少なくとも2種類の遷移金属が選択されているから、白金族金属の含有量が少ないにもかかわらず、燃料極及び空気極が白金を担持した電極と略同一の仕事関数を備え、燃料極及び空気極が白金を担持した電極と略同様の触媒活性(触媒作用)を発揮し、選択された少なくとも2種類の遷移金属を含むとともに優れた触媒活性を有する燃料極及び空気極を使用して十分な電気を発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを供給することができる。 In the fuel electrode and the air electrode, at least two transition metals are selected from various transition metals so that the composite work function of the work functions of the selected at least two transition metals approximates to the work function of the platinum group metal. In the polymer electrolyte fuel cell selected, at least two kinds of transition metals are selected from various kinds of transition metals so that the synthetic work function approximates the work function of platinum group metals. Although the fuel electrode and the air electrode have almost the same work function as the platinum-supported electrode, the catalytic activity (catalyst action) ), it is possible to generate sufficient electricity by using a fuel electrode and an air electrode which contain at least two selected transition metals and have excellent catalytic activity, and can be applied to a load connected to a fuel cell. Sufficient electric energy can be supplied.

燃料極及び空気極に形成された気孔の平均径が1〜100μmの範囲にある固体高分子形燃料電池は、燃料極及び空気極に形成された気孔の平均径が1〜100μmの範囲にあるから、燃料極及び空気極の単位体積当たりに多数の気孔が形成され、燃料極及び空気極の比表面積を大きくすることができ、それら気孔を気体が通流することで気体を燃料極及び空気極の接触面に広範囲に接触させることができ、燃料極及び空気極の触媒作用を最大限に利用することができる。固体高分子形燃料電池は、平均径が1〜100μmの範囲の気孔を有するとともに優れた触媒活性を有する燃料極及び空気極を使用して十分な電気を発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを供給することができる。 In the polymer electrolyte fuel cell in which the average diameter of the pores formed in the fuel electrode and the air electrode is in the range of 1 to 100 μm, the average diameter of the pores formed in the fuel electrode and the air electrode is in the range of 1 to 100 μm. Therefore, a large number of pores are formed per unit volume of the fuel electrode and the air electrode, and the specific surface area of the fuel electrode and the air electrode can be increased. The contact surface of the electrode can be widely contacted, and the catalytic action of the fuel electrode and the air electrode can be utilized to the maximum. The polymer electrolyte fuel cell can generate sufficient electricity by using a fuel electrode and an air electrode having pores with an average diameter in the range of 1 to 100 μm and having excellent catalytic activity, and can be connected to the fuel cell. Sufficient electrical energy can be supplied to the loaded load.

燃料極の厚み寸法と空気極の厚み寸法とが0.03mm〜1.5mmの範囲にある固体高分子形燃料電池は、燃料極及び空気極の厚み寸法を前記範囲にすることで、燃料極及び空気極の電気抵抗を小さくすることができ、燃料極や空気極に電流をスムースに流すことができる。固体高分子形燃料電池は、燃料極及び空気極が白金を担持した電極と略同様の触媒活性(触媒作用)を有するとともに、燃料極及び空気極の電気抵抗が小さく、燃料極及び空気極に電流がスムースに流れるから、優れた触媒活性を有するとともに電位抵抗が小さい燃料極及び空気極を使用して十分な電気を発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを供給することができる。 The polymer electrolyte fuel cell in which the thickness dimension of the fuel electrode and the thickness dimension of the air electrode are in the range of 0.03 mm to 1.5 mm can be achieved by adjusting the thickness dimensions of the fuel electrode and the air electrode within the above range. Also, the electric resistance of the air electrode can be reduced, and the current can be smoothly passed through the fuel electrode and the air electrode. The polymer electrolyte fuel cell has substantially the same catalytic activity (catalytic action) as an electrode in which the fuel electrode and the air electrode carry platinum, and the electric resistance of the fuel electrode and the air electrode is small, so that Since the current flows smoothly, it is possible to generate sufficient electricity using the fuel electrode and air electrode, which have excellent catalytic activity and low potential resistance, and generate sufficient electric energy for the load connected to the fuel cell. Can be supplied.

白金族金属がPt(白金)であり、遷移金属がNi(ニッケル)とFe(鉄)とであり、Niの仕事関数とFeの仕事関数との合成仕事関数が白金族金属の仕事関数に近似するように、Ptの白金族金属微粉体の金属微粉体混合物の全重量に対する重量比とNiの遷移金属微粉体の金属微粉体混合物の全重量に対する重量比とFeの遷移金属微粉体の金属微粉体混合物の全重量に対する重量比とが定められている固体高分子形燃料電池は、遷移金属の合成仕事関数が白金族金属の仕事関数に近似するように、金属微粉体混合物の全重量に対するPtの白金族金属微粉体の重量比や金属微粉体混合物の全重量に対するNiの遷移金属微粉体の重量比、金属微粉体混合物の全重量に対するFeの遷移金属微粉体の重量比が決定されているから、燃料極や空気極が白金を担持した電極と略同一の仕事関数を備え、燃料極や空気極が優れた触媒活性(触媒作用)を有し、燃料極や空気極が白金を担持した電極と略同様の触媒活性(触媒作用)を発揮することで、その燃料極及び空気極を使用して十分な電気を発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを供給することができる。固体高分子形燃料電池は、燃料極及び空気極がNi(ニッケル)とFe(鉄)とを含み、Pt(白金)の含有量が少ないから、燃料極や空気極の材料費を低減させることができ、固体高分子形燃料電池を廉価に作ることができるとともに、固体高分子形燃料電池の運転コストを下げることができる。 The platinum group metal is Pt (platinum), the transition metals are Ni (nickel) and Fe (iron), and the combined work function of the work function of Ni and the work function of Fe is close to the work function of the platinum group metal. Thus, the weight ratio of Pt platinum group metal fine powder to the total weight of the metal fine powder mixture and the weight ratio of Ni transition metal fine powder to the total weight of the metal fine powder mixture and Fe transition metal fine powder to the metal fine powder The polymer electrolyte fuel cell, in which the weight ratio to the total weight of the body mixture is defined, has a Pt based on the total weight of the metal fine powder mixture such that the synthetic work function of the transition metal approximates the work function of the platinum group metal. Of the platinum group metal fine powder, the weight ratio of the Ni transition metal fine powder to the total weight of the metal fine powder mixture, and the weight ratio of the Fe transition metal fine powder to the total weight of the metal fine powder mixture are determined. Therefore, the fuel electrode and the air electrode have almost the same work function as the electrode supporting platinum, the fuel electrode and the air electrode have excellent catalytic activity (catalytic action), and the fuel electrode and the air electrode support platinum. By exhibiting the same catalytic activity (catalytic action) as the electrode, sufficient electricity can be generated using the fuel electrode and the air electrode, and sufficient electric energy can be supplied to the load connected to the fuel cell. Can be supplied. In the polymer electrolyte fuel cell, the fuel electrode and the air electrode contain Ni (nickel) and Fe (iron), and the content of Pt (platinum) is small. Therefore, the material cost of the fuel electrode and the air electrode should be reduced. Therefore, the polymer electrolyte fuel cell can be manufactured at low cost, and the operation cost of the polymer electrolyte fuel cell can be reduced.

Ptの白金族金属微粉体の金属微粉体混合物の全重量に対する重量比が4〜10%の範囲、Niの遷移金属微粉体の金属微粉体混合物の全重量に対する重量比が45%〜48%の範囲、Feの遷移金属微粉体の金属微粉体混合物の全重量に対する重量比が45%〜48%の範囲にある固体高分子形燃料電池は、合成仕事関数が白金族金属の仕事関数に近似するNi(ニッケル)とFe(鉄)とを選択するとともに、金属微粉体混合物の全重量に対するPtの白金族金属微粉体の重量比や金属微粉体混合物の全重量に対するNiの遷移金属微粉体の重量比、金属微粉体混合物の全重量に対するFeの遷移金属微粉体の重量比を前記範囲にすることで、Niの遷移金属微粉体とFeの遷移金属微粉体との仕事関数の合成仕事関数を白金族金属の仕事関数に近似させることができ、Ptの含有量が少ないにもかかわらず、燃料極や空気極が優れた触媒活性(触媒作用)を有し、燃料極や空気極が白金を担持した電極と略同様の触媒活性(触媒作用)を発揮することで、その燃料極及び空気極を使用して十分な電気を発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを供給することができる。固体高分子形燃料電池は、燃料極及び空気極が前記重量比のNi(ニッケル)とFe(鉄)とを含み、金属微粉体混合物の全重量に対するPt(白金)の重量比が小さく、Pt(白金)の含有量が少ないから、燃料極や空気極の材料費を低減させることができ、固体高分子形燃料電池を廉価に作ることができるとともに、固体高分子形燃料電池の運転コストを下げることができる。 The weight ratio of Pt platinum group metal fine powder to the total weight of the metal fine powder mixture is in the range of 4 to 10%, and the weight ratio of Ni transition metal fine powder to the total weight of the metal fine powder mixture is 45% to 48%. In the range, the weight ratio of the transition metal fine powder of Fe to the total weight of the fine metal powder mixture is in the range of 45% to 48%, the polymer electrolyte fuel cell has a synthetic work function close to that of the platinum group metal. Ni (nickel) and Fe (iron) are selected, and the weight ratio of the platinum group metal fine powder of Pt to the total weight of the fine metal powder mixture and the weight of the transition metal fine powder of Ni to the total weight of the fine metal powder mixture are selected. By adjusting the ratio of the weight ratio of the transition metal fine powder of Fe to the total weight of the mixture of fine metal powder to the above range, the composite work function of the work functions of the transition metal fine powder of Ni and the transition metal fine powder of Fe can be platinum. It can be approximated to the work function of group metals, and despite its low Pt content, the fuel electrode and air electrode have excellent catalytic activity (catalyst action), and the fuel electrode and air electrode carry platinum. By exhibiting substantially the same catalytic activity (catalytic action) as the electrode, it is possible to generate sufficient electricity using its fuel electrode and air electrode, and to generate sufficient electric energy for the load connected to the fuel cell. Can be supplied. In the polymer electrolyte fuel cell, the fuel electrode and the air electrode include Ni (nickel) and Fe (iron) in the weight ratios described above, and the weight ratio of Pt (platinum) to the total weight of the fine metal powder mixture is small. Since the content of (platinum) is low, the material cost of the fuel electrode and air electrode can be reduced, the polymer electrolyte fuel cell can be manufactured at low cost, and the operation cost of the polymer electrolyte fuel cell can be reduced. Can be lowered.

マイクロポーラス構造の薄板状に成形された燃料極及び空気極の気孔率が70%〜85%の範囲にある固体高分子形燃料電池は、燃料極及び空気極の気孔率を前記範囲にすることで、燃料極及び空気極が多数の微細な気孔(通路孔)を有する多孔質(気孔の平均径1〜100μmのマイクロポーラス構造)に成形され、燃料極及び空気極の比表面積を大きくすることができ、それら気孔を気体が通流しつつ気体を燃料極や空気極のそれら気孔における接触面に広範囲に接触させることが可能となり、燃料極や空気極が白金を担持した電極と略同様の触媒活性(触媒作用)を確実に発揮し、触媒機能を十分かつ確実に利用することが可能であって優れた触媒活性(触媒作用)を有する燃料極及び空気極を使用して十分な電気を発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを供給することができる。 A polymer electrolyte fuel cell having a porosity of a fuel electrode and an air electrode formed in a thin plate having a microporous structure in the range of 70% to 85% has a porosity of the fuel electrode and the air electrode within the above range. In order to increase the specific surface area of the fuel electrode and the air electrode, the fuel electrode and the air electrode are molded into a porous structure (a microporous structure having an average pore diameter of 1 to 100 μm) having a large number of fine pores (passage holes). It becomes possible to bring the gas into wide contact with the contact surface of the pores of the fuel electrode and the air electrode while allowing the gas to flow through the pores, and the catalyst is almost the same as the electrode in which the fuel electrode and the air electrode carry platinum. Generating sufficient electricity by using the fuel electrode and the air electrode that reliably exhibit the activity (catalyst action) and can fully and reliably utilize the catalyst function and have excellent catalytic activity (catalyst action). It is possible to supply sufficient electric energy to the load connected to the fuel cell.

マイクロポーラス構造の薄板に成形された燃料極及び空気極の密度が6.0g/cm〜8.0g/cmの範囲にある固体高分子形燃料電池は、燃料極及び空気極の密度を前記範囲にすることで、燃料極及び空気極が多数の微細な気孔(通路孔)を有する多孔質(気孔の平均径1〜100μmのマイクロポーラス構造)に成形され、燃料極及び空気極の比表面積を大きくすることができ、それら気孔を気体が通流しつつ気体を燃料極や空気極のそれら気孔における接触面に広範囲に接触させることが可能となり、燃料極や空気極が白金を担持した電極と略同様の触媒活性(触媒作用)を確実に発揮し、触媒機能を十分かつ確実に利用することが可能であって優れた触媒活性(触媒作用)を有する燃料極及び空気極を使用して十分な電気を発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを供給することができる。 Polymer electrolyte fuel cell density of the fuel electrode and an air electrode which is formed into a thin microporous structure is in the range of 6.0g / cm 2 ~8.0g / cm 2, the density of the fuel electrode and an air electrode Within the above range, the fuel electrode and the air electrode are molded into a porous structure (a microporous structure having an average pore diameter of 1 to 100 μm) having a large number of fine pores (passage holes), and the ratio of the fuel electrode and the air electrode is increased. The surface area can be increased, and it becomes possible to allow the gas to contact a wide range of contact surfaces of the fuel electrode and the air electrode in the pores while allowing the gas to flow through these pores, and the fuel electrode and the air electrode support platinum. Uses a fuel electrode and an air electrode that exhibit a catalytic activity (catalyst action) that is almost the same as the above, and can fully and reliably utilize the catalytic function, and that has excellent catalytic activity (catalyst action). Sufficient electricity can be generated, and sufficient electric energy can be supplied to the load connected to the fuel cell.

白金族金属の白金族金属微粉体の粒径と遷移金属の遷移金属微粉体の粒径とが1μm〜100μmの範囲にある固体高分子形燃料電池は、白金族金属の白金族金属微粉体や遷移金属の遷移金属微粉体の粒径を前記範囲にすることで、燃料極及び空気極が多数の微細な気孔(通路孔)を有する多孔質(気孔の平均径1〜100μmのマイクロポーラス構造)に成形され、燃料極及び空気極の比表面積を大きくすることができ、それら気孔を気体が通流しつつ気体を燃料極や空気極のそれら気孔における接触面に広範囲に接触させることが可能となり、燃料極や空気極が白金を担持した電極と略同様の触媒活性(触媒作用)を確実に発揮し、触媒機能を十分かつ確実に利用することが可能であって優れた触媒活性(触媒作用)を有する燃料極及び空気極を使用して十分な電気を発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを供給することができる。 A polymer electrolyte fuel cell in which the particle size of the platinum group metal fine powder of the platinum group metal and the particle size of the transition metal fine powder of the transition metal are in the range of 1 μm to 100 μm is a platinum group metal fine powder of platinum group metal or a platinum group metal fine powder. By making the particle size of the transition metal fine powder of the transition metal within the above range, the fuel electrode and the air electrode are porous with a large number of fine pores (passage holes) (microporous structure having an average pore diameter of 1 to 100 μm). It is possible to increase the specific surface area of the fuel electrode and the air electrode, and it becomes possible to bring the gas into wide contact with the contact surfaces of the pores of the fuel electrode and the air electrode while allowing the gas to flow through the pores. An excellent catalytic activity (catalytic action) because the fuel electrode and the air electrode surely exhibit the same catalytic activity (catalytic action) as the electrode supporting platinum, and the catalytic function can be used sufficiently and reliably. Sufficient electricity can be generated by using the fuel electrode and the air electrode having the above, and sufficient electric energy can be supplied to the load connected to the fuel cell.

