JP2020167041A - Electrode and manufacturing method thereof - Google Patents

Electrode and manufacturing method thereof Download PDF

Info

Publication number
JP2020167041A
JP2020167041A JP2019066741A JP2019066741A JP2020167041A JP 2020167041 A JP2020167041 A JP 2020167041A JP 2019066741 A JP2019066741 A JP 2019066741A JP 2019066741 A JP2019066741 A JP 2019066741A JP 2020167041 A JP2020167041 A JP 2020167041A
Authority
JP
Japan
Prior art keywords
electrode
permalloy
fine powder
thin plate
permalloy fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019066741A
Other languages
Japanese (ja)
Inventor
正己 奥山
Masami Okuyama
正己 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Repton Co Ltd
Original Assignee
Repton Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Repton Co Ltd filed Critical Repton Co Ltd
Priority to JP2019066741A priority Critical patent/JP2020167041A/en
Publication of JP2020167041A publication Critical patent/JP2020167041A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

To provide an electrode which can fabricated at low cost without using a platinum-group element and which can exhibits a catalytic activity substantially at the same level as that of a platinum-group element-containing electrode.SOLUTION: An electrode 10 is composed of a thin plate-like porous metal electrode of a micro porous structure, in which permalloy fine powder melts and binds, and many fine continuous pores are evenly formed; the continuous pores are defined by a permalloy molten material which permalloy fine powder melts and binds into. The electrode is arranged by the steps of: uniformly mixing and dispersing a predetermined binder in permalloy fine powder prepared by finely pulverizing Fe-Ni permalloy and in parallel, uniformly mixing and dispersing a predetermined pore-forming material therein to make a permalloy fine powder mixture; molding the permalloy fine powder mixture having the binder and pore-forming material mixed in the permalloy fine powder in a thin plate-like form having a given area; and then, degreasing and sintering the resultant permalloy fine powder mixture mold shaped in the thin plate-like form.SELECTED DRAWING: Figure 1

Description

本発明は、陽極または陰極として使用する電極に関するとともに、陽極又は陰極として使用する電極を製造する電極製造方法に関する。 The present invention relates to an electrode used as an anode or a cathode, and also relates to an electrode manufacturing method for manufacturing an electrode used as an anode or a cathode.

低沸点金属である亜鉛を含む多孔性金属錯体(PCP/MOF)を焼成した窒素ドープカーボンに白金を担持させた燃料電池電極が開示されている(特許文献1参照)。この燃料電池電極は、低沸点金属である亜鉛を含む多孔性金属錯体(PCP/MOF)を製造原料として用いるため、原料由来の金属をほとんど含まず、大きな比表面積を有するNDCである触媒担持体を得ることができ、少量の白金担持により高活性な白金触媒を得ることができる。さらに、製造原料である多孔性金属錯体(PCP/MOF)由来の金属が含まれていないため、焼成条件を自由に設定できる。すなわち、原料として用いる多孔性金属錯体(PCP/MOF)の有機化合物リンカーの変更や焼成温度の調節により、得られるNDC中の含窒素量や結晶化度をコントロールすることが可能となる。 A fuel cell electrode in which platinum is supported on nitrogen-doped carbon obtained by calcining a porous metal complex (PCP / MOF) containing zinc, which is a low boiling metal, is disclosed (see Patent Document 1). Since this fuel cell electrode uses a porous metal complex (PCP / MOF) containing zinc, which is a low boiling metal, as a production raw material, it contains almost no metal derived from the raw material and is an NDC catalyst carrier having a large specific surface area. Can be obtained, and a highly active platinum catalyst can be obtained by supporting a small amount of platinum. Further, since the metal derived from the porous metal complex (PCP / MOF) which is a manufacturing raw material is not contained, the firing conditions can be freely set. That is, it is possible to control the nitrogen content and crystallinity in the obtained NDC by changing the organic compound linker of the porous metal complex (PCP / MOF) used as a raw material and adjusting the firing temperature.

特開2018−23929号公報Japanese Unexamined Patent Publication No. 2018-23929

固体高分子形燃料電池の電極触媒として各種の白金担持カーボンが広く利用されている。しかし、白金族元素は、貴金属であり、その生産量に限りがある希少な資源であることから、その使用量を抑えることが求められている。さらに、今後の固体高分子形燃料電池の普及に向けて高価な白金以外の金属を利用した非白金触媒を有する廉価な電極の開発が求められている。 Various platinum-supported carbons are widely used as electrode catalysts for polymer electrolyte fuel cells. However, since platinum group elements are precious metals and are rare resources whose production amount is limited, it is required to reduce the amount used. Further, for the spread of polymer electrolyte fuel cells in the future, it is required to develop an inexpensive electrode having a non-platinum catalyst using a metal other than platinum, which is expensive.

本発明の目的は、白金族元素を利用することなく、廉価に作ることができ、白金族元素を含む電極と略同様の触媒活性(触媒作用)を発揮することができる電極及びその電極の電極製造方法を提供することにある。本発明の他の目的は、燃料電池において十分な電気を発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを供給することができるとともに、水素ガス発生装置において電気分解を効率よく行うことができ、多量の水素ガスを発生させることができる電極及びその電極の電極製造方法を提供することにある。 An object of the present invention is an electrode that can be manufactured at low cost without using a platinum group element and can exhibit substantially the same catalytic activity (catalytic action) as an electrode containing a platinum group element, and an electrode of the electrode. The purpose is to provide a manufacturing method. Another object of the present invention is to be able to generate sufficient electricity in the fuel cell, to supply sufficient electrical energy to the load connected to the fuel cell, and to make electrolysis efficient in the hydrogen gas generator. It is an object of the present invention to provide an electrode which can be well performed and can generate a large amount of hydrogen gas, and an electrode manufacturing method for the electrode.

前記課題を解決するための本発明の第1の前提は、陽極又は陰極として使用する電極である。 The first premise of the present invention for solving the above problems is an electrode used as an anode or a cathode.

前記第1の前提における本発明の電極の特徴として、電極は、Fe−Niパーマロイを微粉砕したパーマロイ微粉体に所定のバインダーを均一に混合・分散しつつ所定の気孔形成材を均一に混合・分散し、パーマロイ微粉体にバインダー及び気孔形成材を混合したパーマロイ微粉体混合物を所定面積の薄板状に成形した後、所定面積の薄板状に成形したパーマロイ微粉体混合成形物を脱脂・焼結することで、パーマロイ微粉体が溶融結合しつつ多数の微細な連続気孔が満遍なく形成されたマイクロポーラス構造の薄板状発泡金属電極であり、白金族元素を含む電極と略同様の触媒活性(触媒作用)を有し、連続気泡は、パーマロイ微粉体が溶融結合したパーマロイ溶融物によって画成されていることにある。 As a feature of the electrode of the present invention in the first premise, the electrode uniformly mixes and disperses a predetermined binder with permalloy fine powder obtained by finely pulverizing Fe-Ni permalloy, and uniformly mixes a predetermined pore-forming material. A permalloy fine powder mixture that is dispersed and mixed with a binder and a pore-forming material in a permalloy fine powder is formed into a thin plate having a predetermined area, and then the permalloy fine powder mixed molded product formed into a thin plate having a predetermined area is degreased and sintered. As a result, it is a thin plate-shaped foamed metal electrode with a microporous structure in which a large number of fine continuous pores are evenly formed while the permalloy fine powder is melt-bonded, and has substantially the same catalytic activity (catalytic action) as an electrode containing a platinum group element. The open cells are defined by a permalloy melt in which permalloy fine powder is melt-bonded.

本発明の電極の一例として、電極では、パーマロイ微粉体の仕事関数が白金族元素の仕事関数に近似するように、Fe−NiパーマロイにおけるFeの含有率とFe−NiパーマロイにおけるNiの含有率とが決定されている。 As an example of the electrode of the present invention, in the electrode, the Fe-Ni content in Fe-Ni permalloy and the Ni content in Fe-Ni permalloy are used so that the work function of the permalloy fine powder is close to the work function of the platinum group element. Has been decided.

本発明の電極の他の一例としては、薄板状発泡金属電極に形成された連続気泡が、薄板状発泡金属電極の前面と後面との間で厚み方向へ不規則に曲折しながら延びているとともに、薄板状発泡金属電極の外周縁と内周縁との間で径方向へ不規則に曲折しながら延びている。 As another example of the electrode of the present invention, open cells formed in the thin plate-shaped foamed metal electrode extend between the front surface and the rear surface of the thin plate-shaped foamed metal electrode while being irregularly bent in the thickness direction. , It extends between the outer peripheral edge and the inner peripheral edge of the thin plate-shaped foamed metal electrode while being irregularly bent in the radial direction.

本発明の電極の他の一例としては、径方向へ隣接して厚み方向へ曲折して延びるそれら連続気泡が、径方向において部分的に繋がって一方の連続気泡と他方の連続気泡とが互いに連通し、厚み方向へ隣接して径方向へ曲折して延びるそれら連続気泡が、厚み方向において部分的に繋がって一方の連続気泡と他方の連続気泡とが互いに連通し、それら連続気泡の平均径が、厚み方向に向かって一様ではなく、厚み方向に向かって不規則に変化しているとともに、径方向に向かって一様ではなく、径方向に向かって不規則に変化している。 As another example of the electrode of the present invention, those open cells extending in the radial direction and bent in the thickness direction are partially connected in the radial direction, and one open cell and the other open cell communicate with each other. Then, the open cells adjacent to each other in the thickness direction and bent and extended in the radial direction are partially connected in the thickness direction, and one open cell and the other open cell communicate with each other, and the average diameter of the open cells becomes , It is not uniform in the thickness direction and changes irregularly in the thickness direction, and is not uniform in the radial direction and changes irregularly in the radial direction.

本発明の電極の他の一例としては、薄板状発泡金属電極に形成された連続気孔の平均径が、1μm〜100μmの範囲にあるとともに、±0.1μm〜±5マイクロμmの範囲で変化している。 As another example of the electrode of the present invention, the average diameter of continuous pores formed in the thin plate-shaped foamed metal electrode is in the range of 1 μm to 100 μm and changes in the range of ± 0.1 μm to ± 5 microμm. ing.

本発明の電極の他の一例としては、薄板状発泡金属電極の厚み寸法が、0.05mm〜0.5mmの範囲にある。 As another example of the electrode of the present invention, the thickness dimension of the thin plate-shaped foamed metal electrode is in the range of 0.05 mm to 0.5 mm.

本発明の電極の他の一例としては、Fe−NiパーマロイにおけるFeの含有率が、45%〜55%の範囲にあり、Fe−NiパーマロイにおけるNiの含有率が、45%〜55%の範囲にある。 As another example of the electrode of the present invention, the Fe content in Fe-Ni permalloy is in the range of 45% to 55%, and the Ni content in Fe-Ni permalloy is in the range of 45% to 55%. It is in.

本発明の電極の他の一例としては、薄板状発泡金属電極に成形された連続気泡の気孔率が、45%〜55%の範囲にある。 As another example of the electrode of the present invention, the porosity of the open cells formed on the thin plate-shaped foamed metal electrode is in the range of 45% to 55%.

本発明の電極の他の一例としては、薄板状発泡金属電極の密度が、6.0g/cm〜8.0g/cmの範囲にある。 As another example of the electrode of the present invention, the density of the thin foamed metal electrode is in the range of 6.0g / cm 2 ~8.0g / cm 2 .

本発明の電極の他の一例としては、パーマロイ微粉体の粒径が、1μm〜100μmの範囲にある。 As another example of the electrode of the present invention, the particle size of the permalloy fine powder is in the range of 1 μm to 100 μm.

前記課題を解決するための本発明の第2の前提は、陽極又は陰極として使用する電極を製造する電極製造方法である。 The second premise of the present invention for solving the above problems is an electrode manufacturing method for manufacturing an electrode used as an anode or a cathode.

前記第2の前提における本発明の電極製造方法の特徴としては、電極製造方法が、Fe−Niパーマロイを微粉砕したパーマロイ微粉体の仕事関数が白金族元素の仕事関数に近似するように、Fe−NiパーマロイにおけるFeの含有率とNiの含有率とを決定する含有率決定工程と、含有率決定工程によって決定した含有率のFe及びNiから形成されたFe−Niパーマロイを微粉砕してパーマロイ微粉体を作るパーマロイ微粉体作成工程と、パーマロイ微粉体作成工程によって作成したパーマロイ微粉体に所定のバインダー及び所定の気孔形成材を加え、パーマロイ微粉体にバインダーと気孔形成材とを均一に混合・分散してパーマロイ微粉体混合物を作るパーマロイ微粉体混合物作成工程と、パーマロイ微粉体混合物作成工程によって作成したパーマロイ微粉体混合物を薄板状に成形してパーマロイ微粉体混合成形物を作るパーマロイ微粉体混合成形物作成工程と、パーマロイ微粉体混合成形物作成工程によって作成したパーマロイ微粉体混合成形物を脱脂するとともにパーマロイ微粉体混合成形物を所定温度で焼結し、パーマロイ微粉体が溶融結合しつつ多数の微細な連続気孔が満遍なく形成されているとともに、パーマロイ微粉体が溶融結合したパーマロイ溶融物によって連続気泡が画成されたマイクロポーラス構造の薄板状発泡金属電極を作る薄板状発泡金属電極作成工程とを有することにある。 The feature of the electrode manufacturing method of the present invention in the second premise is that the electrode manufacturing method is such that the work function of permalloy fine powder obtained by finely pulverizing Fe-Ni permalloy is close to the work function of platinum group elements. -The content rate determination step for determining the Fe content and Ni content in Ni permalloy, and the Fe-Ni permalloy formed from Fe and Ni with the content rate determined by the content rate determination step are finely pulverized and permalloy. A predetermined binder and a predetermined pore-forming material are added to the permalloy fine powder preparation step for producing fine powder and the permalloy fine powder prepared by the permalloy fine powder preparation step, and the binder and the pore-forming material are uniformly mixed with the permalloy fine powder. Permalloy fine powder mixture preparation step to make a permalloy fine powder mixture by dispersing, and permalloy fine powder mixture preparation step to make a permalloy fine powder mixed mixture by molding the permalloy fine powder mixture prepared by the step to make a permalloy fine powder mixture into a thin plate. A large number of permalloy fine powders are melt-bonded by degreasing the permalloy fine powder mixed moldings prepared by the product preparation process and the permalloy fine powder mixed molding preparation process and sintering the permalloy fine powder mixed moldings at a predetermined temperature. A process for producing a thin plate-shaped foamed metal electrode having a microporous structure in which open cells are defined by a permalloy melt obtained by melt-bonding permalloy fine powder while fine continuous pores are evenly formed. To have.

本発明の電極製造方法の一例としては、重量比決定工程が、Fe−NiパーマロイにおけるFeの含有率を45%〜55%の範囲で決定し、Fe−NiパーマロイにおけるNiの含有率を45%〜55%の範囲で決定する。 As an example of the electrode manufacturing method of the present invention, the weight ratio determination step determines the Fe content in Fe-Ni permalloy in the range of 45% to 55%, and the Ni content in Fe-Ni permalloy is 45%. Determined in the range of ~ 55%.

本発明の電極製造方法の他の一例としては、パーマロイ微粉体作成工程が、Fe−Niパーマロイを1μm〜100μmの粒径に微粉砕する。 As another example of the electrode manufacturing method of the present invention, the permalloy fine powder preparation step finely pulverizes Fe-Ni permalloy to a particle size of 1 μm to 100 μm.

本発明の電極製造方法の他の一例としては、パーマロイ微粉体混合成形物作成工程が、射出成形又は押出成形によってパーマロイ微粉体混合物を成形して0.05mm〜0.5mmの厚み寸法を有する所定面積かつ薄板状のパーマロイ微粉体混合成形物を作る。 As another example of the electrode manufacturing method of the present invention, a predetermined step of producing a permalloy fine powder mixed molded product has a thickness dimension of 0.05 mm to 0.5 mm by molding the permalloy fine powder mixed product by injection molding or extrusion molding. Make a permalloy fine powder mixed molded product with an area and a thin plate shape.

