JP2020164933A - Electrolysis apparatus - Google Patents

Electrolysis apparatus Download PDF

Info

Publication number
JP2020164933A
JP2020164933A JP2019067096A JP2019067096A JP2020164933A JP 2020164933 A JP2020164933 A JP 2020164933A JP 2019067096 A JP2019067096 A JP 2019067096A JP 2019067096 A JP2019067096 A JP 2019067096A JP 2020164933 A JP2020164933 A JP 2020164933A
Authority
JP
Japan
Prior art keywords
cathode
anode
permalloy
fine powder
thin plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019067096A
Other languages
Japanese (ja)
Inventor
正己 奥山
Masami Okuyama
正己 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Repton Co Ltd
Original Assignee
Repton Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Repton Co Ltd filed Critical Repton Co Ltd
Priority to JP2019067096A priority Critical patent/JP2020164933A/en
Publication of JP2020164933A publication Critical patent/JP2020164933A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

To provide an electrolysis apparatus including an anode and a cathode with catalytic activity (catalytic action) without using platinum group metals.SOLUTION: An anode 11 and a cathode 12, which are used for an electrolysis apparatus 10 and have catalytic activity almost the same as an anode and cathode including platinum group metals, are thin-plate foamed metal electrodes having a micro-porous structure in which: a prescribed pore-forming material is uniformly mixed and dispersed while a prescribed binder is uniformly added to mix and disperse into a permalloy fine powder obtained by pulverizing an Fe-Ni permalloy; the permalloy fine powder mixture obtained by mixing the permalloy fine powder with the binder and pore-forming material is formed like a thin plate having a prescribed area; and numbers of fine continuous pores are evenly formed while the permalloy fine powder is melted and bonded by defatting and sintering the permalloy fine powder-mixed moldings formed into the thin plate having the prescribed area.SELECTED DRAWING: Figure 1

Description

本発明は、電気を利用して所定の水溶液を化学分解する電気分解装置に関する。 The present invention relates to an electrolyzer that chemically decomposes a predetermined aqueous solution using electricity.

反応管と、反応管内に収容された触媒体と、流体入口及び流体出口を有する筒状体とを備え、流体入口と流体出口とが筒状体の内部を流路として互いに連通し、反応管が流路内に配置され、触媒体が軸線を反応管の長手方向に平行にする向きに反応管に挿入され、触媒体が一定の軸線に沿って延在する基材と脱水素触媒を含む脱水素触媒層とを備え、基材が軸線を中心として回転する方向にねじれながら軸線に沿って延在する板状部を含み、板状部の表面上に脱水素触媒層が設けられている水素発生装置が開示されている(特許文献1参照)。 A reaction tube, a catalyst housed in the reaction tube, and a tubular body having a fluid inlet and a fluid outlet are provided, and the fluid inlet and the fluid outlet communicate with each other through the inside of the tubular body as a flow path, and the reaction tube. Is placed in the flow path, the catalyst is inserted into the reaction tube in a direction that makes the axis parallel to the longitudinal direction of the reaction tube, and the catalyst contains a substrate extending along a certain axis and a dehydrogenation catalyst. It is provided with a dehydrogenation catalyst layer, includes a plate-shaped portion extending along the axis while twisting in the direction in which the base material rotates about the axis, and the dehydrogenation catalyst layer is provided on the surface of the plate-shaped portion. A hydrogen generator is disclosed (see Patent Document 1).

特開2016−55251号公報Japanese Unexamined Patent Publication No. 2016-55251

前記特許文献1に開示の水素発生装置の触媒体は、金属の成形体の表面を陽極酸化して金属の酸化物を含む金属酸化物膜を形成する工程と、金属酸化物膜に脱水素触媒を担持させる工程とから作られる。金属酸化物膜に脱水素触媒を担持させる工程では、 ヘキサクロロ白金(IV)酸イオンを含む酸性の塩化白金水溶液を金属酸化物膜と接触させることによって金属酸化物膜にヘキサクロロ白金(IV)酸イオンを付着させるとともに、ヘキサクロロ白金(IV)酸イオンが付着している金属酸化物膜を焼成して金属酸化物膜に脱水素触媒として白金を担持させる。 The catalyst body of the hydrogen generator disclosed in Patent Document 1 includes a step of anodizing the surface of a metal molded body to form a metal oxide film containing a metal oxide, and a dehydrogenation catalyst on the metal oxide film. It is made from the process of supporting. In the step of supporting the dehydrogenation catalyst on the metal oxide film, hexachloroplatinic (IV) acid ions are formed on the metal oxide film by contacting an acidic platinum chloride aqueous solution containing hexachloroplatinum (IV) acid ions with the metal oxide film. Is attached, and the metal oxide film to which hexachloroplatinic acid (IV) acid ion is attached is fired to support platinum on the metal oxide film as a dehydrogenating catalyst.

電気分解装置の電極として各種の白金担持カーボンが広く利用されている。しかし、白金族元素は、貴金属であり、その生産量に限りがある希少な資源であることから、その使用量を抑えることが求められている。さらに、今後の電気分解装置の普及に向けて高価な白金以外の金属を利用した非白金触媒を有する廉価な電極の開発が求められている。 Various platinum-supported carbons are widely used as electrodes of electrolyzers. However, since platinum group elements are precious metals and are rare resources whose production amount is limited, it is required to reduce the amount used. Further, for the widespread use of electrolyzers in the future, it is required to develop an inexpensive electrode having a non-platinum catalyst using an expensive metal other than platinum.

本発明の目的は、白金族元素を利用することなく触媒活性(触媒作用)を有する陽極及び陰極を備え、非白金の陽極及び陰極を使用して電気分解を効率よく行うことができ、短時間に多量の水素ガスを発生させることができる電気分解装置を提供することにある。 An object of the present invention is to provide an anode and a cathode having catalytic activity (catalytic action) without using a platinum group element, and electrolysis can be efficiently performed using a non-platinum anode and a cathode for a short time. It is an object of the present invention to provide an electrolyzer capable of generating a large amount of hydrogen gas.

前記課題を解決するための本発明の電気分解装置の特徴は、陽極及び陰極と、陽極と陰極との間に位置してそれら極を接合する電極接合体膜とを備え、陽極及び陰極が、Fe−Niパーマロイを微粉砕したパーマロイ微粉体に所定のバインダーを均一に混合・分散しつつ所定の気孔形成材を均一に混合・分散し、パーマロイ微粉体にバインダー及び気孔形成材を混合したパーマロイ微粉体混合物を所定面積の薄板状に成形した後、所定面積の薄板状に成形したパーマロイ微粉体混合成形物を脱脂・焼結することで、パーマロイ微粉体が溶融結合しつつ多数の微細な連続気孔が満遍なく形成されたマイクロポーラス構造の薄板状発泡金属電極であり、パーマロイ微粉体が溶融結合したパーマロイ溶融物によって前記連続気泡が囲繞され、マイクロポーラス構造の薄板状発泡金属電極である陽極及び陰極が白金族元素を含む陽極及び陰極と略同様の触媒活性を有し、マイクロポーラス構造の薄板状発泡金属電極である陽極及び陰極に電気を通電し、陽極で酸化反応を起こすとともに陰極で還元反応を起こすことで所定の水溶液を化学分解することにある。 A feature of the electrolysis apparatus of the present invention for solving the above problems is that the anode and the cathode are provided with an electrode joint film located between the anode and the cathode and joining the electrodes, and the anode and the cathode are provided. Permalloy fine powder obtained by uniformly mixing and dispersing a predetermined binder in permalloy fine powder obtained by finely pulverizing Fe-Ni permalloy and uniformly mixing and dispersing a predetermined pore-forming material, and mixing a binder and a pore-forming material in the permalloy fine powder. After molding the body mixture into a thin plate with a predetermined area, the permalloy fine powder mixed molded product molded into a thin plate with a predetermined area is degreased and sintered, so that the permalloy fine powder is melt-bonded and a large number of fine continuous pores are formed. Is a thin plate-shaped foamed metal electrode having a microporous structure, and the open cells are surrounded by a permalloy melt in which permalloy fine powder is melt-bonded, and the anode and cathode, which are thin plate-shaped foamed metal electrodes having a microporous structure, are formed. It has almost the same catalytic activity as the anode and cathode containing platinum group elements, and electricity is applied to the anode and cathode, which are thin plate foam metal electrodes with a microporous structure, causing an oxidation reaction at the anode and a reduction reaction at the cathode. By raising it, a predetermined aqueous solution is chemically decomposed.

本発明の電気分解装置の一例として、電気分解装置では、それに使用する陽極及び陰極を形成するパーマロイ微粉体の仕事関数が白金族元素の仕事関数に近似するように、Fe−NiパーマロイにおけるFeの含有率とFe−NiパーマロイにおけるNiの含有率とが決定されている。 As an example of the electrolyzer of the present invention, in the electrolyzer, the work function of the permalloy fine powder used to form the anode and the cathode is similar to the work function of the platinum group element, so that Fe in Fe-Ni permalloy The content rate and the content rate of Ni in Fe-Ni permalloy have been determined.

本発明の電気分解装置の他の一例としては、薄板状発泡金属電極に形成された連続気泡が、薄板状発泡金属電極の前面と後面との間で厚み方向へ不規則に曲折しながら延びているとともに、薄板状発泡金属電極の外周縁と内周縁との間で径方向へ不規則に曲折しながら延びている。 As another example of the electrolyzer of the present invention, open cells formed on the thin plate-shaped foamed metal electrode extend between the front surface and the rear surface of the thin plate-shaped foamed metal electrode while irregularly bending in the thickness direction. At the same time, it extends between the outer peripheral edge and the inner peripheral edge of the thin plate-shaped foamed metal electrode while being irregularly bent in the radial direction.

本発明の電気分解装置の他の一例としては、径方向へ隣接して厚み方向へ曲折して延びるそれら連続気泡が、径方向において部分的に繋がって一方の連続気泡と他方の連続気泡とが互いに連通し、厚み方向へ隣接して径方向へ曲折して延びるそれら連続気泡が、厚み方向において部分的に繋がって一方の連続気泡と他方の連続気泡とが互いに連通し、それら連続気泡の平均径が、厚み方向に向かって一様ではなく、厚み方向に向かって不規則に変化しているとともに、径方向に向かって一様ではなく、径方向に向かって不規則に変化している。 As another example of the electrolyzer of the present invention, those open cells extending in the radial direction and bent in the thickness direction are partially connected in the radial direction to form one open cell and the other open bubble. These open cells that communicate with each other and extend radially adjacent to each other in the thickness direction are partially connected in the thickness direction so that one open cell and the other open cell communicate with each other, and the average of the open cells. The diameter is not uniform in the thickness direction and changes irregularly in the thickness direction, and is not uniform in the radial direction and changes irregularly in the radial direction.

本発明の電気分解装置の他の一例としては、薄板状発泡金属電極に形成された連続気孔の平均径が、1μm〜100μmの範囲にあるとともに、±0.1μm〜±5マイクロμmの範囲で変化している。 As another example of the electrolyzer of the present invention, the average diameter of continuous pores formed in the thin plate-shaped foamed metal electrode is in the range of 1 μm to 100 μm and in the range of ± 0.1 μm to ± 5 microμm. It's changing.

本発明の電気分解装置の他の一例としては、薄板状発泡金属電極の厚み寸法が、0.05mm〜0.5mmの範囲にある。 As another example of the electrolyzer of the present invention, the thickness dimension of the thin plate-shaped foamed metal electrode is in the range of 0.05 mm to 0.5 mm.

本発明の電気分解装置の他の一例としては、Fe−NiパーマロイにおけるFeの含有率が、45%〜55%の範囲にあり、Fe−NiパーマロイにおけるNiの含有率が、45%〜55%の範囲にある。 As another example of the electrolyzer of the present invention, the Fe content in Fe-Ni permalloy is in the range of 45% to 55%, and the Ni content in Fe-Ni permalloy is 45% to 55%. Is in the range of.

本発明の電気分解装置の他の一例としては、薄板状発泡金属電極に成形された連続気泡の気孔率が、45%〜55%の範囲にある。 As another example of the electrolyzer of the present invention, the porosity of open cells formed on the thin plate-shaped foamed metal electrode is in the range of 45% to 55%.

本発明の電気分解装置の他の一例としては、薄板状発泡金属電極の密度が、6.0g/cm〜8.0g/cmの範囲にある。 As another example of the electrolytic apparatus of the present invention, the density of the thin foamed metal electrode is in the range of 6.0g / cm 2 ~8.0g / cm 2 .

本発明の電気分解装置の他の一例としては、パーマロイ微粉体の粒径が、1μm〜100μmの範囲にある。 As another example of the electrolyzer of the present invention, the particle size of the permalloy fine powder is in the range of 1 μm to 100 μm.

本発明に係る電気分解装置によれば、それに使用される陽極及び陰極がFe−Niパーマロイを微粉砕したパーマロイ微粉体に所定のバインダーを均一に混合・分散しつつ所定の気孔形成材を均一に混合・分散し、パーマロイ微粉体にバインダー及び気孔形成材を混合したパーマロイ微粉体混合物を所定面積の薄板状に成形した後、所定面積の薄板状に成形したパーマロイ微粉体混合成形物を脱脂・焼結することで、パーマロイ微粉体が溶融結合しつつ多数の微細な連続気孔が満遍なく形成されたマイクロポーラス構造の薄板状発泡金属電極であり、白金族元素を含む陽極及び陰極と略同様の触媒活性を有するから、陽極及び陰極が優れた触媒活性(触媒作用)を有し、陽極及び陰極が優れた触媒活性(触媒作用)を発揮することで、白金族元素を含まない非白金の陽極及び陰極を使用して電気分解を効率よく行うことができ、短時間に多量の水素ガスを発生させることができる。電気分解装置は、陽極及び陰極がFe−Niパーマロイを原料とし、高価な白金族元素が使用されておらず、陽極及び陰極が白金族元素を含まない非白金の電極であるから、廉価な陽極及び陰極を備えることで電気分解装置を低コストで製造することができる。 According to the electrolyzer according to the present invention, the anode and cathode used therein uniformly mix and disperse a predetermined binder in permalloy fine powder obtained by finely pulverizing Fe-Ni permalloy, and uniformly mix and disperse a predetermined pore-forming material. A permalloy fine powder mixture obtained by mixing and dispersing and mixing a binder and a pore-forming material with a permalloy fine powder is formed into a thin plate having a predetermined area, and then the permalloy fine powder mixed molded product formed into a thin plate having a predetermined area is degreased and baked. It is a thin plate-shaped foamed metal electrode with a microporous structure in which a large number of fine continuous pores are evenly formed while the permalloy fine powder is melt-bonded by binding, and has substantially the same catalytic activity as an anode and a cathode containing a platinum group element. The anode and cathode have excellent catalytic activity (catalytic action), and the anode and cathode exhibit excellent catalytic activity (catalytic action), so that the non-platinum anode and cathode containing no platinum group element are present. Can be used to efficiently perform electrolysis, and a large amount of hydrogen gas can be generated in a short time. In the electrolyzer, the anode and cathode are made of Fe-Ni permalloy as a raw material, expensive platinum group elements are not used, and the anode and cathode are non-platinum electrodes containing no platinum group elements, so that the anode is inexpensive. By providing the cathode and the cathode, the electrolyzer can be manufactured at low cost.