燃料極に供給される水素の雰囲気が相対湿度95%〜100%の範囲にあり、水素の温度が45℃〜55℃の範囲にある固体高分子形燃料電池は、相対湿度95%〜100%の雰囲気で燃料極に水素を供給するとともに、45℃〜55℃の温度で燃料極に水素を供給することで、燃料極の触媒活性が増加し、燃料電池の起電力が向上し、燃料極や空気極を利用して十分な電気を確実に発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを確実に供給することができる。 The hydrogen atmosphere supplied to the fuel electrode has a relative humidity in the range of 95% to 100%, and the hydrogen temperature is in the range of 45°C to 55°C. By supplying hydrogen to the fuel electrode at a temperature of 45°C to 55°C while supplying hydrogen to the fuel electrode in the atmosphere of, the catalytic activity of the fuel electrode is increased, the electromotive force of the fuel cell is improved, and the fuel electrode is improved. It is possible to reliably generate sufficient electricity by using the air electrode and the air electrode, and to reliably supply sufficient electric energy to the load connected to the fuel cell.

燃料極に供給される水素の供給圧力が+0.06MPa〜+0.08MPaの範囲にある固体高分子形燃料電池は、+0.06MPa〜+0.08MPaの供給圧力で燃料極に水素を供給することで、燃料極の触媒活性が増加し、燃料電池の起電力が向上し、燃料極や空気極を利用して十分な電気を確実に発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを確実に供給することができる。 The polymer electrolyte fuel cell in which the supply pressure of hydrogen supplied to the fuel electrode is in the range of +0.06 MPa to +0.08 MPa can supply hydrogen to the fuel electrode at a supply pressure of +0.06 MPa to +0.08 MPa. , The catalytic activity of the fuel electrode is increased, the electromotive force of the fuel cell is improved, and it is possible to reliably generate sufficient electricity using the fuel electrode and the air electrode, which is sufficient for the load connected to the fuel cell. Electric energy can be reliably supplied.

一例として示す固体高分子形燃料電池の斜視図。The perspective view of the polymer electrolyte fuel cell shown as an example. セルスタックを形成するセルの一例を示す分解斜視図。FIG. 3 is an exploded perspective view showing an example of cells forming a cell stack. セルの側面図。Side view of the cell. 一例として示す燃料極及び空気極の斜視図。The perspective view of the fuel electrode and air electrode shown as an example. 燃料極及び空気極の一例として示す部分拡大正面図。The partially expanded front view shown as an example of a fuel electrode and an air electrode. 固体高分子形燃料電池の発電を説明する図。The figure explaining the electric power generation of a polymer electrolyte fuel cell. 燃料極及び空気極の起電圧試験の結果を示す図。The figure which shows the result of the electromotive force test of a fuel electrode and an air electrode. 燃料極及び空気極のI−V特性試験の結果を示す図。The figure which shows the result of the IV characteristic test of a fuel electrode and an air electrode. 固体高分子形燃料電池に使用する燃料極及び空気極の製造方法を説明する図。FIG. 3 is a diagram illustrating a method for manufacturing a fuel electrode and an air electrode used in a polymer electrolyte fuel cell.

一例として示す固体高分子形燃料電池10の斜視図である図1等の添付の図面を参照し、本発明に係る固体高分子形燃料電池の詳細を説明すると、以下のとおりである。なお、図2は、セルスタック12を形成するセル11の一例を示す分解斜視図であり、図3は、セル11の側面図である。図4は、一例として示す燃料極13及び空気極14の斜視図であり、図5は、燃料極13及び空気極14の一例として示す部分拡大図である。図4では、厚み方向を矢印Xで示し、径方向を矢印Yで示す。 The polymer electrolyte fuel cell according to the present invention will be described in detail with reference to the accompanying drawings such as FIG. 1 which is a perspective view of the polymer electrolyte fuel cell 10 as an example. 2 is an exploded perspective view showing an example of the cell 11 forming the cell stack 12, and FIG. 3 is a side view of the cell 11. FIG. 4 is a perspective view of the fuel electrode 13 and the air electrode 14 shown as an example, and FIG. 5 is a partial enlarged view showing an example of the fuel electrode 13 and the air electrode 14. In FIG. 4, the thickness direction is indicated by arrow X, and the radial direction is indicated by arrow Y.

固体高分子形燃料電池10は、複数のセル11を有するセルスタック12(燃料電池スタック)を備え、水素と酸素とを供給することで電気エネルギーを生成する。セルスタック12では、複数のセル11(単セル)が一方向へ重なり合って直列に接続されている。セル11の一例としては、図2に示すように、燃料極13(アノード)及び空気極14(カソード)と、燃料極13及び空気極14の間に位置(介在)する固体高分子電解質膜15(電極接合体膜)(スルホン酸基を有するフッ素系イオン交換膜)と、燃料極13の厚み方向外側に位置するセパレータ16(バイポーラプレート)と、空気極14の厚み方向外側に位置するセパレータ17(バイポーラプレート)とから形成されている。 The polymer electrolyte fuel cell 10 includes a cell stack 12 (fuel cell stack) having a plurality of cells 11, and generates electric energy by supplying hydrogen and oxygen. In the cell stack 12, a plurality of cells 11 (single cells) overlap in one direction and are connected in series. As an example of the cell 11, as shown in FIG. 2, a fuel electrode 13 (anode) and an air electrode 14 (cathode), and a solid polymer electrolyte membrane 15 positioned (interposed) between the fuel electrode 13 and the air electrode 14. (Electrode assembly membrane) (fluorine-based ion exchange membrane having sulfonic acid group), separator 16 (bipolar plate) located outside the fuel electrode 13 in the thickness direction, and separator 17 located outside air electrode 14 in the thickness direction. (Bipolar plate).

それらセパレータ16,17には、反応ガス(水素や酸素等)の供給流路が刻設されている(彫り込まれている)。セル11では、図3に示すように、燃料極13や空気極14、固体高分子電解質膜15が厚み方向へ重なり合って一体化し、膜/電極接合体18(Membrane Electrode Assembly, MEA)を構成し、膜/電極接合体18をそれらセパレータ16,17が挟み込んでいる。膜/電極接合体18では、ホットプレスによって固体高分子電解質膜15の一方の面に燃料極13の面が隙間なく密着し、固体高分子電解質膜15の他方の面に空気極14の面が隙間なく密着している。固体高分子電解質膜15は、プロトン導電性があり、電子導電性がない。 The separators 16 and 17 are provided with engraved (engraved) supply channels for reaction gas (hydrogen, oxygen, etc.). In the cell 11, as shown in FIG. 3, the fuel electrode 13, the air electrode 14, and the solid polymer electrolyte membrane 15 are overlapped and integrated in the thickness direction to form a membrane/electrode assembly 18 (Membrane Electrode Assembly, MEA). The membrane/electrode assembly 18 is sandwiched by the separators 16 and 17. In the membrane/electrode assembly 18, the surface of the fuel electrode 13 is closely attached to one surface of the solid polymer electrolyte membrane 15 by hot pressing, and the surface of the air electrode 14 is attached to the other surface of the solid polymer electrolyte membrane 15. It is in close contact with no gap. The solid polymer electrolyte membrane 15 has proton conductivity and no electron conductivity.

燃料極13とセパレータ16との間には、ガス拡散層19が形成され、空気極14とセパレータ17との間には、ガス拡散層20が形成されている。燃料極13とセパレータ16との間であってガス拡散層20の上部及び下部には、ガスシール21が設置されている。空気極14とセパレータ17との間であってガス拡散層20の上部及び下部には、ガスシール22が設置されている。 A gas diffusion layer 19 is formed between the fuel electrode 13 and the separator 16, and a gas diffusion layer 20 is formed between the air electrode 14 and the separator 17. Gas seals 21 are installed between the fuel electrode 13 and the separator 16 and above and below the gas diffusion layer 20. Gas seals 22 are installed between the air electrode 14 and the separator 17 and above and below the gas diffusion layer 20.

固体高分子形燃料電池10(セル11)に使用する燃料極13(触媒電極)及び空気極14(触媒電極)は、前面23及び後面24を有するとともに、所定の面積及び所定の厚み寸法L1を有し、その平面形状が四角形に成形されている。燃料極13及び空気極14は、多数の微細な気孔25(流路)(連続かつ独立通路孔)を有する多孔質(マイクロポーラス構造)の薄板状電極26(薄板状発泡金属電極)である。気孔25には、ガス(気体)が通流する。なお、燃料極13や空気極14の平面形状に特に制限はなく、四角形の他に、その用途にあわせて円形や楕円形等の他のあらゆる平面形状に成形することができる。 The fuel electrode 13 (catalyst electrode) and the air electrode 14 (catalyst electrode) used for the polymer electrolyte fuel cell 10 (cell 11) have a front surface 23 and a rear surface 24, and have a predetermined area and a predetermined thickness dimension L1. It has a planar shape of a quadrangle. The fuel electrode 13 and the air electrode 14 are porous (microporous structure) thin plate electrodes 26 (thin plate foam metal electrodes) having a large number of fine pores 25 (flow paths) (continuous and independent passage holes). Gas flows through the pores 25. The planar shapes of the fuel electrode 13 and the air electrode 14 are not particularly limited, and may be formed in any other planar shape such as a circle, an ellipse, etc., in addition to the quadrangle, depending on the application.

燃料極13及び空気極14(マイクロポーラス構造の薄板状電極26)は、粉状に加工された白金族金属31と、粉状に加工された遷移金属32の中から選択された少なくとも2種類の遷移金属32とから形成されている。白金族金属31としては、白金(Pt)、パラジウム(Pb)、ロジウム(Rh)、ルテニウム(Ru)、イリジウム(Ir)、オスミウム(Os)を使用することができる。白金族金属31には、それらのうちの少なくとも1種類が使用される。遷移金属32としては、3d遷移金属や4d遷移金属が使用される。3d遷移金属には、Ti(チタン)、Cr(クロム)、Cu(銅)、Mn(マンガン)、Fe(鉄)、Co(コバルト)、Ni(ニッケル)、Zn(亜鉛)が使用される。4d遷移金属には、Nb(ニオブ)、Mo(モリブデン)、Ag(銀)が使用される。遷移金属32には、それらのうちの少なくとも2種類が使用される。 The fuel electrode 13 and the air electrode 14 (the thin plate-shaped electrode 26 having a microporous structure) are made of at least two kinds of metal selected from powder-processed platinum group metal 31 and powder-processed transition metal 32. And a transition metal 32. As the platinum group metal 31, platinum (Pt), palladium (Pb), rhodium (Rh), ruthenium (Ru), iridium (Ir), osmium (Os) can be used. At least one of them is used for the platinum group metal 31. As the transition metal 32, 3d transition metal or 4d transition metal is used. As the 3d transition metal, Ti (titanium), Cr (chromium), Cu (copper), Mn (manganese), Fe (iron), Co (cobalt), Ni (nickel), Zn (zinc) is used. Nb (niobium), Mo (molybdenum), and Ag (silver) are used as the 4d transition metal. At least two of them are used for the transition metal 32.

燃料極13及び空気極14では、選択された少なくとも2種類の遷移金属32の仕事関数(物質から電子を取り出すのに必要なエネルギー)の合成仕事関数が白金族金属の仕事関数に近似するように、遷移金属32の中から少なくとも2種類の遷移金属32が選択されている。白金の仕事関数は、5.65(eV)である。Tiの仕事関数は、4.14(eV)、Crの仕事関数は、4.5(eV)、Cuの仕事関数は、5.10(eV)、Mnの仕事関数は、4.1(eV)、Feの仕事関数は、4.67(eV)、Coの仕事関数は、5.0(eV)、Niの仕事関数は、5.22(eV)、Znの仕事関数は、3.63(eV)、Nbの仕事関数は、4.01(eV)、Moの仕事関数は、4.45(eV)、Agの仕事関数は、4.31(eV)である。 In the fuel electrode 13 and the air electrode 14, the composite work function of the work functions (energy required to extract electrons from the substance) of at least two kinds of selected transition metals 32 is approximated to the work function of the platinum group metal. , At least two kinds of transition metals 32 are selected from the transition metals 32. The work function of platinum is 5.65 (eV). The work function of Ti is 4.14 (eV), the work function of Cr is 4.5 (eV), the work function of Cu is 5.10 (eV), and the work function of Mn is 4.1 (eV). ), the work function of Fe is 4.67 (eV), the work function of Co is 5.0 (eV), the work function of Ni is 5.22 (eV), and the work function of Zn is 3.63. (EV) and Nb have work functions of 4.01 (eV), Mo has a work function of 4.45 (eV), and Ag has a work function of 4.31 (eV).

燃料極13及び空気極14は、白金族金属31の白金族金属微粉体(微粉状に加工されたPt(白金)、微粉状に加工されたPb(パラジウム)、微粉状に加工されたRh(ロジウム)、微粉状に加工されたRu(ルテニウム)、微粉状に加工されたIr(イリジウム)、微粉状に加工されたOs(オスミウム))と、各種の遷移金属32から選択された少なくとも2種類のそれら遷移金属32の遷移金属微粉体(微粉状に加工されたTi(チタン)、微粉状に加工されたCr(クロム)、微粉状に加工されたCu(銅)、微粉状に加工されたMn(マンガン)、微粉状に加工されたFe(鉄)、微粉状に加工されたCo(コバルト)、微粉状に加工されたNi(ニッケル)、微粉状に加工されたZn(亜鉛)、微粉状に加工されたNb(ニオブ)、微粉状に加工されたMo(モリブデン)、微粉状に加工されたAg(銀))と、所定のバインダー33(紛状の樹脂系バインダー)とを均一に混合・分散した金属微粉体混合物41を作り、金属微粉体混合物41に所定の気孔形成材40(発泡剤)を添加し(加え)、気孔形成材40を添加した金属微粉体混合物41を所定面積の薄板状に成形(押し出し成形又は射出成形)して薄板状の金属微粉体成形物42を作り、その金属微粉体成形物42を脱脂及び所定温度で焼結(焼成)することから作られている(図9参照)。 The fuel electrode 13 and the air electrode 14 are platinum group metal fine powder of the platinum group metal 31 (Pt (platinum) processed into fine powder, Pb (palladium) processed into fine powder, Rh(processed into fine powder). Rhodium), finely powdered Ru (ruthenium), finely powdered Ir (iridium), finely powdered Os (osmium)), and at least two kinds selected from various transition metals 32 Transition metal fine powder of those transition metals 32 (Ti (titanium) processed into fine powder, Cr (chrome) processed into fine powder, Cu (copper) processed into fine powder, processed into fine powder) Mn (manganese), finely powdered Fe (iron), finely powdered Co (cobalt), finely powdered Ni (nickel), finely powdered Zn (zinc), fine powder Uniformly processed Nb (niobium), finely powdered Mo (molybdenum), and finely powdered Ag (silver), and a predetermined binder 33 (powder-like resin-based binder) A mixed/dispersed metal fine powder mixture 41 is prepared, a predetermined pore forming material 40 (foaming agent) is added (added) to the metal fine powder mixture 41, and the metal fine powder mixture 41 added with the pore forming material 40 has a predetermined area. Is formed by extruding (extruding or injection molding) a thin plate-like metal fine powder molded product 42, degreasing and sintering (firing) the metal fine powder molded product 42 at a predetermined temperature. (See Figure 9).