本発明に係る電極によれば、それがFe−Niパーマロイを微粉砕したパーマロイ微粉体に所定のバインダーを均一に混合・分散しつつ所定の気孔形成材を均一に混合・分散し、パーマロイ微粉体にバインダー及び気孔形成材を混合したパーマロイ微粉体混合物を所定面積の薄板状に成形した後、所定面積の薄板状に成形したパーマロイ微粉体混合成形物を脱脂・焼結することで、パーマロイ微粉体が溶融結合しつつ多数の微細な連続気孔が均一に形成されたマイクロポーラス構造の薄板状発泡金属電極であり、電極が白金族元素を含む燃料極や空気極と略同様の触媒活性(触媒作用)を有するから、優れた触媒活性(触媒作用)を発揮することができ、燃料電池や水素ガス発生装置の電極として好適に使用することができる。電極は、高価な白金族元素を使用しない非白金であり、電極のコストを下げることができる。 According to the electrode according to the present invention, the permalloy fine powder is obtained by uniformly mixing and dispersing a predetermined binder in a permalloy fine powder obtained by finely pulverizing Fe-Ni permalloy and uniformly mixing and dispersing a predetermined pore-forming material. A permalloy fine powder mixture in which a binder and a pore-forming material are mixed is molded into a thin plate having a predetermined area, and then the permalloy fine powder mixed molded product formed into a thin plate having a predetermined area is degreased and sintered to form a permalloy fine powder. Is a thin plate-shaped foamed metal electrode with a microporous structure in which a large number of fine continuous pores are uniformly formed while being melt-bonded, and the electrode has substantially the same catalytic activity (catalytic action) as a fuel electrode or an air electrode containing a platinum group element. ), It is possible to exhibit excellent catalytic activity (catalytic action), and it can be suitably used as an electrode of a fuel cell or a hydrogen gas generator. The electrode is non-platinum that does not use expensive platinum group elements, and the cost of the electrode can be reduced.

パーマロイ微粉体の仕事関数が白金族元素の仕事関数に近似するように、Fe−Niパーマロイにおける前記Feの含有率とFe−NiパーマロイにおけるNiの含有率とが決定されている電極は、パーマロイ微粉体の仕事関数が白金族元素の仕事関数に近似するように、Fe−NiパーマロイにおけるFeの含有率とNiの含有率とが決定されているから、電極が白金族元素を担持した電極と略同一の仕事関数を備え、電極が白金族元素を含む燃料極や空気極と略同様の触媒活性(触媒作用)を有するから、白金族元素を担持した電極と略同様の触媒活性(触媒作用)を発揮することができ、燃料電池や水素ガス発生装置の電極として好適に使用することができる。電極は、それが白金族元素を担持した電極と略同様の優れた触媒活性(触媒作用)を発揮するから、電極を燃料電池に使用することで、燃料電池において十分な電気を発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを供給することができるとともに、電極を水素ガス発生装置に使用することで、電気分解を効率よく行うことができ、短時間に多量の水素ガスを発生させることができる。 The electrode in which the Fe content in Fe-Ni permalloy and the Ni content in Fe-Ni permalloy are determined so that the work function of the permalloy fine powder is close to the work function of the platinum group element is the permalloy fine powder. Since the Fe content and the Ni content in Fe-Ni permalloy are determined so that the work function of the body is close to the work function of the platinum group element, the electrode is abbreviated as an electrode carrying a platinum group element. Since it has the same work function and the electrode has substantially the same catalytic activity (catalytic action) as a fuel electrode or an air electrode containing a platinum group element, it has substantially the same catalytic activity (catalytic action) as an electrode carrying a platinum group element. It can be suitably used as an electrode of a fuel cell or a hydrogen gas generator. Since the electrode exhibits almost the same excellent catalytic activity (catalytic action) as the electrode carrying a platinum group element, it is possible to generate sufficient electricity in the fuel cell by using the electrode in the fuel cell. It is possible to supply sufficient electrical energy to the load connected to the fuel cell, and by using the electrodes in the hydrogen gas generator, it is possible to efficiently perform electrolysis and a large amount of hydrogen in a short time. Gas can be generated.

薄板状発泡金属電極に形成された連続気泡が薄板状発泡金属電極の前面と後面との間で厚み方向へ不規則に曲折しながら延びているとともに、薄板状発泡金属電極の外周縁と内周縁との間で径方向へ不規則に曲折しながら延びている電極は、厚み方向や径方向へ不規則に曲折しながら延びる複数の連続気孔が電極に形成されているから、電極の比表面積が大きく、それら連続気孔を気体(酸素及び水素)や液体(水)が通流しつつ気体や液体を電極のそれら連続気孔における接触面に広範囲に接触させることができ、電極の触媒活性(触媒作用)を有効かつ最大限に利用することができる。電極は、それの比表面積が大きいとともに白金族元素を担持した電極と略同様の触媒活性(触媒作用)を発揮するから、燃料電池や水素ガス発生装置の電極として好適に使用することができ、電極を燃料電池に使用することで、燃料電池において十分な電気を発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを供給することができるとともに、電極を水素ガス発生装置に使用することで、電気分解を効率よく行うことができ、短時間に多量の水素ガスを発生させることができる。 The open cells formed on the thin plate-shaped foamed metal electrode extend between the front surface and the rear surface of the thin plate-shaped foamed metal electrode while being irregularly bent in the thickness direction, and the outer and inner peripheral edges of the thin plate-shaped foamed metal electrode. Since the electrode extending irregularly in the radial direction with the electrode has a plurality of continuous pores extending irregularly in the thickness direction and the radial direction, the specific surface area of the electrode is increased. Large, gas (oxygen and hydrogen) and liquid (water) can flow through these continuous pores, and the gas and liquid can be brought into wide contact with the contact surface of the continuous pores of the electrode, and the catalytic activity (catalytic action) of the electrode. Can be used effectively and to the maximum extent. Since the electrode has a large specific surface area and exhibits substantially the same catalytic activity (catalytic action) as an electrode carrying a platinum group element, it can be suitably used as an electrode for a fuel cell or a hydrogen gas generator. By using the electrodes in the fuel cell, it is possible to generate sufficient electricity in the fuel cell, supply sufficient electric energy to the load connected to the fuel cell, and use the electrodes as a hydrogen gas generator. By using it, electrolysis can be performed efficiently, and a large amount of hydrogen gas can be generated in a short time.

径方向へ隣接して厚み方向へ曲折して延びるそれら連続気泡が径方向において部分的に繋がって一方の連続気泡と他方の連続気泡とが互いに連通し、厚み方向へ隣接して径方向へ曲折して延びるそれら連続気泡が厚み方向において部分的に繋がって一方の連続気泡と他方の連続気泡とが互いに連通し、それら連続気泡の平均径が厚み方向に向かって一様ではなく、厚み方向に向かって不規則に変化しているとともに、径方向に向かって一様ではなく、径方向に向かって不規則に変化している電極は、一方の連続気泡と他方の連続気泡とが互いに連通し、それら連続気泡の平均径が厚み方向及び径方向に向かって不規則に変化しているから、電極の比表面積を大きくすることができ、それら連続気孔を気体(酸素及び水素)や液体(水)が通流しつつ気体や液体を電極のそれら連続気孔における接触面に広範囲に接触させることができるとともに、電極の触媒活性(触媒作用)を有効かつ最大限に利用することができる。電極は、それの比表面積が大きいとともに白金族元素を担持した電極と略同様の優れた触媒活性(触媒作用)を発揮するから、燃料電池や水素ガス発生装置の電極として好適に使用することができ、電極を燃料電池に使用することで、燃料電池において十分な電気を発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを供給することができるとともに、電極を水素ガス発生装置に使用することで、電気分解を効率よく行うことができ、短時間に多量の水素ガスを発生させることができる。 These open cells that are adjacent in the radial direction and extend by bending in the thickness direction are partially connected in the radial direction, and one open bubble and the other open bubble communicate with each other, and are adjacent in the thickness direction and bend in the radial direction. The open cells extending in the thickness direction are partially connected in the thickness direction, and one open cell and the other open cell communicate with each other, and the average diameter of the open cells is not uniform in the thickness direction but in the thickness direction. In the electrode that changes irregularly toward and is not uniform in the radial direction and changes irregularly in the radial direction, one open cell and the other open cell communicate with each other. Since the average diameter of these open cells changes irregularly in the thickness direction and the radial direction, the specific surface area of the electrode can be increased, and the continuous pores can be made into gas (oxygen and hydrogen) or liquid (water). ) Can flow through and a gas or liquid can be brought into contact with the contact surface of the continuous pores of the electrode in a wide range, and the catalytic activity (catalytic action) of the electrode can be effectively and maximized. Since the electrode has a large specific surface area and exhibits almost the same excellent catalytic activity (catalytic action) as the electrode carrying a platinum group element, it can be suitably used as an electrode of a fuel cell or a hydrogen gas generator. By using the electrodes in the fuel cell, it is possible to generate sufficient electricity in the fuel cell, supply sufficient electrical energy to the load connected to the fuel cell, and generate hydrogen gas in the electrodes. By using it in an apparatus, it is possible to efficiently perform electrolysis and generate a large amount of hydrogen gas in a short time.

薄板状発泡金属電極に形成された連続気孔の平均径が1μm〜100μmの範囲にあるとともに、±0.1μm〜±5マイクロμmの範囲で変化している電極は、連続気孔の平均径が前記範囲にあり、連続気孔の平均径が前記範囲で変化しているから、電極の単位体積当たりに多数の連続気孔が形成され、電極の比表面積が大きく、それら連続気孔を気体(酸素及び水素)や液体(水)が通流しつつ気体や液体を電極のそれら連続気孔における接触面に広範囲に接触させることができ、電極の触媒活性(触媒作用)を有効かつ最大限に利用することができる。電極は、それの比表面積が大きいとともに白金族元素を担持した電極と略同様の触媒活性(触媒作用)を発揮するから、燃料電池や水素ガス発生装置の電極として好適に使用することができ、電極を燃料電池に使用することで、燃料電池において十分な電気を発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを供給することができるとともに、電極を水素ガス発生装置に使用することで、電気分解を効率よく行うことができ、短時間に多量の水素ガスを発生させることができる。 The average diameter of the continuous pores formed on the thin plate-shaped foamed metal electrode is in the range of 1 μm to 100 μm, and the average diameter of the continuous pores of the electrode changing in the range of ± 0.1 μm to ± 5 microμm is described above. Since it is in the range and the average diameter of the continuous pores changes in the above range, a large number of continuous pores are formed per unit volume of the electrode, the specific surface area of the electrode is large, and the continuous pores are gas (oxygen and hydrogen). Gas or liquid can be brought into contact with the contact surface of the continuous pores of the electrode in a wide range while flowing or liquid (water), and the catalytic activity (catalytic action) of the electrode can be effectively and maximized. Since the electrode has a large specific surface area and exhibits substantially the same catalytic activity (catalytic action) as an electrode carrying a platinum group element, it can be suitably used as an electrode for a fuel cell or a hydrogen gas generator. By using the electrodes in the fuel cell, it is possible to generate sufficient electricity in the fuel cell, supply sufficient electric energy to the load connected to the fuel cell, and use the electrodes as a hydrogen gas generator. By using it, electrolysis can be performed efficiently, and a large amount of hydrogen gas can be generated in a short time.

薄板状発泡金属電極の厚み寸法が0.05mm〜0.5mmの範囲にある電極は、その厚み寸法を前記範囲にすることで、電極の電気抵抗を小さくすることができ、電極に電流をスムースに流すことができる。電極は、それが白金族元素を担持した電極と略同様の優れた触媒活性(触媒作用)を有するとともに、それに電流がスムースに流れるから、電極を燃料電池に使用することで、燃料電池において十分な電気を発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを供給することができるとともに、電極を水素ガス発生装置に使用することで、水素ガス発生装置において電気分解を効率よく行うことができ、短時間に多量の水素ガスを発生させることができる。 For electrodes in which the thickness dimension of the thin plate-shaped foamed metal electrode is in the range of 0.05 mm to 0.5 mm, the electrical resistance of the electrode can be reduced by setting the thickness dimension in the above range, and the current can be smoothly applied to the electrode. Can be flushed to. Since the electrode has almost the same excellent catalytic activity (catalytic action) as the electrode carrying a platinum group element and the current flows smoothly through it, it is sufficient in the fuel cell to use the electrode in the fuel cell. Electricity can be generated, sufficient electric energy can be supplied to the load connected to the fuel cell, and by using the electrodes in the hydrogen gas generator, the electrolysis is efficient in the hydrogen gas generator. It can be done well and a large amount of hydrogen gas can be generated in a short time.

Fe−NiパーマロイにおけるFeの含有率が45%〜55%の範囲にあり、Fe−NiパーマロイにおけるNiの含有率が45%〜55%の範囲にある電極は、パーマロイ微粉体の仕事関数が白金族元素の仕事関数に近似するように、Fe−NiパーマロイにおけるFeの含有率とNiの含有率とが前記範囲で決定されているから、電極が白金属元素を担持した電極と略同一の仕事関数を備え、白金属元素を担持した電極と略同様の優れた触媒活性(触媒作用)を発揮することができ、触媒機能を十分かつ確実に利用することが可能であって優れた触媒活性(触媒作用)を有する非白金の陽極又は陰極として好適に使用することができる。 Electrodes in which the Fe content in Fe-Ni permalloy is in the range of 45% to 55% and the Ni content in Fe-Ni permalloy is in the range of 45% to 55% have a platinum work function of permalloy fine powder. Since the Fe content and the Ni content in Fe-Ni permalloy are determined within the above range so as to approximate the work function of the group element, the electrode has substantially the same work as the electrode carrying the platinum group element. It has a function and can exhibit excellent catalytic activity (catalytic action) that is almost the same as an electrode carrying a platinum group element, and it is possible to fully and surely utilize the catalytic function and has excellent catalytic activity (excellent catalytic activity (catalytic action). It can be suitably used as a non-platinum anode or a cathode having a catalytic action).

薄板状発泡金属電極に成形された連続気泡の気孔率が45%〜55%の範囲にある電極は、薄板状発泡金属電極(電極)の気孔率を前記範囲にすることで、薄板状発泡金属電極が多数の微細な連続気孔を有する多孔質(平均径が1μm〜100μmの微細な連続気孔が満遍なく均一に形成されたマイクロポーラス構造)に形成され、電極の比表面積を大きくすることができ、それら連続気孔を気体(酸素及び水素)や液体(水)が通流しつつ気体や液体を電極の接触面に広範囲に接触させることが可能となり、白金族金属を担持した電極と略同様の触媒活性(触媒作用)を確実に発揮することができる。電極は、その触媒機能を十分かつ確実に利用することが可能であって優れた触媒活性(触媒作用)を有する非白金の陽極または陰極として好適に使用することができる。 The porosity of the open cells formed on the thin plate-shaped foamed metal electrode is in the range of 45% to 55%. By setting the porosity of the thin plate-shaped foamed metal electrode (electrode) to the above range, the thin plate-shaped foamed metal The electrode is formed into a porosity having a large number of fine continuous pores (a microporous structure in which fine continuous pores having an average diameter of 1 μm to 100 μm are uniformly and uniformly formed), and the specific surface area of the electrode can be increased. While gas (oxygen and hydrogen) and liquid (water) pass through these continuous pores, gas and liquid can be brought into contact with the contact surface of the electrode over a wide range, and the catalytic activity is almost the same as that of an electrode carrying a platinum group metal. (Catalytic action) can be reliably exerted. The electrode can be suitably used as a non-platinum anode or cathode having excellent catalytic activity (catalytic action) and can fully and reliably utilize its catalytic function.

薄板状発泡金属電極の密度が6.0g/cm〜8.0g/cmの範囲にある電極は、薄板状発泡金属電極の密度を前記範囲にすることで、電極が多数の微細な連続気孔を有する多孔質(平均径が1μm〜100μmの微細な連続気孔が満遍なく均一に形成されたマイクロポーラス構造)に成形され、電極の比表面積を大きくすることができ、それら連続気孔を気体(酸素及び水素)や液体(水)が通流しつつ気体や液体を電極のそれら連続気孔における接触面に広範囲に接触させることが可能となり、白金属元素を担持した電極と略同様の触媒活性(触媒作用)を確実に発揮することができる。電極は、その触媒機能を最大限かつ確実に利用することが可能であって優れた触媒活性(触媒作用)を有する非白金の陽極または陰極として好適に使用することができる。 Electrode by the density of the thin foamed metal electrode on the range, continuous electrode is many fine density of the sheet-like porous metal electrode is in the range of 6.0g / cm 2 ~8.0g / cm 2 It is formed into a porous structure with pores (a microporous structure in which fine continuous pores with an average diameter of 1 μm to 100 μm are formed evenly and uniformly), and the specific surface area of the electrode can be increased, and these continuous pores are made into gas (oxygen). And hydrogen) and liquid (water) can pass through, and gas and liquid can be brought into contact with the contact surface of the continuous pores of the electrode over a wide range, and the catalytic activity (catalytic action) is almost the same as that of the electrode carrying the white metal element. ) Can be demonstrated reliably. The electrode can be suitably used as a non-platinum anode or cathode having excellent catalytic activity (catalytic action) and can utilize its catalytic function to the maximum extent and surely.