電気分解装置に使用する陽極及び陰極を形成するパーマロイ微粉体の仕事関数が白金族元素の仕事関数に近似するように、Fe−NiパーマロイにおけるFeの含有率とFe−NiパーマロイにおけるNiの含有率とが決定されている電気分解装置は、パーマロイ微粉体の仕事関数が白金族元素の仕事関数に近似するように、Fe−NiパーマロイにおけるFeの含有率とNiの含有率とが決定されているから、陽極及び陰極が白金族元素を含む陽極や陰極と略同一の仕事関数を備え、陽極及び陰極が白金族元素を含む陽極や陰極と略同様の優れた触媒活性(触媒作用)を有し、陽極及び陰極が白金族元素を含む陽極や陰極と略同様の触媒活性(触媒作用)を発揮することができ、非白金の陽極及び陰極を使用して電気分解を効率よく行うことができるとともに、短時間に多量の水素ガスを発生させることができる。 Fe content in Fe-Ni permaloy and Ni content in Fe-Ni permaloy so that the work function of the permalloy fine powder used to form the anode and cathode used in the electrolyzer is similar to the work function of platinum group elements. In the electrolyzer that has been determined to be, the Fe content and Ni content in Fe-Ni permalloy are determined so that the working function of the permalloy fine powder is close to the working function of the platinum group element. Therefore, the anode and cathode have substantially the same work function as the anode and cathode containing platinum group elements, and the anode and cathode have substantially the same excellent catalytic activity (cathodic action) as the anode and cathode containing platinum group elements. , The anode and cathode can exhibit almost the same catalytic activity (cathodic action) as the anode and cathode containing platinum group elements, and electrolysis can be efficiently performed using the non-platinum anode and cathode. , A large amount of hydrogen gas can be generated in a short time.

薄板状発泡金属電極に形成された連続気泡が薄板状発泡金属電極の前面と後面との間で厚み方向へ不規則に曲折しながら延びているとともに、薄板状発泡金属電極の外周縁と内周縁との間で径方向へ不規則に曲折しながら延びている電気分解装置は、厚み方向や径方向へ不規則に曲折しながら延びる複数の連続気孔が陽極及び陰極に形成されているから、陽極及び陰極の比表面積が大きく、それら連続気孔を液体(水)が通流しつつ液体を陽極及び陰極のそれら連続気孔における接触面に広範囲に接触させることができ、陽極及び陰極の触媒活性(触媒作用)を有効かつ最大限に利用することができる。電気分解装置は、それに使用する陽極及び陰極の比表面積が大きいとともに白金族元素を含む陽極や陰極と略同様の触媒活性(触媒作用)を発揮するから、非白金の陽極及び陰極を使用して電気分解を効率よく行うことができるとともに、短時間に多量の水素ガスを発生させることができる。 The open cells formed on the thin plate-shaped foamed metal electrode extend between the front surface and the rear surface of the thin plate-shaped foamed metal electrode while being irregularly bent in the thickness direction, and the outer and inner peripheral edges of the thin plate-shaped foamed metal electrode. In the electrolyzer that extends while bending irregularly in the radial direction, the anode and cathode have a plurality of continuous pores that extend irregularly in the thickness direction and the radial direction. And the specific surface area of the cathode is large, and the liquid (water) can flow through these continuous pores while allowing the liquid to come into contact with the contact surfaces of the continuous pores of the anode and the cathode in a wide range, and the catalytic activity (catalytic action) of the anode and the cathode. ) Can be used effectively and to the maximum extent. Since the electrolyzer has a large specific surface area of the anode and cathode used for it and exhibits almost the same catalytic activity (catalytic action) as the anode and cathode containing platinum group elements, a non-platinum anode and cathode are used. In addition to being able to efficiently perform electrolysis, it is possible to generate a large amount of hydrogen gas in a short time.

径方向へ隣接して厚み方向へ曲折して延びるそれら連続気泡が径方向において部分的に繋がって一方の連続気泡と他方の連続気泡とが互いに連通し、厚み方向へ隣接して径方向へ曲折して延びるそれら連続気泡が厚み方向において部分的に繋がって一方の連続気泡と他方の連続気泡とが互いに連通し、それら連続気泡の平均径が厚み方向に向かって一様ではなく、厚み方向に向かって不規則に変化しているとともに、径方向に向かって一様ではなく、径方向に向かって不規則に変化している電気分解装置は、一方の連続気泡と他方の連続気泡とが互いに連通し、それら連続気泡の平均径が厚み方向及び径方向に向かって不規則に変化しているから、陽極及び陰極の比表面積を大きくすることができ、それら連続気孔を液体(水)が通流しつつ液体を陽極及び陰極のそれら連続気孔における接触面に広範囲に接触させることができるとともに、陽極及び陰極の触媒活性(触媒作用)を有効かつ最大限に利用することができる。電気分解装置は、それに使用する陽極及び陰極の比表面積が大きいとともに白金族元素を含む陽極や陰極と略同様の優れた触媒活性(触媒作用)を発揮するから、非白金の陽極及び陰極を使用して電気分解を効率よく行うことができるとともに、短時間に多量の水素ガスを発生させることができる。 These open cells that are adjacent in the radial direction and extend by bending in the thickness direction are partially connected in the radial direction, and one open cell and the other open bubble communicate with each other, and are adjacent in the thickness direction and bend in the radial direction. The open cells extending in the thickness direction are partially connected in the thickness direction, and one open cell and the other open cell communicate with each other, and the average diameter of the open cells is not uniform in the thickness direction but in the thickness direction. In an electrolyzer that changes irregularly toward and is not uniform in the radial direction and changes irregularly in the radial direction, one open cell and the other open cell are mutually exclusive. Since the average diameter of the open cells changes irregularly in the thickness direction and the radial direction, the specific surface areas of the anode and the cathode can be increased, and the liquid (water) passes through the continuous pores. The liquid can be brought into contact with the contact surfaces of the continuous pores of the anode and the cathode in a wide range while flowing, and the catalytic activity (catalytic action) of the anode and the cathode can be effectively and maximized. The electrolyzer uses non-platinum anodes and cathodes because the specific surface areas of the anodes and cathodes used for them are large and they exhibit excellent catalytic activity (catalytic action) similar to those of anodes and cathodes containing platinum group elements. Therefore, electrolysis can be efficiently performed, and a large amount of hydrogen gas can be generated in a short time.

薄板状発泡金属電極に形成された連続気孔の平均径が1μm〜100μmの範囲にあるとともに、±0.1μm〜±5マイクロμmの範囲で変化している電気分解装置は、陽極及び陰極に形成された連続気孔の平均径が前記範囲にあり、連続気孔の平均径が前記範囲で変化しているから、陽極及び陰極の単位体積当たりに多数の連続気孔が形成され、陽極及び陰極の比表面積が大きく、それら連続気孔を液体(水)が通流しつつ液体を陽極及び陰極のそれら連続気孔における接触面に広範囲に接触させることができ、陽極及び陰極の触媒活性(触媒作用)を有効かつ最大限に利用することができる。電気分解装置は、それに使用する陽極及び陰極の比表面積が大きいとともに白金族元素を含む陽極や陰極と略同様の触媒活性(触媒作用)を発揮するから、非白金の陽極及び陰極を使用して電気分解を効率よく行うことができるとともに、短時間に多量の水素ガスを発生させることができる。 Electrolyzers in which the average diameter of continuous pores formed in the thin plate foam metal electrode is in the range of 1 μm to 100 μm and changes in the range of ± 0.1 μm to ± 5 microμm are formed in the anode and cathode. Since the average diameter of the continuous pores formed is in the above range and the average diameter of the continuous pores changes in the above range, a large number of continuous pores are formed per unit volume of the anode and the cathode, and the specific surface area of the anode and the cathode is formed. Is large, and the liquid (water) can flow through these continuous pores while allowing the liquid to come into contact with the contact surfaces of the continuous pores of the anode and the cathode in a wide range, and the catalytic activity (catalytic action) of the anode and the cathode is effective and maximum. It can be used only for a limited time. Since the electrolyzer has a large specific surface area of the anode and cathode used for it and exhibits almost the same catalytic activity (catalytic action) as the anode and cathode containing platinum group elements, a non-platinum anode and cathode are used. In addition to being able to efficiently perform electrolysis, it is possible to generate a large amount of hydrogen gas in a short time.

薄板状発泡金属電極の厚み寸法が0.05mm〜0.5mmの範囲にある電気分解装置は、それに使用する陽極及び陰極の厚み寸法を前記範囲にすることで、陽極及び陰極の電気抵抗を小さくすることができ、陽極及び陰極に電流をスムースに流すことができる。電気分解装置は、それに使用する陽極及び陰極が白金族元素を含む陽極や陰極と略同様の優れた触媒活性(触媒作用)を有するとともに、陽極及び陰極に電流がスムースに流れるから、陽極及び陰極を使用した電気分解装置において電気分解を効率よく行うことができるとともに、短時間に多量の水素ガスを発生させることができる。 An electrolyzer whose thickness dimension of the thin plate-shaped foamed metal electrode is in the range of 0.05 mm to 0.5 mm reduces the electrical resistance of the anode and the cathode by setting the thickness dimension of the anode and the cathode used therein in the above range. The current can be smoothly passed through the anode and the cathode. In the electrolyzer, the anode and cathode used for the electrolyzer have excellent catalytic activity (catalytic action) similar to that of the anode and cathode containing platinum group elements, and the current flows smoothly through the anode and cathode. In addition to being able to efficiently perform electrolysis in the electrolysis apparatus using the above, it is possible to generate a large amount of hydrogen gas in a short time.

Fe−NiパーマロイにおけるFeの含有率が45%〜55%の範囲にあり、Fe−NiパーマロイにおけるNiの含有率が45%〜55%の範囲にある電気分解装置は、パーマロイ微粉体の仕事関数が白金族元素の仕事関数に近似するように、Fe−NiパーマロイにおけるFeの含有率とNiの含有率とが前記範囲で決定されているから、陽極及び陰極が白金属元素を含む陽極や陰極と略同一の仕事関数を備え、陽極及び陰極が白金属元素を含む陽極や陰極と略同様の優れた触媒活性(触媒作用)を発揮することができ、その陽極及び陰極を使用した電気分解装置において電気分解を効率よく行うことができるとともに、短時間に多量の水素ガスを発生させることができる。 An electrolyzer in which the Fe content in Fe-Ni permalloy is in the range of 45% to 55% and the Ni content in Fe-Ni permalloy is in the range of 45% to 55% is the work function of permalloy fine powder. Since the content of Fe and the content of Ni in Fe-Ni permalloy are determined in the above range so that is close to the work function of platinum group elements, the anode and cathode are anodes and cathodes containing white metal elements. It has almost the same work function as, and the anode and cathode can exhibit excellent catalytic activity (cathodic action) almost the same as the anode and cathode containing platinum group, and the electrolyzer using the anode and cathode. In addition to being able to efficiently perform electrolysis, a large amount of hydrogen gas can be generated in a short time.

薄板状発泡金属電極に成形された連続気泡の気孔率が45%〜55%の範囲にある電気分解装置は、それに使用する薄板状発泡金属電極(陽極及び陰極)の気孔率を前記範囲にすることで、陽極及び陰極が多数の微細な連続気孔を有する多孔質(平均径が1μm〜100μmの微細な連続気孔が満遍なく均一に形成されたマイクロポーラス構造)に形成され、陽極及び陰極の比表面積を大きくすることができ、それら連続気孔を液体(水)が通流しつつ液体を陽極及び陰極の接触面に広範囲に接触させることが可能となり、陽極及び陰極が白金族金属を含む陽極や陰極と略同様の触媒活性(触媒作用)を確実に発揮することができる。電気分解装置は、それに使用する陽極及び陰極の触媒機能を十分かつ確実に利用することが可能であり、その陽極及び陰極を使用した電気分解装置において電気分解を効率よく行うことができるとともに、短時間に多量の水素ガスを発生させることができる。 An electrolysis device having a porosity of open cells formed on a thin plate foam metal electrode in the range of 45% to 55% sets the porosity of the thin plate foam metal electrode (anode and cathode) used therein in the above range. As a result, the anode and the cathode are formed into a porosity having a large number of fine continuous pores (a microporous structure in which fine continuous pores having an average diameter of 1 μm to 100 μm are formed evenly and uniformly), and the specific surface area of the anode and the cathode is formed. It is possible to make the liquid (water) pass through these continuous pores and bring the liquid into contact with the contact surfaces of the anode and the cathode in a wide range, and the anode and the cathode are with the anode and the cathode containing a platinum group metal. It is possible to reliably exert substantially the same catalytic activity (catalytic action). The electrolyzer can fully and surely utilize the catalytic functions of the anode and the cathode used therein, and can efficiently perform electrolysis in the electrolyzer using the anode and the cathode, and is short. A large amount of hydrogen gas can be generated in time.

薄板状発泡金属電極の密度が6.0g/cm〜8.0g/cmの範囲にある電気分解装置は、それに使用する薄板状発泡金属電極(陽極及び陰極)の密度を前記範囲にすることで、陽極及び陰極が多数の微細な連続気孔を有する多孔質(平均径が1μm〜100μmの微細な連続気孔が満遍なく均一に形成されたマイクロポーラス構造)に成形され、陽極及び陰極の比表面積を大きくすることができ、それら連続気孔を液体(水)が通流しつつ液体を陽極及び陰極のそれら連続気孔における接触面に広範囲に接触させることが可能となり、陽極及び陰極が白金属元素を含む陽極や陰極と略同様の触媒活性(触媒作用)を確実に発揮することができる。電気分解装置は、それに使用する陽極及び陰極の触媒機能を十分かつ確実に利用することが可能であり、その陽極及び陰極を使用した電気分解装置において電気分解を効率よく行うことができるとともに、短時間に多量の水素ガスを発生させることができる。 Electrolyzer density of thin foamed metal electrode is in the range of 6.0g / cm 2 ~8.0g / cm 2, the density of the thin foamed metal electrodes (anode and cathode) for use therewith in the range As a result, the anode and cathode are formed into a porous structure having a large number of fine continuous pores (a microporous structure in which fine continuous pores having an average diameter of 1 μm to 100 μm are uniformly and uniformly formed), and the specific surface area of the anode and the cathode is formed. It is possible to make the liquid (water) pass through the continuous pores and bring the liquid into wide contact with the contact surfaces of the anode and the cathode in the continuous pores, and the anode and the cathode contain a white metal element. It is possible to reliably exhibit catalytic activity (catalytic action) substantially similar to that of an anode or a cathode. The electrolyzer can fully and surely utilize the catalytic functions of the anode and the cathode used therein, and can efficiently perform electrolysis in the electrolyzer using the anode and the cathode, and is short. A large amount of hydrogen gas can be generated in time.

