JP7262739B2 - Manufacturing method for anode and cathode of electrolyzer - Google Patents

Manufacturing method for anode and cathode of electrolyzer Download PDF

Info

Publication number
JP7262739B2
JP7262739B2 JP2018223296A JP2018223296A JP7262739B2 JP 7262739 B2 JP7262739 B2 JP 7262739B2 JP 2018223296 A JP2018223296 A JP 2018223296A JP 2018223296 A JP2018223296 A JP 2018223296A JP 7262739 B2 JP7262739 B2 JP 7262739B2
Authority
JP
Japan
Prior art keywords
fine powder
cathode
anode
metal
metal fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018223296A
Other languages
Japanese (ja)
Other versions
JP2020084291A (en
Inventor
正己 奥山
Original Assignee
グローバル・リンク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by グローバル・リンク株式会社 filed Critical グローバル・リンク株式会社
Priority to JP2018223296A priority Critical patent/JP7262739B2/en
Publication of JP2020084291A publication Critical patent/JP2020084291A/en
Application granted granted Critical
Publication of JP7262739B2 publication Critical patent/JP7262739B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、電気を利用して所定の水溶液を化学分解する電気分解装置の陽極及び陰極の製造方法に関する。 TECHNICAL FIELD The present invention relates to a method for manufacturing an anode and a cathode for an electrolyzer that chemically decomposes a predetermined aqueous solution using electricity.

反応管と、反応管内に収容された触媒体と、流体入口及び流体出口を有する筒状体とを備え、流体入口と流体出口とが筒状体の内部を流路として互いに連通し、反応管が流路内に配置され、触媒体が軸線を反応管の長手方向に平行にする向きに反応管に挿入され、触媒体が一定の軸線に沿って延在する基材と脱水素触媒を含む脱水素触媒層とを備え、基材が軸線を中心として回転する方向にねじれながら軸線に沿って延在する板状部を含み、板状部の表面上に脱水素触媒層が設けられている水素発生装置が開示されている(特許文献1参照)。 comprising a reaction tube, a catalyst body accommodated in the reaction tube, and a tubular body having a fluid inlet and a fluid outlet, wherein the fluid inlet and the fluid outlet are in communication with each other using the inside of the tubular body as a flow path, and the reaction tube is placed in the flow path, the catalyst body is inserted into the reaction tube with the axis parallel to the longitudinal direction of the reaction tube, and the catalyst body includes a substrate extending along a certain axis and a dehydrogenation catalyst and a dehydrogenation catalyst layer, including a plate-like portion extending along the axis while being twisted in a direction in which the substrate rotates about the axis, and the dehydrogenation catalyst layer being provided on the surface of the plate-like portion. A hydrogen generator is disclosed (see Patent Document 1).

特開2016-55251号公報JP 2016-55251 A

前記特許文献1に開示の水素発生装置の触媒体は、金属の成形体の表面を陽極酸化して金属の酸化物を含む金属酸化物膜を形成する工程と、金属酸化物膜に脱水素触媒を担持させる工程とから作られる。金属酸化物膜に脱水素触媒を担持させる工程では、 ヘキサクロロ白金(IV)酸イオンを含む酸性の塩化白金水溶液を金属酸化物膜と接触させることによって金属酸化物膜にヘキサクロロ白金(IV)酸イオンを付着させるとともに、ヘキサクロロ白金(IV)酸イオンが付着している金属酸化物膜を焼成して金属酸化物膜に脱水素触媒として白金を担持させる。 The catalyst body of the hydrogen generator disclosed in Patent Document 1 includes a step of anodizing the surface of a metal molded body to form a metal oxide film containing a metal oxide, and a dehydrogenation catalyst on the metal oxide film. It is made from a step of supporting. In the step of supporting the dehydrogenation catalyst on the metal oxide film, the metal oxide film is brought into contact with an acidic aqueous solution of platinum chloride containing hexachloroplatinic acid (IV) ions so that the metal oxide film is loaded with hexachloroplatinic acid ions. is adhered, and the metal oxide film to which hexachloroplatinic acid ions are adhered is calcined to support platinum as a dehydrogenation catalyst on the metal oxide film.

電気分解装置の陽極及び陰極として各種の白金担持カーボンが広く利用されている。しかし、白金は、貴金属であり、その生産量に限りがある希少な資源であることから、その使用を抑えることが求められている。さらに、今後の電気分解装置の普及に向けて高価な白金の含有量を極力少なくするとともに、少ない量の白金とともに白金以外の金属を使用した陽極や陰極の開発が求められている。 Various platinum-supported carbons are widely used as anodes and cathodes of electrolyzers. However, since platinum is a precious metal and a scarce resource with a limited production amount, it is required to suppress its use. Furthermore, in order to spread the use of electrolyzers in the future, there is a need to reduce the content of expensive platinum as much as possible and to develop anodes and cathodes that use a small amount of platinum and a metal other than platinum.