燃料極13及び空気極14では、選択された2種類の遷移金属32の仕事関数の合成仕事関数が白金族金属の仕事関数に近似するように、白金族金属31の白金族金属微粉体の金属微粉体混合物41の全重量に対する重量比が決定され、それら遷移金属32の遷移金属微粉体の金属微粉体混合物41の全重量に対する重量比が決定されている。 In the fuel electrode 13 and the air electrode 14, the platinum group metal 31 is a metal of the platinum group metal fine powder so that the combined work function of the work functions of the two selected transition metals 32 approximates the work function of the platinum group metal. The weight ratio of the fine powder mixture 41 to the total weight is determined, and the weight ratio of the transition metal fine powder of the transition metal 32 to the total weight of the metal fine powder mixture 41 is determined.

具体的には、白金族金属31の白金族金属微粉体の金属微粉体混合物41の全重量(100%)に対する重量比が4%〜10%の範囲、好ましくは、6%〜8%の範囲にあり、選択された遷移金属32のうちの1種類の遷移金属微粉体の金属微粉体混合物41の全重量(100%)に対する重量比が45%〜48%の範囲にあり、選択された遷移金属32のうちの他の1種類の遷移金属微粉体の金属微粉体混合物41の全重量(100%)に対する重量比が45%〜48%の範囲にある。 Specifically, the weight ratio of the platinum group metal 31 of the platinum group metal fine powder to the total weight (100%) of the metal fine powder mixture 41 is in the range of 4% to 10%, preferably 6% to 8%. And the weight ratio of one kind of transition metal fine powder among the selected transition metals 32 to the total weight (100%) of the metal fine powder mixture 41 is in the range of 45% to 48%. The weight ratio of the other transition metal fine powder of the metal 32 to the total weight (100%) of the fine metal powder mixture 41 is in the range of 45% to 48%.

白金族金属31の白金族金属微粉体の重量比、選択された1種類の遷移金属32の遷移金属微粉体の重量比、選択された他の1種類の遷移金属32の遷移金属微粉体の重量比が前記範囲外になると、それら遷移金属32の遷移金属微粉体の合成仕事関数を白金族金属の仕事関数に近似させることができないとともに、金属微粉体混合物41を成形した金属微粉体成形物42を脱脂・焼結(焼成)して作られた電極10が白金を担持した電極と略同様の触媒活性(触媒作用)を発揮することができない。 Weight ratio of platinum group metal 31 to platinum group metal fine powder, weight ratio of transition metal fine powder to one selected transition metal 32, weight weight of transition metal fine powder to another selected one type of transition metal 32 If the ratio is out of the above range, the composite work function of the transition metal fine powders of the transition metals 32 cannot be approximated to the work function of the platinum group metal, and the metal fine powder mixture 41 formed by molding the metal fine powder mixture 41 is formed. The electrode 10 made by degreasing and sintering (sintering) cannot exhibit substantially the same catalytic activity (catalytic action) as the electrode supporting platinum.

固体高分子形燃料電池17は、白金族金属31の微粉体の金属微粉体混合物41の全重量に対する重量比や選択された1種類の遷移金属32の微粉体の金属微粉体混合物41の全重量に対する重量比、選択された他の1種類の遷移金属32の微粉体の金属微粉体混合物41の全重量に対する重量比を前記範囲にすることで、選択された少なくとも2種類の遷移金属32の仕事関数の合成仕事関数が白金族金属の仕事関数に近似させることができ、燃料極13及び空気極14が白金を担持した電極と略同一の仕事関数を備え、燃料極13や空気極14が優れた触媒活性(触媒作用)を有し、燃料極13や空気極14が白金を担持した電極と略同様の触媒活性(触媒作用)を発揮することで、燃料極13や空気極14を使用して十分な電気を発電することができ、燃料電池17に接続された負荷30に十分な電気エネルギーを供給することができる。 In the polymer electrolyte fuel cell 17, the weight ratio of the platinum group metal 31 fine powder to the total weight of the metal fine powder mixture 41, and the total weight of the selected one kind of transition metal 32 fine powder of the metal fine powder mixture 41. The weight ratio to the total weight of the metal fine powder mixture 41 of the fine powder of the other selected one kind of transition metal 32 is within the above range, so that the work of at least two kinds of selected transition metals 32 is achieved. The composite work function of the functions can be approximated to the work function of the platinum group metal, and the fuel electrode 13 and the air electrode 14 have substantially the same work function as the electrode supporting platinum, and the fuel electrode 13 and the air electrode 14 are excellent. Since the fuel electrode 13 and the air electrode 14 exhibit substantially the same catalytic activity (catalytic action) as the electrode supporting platinum, the fuel electrode 13 and the air electrode 14 can be used. As a result, sufficient electricity can be generated, and sufficient electric energy can be supplied to the load 30 connected to the fuel cell 17.

燃料極13及び空気極14には、径が異なる多数の微細な気孔25(流路)(連続かつ独立通路孔)が形成されている。燃料極13及び空気極14は、多数の微細な気孔25が形成されているから、その比表面積が大きい。それら気孔25は、燃料極13及び空気極14の前面23に開口する複数の通流口27と、燃料極13及び空気極14の後面24に開口する複数の通流口27とを有し、燃料極13及び空気極14の前面23から後面24に向かって燃料極13や空気極14をその厚み方向に貫通している。 The fuel electrode 13 and the air electrode 14 are formed with a large number of fine pores 25 (flow passages) (continuous and independent passage holes) having different diameters. Since the fuel electrode 13 and the air electrode 14 have a large number of fine pores 25 formed therein, their specific surface areas are large. The pores 25 have a plurality of through holes 27 that open to the front surface 23 of the fuel electrode 13 and the air electrode 14, and a plurality of through holes 27 that open to the rear surface 24 of the fuel electrode 13 and the air electrode 14. The fuel electrode 13 and the air electrode 14 penetrate through the fuel electrode 13 and the air electrode 14 in the thickness direction from the front surface 23 toward the rear surface 24.

それら気孔25は、燃料極13及び空気極14の前面23と後面24との間において燃料極13や空気極14の厚み方向へ不規則に曲折しながら延びているとともに、燃料極13及び空気極14の外周縁28から中心に向かって燃料極13及び空気極14の径方向へ不規則に曲折しながら延びている。径方向へ隣接して厚み方向へ曲折して延びるそれら気孔25(流路)(連続かつ独立通路孔)は、径方向において部分的につながり、一方の気孔25と他方の気孔25とが互いに連通している。厚み方向へ隣接して径方向へ曲折して延びるそれら気孔25(流路)(連続かつ独立通路孔)は、厚み方向において部分的につながり、一方の気孔25と他方の気孔25とが互いに連通している。 The pores 25 extend between the front surface 23 and the rear surface 24 of the fuel electrode 13 and the air electrode 14 while irregularly bending in the thickness direction of the fuel electrode 13 and the air electrode 14, and at the same time, It extends from the outer peripheral edge 28 of 14 toward the center while being bent in the radial direction of the fuel electrode 13 and the air electrode 14 irregularly. The pores 25 (flow paths) (continuous and independent passage holes) that are adjacent to each other in the radial direction and extend in the thickness direction are partially connected in the radial direction, and one pore 25 and the other pore 25 communicate with each other. is doing. The pores 25 (flow passages) (continuous and independent passage holes) that are adjacent to each other in the thickness direction and extend in the radial direction are partially connected in the thickness direction, and one pore 25 and the other pore 25 communicate with each other. is doing.

それら気孔25(通路孔)の開口面積(開口径)は、厚み方向に向かって一様ではなく、厚み方向に向かって不規則に変化しているとともに、径方向に向かって一様ではなく、径方向に向かって不規則に変化している。それら気孔25は、その開口面積(開口径)が大きくなったり、小さくなったりしながら厚み方向と径方向とへ不規則に開口している。また、燃料極13及び空気極14の前面23に開口する通流口27と後面24に開口する通流口27とは、その開口面積(開口径)が一様ではなく、その面積がすべて相違している。そそれら気孔13(通路孔)の平均径(平均開口径)や前後面23,24の通流口27の開口径(平均開口径)は、1μm〜100μmの範囲にある。 The opening area (opening diameter) of the pores 25 (passage holes) is not uniform in the thickness direction, is irregularly changed in the thickness direction, and is not uniform in the radial direction. It changes irregularly in the radial direction. The pores 25 open irregularly in the thickness direction and the radial direction while the opening area (opening diameter) increases or decreases. Further, the opening areas (opening diameters) of the flow opening 27 opening to the front surface 23 of the fuel electrode 13 and the air electrode 14 and the flow opening 27 opening to the rear surface 24 are not uniform, and the areas are all different. is doing. The average diameter (average opening diameter) of the pores 13 (passage holes) and the opening diameter (average opening diameter) of the flow ports 27 of the front and rear surfaces 23, 24 are in the range of 1 μm to 100 μm.

固体高分子形燃料電池17は、それに使用する燃料極13及び空気極14に厚み方向や径方向へ不規則に曲折しながら延びる複数の気孔25(連続かつ独立通路孔)が形成され、その気孔の平均径が1〜100μmの範囲にあるから、燃料極13や空気極14の単位体積当たりに多数の気孔25が形成され、燃料極13や空気極14の比表面積が大きく、それら気孔25をガス(気体)が通流しつつガス(気体)を燃料極13及び空気極14のそれら気孔25における接触面に広範囲に接触させることができ、燃料極13や空気極14の触媒活性(触媒作用)を有効かつ最大限に利用することができる。 The polymer electrolyte fuel cell 17 is provided with a plurality of pores 25 (continuous and independent passage holes) extending in the fuel electrode 13 and the air electrode 14 used therein while irregularly bending in the thickness direction and the radial direction. Has an average diameter of 1 to 100 μm, a large number of pores 25 are formed per unit volume of the fuel electrode 13 and the air electrode 14, and the specific surface area of the fuel electrode 13 and the air electrode 14 is large. While the gas (gas) flows, the gas (gas) can be brought into wide contact with the contact surfaces of the fuel electrode 13 and the air electrode 14 in the pores 25, and the catalytic activity (catalytic action) of the fuel electrode 13 and the air electrode 14 can be achieved. Can be used effectively and to the maximum extent.

燃料極13及び空気極14(マイクロポーラス構造の薄板状電極26)は、その厚み寸法L1が0.03mm〜1.5mmの範囲、好ましくは、0.05mm〜1.0mmの範囲にある。燃料極13及び空気極14の厚み寸法L1が0.03mm(0.05mm)未満では、その強度が低下し、衝撃が加えられたときに燃料極13や空気極14が容易に破損又は損壊し、その形状を維持することができない場合がある。燃料極13及び空気極14の厚み寸法L1が1.5mm(1.0mm)を超過すると、燃料極13や空気極14の電気抵抗が大きくなり、燃料極13及び空気極14に電流がスムースに流れず、燃料極13や空気極14が固体高分子形燃料電池17に使用されたときに燃料電池17において十分な電気を発電することができず、燃料電池17に接続された負荷29に十分な電気エネルギーを供給することができない。 The thickness L1 of the fuel electrode 13 and the air electrode 14 (thin plate electrode 26 having a microporous structure) is in the range of 0.03 mm to 1.5 mm, preferably in the range of 0.05 mm to 1.0 mm. When the thickness dimension L1 of the fuel electrode 13 and the air electrode 14 is less than 0.03 mm (0.05 mm), the strength is lowered, and the fuel electrode 13 and the air electrode 14 are easily damaged or damaged when an impact is applied. , It may not be able to maintain its shape. When the thickness L1 of the fuel electrode 13 and the air electrode 14 exceeds 1.5 mm (1.0 mm), the electric resistance of the fuel electrode 13 and the air electrode 14 increases, and the current flows smoothly to the fuel electrode 13 and the air electrode 14. When the fuel electrode 13 and the air electrode 14 do not flow and are used in the polymer electrolyte fuel cell 17, sufficient electricity cannot be generated in the fuel cell 17, and the load 29 connected to the fuel cell 17 cannot be sufficiently generated. Unable to supply sufficient electrical energy.

固体高分子形燃料電池17は、それに使用する燃料極13及び空気極14の厚み寸法L1が0.03mm〜1.5mmの範囲、好ましくは、0.05mm〜1.0mmの範囲にあるから、燃料極13及び空気極14が高い強度を有してその形状を維持することができ、燃料極13や空気極14に衝撃が加えられたときの燃料極13や空気極14の破損や損壊を防ぐことができる。更に、燃料極13及び空気極14の電気抵抗を小さくすることができ、燃料極13や空気極14に電流がスムースに流れ、燃料極13及び空気極14が固体高分子形燃料電池17に使用されたときに燃料電池17において十分な電気を発電することができ、燃料電池17に接続された負荷30に十分な電気エネルギーを供給することができる。 In the polymer electrolyte fuel cell 17, since the thickness dimension L1 of the fuel electrode 13 and the air electrode 14 used therein is in the range of 0.03 mm to 1.5 mm, preferably in the range of 0.05 mm to 1.0 mm, The fuel electrode 13 and the air electrode 14 have high strength and can maintain their shapes, and damage or damage of the fuel electrode 13 or the air electrode 14 when the fuel electrode 13 or the air electrode 14 is impacted. Can be prevented. Further, the electric resistance of the fuel electrode 13 and the air electrode 14 can be reduced, and the current smoothly flows through the fuel electrode 13 and the air electrode 14, and the fuel electrode 13 and the air electrode 14 are used for the polymer electrolyte fuel cell 17. When the fuel cell 17 is charged, sufficient electric power can be generated in the fuel cell 17, and sufficient electric energy can be supplied to the load 30 connected to the fuel cell 17.

燃料極13及び空気極14(マイクロポーラス構造の薄板状電極26)は、その気孔率が70%〜85%の範囲にある。燃料極13及び空気極14の気孔率が70%未満では、燃料極13及び空気極14に多数の微細な気孔25(連続かつ独立通路孔)が形成されず、燃料極13及び空気極14の比表面積を大きくすることができない。燃料極13及び空気極14の気孔率が90%を超過すると、気孔25(連続かつ独立通路孔)の開口面積(開口径)や前後面23,24の通流口27の開口面積(開口径)が必要以上に大きくなり、燃料極13及び空気極14の強度が低下し、衝撃が加えられたときに燃料極13や空気極14が容易に破損又は損壊し、その形状を維持することができない場合があるとともに、燃料極13及び空気極14の触媒作用が低下し、触媒活性を発揮することができない。 The porosity of the fuel electrode 13 and the air electrode 14 (the thin plate electrode 26 having a microporous structure) is in the range of 70% to 85%. When the porosities of the fuel electrode 13 and the air electrode 14 are less than 70%, many fine pores 25 (continuous and independent passage holes) are not formed in the fuel electrode 13 and the air electrode 14, and the fuel electrode 13 and the air electrode 14 are not formed. The specific surface area cannot be increased. When the porosity of the fuel electrode 13 and the air electrode 14 exceeds 90%, the opening area (opening diameter) of the pores 25 (continuous and independent passage holes) and the opening area (opening diameter of the flow ports 27 of the front and rear surfaces 23, 24) (opening diameter). ) Becomes unnecessarily large, the strengths of the fuel electrode 13 and the air electrode 14 decrease, and the fuel electrode 13 and the air electrode 14 are easily damaged or damaged when an impact is applied, and their shapes can be maintained. In some cases, the catalytic action of the fuel electrode 13 and the air electrode 14 is lowered, and the catalytic activity cannot be exhibited.