パーマロイ微粉体の粒径が1μm〜100μmの範囲にある電極は、パーマロイ微粉体の粒径を前記範囲にすることで、電極が多数の微細な連続気孔を有する多孔質(平均径が1μm〜100μmの微細な連続気孔が満遍なく均一に形成されたマイクロポーラス構造)に成形され、電極の比表面積を大きくすることができ、それら連続気孔を気体(酸素及び水素)や液体(水)が通流しつつ気体や液体を電極のそれら連続気孔における接触面に広範囲に接触させることが可能となり、白金属元素を担持した電極と略同様の触媒活性(触媒作用)を確実に発揮することができる。電極は、その触媒機能を最大限かつ確実に利用することが可能であって優れた触媒活性(触媒作用)を有する非白金の陽極または陰極として好適に使用することができる。 Electrodes having a particle size of Permalloy fine powder in the range of 1 μm to 100 μm are porous (average diameter is 1 μm to 100 μm) having a large number of fine continuous pores by setting the particle size of Permalloy fine powder to the above range. It is formed into a microporous structure in which fine continuous pores are evenly and uniformly formed), and the specific surface area of the electrode can be increased, while gas (oxygen and hydrogen) and liquid (water) pass through these continuous pores. It is possible to bring a gas or liquid into contact with the contact surface of the continuous pores of the electrode over a wide range, and it is possible to reliably exhibit the catalytic activity (catalytic action) substantially similar to that of the electrode carrying the white metal element. The electrode can be suitably used as a non-platinum anode or cathode having excellent catalytic activity (catalytic action), which can make full use of its catalytic function.

本発明に係る電極製造方法によれば、Fe−Niパーマロイを微粉砕したパーマロイ微粉体の仕事関数が白金族元素の仕事関数に近似するように、Fe−NiパーマロイにおけるFeの含有率とNiの含有率とを決定する含有率決定工程と、含有率決定工程によって決定した含有率のFe及びNiから形成されたFe−Niパーマロイを微粉砕してパーマロイ微粉体を作るパーマロイ微粉体作成工程と、パーマロイ微粉体作成工程によって作成したパーマロイ微粉体に所定のバインダー及び所定の気孔形成材を加え、パーマロイ微粉体にバインダーと前記気孔形成材とを均一に混合・分散してパーマロイ微粉体混合物を作るパーマロイ微粉体混合物作成工程と、パーマロイ微粉体混合物作成工程によって作成したパーマロイ微粉体混合物を薄板状に成形してパーマロイ微粉体混合成形物を作るパーマロイ微粉体混合成形物作成工程と、パーマロイ微粉体混合成形物作成工程によって作成したパーマロイ微粉体混合成形物を脱脂するとともにパーマロイ微粉体混合成形物を所定温度で焼結し、パーマロイ微粉体が溶融結合しつつ多数の微細な連続気孔が満遍なく形成されているとともに、パーマロイ微粉体が溶融結合したパーマロイ溶融物によって連続気泡が画成かつ囲繞されたマイクロポーラス構造の薄板状発泡金属電極を作る薄板状発泡金属電極作成工程との各工程によって電極を製造するから、電極を廉価に作ることができ、白金族元素を担持した電極と略同一の仕事関数を備えるとともに、白金族元素を担持した電極と略同様の優れた触媒活性(触媒作用)を発揮することが可能な非白金の電極(陽極又は陰極)を作ることができ、触媒機能を十分かつ確実に利用することが可能な非白金の電極を作ることができる。電極製造方法は、それによって作られた電極が白金を担持した電極と略同様の触媒活性(触媒作用)を発揮するから、燃料電池において十分な電気を発電することが可能であって燃料電池に接続された負荷に十分な電気エネルギーを供給することが可能な電極を作ることができるとともに、水素ガス発生装置において電気分解を効率よく行うことが可能であって短時間に多量の水素ガスを発生させることが可能な電極を作ることができる。 According to the electrode manufacturing method according to the present invention, the content of Fe in Fe-Ni permalloy and the work function of Ni so that the work function of permalloy fine powder obtained by finely pulverizing Fe-Ni permalloy is close to the work function of platinum group elements. A content rate determination step for determining the content rate, a permalloy fine powder preparation step for producing permalloy fine powder by finely pulverizing Fe-Ni permalloy formed from Fe and Ni having a content rate determined by the content rate determination step. A predetermined binder and a predetermined pore-forming material are added to the permalloy fine powder prepared by the permalloy fine powder preparation step, and the binder and the pore-forming material are uniformly mixed and dispersed in the permalloy fine powder to prepare a permalloy fine powder mixture. Permalloy fine powder mixed molding making step and permalloy fine powder mixed molding making step to make permalloy fine powder mixed molded product by molding the permalloy fine powder mixed mixed made by the fine powder mixed making step into a thin plate shape, and permalloy fine powder mixed molding The permalloy fine powder mixed molded product prepared in the product preparation process is degreased and the permalloy fine powder mixed molded product is sintered at a predetermined temperature, and a large number of fine continuous pores are evenly formed while the permalloy fine powder is melt-bonded. At the same time, the electrode is manufactured by each step of making a thin plate-shaped foamed metal electrode having a microporous structure in which open cells are defined and surrounded by a permalloy melt in which permalloy fine powder is melt-bonded. , The electrode can be made at a low cost, has substantially the same work function as the electrode carrying the platinum group element, and exhibits almost the same excellent catalytic activity (catalytic action) as the electrode carrying the platinum group element. It is possible to make a non-platinum electrode (anode or a cathode) capable of making a non-platinum electrode capable of fully and surely utilizing the catalytic function. In the electrode manufacturing method, since the electrode produced by the electrode exhibits substantially the same catalytic activity (catalytic action) as the electrode carrying platinum, it is possible to generate sufficient electricity in the fuel cell, and the fuel cell can be used. It is possible to make electrodes that can supply sufficient electrical energy to the connected load, and it is possible to efficiently perform electrolysis in a hydrogen gas generator and generate a large amount of hydrogen gas in a short time. It is possible to make an electrode that can be made to.

含有率決定工程がFe−NiパーマロイにおけるFeの含有率を45%〜55%の範囲で決定し、Fe−NiパーマロイにおけるNiの含有率を45%〜55%の範囲で決定する電極製造方法は、パーマロイ微粉体の仕事関数が白金族元素の仕事関数に近似するように、含有率決定工程においてFe−NiパーマロイにおけるFeの含有率とNiの含有率とが前記範囲で決定するから、白金族元素を担持した電極と略同様の優れた触媒活性(触媒作用)を発揮することが可能な非白金の電極(陽極又は陰極)を作ることができ、触媒機能を十分かつ確実に利用することが可能な非白金の電極を作ることができる。 An electrode manufacturing method in which the content rate determination step determines the Fe content in Fe-Ni permalloy in the range of 45% to 55% and the Ni content in Fe-Ni permalloy in the range of 45% to 55%. Since the Fe content and Ni content in Fe-Ni permalloy are determined in the above range in the content rate determination step so that the work function of the permalloy fine powder is close to the work function of the platinum group element, the platinum group It is possible to make a non-platinum electrode (anode or cathode) capable of exhibiting almost the same excellent catalytic activity (catalytic action) as an electrode carrying an element, and it is possible to fully and surely utilize the catalytic function. Possible non-platinum electrodes can be made.

パーマロイ微粉体作成工程がFe−Niパーマロイを1μm〜100μmの粒径に微粉砕する電極製造方法は、Fe−Niパーマロイを微粉砕してパーマロイ微粉体の粒径を前記範囲にすることで、多数の微細な連続気孔を有する多孔質(平均径が1μm〜100μmの微細な連続気孔が満遍なく均一に形成されたマイクロポーラス構造)に成形された電極を作ることができ、比表面積が大きい電極を作ることができるとともに、それら連続気孔を気体(酸素及び水素)や液体(水)が通流しつつ気体や液体をそれら連続気孔における接触面に広範囲に接触させることが可能な電極を作ることができる。 There are many electrode manufacturing methods in which the permalloy fine powder preparation process finely grinds Fe-Ni permalloy to a particle size of 1 μm to 100 μm by finely grinding Fe-Ni permalloy and setting the particle size of the permalloy fine powder within the above range. It is possible to make an electrode formed into a porous material having fine continuous pores (a microporous structure in which fine continuous pores having an average diameter of 1 μm to 100 μm are formed evenly and uniformly), and to make an electrode having a large specific surface area. At the same time, it is possible to make an electrode capable of bringing the gas or liquid into wide contact with the contact surface in the continuous pores while allowing the gas (oxygen and hydrogen) or the liquid (water) to pass through the continuous pores.

パーマロイ微粉体混合成形物作成工程が射出成形又は押出成形によってパーマロイ微粉体混合物を成形して0.05mm〜0.5mmの厚み寸法を有する所定面積かつ薄板状のパーマロイ微粉体混合成形物を作る電極製造方法は、微粉体混合物を成形した厚み寸法0.05mm〜0.5mmの微粉体混合成形物を脱脂・焼結することで、多数の微細な連続気孔を有するマイクロポーラス構造かつ薄板状の電極を作ることができ、マイクロポーラス構造かつ薄板状の電極を廉価に作ることができるとともに、優れた触媒活性(触媒作用)を有して触媒機能を十分かつ確実に利用することが可能な非白金の電極(陽極又は陰極)を作ることができる。電極製造方法は、厚み寸法が0.05mm〜0.5mmの範囲の電極を作ることができるから、電気抵抗が小さく電流をスムースに流すことが可能な(プロトン導電性が高い)電極(陽極又は陰極)を作ることができる。 Electrode in which the Permalloy fine powder mixed molded product preparation process forms a Permalloy fine powder mixed molded product by injection molding or extrusion molding to produce a permalloy fine powder mixed molded product having a predetermined area and a thin plate shape having a thickness dimension of 0.05 mm to 0.5 mm. The manufacturing method is a microporous structure and thin plate-shaped electrode having a large number of fine continuous pores by degreasing and sintering a fine powder mixed molded product having a thickness dimension of 0.05 mm to 0.5 mm obtained by molding the fine powder mixed mixture. Non-platinum, which has a microporous structure and a thin plate-like electrode at a low cost, has excellent catalytic activity (catalytic action), and can sufficiently and reliably utilize the catalytic function. Electrodes (anolyte or catalyst) can be made. In the electrode manufacturing method, since an electrode having a thickness in the range of 0.05 mm to 0.5 mm can be produced, an electrode (anode or an anode or an electrode having high proton conductivity) that has low electrical resistance and can smoothly flow an electric current. Cathode) can be made.

一例として示す電極の斜視図。The perspective view of the electrode shown as an example. 電極の一例として示す部分拡大図。The partially enlarged view which shows as an example of an electrode. 電極を使用したセルの一例を示す分解斜視図。An exploded perspective view showing an example of a cell using electrodes. 電極を使用したセルの側面図。Side view of the cell using electrodes. 電極を使用した固体高分子形燃料電池の発電を説明する図。The figure explaining the power generation of the polymer electrolyte fuel cell using an electrode. 電極の起電圧試験の結果を示す図。The figure which shows the result of the electromotive force test of an electrode. 電極のI−V特性試験の結果を示す図。The figure which shows the result of the IV characteristic test of an electrode. 電極を使用した水素ガス発生装置の電気分解を説明する図。The figure explaining the electrolysis of the hydrogen gas generator using an electrode. 電極の製造方法を説明する図。The figure explaining the manufacturing method of an electrode.

一例として示す電極10の斜視図である図1等の添付の図面を参照し、本発明に係る電極の詳細を説明すると、以下のとおりである。なお、図2は、電極10の一例として示す部分拡大図である。図1では、厚み方向を矢印Xで示し、径方向を矢印Yで示す。 The details of the electrode according to the present invention will be described with reference to the attached drawings such as FIG. 1 which is a perspective view of the electrode 10 shown as an example. Note that FIG. 2 is a partially enlarged view showing an example of the electrode 10. In FIG. 1, the thickness direction is indicated by an arrow X, and the radial direction is indicated by an arrow Y.

電極10は、陽極又は陰極として使用され、固体高分子形燃料電池17の燃料極18(触媒電極)や空気極19(触媒電極)(図5参照)、水素ガス発生装置30のアノード31(電極触媒)やカソード32(電極触媒)(図8参照)として利用される。電極10は、前面11及び後面12を有するとともに、所定の面積及び所定の厚み寸法L1を有し、その平面形状が四角形に成形されている。電極10は、多数の微細な連続気孔13(連続通気孔)が満遍なく均一に形成された多孔質(マイクロポーラス構造)の薄板状発泡金属電極である。連続気孔13には、気体(酸素及び水素)や液体(水)が通流する。なお、電極10の平面形状に特に制限はなく、四角形の他に、その用途にあわせて円形や楕円形、多角形等の他のあらゆる平面形状に成形することができる。 The electrode 10 is used as an anode or a cathode, and has a fuel electrode 18 (catalyst electrode) and an air electrode 19 (catalyst electrode) (see FIG. 5) of the polymer electrolyte fuel cell 17, and an anode 31 (electrode) of the hydrogen gas generator 30. It is used as a catalyst) or a cathode 32 (electrode catalyst) (see FIG. 8). The electrode 10 has a front surface 11 and a rear surface 12, has a predetermined area and a predetermined thickness dimension L1, and its planar shape is formed into a quadrangle. The electrode 10 is a porous (microporous structure) thin plate-shaped foamed metal electrode in which a large number of fine continuous pores 13 (continuous ventilation holes) are uniformly and uniformly formed. Gas (oxygen and hydrogen) and liquid (water) pass through the continuous pores 13. The planar shape of the electrode 10 is not particularly limited, and it can be formed into any other planar shape such as a circle, an ellipse, or a polygon according to the intended use, in addition to the quadrangle.

電極10は、粉状に微粉砕(粉砕加工)されたFe−Niパーマロイ41から形成されている。Fe−Niパーマロイ41のパーマロイ微粉体42(微粉状に加工されたFe−Niパーマロイ41)に所定のバインダー43(紛状の樹脂系バインダー)を混合し、パーマロイ微粉体42とバインダー43とを均一に混合・分散した微粉体混合物45を作り、更に、微粉体混合物45に所定の気孔形成材44(発泡剤)を混合し、気孔形成材44を均一に混合・分散した微粉体混合物45を作る。作成した微粉体混合物45を押出成形又は射出成形によって所定面積の薄板状に成形(押出成形又は射出成形)して薄板状の微粉体混合成形物46を作り、作成した微粉体混合成形物46を脱脂及び所定温度で焼結(焼成)することから電極10が作られている(図9参照)。連続気泡13は、パーマロイ微粉体42が溶融結合したパーマロイ溶融物によって画成かつ囲繞されている。 The electrode 10 is formed of Fe—Ni permalloy 41 that has been finely pulverized (pulverized) into powder. A predetermined binder 43 (powdered resin-based binder) is mixed with the permalloy fine powder 42 (Fe-Ni permalloy 41 processed into fine powder) of Fe-Ni permalloy 41, and the permalloy fine powder 42 and the binder 43 are made uniform. To prepare a fine powder mixture 45 mixed and dispersed in, and further, a predetermined pore-forming material 44 (foaming agent) is mixed with the fine powder mixture 45 to prepare a fine powder mixture 45 in which the pore-forming material 44 is uniformly mixed and dispersed. .. The prepared fine powder mixture 45 is formed into a thin plate having a predetermined area by extrusion molding or injection molding (extrusion molding or injection molding) to prepare a thin plate-shaped fine powder mixed molded product 46, and the prepared fine powder mixed molded product 46 is used. The electrode 10 is made by degreasing and sintering (baking) at a predetermined temperature (see FIG. 9). The open cell 13 is defined and surrounded by a permalloy melt in which the permalloy fine powder 42 is melt-bonded.