パーマロイ微粉体の粒径が1μm〜100μmの範囲にある電気分解装置は、それに使用する陽極及び陰極を形成するパーマロイ微粉体の粒径を前記範囲にすることで、陽極及び陰極が多数の微細な連続気孔を有する多孔質(平均径が1μm〜100μmの微細な連続気孔が満遍なく均一に形成されたマイクロポーラス構造)に成形され、陽極及び陰極の比表面積を大きくすることができ、それら連続気孔を液体(水)が通流しつつ液体を陽極及び陰極のそれら連続気孔における接触面に広範囲に接触させることが可能となり、陽極及び陰極が白金属元素を含む陽極や陰極と略同様の触媒活性(触媒作用)を確実に発揮することができる。電気分解装置は、それに使用する陽極及び陰極の触媒機能を十分かつ確実に利用することが可能であり、その陽極及び陰極を使用した電気分解装置において電気分解を効率よく行うことができるとともに、短時間に多量の水素ガスを発生させることができる。 An electrolysis device having a permalloy fine powder in the range of 1 μm to 100 μm has a large number of fine anodes and cathodes by setting the particle size of the permalloy fine powder used for forming the anode and cathode in the above range. It is formed into a porous structure with continuous pores (a microporous structure in which fine continuous pores with an average diameter of 1 μm to 100 μm are evenly and uniformly formed), and the specific surface areas of the anode and cathode can be increased, and these continuous pores can be formed. While the liquid (water) is flowing, the liquid can be brought into contact with the contact surfaces of the anode and the cathode in their continuous pores in a wide range, and the anode and the cathode have substantially the same catalytic activity (catalyst) as the anode and the cathode containing a white metal element. Action) can be reliably exerted. The electrolyzer can fully and surely utilize the catalytic functions of the anode and the cathode used therein, and can efficiently perform electrolysis in the electrolyzer using the anode and the cathode, and is short. A large amount of hydrogen gas can be generated in time.

一例として示す電気分解装置の側面図。A side view of an electrolyzer shown as an example. 一例として示す陽極及び陰極の斜視図。The perspective view of the anode and the cathode shown as an example. 陽極及び陰極の一例として示す部分拡大図。A partially enlarged view showing an anode and a cathode as an example. 電気分解装置を使用した電気分解の一例を説明する図。The figure explaining an example of electrolysis using an electrolysis apparatus. 電気分解装置を利用した水素ガス発生システムの一例を示す図。The figure which shows an example of the hydrogen gas generation system using an electrolyzer. 空気極(陽極)及び燃料極(陰極)を使用した固体高分子形燃料電池の側面図。A side view of a polymer electrolyte fuel cell using an air electrode (anode) and a fuel electrode (cathode). 陽極及び陰極の起電圧試験の結果を示す図。The figure which shows the result of the electromotive voltage test of an anode and a cathode. 陽極及び陰極のI−V特性試験の結果を示す図。The figure which shows the result of the IV characteristic test of an anode and a cathode. 陽極及び陰極の製造方法を説明する図。The figure explaining the manufacturing method of an anode and a cathode.

一例として示す電気分解装置10の側面図である図1等の添付の図面を参照し、本発明に係る電気分解装置及び電気分解装置に使用する陽極及び陰極の製造方法の詳細を説明すると、以下のとおりである。なお、図2は、一例として示す陽極11及び陰極12の斜視図であり、図3は、陽極11及び陰極12の一例として示す部分拡大図である。図2では、厚み方向を矢印Xで示し、径方向を矢印Yで示す。 The details of the method for manufacturing the anode and the cathode used in the electrolyzer and the electrolyzer according to the present invention will be described with reference to the attached drawings such as FIG. 1 which is a side view of the electrolyzer 10 shown as an example. It is as follows. Note that FIG. 2 is a perspective view of the anode 11 and the cathode 12 shown as an example, and FIG. 3 is a partially enlarged view showing the anode 11 and the cathode 12 as an example. In FIG. 2, the thickness direction is indicated by an arrow X, and the radial direction is indicated by an arrow Y.

電気分解装置10(水素ガス発生装置)は、陽極11(アノード)と、陰極12(カソード)と、陽極11及び陰極12の間に位置(介在)する固体高分子電解質膜13(電極接合体膜)(スルホン酸基を有するフッ素系イオン交換膜)と、陽極給電部材14及び陰極給電部材15と、陽極用貯水槽16及び陰極用貯水槽17と、陽極主電極18及び陰極主電極19とから形成されている。 The electrolysis device 10 (hydrogen gas generator) is a solid polymer electrolyte film 13 (electrode junction film) located (intervened) between the anode 11 (anode), the cathode 12 (cathode), and the anode 11 and the cathode 12. ) (Fluorine-based ion exchange film having a sulfonic acid group), the anode feeding member 14, the cathode feeding member 15, the anode water storage tank 16 and the cathode water storage tank 17, and the anode main electrode 18 and the cathode main electrode 19. It is formed.

電気分解装置10は、陽極11及び陰極12に電気を通電し、陽極11で酸化反応を起こすとともに陰極12で還元反応を起こすことで所定の水溶液を化学分解する。電気分解装置10では、陽極11及び陰極12、固体高分子電解質膜13が厚み方向へ重なり合って一体化し、膜/電極接合体20 (Membrane Electrode Assembly, MEA)を構成し、膜/電極接合体20を陽極給電部材14と陰極給電部材15とが挟み込んでいる。固体高分子電解質膜13は、プロトン導電性があり、電子導電性がない。 The electrolyzer 10 chemically decomposes a predetermined aqueous solution by energizing the anode 11 and the cathode 12 to cause an oxidation reaction at the anode 11 and a reduction reaction at the cathode 12. In the electrolysis apparatus 10, the anode 11, the cathode 12, and the solid polymer electrolyte membrane 13 are overlapped and integrated in the thickness direction to form a membrane / electrode assembly (MEA), and the membrane / electrode assembly 20 is formed. Is sandwiched between the anode feeding member 14 and the cathode feeding member 15. The solid polymer electrolyte membrane 13 has proton conductivity and no electron conductivity.

陽極給電部材14は、陽極11の外側に位置して陽極11に密着し、陽極11に+の電流を給電する。陽極用貯水槽16は、陽極給電部材14の外側に位置して陽極給電部材14に密着している。陽極主電極18は、陽極用貯水槽16の外側に位置して陽極給電部材14に+の電流を給電する。陰極給電部材15は、陰極12の外側に位置して陰極12に密着し、陰極12に−の電流を給電する。陰極用貯水槽17は、陰極給電部材15の外側に位置して陰極給電部材15に密着している。陰極主電極19は、陰極用貯水槽17の外側に位置して陰極給電部材15に−の電流を給電する。 The anode feeding member 14 is located outside the anode 11 and is in close contact with the anode 11 to supply a positive current to the anode 11. The water storage tank 16 for the anode is located outside the anode feeding member 14 and is in close contact with the anode feeding member 14. The anode main electrode 18 is located outside the anode water storage tank 16 and supplies a positive current to the anode feeding member 14. The cathode feeding member 15 is located outside the cathode 12 and is in close contact with the cathode 12, and feeds a negative current to the cathode 12. The cathode water storage tank 17 is located outside the cathode feeding member 15 and is in close contact with the cathode feeding member 15. The cathode main electrode 19 is located outside the water storage tank 17 for the cathode and supplies a negative current to the cathode feeding member 15.

電気分解装置10(水素ガス発生装置)に使用する陽極11及び陰極12は、前面21及び後面22を有するとともに、所定の面積及び所定の厚み寸法L1を有し、その平面形状が四角形に成形されている。陽極11及び陰極12は、多数の微細な連続気孔23(連続通気孔)を有する多孔質(マイクロポーラス構造)の薄板状発泡金属電極24である。連続気孔23(連続通気孔)には、水溶液(液体)が通流する。なお、陽極11や陰極12の平面形状に特に制限はなく、四角形の他に、その用途にあわせて円形や楕円形等の他のあらゆる平面形状に成形することができる。 The anode 11 and the cathode 12 used in the electrolyzer 10 (hydrogen gas generator) have a front surface 21 and a rear surface 22, a predetermined area and a predetermined thickness dimension L1, and the planar shape thereof is formed into a quadrangle. ing. The anode 11 and the cathode 12 are porous (microporous structure) thin plate-shaped foamed metal electrodes 24 having a large number of fine continuous pores 23 (continuous ventilation holes). An aqueous solution (liquid) flows through the continuous pores 23 (continuous ventilation holes). The planar shapes of the anode 11 and the cathode 12 are not particularly limited, and can be formed into any other planar shape such as a circular shape or an elliptical shape according to the intended use, in addition to the quadrangular shape.

陽極11及び陰極12(マイクロポーラス構造の薄板状発泡金属電極24)は、粉状に微粉砕(粉砕加工)されたFe−Niパーマロイ49から形成されている。Fe−Niパーマロイ49のパーマロイ微粉体50(微粉状に加工されたFe−Niパーマロイ49)に所定のバインダー51(紛状の樹脂系バインダー)を混合し、パーマロイ微粉体50とバインダー51とを均一に混合・分散したパーマロイ微粉体混合物53を作り、更に、パーマロイ微粉体混合物53に所定の気孔形成材52(発泡剤)を混合し、気孔形成材52を均一に混合・分散した微粉体混合物53を作る。作成したパーマロイ微粉体混合物53を押出成形又は射出成形によって所定面積の薄板状に成形(押出成形又は射出成形)して薄板状のパーマロイ微粉体混合成形物54を作り、作成した微粉体混合成形物54を脱脂及び所定温度で焼結(焼成)することから陽極11及び陰極12が作られている(図9参照)。連続気泡25は、パーマロイ微粉体50が溶融結合したパーマロイ溶融物によって画成かつ囲繞されている。 The anode 11 and the cathode 12 (thin plate-shaped foamed metal electrode 24 having a microporous structure) are formed of Fe-Ni permalloy 49 that has been finely pulverized (pulverized) into powder. A predetermined binder 51 (powdered resin-based binder) is mixed with the permalloy fine powder 50 (Fe-Ni permalloy 49 processed into fine powder) of Fe-Ni permalloy 49, and the permalloy fine powder 50 and the binder 51 are made uniform. A permalloy fine powder mixture 53 mixed and dispersed in the permalloy fine powder mixture 53 was further mixed with a predetermined pore-forming material 52 (foaming agent), and the pore-forming material 52 was uniformly mixed and dispersed in the fine powder mixture 53. make. The prepared Permalloy fine powder mixture 53 is formed into a thin plate having a predetermined area by extrusion molding or injection molding (extrusion molding or injection molding) to prepare a thin plate-shaped Permalloy fine powder mixed molded product 54, and the prepared fine powder mixed molded product. The anode 11 and the cathode 12 are made by degreasing and sintering (baking) 54 at a predetermined temperature (see FIG. 9). The open cells 25 are defined and surrounded by a permalloy melt in which the permalloy fine powder 50 is melt-bonded.

陽極11及び陰極12では、パーマロイ微粉体50の仕事関数が白金族元素の仕事関数に近似するように、Fe−Niパーマロイ49における(Fe−Niパーマロイ49の全重量(100%)に対する)Fe(鉄)の含有率(重量比)とNi(ニッケル)の含有率(重量比)とが決定されている。具体的には、Fe−Niパーマロイ49におけるFeの含有率(重量比)が45%〜55%の範囲、好ましくは、49%〜51%の範囲にあり、Fe−Niパーマロイ49におけるNiの含有率(重量比)が45%〜55%の範囲、好ましくは、49%〜51%の範囲にある。 At the anode 11 and the cathode 12, Fe (relative to the total weight (100%) of Fe-Ni permalloy 49) in Fe-Ni permalloy 49 so that the work function of the permalloy fine powder 50 approximates the work function of the platinum group element. The iron) content (weight ratio) and the Ni (nickel) content (weight ratio) have been determined. Specifically, the Fe content (weight ratio) in Fe-Ni permalloy 49 is in the range of 45% to 55%, preferably 49% to 51%, and the content of Ni in Fe-Ni permalloy 49. The rate (weight ratio) is in the range of 45% to 55%, preferably in the range of 49% to 51%.

なお、Feの仕事関数は、4.67(eV)であり、Niの仕事関数は、5.22(eV)である。Fe−Niパーマロイ49の全重量に対するFeの含有率及びFe−Niパーマロイ49の全重量に対するNiの含有率が前記範囲外になると、パーマロイ微粉体50の仕事関数を白金族元素の仕事関数に近似させることができず、パーマロイ微粉体混合物53を成形したパーマロイ微粉体混合成形物54を脱脂・焼結(焼成)して作られた陽極11及び陰極12が白金族元素を含む(担持した)陽極や陰極と略同様の触媒活性(触媒作用)を発揮することができない。 The work function of Fe is 4.67 (eV), and the work function of Ni is 5.22 (eV). When the Fe content to the total weight of Fe-Ni permalloy 49 and the Ni content to the total weight of Fe-Ni permalloy 49 are out of the above range, the working function of the permalloy fine powder 50 is approximated to the working function of the platinum group element. The anode 11 and the cathode 12 produced by degreasing and sintering (baking) the permalloy fine powder mixed molded product 54 obtained by molding the permalloy fine powder mixed mixture 53 could contain (support) a platinum group element. It cannot exhibit almost the same catalytic activity (catalytic action) as that of iron and nickel.

固体高分子形燃料電池10は、パーマロイ微粉体50の仕事関数が白金族元素の仕事関数に近似するように、Fe−Niパーマロイ49におけるFeの含有率とNiの含有率とが前記範囲にあるから、陽極11及び陰極12が白金属元素を含む(担持した)陽極や陰極と略同一の仕事関数を備え、陽極11及び陰極12が白金属元素を含む陽極や陰極と略同様の優れた触媒活性(触媒作用)を発揮することができる。 In the polymer electrolyte fuel cell 10, the Fe content and the Ni content in the Fe—Ni permalloy 49 are in the above range so that the working function of the permalloy fine powder 50 is close to the working function of the platinum group element. Therefore, the anode 11 and the cathode 12 have substantially the same work function as the anode and the cathode containing (supporting) the platinum group, and the anode 11 and the cathode 12 have substantially the same excellent catalyst as the anode and the cathode containing the platinum group. It can exert its activity (cathodic action).

陽極11及び陰極12(マイクロポーラス構造の薄板状発泡金属電極24)には、径が異なる多数の微細な連続気孔23(連続通気孔)が形成されている。陽極11及び陰極12は、多数の微細な連続気孔23(連続通気孔)が形成されているから、それらの比表面積が大きい。陽極11及び陰極12に形成されたそれら連続気孔23は、陽極11及び陰極12の前面21に開口する複数の通流口25と、陽極11及び陰極12の後面22に開口する複数の通流口25とを有し、陽極11及び陰極12の前面21から後面22に向かって陽極11及び陰極12をその厚み方向に貫通しているとともに、陽極11及び陰極12の中心から外周縁26に向かってその径方向に貫通している。 A large number of fine continuous pores 23 (continuous ventilation holes) having different diameters are formed in the anode 11 and the cathode 12 (thin plate-shaped foamed metal electrode 24 having a microporous structure). Since the anode 11 and the cathode 12 are formed with a large number of fine continuous pores 23 (continuous ventilation holes), their specific surface areas are large. The continuous pores 23 formed in the anode 11 and the cathode 12 have a plurality of passage ports 25 opened in the front surface 21 of the anode 11 and the cathode 12, and a plurality of passage ports opened in the rear surface 22 of the anode 11 and the cathode 12. 25, which penetrates the anode 11 and the cathode 12 in the thickness direction from the front surface 21 of the anode 11 and the cathode 12 toward the rear surface 22, and from the center of the anode 11 and the cathode 12 toward the outer peripheral edge 26. It penetrates in its radial direction.