固体高分子形燃料電池17は、それに使用する燃料極13及び空気極14の気孔率が前記範囲にあるから、燃料極13及び空気極14が開口面積(開口径)の異なる多数の微細な気孔25(平均径が1〜100μmの範囲の気孔25)や開口面積(開口径)の異なる多数の微細な前後面23,24の通流口27(平均径が1〜100μmの範囲の通流口27)を有する多孔質(マイクロポーラス構造)に成形され、燃料極13や空気極14の比表面積を大きくすることができ、それら気孔25をガス(気体)が通流しつつガス(気体)を燃料極13や空気極14のそれら気孔25における接触面に広範囲に接触させることができることができるとともに、燃料極13及び空気極14の触媒活性(触媒作用)を有効かつ最大限に利用することができる。更に、燃料極13及び空気極14の触媒作用が向上し、燃料極13及び空気極14に優れた触媒活性を発揮させることができ、燃料極13及び空気極14が固体高分子形燃料電池17に使用されたときに燃料電池17において十分な電気を発電することができ、燃料電池17に接続された負荷30に十分な電気エネルギーを供給することができる。 In the polymer electrolyte fuel cell 17, since the porosities of the fuel electrode 13 and the air electrode 14 used therein are within the above range, the fuel electrode 13 and the air electrode 14 have a large number of fine pores having different opening areas (opening diameters). 25 (pores 25 having an average diameter in the range of 1 to 100 μm) and a large number of minute front and rear surfaces 23, 24 having different opening areas (opening diameters) 27, 24 (a passage having an average diameter in the range of 1 to 100 μm) 27), the specific surface area of the fuel electrode 13 and the air electrode 14 can be increased, and the gas (gas) flows through the pores 25 and the gas (gas) is used as a fuel. The contact surfaces of the pores 13 of the electrode 13 and the air electrode 14 can be widely contacted, and the catalytic activity (catalytic action) of the fuel electrode 13 and the air electrode 14 can be effectively and maximally utilized. .. Further, the catalytic action of the fuel electrode 13 and the air electrode 14 is improved, and the excellent catalytic activity of the fuel electrode 13 and the air electrode 14 can be exhibited, and the fuel electrode 13 and the air electrode 14 are the solid polymer fuel cell 17 When it is used, the fuel cell 17 can generate sufficient electricity, and the load 30 connected to the fuel cell 17 can be supplied with sufficient electric energy.

燃料極13及び空気極14(マイクロポーラス構造の薄板状電極26)は、その密度が6.0g/cm〜8.0g/cmの範囲、好ましくは、6.5g/cm〜7.5g/cmの範囲にある。燃料極13及び空気極14の密度が6.0g/cm(6.5g/cm)未満では、燃料極13や空気極14の強度が低下し、衝撃が加えられたときに燃料極13や空気極14が容易に破損または損壊し、その形状を維持することができない場合があるとともに、燃料極13及び空気極14の触媒作用が低下し、触媒活性を発揮することができない。燃料極13及び空気極14の密度が8.0g/cm(7.5g/cm)を超過すると、燃料極13や空気極14に多数の微細な気孔25や多数の微細な通流口27が形成されず、燃料極13や空気極14の比表面積を大きくすることができず、燃料極13や空気極14の触媒活性(触媒作用)を有効に利用することができない。 Anode 13 and cathode 14 (thin plate electrode 26 of the micro-porous structure) in the range that the density of 6.0g / cm 2 ~8.0g / cm 2 , preferably, 6.5g / cm 2 ~7. It is in the range of 5 g/cm 2 . If the densities of the fuel electrode 13 and the air electrode 14 are less than 6.0 g/cm 2 (6.5 g/cm 2 ), the strength of the fuel electrode 13 and the air electrode 14 will decrease, and the fuel electrode 13 will be affected when an impact is applied. In some cases, the air electrode 14 may be easily broken or damaged and the shape thereof may not be maintained, and the catalytic action of the fuel electrode 13 and the air electrode 14 may be deteriorated and the catalytic activity may not be exhibited. When the densities of the fuel electrode 13 and the air electrode 14 exceed 8.0 g/cm 2 (7.5 g/cm 2 ), the fuel electrode 13 and the air electrode 14 have many fine pores 25 and many fine flow ports. 27 is not formed, the specific surface area of the fuel electrode 13 and the air electrode 14 cannot be increased, and the catalytic activity (catalytic action) of the fuel electrode 13 and the air electrode 14 cannot be effectively used.

固体高分子形燃料電池17は、それに使用する燃料極13及び空気極14の密度が前記範囲にあるから、燃料極13や空気極14が開口面積(開口径)の異なる多数の微細な気孔25(通路孔)や開口面積(開口径)の異なる多数の微細な前後面23,24の通流口27を有する多孔質(マイクロポーラス構造)に成形され、燃料極13や空気極14の比表面積を大きくすることができ、それら流路25をガス(気体)が通流しつつガス(気体)を燃料極13及び空気極14のそれら流路25における接触面に広く接触させることができ、燃料極13や空気極14の触媒活性(触媒作用)を有効かつ最大限に利用することができる。更に、燃料極13や空気極14の触媒作用が向上し、燃料極13や空気極14に優れた触媒活性を発揮させることができる。 In the polymer electrolyte fuel cell 17, since the densities of the fuel electrode 13 and the air electrode 14 used therein are within the above range, the fuel electrode 13 and the air electrode 14 have many fine pores 25 having different opening areas (opening diameters). The specific surface area of the fuel electrode 13 and the air electrode 14 is formed by forming a porous (microporous structure) having a large number of minute front and rear surfaces 23, 24 through holes 27 having different passage areas and opening areas (opening diameters). Can be increased, and the gas (gas) can widely contact the contact surfaces of the fuel electrode 13 and the air electrode 14 in the flow paths 25 while the gas (gas) flows through the flow paths 25. It is possible to effectively and maximally utilize the catalytic activity (catalytic action) of 13 and the air electrode 14. Furthermore, the catalytic action of the fuel electrode 13 and the air electrode 14 is improved, and the fuel electrode 13 and the air electrode 14 can exhibit excellent catalytic activity.

固体高分子形燃料電池17は、それに使用する燃料極13及び空気極14の密度を前記範囲にすることで、燃料極13及び空気極14が開口面積(開口径)の異なる多数の微細な気孔25(通路孔)や開口面積(開口径)の異なる多数の微細な前後面23,24の通流口27を有する多孔質(マイクロポーラス構造)に成形され、燃料極13及び空気極14の比表面積を大きくすることができ、それら流路25をガス(気体)が通流しつつガス(気体)を燃料極13や空気極14のそれら流路25における接触面に広範囲に接触させることが可能となり、燃料極13や空気極14が白金族金属を含む電極と略同様の触媒活性(触媒作用)を確実に発揮し、燃料極13及び空気極14を使用して十分な電気を発電することができ、燃料電池17に接続された負荷29に十分な電気エネルギーを供給することができる。 In the polymer electrolyte fuel cell 17, by setting the density of the fuel electrode 13 and the air electrode 14 used therein to the above range, the fuel electrode 13 and the air electrode 14 have a large number of fine pores having different opening areas (opening diameters). 25 (passage hole) and a large number of minute front and rear surfaces 23, 24 having different opening areas (opening diameters) and formed into a porous (microporous structure) having a flow port 27, the ratio of the fuel electrode 13 and the air electrode 14 The surface area can be increased, and the gas (gas) can be brought into wide contact with the contact surfaces of the fuel electrode 13 and the air electrode 14 in the flow paths 25 while the gas (gas) flows through the flow paths 25. The fuel electrode 13 and the air electrode 14 can surely exhibit substantially the same catalytic activity (catalytic action) as the electrode containing the platinum group metal, and the fuel electrode 13 and the air electrode 14 can be used to generate sufficient electricity. Therefore, sufficient electric energy can be supplied to the load 29 connected to the fuel cell 17.

Ptの微粉体(粉状に加工されたPt)、Pbの微粉状(粉状に加工されたPb)、Rhの微粉状(粉状に加工されたRh)、Ruの微粉状(粉状に加工されたRu)、Irの微粉状(粉状に加工されたIr)、Osの微粉状(粉状に加工されたOs)、Tiの微粉体(粉状に加工されたTi)、Crの微粉体(粉状に加工されたCr)、Mnの微粉体(粉状に加工されたMn)、Feの微粉体(粉状に加工されたFe)、Coの微粉体(粉状に加工されたCo)、Niの微粉体(粉状に加工されたNi)、Znの微粉体(粉状に加工されたZn)、Nbの微粉体(粉状に加工されたNb)、Moの微粉体(粉状に加工されたMo)、Agの微粉体(粉状に加工されたAg)、Cuの微粉体(粉状に加工されたCu)の粒径は、1μm〜100μmの範囲にある。 Fine powder of Pt (Pt processed into powder), Fine powder of Pb (Pb processed into powder), Fine powder of Rh (Rh processed into powder), Fine powder of Ru (in powder form) Processed Ru), Ir fine powder (Ir processed into powder), Os fine powder (Os processed into powder), Ti fine powder (Ti processed into powder), Cr Fine powder (Cr processed into powder), Mn fine powder (Mn processed into powder), Fe fine powder (Fe processed into powder), Co fine powder (processed into powder) Co), Ni fine powder (Ni powder processed), Zn fine powder (Zn powder processed), Nb fine powder (Nb powder processed), Mo fine powder The particle size of (powder-processed Mo), Ag fine powder (powder-processed Ag), and Cu fine powder (powder-processed Cu) is in the range of 1 μm to 100 μm.

それら白金族金属31の白金族金属微粉体の粒径やそれら遷移金属32の遷移金属微粉体が1μm未満では、それら金属の微粉体によって気孔25(通路孔)が塞がれ、燃料極13及び空気極14に多数の微細な気孔25を形成することができず、燃料極13や空気極14の比表面積を大きくすることができないとともに、燃料極13及び空気極14の触媒作用が低下し、燃料極13や空気極14の触媒活性(触媒作用)を有効に利用することができない。それら白金族金属31の白金族金属微粉体の粒径やそれら遷移金属32の遷移金属微粉体の粒径が100μmを超過すると、気孔25(通路孔)の開口面積(開口径)や前後面23,24の通流口27の開口面積(開口径)が必要以上に大きくなり、燃料極13及び空気極14に多数の微細な気孔25を形成することができず、燃料極13や空気極14の比表面積を大きくすることができないとともに、燃料極13及び空気極14の触媒作用が低下し、燃料極13や空気極14の触媒活性(触媒作用)を有効に利用することができない。 If the particle size of the platinum group metal fine powder of the platinum group metal 31 or the transition metal fine powder of the transition metal 32 is less than 1 μm, the pores 25 (passage holes) are blocked by the fine powder of these metals, and the fuel electrode 13 and Many fine pores 25 cannot be formed in the air electrode 14, the specific surface area of the fuel electrode 13 and the air electrode 14 cannot be increased, and the catalytic action of the fuel electrode 13 and the air electrode 14 is reduced. The catalytic activity (catalytic action) of the fuel electrode 13 and the air electrode 14 cannot be effectively used. When the particle size of the platinum group metal fine powder of the platinum group metal 31 or the particle size of the transition metal fine powder of the transition metal 32 exceeds 100 μm, the opening area (opening diameter) of the pores 25 (passage holes) and the front and rear surfaces 23. , 24 has an opening area (opening diameter) larger than necessary, and many fine pores 25 cannot be formed in the fuel electrode 13 and the air electrode 14, and the fuel electrode 13 and the air electrode 14 cannot be formed. In addition to being unable to increase the specific surface area, the catalytic action of the fuel electrode 13 and the air electrode 14 is lowered, and the catalytic activity (catalytic action) of the fuel electrode 13 and the air electrode 14 cannot be effectively utilized.

固体高分子形燃料電池17は、燃料極13及び空気極14を形成する白金族金属31の白金族金属微粉体の粒径や遷移金属32の遷移金属微粉体の粒径が前記範囲にあるから、燃料極13や空気極14が開口面積(開口径)の異なる多数の微細な気孔25(平均径が1〜100μmの範囲の気孔25)や開口面積(開口径)の異なる多数の微細な前後面23,24の通流口27(平均径が1〜100μmの範囲の通流口27)を有する多孔質(マイクロポーラス構造)に成形され、燃料極13や空気極14の比表面積を大きくすることができ、それら気孔25をガス(気体)が通流しつつガス(気体)を燃料極13や空気極14のそれら気孔25における接触面に広く接触させることができるとともに、燃料極13や空気極14の触媒活性(触媒作用)を有効かつ最大限に利用することができる。更に、燃料極13及び空気極14の触媒作用が向上し、燃料極13及び空気極14に優れた触媒活性を発揮させることができ、燃料極13及び空気極14が固体高分子形燃料電池17に使用されたときに燃料電池17において十分な電気を発電することができ、燃料電池17に接続された負荷30に十分な電気エネルギーを供給することができる。 In the polymer electrolyte fuel cell 17, the particle size of the platinum group metal fine powder of the platinum group metal 31 and the transition metal fine powder of the transition metal 32 forming the fuel electrode 13 and the air electrode 14 is within the above range. The fuel electrode 13 and the air electrode 14 have a large number of fine pores 25 having different opening areas (opening diameters) (pores 25 having an average diameter in the range of 1 to 100 μm) and a large number of fine front and rear portions having different opening areas (opening diameters). The specific surface area of the fuel electrode 13 and the air electrode 14 is increased by being formed into a porous (microporous structure) having the flow ports 27 of the surfaces 23 and 24 (the flow ports 27 having an average diameter in the range of 1 to 100 μm). The gas (gas) can be widely contacted with the contact surfaces of the fuel electrode 13 and the air electrode 14 in the pores 25 while the gas (gas) flows through the pores 25, and the fuel electrode 13 and the air electrode 14 can be widely contacted. The catalytic activity (catalysis) of 14 can be effectively and maximally utilized. Further, the catalytic action of the fuel electrode 13 and the air electrode 14 is improved, and the excellent catalytic activity of the fuel electrode 13 and the air electrode 14 can be exhibited, and the fuel electrode 13 and the air electrode 14 are the solid polymer fuel cell 17 When it is used, the fuel cell 17 can generate sufficient electricity, and the load 30 connected to the fuel cell 17 can be supplied with sufficient electric energy.

燃料極13及び空気極14(マイクロポーラス構造の薄板状電極26)に使用する白金族金属31や遷移金属32の具体例としては、図9に示すように、粉状に加工されたPt34(白金)の白金族金属微粉体38(粒径:1μm〜100μm)と、粉状に加工されたNi35(ニッケル)の遷移金属微粉体39(粒径:1μm〜100μm)と、粉状に加工されたFe36(鉄)の遷移金属微粉体40(粒径:1μm〜100μm)とを原料としている。 Specific examples of the platinum group metal 31 and the transition metal 32 used for the fuel electrode 13 and the air electrode 14 (the thin plate-shaped electrode 26 having a microporous structure) are, as shown in FIG. ) Platinum group metal fine powder 38 (particle size: 1 μm to 100 μm), powdered Ni35 (nickel) transition metal fine powder 39 (particle size: 1 μm to 100 μm), and powdered Fe36 (iron) transition metal fine powder 40 (particle size: 1 μm to 100 μm) is used as a raw material.

燃料極13及び空気極14は、Pt34やNi35、Fe36の微粉体37〜38と所定のバインダー33とを均一に混合・分散した金属微粉体混合物41を作り、金属微粉体混合物41に気孔形成材40(発泡剤)を添加し、気孔形成材40を添加した金属微粉体混合物41を所定面積の薄板状に成形(押し出し成形又は射出成形)して金属微粉体成形物42を作り、その金属微粉体成形物42を脱脂するとともに所定温度で焼結(焼成)することで、多数の微細な気孔25(平均径が1〜100μmの範囲の気孔25)が形成されたマイクロポーラス構造かつ薄板状の電極(燃料極13及び空気極14)に成形される。 The fuel electrode 13 and the air electrode 14 form a fine metal powder mixture 41 in which fine powders 37 to 38 of Pt34, Ni35, and Fe36 and a predetermined binder 33 are uniformly mixed and dispersed, and a pore forming material is added to the fine metal powder mixture 41. 40 (foaming agent) is added, and the metal fine powder mixture 41 to which the pore forming material 40 is added is molded (extrusion molding or injection molding) into a thin plate having a predetermined area to form a metal fine powder molded product 42. By degreasing the body molded product 42 and sintering (baking) it at a predetermined temperature, a microporous structure and a thin plate having a large number of fine pores 25 (pores 25 having an average diameter in the range of 1 to 100 μm) are formed. The electrodes (fuel electrode 13 and air electrode 14) are formed.