電極10では、パーマロイ微粉体42の仕事関数が白金族元素の仕事関数に近似するように、Fe−Niパーマロイ41における(Fe−Niパーマロイ41の全重量(100%)に対する)Fe(鉄)の含有率(重量比)とNi(ニッケル)の含有率(重量比)とが決定されている。具体的には、Fe−Niパーマロイ41におけるFeの含有率(重量比)が45%〜55%の範囲、好ましくは、49%〜51%の範囲にあり、Fe−Niパーマロイ41におけるNiの含有率(重量比)が45%〜55%の範囲、好ましくは、49%〜51%の範囲にある。 At the electrode 10, the Fe (iron) in the Fe—Ni permalloy 41 (relative to the total weight (100%) of the Fe—Ni permalloy 41) so that the work function of the permalloy fine powder 42 approximates the work function of the platinum group element. The content rate (weight ratio) and the Ni (nickel) content rate (weight ratio) have been determined. Specifically, the Fe content (weight ratio) in Fe-Ni permalloy 41 is in the range of 45% to 55%, preferably in the range of 49% to 51%, and the content of Ni in Fe-Ni permalloy 41. The rate (weight ratio) is in the range of 45% to 55%, preferably in the range of 49% to 51%.

なお、Feの仕事関数は、4.67(eV)であり、Niの仕事関数は、5.22(eV)である。Fe−Niパーマロイ41におけるFeの含有率及びFe−Niパーマロイ41におけるNiの含有率が前記範囲外になると、パーマロイ微粉体42の仕事関数を白金族元素の仕事関数に近似させることができず、微粉体混合物45を成形した微粉体混合成形物46を脱脂・焼結(焼成)して作られた電極10が白金族元素を担持した電極と略同様の触媒活性(触媒作用)を発揮することができない。 The work function of Fe is 4.67 (eV), and the work function of Ni is 5.22 (eV). When the Fe content in the Fe-Ni permalloy 41 and the Ni content in the Fe-Ni permalloy 41 are out of the above range, the working function of the permalloy fine powder 42 cannot be approximated to the working function of the platinum group element. The electrode 10 produced by degreasing and sintering (baking) the fine powder mixed molded product 46 obtained by molding the fine powder mixed mixture 45 exhibits substantially the same catalytic activity (catalytic action) as an electrode carrying a platinum group element. I can't.

パーマロイ微粉体42の仕事関数が白金族元素の仕事関数に近似するように、Fe−Niパーマロイ41におけるFeの含有率とNiの含有率とが前記範囲にあるから、電極10が白金族元素(白金)を担持した(含む)電極と略同一の仕事関数を備え、電極10が白金族元素(白金)を担持した(含む)電極と略同様の優れた触媒活性(触媒作用)を発揮することができる。 Since the Fe content and Ni content in Fe-Ni Permalloy 41 are in the above range so that the work function of the permalloy fine powder 42 is close to the work function of the platinum group element, the electrode 10 is a platinum group element ( It has substantially the same work function as the electrode carrying (including platinum), and the electrode 10 exhibits almost the same excellent catalytic activity (catalytic action) as the electrode carrying (including) a platinum group element (platinum). Can be done.

電極10には、径が異なる多数の微細な連続気孔13(連続通気孔)が形成されている。電極10は、多数の微細な連続気孔13が形成されているから、その比表面積が大きい。記薄板状発泡金属電極に形成されたそれら連続気孔13は、電極10の前面11に開口する複数の通流口14と、電極10の後面12に開口する複数の通流口14とを有し、電極10の前面11から後面12に向かって電極10をその厚み方向に貫通しているとともに、電極10の中心から外周縁15に向かってその径方向に貫通している。 A large number of fine continuous pores 13 (continuous ventilation holes) having different diameters are formed in the electrode 10. Since the electrode 10 is formed with a large number of fine continuous pores 13, its specific surface area is large. The continuous pores 13 formed in the thin plate-shaped foamed metal electrode have a plurality of passage ports 14 that open in the front surface 11 of the electrode 10 and a plurality of passage ports 14 that open in the rear surface 12 of the electrode 10. The electrode 10 penetrates from the front surface 11 to the rear surface 12 of the electrode 10 in the thickness direction thereof, and also penetrates in the radial direction from the center of the electrode 10 toward the outer peripheral edge 15.

それら連続気孔13は、電極10の前面11と後面12との間において電極10の厚み方向へ不規則に曲折しながら延びているとともに、電極10の外周縁15から中心に向かって電極10の径方向へ不規則に曲折しながら延びている。径方向へ隣接して厚み方向へ曲折して延びるそれら連続気孔13(連続通気孔)は、径方向において部分的につながり、一方の気孔13と他方の気孔13とが互いに連通している。厚み方向へ隣接して径方向へ曲折して延びるそれら連続気孔13(連続通気孔)は、厚み方向において部分的につながり、一方の気孔13と他方の気孔13とが互いに連通している。 The continuous pores 13 extend between the front surface 11 and the rear surface 12 of the electrode 10 while being irregularly bent in the thickness direction of the electrode 10, and the diameter of the electrode 10 is extended from the outer peripheral edge 15 of the electrode 10 toward the center. It extends in an irregular direction. The continuous pores 13 (continuous vents) that are adjacent to each other in the radial direction and bend in the thickness direction are partially connected in the radial direction, and one pore 13 and the other pore 13 communicate with each other. The continuous pores 13 (continuous vents) that are adjacent to each other in the thickness direction and extend by bending in the radial direction are partially connected in the thickness direction, and one pore 13 and the other pore 13 communicate with each other.

それら連続気孔13の平均径(開口面積)は、厚み方向に向かって一様ではなく、厚み方向に向かって不規則に変化しているとともに、径方向に向かって一様ではなく、径方向に向かって不規則に変化している。それら連続気孔13は、その平均径(開口面積)が大きくなったり、小さくなったりしながら厚み方向と径方向とへ不規則に開口している。また、電極10の前面11に開口する通流口14と後面12に開口する通流口14とは、その平均径(開口面積)が一様ではなく、その平均径がすべて相違している。それら連続気孔13の平均径(開口面積)や前後面11,12の通流口14の平均径(開口面積)は、1μm〜100μmの範囲、好ましくは、45μm〜55μmの範囲にあり、±0.1μm〜±5μm(連続気孔13の平均径の変化幅)の範囲で変化している。 The average diameter (opening area) of these continuous pores 13 is not uniform in the thickness direction and changes irregularly in the thickness direction, and is not uniform in the radial direction and is in the radial direction. It is changing irregularly toward. The continuous pores 13 are irregularly opened in the thickness direction and the radial direction while the average diameter (opening area) is increasing or decreasing. Further, the average diameter (opening area) of the air passage port 14 opened in the front surface 11 of the electrode 10 and the air flow port 14 opened in the rear surface 12 is not uniform, and the average diameters are all different. The average diameter (opening area) of the continuous pores 13 and the average diameter (opening area) of the passage ports 14 of the front and rear surfaces 11 and 12 are in the range of 1 μm to 100 μm, preferably in the range of 45 μm to 55 μm, ± 0. It changes in the range of 1 μm to ± 5 μm (change width of the average diameter of the continuous pores 13).

電極10は、厚み方向や径方向へ不規則に曲折しながら延びる複数の連続気孔13(連続通気孔)が形成され、その気孔13の平均径が1〜100μmの範囲(好ましくは、45μm〜55μmの範囲)にあり、連続気孔13の平均径の変化幅が±0.1μm〜±5μmの範囲にあるから、電極10の単位体積当たりに多数の連続気孔13が形成され、電極10の比表面積を大きくすることができ、それら気孔13をガス(気体)や液体が通流しつつガス(気体)や液体を電極10のそれら気孔25における接触面に広範囲に接触させることができ、電極10の触媒活性(触媒作用)を有効かつ最大限に利用することができる。 The electrode 10 is formed with a plurality of continuous pores 13 (continuous ventilation holes) extending while irregularly bending in the thickness direction and the radial direction, and the average diameter of the pores 13 is in the range of 1 to 100 μm (preferably 45 μm to 55 μm). Since the range of change in the average diameter of the continuous pores 13 is in the range of ± 0.1 μm to ± 5 μm, a large number of continuous pores 13 are formed per unit volume of the electrode 10, and the specific surface area of the electrode 10 is increased. Can be enlarged, and the gas (gas) or liquid can be brought into contact with the contact surface of the pores 25 of the electrode 10 over a wide range while the gas (gas) or liquid is flowing through the pores 13, and the catalyst of the electrode 10 can be contacted. The activity (catalytic action) can be effectively and maximized.

電極10(マイクロポーラス構造の薄板状発泡金属電極)は、その厚み寸法L1が0.05mm〜0.5mmの範囲にある。電極10の厚み寸法L1が0.05mm未満では、その強度が低下し、衝撃が加えられたときに電極10が容易に破損又は損壊し、その形状を維持することができない場合がある。電極10の厚み寸法L1が0.5mmを超過すると、電極10の電気抵抗が大きくなり、電極10に電流がスムースに流れず(プロトン導電性が低く)、電極10が固体高分子形燃料電池17に使用されたときに燃料電池17において十分な電気を発電することができず、燃料電池17に接続された負荷29に十分な電気エネルギーを供給することができない。また、電極10が水素ガス発生装置30に使用されたときに電気分解を効率よく行うことができず、水素ガス発生装置30において短時間に多量の水素ガスを発生させることができない。 The electrode 10 (thin plate-shaped foamed metal electrode having a microporous structure) has a thickness dimension L1 in the range of 0.05 mm to 0.5 mm. If the thickness dimension L1 of the electrode 10 is less than 0.05 mm, its strength is lowered, and the electrode 10 may be easily damaged or damaged when an impact is applied, and its shape may not be maintained. When the thickness dimension L1 of the electrode 10 exceeds 0.5 mm, the electrical resistance of the electrode 10 increases, the current does not flow smoothly through the electrode 10 (proton conductivity is low), and the electrode 10 is a solid polymer fuel cell 17 The fuel cell 17 cannot generate sufficient electricity when used in the fuel cell 17, and cannot supply sufficient electric energy to the load 29 connected to the fuel cell 17. Further, when the electrode 10 is used in the hydrogen gas generator 30, electrolysis cannot be efficiently performed, and the hydrogen gas generator 30 cannot generate a large amount of hydrogen gas in a short time.

電極10は、その厚み寸法L1が0.05mm〜0.5mmの範囲にあるから、電極10が高い強度を有してその形状を維持することができ、電極10に衝撃が加えられたときの電極10の破損や損壊を防ぐことができる。更に、電極10の電気抵抗を小さくすることができ、電極10に電流がスムースに流れ(プロトン導電性が高く)、電極10が固体高分子形燃料電池17に使用されたときに燃料電池17において十分な電気を発電することができ、燃料電池17に接続された負荷29に十分な電気エネルギーを供給することができる。また、電極10が水素ガス発生装置30に使用されたときに電気分解を効率よく行うことができ、水素ガス発生装置30において短時間に多量の水素ガスを発生させることができる。 Since the thickness dimension L1 of the electrode 10 is in the range of 0.05 mm to 0.5 mm, the electrode 10 has high strength and can maintain its shape, and when an impact is applied to the electrode 10. It is possible to prevent the electrode 10 from being damaged or damaged. Further, the electrical resistance of the electrode 10 can be reduced, a current flows smoothly through the electrode 10 (high proton conductivity), and when the electrode 10 is used in the polymer electrolyte fuel cell 17, the fuel cell 17 Sufficient electricity can be generated, and sufficient electric energy can be supplied to the load 29 connected to the fuel cell 17. Further, when the electrode 10 is used in the hydrogen gas generator 30, electrolysis can be efficiently performed, and the hydrogen gas generator 30 can generate a large amount of hydrogen gas in a short time.

電極10(マイクロポーラス構造の薄板状発泡金属電極)は、その気孔率が45%〜55%の範囲にある。電極10の気孔率が45%未満では、電極10に多数の微細な連続気孔13(連続通気孔)が形成されず、電極10の比表面積を大きくすることができない。電極10の気孔率が55%を超過すると、連続気孔13(連続通気孔)の平均径(開口面積)や前後面11,12の通流口14の平均径(開口面積)が必要以上に大きくなり、電極10の強度が低下し、衝撃が加えられたときに電極10が容易に破損又は損壊し、その形状を維持することができない場合があるとともに、電極10の触媒作用が低下し、触媒活性を発揮することができない。 The electrode 10 (thin plate-shaped foamed metal electrode having a microporous structure) has a porosity in the range of 45% to 55%. If the pore ratio of the electrode 10 is less than 45%, a large number of fine continuous pores 13 (continuous ventilation holes) are not formed in the electrode 10, and the specific surface area of the electrode 10 cannot be increased. When the porosity of the electrode 10 exceeds 55%, the average diameter (opening area) of the continuous pores 13 (continuous ventilation holes) and the average diameter (opening area) of the passage ports 14 of the front and rear surfaces 11 and 12 become larger than necessary. As a result, the strength of the electrode 10 decreases, and when an impact is applied, the electrode 10 may be easily damaged or damaged, and its shape may not be maintained, and the catalytic action of the electrode 10 decreases, resulting in a catalyst. Cannot exert activity.

電極10は、その気孔率が前記範囲にあるから、電極10が平均径(開口面積)の異なる多数の微細な連続気孔13(平均径が1〜100μmの範囲、好ましくは、45μm〜55μmの範囲の連続気孔13)や平均径(開口面積)の異なる多数の微細な前後面11,12の通流口14(平均径が1〜100μmの範囲、好ましくは、45μm〜55μmの範囲の通流口14)を有する多孔質(マイクロポーラス構造)に成形され、電極10の比表面積を大きくすることができ、それら気孔13を気体や液体が通流しつつ気体や液体を電極10のそれら気孔13における接触面に広く接触させることができる。更に、電極10の触媒作用が向上し、優れた触媒活性を発揮することができる。 Since the porosity of the electrode 10 is in the above range, the electrode 10 has a large number of fine continuous pores 13 having different average diameters (opening areas) (the average diameter is in the range of 1 to 100 μm, preferably in the range of 45 μm to 55 μm). Continuous pores 13) and a large number of fine front and rear surfaces 11 and 12 having different average diameters (opening areas) 14 (average diameter in the range of 1 to 100 μm, preferably in the range of 45 μm to 55 μm) It is formed into a porous material (microporous structure) having 14), and the specific surface area of the electrode 10 can be increased, and the gas or liquid comes into contact with the pores 13 of the electrode 10 while the gas or liquid flows through the pores 13. Can be widely contacted with the surface. Further, the catalytic action of the electrode 10 is improved, and excellent catalytic activity can be exhibited.

電極10(マイクロポーラス構造の薄板状発泡金属電極)は、その密度が6.0g/cm〜8.0g/cmの範囲、好ましくは、6.5g/cm〜7.5g/cmの範囲にある。電極10の密度が6.0g/cm(6.5g/cm)未満では、電極10の強度が低下し、衝撃が加えられたときに電極10が容易に破損又は損壊し、その形状を維持することができない場合があるとともに、電極10の触媒作用が低下し、触媒活性を発揮することができない。電極10の密度が8.0g/cm(7.5g/cm)を超過すると、電極10に多数の微細な連続気孔13や多数の微細な通流口14が形成されず、電極10の比表面積を大きくすることができないとともに、電極10の触媒作用が低下し、触媒活性を発揮することができない。 Electrode 10 (thin plate porous metal electrodes of the micro-porous structure) in the range that the density of 6.0g / cm 2 ~8.0g / cm 2 , preferably, 6.5g / cm 2 ~7.5g / cm 2 Is in the range of. If the density of the electrode 10 is less than 6.0 g / cm 2 (6.5 g / cm 2 ), the strength of the electrode 10 decreases, and the electrode 10 is easily damaged or damaged when an impact is applied, and the shape thereof is changed. In some cases, it cannot be maintained, and the catalytic action of the electrode 10 is reduced, so that the catalytic activity cannot be exhibited. When the density of the electrode 10 exceeds 8.0 g / cm 2 (7.5 g / cm 2 ), a large number of fine continuous pores 13 and a large number of fine passage ports 14 are not formed in the electrode 10, and the electrode 10 is formed. The specific surface area cannot be increased, and the catalytic action of the electrode 10 is reduced, so that the catalytic activity cannot be exhibited.