それら連続気孔23は、陽極11及び陰極12の前面21と後面22との間において陽極11及び陰極12の厚み方向へ不規則に曲折しながら延びているとともに、陽極11及び陰極12の外周縁26から中心に向かって陽極11及び陰極12の径方向へ不規則に曲折しながら延びている。径方向へ隣接して厚み方向へ曲折して延びるそれら連続気孔23(連続通気孔)は、径方向において部分的につながり、一方の気孔23と他方の気孔23とが互いに連通している。厚み方向へ隣接して径方向へ曲折して延びるそれら連続気孔23(連続通気孔)は、厚み方向において部分的につながり、一方の気孔23と他方の気孔23とが互いに連通している。 The continuous pores 23 extend between the front surface 21 and the rear surface 22 of the anode 11 and the cathode 12 while being irregularly bent in the thickness direction of the anode 11 and the cathode 12, and the outer peripheral edge 26 of the anode 11 and the cathode 12. It extends from the center toward the center while irregularly bending in the radial direction of the anode 11 and the cathode 12. The continuous pores 23 (continuous vents) that are adjacent to each other in the radial direction and bend in the thickness direction are partially connected in the radial direction, and one pore 23 and the other pore 23 communicate with each other. The continuous pores 23 (continuous vents) that are adjacent to each other in the thickness direction and extend by bending in the radial direction are partially connected in the thickness direction, and one pore 23 and the other pore 23 communicate with each other.

それら連続気孔23の平均径(開口面積)は、厚み方向に向かって一様ではなく、厚み方向に向かって不規則に変化しているとともに、径方向に向かって一様ではなく、径方向に向かって不規則に変化している。それら連続気孔23は、その平均径(開口面積)が大きくなったり、小さくなったりしながら厚み方向と径方向とへ不規則に開口している。また、陽極11及び陰極12の前面21に開口する通流口25と後面22に開口する通流口25とは、その平均径(開口面積)が一様ではなく、その平均径がすべて相違している。それら連続気孔23の平均径(開口面積)や前後面21,22の通流口25の平均径(開口面積)は、1μm〜100μmの範囲、好ましくは、45μm〜55μmの範囲にあり、±0.1μm〜±5μm(連続気孔23の平均径の変化幅)の範囲で変化している。 The average diameter (opening area) of these continuous pores 23 is not uniform in the thickness direction and changes irregularly in the thickness direction, and is not uniform in the radial direction and is in the radial direction. It is changing irregularly toward. The continuous pores 23 are irregularly opened in the thickness direction and the radial direction while the average diameter (opening area) is increasing or decreasing. Further, the average diameter (opening area) of the air passage port 25 opened in the front surface 21 of the anode 11 and the cathode 12 and the air flow port 25 opened in the rear surface 22 are not uniform, and the average diameters are all different. ing. The average diameter (opening area) of the continuous pores 23 and the average diameter (opening area) of the passage ports 25 of the front and rear surfaces 21 and 22 are in the range of 1 μm to 100 μm, preferably in the range of 45 μm to 55 μm, ± 0. It changes in the range of 1 μm to ± 5 μm (change width of the average diameter of the continuous pores 23).

電気分解装置10は、それに使用する陽極11及び陰極12に厚み方向や径方向へ不規則に曲折しながら延びる複数の連続気孔23(連続通気孔)が形成され、その気孔23の平均径が1〜100μmの範囲(好ましくは、45μm〜55μmの範囲)にあり、連続気孔23の平均径の変化幅が±0.1μm〜±5μmの範囲にあるから、陽極11及び陰極12の単位体積当たりに多数の連続気孔23が形成され、陽極11及び陰極12の比表面積を大きくすることができ、それら気孔23を液体(水)が通流しつつ液体を陽極11及び陰極12のそれら気孔23における接触面に広範囲に接触させることができ、陽極11及び陰極12の触媒活性(触媒作用)を有効かつ最大限に利用することができる。 In the electrolysis device 10, a plurality of continuous pores 23 (continuous ventilation holes) extending while irregularly bending in the thickness direction and the radial direction are formed in the anode 11 and the cathode 12 used therein, and the average diameter of the pores 23 is 1. Since it is in the range of ~ 100 μm (preferably in the range of 45 μm to 55 μm) and the range of change in the average diameter of the continuous pores 23 is in the range of ± 0.1 μm to ± 5 μm, per unit volume of the anode 11 and the cathode 12. A large number of continuous pores 23 are formed, and the specific surface areas of the anode 11 and the cathode 12 can be increased, and the liquid (water) flows through the pores 23 while the liquid is passed through the pores 23 of the anode 11 and the cathode 12. Can be brought into contact with a wide range, and the catalytic activity (catalytic action) of the anode 11 and the cathode 12 can be effectively and maximized.

陽極11及び陰極12(マイクロポーラス構造の薄板状発泡金属電極24)は、その厚み寸法L1が0.05mm〜0.5mmの範囲にある。陽極11及び陰極12の厚み寸法L1が0.05mm未満では、陽極11及び陰極12の強度が低下し、衝撃が加えられたときに陽極11及び陰極12が容易に破損又は損壊し、その形状を維持することができない場合がある。陽極11及び陰極12の厚み寸法L1が0.5mmを超過すると、陽極11及び陰極12の電気抵抗が大きくなり、陽極11及び陰極12に電流がスムースに流れず、陽極11及び陰極12が電気分解装置10に使用されたときに電気分解装置10において効率よく電気分解を行うことができず、電気分解装置10において短時間に多量の水素ガスを発生させることができない。 The anode 11 and the cathode 12 (thin plate-shaped foamed metal electrode 24 having a microporous structure) have a thickness dimension L1 in the range of 0.05 mm to 0.5 mm. If the thickness dimension L1 of the anode 11 and the cathode 12 is less than 0.05 mm, the strength of the anode 11 and the cathode 12 decreases, and the anode 11 and the cathode 12 are easily damaged or damaged when an impact is applied, and the shape thereof is changed. It may not be possible to maintain. When the thickness dimension L1 of the anode 11 and the cathode 12 exceeds 0.5 mm, the electrical resistance of the anode 11 and the cathode 12 increases, the current does not flow smoothly through the anode 11 and the cathode 12, and the anode 11 and the cathode 12 are electrolyzed. When used in the device 10, the electrolysis device 10 cannot efficiently perform electrolysis, and the electrolysis device 10 cannot generate a large amount of hydrogen gas in a short time.

電気分解装置10は、それに使用する陽極11及び陰極12の厚み寸法L1が0.05mm〜0.5mmの範囲にあるから、陽極11及び陰極12が高い強度を有してその形状を維持することができ、陽極11及び陰極12に衝撃が加えられたときの陽極11及び陰極12の破損や損壊を防ぐことができる。更に、陽極11及び陰極12の電気抵抗を小さくすることができ、陽極11及び陰極12に電流がスムースに流れ、陽極11及び陰極12が電気分解装置10に使用されたときに電気分解装置10において効率よく電気分解を行うことができ、電気分解装置10において短時間に多量の水素ガスを発生させることができる。 Since the thickness dimension L1 of the anode 11 and the cathode 12 used in the electrolyzer 10 is in the range of 0.05 mm to 0.5 mm, the anode 11 and the cathode 12 have high strength and maintain their shapes. This makes it possible to prevent damage or damage to the anode 11 and the cathode 12 when an impact is applied to the anode 11 and the cathode 12. Further, the electrical resistance of the anode 11 and the cathode 12 can be reduced, the current flows smoothly through the anode 11 and the cathode 12, and when the anode 11 and the cathode 12 are used in the electrolyzer 10, the electrolyzer 10 The electrolysis can be performed efficiently, and a large amount of hydrogen gas can be generated in a short time in the electrolysis apparatus 10.

陽極11及び陰極12(マイクロポーラス構造の薄板状発泡金属電極24)は、その気孔率が45%〜55%の範囲にある。陽極11及び陰極12の気孔率が45%未満では、陽極11及び陰極12に多数の微細な連続気孔23(連続通気孔)が形成されず、陽極11及び陰極12の比表面積を大きくすることができない。陽極11及び陰極12の気孔率が55%を超過すると、連続気孔23(連続通気孔)の平均径(開口面積)や前後面21,22の通流口25の平均径(開口面積)が必要以上に大きくなり、陽極11及び陰極12の強度が低下し、衝撃が加えられたときに陽極11及び陰極12が容易に破損又は損壊し、その形状を維持することができない場合があるとともに、陽極11及び陰極12の触媒作用が低下し、陽極11及び陰極12が十分な触媒活性を発揮することができず、陽極11及び陰極12の触媒活性(触媒作用)を有効に利用することができない。 The anode 11 and the cathode 12 (thin plate-shaped foamed metal electrode 24 having a microporous structure) have a porosity in the range of 45% to 55%. If the porosity of the anode 11 and the cathode 12 is less than 45%, a large number of fine continuous pores 23 (continuous ventilation holes) are not formed in the anode 11 and the cathode 12, and the specific surface area of the anode 11 and the cathode 12 can be increased. Can not. When the pore ratios of the anode 11 and the cathode 12 exceed 55%, the average diameter (opening area) of the continuous pores 23 (continuous ventilation holes) and the average diameter (opening area) of the passage ports 25 on the front and rear surfaces 21 and 22 are required. The anode 11 and the cathode 12 become larger than the above, and the strength of the anode 11 and the cathode 12 decreases. When an impact is applied, the anode 11 and the cathode 12 may be easily damaged or damaged, and the shape of the anode 11 and the cathode 12 may not be maintained. The catalytic activity of the anode 11 and the cathode 12 is reduced, the anode 11 and the cathode 12 cannot exhibit sufficient catalytic activity, and the catalytic activity (catalytic action) of the anode 11 and the cathode 12 cannot be effectively used.

電気分解装置10は、それに使用する陽極11及び陰極12の気孔率が前記範囲にあるから、陽極11及び陰極12が平均径(開口面積)の異なる多数の微細な連続気孔23(平均径が1〜100μmの範囲、好ましくは、45μm〜55μmの範囲の連続気孔23)や平均径(開口面積)の異なる多数の微細な前後面21,22の通流口25(平均径が1〜100μmの範囲、好ましくは、45μm〜55μmの範囲の通流口25)を有する多孔質(マイクロポーラス構造)に成形され、陽極11及び陰極12の比表面積を大きくすることができ、それら気孔23を液体(水)が通流しつつ液体を陽極11及び陰極12のそれら気孔23における接触面に広く接触させることができる。更に、陽極11及び陰極12の触媒作用が向上し、陽極11及び陰極12に優れた触媒活性を発揮させることができ、陽極11及び陰極12が電気分解装置10に使用されたときに電気分解装置10において効率よく電気分解を行うことができ、電気分解装置10において短時間に多量の水素ガスを発生させることができる。 Since the porosity of the anode 11 and the cathode 12 used in the electrolysis device 10 is within the above range, a large number of fine continuous pores 23 (having an average diameter of 1) in which the anode 11 and the cathode 12 have different average diameters (opening areas) Continuous pores in the range of ~ 100 μm, preferably in the range of 45 μm to 55 μm) and a large number of fine front and rear surfaces 21 and 22 with different average diameters (opening areas) 25 (average diameter in the range of 1 to 100 μm). , Preferably, it is formed into a porous material (microporous structure) having a passage port 25) in the range of 45 μm to 55 μm, the specific surface area of the anode 11 and the cathode 12 can be increased, and the pores 23 are made of liquid (water). ) Can flow and bring the liquid into wide contact with the contact surfaces of the anode 11 and the cathode 12 in their pores 23. Further, the catalytic action of the anode 11 and the cathode 12 is improved, the anode 11 and the cathode 12 can exhibit excellent catalytic activity, and when the anode 11 and the cathode 12 are used in the electrolyzer 10, the electrolyzer The electrolysis device 10 can efficiently perform electrolysis, and the electrolysis device 10 can generate a large amount of hydrogen gas in a short time.

陽極11及び陰極12(マイクロポーラス構造の薄板状発泡金属電極24)は、その密度が6.0g/cm〜8.0g/cmの範囲、好ましくは、6.5g/cm〜7.5g/cmの範囲にある。陽極11及び陰極12の密度が6.0g/cm(6.5g/cm)未満では、陽極11及び陰極12の強度が低下し、衝撃が加えられたときに陽極11及び陰極12が容易に破損又は損壊し、その形状を維持することができない場合があるとともに、陽極11及び陰極12の触媒作用が低下し、陽極11及び陰極12が十分な触媒活性を発揮することができず、陽極11及び陰極12の触媒活性(触媒作用)を有効に利用することができない。陽極11及び陰極12の密度が8.0g/cm(7.5g/cm)を超過すると、陽極11及び陰極12に多数の微細な連続気孔23や多数の微細な通流口25が形成されず、陽極11及び陰極12の比表面積を大きくすることができないとともに、陽極11及び陰極12の触媒作用が低下し、陽極11及び陰極12が十分な触媒活性を発揮することができず、陽極11及び陰極12の触媒活性(触媒作用)を有効に利用することができない。 The anode 11 and cathode 12 (thin foamed metal electrode 24 of the micro-porous structure) in the range that the density of 6.0g / cm 2 ~8.0g / cm 2 , preferably, 6.5g / cm 2 ~7. It is in the range of 5 g / cm 2 . If the densities of the anode 11 and the cathode 12 are less than 6.0 g / cm 2 (6.5 g / cm 2 ), the strength of the anode 11 and the cathode 12 decreases, and the anode 11 and the cathode 12 easily become when an impact is applied. In some cases, the shape of the anode 11 and the cathode 12 is reduced, and the anode 11 and the cathode 12 cannot exhibit sufficient catalytic activity, so that the anode 11 and the cathode 12 cannot maintain their shape. The catalytic activity (catalytic action) of 11 and the cathode 12 cannot be effectively utilized. When the densities of the anode 11 and the cathode 12 exceed 8.0 g / cm 2 (7.5 g / cm 2 ), a large number of fine continuous pores 23 and a large number of fine passage ports 25 are formed in the anode 11 and the cathode 12. Therefore, the specific surface areas of the anode 11 and the cathode 12 cannot be increased, and the catalytic action of the anode 11 and the cathode 12 is lowered, so that the anode 11 and the cathode 12 cannot exhibit sufficient catalytic activity, and the anode The catalytic activity (catalytic action) of 11 and the cathode 12 cannot be effectively utilized.

電気分解装置10は、それに使用する陽極11及び陰極12の密度が前記範囲にあるから、陽極11及び陰極12が平均径(開口面積)の異なる多数の微細な連続気孔23(平均径が1〜100μmの範囲、好ましくは、45μm〜55μmの範囲の連続気孔23)や平均径(開口面積)の異なる多数の微細な前後面21,22の通流口25(平均径が1〜100μmの範囲、好ましくは、45μm〜55μmの範囲の通流口25)を有する多孔質(マイクロポーラス構造)に成形され、陽極11及び陰極12の比表面積を大きくすることができ、それら気孔23を液体(水)が通流しつつ液体を陽極11及び陰極12のそれら気孔23における接触面に広く接触させることができ、陽極11及び陰極12の触媒作用を有効かつ最大限に利用することができる。更に、陽極11及び陰極12の触媒作用が向上し、陽極11及び陰極12に優れた触媒活性を発揮させることができ、陽極11及び陰極12が電気分解装置10に使用されたときに電気分解装置10において効率よく電気分解を行うことができ、電気分解装置10において短時間に多量の水素ガスを発生させることができる。 Since the densities of the anode 11 and the cathode 12 used in the electrolysis device 10 are within the above range, a large number of fine continuous pores 23 (having an average diameter of 1 to 1) in which the anode 11 and the cathode 12 have different average diameters (opening areas). Continuous pores in the range of 100 μm, preferably in the range of 45 μm to 55 μm) and a large number of fine front and rear surfaces 21 and 22 having different average diameters (opening areas) 25 (with an average diameter in the range of 1 to 100 μm). Preferably, it is formed into a porous material (microporous structure) having a passage port 25) in the range of 45 μm to 55 μm, the specific surface areas of the anode 11 and the cathode 12 can be increased, and the pores 23 are made of liquid (water). The liquid can be widely brought into contact with the contact surfaces of the anode 11 and the cathode 12 in their pores 23, and the catalytic action of the anode 11 and the cathode 12 can be effectively and maximally utilized. Further, the catalytic action of the anode 11 and the cathode 12 is improved, the anode 11 and the cathode 12 can exhibit excellent catalytic activity, and when the anode 11 and the cathode 12 are used in the electrolyzer 10, the electrolyzer The electrolysis device 10 can efficiently perform electrolysis, and the electrolysis device 10 can generate a large amount of hydrogen gas in a short time.