燃料極13及び空気極14では、Ni35の仕事関数とFe36の仕事関数との合成仕事関数が白金族金属の仕事関数に近似するように、Pt34の白金族金属微粉体37の金属微粉体混合物41の全重量に対する重量比、Ni35の遷移金属微粉体38の金属微粉体混合物41の全重量に対する重量比、Fe36の遷移金属微粉体39の金属微粉体混合物41の全重量に対する重量比が決定されている。 In the fuel electrode 13 and the air electrode 14, the metal fine powder mixture 41 of the platinum group metal fine powder 37 of Pt 34 is set so that the combined work function of the work function of Ni 35 and the work function of Fe 36 approximates the work function of the platinum group metal. Of the transition metal fine powder 38 of Ni35 to the total weight of the fine metal powder mixture 41, and the weight ratio of transition metal fine powder 39 of Fe36 to the total weight of the fine metal powder mixture 41 are determined. There is.

金属微粉体混合物41の全重量(100%)に対するPt34(白金族金属31)の白金族金属微粉体37の重量比は、4%〜10%の範囲、好ましくは、5%〜8%の範囲であり、金属微粉体混合物41の全重量(100%)に対するNi35(遷移金属32)の遷移金属微粉体38の重量比は、45%〜48%の範囲である。金属微粉体混合物41の全重量(100%)に対するFe36(遷移金属32)の遷移金属微粉体39の重量比は、45〜48%の範囲である。 The weight ratio of the platinum group metal fine powder 37 of Pt34 (platinum group metal 31) to the total weight (100%) of the metal fine powder mixture 41 is in the range of 4% to 10%, preferably in the range of 5% to 8%. The weight ratio of the transition metal fine powder 38 of Ni35 (transition metal 32) to the total weight (100%) of the metal fine powder mixture 41 is in the range of 45% to 48%. The weight ratio of the transition metal fine powder 39 of Fe36 (transition metal 32) to the total weight (100%) of the metal fine powder mixture 41 is in the range of 45 to 48%.

Pt34の微粉体37の重量比、Ni35の微粉体38の重量比、Fe36の微粉体39の重量比が前記範囲外になると、Ni35の微粉体38とFe36の微粉体39との合成仕事関数を白金族金属の仕事関数に近似させることができないとともに、金属微粉体混合物41を成形した金属微粉体成形物42を脱脂・焼結して作られた燃料極13及び空気極14が白金を担持した電極と略同様の触媒活性(触媒作用)を発揮することができない。 When the weight ratio of the fine powder 37 of Pt34, the weight ratio of the fine powder 38 of Ni35, and the weight ratio of the fine powder 39 of Fe36 are out of the above ranges, the combined work function of the fine powder 38 of Ni35 and the fine powder 39 of Fe36 becomes The work function of the platinum group metal cannot be approximated, and the fuel electrode 13 and the air electrode 14 made by degreasing and sintering the metal fine powder molded product 42 obtained by molding the metal fine powder mixture 41 carry platinum. It cannot exhibit the same catalytic activity (catalytic action) as the electrode.

固体高分子形燃料電池17は、金属微粉体混合物41の全重量に対するPt34の微粉体37の重量比やNi35の微粉体38の重量比、Fe36の微粉体39の重量比を前記範囲にすることで、Ni35の微粉体38とFe36の微粉体39との仕事関数の合成仕事関数を白金族金属の仕事関数に近似させることができ、燃料極13及び空気極14が白金を担持した電極と略同一の仕事関数を備え、燃料極13や空気極14が優れた触媒活性(触媒作用)を有し、燃料極13や空気極14が白金を担持した電極と略同様の触媒活性(触媒作用)を発揮することで、燃料極13や空気極14を使用して十分な電気を発電することができ、燃料電池17に接続された負荷30に十分な電気エネルギーを供給することができる。 In the polymer electrolyte fuel cell 17, the weight ratio of the Pt 34 fine powder 37, the Ni 35 fine powder 38, and the Fe 36 fine powder 39 to the total weight of the metal fine powder mixture 41 is set within the above range. Then, the composite work function of the work functions of the fine powder 38 of Ni35 and the fine powder 39 of Fe36 can be approximated to the work function of the platinum group metal, and the fuel electrode 13 and the air electrode 14 are substantially the same as the electrodes supporting platinum. With the same work function, the fuel electrode 13 and the air electrode 14 have excellent catalytic activity (catalytic action), and the fuel electrode 13 and the air electrode 14 have substantially the same catalytic activity (catalytic action) as the platinum-supported electrode. As a result, the fuel electrode 13 and the air electrode 14 can be used to generate sufficient electricity, and sufficient electric energy can be supplied to the load 30 connected to the fuel cell 17.

図6は、固体高分子形燃料電池10の発電を説明する図であり、図7は、燃料極13及び空気極14の起電圧試験の結果を示す図である。図8は、燃料極13及び空気極14のI−V特性試験の結果を示す図である。固体高分子形燃料電池10では、図6に示すように、燃料極13(電極)に水素(燃料)が供給され、空気極14(電極)に空気(酸素)が供給される。 FIG. 6 is a diagram for explaining the power generation of the polymer electrolyte fuel cell 10, and FIG. 7 is a diagram showing the results of the electromotive force test of the fuel electrode 13 and the air electrode 14. FIG. 8 is a diagram showing the results of the IV characteristic test of the fuel electrode 13 and the air electrode 14. In the polymer electrolyte fuel cell 10, as shown in FIG. 6, hydrogen (fuel) is supplied to the fuel electrode 13 (electrode) and air (oxygen) is supplied to the air electrode 14 (electrode).

燃料極13に供給される水素(燃料)の雰囲気(燃料の相対湿度)は、相対湿度95%〜100%の範囲、好ましくは、100%であり、水素の温度は、45℃〜55℃の範囲、好ましくは、49℃〜51℃の範囲にある。燃料極13に供給される水素には、燃料極13に供給される前に蒸気発生器(図示せず)から蒸気が供給され、その雰囲(燃料の相対湿度)が95%〜100%(好ましくは、100%)に上昇するとともに、その温度が45℃〜55℃(好ましくは、49℃〜51℃)に上昇する。 The atmosphere of hydrogen (fuel) supplied to the fuel electrode 13 (relative humidity of fuel) is in the range of 95% to 100% relative humidity, preferably 100%, and the temperature of hydrogen is 45°C to 55°C. Range, preferably in the range of 49°C to 51°C. The hydrogen supplied to the fuel electrode 13 is supplied with steam from a steam generator (not shown) before being supplied to the fuel electrode 13, and its atmosphere (fuel relative humidity) is 95% to 100% ( Preferably, it rises to 100%) and its temperature rises to 45°C to 55°C (preferably 49°C to 51°C).

燃料極13に供給される水素の供給圧力及び空気極14に供給される空気の供給圧力は、+0.06MPa〜+0.08MPaの範囲、好ましくは、+0.07MPaである。固体高分子形燃料電池10では、燃料極13に供給する水素及び空気極14に供給する空気を(給気)圧送する給気ポンプ(図示せず)が設置され、給気ポンプによって燃料極13に供給される水素の供給圧力が+0.06MPa〜+0.08MPaの範囲、好ましくは、+0.07MPaに昇圧されるとともに、給気ポンプによって空気極14に供給する空気の供給圧力が+0.06MPa〜+0.08MPaの範囲、好ましくは、+0.07MPaに昇圧される。 The supply pressure of hydrogen supplied to the fuel electrode 13 and the supply pressure of air supplied to the air electrode 14 are in the range of +0.06 MPa to +0.08 MPa, preferably +0.07 MPa. In the polymer electrolyte fuel cell 10, an air supply pump (not shown) that pressure-feeds (air supply) hydrogen to be supplied to the fuel electrode 13 and air to be supplied to the air electrode 14 is installed. Is supplied to the air electrode 14 by the air supply pump, and the supply pressure of the air supplied to the air electrode 14 is +0.06 MPa to +0.06 MPa, preferably +0.07 MPa. The pressure is increased to a range of +0.08 MPa, preferably +0.07 MPa.

燃料極13(電極)では、水素がH→2H+2eの反応(触媒作用)によってプロトン(水素イオン、H)と電子とに分解される。その後、プロトンが固体高分子電解質膜15内を通って空気極14へ移動し、電子が導線29内を通って空気極14へ移動する。固体高分子電解質膜15には、燃料極13で生成されたプロトンが通流する。空気極14(電極)では、固体高分子電解質膜15から移動したプロトンと導線29を移動した電子とが空気中の酸素と反応し、4H+O+4e→2HOの反応によって水が生成される。 At the fuel electrode 13 (electrode), hydrogen is decomposed into protons (hydrogen ions, H + ) and electrons by the reaction (catalytic action) of H 2 →2H + +2e . After that, protons move to the air electrode 14 through the solid polymer electrolyte membrane 15, and electrons move to the air electrode 14 through the lead wire 29. Protons generated at the fuel electrode 13 flow through the solid polymer electrolyte membrane 15. At the air electrode 14 (electrode), the protons that have moved from the solid polymer electrolyte membrane 15 and the electrons that have moved through the lead wire 29 react with oxygen in the air, and water is produced by the reaction of 4H + +O 2 +4e→2H 2 O. To be done.

燃料極13及び空気極14は、白金族金属31の微粉体を含み、更に、遷移金属32の仕事関数の合成仕事関数が白金族金属の仕事関数に近似するように、遷移金属32の中から少なくとも2種類の遷移金属32が選択され、選択された遷移金属32の仕事関数の合成仕事関数が白金族金属の仕事関数に近似するように、白金族金属31の金属微粉体混合物43の全重量に対する重量比が決定され、選択された遷移金属32の微粉体の金属微粉体混合物43の全重量に対する重量比が決定されているから、燃料極13及び空気極14が白金を担持した電極と略同一の仕事関数を備え、白金を担持した電極と略同様の触媒活性(触媒作用)を示し、水素がプロトンと電子とに効率よく分解される。 The fuel electrode 13 and the air electrode 14 include fine powder of the platinum group metal 31, and further, from the transition metal 32 so that the composite work function of the work functions of the transition metals 32 approximates the work function of the platinum group metal. At least two transition metals 32 are selected, and the total weight of the fine metal powder mixture 43 of the platinum group metal 31 is such that the composite work function of the work functions of the selected transition metals 32 approximates the work function of the platinum group metal. And the weight ratio of the selected transition metal 32 to the total weight of the fine metal powder mixture 43 of the transition metal 32 is determined, the fuel electrode 13 and the air electrode 14 are substantially the same as the platinum-supported electrodes. It has the same work function, exhibits substantially the same catalytic activity (catalytic action) as an electrode supporting platinum, and hydrogen is efficiently decomposed into protons and electrons.

具体例として示した燃料極13及び空気極14は、Pt34の微粉体37を含み、更に、仕事関数の合成仕事関数が白金族金属の仕事関数に近似するように、Ni35とFe36とが選択され、選択されたNi35とFe36との仕事関数の合計仕事関数が白金族金属の仕事関数に近似するように、金属微粉体混合物41の全重量に対するPt34の微粉体37の重量比が決定され、金属微粉体混合物41の全重量に対するNi35の微粉体38の重量比と金属微粉体混合物41の全重量に対するFe36の微粉体39の重量比とが決定されているから、燃料極13や空気極14が白金を担持した電極と略同一の仕事関数を備え、白金を担持した電極と略同様の触媒活性(触媒作用)を示し、水素がプロトンと電子とに効率よく分解される。 The fuel electrode 13 and the air electrode 14 shown as specific examples include fine particles 37 of Pt34, and Ni35 and Fe36 are selected so that the combined work function of the work functions approximates the work function of the platinum group metal. The weight ratio of the fine powder 37 of Pt34 to the total weight of the fine metal powder mixture 41 is determined so that the total work function of the selected Ni35 and Fe36 work functions approximates the work function of the platinum group metal. Since the weight ratio of the fine powder 38 of Ni35 to the total weight of the fine powder mixture 41 and the weight ratio of the fine powder 39 of Fe36 to the total weight of the metal fine powder mixture 41 are determined, the fuel electrode 13 and the air electrode 14 are It has a work function substantially the same as that of the platinum-supporting electrode, exhibits substantially the same catalytic activity (catalytic action) as the platinum-supporting electrode, and hydrogen is efficiently decomposed into protons and electrons.

起電圧試験では、水素ガスを注入してから15分の間、燃料極13と空気極14との間の電圧(V)を測定した。図7の起電圧試験の結果を示す図では、横軸に測定時間(min)を表し、縦軸に燃料極13と空気極13との間の電圧(V)を表す。燃料極13及び空気極14を使用した固体高分子形燃料電池10では、図7に示すように、電極間の電圧が1.07(V)〜1.088(V)であった。 In the electromotive voltage test, the voltage (V) between the fuel electrode 13 and the air electrode 14 was measured for 15 minutes after the hydrogen gas was injected. In the diagram showing the results of the electromotive voltage test in FIG. 7, the horizontal axis represents the measurement time (min), and the vertical axis represents the voltage (V) between the fuel electrode 13 and the air electrode 13. In the polymer electrolyte fuel cell 10 using the fuel electrode 13 and the air electrode 14, the voltage between the electrodes was 1.07 (V) to 1.088 (V) as shown in FIG. 7.

I−V特性試験では、燃料極13と空気極14との間に負荷30を接続し、電圧と電流との関係を測定した。図8のI−V特性試験の結果を示す図では、横軸に電流(A)を表し、縦軸に電圧(V)を表す。燃料極13及び空気極14を使用した固体高分子形燃料電池10では、図8に示すように、緩やかな電圧降下が認められた。図7の起電圧試験の結果や図8のI−V特性試験の結果に示すように、燃料極13及び空気極13が電子を放出させて水素イオンとなる反応を促進させる優れた触媒作用を有するとともに、優れた酸素還元機能(触媒作用)を有することが確認された。 In the IV characteristic test, the load 30 was connected between the fuel electrode 13 and the air electrode 14, and the relationship between voltage and current was measured. In the diagram showing the results of the IV characteristic test in FIG. 8, the horizontal axis represents current (A) and the vertical axis represents voltage (V). In the polymer electrolyte fuel cell 10 using the fuel electrode 13 and the air electrode 14, a gradual voltage drop was observed as shown in FIG. As shown in the results of the electromotive force test in FIG. 7 and the results of the IV characteristic test in FIG. 8, the fuel electrode 13 and the air electrode 13 have an excellent catalytic action for promoting the reaction of releasing electrons to become hydrogen ions. In addition, it was confirmed that it has an excellent oxygen reducing function (catalytic action).