電極10は、その密度が前記範囲にあるから、電極10が平均径(開口面積)の異なる多数の微細な連続気孔13(平均径が1〜100μmの範囲、好ましくは、45μm〜55μmの範囲の連続気孔13)や平均径(開口面積)の異なる多数の微細な前後面11,12の通流口14(平均径が1〜100μmの範囲、好ましくは、45μm〜55μmの範囲の通流口14)を有する多孔質(マイクロポーラス構造)に成形され、電極10の比表面積を大きくすることができ、それら気孔13を気体や液体が通流しつつ気体や液体を電極10のそれら気孔13における接触面に広く接触させることができ、電極10の触媒作用を有効かつ最大限に利用することができる。更に、電極10の触媒作用が向上し、電極10に優れた触媒活性を発揮させることができる。 Since the density of the electrode 10 is in the above range, the electrode 10 has a large number of fine continuous pores 13 having different average diameters (opening areas) (the average diameter is in the range of 1 to 100 μm, preferably in the range of 45 μm to 55 μm). Passage ports 14 (with an average diameter in the range of 1 to 100 μm, preferably in the range of 45 μm to 55 μm) of a large number of fine front and rear surfaces 11 and 12 having continuous pores 13) and different average diameters (opening areas) ) Is formed into a porous material (microporous structure), the specific surface area of the electrode 10 can be increased, and the contact surface of the electrode 10 in the pores 13 while the gas or liquid flows through the pores 13. Can be widely contacted with, and the catalytic action of the electrode 10 can be effectively and maximized. Further, the catalytic action of the electrode 10 is improved, and the electrode 10 can exhibit excellent catalytic activity.

パーマロイ微粉体42(粉状に加工されたFe−Niパーマロイ)の粒径は、1μm〜100μmの範囲、好ましくは、30μm〜60μmの範囲にある。パーマロイ微粉体42の粒径が1μm未満では、パーマロイ微粉体42によって連続気孔13(連続通気孔)が塞がれ、電極10に多数の微細な連続気孔13を形成することができず、電極10の比表面積を大きくすることができないとともに、電極10の触媒作用が低下し、触媒活性を発揮することができない。パーマロイ微粉体42の粒径が100μmを超過すると、連続気孔13の平均径(開口面積)や前後面11,12の通流口15の平均径(開口面積)が必要以上に大きくなり、電極10に多数の微細な連続気孔13を形成することができず、電極10の比表面積を大きくすることができないとともに、電極10の触媒作用が低下し、触媒活性を発揮することができない。 The particle size of the permalloy fine powder 42 (Fe-Ni permalloy processed into powder) is in the range of 1 μm to 100 μm, preferably in the range of 30 μm to 60 μm. If the particle size of the permalloy fine powder 42 is less than 1 μm, the continuous pores 13 (continuous ventilation holes) are blocked by the permalloy fine powder 42, and a large number of fine continuous pores 13 cannot be formed in the electrode 10, so that the electrode 10 cannot be formed. The specific surface area of the electrode 10 cannot be increased, and the catalytic action of the electrode 10 is reduced, so that the catalytic activity cannot be exhibited. When the particle size of the permalloy fine powder 42 exceeds 100 μm, the average diameter (opening area) of the continuous pores 13 and the average diameter (opening area) of the passage ports 15 of the front and rear surfaces 11 and 12 become larger than necessary, and the electrode 10 It is not possible to form a large number of fine continuous pores 13 in the electrode 10, the specific surface area of the electrode 10 cannot be increased, and the catalytic action of the electrode 10 is lowered, so that the catalytic activity cannot be exhibited.

電極10は、パーマロイ微粉体42の粒径が前記範囲にあるから、電極10が平均径(開口面積)の異なる多数の微細な連続気孔13(平均径が1〜100μmの範囲、好ましくは、45μm〜55μmの範囲の連続気孔13)や平均径(開口面積)の異なる多数の微細な前後面11,12の通流口14(平均径が1〜100μmの範囲、好ましくは、45μm〜55μmの範囲の通流口14)を有する多孔質(マイクロポーラス構造)に成形され、電極10の比表面積を大きくすることができ、それら気孔13を気体や液体が通流しつつ気体や液体を電極10のそれら気孔13における接触面に広く接触させることができるとともに、電極10の触媒活性(触媒作用)を有効かつ最大限に利用することができる。更に、電極10の触媒作用が向上し、電極10に優れた触媒活性を発揮させることができる。 Since the particle size of the permalloy fine powder 42 is in the above range, the electrode 10 has a large number of fine continuous pores 13 (with an average diameter of 1 to 100 μm, preferably 45 μm) having different average diameters (opening areas). Continuous pores 13) in the range of ~ 55 μm and through ports 14 (average diameter in the range of 1 to 100 μm, preferably in the range of 45 μm to 55 μm) of a large number of fine front and rear surfaces 11 and 12 having different average diameters (opening areas). It is formed into a porous material (microporous structure) having a passage port 14), and the specific surface area of the electrode 10 can be increased, and the gas or liquid is passed through the pores 13 while the gas or liquid is passed through those of the electrode 10. The contact surface in the pores 13 can be widely contacted, and the catalytic activity (catalytic action) of the electrode 10 can be effectively and maximized. Further, the catalytic action of the electrode 10 is improved, and the electrode 10 can exhibit excellent catalytic activity.

図3は、電極10を使用したセル16の一例を示す分解斜視図であり、図4は、電極10を使用したセル16の側面図である。図5は、電極10を使用した固体高分子形燃料電池17の発電を説明する図であり、図6は、電極10の起電圧試験の結果を示す図である。図7は、電極10のI−V特性試験の結果を示す図である。 FIG. 3 is an exploded perspective view showing an example of the cell 16 using the electrode 10, and FIG. 4 is a side view of the cell 16 using the electrode 10. FIG. 5 is a diagram illustrating power generation of the polymer electrolyte fuel cell 17 using the electrode 10, and FIG. 6 is a diagram showing the results of an electromotive voltage test of the electrode 10. FIG. 7 is a diagram showing the results of the IV characteristic test of the electrode 10.

電極10を使用したセル16の一例としては、図3に示すように、電極10を使用した燃料極18(陽極)と、電極10を使用した空気極19(陰極)と、燃料極18及び空気極19に介在する固体高分子電解質膜20(電極接合体膜)(フッ素系イオン交換膜)と、燃料極18の厚み方向外側に位置するセパレータ21(バイポーラプレート)と、空気極19の厚み方向外側に位置するセパレータ22(バイポーラプレート)とから形成されている。それらセパレータ21,22には、反応ガス(水素や酸素等)の供給流路が刻設されている(彫り込まれている)。 As an example of the cell 16 using the electrode 10, as shown in FIG. 3, a fuel electrode 18 (anode) using the electrode 10, an air electrode 19 (cathode) using the electrode 10, a fuel electrode 18 and air The solid polymer electrolyte membrane 20 (electrode junction membrane) (fluorine-based ion exchange membrane) interposed at the pole 19, the separator 21 (bipolar plate) located outside in the thickness direction of the fuel pole 18, and the thickness direction of the air pole 19 It is formed from a separator 22 (bipolar plate) located on the outside. Supply channels for reaction gases (hydrogen, oxygen, etc.) are engraved (engraved) in the separators 21 and 22.

セル16では、図4に示すように、燃料極18や空気極19、固体高分子電解質膜20が厚み方向へ重なり合って一体化し、膜/電極接合体23(Membrane Electrode Assembly, MEA)を構成し、膜/電極接合体23をそれらセパレータ21,22が挟み込んでいる。膜/電極接合体23では、ホットプレスによって固体高分子電解質膜20の一方の面に燃料極18の面が隙間なく密着し、固体高分子電解質膜20の他方の面に空気極19の面が隙間なく密着している。固体高分子形燃料電池17では、複数のセル16(単セル)が一方向へ重なり合って直列につながれてセルスタック(燃料電池スタック)を形成する。固体高分子電解質膜20は、プロトン導電性があり、電子導電性がない。 In the cell 16, as shown in FIG. 4, the fuel electrode 18, the air electrode 19, and the solid polymer electrolyte membrane 20 are overlapped and integrated in the thickness direction to form a membrane / electrode assembly 23 (MEA). The membrane / electrode assembly 23 is sandwiched between the separators 21 and 22. In the membrane / electrode assembly 23, the surface of the fuel electrode 18 is closely adhered to one surface of the solid polymer electrolyte membrane 20 by hot pressing, and the surface of the air electrode 19 is attached to the other surface of the solid polymer electrolyte membrane 20. It is in close contact without any gaps. In the polymer electrolyte fuel cell 17, a plurality of cells 16 (single cells) are overlapped in one direction and connected in series to form a cell stack (fuel cell stack). The solid polymer electrolyte membrane 20 has proton conductivity and no electron conductivity.

燃料極18とセパレータ21との間には、ガス拡散層24が形成され、空気極19とセパレータ22との間には、ガス拡散層25が形成されている。燃料極18とセパレータ21との間であってガス拡散層24の上部及び下部には、ガスシール26が設置されている。空気極19とセパレータ22との間であってガス拡散層25の上部及び下部には、ガスシール27が設置されている。 A gas diffusion layer 24 is formed between the fuel electrode 18 and the separator 21, and a gas diffusion layer 25 is formed between the air electrode 19 and the separator 22. Gas seals 26 are installed between the fuel electrode 18 and the separator 21 at the upper and lower parts of the gas diffusion layer 24. Gas seals 27 are installed between the air electrode 19 and the separator 22 at the upper and lower parts of the gas diffusion layer 25.

固体高分子形燃料電池17では、図5に示すように、燃料極18(電極10)に水素(燃料)が供給され、空気極19(電極10)に空気(酸素)が供給される。燃料極18(電極10)では、水素がH→2H+2eの反応(触媒作用)によってプロトン(水素イオン、H)と電子とに分解される。その後、プロトンが固体高分子電解質膜20内を通って空気極19(電極10)へ移動し、電子が導線28内を通って空気極19へ移動する。固体高分子電解質膜20には、燃料極18で生成されたプロトンが通流する。空気極19では、固体高分子電解質膜20から移動したプロトンと導線28を移動した電子とが空気中の酸素と反応し、4H+O+4e→2HOの反応によって水が生成される。 In the polymer electrolyte fuel cell 17, as shown in FIG. 5, hydrogen (fuel) is supplied to the fuel electrode 18 (electrode 10), and air (oxygen) is supplied to the air electrode 19 (electrode 10). At the fuel electrode 18 (electrode 10), hydrogen is decomposed into protons (hydrogen ions, H + ) and electrons by the reaction (catalysis) of H 2 → 2H + + 2e . After that, protons move through the solid polymer electrolyte membrane 20 to the air electrode 19 (electrode 10), and electrons move through the lead wire 28 to the air electrode 19. Protons generated at the fuel electrode 18 pass through the solid polymer electrolyte membrane 20. At the air electrode 19, the protons transferred from the solid polymer electrolyte membrane 20 and the electrons transferred through the lead wire 28 react with oxygen in the air, and water is generated by the reaction of 4H + + O 2 + 4e → 2H 2 O.

燃料極18(電極10)や空気極19(電極10)は、Fe−Niパーマロイを微粉砕したパーマロイ微粉体の仕事関数が白金族元素の仕事関数に近似するように、Fe−NiパーマロイにおけるFeの含有率(重量比)とNiの含有率(重量比)とが決定されているから、電極10(燃料極18(陽極)及び空気極19(陰極))が白金族元素(白金)を担持した(含む)電極と略同一の仕事関数を備え、白金族元素(白金)を担持した電極と略同様の優れた触媒活性(触媒作用)を示し、水素がプロトンと電子とに効率よく分解される。 The fuel electrode 18 (electrode 10) and the air electrode 19 (electrode 10) are Fe in Fe-Ni permalloy so that the work function of the permalloy fine powder obtained by finely pulverizing Fe-Ni permalloy is close to the work function of the platinum group element. Since the content (weight ratio) of Ni and the content (weight ratio) of Ni are determined, the electrode 10 (fuel electrode 18 (anode) and air electrode 19 (catalyst)) carries a platinum group element (platinum). It has almost the same work function as the electrode (including), and shows almost the same excellent catalytic activity (catalytic action) as the electrode carrying a platinum group element (platinum), and hydrogen is efficiently decomposed into protons and electrons. To.

起電圧試験では、水素ガスを注入してから15分の間、燃料極18(電極10)と空気極19(電極10)との間(電極10間)の電圧(V)を測定した。図6の起電圧試験の結果を示す図では、横軸に測定時間(min)を表し、縦軸に電極間の電圧(V)を表す。白金族元素を利用した(担持させた)燃料極や空気極(白金電極)を使用した固体高分子形燃料電池では、起電圧試験の結果を示す図6から分かるように、燃料極と空気極との間(電極間)の電圧が1.079(V)前後であった。それに対し、燃料極18(非白金の電極10)及び空気極19(非白金の電極10)を使用した固体高分子形燃料電池10では、燃料極18と空気極19との間(電極10間)の電圧(起電力)が0.98(V)〜1.02(V)であった。 In the electromotive voltage test, the voltage (V) between the fuel electrode 18 (electrode 10) and the air electrode 19 (electrode 10) (between the electrodes 10) was measured for 15 minutes after the hydrogen gas was injected. In the figure showing the result of the electromotive force test of FIG. 6, the horizontal axis represents the measurement time (min), and the vertical axis represents the voltage (V) between the electrodes. In a polymer electrolyte fuel cell using (supported) a fuel electrode using a platinum group element or an air electrode (platinum electrode), the fuel electrode and the air electrode can be seen from FIG. 6 showing the results of the electromotive voltage test. The voltage between and (between electrodes) was around 1.079 (V). On the other hand, in the polymer electrolyte fuel cell 10 using the fuel electrode 18 (non-platinum electrode 10) and the air electrode 19 (non-platinum electrode 10), between the fuel electrode 18 and the air electrode 19 (between the electrodes 10). The voltage (electromotive force) of) was 0.98 (V) to 1.02 (V).

I−V特性試験では、燃料極18(電極10)と空気極19(電極10)との間(電極10間)に負荷29を接続し、電圧と電流との関係を測定した。図7のI−V特性試験の結果を示す図では、横軸に電流(A)を表し、縦軸に電圧(V)を表す。燃料極18(非白金の電極10)及び空気極19(非白金の電極10)を使用した固体高分子形燃料電池10では、I−V特性試験の結果を示す図7から分かるように、白金族元素を利用した(担持させた)燃料極や空気極(白金電極)を使用した固体高分子形燃料電池の電圧降下率と大差のない結果が得られた。図6の起電圧試験の結果や図6のI−V特性試験の結果に示すように、白金族元素を利用していない非白金の燃料極18(非白金の電極10)及び空気極19(非白金の電極10)が電子を放出させて水素イオンとなる反応を促進させる優れた触媒作用を有するとともに、白金を利用した燃料極や空気極(白金電極)と略同様の酸素還元機能(触媒作用)を有することが確認された。 In the IV characteristic test, a load 29 was connected between the fuel electrode 18 (electrode 10) and the air electrode 19 (electrode 10) (between the electrodes 10), and the relationship between the voltage and the current was measured. In the figure showing the result of the IV characteristic test of FIG. 7, the horizontal axis represents the current (A) and the vertical axis represents the voltage (V). In the polymer electrolyte fuel cell 10 using the fuel electrode 18 (non-platinum electrode 10) and the air electrode 19 (non-platinum electrode 10), platinum can be seen from FIG. 7 showing the results of the IV characteristic test. Results were obtained that were not much different from the voltage drop rate of polymer electrolyte fuel cells that used (supported) fuel electrodes and air electrodes (platinum electrodes) that used group elements. As shown in the result of the electromotive voltage test of FIG. 6 and the result of the IV characteristic test of FIG. 6, the non-platinum fuel electrode 18 (non-platinum electrode 10) and the air electrode 19 (non-platinum electrode 10) that do not use platinum group elements are used. The non-platinum electrode 10) has an excellent catalytic action that promotes the reaction of releasing electrons to become hydrogen ions, and has an oxygen reduction function (catalyst) that is almost the same as the fuel electrode and air electrode (platinum electrode) using platinum. It was confirmed that it has an action).