パーマロイ微粉体50(粉状に加工されたFe−Niパーマロイ49)の粒径は、1μm〜100μmの範囲、好ましくは、30μm〜60μmの範囲にある。パーマロイ微粉体50の粒径が1μm未満では、パーマロイ微粉体50によって連続気孔23(連続通気孔)が塞がれ、陽極11及び陰極12に多数の微細な連続気孔23を形成することができず、陽極11及び陰極12の比表面積を大きくすることができないとともに、陽極11及び陰極12の触媒作用が低下し、陽極11及び陰極12が十分な触媒活性を発揮することができず、陽極11及び陰極12の触媒活性(触媒作用)を有効に利用することができない。 The particle size of the permalloy fine powder 50 (Fe-Ni permalloy 49 processed into powder) is in the range of 1 μm to 100 μm, preferably in the range of 30 μm to 60 μm. If the particle size of the Permalloy fine powder 50 is less than 1 μm, the continuous pores 23 (continuous ventilation holes) are blocked by the Permalloy fine powder 50, and a large number of fine continuous pores 23 cannot be formed in the anode 11 and the cathode 12. , The specific surface areas of the anode 11 and the cathode 12 cannot be increased, and the catalytic action of the anode 11 and the cathode 12 is lowered, so that the anode 11 and the cathode 12 cannot exhibit sufficient catalytic activity, and the anode 11 and the cathode 12 The catalytic activity (catalytic action) of the cathode 12 cannot be effectively used.

パーマロイ微粉体50の粒径が100μmを超過すると、連続気孔23の平均径(開口面積)や前後面21,22の通流口25の平均径(開口面積)が必要以上に大きくなり、陽極11及び陰極12に多数の微細な連続気孔23を形成することができず、陽極11及び陰極12の比表面積を大きくすることができないとともに、陽極11及び陰極12の触媒作用が低下し、陽極11及び陰極12が十分な触媒活性を発揮することができず、陽極11及び陰極12の触媒活性(触媒作用)を有効に利用することができない。 When the particle size of the permalloy fine powder 50 exceeds 100 μm, the average diameter (opening area) of the continuous pores 23 and the average diameter (opening area) of the passage ports 25 on the front and rear surfaces 21 and 22 become larger than necessary, and the anode 11 In addition, a large number of fine continuous pores 23 cannot be formed in the cathode 12, the specific surface areas of the anode 11 and the cathode 12 cannot be increased, and the catalytic action of the anode 11 and the cathode 12 is reduced, so that the anode 11 and the cathode 12 and the cathode 12 have a reduced specific surface area. The cathode 12 cannot exhibit sufficient catalytic activity, and the catalytic activity (catalytic action) of the anode 11 and the cathode 12 cannot be effectively utilized.

電気分解装置10は、それに使用する陽極11及び陰極12を形成するパーマロイ微粉体50の粒径が前記範囲にあるから、陽極11や陰極12が平均径(開口面積)の異なる多数の微細な連続気孔23(平均径が1〜100μmの範囲、好ましくは、45μm〜55μmの範囲の連続気孔23)や平均径(開口面積)の異なる多数の微細な前後面21,22の通流口25(平均径が1〜100μmの範囲、好ましくは、45μm〜55μmの範囲の通流口25)を有する多孔質(マイクロポーラス構造)に成形され、陽極11及び陰極12の比表面積を大きくすることができ、それら気孔23を液体(水)が通流しつつ液体を陽極11及び陰極12のそれら気孔23における接触面に広く接触させることができるとともに、陽極11及び陰極12の触媒活性(触媒作用)を有効かつ最大限に利用することができる。更に、陽極11及び陰極12の触媒作用が向上し、陽極11及び陰極12に優れた触媒活性を発揮させることができ、陽極11及び陰極12が電気分解装置10に使用されたときに電気分解装置10において効率よく電気分解を行うことができ、電気分解装置10において短時間に多量の水素ガスを発生させることができる。 In the electrolysis device 10, since the particle size of the permalloy fine powder 50 forming the anode 11 and the cathode 12 used therein is in the above range, the anode 11 and the cathode 12 have a large number of fine continuous particles having different average diameters (opening areas). Pore 23 (continuous pore 23 having an average diameter in the range of 1 to 100 μm, preferably 45 μm to 55 μm) and a large number of fine front and rear surfaces 21 and 22 having different average diameters (opening areas) 25 (average) It is formed into a porous material (microporous structure) having a passage port 25) having a diameter in the range of 1 to 100 μm, preferably in the range of 45 μm to 55 μm, and the specific surface areas of the anode 11 and the cathode 12 can be increased. While the liquid (water) is flowing through the pores 23, the liquid can be widely brought into contact with the contact surfaces of the anode 11 and the cathode 12 in the pores 23, and the catalytic activity (catalytic action) of the anode 11 and the cathode 12 is effective. It can be used to the maximum. Further, the catalytic action of the anode 11 and the cathode 12 is improved, and excellent catalytic activity can be exhibited in the anode 11 and the cathode 12, and when the anode 11 and the cathode 12 are used in the electrolytic apparatus 10, the electrolytic apparatus 10 can efficiently perform electrolysis, and the electrolysis device 10 can generate a large amount of hydrogen gas in a short time.

図4は、電気分解装置10を使用した電気分解の一例を説明する図であり、図5は、電気分解装置10を利用した水素ガス生成システム27の一例を示す図である。図4に示す電気分解では、水(水溶液)を電気分解し、水素と酸素とを発生させているが、水(HO)の他に、電気分解装置10を使用してNaOH水溶液、HSO水溶液、NaCl水溶液、AgNO水溶液、CuSO水溶液の電気分解が行われる。 FIG. 4 is a diagram illustrating an example of electrolysis using the electrolysis device 10, and FIG. 5 is a diagram showing an example of a hydrogen gas generation system 27 using the electrolysis device 10. In the electrolysis shown in FIG. 4, water (aqueous solution) is electrolyzed to generate hydrogen and oxygen. In addition to water (H 2 O), an electrolyzer 10 is used to prepare a NaOH aqueous solution, H. 2 SO 4 aqueous solution, NaCl aqueous solution, AgNO 3 aqueous solution, CuSO 4 aqueous solution are electrolyzed.

電気分解装置10における水の電気分解では、図4に矢印で示すように、陽極用貯水槽16及び陰極用貯水槽17に水(HO)が給水され、陽極主電極18に電源から+の電流が給電されるとともに、陰極主電極19に電源から−の電流が給電される。陽極主電極18に給電された+の電流が陽極給電部材14から陽極11(アノード)に給電され、陰極主電極19に給電された−の電流が陰極給電部材15から陰極12(カソード)に給電される。 The electrolysis of water in the electrolyzer 10, as shown by the arrows in FIG. 4, water (H 2 O) is water in the anode reservoir 16 and the cathode reservoir 17, to the anode main electrode 18 from the power supply + Is supplied, and a negative current is supplied from the power source to the cathode main electrode 19. The positive current fed to the anode main electrode 18 is fed from the anode feeding member 14 to the anode 11 (anode), and the negative current fed to the cathode main electrode 19 is fed from the cathode feeding member 15 to the cathode 12 (cathode). Will be done.

陽極11(電極)では、2HO→4H+4e+Oの陽極反応(触媒作用)によって酸素が生成され、陰極12(電極)では、4H+4e→2Hの陰極反応(触媒作用)によって水素が生成される。プロトン(水素イオン:H)は、固体高分子電解質膜13内を通って陽極11から陰極12(電極)へ移動する。固体高分子電解質膜12には、陽極11で生成されたプロトンが通流する。 At the anode 11 (electrode), oxygen is generated by the anode reaction (catalysis) of 2H 2 O → 4H + + 4e + O 2 , and at the cathode 12 (electrode), the cathode reaction (catalysis) of 4H + + 4e → 2H 2. ) Produces hydrogen. Protons (hydrogen ions: H + ) move from the anode 11 to the cathode 12 (electrode) through the solid polymer electrolyte membrane 13. Protons generated by the anode 11 pass through the solid polymer electrolyte membrane 12.

電気分解装置10では、陽極11(電極)や陰極12(電極)を形成するFe−Niパーマロイ49を微粉砕したパーマロイ微粉体50の仕事関数が白金族元素の仕事関数に近似するように、Fe−Niパーマロイ49におけるFeの含有率(重量比)とNiの含有率(重量比)とが決定されているから、陽極11及び陰極12が白金族元素(白金)を含む(担持した)陽極や陰極と略同一の仕事関数を備え、白金族元素(白金)を含む陽極や陰極と略同様の優れた触媒活性(触媒作用)を示し、水の電気分解が効率よく行われる。 In the electrolysis device 10, Fe is used so that the work function of the permalloy fine powder 50 obtained by finely pulverizing the Fe—Ni permalloy 49 forming the anode 11 (electrode) and the cathode 12 (electrode) is similar to the work function of the platinum group element. -Since the Fe content (weight ratio) and Ni content (weight ratio) in Ni Permalloy 49 have been determined, the anode 11 and the cathode 12 contain (support) a platinum group element (platinum). It has substantially the same work function as the cathode, exhibits excellent catalytic activity (catalytic action) substantially similar to that of an anode or cathode containing a platinum group element (platinum), and electrolysis of water is efficiently performed.

なお、NaOH水溶液の電気分解では、陽極11において4OH→2HO+O+4eの陽極反応(触媒作用)が起こり、陰極12において2HO+2e→2OH+Hの陰極反応(触媒作用)が起こる。HSO水溶液の電気分解では、陽極11において2HO→O+4H+4eの陽極反応(触媒作用)が起こり、陰極12において2H+2e→Hの陰極反応(触媒作用)が起こる。 In the electrolysis of the NaOH aqueous solution, an anode reaction (catalysis) of 4OH → 2H 2 O + O 2 + 4e occurs at the anode 11, and a cathode reaction (catalysis) of 2H 2 O + 2e → 2OH + H 2 occurs at the cathode 12. Occurs. In the electrolysis of the H 2 SO 4 aqueous solution, an anode reaction (catalysis) of 2H 2 O → O 2 + 4H + + 4e occurs at the anode 11, and a cathode reaction (catalysis) of 2H + + 2e → H 2 occurs at the cathode 12. Occurs.

NaCl水溶液の電気分解では、陽極11において2Cl→Cl+2eの陽極反応(触媒作用)が起こり、陰極12において2HO+2e→2OH+Hの陰極反応(触媒作用)が起こる。AgNO水溶液の電気分解では、陽極11において2HO→O+4H+4eの陽極反応(触媒作用)が起こり、陰極12においてAg+e→Agの陰極反応(触媒作用)が起こる。CuSO水溶液の電気分解では、陽極11において2HO→O+4H+4eの陽極反応(触媒作用)が起こり、陰極12においてCu2++2e→Cuの陰極反応(触媒作用)が起こる。 In the electrolysis of an aqueous NaCl solution, an anode reaction (catalysis) of 2Cl → Cl 2 + 2e occurs at the anode 11, and a cathode reaction (catalysis) of 2H 2 O + 2e → 2OH + H 2 occurs at the cathode 12. In the electrolysis of the AgNO 3 aqueous solution, an anode reaction (catalysis) of 2H 2 O → O 2 + 4H + + 4e occurs at the anode 11, and a cathode reaction (catalysis) of Ag + + e → Ag occurs at the cathode 12. In the electrolysis of the CuSO 4 aqueous solution, an anode reaction (catalysis) of 2H 2 O → O 2 + 4H + + 4e occurs at the anode 11, and a cathode reaction (catalysis) of Cu 2+ + 2e → Cu occurs at the cathode 12.

水素ガス生成システム27は、電気分解装置10と、電気分解装置10の陽極11と陰極12とに電気を給電する直流電源28と、水(純水)を貯水する貯水タンク29と、水(純水)を給水する給水ポンプ30と、酸素気液分離器31と、水(純水)を給水する2台の循環ポンプ32,33と、水素気液分離器34と、水素を貯めるボンベ35(水素タンク)とから形成されている。 The hydrogen gas generation system 27 includes an electrolyzer 10, a DC power source 28 that supplies electricity to the anode 11 and the cathode 12 of the electrolyzer 10, a water storage tank 29 that stores water (pure water), and water (pure). A water supply pump 30 for supplying water), an oxygen gas-liquid separator 31, two circulation pumps 32 and 33 for supplying water (pure water), a hydrogen gas-liquid separator 34, and a bomb 35 for storing hydrogen (pure water). It is formed from a hydrogen tank).

水素ガス生成システム27は、貯水タンク29に貯水された水(純水)が給水ポンプ30によって酸素気液分離器31に給水され、酸素気液分離器31から流出した水が電気分解装置10に給水される。直流電源28から電気分解装置10に電気が給電され、電気分解装置10において電気分解が行われることで水が水素と酸素とに分解される。酸素は、酸素気液分離器31に流入し、気液分離された後、大気に放出される。酸素気液分離器31において気液分離された水は循環ポンプ32によって再び電気分解装置10に給水される。水素は、水素気液分離器34に流入し、気液分離された後、ボンベ35(水素タンク)に流入する。水素気液分離器354おいて気液分離された水は循環ポンプ33によって再び電気分解装置10に給水される。 In the hydrogen gas generation system 27, the water (pure water) stored in the water storage tank 29 is supplied to the oxygen gas-liquid separator 31 by the water supply pump 30, and the water flowing out from the oxygen gas-liquid separator 31 is supplied to the electrolyzer 10. Water is supplied. Electricity is supplied from the DC power source 28 to the electrolysis device 10, and the electrolysis device 10 performs electrolysis to decompose water into hydrogen and oxygen. Oxygen flows into the oxygen-gas-liquid separator 31 and is released into the atmosphere after gas-liquid separation. The gas-liquid separated water in the oxygen-gas-liquid separator 31 is supplied to the electrolyzer 10 again by the circulation pump 32. Hydrogen flows into the hydrogen gas-liquid separator 34, and after gas-liquid separation, flows into the cylinder 35 (hydrogen tank). The gas-liquid separated water in the hydrogen gas-liquid separator 354 is supplied to the electrolyzer 10 again by the circulation pump 33.