固体高分子形燃料電池10は、それに使用される燃料極13及び空気極14が白金族金属31の微粉体と所定の遷移金属32の仕事関数の合成仕事関数が白金族金属の仕事関数に近似するように選択された少なくとも2種類の遷移金属32の微粉体と所定のバインダー33(紛状の樹脂系バインダー)とを均一に混合・分散した金属微粉体混合物41を作り、金属微粉体混合物41に所定の気孔形成材40(発泡剤)を添加し(加え)、気孔形成材40を添加した金属微粉体混合物41を所定面積の薄板状に成形(押し出し成形又は射出成形)して薄板状の金属微粉体成形物42を作り、その金属微粉体成形物42を脱脂及び所定温度で焼結(焼成)することから作られて多数の微細な気孔25や通流口27を有するマイクロポーラス構造の薄板状電極26であり、選択された遷移金属32の仕事関数の合成仕事関数が白金族金属の仕事関数に近似するように、白金族金属31の微粉体の金属微粉体混合物41の全重量に対する重量比が決定され、選択された遷移金属32の微粉体の金属微粉体混合物41の全重量に対する重量比が決定されているから、燃料極13や空気極14が白金を担持した電極と略同一の仕事関数を備え、燃料極13や空気極14が優れた触媒活性(触媒作用)を有し、燃料極13や空気極14が白金を担持した電極と略同様の触媒活性(触媒作用)を発揮することで、その燃料極13及び空気極14を使用して十分な電気を発電することができ、燃料電池10に接続された負荷30に十分な電気エネルギーを供給することができる。 In the polymer electrolyte fuel cell 10, the fuel electrode 13 and the air electrode 14 used therein have a composite work function of the work function of the fine powder of the platinum group metal 31 and the predetermined transition metal 32 approximate to the work function of the platinum group metal. A fine metal powder mixture 41 is prepared by uniformly mixing and dispersing at least two types of fine powders of the transition metal 32 selected as described above and a predetermined binder 33 (powder-like resin binder). A predetermined pore forming material 40 (foaming agent) is added (added) to, and the fine metal powder mixture 41 to which the pore forming material 40 is added is molded (extrusion molding or injection molding) into a thin plate shape having a predetermined area. A microporous structure having a large number of fine pores 25 and flow ports 27 is formed by producing a fine metal powder product 42, degreasing and sintering (firing) the fine metal powder product 42 at a predetermined temperature. The thin plate electrode 26, based on the total weight of the fine metal powder mixture 41 of the fine powder of the platinum group metal 31, such that the composite work function of the work functions of the selected transition metals 32 approximates the work function of the platinum group metal. Since the weight ratio is determined and the weight ratio of the fine powder of the selected transition metal 32 to the total weight of the metal fine powder mixture 41 is determined, the fuel electrode 13 and the air electrode 14 are substantially the same as the electrodes supporting platinum. And the fuel electrode 13 and the air electrode 14 have excellent catalytic activity (catalytic action), and the fuel electrode 13 and the air electrode 14 have substantially the same catalytic activity (catalytic action) as the electrode supporting platinum. By exerting the power, the fuel electrode 13 and the air electrode 14 can be used to generate sufficient electricity, and sufficient electric energy can be supplied to the load 30 connected to the fuel cell 10.

また、白金族金属31としてPt34(白金)を原料とし、遷移金属32としてNi35(ニッケル)とFe36(鉄)とを原料とした燃料極13及び空気極14を使用した固体高分子形燃料電池10は、遷移金属32の仕事関数の合成仕事関数が白金族金属の仕事関数に近似するように、Ni35とFe36が選択され、選択されたNi35とFe36との仕事関数の合計仕事関数が白金族金属の仕事関数に近似するように、金属微粉体混合物41の全重量に対するPt34の微粉体37の重量比が決定され、金属微粉体混合物41の全重量に対するNi35の微粉体38の重量比と金属微粉体混合物41の全重量に対するFe36の微粉体39の重量比とが決定されているから、燃料極13や空気極14が白金を担持した電極と略同一の仕事関数を備え、燃料極13や空気極14が優れた触媒活性(触媒作用)を有し、燃料極13や空気極14が白金を担持した電極と略同様の触媒活性(触媒作用)を発揮することで、その燃料極13及び空気極14を使用して十分な電気を発電することができ、燃料電池10に接続された負荷30に十分な電気エネルギーを供給することができる。 Further, a polymer electrolyte fuel cell 10 using a fuel electrode 13 and an air electrode 14 using Pt34 (platinum) as a platinum group metal 31 as a raw material and Ni35 (nickel) and Fe36 (iron) as a transition metal 32 as raw materials. Ni35 and Fe36 are selected so that the composite work function of the transition metal 32 and the work function of the platinum group metal is approximated, and the total work function of the selected Ni35 and Fe36 work functions is the platinum group metal. The weight ratio of the fine powder 37 of Pt 34 to the total weight of the fine metal powder mixture 41 is determined so as to approximate the work function of the fine metal powder mixture 41. Since the weight ratio of the fine powder 39 of Fe36 to the total weight of the body mixture 41 is determined, the fuel electrode 13 and the air electrode 14 have substantially the same work function as the electrode supporting platinum, and the fuel electrode 13 and the air electrode 14 have the same work function. Since the electrode 14 has an excellent catalytic activity (catalytic action), and the fuel electrode 13 and the air electrode 14 exhibit substantially the same catalytic activity (catalytic action) as the electrode supporting platinum, the fuel electrode 13 and the air The poles 14 can be used to generate sufficient electricity to supply the load 30 connected to the fuel cell 10 with sufficient electrical energy.

固体高分子形燃料電池10は、燃料極13及び空気極14が各種の遷移金属32から選択された廉価な遷移金属32(たとえば、Ni35、Fe36)を含み、金属微粉体混合物41の全重量に対するそれら遷移金属32の微粉体の重量比(Ni35の微粉体39の重量比、Fe36の微粉体40の重量比)が前記範囲にあり、金属微粉体混合物41の全重量に対する白金族金属31の微粉体の重量比(Pt34の微粉体37の重量比)が前記範囲にあり、高価な白金族金属31(Pt34)の含有量が少ないから、燃料極13や空気極14の材料費を低減させることができ、固体高分子形燃料電池10を廉価に作ることができるとともに、固体高分子形燃料電池10の運転コストを下げることができる。 In the polymer electrolyte fuel cell 10, the fuel electrode 13 and the air electrode 14 include an inexpensive transition metal 32 (for example, Ni35, Fe36) selected from various transition metals 32, and based on the total weight of the fine metal powder mixture 41. The weight ratio of the fine powder of the transition metal 32 (the weight ratio of the fine powder 39 of Ni35, the weight ratio of the fine powder 40 of Fe36) is within the above range, and the fine powder of the platinum group metal 31 relative to the total weight of the metal fine powder mixture 41. Since the weight ratio of the body (the weight ratio of the fine powder 37 of Pt34) is within the above range and the content of the expensive platinum group metal 31 (Pt34) is small, the material cost of the fuel electrode 13 and the air electrode 14 can be reduced. Therefore, the polymer electrolyte fuel cell 10 can be manufactured at low cost, and the operation cost of the polymer electrolyte fuel cell 10 can be reduced.

固体高分子形燃料電池10は、相対湿度95%〜100%の雰囲気の水素(燃料)を燃料極13に供給し、45℃〜55℃の温度の水素を燃料極13に供給し、+0.06MPa〜+0.08MPaの供給圧力で燃料極13に水素を供給するとともに+0.06MPa〜+0.08MPaの供給圧力で空気極14に空気(酸素)を供給することで、燃料極13や空気極14の触媒活性が増加し、燃料電池10の起電力が向上し、非白金の燃料極13や空気極14を使用して十分な電気を確実に発電することができ、燃料電池10に接続された負荷30に十分な電気エネルギーを確実に供給することができる。 The polymer electrolyte fuel cell 10 supplies hydrogen (fuel) in an atmosphere having a relative humidity of 95% to 100% to the fuel electrode 13, supplies hydrogen at a temperature of 45° C. to 55° C. to the fuel electrode 13, and outputs +0. By supplying hydrogen to the fuel electrode 13 at a supply pressure of 06 MPa to +0.08 MPa and supplying air (oxygen) to the air electrode 14 at a supply pressure of +0.06 MPa to +0.08 MPa, the fuel electrode 13 and the air electrode 14 are supplied. The catalytic activity of the fuel cell 10 is increased, the electromotive force of the fuel cell 10 is improved, and sufficient electricity can be reliably generated using the non-platinum fuel electrode 13 and the air electrode 14. Sufficient electric energy can be reliably supplied to the load 30.

図9は、固体高分子形燃料電池10に使用する燃料極13及び空気極14の製造方法を説明する図である。燃料極13及び空気極14は、図9に示すように、金属選択工程S1、金属微粉体作成工程S2、微粉体重量比決定工程S3、金属微粉体混合物作成工程S4、金属微粉体成形物作成工程S5、マイクロポーラス構造薄板電極作成工程S6を有する電極製造方法によって製造される。電極製造方法では、白金族金属31と少なくとも2種類の遷移金属32とを原料として固体高分子形燃料電池10に使用する燃料極13及び空気極14を製造する。 FIG. 9 is a diagram illustrating a method of manufacturing the fuel electrode 13 and the air electrode 14 used in the polymer electrolyte fuel cell 10. As shown in FIG. 9, the fuel electrode 13 and the air electrode 14 include a metal selection step S1, a metal fine powder preparation step S2, a fine powder weight ratio determination step S3, a metal fine powder mixture preparation step S4, and a metal fine powder molded article preparation. It is manufactured by an electrode manufacturing method including a step S5 and a microporous structure thin plate electrode forming step S6. In the electrode manufacturing method, the platinum group metal 31 and at least two kinds of transition metals 32 are used as raw materials to manufacture the fuel electrode 13 and the air electrode 14 used in the polymer electrolyte fuel cell 10.

金属選択工程S1では、各種の白金族金属31の中から少なくとも1種類の白金族金属31(白金(Pt)、パラジウム(Pb)、ロジウム(Rh)、ルテニウム(Ru)、イリジウム(Ir)、オスミウム(Os))を選択し、各種の遷移金属32から選択する少なくとも2種類の遷移金属32の仕事関数の合成仕事関数が白金族金属の仕事関数に近似するように、各種の遷移金属32の中から少なくとも2種類の遷移金属32(Ti(チタン)、Cr(クロム)、Mn(マンガン)、Fe(鉄)、Co(コバルト)、Ni(ニッケル)、Cu(銅)、Zn(亜鉛)、Nb(ニオブ)、Mo(モリブデン)、Ag(銀))を選択する。なお、燃料極13及び空気極14に使用する白金族金属31としてPt34(白金)が選択され、燃料極13及び空気極14に使用する遷移金属32としてNi35(ニッケル)、Fe36(鉄)が選択されたものとする。 In the metal selection step S1, at least one platinum group metal 31 (platinum (Pt), palladium (Pb), rhodium (Rh), ruthenium (Ru), iridium (Ir), osmium is selected from among various platinum group metals 31. (Os)) is selected and selected from various transition metals 32. Among the various transition metals 32, the composite work functions of the work functions of at least two types of transition metals 32 are approximated to the work functions of platinum group metals. To at least two kinds of transition metals 32 (Ti (titanium), Cr (chrome), Mn (manganese), Fe (iron), Co (cobalt), Ni (nickel), Cu (copper), Zn (zinc), Nb (Niobium), Mo (molybdenum), Ag (silver)) is selected. Pt34 (platinum) is selected as the platinum group metal 31 used for the fuel electrode 13 and the air electrode 14, and Ni35 (nickel) and Fe36 (iron) are selected as the transition metal 32 used for the fuel electrode 13 and the air electrode 14. It has been done.

金属微粉体作成工程S2では、微粉砕機によって白金34(Pt)を1μm〜100μmの粒径に微粉砕し、粒径が1μm〜100μmのPt34の白金族金属微粉体37を作り、微粉砕機によってNi35(ニッケル)を1μm〜100μmの粒径に微粉砕し、粒径が1μm〜100μmのNi35の遷移金属微粉体38を作るとともに、微粉砕機によってFe36(鉄)を1μm〜100μmの粒径に微粉砕し、粒径が1μm〜100μmのFe36の遷移金属微粉体39を作る。 In the metal fine powder production step S2, platinum 34 (Pt) is finely pulverized by a fine pulverizer to a particle size of 1 μm to 100 μm, and a platinum group metal fine powder 37 of Pt34 having a particle size of 1 μm to 100 μm is produced. Ni35 (nickel) is finely pulverized to a particle size of 1 μm to 100 μm to form a transition metal fine powder 38 of Ni35 having a particle size of 1 μm to 100 μm, and Fe36 (iron) is particled to a particle size of 1 μm to 100 μm by a fine pulverizer. Then, the transition metal fine powder 39 of Fe36 having a particle size of 1 μm to 100 μm is prepared.

電極製造方法は、Pt34(白金族金属31)やNi35(遷移金属32)、Fe36(遷移金属32)を1μm〜100μmの粒径に微粉砕することで、多数の微細な気孔25(通路孔)を有する多孔質に成形されて比表面積が大きいマイクロポーラス構造かつ薄板状の燃料極13や空気極14を作ることができ、それら気孔25をガス(気体)が通流しつつ気体を燃料極13や空気極14のそれら気孔25における接触面に広範囲に接触させることが可能な燃料極13及び空気極14を作ることができる。 The electrode manufacturing method is to pulverize Pt34 (platinum group metal 31), Ni35 (transition metal 32), and Fe36 (transition metal 32) to a particle size of 1 μm to 100 μm to obtain a large number of fine pores 25 (passage holes). It is possible to form a thin plate-shaped fuel electrode 13 or air electrode 14 having a microporous structure and having a large specific surface area by being formed into a porous structure having a gas. It is possible to make the fuel electrode 13 and the air electrode 14 that can be brought into wide contact with the contact surfaces of the air holes 14 of the air holes 14.

微粉体重量比決定工程S3では、金属微粉体作成工程S2によって作られたNi35の微粉体38とFe36の微粉体39との仕事関数の合成仕事関数が白金族金属の仕事関数に近似するように、金属微粉体混合物41の全重量に対するPt34の微粉体37の重量比を決定し、金属微粉体混合物41の全重量に対するNi35の微粉体38の重量比を決定するとともに、金属微粉体混合物41の全重量に対するFe36の微粉体39の重量比を決定する。 In the fine powder weight ratio determining step S3, the combined work function of the work functions of the fine powder 38 of Ni35 and the fine powder 39 of Fe36 produced in the fine metal powder producing step S2 is approximated to the work function of the platinum group metal. The weight ratio of the Pt34 fine powder 37 to the total weight of the metal fine powder mixture 41 is determined, and the weight ratio of the Ni35 fine powder 38 to the total weight of the metal fine powder mixture 41 is determined. The weight ratio of the fine powder 39 of Fe36 to the total weight is determined.

微粉体重量比決定工程S3では、金属微粉体混合物41の全重量(100%)に対するPt34(白金族金属31)の微粉体37の重量比を4%〜10%の範囲、好ましくは、5%〜8%の範囲で決定する。微粉体重量比決定工程S3では、金属微粉体混合物41の全重量(100%)に対するNi35(遷移金属32)の微粉体38の重量比を45%〜48%の範囲で決定し、金属微粉体混合物41の全重量(100%)に対するFe36(遷移金属32)の微粉体39の重量比を45%〜48%の範囲で決定する。 In the fine powder weight ratio determination step S3, the weight ratio of the fine powder 37 of Pt34 (platinum group metal 31) to the total weight (100%) of the metal fine powder mixture 41 is in the range of 4% to 10%, preferably 5%. Determine in the range of ~8%. In the fine powder weight ratio determining step S3, the weight ratio of the fine powder 38 of Ni35 (transition metal 32) to the total weight (100%) of the metal fine powder mixture 41 is determined within the range of 45% to 48%. The weight ratio of the fine powder 39 of Fe36 (transition metal 32) to the total weight (100%) of the mixture 41 is determined in the range of 45% to 48%.