電極10は、それがFe−Niパーマロイ41から形成され、Fe−Niパーマロイ41を微粉砕したパーマロイ微粉体42に所定のバインダー43を均一に混合・分散しつつ所定の気孔形成材44を均一に混合・分散し、パーマロイ微粉体42にバインダー43及び気孔形成材44を混合したパーマロイ微粉体混合物45を所定面積の薄板状に成形した後、所定面積の薄板状に成形したパーマロイ微粉体混合成形物46を脱脂・焼結することで、多数の微細な連続気孔13が満遍なく均一に形成されたマイクロポーラス構造の薄板状発泡金属電極10であり、それら連続気孔13が溶融結合したパーマロイ微粉体42のパーマロイ溶融物に画成かつ囲繞され、更に、パーマロイ微粉体42の仕事関数が白金族元素の仕事関数に近似するように、Fe−Niパーマロイ41におけるFeの含有率(重量比)とNiの含有率(重量比)とが決定されているから、Fe−Niパーマロイ41の触媒活性を利用することで、白金族元素を担持した電極と略同様の優れた触媒活性(触媒作用)を発揮することができ、その触媒機能を十分かつ確実に利用することが可能であって優れた触媒活性(触媒作用)を有する燃料極18(陽極)や空気極19(陰極)として好適に使用することができる。 The electrode 10 is formed of Fe-Ni permalloy 41, and the predetermined pore-forming material 44 is uniformly mixed and dispersed in the permalloy fine powder 42 obtained by finely pulverizing the Fe-Ni permalloy 41 while the predetermined binder 43 is uniformly mixed and dispersed. A permalloy fine powder mixture 45, which is mixed and dispersed and mixed with a binder 43 and a pore forming material 44 in a permalloy fine powder 42, is formed into a thin plate having a predetermined area, and then formed into a thin plate having a predetermined area. A thin plate-shaped foamed metal electrode 10 having a microporous structure in which a large number of fine continuous pores 13 are evenly and uniformly formed by degreasing and sintering 46, and a permalloy fine powder 42 in which these continuous pores 13 are melt-bonded. It is defined and surrounded by the permalloy melt, and the Fe-Ni permalloy 41 contains Fe (weight ratio) and Ni so that the work function of the permalloy fine powder 42 is close to the work function of the platinum group element. Since the ratio (weight ratio) is determined, by utilizing the catalytic activity of Fe-Ni permalloy 41, it is possible to exhibit excellent catalytic activity (catalytic action) substantially similar to that of an electrode carrying a platinum group element. It can be suitably used as a fuel pole 18 (anode) or an air pole 19 (cathode) having excellent catalytic activity (catalytic action) and capable of sufficiently and surely utilizing its catalytic function. ..

電極10は、それが白金属元素を担持した電極と略同様の優れた触媒活性(触媒作用)を発揮するから、電極10を固体高分子形燃料電池17に使用することで、燃料電池17において十分な電気を発電することができ、燃料電池17に接続された負荷29に十分な電気エネルギーを供給することができる。電極10は、それがFe−Niパーマロイ41を微粉砕したパーマロイ微粉体42から作られているから、高価な白金族元素(白金(Pt))が使用されておらず、電極10の材料費を低減させることができ、電極10(燃料極18(陽極)や空気極19(陰極))を廉価に作ることができる。 Since the electrode 10 exhibits almost the same excellent catalytic activity (catalytic action) as the electrode carrying the white metal element, the electrode 10 can be used in the polymer electrolyte fuel cell 17 in the fuel cell 17. Sufficient electricity can be generated, and sufficient electric energy can be supplied to the load 29 connected to the fuel cell 17. Since the electrode 10 is made of permalloy fine powder 42 obtained by finely pulverizing Fe-Ni permalloy 41, an expensive platinum group element (platinum (Pt)) is not used, and the material cost of the electrode 10 is reduced. It can be reduced, and the electrode 10 (fuel electrode 18 (anode) and air electrode 19 (cathode)) can be made at low cost.

図8は、電極10を使用した水素ガス発生装置30の電気分解を説明する図である。電極10を使用した水素ガス発生装置30の一例としては、図8に示すように、電極10を使用したアノード31(陽極)と、電極10を使用したカソード32(陰極)と、アノード31及びカソード32の間に介在する固体高分子電解質膜33(電極接合体膜)(フッ素系イオン交換膜)と、陽極給電部材34及び陰極給電部材35と、陽極用貯水槽36及び陰極用貯水槽37と、陽極主電極38及び陰極主電極39とから形成されている。 FIG. 8 is a diagram illustrating electrolysis of the hydrogen gas generator 30 using the electrode 10. As an example of the hydrogen gas generator 30 using the electrode 10, as shown in FIG. 8, the anode 31 (anode) using the electrode 10, the cathode 32 (anode) using the electrode 10, the anode 31 and the cathode A solid polymer electrolyte film 33 (electrode junction film) (fluorine-based ion exchange film) interposed between 32, an anode feeding member 34 and a cathode feeding member 35, and an anode water storage tank 36 and a cathode water storage tank 37. , The anode main electrode 38 and the cathode main electrode 39.

水素ガス発生装置30では、アノード31(陽極)やカソード32(陰極)、固体高分子電解質膜33が厚み方向へ重なり合って一体化し、膜/電極接合体40 (Membrane Electrode Assembly, MEA)を構成し、膜/電極接合体40を陽極給電部材34と陰極給電部材35とが挟み込んでいる。固体高分子電解質膜33は、プロトン導電性があり、電子導電性がない。膜/電極接合体40では、ホットプレスによって固体高分子電解質膜33の一方の面にカソード32(陰極)の面が隙間なく密着し、固体高分子電解質膜20の一方の面にアノード31(陽極)の面が隙間なく密着している。 In the hydrogen gas generator 30, the anode 31 (anode), the cathode 32 (cathode), and the solid polymer electrolyte membrane 33 are overlapped and integrated in the thickness direction to form a membrane / electrode assembly 40 (MEA). , The membrane / electrode assembly 40 is sandwiched between the anode feeding member 34 and the cathode feeding member 35. The solid polymer electrolyte membrane 33 has proton conductivity and no electron conductivity. In the membrane / electrode assembly 40, the surface of the cathode 32 (cathode) is in close contact with one surface of the solid polymer electrolyte membrane 33 without a gap by hot pressing, and the anode 31 (anode) is attached to one surface of the solid polymer electrolyte membrane 20. ) Surfaces are in close contact with each other.

陽極給電部材34は、アノード31(陽極)の外側に位置してアノード31に密着し、アノード31に+の電流を給電する。陽極用貯水槽36は、陽極給電部材34の外側に位置して陽極給電部材34に密着している。陽極主電極38は、陽極用貯水槽36の外側に位置して陽極給電部材34に+の電流を給電する。陰極給電部材35は、カソード32(陰極)の外側に位置してカソード32に密着し、カソード32に−の電流を給電する。陰極用貯水槽37は、陰極給電部材35の外側に位置して陰極給電部材35に密着している。陰極主電極39は、陰極用貯水槽37の外側に位置して陰極給電部材35に−の電流を給電する。 The anode feeding member 34 is located outside the anode 31 (anode) and is in close contact with the anode 31 to supply a positive current to the anode 31. The water storage tank 36 for the anode is located outside the anode feeding member 34 and is in close contact with the anode feeding member 34. The anode main electrode 38 is located outside the anode water storage tank 36 and supplies a positive current to the anode feeding member 34. The cathode feeding member 35 is located outside the cathode 32 (cathode) and is in close contact with the cathode 32 to supply a negative current to the cathode 32. The cathode water storage tank 37 is located outside the cathode feeding member 35 and is in close contact with the cathode feeding member 35. The cathode main electrode 39 is located outside the cathode water tank 37 and supplies a negative current to the cathode feeding member 35.

水素ガス発生装置30では、図8に矢印で示すように、陽極用貯水槽36及び陰極用貯水槽37に水(HO)が給水され、陽極主電極38に電源から+の電流が給電されるとともに、陰極主電極39に電源から−の電流が給電される。陽極主電極38に給電された+の電流が陽極給電部材34からアノード31(陽極)に給電され、陰極主電極39に給電された−の電流が陰極給電部材35からカソード32(陰極)に給電される。 In the hydrogen gas generator 30, as shown by an arrow in FIG. 8, water (H 2 O) is supplied to the anode water storage tank 36 and the cathode water storage tank 37, and a positive current is supplied to the anode main electrode 38 from the power supply. At the same time, a negative current is supplied to the cathode main electrode 39 from the power source. The positive current fed to the anode main electrode 38 is fed from the anode feeding member 34 to the anode 31 (anode), and the negative current fed to the cathode main electrode 39 is fed from the cathode feeding member 35 to the cathode 32 (cathode). Will be done.

アノード31(陽極)(電極10)では、2HO→4H+4e+Oの陽極反応(触媒作用)によって酸素が生成され、カソード32(陰極)(電極10)では、4H+4e→2Hの陰極反応(触媒作用)によって酸素が生成される。プロトン(水素イオン:H)は、固体高分子電解質膜33内を通ってカソード32へ移動する。固体高分子電解質膜33には、アノード31で生成されたプロトンが通流する。 At the anode 31 (anode) (electrode 10), oxygen is generated by the anode reaction (cathode) of 2H 2 O → 4H + + 4e + O 2 , and at the cathode 32 (cathode) (electrode 10), 4H + + 4e → oxygen is produced by the cathodic reaction of 2H 2 (catalytic). Protons (hydrogen ions: H + ) move through the solid polymer electrolyte membrane 33 to the cathode 32. Protons generated at the anode 31 pass through the solid polymer electrolyte membrane 33.

電極10(アノード31及びカソード32)は、Fe−Niパーマロイ41を微粉砕したパーマロイ微粉体42の仕事関数が白金族元素の仕事関数に近似するように、Fe−Niパーマロイ41におけるFeの含有率(重量比)とNiの含有率(重量比)とが決定されているから、電極10(アノード31及びカソード32)が白金族元素(白金)を担持した電極と略同一の仕事関数を備え、白金属元素を担持した電極と略同様の優れた触媒活性(触媒作用)を発揮することができ、その触媒機能を十分かつ確実に利用することが可能であって優れた触媒活性(触媒作用)を有するアノード31(陽極)やカソード32(陰極)として好適に使用することができる。 The electrode 10 (anode 31 and cathode 32) has an Fe content in the Fe-Ni permalloy 41 so that the work function of the permalloy fine powder 42 obtained by finely pulverizing the Fe-Ni permalloy 41 is close to the work function of the platinum group element. Since the (weight ratio) and the Ni content (weight ratio) are determined, the electrodes 10 (anode 31 and cathode 32) have substantially the same work function as the electrodes carrying the platinum group element (platinum). It is possible to exhibit almost the same excellent catalytic activity (catalytic action) as an electrode carrying a platinum group element, and it is possible to fully and surely utilize the catalytic function, and the excellent catalytic activity (catalytic action). It can be suitably used as an electrode 31 (electrode) and a cathode 32 (cathode) having the above.

電極10(アノード31及びカソード32)は、それが白金族元素を担持した電極と略同様の優れた触媒活性(触媒作用)を発揮するから、電極10(アノード31及びカソード32)を水素ガス発生装置30に使用することで、水素ガス発生装置30において電気分解を効率よく行うことができ、短時間に多量の水素ガスを発生させることができる。電極10(アノード31及びカソード32)は、それがFe−Niパーマロイ41を微粉砕したパーマロイ微粉体42から作られているから、高価な白金族元素(白金(Pt))が使用されておらず、電極10の材料費を低減させることができ、電極10(アノード31及びカソード32)を廉価に作ることができる。 Since the electrode 10 (anode 31 and cathode 32) exhibits substantially the same excellent catalytic activity (catalytic action) as the electrode carrying a platinum group element, hydrogen gas is generated from the electrode 10 (anode 31 and cathode 32). By using it in the apparatus 30, electrolysis can be efficiently performed in the hydrogen gas generator 30, and a large amount of hydrogen gas can be generated in a short time. Since the electrode 10 (anode 31 and cathode 32) is made of permalloy fine powder 42 obtained by finely pulverizing Fe-Ni permalloy 41, an expensive platinum group element (platinum (Pt)) is not used. The material cost of the electrode 10 can be reduced, and the electrode 10 (anode 31 and cathode 32) can be manufactured at low cost.

図9は、電極10の製造方法を説明する図である。電極10(燃料極18及び空気極19、アノード31及びカソード32)は、図9に示すように、含有率決定工程S1、パーマロイ微粉体作成工程S2、パーマロイ微粉体混合物作成工程S3、パーマロイ微粉体混合成形物作成工程S4、薄板状発泡金属電極作成工程S5を有する電極製造方法によって製造される。電極製造方法では、Fe−Niパーマロイ42を原料として電極10(燃料極18及び空気極19、アノード31及びカソード32)を製造する。 FIG. 9 is a diagram illustrating a method for manufacturing the electrode 10. As shown in FIG. 9, the electrodes 10 (fuel electrode 18, air electrode 19, anode 31 and cathode 32) have a content rate determination step S1, a permalloy fine powder preparation step S2, a permalloy fine powder mixture preparation step S3, and a permalloy fine powder. It is manufactured by an electrode manufacturing method having a mixed molded product manufacturing step S4 and a thin plate foam metal electrode manufacturing step S5. In the electrode manufacturing method, the electrode 10 (fuel electrode 18, air electrode 19, anode 31 and cathode 32) is manufactured using Fe-Ni permalloy 42 as a raw material.

含有率決定工程S1では、Fe−Niパーマロイ41を微粉砕したパーマロイ微粉体42の仕事関数が白金族元素の仕事関数に近似するように、Fe−Niパーマロイ41におけるFeの含有率とNiの含有率とを決定する。Fe−Niパーマロイ41におけるFeの含有率は、45%〜55%の範囲、好ましくは、49%〜51%の範囲で決定され、Fe−Niパーマロイ41におけるNiの含有率は、45%〜55%の範囲、好ましくは、49%〜51%の範囲で決定される。 In the content rate determination step S1, the Fe-Ni permalloy 41 contains Fe and Ni so that the work function of the permalloy fine powder 42 obtained by finely pulverizing Fe-Ni permalloy 41 is close to the work function of the platinum group element. Determine the rate. The Fe content in Fe-Ni permalloy 41 is determined in the range of 45% to 55%, preferably 49% to 51%, and the Ni content in Fe-Ni permalloy 41 is 45% to 55. It is determined in the range of%, preferably in the range of 49% to 51%.

パーマロイ微粉体作成工程S2では、含有率決定工程によって決定した含有率のFe及びNiから形成されたFe−Niパーマロイ41を微粉砕してパーマロイ微粉体42を作る。微粉砕機によってFe−Niパーマロイ41を1μm〜100μmの粒径、好ましくは、30μm〜60μmの粒径に微粉砕し、粒径が1μm〜100μm、好ましくは、粒径が30μm〜60μmのパーマロイ微粉体42を作る。 In the permalloy fine powder preparation step S2, Fe—Ni permalloy 41 formed from Fe and Ni having a content determined by the content rate determination step is finely pulverized to produce permalloy fine powder 42. Fe-Ni permalloy 41 is finely pulverized by a fine pulverizer to a particle size of 1 μm to 100 μm, preferably 30 μm to 60 μm, and a permalloy fine powder having a particle size of 1 μm to 100 μm, preferably 30 μm to 60 μm. Make a body 42.

電極製造方法は、Fe−Niパーマロイ41を1μm〜100μmの粒径、好ましくは、30μm〜60μmの粒径に微粉砕することで、多数の微細な連続気孔13(連続通気孔)を有する多孔質に成形されて比表面積が大きいマイクロポーラス構造かつ薄板状発泡金属電極10を作ることができ、それら連続気孔13をガス(気体)や液体が通流しつつ気体や液体を電極10のそれら気孔13における接触面に広範囲に接触させることが可能な電極10(燃料極18及び空気極19、アノード31及びカソード32)を作ることができる。 The electrode manufacturing method is a porosity having a large number of fine continuous pores 13 (continuous ventilation holes) by finely pulverizing Fe-Ni Permalloy 41 to a particle size of 1 μm to 100 μm, preferably 30 μm to 60 μm. It is possible to form a thin plate-shaped foamed metal electrode 10 having a microporous structure having a large specific surface area, and the gas or liquid is passed through the continuous pores 13 of the electrode 10 while the gas or liquid is flowing through the continuous pores 13. Electrodes 10 (fuel electrode 18, air electrode 19, anode 31 and cathode 32) that can be brought into contact with the contact surface in a wide range can be formed.