電気分解装置10は、それに使用される陽極11及び陰極12がFe−Niパーマロイ49を微粉砕したパーマロイ微粉体50に所定のバインダー51を均一に混合・分散しつつ所定の気孔形成材52を均一に混合・分散し、パーマロイ微粉体50にバインダー51及び気孔形成材52を混合したパーマロイ微粉体混合物53を所定面積の薄板状に成形した後、所定面積の薄板状に成形したパーマロイ微粉体混合成形物54を脱脂・焼結することで、パーマロイ微粉体50が溶融結合しつつ多数の微細な連続気孔23が満遍なく均一に形成されたマイクロポーラス構造の薄板状発泡金属電極24であり、白金族元素を含む(担持した)陽極や陰極と略同様の触媒活性を有するから、陽極11及び陰極12が優れた触媒活性(触媒作用)を有し、陽極11及び陰極12が優れた触媒活性(触媒作用)を発揮することで、白金族元素を含まない非白金の陽極11及び陰極12を使用して電気分解を効率よく行うことができ、短時間に多量の水素ガスを発生させることができる。 In the electrolyzer 10, the anode 11 and the cathode 12 used therein uniformly mix and disperse the predetermined binder 51 into the permalloy fine powder 50 obtained by finely pulverizing Fe-Ni permalloy 49, and uniformly mix the predetermined pore-forming material 52. Permalloy fine powder mixture 53, which is a mixture of permalloy fine powder 50, binder 51 and pore-forming material 52, is formed into a thin plate with a predetermined area, and then molded into a thin plate with a predetermined area. A thin plate-shaped foamed metal electrode 24 having a microporous structure in which a large number of fine continuous pores 23 are uniformly and evenly formed while the permalloy fine powder 50 is melt-bonded by degreasing and sintering the substance 54, and is a platinum group element. Since the anode 11 and the cathode 12 have excellent catalytic activity (catalytic action), the anode 11 and the cathode 12 have excellent catalytic activity (catalytic action) because they have substantially the same catalytic activity as the anode and the cathode containing (supporting). ), The non-platinum anode 11 and cathode 12 containing no platinum group element can be used to efficiently perform electrolysis, and a large amount of hydrogen gas can be generated in a short time.

電気分解装置10は、陽極11及び陰極12がFe−Niパーマロイ49を原料とし、高価な白金族元素(白金)が使用されておらず、陽極11及び陰極12が白金族元素を含まない非白金の電極であるから、廉価な陽極11及び陰極12を備えることで電気分解装置を低コストで製造することができるとともに、電気分解装置10の運転コストを下げることができる。 In the electrolyzer 10, the anode 11 and the cathode 12 are made of Fe-Ni permalloy 49 as a raw material, an expensive platinum group element (platinum) is not used, and the anode 11 and the cathode 12 are non-platinum containing no platinum group element. Since it is an electrode of the above, the electrolyzer can be manufactured at low cost by providing the inexpensive anode 11 and cathode 12, and the operating cost of the electrolyzer 10 can be reduced.

図6は、空気極38(陽極11)及び燃料極37(陰極12)を使用した固体高分子形燃料電池36の側面図であり、図7は、陽極11(空気極38)及び陰極12(燃料極37)の起電圧試験の結果を示す図である。図8は、陽極11(空気極38)及び陰極12(燃料極37)のI−V特性試験の結果を示す図である。図6では、負荷48が接続された状態を示しているが、起電圧試験では、負荷48が存在せず、無負荷である。起電圧試験及びI−V特性試験では、図7に示す固体高分子形燃料電池36に電気分解装置10において使用した陽極11(空気極38)及び陰極12(燃料極37)を使用し、無負荷においてその起電圧を測定し、固体高分子形燃料電池36に負荷48を接続し、そのI−V特性を測定した。 FIG. 6 is a side view of the polymer electrolyte fuel cell 36 using the air electrode 38 (anode 11) and the fuel electrode 37 (cathode 12), and FIG. 7 is the anode 11 (anode 38) and the cathode 12 (cathode 12). It is a figure which shows the result of the electromotive force test of a fuel electrode 37). FIG. 8 is a diagram showing the results of an IV characteristic test of the anode 11 (air electrode 38) and the cathode 12 (fuel electrode 37). FIG. 6 shows a state in which the load 48 is connected, but in the electromotive voltage test, the load 48 does not exist and there is no load. In the electromotive voltage test and the IV characteristic test, the anode 11 (air electrode 38) and cathode 12 (fuel electrode 37) used in the electrolyzer 10 were used for the polymer electrolyte fuel cell 36 shown in FIG. The electromotive voltage of the load was measured, the load 48 was connected to the polymer electrolyte fuel cell 36, and its IV characteristics were measured.

固体高分子形燃料電池36は、図6に示すように、燃料極37(陰極12)及び空気極38(陽極11)と、燃料極37及び空気極38の間に位置(介在)する固体高分子電解質膜39(電極接合体膜)(スルホン酸基を有するフッ素系イオン交換膜)と、燃料極37の厚み方向外側に位置するセパレータ40(バイポーラプレート)と、空気極38の厚み方向外側に位置するセパレータ41(バイポーラプレート)とから形成されている。 As shown in FIG. 6, the polymer electrolyte fuel cell 36 has a solid height located (intervened) between the fuel electrode 37 (cathode 12) and the air electrode 38 (anode 11) and the fuel electrode 37 and the air electrode 38. A molecular electrolyte membrane 39 (electrode junction membrane) (fluorine-based ion exchange membrane having a sulfonic acid group), a separator 40 (bipolar plate) located on the outside in the thickness direction of the fuel electrode 37, and an air electrode 38 on the outside in the thickness direction. It is formed from a separator 41 (bipolar plate) located.

それらセパレータ40,41には、反応ガス(水素や酸素等)の供給流路が刻設されている(彫り込まれている)。燃料極37や空気極38、固体高分子電解質膜39が厚み方向へ重なり合って一体化し、膜/電極接合体42(Membrane Electrode Assembly, MEA)を構成し、膜/電極接合体42をそれらセパレータ40,41が挟み込んでいる。固体高分子電解質膜39は、プロトン導電性があり、電子導電性がない。 The separators 40 and 41 are engraved (engraved) with supply channels for reaction gases (hydrogen, oxygen, etc.). The fuel electrode 37, the air electrode 38, and the solid polymer electrolyte membrane 39 are overlapped and integrated in the thickness direction to form a membrane / electrode assembly 42 (MEA), and the membrane / electrode assembly 42 is separated from the separator 40. , 41 are sandwiched. The solid polymer electrolyte membrane 39 has proton conductivity and no electron conductivity.

燃料極37とセパレータ40との間には、ガス拡散層43が形成され、空気極38とセパレータ41との間には、ガス拡散層44が形成されている。燃料極37とセパレータ40との間であってガス拡散層43の上部及び下部には、ガスシール45が設置されている。空気極38とセパレータ41との間であってガス拡散層44の上部及び下部には、ガスシール46が設置されている。 A gas diffusion layer 43 is formed between the fuel electrode 37 and the separator 40, and a gas diffusion layer 44 is formed between the air electrode 38 and the separator 41. Gas seals 45 are installed between the fuel electrode 37 and the separator 40 at the upper and lower parts of the gas diffusion layer 43. Gas seals 46 are installed between the air electrode 38 and the separator 41 at the upper and lower parts of the gas diffusion layer 44.

固体高分子形燃料電池36では、燃料極37(陰極12)に水素(燃料)が供給され、空気極38(陽極11)に空気(酸素)が供給される。燃料極37では、水素がH→2H+2eの反応(触媒作用)によってプロトン(水素イオン、H)と電子とに分解される。その後、プロトンが固体高分子電解質膜39内を通って燃料極37から空気極38へ移動し、電子が導線47内を通って空気極38へ移動する。固体高分子電解質膜39には、燃料極37で生成されたプロトンが通流する。空気極38では、固体高分子電解質膜39から移動したプロトンと導線47を移動した電子とが空気中の酸素と反応し、4H+O+4e→2HOの反応によって水が生成される。 In the polymer electrolyte fuel cell 36, hydrogen (fuel) is supplied to the fuel electrode 37 (cathode 12), and air (oxygen) is supplied to the air electrode 38 (anode 11). At the fuel electrode 37, hydrogen is decomposed into protons (hydrogen ions, H + ) and electrons by the reaction (catalysis) of H 2 → 2H + + 2e . After that, protons move from the fuel electrode 37 to the air electrode 38 through the solid polymer electrolyte membrane 39, and electrons move to the air electrode 38 through the lead wire 47. Protons generated at the fuel electrode 37 pass through the solid polymer electrolyte membrane 39. At the air electrode 38, the protons transferred from the solid polymer electrolyte membrane 39 and the electrons transferred through the lead wire 47 react with oxygen in the air, and water is generated by the reaction of 4H + + O 2 + 4e → 2H 2 O.

固体高分子形燃料電池10では、燃料極37(陰極12)や空気極38(陽極12)を形成するFe−Niパーマロイ49を微粉砕したパーマロイ微粉体50の仕事関数が白金族元素の仕事関数に近似するように、Fe−Niパーマロイ49におけるFeの含有率(重量比)とNiの含有率(重量比)とが決定されているから、燃料極37(陰極12)や空気極38(陽極11)が白金族元素(白金)を含む(担持した)燃料極や空気極と略同一の仕事関数を備え、白金族元素(白金)を含む燃料極や空気極と略同様の優れた触媒活性(触媒作用)を示し、水素がプロトンと電子とに効率よく分解される。 In the polymer electrolyte fuel cell 10, the work function of the permalloy fine powder 50 obtained by finely pulverizing Fe-Ni permalloy 49 forming the fuel electrode 37 (cathode 12) and the air electrode 38 (anodide 12) is the work function of the platinum group element. Since the Fe content (weight ratio) and the Ni content (weight ratio) in the Fe-Ni permalloy 49 are determined so as to be close to, the fuel electrode 37 (cathode 12) and the air electrode 38 (anode) are determined. 11) has substantially the same work function as the fuel electrode or air electrode containing (supporting) the platinum group element (platinum), and has almost the same excellent catalytic activity as the fuel electrode or air electrode containing the platinum group element (platinum). It exhibits (catalytic action), and hydrogen is efficiently decomposed into protons and electrons.

起電圧試験では、水素ガスを注入してから15分の間、電極(燃料極37や空気極38)と電極(燃料極37や空気極38)との間(電極間)の電圧(V)を測定した。図7の起電圧試験の結果を示す図では、横軸に測定時間(min)を表し、縦軸に電極(燃料極37や空気極38)と電極(燃料極37や空気極38)との間(電極間)の電圧(V)を表す。白金族元素を利用した(担持させた)電極(白金電極)を使用した固体高分子形燃料電池では、起電圧試験の結果を示す図7から分かるように、電極間の電圧が1.079(V)前後であった。それに対し、非白金の電極(燃料極37や空気極38)を使用した固体高分子形燃料電池36では、電極(燃料極37や空気極38)と電極(燃料極37や空気極38)との間(電極間)の電圧(起電力)が0.98(V)〜1.02(V)であった。 In the electromotive voltage test, the voltage (V) between the electrodes (fuel electrode 37 and air electrode 38) and the electrodes (fuel electrode 37 and air electrode 38) (between the electrodes) for 15 minutes after the hydrogen gas was injected. Was measured. In the figure showing the result of the electromotive voltage test in FIG. 7, the horizontal axis represents the measurement time (min), and the vertical axis represents the electrode (fuel electrode 37 or air electrode 38) and the electrode (fuel electrode 37 or air electrode 38). Represents the voltage (V) between (between electrodes). In the polymer electrolyte fuel cell using the electrode (platinum electrode) using (supporting) the platinum group element, the voltage between the electrodes is 1.079 (as can be seen from FIG. 7 showing the result of the electromotive voltage test). V) It was around. On the other hand, in the polymer electrolyte fuel cell 36 using non-platinum electrodes (fuel electrode 37 and air electrode 38), the electrode (fuel electrode 37 and air electrode 38) and the electrode (fuel electrode 37 and air electrode 38) are The voltage (electromotive force) between (between electrodes) was 0.98 (V) to 1.02 (V).

I−V特性試験では、電極(燃料極37や空気極38)と電極(燃料極37や空気極38)との間(電極間)に負荷48を接続し、電圧と電流との関係を測定した。図8のI−V特性試験の結果を示す図では、横軸に電流(A)を表し、縦軸に電圧(V)を表す。燃料極37(非白金電極)及び空気極38(非白金電極)を使用した固体高分子形燃料電池36では、I−V特性試験の結果を示す図8から分かるように、白金族元素を利用した(担持させた)電極(白金電極)を使用した固体高分子形燃料電池の電圧降下率と大差のない結果が得られた。図7の起電圧試験の結果や図8のI−V特性試験の結果に示すように、白金族元素を利用していない非白金の燃料極37(陰極12)及び空気極38(陽極11)が電子を放出させて水素イオンとなる反応を促進させる優れた触媒作用を有するとともに、白金を利用した電極と略同様の酸素還元機能(触媒作用)を有することが確認された。 In the IV characteristic test, a load 48 is connected between the electrodes (fuel electrode 37 and air electrode 38) and the electrodes (fuel electrode 37 and air electrode 38) (between the electrodes), and the relationship between voltage and current is measured. did. In the figure showing the result of the IV characteristic test of FIG. 8, the horizontal axis represents the current (A) and the vertical axis represents the voltage (V). In the polymer electrolyte fuel cell 36 using the fuel electrode 37 (non-platinum electrode) and the air electrode 38 (non-platinum electrode), as can be seen from FIG. 8 showing the results of the IV characteristic test, a platinum group element is used. The results were not much different from the voltage drop rate of the polymer electrolyte fuel cell using the (supported) electrode (platinum electrode). As shown in the result of the electromotive voltage test of FIG. 7 and the result of the IV characteristic test of FIG. 8, the non-platinum fuel electrode 37 (cathode 12) and the air electrode 38 (anode 11) that do not use platinum group elements are used. It was confirmed that has an excellent catalytic action that promotes the reaction of releasing electrons to become hydrogen ions, and also has an oxygen reduction function (catalytic action) that is substantially the same as that of an electrode using platinum.

図9は、電気分解装置10に使用する陽極11及び陰極12の製造方法を説明する図である。陽極11(電極)及び陰極12(電極)は、図9に示すように、含有率決定工程S1、パーマロイ微粉体作成工程S2、パーマロイ微粉体混合物作成工程S3、パーマロイ微粉体混合成形物作成工程S4、薄板状発泡金属電極作成工程S5を有する電極製造方法によって製造される。電極製造方法では、Fe−Niパーマロイ49を原料として陽極11及び陰極12を製造する。 FIG. 9 is a diagram illustrating a method of manufacturing the anode 11 and the cathode 12 used in the electrolyzer 10. As shown in FIG. 9, the anode 11 (electrode) and the cathode 12 (electrode) have a content rate determination step S1, a permalloy fine powder preparation step S2, a permalloy fine powder mixture preparation step S3, and a permalloy fine powder mixed molded product preparation step S4. , It is manufactured by an electrode manufacturing method having a thin plate-shaped foamed metal electrode manufacturing step S5. In the electrode manufacturing method, the anode 11 and the cathode 12 are manufactured using Fe—Ni permalloy 49 as a raw material.