電極製造方法は、合成仕事関数が白金族金属の仕事関数に近似するように遷移金属32のNi35(ニッケル)とFe36(鉄)とを選択するとともに、合成仕事関数が白金族金属の仕事関数に近似するように、金属微粉体混合物41の全重量に対するPt34の微粉体38の重量比や金属微粉体混合物41の全重量に対するNi35の微粉体39の重量比、金属微粉体混合物41の全重量に対するFe36の微粉体39の重量比を前記範囲において決定することで、Ni35の微粉体38とFe36の微粉体39との仕事関数の合成仕事関数を白金族金属の仕事関数に近似させることができ、白金族金属31(Pt34)の含有量が少ないにもかかわらず、白金を担持した電極と略同一の仕事関数を備え、白金を担持した電極と略同様の触媒活性(触媒作用)を発揮することができ、優れた触媒活性(触媒作用)を有して触媒機能を十分かつ確実に利用することが可能な白金族金属少含有の燃料極13及び空気極14を作ることができる。 The electrode manufacturing method selects Ni35 (nickel) and Fe36 (iron) of the transition metal 32 so that the synthetic work function approximates the work function of the platinum group metal, and the synthetic work function is the work function of the platinum group metal. Similarly, the weight ratio of the fine powder 38 of Pt34 to the total weight of the fine metal powder mixture 41, the weight ratio of the fine powder 39 of Ni35 to the total weight of the fine metal powder mixture 41, and the total weight of the fine metal powder mixture 41 are approximated. By determining the weight ratio of the fine powder 39 of Fe36 within the above range, the composite work function of the work functions of the fine powder 38 of Ni35 and the fine powder 39 of Fe36 can be approximated to the work function of the platinum group metal, Despite having a low content of platinum group metal 31 (Pt34), it has a work function substantially the same as that of the platinum-supported electrode and exhibits substantially the same catalytic activity (catalytic action) as the platinum-supported electrode. It is possible to produce the fuel electrode 13 and the air electrode 14 containing a small amount of platinum group metal, which have excellent catalytic activity (catalytic action) and can sufficiently and reliably utilize the catalytic function.

電極製造方法は、金属微粉体混合物41の全重量に対するNi35(遷移金属32)の微粉体38の重量比や金属微粉体混合物41の全重量に対するFe36(遷移金属32)の微粉体39の重量比が前記範囲にあり、金属微粉体混合物41の全重量に対するPt34(白金族金属31)の微粉体37の重量比が前記範囲にあるから、高価な白金族金属31(Pt34)の含有量が少なく、燃料極13及び空気極14を廉価に作ることができる。 The electrode manufacturing method includes a weight ratio of the fine powder 38 of Ni35 (transition metal 32) to the total weight of the fine metal powder mixture 41 and a weight ratio of fine powder 39 of Fe36 (transition metal 32) to the total weight of the fine metal powder mixture 41. Is in the above range, and the weight ratio of the fine powder 37 of Pt34 (platinum group metal 31) to the total weight of the fine metal powder mixture 41 is in the above range, so that the content of expensive platinum group metal 31 (Pt34) is small. The fuel electrode 13 and the air electrode 14 can be manufactured at low cost.

金属微粉体混合物作成工程S4では、微粉体重量比決定工程S3によって決定した重量比のPt34の微粉体37と微粉体重量比決定工程S3によって決定した重量比のNi35の微粉体38と微粉体重量比決定工程S3によって決定した重量比のFe36の微粉体39とバインダー33(粉状の樹脂系バインダー)とを混合機に投入し、混合機によってPt34の微粉体37、Ni35の微粉体38、Fe36の微粉体39、バインダー33を攪拌・混合し、Pt34の微粉体37、Ni35の微粉体38、Fe36の微粉体39、バインダー33が均一に混合・分散した金属微粉体混合物41(発泡金属成形材)を作る。次に、金属微粉体混合物41に所定量の気孔形成材42(粉体の発泡剤)を添加する。所定量の気孔形成材42を混合機又は攪拌機に投入し、混合機又は攪拌機によって金属微粉体混合物41に気孔形成材42を均一に混合・分散させた金属微粉体混合物41(発泡金属成形材料)を作る。気孔形成材42(粉体の発泡剤)の添加量によって燃料極13及び空気極14に形成される気孔25の平均径や気孔率が決まる。 In the metal fine powder mixture preparing step S4, the fine powder 37 of Pt34 having the weight ratio determined in the fine powder weight ratio determining step S3, and the fine powder 38 of Ni35 and the fine powder weight having the weight ratio determined in the fine powder weight ratio determining step S3. The fine powder 39 of Fe36 and the binder 33 (powder-like resin-based binder) having the weight ratio determined in the ratio determining step S3 are put into a mixer, and the powder of Pt34, the powder of Ni35, and the powder of Fe36 are fed into the mixer. The fine powder 39 of No. 3 and the binder 33 are stirred and mixed, and the fine powder 37 of Pt 34, the fine powder 38 of Ni 35, the fine powder 39 of Fe 36, and the binder 33 are uniformly mixed and dispersed. )make. Next, a predetermined amount of pore forming material 42 (powder blowing agent) is added to the metal fine powder mixture 41. A fine metal powder mixture 41 (foam metal molding material) in which a predetermined amount of pore forming material 42 is put into a mixer or a stirrer, and the fine metal powder mixture 41 is uniformly mixed and dispersed by the mixer or agitator. make. The average diameter and porosity of the pores 25 formed in the fuel electrode 13 and the air electrode 14 are determined by the amount of the pore-forming material 42 (powder blowing agent) added.

金属微粉体成形物作成工程S5では、金属微粉体混合物作成工程S4によって作られた金属微粉体混合物41(発泡金属成形材料)を射出成形機(図示せず)や押出成形機(図示せず)に投入し、金属微粉体混合物41を射出成形機によって射出成形(金属粉末射出成形)し、又は、金属微粉体混合物41を押出成形機によって押し出し成形(金属粉末押出成形)し、金属微粉体混合物41を所定面積の薄板状(厚み寸法L1が0.03mm〜1.5mmの範囲、好ましくは、0.05mm〜1.0mmの範囲)に成形した金属微粉体成形物42(発泡金属成形物)を作る。 In the metal fine powder molded product producing step S5, the metal fine powder mixture 41 (foam metal molding material) produced in the metal fine powder mixture producing step S4 is injected into an injection molding machine (not shown) or an extrusion molding machine (not shown). , And the metal fine powder mixture 41 is injection molded (metal powder injection molding) by an injection molding machine, or the metal fine powder mixture 41 is extruded by an extrusion molding machine (metal powder extrusion molding). Metal fine powder molded product 42 (foamed metal molded product) formed by molding 41 into a thin plate having a predetermined area (thickness dimension L1 is in the range of 0.03 mm to 1.5 mm, preferably 0.05 mm to 1.0 mm). make.

マイクロポーラス構造薄板電極作成工程S6では、金属微粉体成形物作成工程S5の金属粉末射出成形や金属粉末押出成形によって作られた金属微粉体成形物42(発泡金属成形物)を脱脂し、脱脂した金属微粉体成形物42を焼成炉(燃焼炉、電気炉等)に投入し、金属微粉体成形物42を焼成炉において所定温度で所定時間焼結(焼成)して多数の微細な気孔25(通路孔)を形成したマイクロポーラス構造かつ薄板状(厚み寸法L1が0.03mm〜1.5mmの範囲、好ましくは、0.05mm〜1.0mmの範囲)の燃料極13及び空気極14を作る。 In the microporous structure thin plate electrode producing step S6, the metal fine powder molded article 42 (foamed metal molded article) produced by the metal powder injection molding or the metal powder extrusion molding in the metal fine powder molded article producing step S5 is degreased and degreased. The metal fine powder molded product 42 is put into a firing furnace (combustion furnace, electric furnace, etc.), and the metal fine powder molded product 42 is sintered (fired) at a predetermined temperature for a predetermined time in the firing furnace to obtain a large number of fine pores 25 ( A fuel electrode 13 and an air electrode 14 having a microporous structure and a thin plate shape (thickness dimension L1 is in the range of 0.03 mm to 1.5 mm, preferably in the range of 0.05 mm to 1.0 mm) in which passage holes are formed are formed. ..

焼結温度は、900℃〜1400℃である。焼結(焼成)時間は、2時間〜6時間である。マイクロポーラス構造薄板電極作成工程S6では、所定面積の薄板状に成形した金属微粉体成形物42の焼結時において、金属微粉体成形物42の内部において気孔形成材40(粉体の発泡剤)が発泡した後、気孔形成材40が金属微粉体成形物42の内部から消失し、多数の微細な気孔25(流路)(連続かつ独立通路孔)が形成されたマイクロポーラス構造かつ薄板状の燃料極13及び空気極14が製造される。 The sintering temperature is 900°C to 1400°C. The sintering (firing) time is 2 to 6 hours. In the microporous structure thin plate electrode forming step S6, the pore forming material 40 (powder foaming agent) is formed inside the metal fine powder molded product 42 when the metal fine powder molded product 42 molded into a thin plate having a predetermined area is sintered. After the foaming, the pore-forming material 40 disappears from the inside of the fine metal powder product 42, and a large number of fine pores 25 (flow paths) (continuous and independent passage holes) are formed. The fuel electrode 13 and the air electrode 14 are manufactured.

電極製造方法は、金属粉末射出成形や金属粉末押出成形によってPt34の微粉体37とNi35の微粉体38とFe36の微粉体39とがバインダー40を介して連結され、金属粉末射出成形や金属粉末押出成形によって作られた金属微粉体成形物42(発泡金属成形物)が所定の強度を有するとともに、金属微粉体成形物42を焼結することで、多数の微細な気孔25(通路孔)を有するマイクロポーラス構造かつ薄板状の燃料極13及び空気極14を作ることができるとともに、高い強度を有して形状を維持することができ、衝撃が加えられたときの破損や損壊を防ぐことが可能な非白金の燃料極13及び空気極14を作ることができる。 The electrode manufacturing method is such that the fine powder 37 of Pt 34, the fine powder 38 of Ni 35, and the fine powder 39 of Fe 36 are connected through a binder 40 by metal powder injection molding or metal powder extrusion molding, and metal powder injection molding or metal powder extrusion is performed. The metal fine powder molded product 42 (foamed metal molded product) formed by molding has a predetermined strength, and has a large number of fine pores 25 (passage holes) by sintering the metal fine powder molded product 42. The fuel electrode 13 and the air electrode 14 having a microporous structure and a thin plate shape can be formed, and the shape can be maintained with high strength, and it is possible to prevent breakage or damage when an impact is applied. A non-platinum fuel electrode 13 and an air electrode 14 that are not platinum can be made.

電極製造方法は、各種の白金族金属31の中から少なくとも1種類の白金族金属31(Pt34)を選択し、各種の遷移金属32から選択する少なくとも2種類の遷移金属32の仕事関数の合成仕事関数が白金族金属の仕事関数に近似するように、各種の遷移金属32の中から少なくとも2種類の遷移金属32(たとえば、Ni35、Fe36)を選択する金属選択工程S1と、金属選択工程S1によって選択された少なくとも1種類の白金族金属31(Pt34)を微粉砕して白金族金属微粉体(Pt34の微粉体37)を作り、金属選択工程S1によって選択された少なくとも2種類の遷移金属32を微粉砕して遷移金属微粉体(Ni35の微粉体38、Fe36の微粉体39)を作る金属微粉体作成工程S2と、金属微粉体作成工程S2によって作られた少なくとも2種類の遷移金属微粉体の仕事関数の合成仕事関数が白金族金属の仕事関数に近似するように、白金族金属微粉体(Pt34の微粉体37)の重量比と少なくとも2種類の遷移金属微粉体(Ni35の微粉体38、Fe36の微粉体39)の重量比とを決定する微粉体重量比決定工程S3と、微粉体重量比決定工程S3によって決定した重量比の白金族金属微粉体(Pt34の微粉体37)及び少なくとも2種類の遷移金属微粉体(Ni35の微粉体38、Fe36の微粉体39)に所定のバインダー33を加え、それらを均一に混合・分散して金属微粉体混合物41(発泡金属成形材料)を作り、金属微粉体混合物41に所定の気孔形成材40を添加する金属微粉体混合物作成工程S4と、金属微粉体混合物作成工程S4によって作られた金属微粉体混合物41を薄板状に成形(金属粉末押出成形又は金属粉末射出成形)して金属微粉体成形物42(発泡金属成形物)を作る金属微粉体成形物作成工程S5と、金属微粉体成形物作成工程S5によって作られた金属微粉体成形物42を脱脂するとともに金属微粉体成形物42を所定温度で焼結して多数の微細な気孔25が形成されたマイクロポーラス構造の薄板状の燃料極13及び空気極14を作るマイクロポーラス構造薄板電極作成工程S6との各工程によって燃料極13及び空気極14を製造するから、それら工程S1〜S6によって厚み寸法L1が0.03mm〜1.5mmの範囲(好ましくは、0.05mm〜1.0mmの範囲)であって多数の微細な気孔25(通路孔)を形成した燃料極13及び空気極14(マイクロポーラス構造薄板状電極)を製造することができ、燃料極13や空気極14を廉価に作ることができるとともに、優れた触媒活性(触媒作用)を有して触媒機能を十分かつ確実に利用することが可能な白金族金属少含有の燃料極13及び空気極14を作ることができる。 The electrode manufacturing method selects at least one kind of platinum group metal 31 (Pt34) from among various kinds of platinum group metal 31, and selects a work function of at least two kinds of transition metals 32 selected from various kinds of transition metals 32. The metal selection step S1 for selecting at least two kinds of transition metals 32 (for example, Ni35, Fe36) from the various transition metals 32 so that the function approximates the work function of the platinum group metal, and the metal selection step S1. At least one selected platinum group metal 31 (Pt34) is pulverized to form a platinum group metal fine powder (fine powder 37 of Pt34), and at least two transition metals 32 selected in the metal selection step S1 are obtained. A fine metal powder preparation step S2 for finely pulverizing a transition metal fine powder (fine powder 38 of Ni35, fine powder 39 of Fe36) and at least two kinds of transition metal fine powders produced by the fine metal powder preparation step S2. Work function composition so that the work function approximates the work function of the platinum group metal, and the weight ratio of the platinum group metal fine powder (fine powder 37 of Pt34) and at least two kinds of transition metal fine powder (fine powder 38 of Ni35, The fine powder weight ratio determining step S3 for determining the weight ratio of the fine powder 39) of Fe36, and the platinum group metal fine powder (fine powder 37 of Pt34) having the weight ratio determined in the fine powder weight ratio determining step S3 and at least 2 A predetermined binder 33 is added to various kinds of transition metal fine powders (Ni35 fine powder 38, Fe36 fine powder 39), and these are uniformly mixed and dispersed to make a metal fine powder mixture 41 (foam metal molding material). The metal fine powder mixture producing step S4 of adding a predetermined pore forming material 40 to the metal fine powder mixture 41 and the metal fine powder mixture 41 produced by the metal fine powder mixture producing step S4 are formed into a thin plate (metal powder extrusion molding). Or a metal powder injection molding) to form a metal fine powder molded product 42 (foamed metal molded product), and a metal fine powder molded product 42 produced by the metal fine powder molded product manufacturing step S5. A thin plate electrode for a microporous structure for producing a fuel electrode 13 and an air electrode 14 having a microporous structure in which a large number of fine pores 25 are formed by degreasing and sintering the metal fine powder molded product 42 at a predetermined temperature. Since the fuel electrode 13 and the air electrode 14 are manufactured by each of the steps S6 and S6, the thickness dimension L1 is 0.03 mm to 1.5 mm in the steps S1 to S6 (preferably 0.05 mm to 1.0 mm). Range) and a large number of fine pores 25 (passage holes) formed in the fuel electrode 1 3 and the air electrode 14 (thin plate electrode having a microporous structure) can be manufactured, the fuel electrode 13 and the air electrode 14 can be manufactured at a low price, and the catalyst electrode has an excellent catalytic activity (catalytic action). It is possible to produce the fuel electrode 13 and the air electrode 14 containing a small amount of platinum group metal that can sufficiently and surely utilize the above.