パーマロイ微粉体混合物作成工程S3では、パーマロイ微粉体作成工程S2によって作成したパーマロイ微粉体42に所定のバインダー43及び所定の気孔形成材44を加え、パーマロイ微粉体42にバインダー43と気孔形成材44とを均一に混合・分散してパーマロイ微粉体混合物45を作る。電極製造方法は、高価な白金族金属(白金(Pt))が使用されていないから、電極10(燃料極18及び空気極19、アノード31及びカソード32)を廉価に作ることができる。 In the permalloy fine powder mixture preparation step S3, a predetermined binder 43 and a predetermined pore forming material 44 are added to the permalloy fine powder 42 prepared in the permalloy fine powder preparation step S2, and the binder 43 and the pore forming material 44 are added to the permalloy fine powder 42. Is uniformly mixed and dispersed to prepare a permalloy fine powder mixture 45. Since no expensive platinum group metal (platinum (Pt)) is used in the electrode manufacturing method, the electrode 10 (fuel electrode 18, air electrode 19, anode 31 and cathode 32) can be produced at low cost.

パーマロイ微粉体混合物作成工程S3では、Fe−Niパーマロイ41のパーマロイ微粉体42とバインダー43(粉状の樹脂系バインダー)とを混合機又は攪拌機に投入し、混合機又は攪拌機によってFe−Niパーマロイ41のパーマロイ微粉体42とバインダー43とを攪拌・混合し、パーマロイ微粉体42及びバインダー43が均一に混合・分散した微粉体混合物45(発泡金属成形材)を作る。次に、微粉体混合物45に所定量の気孔形成材44(粉体の発泡剤)を混入(添加)する。所定量の気孔形成材44を混合機又は攪拌機に投入し、混合機又は攪拌機によって微粉体混合物45に気孔形成材44を均一に混合・分散させた微粉体混合物45(発泡金属成形材料)を作る。気孔形成材44(粉体の発泡剤)の混入量(添加量)によって電極10(燃料極18及び空気極19、アノード31及びカソード32)に形成される連続気孔13の平均径や気孔率が決まる。 In the permalloy fine powder mixture preparation step S3, the permalloy fine powder 42 of Fe-Ni permalloy 41 and the binder 43 (powder-based resin binder) are put into a mixer or agitator, and the Fe-Ni permalloy 41 is added by the mixer or agitator. Permalloy fine powder 42 and the binder 43 are stirred and mixed to prepare a fine powder mixture 45 (foam metal molding material) in which the permalloy fine powder 42 and the binder 43 are uniformly mixed and dispersed. Next, a predetermined amount of the pore-forming material 44 (powder foaming agent) is mixed (added) into the fine powder mixture 45. A predetermined amount of the pore-forming material 44 is put into a mixer or a stirrer, and the fine powder mixture 45 (foam metal molding material) is prepared by uniformly mixing and dispersing the pore-forming material 44 in the fine powder mixture 45 by the mixer or the stirrer. .. The average diameter and porosity of the continuous pores 13 formed in the electrode 10 (fuel electrode 18, air electrode 19, anode 31 and cathode 32) are determined by the amount (addition amount) of the pore forming material 44 (powder foaming agent) mixed in. It is decided.

パーマロイ微粉体混合成形物作成工程S4では、パーマロイ微粉体混合物作成工程S3によって作られた微粉体混合物45(発泡金属成形材料)を射出成形機(図示せず)又は押出成形機(図示せず)に投入し、微粉体混合物45を射出成形機によって射出成形し、又は、微粉体混合物45を押出成形機によって押し出し成形し、微粉体混合物45を所定面積の薄板状(厚み寸法L1が0.05mm〜0.5mmの範囲)に成形した微粉体混合成形物46(発泡金属成形物)を作る。 In the Permalloy fine powder mixed molding preparation step S4, the fine powder mixture 45 (foam metal molding material) prepared by the Permalloy fine powder mixture preparation step S3 is injected into an injection molding machine (not shown) or an extrusion molding machine (not shown). The fine powder mixture 45 is injection-molded by an injection molding machine, or the fine powder mixture 45 is extruded by an extrusion molding machine, and the fine powder mixture 45 is formed into a thin plate having a predetermined area (thickness dimension L1 is 0.05 mm). A fine powder mixed molded product 46 (foamed metal molded product) molded into a range of ~ 0.5 mm is produced.

薄板状発泡金属電極作成工程S5では、パーマロイ微粉体混合成形物作成工程S4の射出成形又は押出成形によって作られたパーマロイ微粉体混合成形物46(発泡金属成形物)を脱脂し、脱脂したパーマロイ微粉体混合成形物46を焼成炉(燃焼炉、電気炉等)に投入し、パーマロイ微粉体混合成形物46を焼成炉において所定温度で所定時間焼結(焼成)し、多数の微細な連続気孔13(連続通気孔)が満遍なく均一に形成され、それら連続気泡13が溶融結合したパーマロイ微粉体42のパーマロイ溶融物によって画成かつ囲繞されたマイクロポーラス構造の薄板状発泡金属電極10(厚み寸法L1が0.05mm〜0.5mmの電極10(燃料極18及び空気極19、アノード31及びカソード32))を作る。 In the thin plate-shaped foamed metal electrode producing step S5, the permalloy fine powder mixed molded product 46 (foamed metal molded product) produced by the injection molding or extrusion molding of the permalloy fine powder mixed molded product preparation step S4 is degreased and degreased. The body mixed molded product 46 is put into a firing furnace (combustion furnace, electric furnace, etc.), and the permalloy fine powder mixed molded product 46 is sintered (baked) at a predetermined temperature at a predetermined temperature for a predetermined time, and a large number of fine continuous pores 13 are obtained. (Continuous vent holes) are evenly and uniformly formed, and the thin plate-shaped foamed metal electrode 10 (thickness dimension L1) having a microporous structure defined and surrounded by the permalloy melt of the permalloy fine powder 42 in which the open cells 13 are melt-bonded. An electrode 10 of 0.05 mm to 0.5 mm (fuel electrode 18, air electrode 19, anode 31 and cathode 32) is made.

焼結(焼成)温度は、900℃〜1400℃である。焼結(焼成)時間は、2時間〜6時間である。薄板状発泡金属電極作成工程S5では、所定面積の薄板状に成形したパーマロイ微粉体混合成形物52(発泡金属成形物)の焼結時において、パーマロイ微粉体混合成形物46の内部において気孔形成材44(粉体の発泡剤)が発泡した後、気孔形成材44がパーマロイ微粉体混合成形物46の内部から消失し、多数の微細な連続気孔13(連続通気孔)が形成されたマイクロポーラス構造の薄板状発泡金属電極10(厚み寸法L1が0.05mm〜0.5mmの電極10(燃料極18及び空気極19、アノード31及びカソード32))が製造される。 The sintering (baking) temperature is 900 ° C to 1400 ° C. The sintering (baking) time is 2 hours to 6 hours. In the thin plate-shaped foamed metal electrode producing step S5, when the permalloy fine powder mixed molded product 52 (foamed metal molded product) molded into a thin plate shape having a predetermined area is sintered, the pore-forming material is inside the permalloy fine powder mixed molded product 46. After the 44 (powder foaming agent) foams, the pore forming material 44 disappears from the inside of the permalloy fine powder mixed molded product 46, and a large number of fine continuous pores 13 (continuous ventilation holes) are formed in the microporous structure. The thin plate-shaped foamed metal electrode 10 (electrode 10 having a thickness dimension L1 of 0.05 mm to 0.5 mm (fuel electrode 18, air electrode 19, anode 31 and cathode 32)) is manufactured.

電極製造方法は、射出成形又は押出成形によってFe−Niパーマロイ41のパーマロイ微粉体42がバインダー43を介して連結され、射出成形又は押出成形によって作られたパーマロイ微粉体混合成形物46(発泡金属成形物)を脱脂した後、所定温度で焼結(焼成)することで、多数の微細な連続気孔13(連続通気孔)を有するマイクロポーラス構造の薄板状発泡金属電極10(厚み寸法L1が0.05mm〜0.5mmの電極10(燃料極18及び空気極19、アノード31及びカソード32)を作ることができるとともに、高い強度を有して形状を維持することができ、衝撃が加えられたときの破損や損壊を防ぐことが可能な電極10(燃料極18及び空気極19、アノード31及びカソード32)を作ることができる。電極製造方法は、厚み寸法L1が0.05mm〜0.5mmの範囲の電極10を作ることができるから、電気抵抗が小さく電流をスムースに流すことが可能な(プロトン導電性に優れた)電極10(燃料極18及び空気極19、アノード31及びカソード32)を作ることができる。 In the electrode manufacturing method, the permalloy fine powder 42 of Fe-Ni permalloy 41 is connected via a binder 43 by injection molding or extrusion molding, and the permalloy fine powder mixed molded product 46 (foam metal molding) produced by injection molding or extrusion molding. After degreasing the object), it is sintered (baked) at a predetermined temperature to obtain a thin plate-shaped foamed metal electrode 10 having a microporous structure having a large number of fine continuous pores 13 (continuous ventilation holes) (thickness dimension L1 is 0. Electrodes 10 of 05 mm to 0.5 mm (fuel electrode 18, air electrode 19, anode 31 and cathode 32) can be made, and the shape can be maintained with high strength, and when an impact is applied. Electrodes 10 (fuel electrode 18, air electrode 19, anode 31 and cathode 32) capable of preventing damage or damage to the electrode 10 can be produced. The electrode manufacturing method has a thickness dimension L1 of 0.05 mm to 0.5 mm. Since the electrode 10 in the range can be formed, the electrode 10 (fuel electrode 18, air electrode 19, anode 31 and cathode 32) having a small electric resistance and a smooth flow of current (excellent in proton conductivity) can be provided. Can be made.

電極製造方法は、Fe−Niパーマロイ41を微粉砕したパーマロイ微粉体42の仕事関数が白金族元素の仕事関数に近似するように、Fe−Niパーマロイ41におけるFeの含有率とNiの含有率とを決定する含有率決定工程と、含有率決定工程によって決定した含有率のFe及びNiから形成されたFe−Niパーマロイ41を微粉砕してパーマロイ微粉体42を作るパーマロイ微粉体作成工程と、パーマロイ微粉体作成工程によって作成したパーマロイ微粉体42に所定のバインダー43及び所定の気孔形成材44を加え、パーマロイ微粉体42にバインダー43と気孔形成材44とを均一に混合・分散してパーマロイ微粉体混合物45を作るパーマロイ微粉体混合物作成工程と、パーマロイ微粉体混合物作成工程によって作成したパーマロイ微粉体混合物45を射出成形又は押出成形によって薄板状に成形してパーマロイ微粉体混合成形物46を作るパーマロイ微粉体混合成形物作成工程と、パーマロイ微粉体混合成形物作成工程によって作成したパーマロイ微粉体混合成形物46を脱脂するとともにパーマロイ微粉体混合成形物46を所定温度で焼結し、パーマロイ微粉体42が溶融結合しつつ多数の微細な連続気孔13が満遍なく均一に形成されているとともに、パーマロイ微粉体42が溶融結合したパーマロイ溶融物によって連続気泡13が画成かつ囲繞されたマイクロポーラス構造の薄板状発泡金属電極10を作る薄板状発泡金属電極作成工程との各工程によって電極10を製造するから、それら工程S1〜S5によって厚み寸法L1が0.05mm〜0.5mmの範囲であって多数の微細な連続気孔13(連続通気孔)を形成した電極10(燃料極18及び空気極19、アノード31及びカソード32)(マイクロポーラス構造薄板状発泡金属電極)を製造することができ、電極10(燃料極18及び空気極19、アノード31及びカソード32)を廉価に作ることができる。 The electrode manufacturing method includes the Fe content and the Ni content in the Fe-Ni permalloy 41 so that the work function of the permalloy fine powder 42 obtained by finely pulverizing the Fe-Ni permalloy 41 is close to the work function of the platinum group element. Permalloy fine powder making step and permalloy fine powder making step to make permalloy fine powder 42 by finely pulverizing Fe-Ni permalloy 41 formed from Fe and Ni of content rate decided by content rate determination step A predetermined binder 43 and a predetermined pore-forming material 44 are added to the permalloy fine powder 42 prepared in the fine powder preparation step, and the binder 43 and the pore-forming material 44 are uniformly mixed and dispersed in the permalloy fine powder 42 to make the permalloy fine powder. Permalloy fine powder mixture preparation step of making a mixture 45 and permalloy fine powder mixture 45 prepared by a step of making a permalloy fine powder mixture are molded into a thin plate by injection molding or extrusion molding to make a permalloy fine powder mixed molded product 46. The permalloy fine powder mixed molded product 46 prepared by the body mixed molded product preparation step and the permalloy fine powder mixed molded product preparation step is degreased, and the permalloy fine powder mixed molded product 46 is sintered at a predetermined temperature to obtain the permalloy fine powder 42. A large number of fine continuous pores 13 are uniformly and uniformly formed while being melt-bonded, and a thin plate-like foam having a microporous structure in which the open cells 13 are defined and surrounded by the permalloy melt in which the permalloy fine powder 42 is melt-bonded. Since the electrode 10 is manufactured by each step of the thin plate foam metal electrode making step of making the metal electrode 10, the thickness dimension L1 is in the range of 0.05 mm to 0.5 mm by these steps S1 to S5, and a large number of fine particles are produced. The electrode 10 (fuel electrode 18, air electrode 19, anode 31 and cathode 32) (microporous structure thin plate-shaped foamed metal electrode) having continuous pores 13 (continuous ventilation holes) can be manufactured, and the electrode 10 (fuel electrode 10) can be manufactured. 18 and the air electrode 19, the anode 31 and the cathode 32) can be made at low cost.

電極製造方法は、白金族元素を担持した電極と略同様の優れた触媒活性(触媒作用)を発揮することができるとともに、優れた触媒活性(触媒作用)を有して触媒機能を十分かつ確実に利用することが可能な白金族金属非含有の電極10(燃料極18及び空気極19、アノード31及びカソード32)を作ることができる。 The electrode manufacturing method can exhibit almost the same excellent catalytic activity (catalytic action) as an electrode carrying a platinum group element, and also has excellent catalytic activity (catalytic action) to sufficiently and reliably perform a catalytic function. Platinum group metal-free electrodes 10 (fuel electrode 18, air electrode 19, anode 31 and cathode 32) that can be used in the above can be prepared.

電極製造方法は、それによって作られた電極10が白金族元素を担持した電極と略同様の優れた触媒活性(触媒作用)を発揮するから、固体高分子形燃料電池17において十分な電気を発電することが可能であって固体高分子形燃料電池17に接続された負荷29に十分な電気エネルギーを供給することが可能な白金族金属少含有の電極10(燃料極18及び空気極19、アノード31及びカソード32)を作ることができる。電極製造方法は、水素ガス発生装置30において電気分解を効率よく行うことが可能であって短時間に多量の水素ガスを発生させることが可能な白金族金属少含有の電極10(燃料極18及び空気極19、アノード31及びカソード32)を作ることができる。 In the electrode manufacturing method, since the electrode 10 produced thereby exhibits excellent catalytic activity (cathodic action) substantially similar to that of an electrode carrying a platinum group element, sufficient electricity is generated in the polymer electrolyte fuel cell 17. Electrode 10 containing a small amount of platinum group metal (fuel electrode 18, air electrode 19, anode) capable of supplying sufficient electrical energy to the load 29 connected to the polymer electrolyte fuel cell 17. 31 and cathode 32) can be made. In the electrode manufacturing method, the electrode 10 (fuel electrode 18 and fuel electrode 18) containing a small amount of platinum group metal capable of efficiently performing electrolysis in the hydrogen gas generator 30 and generating a large amount of hydrogen gas in a short time. An air electrode 19, an anode 31 and a cathode 32) can be made.