含有率決定工程S1では、Fe−Niパーマロイ49を微粉砕したパーマロイ微粉体50の仕事関数が白金族元素の仕事関数に近似するように、Fe−Niパーマロイ49の全重量に対するFe(鉄)の含有率とNi(ニッケル)の含有率とを決定する。Fe−Niパーマロイ49におけるFeの含有率は、45%〜55%の範囲、好ましくは、49%〜51%の範囲で決定され、Fe−Niパーマロイ49におけるNiの含有率は、45%〜55%の範囲、好ましくは、49%〜51%の範囲で決定される。 In the content rate determination step S1, Fe (iron) with respect to the total weight of Fe-Ni permalloy 49 so that the work function of the permalloy fine powder 50 obtained by finely pulverizing Fe-Ni permalloy 49 is close to the work function of the platinum group element. The content rate and the Ni (nickel) content rate are determined. The Fe content in Fe-Ni permalloy 49 is determined in the range of 45% to 55%, preferably 49% to 51%, and the Ni content in Fe-Ni permalloy 49 is 45% to 55. It is determined in the range of%, preferably in the range of 49% to 51%.

パーマロイ微粉体作成工程S2では、含有率決定工程によって決定した含有率のFe及びNiから形成されたFe−Niパーマロイ49を微粉砕してパーマロイ微粉体50を作る。微粉砕機によってFe−Niパーマロイ49を1μm〜100μmの粒径、好ましくは、30μm〜60μmの粒径に微粉砕し、粒径が1μm〜100μm、好ましくは、粒径が30μm〜60μmのパーマロイ微粉体50を作る。 In the permalloy fine powder preparation step S2, Fe—Ni permalloy 49 formed from Fe and Ni having a content determined by the content rate determination step is finely pulverized to prepare a permalloy fine powder 50. Fe-Ni permalloy 49 is finely pulverized by a fine pulverizer to a particle size of 1 μm to 100 μm, preferably 30 μm to 60 μm, and a permalloy fine powder having a particle size of 1 μm to 100 μm, preferably 30 μm to 60 μm. Make a body 50.

電極製造方法は、Fe−Niパーマロイ49を1μm〜100μmの粒径、好ましくは、30μm〜60μmの粒径に微粉砕することで、多数の微細な連続気孔25(連続通気孔)を有する多孔質に成形されて比表面積が大きいマイクロポーラス構造の陽極11及び陰極12(薄板状発泡金属電極24)を作ることができ、それら連続気孔23を液体(水)が通流しつつ液体を陽極11及び陰極12のそれら気孔23における接触面に広範囲に接触させることが可能な陽極11及び陰極12を作ることができる。 The electrode manufacturing method is a porosity having a large number of fine continuous pores 25 (continuous ventilation holes) by finely pulverizing Fe-Ni Permalloy 49 to a particle size of 1 μm to 100 μm, preferably 30 μm to 60 μm. The anode 11 and the cathode 12 (thin plate-shaped foamed metal electrode 24) having a microporous structure having a large specific surface area can be formed, and the liquid (water) flows through the continuous pores 23 while the liquid is passed through the anode 11 and the cathode. An anode 11 and a cathode 12 can be made that can be extensively contacted with the contact surfaces of those pores 23 of 12.

パーマロイ微粉体混合物作成工程S3では、パーマロイ微粉体作成工程S2によって作成したパーマロイ微粉体50に所定のバインダー51及び所定の気孔形成材52(発泡剤)を加え、パーマロイ微粉体50にバインダー51と気孔形成材52とを均一に混合・分散してパーマロイ微粉体混合物53を作る。なお、電極製造方法は、高価な白金族金属(白金(Pt))が使用されていないから、陽極11及び陰極12を廉価に作ることができる。 In the permalloy fine powder mixture preparation step S3, a predetermined binder 51 and a predetermined pore forming material 52 (foaming agent) are added to the permalloy fine powder 50 prepared in the permalloy fine powder preparation step S2, and the binder 51 and pores are added to the permalloy fine powder 50. The permalloy fine powder mixture 53 is prepared by uniformly mixing and dispersing the forming material 52. Since an expensive platinum group metal (platinum (Pt)) is not used in the electrode manufacturing method, the anode 11 and the cathode 12 can be manufactured at low cost.

パーマロイ微粉体混合物作成工程S3では、Fe−Niパーマロイ49のパーマロイ微粉体50とバインダー51(粉状の樹脂系バインダー)とを混合機又は攪拌機に投入し、混合機又は攪拌機によってFe−Niパーマロイ49のパーマロイ微粉体50とバインダー51とを攪拌・混合し、パーマロイ微粉体50及びバインダー51が均一に混合・分散したパーマロイ微粉体混合物53(発泡金属成形材)を作る。次に、パーマロイ微粉体混合物53に所定量の気孔形成材52(粉体の発泡剤)を混入(添加)する。所定量の気孔形成材52を混合機又は攪拌機に投入し、混合機又は攪拌機によってパーマロイ微粉体混合物53に気孔形成材52を均一に混合・分散させたパーマロイ微粉体混合物52(発泡金属成形材料)を作る。気孔形成材52(粉体の発泡剤)の混入量(添加量)によって陽極11及び陰極12に形成される連続気孔23の平均径や気孔率が決まる。 In the permalloy fine powder mixture preparation step S3, the permalloy fine powder 50 of Fe-Ni permalloy 49 and the binder 51 (powder-based resin binder) are put into a mixer or agitator, and the Fe-Ni permalloy 49 is added by the mixer or agitator. Permalloy fine powder 50 and the binder 51 are stirred and mixed to prepare a permalloy fine powder mixture 53 (foam metal molding material) in which the permalloy fine powder 50 and the binder 51 are uniformly mixed and dispersed. Next, a predetermined amount of the pore-forming material 52 (powder foaming agent) is mixed (added) into the permalloy fine powder mixture 53. A predetermined amount of the pore-forming material 52 is put into a mixer or a stirrer, and the permalloy fine powder mixture 52 (foam metal molding material) in which the pore-forming material 52 is uniformly mixed and dispersed in the permalloy fine powder mixture 53 by the mixer or the stirrer. make. The average diameter and porosity of the continuous pores 23 formed in the anode 11 and the cathode 12 are determined by the amount (addition amount) of the pore-forming material 52 (powder foaming agent) mixed in.

パーマロイ微粉体混合成形物作成工程S4では、パーマロイ微粉体混合物作成工程S3によって作られたパーマロイ微粉体混合物53(発泡金属成形材料)を射出成形機(図示せず)又は押出成形機(図示せず)に投入し、パーマロイ微粉体混合物53を射出成形機によって射出成形し、又は、パーマロイ微粉体混合物53を押出成形機によって押し出し成形し、パーマロイ微粉体混合物53を所定面積の薄板状(厚み寸法L1が0.05mm〜0.5mmの範囲)に成形したパーマロイ微粉体混合成形物54(発泡金属成形物)を作る。 In the Permalloy fine powder mixture preparation step S4, the Permalloy fine powder mixture 53 (foam metal molding material) prepared in the Permalloy fine powder mixture preparation step S3 is injected into an injection molding machine (not shown) or an extrusion molding machine (not shown). ), The permalloy fine powder mixture 53 is injection molded by an injection molding machine, or the permalloy fine powder mixture 53 is extruded by an extrusion molding machine, and the permalloy fine powder mixture 53 is formed into a thin plate having a predetermined area (thickness dimension L1). (In the range of 0.05 mm to 0.5 mm), a permalloy fine powder mixed molded product 54 (foamed metal molded product) is prepared.

薄板状発泡金属電極作成工程S5では、パーマロイ微粉体混合成形物作成工程S4の射出成形又は押出成形によって作られたパーマロイ微粉体混合成形物54(発泡金属成形物)を脱脂し、脱脂したパーマロイ微粉体混合成形物54を焼成炉(燃焼炉、電気炉等)に投入し、パーマロイ微粉体混合成形物54を焼成炉において所定温度で所定時間焼結(焼成)し、多数の微細な連続気孔23(連続通気孔)が満遍なく均一に形成され、それら連続気泡23が溶融結合したパーマロイ微粉体50のパーマロイ溶融物によって画成かつ囲繞されたマイクロポーラス構造の陽極11及び陰極12(厚み寸法L1が0.05mm〜0.5mmの陽極11及び陰極12)を作る。 In the thin plate-shaped foamed metal electrode producing step S5, the permalloy fine powder mixed molded product 54 (foamed metal molded product) produced by the injection molding or extrusion molding of the permalloy fine powder mixed molded product preparation step S4 is degreased and degreased. The body-mixed molded product 54 is put into a firing furnace (combustion furnace, electric furnace, etc.), and the permalloy fine powder mixed molded product 54 is sintered (baked) at a predetermined temperature for a predetermined time in the firing furnace to obtain a large number of fine continuous pores 23. (Continuous ventilation holes) are formed evenly and uniformly, and the anode 11 and cathode 12 (thickness dimension L1 is 0) of a microporous structure defined and surrounded by the permalloy melt of the permalloy fine powder 50 in which the open cells 23 are melt-bonded. Make an anode 11 and a cathode 12) of .05 mm to 0.5 mm.

焼結(焼成)温度は、900℃〜1400℃である。焼結(焼成)時間は、2時間〜6時間である。薄板状発泡金属電極作成工程S5では、所定面積の薄板状に成形したパーマロイ微粉体混合成形物54(発泡金属成形物)の焼結時において、パーマロイ微粉体混合成形物54の内部において気孔形成材52(粉体の発泡剤)が発泡した後、気孔形成材52がパーマロイ微粉体混合成形物54の内部から消失し、多数の微細な連続気孔25(連続通気孔)が形成されたマイクロポーラス構造の陽極11及び陰極12(厚み寸法L1が0.05mm〜0.5mmの陽極11及び陰極12)が製造される。 The sintering (baking) temperature is 900 ° C to 1400 ° C. The sintering (baking) time is 2 hours to 6 hours. In the thin plate-shaped foamed metal electrode producing step S5, when the permalloy fine powder mixed molded product 54 (foamed metal molded product) formed into a thin plate having a predetermined area is sintered, the pore-forming material is inside the permalloy fine powder mixed molded product 54. After the 52 (powder foaming agent) foams, the pore forming material 52 disappears from the inside of the permalloy fine powder mixed molded product 54, and a large number of fine continuous pores 25 (continuous ventilation holes) are formed in the microporous structure. The anode 11 and the cathode 12 (the anode 11 and the cathode 12 having a thickness dimension L1 of 0.05 mm to 0.5 mm) are manufactured.

電極製造方法は、射出成形又は押出成形によってFe−Niパーマロイ31のパーマロイ微粉体32がバインダー33を介して連結され、射出成形又は押出成形によって作られたパーマロイ微粉体混合成形物36(発泡金属成形物)を脱脂した後、所定温度で焼結(焼成)することで、多数の微細な連続気孔23(連続通気孔)を有するマイクロポーラス構造の陽極11及び陰極12を作ることができるとともに、高い強度を有して形状を維持することができ、衝撃が加えられたときの破損や損壊を防ぐことが可能な陽極11及び陰極12を作ることができる。電極製造方法は、厚み寸法L1が0.05mm〜0.5mmの範囲の陽極11及び陰極12を作ることができるから、電気抵抗が小さく電流をスムースに流すことが可能な陽極11及び陰極12を作ることができる。 In the electrode manufacturing method, the permalloy fine powder 32 of Fe-Ni permalloy 31 is connected via a binder 33 by injection molding or extrusion molding, and the permalloy fine powder mixed molded product 36 (foam metal molding) produced by injection molding or extrusion molding. By degreasing the material) and then sintering (baking) it at a predetermined temperature, an anode 11 and a cathode 12 having a microporous structure having a large number of fine continuous pores 23 (continuous ventilation holes) can be produced and are high. It is possible to make the anode 11 and the cathode 12 which have strength, can maintain the shape, and can prevent breakage or damage when an impact is applied. In the electrode manufacturing method, since the anode 11 and the cathode 12 having a thickness dimension L1 in the range of 0.05 mm to 0.5 mm can be made, the anode 11 and the cathode 12 having a small electric resistance and capable of smoothly passing an electric current can be formed. Can be made.

電極製造方法は、Fe−Niパーマロイ49を微粉砕したパーマロイ微粉体50の仕事関数が白金族元素の仕事関数に近似するように、Fe−Niパーマロイ49におけるFeの含有率とNiの含有率とを決定する含有率決定工程と、含有率決定工程によって決定した含有率のFe及びNiから形成されたFe−Niパーマロイ49を微粉砕してパーマロイ微粉体50を作るパーマロイ微粉体作成工程と、パーマロイ微粉体作成工程によって作成したパーマロイ微粉体50に所定のバインダー51及び所定の気孔形成材52を加え、パーマロイ微粉体50にバインダー51と気孔形成材52とを均一に混合・分散してパーマロイ微粉体混合物53を作るパーマロイ微粉体混合物作成工程と、パーマロイ微粉体混合物作成工程によって作成したパーマロイ微粉体混合物53を射出成形又は押出成形によって薄板状に成形してパーマロイ微粉体混合成形物54を作るパーマロイ微粉体混合成形物作成工程と、パーマロイ微粉体混合成形物作成工程によって作成したパーマロイ微粉体混合成形物54を脱脂するとともにパーマロイ微粉体混合成形物54を所定温度で焼結し、パーマロイ微粉体50が溶融結合しつつ多数の微細な連続気孔23が満遍なく均一に形成されているとともに、パーマロイ微粉体50が溶融結合したパーマロイ溶融物によって連続気泡23が画成かつ囲繞されたマイクロポーラス構造の薄板状発泡金属電極24を作る薄板状発泡金属電極作成工程との各工程によって陽極11及び陰極12を製造するから、それら工程S1〜S5によって厚み寸法L1が0.05mm〜0.5mmの範囲であって多数の微細な連続気孔23(連続通気孔)を形成した陽極11及び陰極12(マイクロポーラス構造の薄板状発泡金属電極24)を製造することができ、陽極11及び陰極12を廉価に作ることができる。 The electrode manufacturing method is based on the Fe content and Ni content in Fe-Ni permalloy 49 so that the work function of the permalloy fine powder 50 obtained by finely pulverizing Fe-Ni permalloy 49 is close to the work function of the platinum group element. Permalloy fine powder making step and permalloy fine powder making step to make permalloy fine powder 50 by finely pulverizing Fe-Ni permalloy 49 formed from Fe and Ni of content rate decided by content rate determination step A predetermined binder 51 and a predetermined pore-forming material 52 are added to the permalloy fine powder 50 prepared in the fine powder preparation step, and the binder 51 and the pore-forming material 52 are uniformly mixed and dispersed in the permalloy fine powder 50 to make the permalloy fine powder. Permalloy fine powder mixture preparation step of making a mixture 53 and permalloy fine powder mixture 53 prepared by a step of making a permalloy fine powder mixture are molded into a thin plate by injection molding or extrusion molding to make a permalloy fine powder mixed molded product 54. The permalloy fine powder mixed molded product 54 prepared by the body mixed molded product preparation step and the permalloy fine powder mixed molded product preparation step is degreased, and the permalloy fine powder mixed molded product 54 is sintered at a predetermined temperature to obtain the permalloy fine powder 50. A large number of fine continuous pores 23 are uniformly and uniformly formed while being melt-bonded, and a thin plate-like foam having a microporous structure in which the open cells 23 are defined and surrounded by the permalloy melt in which the permalloy fine powder 50 is melt-bonded. Since the anode 11 and the cathode 12 are manufactured by each step of the step of making the thin plate foam metal electrode 24 for making the metal electrode 24, the thickness dimension L1 is in the range of 0.05 mm to 0.5 mm in a large number by these steps S1 to S5. The anode 11 and the cathode 12 (thin plate-shaped foamed metal electrode 24 having a microporous structure) having the fine continuous pores 23 (continuous ventilation holes) formed in the above can be manufactured, and the anode 11 and the cathode 12 can be manufactured at low cost. ..