電極製造方法は、優れた触媒活性(触媒作用)を有して触媒機能を十分かつ確実に利用することが可能な白金族金属少含有の燃料極13及び空気極14を作ることができ、固体高分子形燃料電池10に好適に使用することが可能な燃料極13及び空気極14を作ることができる。電極製造方法は、工程S1〜S6によって作られた燃料極13及び空気極14が白金族金属を担持した電極と略同様の触媒活性(触媒作用)を発揮するから、固体高分子形燃料電池10において十分な電気を発電することが可能であって固体高分子形燃料電池10に接続された負荷30に十分な電気エネルギーを供給することが可能な白金族金属少含有の燃料極13及び空気極14を作ることができる。 The electrode manufacturing method can produce a fuel electrode 13 and an air electrode 14 containing a small amount of platinum group metal, which have excellent catalytic activity (catalyst action) and can sufficiently and surely utilize the catalytic function. The fuel electrode 13 and the air electrode 14 that can be suitably used for the polymer fuel cell 10 can be produced. In the electrode manufacturing method, the fuel electrode 13 and the air electrode 14 produced in steps S1 to S6 exhibit substantially the same catalytic activity (catalytic action) as the electrode supporting the platinum group metal. And an air electrode containing a small amount of platinum group metal capable of generating sufficient electricity in the fuel cell and supplying sufficient electric energy to the load 30 connected to the polymer electrolyte fuel cell 10. You can make 14.

10 固体高分子形燃料電池
11 セル
12 セルスタック
13 燃料極
14 空気極
15 固体高分子電解質膜(電極接合体膜)
16 セパレータ
17 セパレータ
18 膜/電極接合体
19 ガス拡散層
20 ガス拡散層
21 ガスシール
22 ガスシール
23 前面
24 後面
25 流路(連続かつ独立通路孔)
26 薄板金属電極
27 通流口
28 外周縁
29 導線
30 負荷
31 白金族金属
32 遷移金属
33 バインダー
34 Pt(白金)
35 Ni(ニッケル)
36 Fe(鉄)
37 Pt(白金)の微粉体(白金族金属微粉体)
38 Ni(ニッケル)の微粉体(遷移金属微粉体)
39 Fe(鉄)の微粉体(遷移金属微粉体)
40 気孔形成材(発泡剤)
41 金属微粉体混合物
42 金属微粉体成形物
L1 厚み寸法
S1 金属選択工程
S2 金属微粉体作成工程
S3 微粉体重量比決定工程
S4 金属微粉体混合物作成工程
S5 金属微粉体成形物作成工程
S6 マイクロポーラス構造薄板電極作成工程
10 solid polymer fuel cell 11 cell 12 cell stack 13 fuel electrode 14 air electrode 15 solid polymer electrolyte membrane (electrode assembly membrane)
16 Separator 17 Separator 18 Membrane/electrode assembly 19 Gas diffusion layer 20 Gas diffusion layer 21 Gas seal 22 Gas seal 23 Front face 24 Rear face 25 Flow path (continuous and independent passage hole)
26 Thin Metal Electrode 27 Flow Port 28 Outer Edge 29 Conductive Wire 30 Load 31 Platinum Group Metal 32 Transition Metal 33 Binder 34 Pt (Platinum)
35 Ni (nickel)
36 Fe (iron)
37 Pt (platinum) fine powder (platinum group metal fine powder)
38 Ni (nickel) fine powder (transition metal fine powder)
39 Fe (iron) fine powder (transition metal fine powder)
40 Pore forming material (foaming agent)
41 metal fine powder mixture 42 metal fine powder molded product L1 thickness dimension S1 metal selection process S2 metal fine powder preparation process S3 fine powder weight ratio determination process S4 metal fine powder mixture preparation process S5 metal fine powder molded product production process S6 microporous structure Thin plate electrode making process

Claims (11)

複数のセルを有するセルスタックを備え、前記セルが、燃料極及び空気極と、前記燃料極と前記空気極との間に位置する電極接合体膜と、前記燃料極の外側と前記空気極の外側とに位置するセパレータとから形成され、
前記燃料極及び前記空気極が、各種の白金族金属から選択された少なくとも1種類の少量の白金族金属と、各種の遷移金属から選択された少なくとも2種類の遷移金属とから形成され、
前記燃料極及び前記空気極は、前記選択された少なくとも1種類の白金族金属を微粉砕した白金族金属微粉体と前記選択された少なくとも2種類の遷移金属を微粉砕した遷移金属微粉体と所定のバインダーとを均一に混合・分散した金属微粉体混合物に所定の気孔形成材を添加し、前記気孔形成材を添加した金属微粉体混合物を所定面積の薄板状に成形し、前記所定面積の薄板状に成形した金属微粉体成形物を脱脂・焼結することで、多数の微細な気孔が形成されたマイクロポーラス構造の薄板状電極であることを特徴とする固体高分子形燃料電池。
A cell stack having a plurality of cells, wherein the cells include a fuel electrode and an air electrode, an electrode assembly film located between the fuel electrode and the air electrode, and an outer side of the fuel electrode and the air electrode. Formed from the separator located on the outside,
The fuel electrode and the air electrode are formed from a small amount of at least one platinum group metal selected from various platinum group metals and at least two transition metal selected from various transition metals,
The fuel electrode and the air electrode are predetermined to be a platinum group metal fine powder obtained by finely pulverizing the selected at least one type of platinum group metal and a transition metal fine powder obtained by finely pulverizing the selected at least two types of transition metals. A predetermined pore-forming material is added to the metal fine powder mixture in which the binder is uniformly mixed and dispersed, and the metal fine-powder mixture to which the pore forming material is added is molded into a thin plate shape having a predetermined area, and the thin plate having the predetermined area. A solid polymer fuel cell, which is a thin plate electrode having a microporous structure in which a large number of fine pores are formed by degreasing and sintering a metal fine powder molded product formed into a shape.
前記燃料極及び前記空気極では、前記選択された少なくとも2種類の遷移金属の仕事関数の合成仕事関数が白金族金属の仕事関数に近似するように、前記各種の遷移金属の中から少なくとも2種類の遷移金属が選択されている請求項1に記載の固体高分子形燃料電池。 In the fuel electrode and the air electrode, at least two kinds of the various transition metals are selected so that the composite work function of the work functions of the selected at least two kinds of transition metals approximates the work function of the platinum group metal. The polymer electrolyte fuel cell according to claim 1, wherein the transition metal is selected. 前記燃料極及び前記空気極に形成された気孔の平均径が、1〜100μmの範囲にある請求項1又は請求項2に記載の固体高分子形燃料電池。 The polymer electrolyte fuel cell according to claim 1 or 2, wherein the pores formed in the fuel electrode and the air electrode have an average diameter in the range of 1 to 100 µm. 前記燃料極の厚み寸法と前記空気極の厚み寸法とが、0.03mm〜1.5mmの範囲にある請求項1ないし請求項3いずれかに記載の固体高分子形燃料電池。 The polymer electrolyte fuel cell according to any one of claims 1 to 3, wherein the thickness dimension of the fuel electrode and the thickness dimension of the air electrode are in the range of 0.03 mm to 1.5 mm. 前記白金族金属が、Pt(白金)であり、前記遷移金属が、Ni(ニッケル)とFe(鉄)とであり、前記燃料極及び前記空気極では、前記Niの仕事関数と前記Feの仕事関数との合成仕事関数が前記白金族金属の仕事関数に近似するように、前記Ptの白金族金属微粉体の前記金属微粉体混合物の全重量に対する重量比と前記Niの遷移金属微粉体の該金属微粉体混合物の全重量に対する重量比と前記Feの遷移金属微粉体の該金属微粉体混合物の全重量に対する重量比とが定められている請求項1ないし請求項4いずれかに記載の固体高分子形燃料電池。 The platinum group metal is Pt (platinum), the transition metal is Ni (nickel) and Fe (iron), and the work function of Ni and the work of Fe at the fuel electrode and the air electrode. And a weight ratio of the platinum group metal fine powder of Pt to the total weight of the metal fine powder mixture and the transition metal fine powder of Ni so as to approximate a work function of the platinum group metal to the work function of the platinum group metal. The solid height according to any one of claims 1 to 4, wherein a weight ratio to the total weight of the fine metal powder mixture and a weight ratio of the transition metal fine powder of Fe to the total weight of the fine metal powder mixture are defined. Molecular fuel cell. 前記Ptの白金族金属微粉体の前記金属微粉体混合物の全重量に対する重量比が、4〜10%の範囲、前記Niの遷移金属微粉体の前記金属微粉体混合物の全重量に対する重量比が、45%〜48%の範囲、前記Feの遷移金属微粉体の前記金属微粉体混合物の全重量に対する重量比が、45%〜48%の範囲にある請求項5に記載の固体高分子形燃料電池。 The weight ratio of the Pt platinum group metal fine powder to the total weight of the metal fine powder mixture is in the range of 4 to 10%, and the weight ratio of the Ni transition metal fine powder to the total weight of the metal fine powder mixture is The solid polymer fuel cell according to claim 5, wherein the weight ratio of the transition metal fine powder of Fe to the total weight of the fine metal powder mixture is in the range of 45% to 48%, and in the range of 45% to 48%. .. 前記マイクロポーラス構造の薄板状に成形された前記燃料極及び前記空気極の気孔率が、70%〜85%の範囲にある請求項1ないし請求項6いずれかに記載の固体高分子形燃料電池。 The solid polymer fuel cell according to any one of claims 1 to 6, wherein the porosity of the fuel electrode and the air electrode formed into a thin plate having the microporous structure is in the range of 70% to 85%. .. 前記マイクロポーラス構造の薄板に成形された前記燃料極及び前記空気極の密度が、6.0g/cm〜8.0g/cmの範囲にある請求項1ないし請求項7いずれかに記載の固体高分子形燃料電池。 The micro density of the fuel electrode and the air electrode is molded into a thin plate of a porous structure, according to any one of claims 1 to 7 in the range of 6.0g / cm 2 ~8.0g / cm 2 Polymer electrolyte fuel cell. 前記白金族金属の白金族金属微粉体の粒径と前記遷移金属の遷移金属微粉体の粒径とが、1μm〜100μmの範囲にある請求項1ないし請求項8いずれかに記載の固体高分子形燃料電池。 9. The solid polymer according to claim 1, wherein the particle size of the platinum group metal fine powder of the platinum group metal and the particle size of the transition metal fine powder of the transition metal are in the range of 1 μm to 100 μm. Type fuel cell. 前記固体高分子形燃料電池では、前記燃料極に供給される水素の雰囲気が相対湿度95%〜100%の範囲にあり、前記水素の温度が45℃〜55℃の範囲にある請求項1ないし請求項9いずれかに記載の固体高分子形燃料電池。 In the polymer electrolyte fuel cell, the atmosphere of hydrogen supplied to the fuel electrode is in the range of relative humidity of 95% to 100%, and the temperature of the hydrogen is in the range of 45°C to 55°C. The polymer electrolyte fuel cell according to claim 9. 前記固体高分子形燃料電池では、前記燃料極に供給される水素の供給圧力が+0.06MPa〜+0.08MPaの範囲にある請求項1ないし請求項10いずれかに記載の固体高分子形燃料電池。 The solid polymer fuel cell according to claim 1, wherein in the solid polymer fuel cell, the supply pressure of hydrogen supplied to the fuel electrode is in the range of +0.06 MPa to +0.08 MPa. ..
JP2018223295A 2018-11-29 2018-11-29 polymer electrolyte fuel cell Active JP7235284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018223295A JP7235284B2 (en) 2018-11-29 2018-11-29 polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018223295A JP7235284B2 (en) 2018-11-29 2018-11-29 polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2020087813A true JP2020087813A (en) 2020-06-04
JP7235284B2 JP7235284B2 (en) 2023-03-08

Family

ID=70908715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018223295A Active JP7235284B2 (en) 2018-11-29 2018-11-29 polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP7235284B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008016338A (en) * 2006-07-06 2008-01-24 Toyota Motor Corp Fuel cell, porous platinum sheet, and manufacturing method of fuel cell
JP2010505043A (en) * 2006-09-29 2010-02-18 モット コーポレイション Sinter bonded porous metal coating
JP2017010738A (en) * 2015-06-20 2017-01-12 株式会社健明 Electrode material for fuel cell, manufacturing method therefor, and fuel cell
JP2018522365A (en) * 2015-10-22 2018-08-09 コーチョアン リン Fuel cell electrode material and apparatus
WO2020080530A1 (en) * 2018-10-18 2020-04-23 株式会社グラヴィトン Electrode and electrode manufacturing method
JP2020064786A (en) * 2018-10-18 2020-04-23 株式会社グラヴィトン Polymer electrolyte fuel cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008016338A (en) * 2006-07-06 2008-01-24 Toyota Motor Corp Fuel cell, porous platinum sheet, and manufacturing method of fuel cell
JP2010505043A (en) * 2006-09-29 2010-02-18 モット コーポレイション Sinter bonded porous metal coating
JP2017010738A (en) * 2015-06-20 2017-01-12 株式会社健明 Electrode material for fuel cell, manufacturing method therefor, and fuel cell
JP2018522365A (en) * 2015-10-22 2018-08-09 コーチョアン リン Fuel cell electrode material and apparatus
WO2020080530A1 (en) * 2018-10-18 2020-04-23 株式会社グラヴィトン Electrode and electrode manufacturing method
JP2020064786A (en) * 2018-10-18 2020-04-23 株式会社グラヴィトン Polymer electrolyte fuel cell

Also Published As

Publication number Publication date
JP7235284B2 (en) 2023-03-08

Similar Documents

Publication Publication Date Title
CA2198553C (en) Gas diffusion electrodes
EP0654837A1 (en) Manufacture of electrodes
WO2019244840A1 (en) Electrode
WO2020080530A1 (en) Electrode and electrode manufacturing method
JP7281157B2 (en) Polymer electrolyte fuel cell and electrode manufacturing method
JP7171024B2 (en) Method for manufacturing fuel electrode and air electrode for polymer electrolyte fuel cell
JP7235284B2 (en) polymer electrolyte fuel cell
JP7281158B2 (en) Polymer electrolyte fuel cell and electrode manufacturing method
JP7171030B2 (en) Manufacturing method for anode and cathode of electrolyzer
JP2020064786A (en) Polymer electrolyte fuel cell
JP7193109B2 (en) Electrode and electrode manufacturing method
JP2020004527A (en) Solid polymer electrolyte fuel cell and electrode manufacturing method
JP7199080B2 (en) Electrolyzer and electrode manufacturing method
JP7171027B2 (en) Method for manufacturing fuel electrode and air electrode for polymer electrolyte fuel cell
JP2020087812A (en) Electrode and electrode manufacturing method
JP2020140844A (en) Solid polymer type fuel battery
JP2020167064A (en) Solid polymer fuel cell
JP7262739B2 (en) Manufacturing method for anode and cathode of electrolyzer
JP7411920B2 (en) Method for manufacturing anode and cathode of electrolyzer
JP7193111B2 (en) Carbon nanotube electrode or carbon nanohorn electrode and electrode manufacturing method
JP2020167041A (en) Electrode and manufacturing method thereof
JP2020140843A (en) Electrode and method for manufacturing the same
JP7179314B2 (en) Manufacturing method for anode and cathode of electrolyzer
KR100610262B1 (en) Preparation Method of Membrane Electrode Assembly with Perfluoro-ionomer powder
WO2020045643A1 (en) Electrode

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200617

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210512

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230216

R150 Certificate of patent or registration of utility model

Ref document number: 7235284

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150