10 電極
11 前面
12 後面
13 連続気孔(連続通気孔)
14 通流口
15 外周縁
16 セル
17 固体高分子形燃料電池
18 燃料極(陽極)
19 空気極(陰極)
20 固体高分子電解質膜
21 セパレータ(バイポーラプレート)
22 セパレータ(バイポーラプレート)
23 膜/電極接合体
24 ガス拡散層
25 ガス拡散層
26 ガスシール
27 ガスシール
28 導線
29 負荷
30 水素ガス発生装置
31 アノード(陽極)
32 カソード(陰極)
33 固体高分子電解質膜
34 陽極給電部材
35 陰極給電部材
36 陽極用貯水槽
37 陰極用貯水槽
38 陽極主電極
39 陰極主電極
40 膜/電極接合体
41 Fe−Niパーマロイ
42 パーマロイ微粉体
43 バインダー
44 気孔形成材(発泡剤)
45 パーマロイ微粉体混合物
46 パーマロイ微粉体混合成形物
L1 厚み寸法
S1 含有率決定工程
S2 パーマロイ微粉体作成工程
S3 パーマロイ微粉体混合物作成工程
S4 パーマロイ微粉体混合成形物作成工程
S5 薄板状発泡金属電極作成工程
10 Electrodes 11 Front surface 12 Rear surface 13 Continuous pores (continuous ventilation holes)
14 Ventilation port 15 Outer peripheral edge 16 Cell 17 Polymer electrolyte fuel cell 18 Fuel electrode (anode)
19 Air pole (cathode)
20 Solid polymer electrolyte membrane 21 Separator (bipolar plate)
22 Separator (bipolar plate)
23 Membrane / Electrode Assembly 24 Gas Diffusion Layer 25 Gas Diffusion Layer 26 Gas Seal 27 Gas Seal 28 Lead Wire 29 Load 30 Hydrogen Gas Generator 31 Anode (Anode)
32 Cathode
33 Solid polymer electrolyte film 34 Anode feeding member 35 Cathode feeding member 36 Anode water storage tank 37 Cathode water storage tank 38 Anode main electrode 39 Cathode main electrode 40 Membrane / electrode assembly 41 Fe-Ni Permalloy 42 Permalloy fine powder 43 Binder 44 Pore forming material (foaming agent)
45 Permalloy fine powder mixture 46 Permalloy fine powder mixed molding L1 Thickness dimension S1 Content rate determination step S2 Permalloy fine powder making step S3 Permalloy fine powder mixed making step S4 Permalloy fine powder mixed molding making step S5 Thin plate foam metal electrode making step

Claims (14)

陽極又は陰極として使用する電極において、
前記電極は、Fe−Niパーマロイを微粉砕したパーマロイ微粉体に所定のバインダーを均一に混合・分散しつつ所定の気孔形成材を均一に混合・分散し、前記パーマロイ微粉体に前記バインダー及び前記気孔形成材を混合したパーマロイ微粉体混合物を所定面積の薄板状に成形した後、前記所定面積の薄板状に成形した前記パーマロイ微粉体混合成形物を脱脂・焼結することで、前記パーマロイ微粉体が溶融結合しつつ多数の微細な連続気孔が満遍なく形成されたマイクロポーラス構造の薄板状発泡金属電極であり、白金族元素を含む電極と略同様の触媒活性を有し、前記連続気泡は、前記パーマロイ微粉体が溶融結合したパーマロイ溶融物によって画成されていることを特徴とする電極。
In electrodes used as anodes or cathodes
In the electrode, a predetermined binder is uniformly mixed and dispersed in permalloy fine powder obtained by finely pulverizing Fe-Ni permalloy, and a predetermined pore-forming material is uniformly mixed and dispersed, and the binder and the pores are uniformly mixed in the permalloy fine powder. The permalloy fine powder is formed by molding the permalloy fine powder mixture mixed with the forming material into a thin plate shape having a predetermined area, and then degreasing and sintering the permalloy fine powder mixed molded product formed into the thin plate shape having the predetermined area. It is a thin plate-shaped foamed metal electrode with a microporous structure in which a large number of fine continuous pores are evenly formed while being melt-bonded, and has substantially the same catalytic activity as an electrode containing a platinum group element, and the open cells are the permalloy. An electrode characterized in that fine powder is defined by a melt-bonded permalloy melt.
前記電極では、前記パーマロイ微粉体の仕事関数が白金族元素の仕事関数に近似するように、前記Fe−Niパーマロイにおける前記Feの含有率と該Fe−Niパーマロイにおける前記Niの含有率とが決定されている請求項1に記載の電極。 In the electrode, the content of Fe in the Fe-Ni permalloy and the content of Ni in the Fe-Ni permalloy are determined so that the work function of the permalloy fine powder is close to the work function of the platinum group element. The electrode according to claim 1. 前記薄板状発泡金属電極に形成された連続気泡が、該薄板状発泡金属電極の前面と後面との間で厚み方向へ不規則に曲折しながら延びているとともに、該薄板状発泡金属電極の外周縁と内周縁との間で径方向へ不規則に曲折しながら延びている請求項1又は請求項2に記載の電極。 The open cells formed on the thin plate-shaped foamed metal electrode extend between the front surface and the rear surface of the thin plate-shaped foamed metal electrode while being irregularly bent in the thickness direction, and are outside the thin plate-shaped foamed metal electrode. The electrode according to claim 1 or 2, which extends between the peripheral edge and the inner peripheral edge while irregularly bending in the radial direction. 前記径方向へ隣接して前記厚み方向へ曲折して延びるそれら連続気泡が、前記径方向において部分的に繋がって一方の連続気泡と他方の連続気泡とが互いに連通し、前記厚み方向へ隣接して前記径方向へ曲折して延びるそれら連続気泡が、前記厚み方向において部分的に繋がって一方の連続気泡と他方の連続気泡とが互いに連通し、それら連続気泡の平均径が、前記厚み方向に向かって一様ではなく、該厚み方向に向かって不規則に変化しているとともに、前記径方向に向かって一様ではなく、該径方向に向かって不規則に変化している請求項3に記載の電極。 These open cells that are adjacent to the radial direction and bend and extend in the thickness direction are partially connected in the radial direction, and one open cell and the other open cell communicate with each other and are adjacent to each other in the thickness direction. The open cells that bend and extend in the radial direction are partially connected in the thickness direction, and one open cell and the other open cell communicate with each other, and the average diameter of the open cells is in the thickness direction. The third aspect of claim 3, which is not uniform toward the thickness and changes irregularly in the thickness direction, and is not uniform toward the radial direction and changes irregularly toward the radial direction. The electrode described. 前記薄板状発泡金属電極に形成された連続気孔の平均径が、1μm〜100μmの範囲にあるとともに、±0.1μm〜±5マイクロμmの範囲で変化している請求項4に記載の電極。 The electrode according to claim 4, wherein the average diameter of the continuous pores formed in the thin plate-shaped foamed metal electrode is in the range of 1 μm to 100 μm and changes in the range of ± 0.1 μm to ± 5 microμm. 前記薄板状発泡金属電極の厚み寸法が、0.05mm〜0.5mmの範囲にある請求項1ないし請求項5いずれかに記載の電極。 The electrode according to any one of claims 1 to 5, wherein the thickness dimension of the thin plate-shaped foamed metal electrode is in the range of 0.05 mm to 0.5 mm. 前記Fe−Niパーマロイにおける前記Feの含有率が、45%〜55%の範囲にあり、前記Fe−Niパーマロイにおける前記Niの含有率が、45%〜55%の範囲にある請求項1ないし請求項6いずれかに記載の電極。 Claim 1 to claim that the Fe content in the Fe-Ni permalloy is in the range of 45% to 55%, and the Ni content in the Fe-Ni permalloy is in the range of 45% to 55%. Item 6. The electrode according to any one of Items 6. 前記薄板状発泡金属電極に成形された連続気泡の気孔率が、45%〜55%の範囲にある請求項1ないし請求項7いずれかに記載の電極。 The electrode according to any one of claims 1 to 7, wherein the porosity of the open cells formed on the thin plate-shaped foamed metal electrode is in the range of 45% to 55%. 前記薄板状発泡金属電極の密度が、6.0g/cm〜8.0g/cmの範囲にある請求項1ないし請求項8いずれかに記載の電極。 The thin plate foam density of the metal electrode, the electrode according to any claims 1 to 8 is in the range of 6.0g / cm 2 ~8.0g / cm 2 . 前記パーマロイ微粉体の粒径が、1μm〜100μmの範囲にある請求項1ないし請求項9いずれかに記載の電極。 The electrode according to any one of claims 1 to 9, wherein the particle size of the permalloy fine powder is in the range of 1 μm to 100 μm. 陽極又は陰極として使用する電極を製造する電極製造方法において、
前記電極製造方法が、Fe−Niパーマロイを微粉砕したパーマロイ微粉体の仕事関数が白金族元素の仕事関数に近似するように、前記Fe−NiパーマロイにおけるFeの含有率とNiの含有率とを決定する含有率決定工程と、前記含有率決定工程によって決定した含有率のFe及びNiから形成されたFe−Niパーマロイを微粉砕してパーマロイ微粉体を作るパーマロイ微粉体作成工程と、前記パーマロイ微粉体作成工程によって作成したパーマロイ微粉体に所定のバインダー及び所定の気孔形成材を加え、前記パーマロイ微粉体に前記バインダーと前記気孔形成材とを均一に混合・分散してパーマロイ微粉体混合物を作るパーマロイ微粉体混合物作成工程と、前記パーマロイ微粉体混合物作成工程によって作成したパーマロイ微粉体混合物を薄板状に成形してパーマロイ微粉体混合成形物を作るパーマロイ微粉体混合成形物作成工程と、前記パーマロイ微粉体混合成形物作成工程によって作成したパーマロイ微粉体混合成形物を脱脂するとともに該パーマロイ微粉体混合成形物を所定温度で焼結し、前記パーマロイ微粉体が溶融結合しつつ多数の微細な連続気孔が満遍なく形成されているとともに、前記パーマロイ微粉体が溶融結合したパーマロイ溶融物によって前記連続気泡が画成されたマイクロポーラス構造の薄板状発泡金属電極を作る薄板状発泡金属電極作成工程とを有することを特徴とする電極製造方法。
In an electrode manufacturing method for manufacturing an electrode used as an anode or a cathode,
In the electrode manufacturing method, the Fe content and the Ni content in the Fe-Ni permalloy are set so that the work function of the permalloy fine powder obtained by finely pulverizing Fe-Ni permalloy is close to the work function of the platinum group element. The content rate determination step to be determined, the permalloy fine powder preparation step of finely pulverizing Fe-Ni permalloy formed from Fe and Ni having the content rate determined by the content rate determination step to produce permalloy fine powder, and the permalloy fine powder. A predetermined binder and a predetermined pore-forming material are added to the permalloy fine powder prepared in the body preparation step, and the binder and the pore-forming material are uniformly mixed and dispersed in the permalloy fine powder to prepare a permalloy fine powder mixture. The permalloy fine powder mixture preparation step, the permalloy fine powder mixed product preparation step of molding the permalloy fine powder mixture prepared by the permalloy fine powder mixture preparation step into a thin plate shape to make a permalloy fine powder mixed molding, and the permalloy fine powder The permalloy fine powder mixed molded product prepared in the mixed molded product preparation step is degreased and the permalloy fine powder mixed molded product is sintered at a predetermined temperature, and the permalloy fine powder is melt-bonded and a large number of fine continuous pores are evenly formed. It is characterized by having a thin plate-shaped foamed metal electrode producing step of forming a thin plate-shaped foamed metal electrode having a microporous structure in which open cells are defined by a permalloy melt obtained by melt-bonding the permalloy fine powder. Electrode manufacturing method.
前記重量比決定工程が、前記Fe−Niパーマロイにおける前記Feの含有率を45%〜55%の範囲で決定し、前記Fe−Niパーマロイにおける前記Niの含有率を45%〜55%の範囲で決定する請求項11に記載の電極製造方法。 The weight ratio determining step determines the Fe content in the Fe-Ni permalloy in the range of 45% to 55%, and the Ni content in the Fe-Ni permalloy in the range of 45% to 55%. The electrode manufacturing method according to claim 11, which is determined. 前記パーマロイ微粉体作成工程が、前記Fe−Niパーマロイを1μm〜100μmの粒径に微粉砕する請求項11又は請求項12に記載の電極製造方法。 The electrode manufacturing method according to claim 11 or 12, wherein the permalloy fine powder preparation step finely pulverizes the Fe-Ni permalloy to a particle size of 1 μm to 100 μm. 前記パーマロイ微粉体混合成形物作成工程が、射出成形又は押出成形によって前記パーマロイ微粉体混合物を成形して0.05mm〜0.5mmの厚み寸法を有する所定面積かつ薄板状の前記パーマロイ微粉体混合成形物を作る請求項11ないし請求項13いずれかに記載の電極製造方法。
The permalloy fine powder mixed molding preparation step is to mold the permalloy fine powder mixed by injection molding or extrusion molding, and the permalloy fine powder mixed molding having a thickness dimension of 0.05 mm to 0.5 mm and having a predetermined area and a thin plate shape. The electrode manufacturing method according to any one of claims 11 to 13 for making a product.
JP2019066741A 2019-03-29 2019-03-29 Electrode and manufacturing method thereof Pending JP2020167041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019066741A JP2020167041A (en) 2019-03-29 2019-03-29 Electrode and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019066741A JP2020167041A (en) 2019-03-29 2019-03-29 Electrode and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2020167041A true JP2020167041A (en) 2020-10-08

Family

ID=72717560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019066741A Pending JP2020167041A (en) 2019-03-29 2019-03-29 Electrode and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2020167041A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004346411A (en) * 2003-05-26 2004-12-09 Mitsubishi Materials Corp Porous board, and its production method
JP2010201387A (en) * 2009-03-05 2010-09-16 Sumitomo Electric Ind Ltd Gas decomposing element and power generating apparatus
JP2018522365A (en) * 2015-10-22 2018-08-09 コーチョアン リン Fuel cell electrode material and apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004346411A (en) * 2003-05-26 2004-12-09 Mitsubishi Materials Corp Porous board, and its production method
JP2010201387A (en) * 2009-03-05 2010-09-16 Sumitomo Electric Ind Ltd Gas decomposing element and power generating apparatus
JP2018522365A (en) * 2015-10-22 2018-08-09 コーチョアン リン Fuel cell electrode material and apparatus

Similar Documents

Publication Publication Date Title
US9012104B2 (en) Bipolar plates and regenerative fuel cell stacks including same
Li et al. Layer reduction method for fabricating Pd-coated Ni foams as high-performance ethanol electrode for anion-exchange membrane fuel cells
CN100584451C (en) Catalyst for fuel cell oxygen electrodes
WO2019244840A1 (en) Electrode
WO2020080530A1 (en) Electrode and electrode manufacturing method
JP7281157B2 (en) Polymer electrolyte fuel cell and electrode manufacturing method
JP2020167041A (en) Electrode and manufacturing method thereof
JP7171030B2 (en) Manufacturing method for anode and cathode of electrolyzer
JP7235284B2 (en) polymer electrolyte fuel cell
JP7171024B2 (en) Method for manufacturing fuel electrode and air electrode for polymer electrolyte fuel cell
JP2020140843A (en) Electrode and method for manufacturing the same
JP7193109B2 (en) Electrode and electrode manufacturing method
JP7199080B2 (en) Electrolyzer and electrode manufacturing method
JP7411920B2 (en) Method for manufacturing anode and cathode of electrolyzer
JP7281158B2 (en) Polymer electrolyte fuel cell and electrode manufacturing method
JP7262739B2 (en) Manufacturing method for anode and cathode of electrolyzer
JP2020167064A (en) Solid polymer fuel cell
JP2020087812A (en) Electrode and electrode manufacturing method
JP2020140844A (en) Solid polymer type fuel battery
JP7171027B2 (en) Method for manufacturing fuel electrode and air electrode for polymer electrolyte fuel cell
JP7179314B2 (en) Manufacturing method for anode and cathode of electrolyzer
JP2020064786A (en) Polymer electrolyte fuel cell
JP2020164933A (en) Electrolysis apparatus
JP7141695B2 (en) Manufacturing method for anode and cathode of electrolyzer
JP7193111B2 (en) Carbon nanotube electrode or carbon nanohorn electrode and electrode manufacturing method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200617

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20220117

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230309

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230704