電極製造方法は、白金族元素を含む(担持した)陽極や陰極と略同様の優れた触媒活性(触媒作用)を発揮することができるとともに、優れた触媒活性(触媒作用)を有して触媒機能を十分かつ確実に利用することが可能な白金族金属非含有の陽極11及び陰極12を作ることができる。電極製造方法は、それによって作られた陽極11及び陰極12が白金族元素を含む(担持した)陽極や陰極と略同様の優れた触媒活性(触媒作用)を発揮するから、電気分解装置10において電気分解を効率よく行うことが可能であって短時間に多量の水素ガスを発生させることが可能な白金族元素を含まない非白金の陽極11及び陰極12を作ることができる。 The electrode manufacturing method can exhibit excellent catalytic activity (catalytic action) substantially similar to that of an anode or cathode containing (supporting) a platinum group element, and also has excellent catalytic activity (catalytic action). Platinum group metal-free anodes 11 and 12s can be made that can fully and reliably utilize their functions. In the electrode manufacturing method, since the anode 11 and the cathode 12 produced thereby exhibit excellent catalytic activity (catalytic action) substantially similar to those of the anode and the cathode containing (supporting) platinum group elements, the electrolysis apparatus 10 is used. It is possible to produce a non-platinum anode 11 and a cathode 12 that do not contain platinum group elements, which can efficiently perform electrolysis and generate a large amount of hydrogen gas in a short time.

10 電気分解装置
11 陽極(電極)
12 陰極(電極)
13 固体高分子電解質膜
14 陽極給電部材
15 陰極給電部材
16 陽極用貯水槽
17 陰極用貯水槽
18 陽極主電極
19 陰極主電極
20 膜/電極接合体
21 前面鑑定書
22 後面
23 連続気泡(連続通気孔)
24 マイクロポーラス構造の薄板状発泡金属電極
25 通流口
26 外周縁
27 水素ガス生成システム
28 直流電源
29 貯水タンク
30 給水ポンプ
31 酸素気液分離器
32 循環ポンプ
33 循環ポンプ
34 水素気液分離器
35 ボンベ
36 固体高分子形燃料電池
37 燃料極
38 空気極
39 固体高分子電解質膜
40 セパレータ
41 セパレータ
42 膜/電極接合体
43 ガス拡散層
44 ガス拡散層
45 ガスシール
46 ガスシール
47 導線
48 負荷
49 Fe−Niパーマロイ
50 パーマロイ微粉体
51 バインダー
52 気孔形成材(発泡剤)
53 パーマロイ微粉体混合物
54 パーマロイ微粉体混合成形物(発泡金属成形物)
L1 厚み寸法
S1 含有率決定工程
S2 パーマロイ微粉体作成工程
S3 パーマロイ微粉体混合物作成工程
S4 パーマロイ微粉体混合成形物作成工程
S5 薄板状発泡金属電極作成工程
10 Electrolyzer 11 Anode (electrode)
12 Cathode (electrode)
13 Solid polymer electrolyte membrane 14 Anode feeding member 15 Cathode feeding member 16 Anode water storage tank 17 Cathode water storage tank 18 Anode main electrode 19 Cathode main electrode 20 Membrane / electrode junction 21 Front surface certificate 22 Rear surface 23 Continuous bubble (continuous communication) Pore)
24 Thin plate foam metal electrode with microporous structure 25 Passage port 26 Outer peripheral edge 27 Hydrogen gas generation system 28 DC power supply 29 Water storage tank 30 Water supply pump 31 Oxygen gas-liquid separator 32 Circulation pump 33 Circulation pump 34 Hydrogen gas-liquid separator 35 Bomb 36 Solid polymer fuel cell 37 Fuel electrode 38 Air electrode 39 Solid polymer electrolyte membrane 40 Separator 41 Separator 42 Membrane / electrode assembly 43 Gas diffusion layer 44 Gas diffusion layer 45 Gas seal 46 Gas seal 47 Lead wire 48 Load 49 Fe −Ni Permalloy 50 Permalloy fine powder 51 Binder 52 Pore forming material (foaming agent)
53 Permalloy fine powder mixture 54 Permalloy fine powder mixed molded product (foamed metal molded product)
L1 Thickness dimension S1 Content rate determination process S2 Permalloy fine powder preparation process S3 Permalloy fine powder mixture production process S4 Permalloy fine powder mixed molding production process S5 Thin plate foam metal electrode production process

Claims (10)

陽極及び陰極と、前記陽極と前記陰極との間に位置してそれら極を接合する電極接合体膜とを備え、
前記陽極及び前記陰極が、Fe−Niパーマロイを微粉砕したパーマロイ微粉体に所定のバインダーを均一に混合・分散しつつ所定の気孔形成材を均一に混合・分散し、前記パーマロイ微粉体に前記バインダー及び前記気孔形成材を混合したパーマロイ微粉体混合物を所定面積の薄板状に成形した後、前記所定面積の薄板状に成形した前記パーマロイ微粉体混合成形物を脱脂・焼結することで、前記パーマロイ微粉体が溶融結合しつつ多数の微細な連続気孔が満遍なく形成されたマイクロポーラス構造の薄板状発泡金属電極であり、前記パーマロイ微粉体が溶融結合したパーマロイ溶融物によって前記連続気泡が囲繞され、
前記マイクロポーラス構造の薄板状発泡金属電極である前記陽極及び前記陰極が白金族元素を含む陽極及び陰極と略同様の触媒活性を有し、前記マイクロポーラス構造の薄板状発泡金属電極である前記陽極及び前記陰極に電気を通電し、該陽極で酸化反応を起こすとともに該陰極で還元反応を起こすことで所定の水溶液を化学分解することを特徴とする電気分解装置。
It is provided with an anode and a cathode, and an electrode junction film located between the anode and the cathode and joining the electrodes.
The anode and the cathode uniformly mix and disperse a predetermined binder in permalloy fine powder obtained by finely pulverizing Fe-Ni permalloy, and uniformly mix and disperse a predetermined pore-forming material, and the binder is mixed with the permalloy fine powder. The permalloy fine powder mixture mixed with the pore-forming material is formed into a thin plate having a predetermined area, and then the permalloy fine powder mixed mixture formed into a thin plate having a predetermined area is degreased and sintered to obtain the permalloy. It is a thin plate-shaped foamed metal electrode having a microporous structure in which a large number of fine continuous pores are evenly formed while the fine powder is melt-bonded. The permalloy melt in which the permalloy fine powder is melt-bonded surrounds the open cells.
The anode and the cathode, which are thin plate-shaped foamed metal electrodes having a microporous structure, have substantially the same catalytic activity as the anode and cathode containing platinum group elements, and the anode, which is a thin plate-shaped foamed metal electrode having a microporous structure. An electrolysis apparatus characterized by chemically decomposing a predetermined aqueous solution by energizing the cathode and causing an oxidation reaction at the anode and a reduction reaction at the cathode.
前記電気分解装置では、それに使用する前記陽極及び前記陰極を形成する前記パーマロイ微粉体の仕事関数が白金族元素の仕事関数に近似するように、前記Fe−Niパーマロイにおける前記Feの含有率と該Fe−Niパーマロイにおける前記Niの含有率とが決定されている請求項1に記載の電気分解装置。 In the electrolysis device, the content rate of Fe in the Fe—Ni permalloy and the work function of the permalloy fine powder forming the anode and the cathode used therein are similar to the work function of the platinum group element. The electrolysis apparatus according to claim 1, wherein the content of Ni in Fe-Ni permalloy is determined. 前記薄板状発泡金属電極に形成された連続気泡が、該薄板状発泡金属電極の前面と後面との間で厚み方向へ不規則に曲折しながら延びているとともに、該薄板状発泡金属電極の外周縁と内周縁との間で径方向へ不規則に曲折しながら延びている請求項1又は請求項2に記載の電気分解装置。 The open cells formed on the thin plate-shaped foamed metal electrode extend between the front surface and the rear surface of the thin plate-shaped foamed metal electrode while being irregularly bent in the thickness direction, and are outside the thin plate-shaped foamed metal electrode. The electrolyzer according to claim 1 or 2, wherein the electrolyzer extends between the peripheral edge and the inner peripheral edge while irregularly bending in the radial direction. 前記径方向へ隣接して前記厚み方向へ曲折して延びるそれら連続気泡が、前記径方向において部分的に繋がって一方の連続気泡と他方の連続気泡とが互いに連通し、前記厚み方向へ隣接して前記径方向へ曲折して延びるそれら連続気泡が、前記厚み方向において部分的に繋がって一方の連続気泡と他方の連続気泡とが互いに連通し、それら連続気泡の平均径が、前記厚み方向に向かって一様ではなく、該厚み方向に向かって不規則に変化しているとともに、前記径方向に向かって一様ではなく、該径方向に向かって不規則に変化している請求項3に記載の電気分解装置。 These open cells that are adjacent to the radial direction and bend and extend in the thickness direction are partially connected in the radial direction so that one open cell and the other open cell communicate with each other and are adjacent to each other in the thickness direction. The open cells that bend and extend in the radial direction are partially connected in the thickness direction, and one open cell and the other open cell communicate with each other, and the average diameter of the open cells is in the thickness direction. The third aspect of claim 3, which is not uniform toward the thickness and changes irregularly in the thickness direction, and is not uniform toward the radial direction and changes irregularly toward the radial direction. The electrolyzer described. 前記薄板状発泡金属電極に形成された連続気孔の平均径が、1μm〜100μmの範囲にあるとともに、±0.1μm〜±5マイクロμmの範囲で変化している請求項4に記載の電気分解装置。 The electrolysis according to claim 4, wherein the average diameter of the continuous pores formed in the thin plate-shaped foamed metal electrode is in the range of 1 μm to 100 μm and changes in the range of ± 0.1 μm to ± 5 microμm. apparatus. 前記薄板状発泡金属電極の厚み寸法が、0.05mm〜0.5mmの範囲にある請求項1ないし請求項5いずれかに記載の電気分解装置。 The electrolyzer according to any one of claims 1 to 5, wherein the thickness dimension of the thin plate-shaped foamed metal electrode is in the range of 0.05 mm to 0.5 mm. 前記Fe−Niパーマロイにおける前記Feの含有率が、45%〜55%の範囲にあり、前記Fe−Niパーマロイにおける前記Niの含有率が、45%〜55%の範囲にある請求項1ないし請求項6いずれかに記載の電気分解装置。 Claims 1 to 55, wherein the Fe-Ni content in the Fe-Ni permalloy is in the range of 45% to 55%, and the Ni content in the Fe-Ni permalloy is in the range of 45% to 55%. Item 6. The electrolysis device according to any one of. 前記薄板状発泡金属電極に成形された連続気泡の気孔率が、45%〜55%の範囲にある請求項1ないし請求項7いずれかに記載の電気分解装置。 The electrolyzer according to any one of claims 1 to 7, wherein the porosity of the open cells formed on the thin plate-shaped foamed metal electrode is in the range of 45% to 55%. 前記薄板状発泡金属電極の密度が、6.0g/cm〜8.0g/cmの範囲にある請求項1ないし請求項8いずれかに記載の電気分解装置。 The thin plate density of the expanded metal electrode, electrolysis apparatus according to any one of claims 1 to 8 is in the range of 6.0g / cm 2 ~8.0g / cm 2 . 前記パーマロイ微粉体の粒径が、1μm〜100μmの範囲にある請求項1ないし請求項9いずれかに記載の電気分解装置。
The electrolyzer according to any one of claims 1 to 9, wherein the particle size of the permalloy fine powder is in the range of 1 μm to 100 μm.
JP2019067096A 2019-03-29 2019-03-29 Electrolysis apparatus Pending JP2020164933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019067096A JP2020164933A (en) 2019-03-29 2019-03-29 Electrolysis apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019067096A JP2020164933A (en) 2019-03-29 2019-03-29 Electrolysis apparatus

Publications (1)

Publication Number Publication Date
JP2020164933A true JP2020164933A (en) 2020-10-08

Family

ID=72715918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019067096A Pending JP2020164933A (en) 2019-03-29 2019-03-29 Electrolysis apparatus

Country Status (1)

Country Link
JP (1) JP2020164933A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04147570A (en) * 1990-10-11 1992-05-21 Sumitomo Metal Mining Co Ltd Material of air electrode for molten carbonate fuel cell
JPH0987704A (en) * 1995-09-27 1997-03-31 Mitsubishi Materials Corp Production of porous sintered metallic plate
CN109266892A (en) * 2018-10-11 2019-01-25 南昌航空大学 The preparation method of electrolytic hydrogen production high intensity long life porous Ni-base solid solution
CN109267084A (en) * 2018-09-28 2019-01-25 湘潭大学 A kind of preparation method of pre-alloyed porous Ni-base electrolysis cathode material for hydrogen evolution

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04147570A (en) * 1990-10-11 1992-05-21 Sumitomo Metal Mining Co Ltd Material of air electrode for molten carbonate fuel cell
JPH0987704A (en) * 1995-09-27 1997-03-31 Mitsubishi Materials Corp Production of porous sintered metallic plate
CN109267084A (en) * 2018-09-28 2019-01-25 湘潭大学 A kind of preparation method of pre-alloyed porous Ni-base electrolysis cathode material for hydrogen evolution
CN109266892A (en) * 2018-10-11 2019-01-25 南昌航空大学 The preparation method of electrolytic hydrogen production high intensity long life porous Ni-base solid solution

Similar Documents

Publication Publication Date Title
US3377265A (en) Electrochemical electrode
JP5178959B2 (en) Oxygen gas diffusion cathode, electrolytic cell using the same, chlorine gas production method, and sodium hydroxide production method
CN102337559B (en) Oxygen-consuming electrode
US9023549B2 (en) Gas diffusion electrode
Li et al. Layer reduction method for fabricating Pd-coated Ni foams as high-performance ethanol electrode for anion-exchange membrane fuel cells
JP2007242433A (en) Electrode catalyst for electrochemical reaction, manufacturing method of the same, and electrochemical electrode having the same
WO2018037774A1 (en) Cathode, electrolysis cell for producing organic hydride, and organic hydride production method
WO2019244840A1 (en) Electrode
JP7171030B2 (en) Manufacturing method for anode and cathode of electrolyzer
WO2020080530A1 (en) Electrode and electrode manufacturing method
JP7262739B2 (en) Manufacturing method for anode and cathode of electrolyzer
JP2020164933A (en) Electrolysis apparatus
JP7199080B2 (en) Electrolyzer and electrode manufacturing method
JP7411920B2 (en) Method for manufacturing anode and cathode of electrolyzer
JP7179314B2 (en) Manufacturing method for anode and cathode of electrolyzer
JP7235284B2 (en) polymer electrolyte fuel cell
JP3625633B2 (en) Gas diffusion electrode structure and manufacturing method thereof
JP7141695B2 (en) Manufacturing method for anode and cathode of electrolyzer
JP7171024B2 (en) Method for manufacturing fuel electrode and air electrode for polymer electrolyte fuel cell
JP2020140843A (en) Electrode and method for manufacturing the same
JP2020167041A (en) Electrode and manufacturing method thereof
JP2020167064A (en) Solid polymer fuel cell
JP2020140844A (en) Solid polymer type fuel battery
JP2020087812A (en) Electrode and electrode manufacturing method
JP2020064786A (en) Polymer electrolyte fuel cell

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200617

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210512

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230314