本発明の目的は、白金族金属の含有量を極力少なくすることができ、白金族金属の含有量が少ないにもかかわらず、優れた触媒活性(触媒作用)を有する陽極及び陰極を備え、その陽極及び陰極を使用して電気分解を効率よく行うことができ、短時間に多量の水素ガスを発生させることができる電気分解装置を提供することにある。 An object of the present invention is to provide an anode and a cathode that can minimize the content of platinum group metals and have excellent catalytic activity (catalytic action) despite the low content of platinum group metals, To provide an electrolyzer capable of efficiently performing electrolysis using an anode and a cathode and generating a large amount of hydrogen gas in a short time.

前記課題を解決するための本発明の前提は、陽極及び陰極と、陽極と陰極との間に位置してそれら極を接合する電極接合体膜とを備えた電気分解装置の該陽極及び該陰極の製造方法である The premise of the present invention for solving the above problems is the anode and the cathode of an electrolyzer comprising an anode, a cathode, and an electrode assembly film positioned between the anode and the cathode to join the electrodes together. is a manufacturing method .

前記前提における本発明の特徴は、陽極及び陰極の製造方法が、各種の白金族金属の中から白金(Pt)を選択するとともに、合成仕事関数が前記白金の仕事関数(5.65(eV))に近似するように、各種の遷移金属の中から仕事関数が5.22(eV)のニッケル(Ni)と仕事関数が4.67(eV)の鉄(Fe)とを選択する金属選択工程と、微粉砕機によって白金を微粉砕して粒径が1μm~100μmのPtの白金族金属微粉体を作り、微粉砕機によってニッケルを微粉砕して粒径が1μm~100μmのNiの遷移金属微粉体を作るとともに、微粉砕機によって鉄を微粉砕して粒径が1μm~100μmのFeの遷移金属微粉体を作る金属微粉体作成工程と、金属微粉体作成工程によって作られた白金族金属微粉体と遷移金属微粉体とを混合した金属微粉体混合物の全重量(100%)に対するPtの微粉体の重量比を4%~10%の範囲に決定し、金属微粉体混合物の全重量(100%)に対するNiの微粉体の重量比を45%~48%の範囲で決定するとともに、金属微粉体混合物の全重量(100%)に対するFeの微粉体の重量比を45%~48%の範囲で決定する微粉体重量比決定工程と、微粉体重量比決定工程によって決定した重量比のPtの微粉体とNiの微粉体とFeの微粉体と、粉状の樹脂系バインダー及び所定量の気孔形成材とを混合機に投入し、混合機によってPtの微粉体、Niの微粉体、Feの微粉体、バインダー、気孔形成材を攪拌・混合してそれらが均一に混合・分散した金属微粉体混合物を作る金属微粉体混合物作成工程と、金属微粉体混合物作成工程によって作られた金属微粉体混合物を射出成形機又は押出成形機に投入し、金属微粉体混合物を射出成形機によって射出成形し、又は、金属微粉体混合物を押出成形機によって押し出し成形し、厚み寸法が0.03mm~1.5mmの範囲の所定面積の薄板状に成形した金属微粉体成形物を作る金属微粉体成形物作成工程と、金属微粉体成形物作成工程によって作られた金属微粉体成形物を脱脂し、脱脂した金属微粉体成形物を焼成炉に投入し、金属微粉体成形物を焼成炉において900℃~1400℃の温度で2時間~6時間時間焼結(焼成)して多数の微細な気孔を形成したマイクロポーラス構造かつ厚み寸法が0.03mm~1.5mmの範囲の薄板状の陽極及び陰極を作るマイクロポーラス構造薄板電極作成工程とを有することにある。 The feature of the present invention based on the above premise is that the manufacturing method of the anode and the cathode selects platinum (Pt) from various platinum group metals, and the synthetic work function is the work function of the platinum (5.65 (eV) ), a metal selection step of selecting nickel (Ni) with a work function of 5.22 (eV) and iron (Fe) with a work function of 4.67 (eV) from various transition metals so as to approximate Then, platinum is finely pulverized by a pulverizer to make platinum group metal fine powder of Pt with a particle size of 1 μm to 100 μm, and nickel is finely pulverized by a pulverizer to make a transition metal of Ni with a particle size of 1 μm to 100 μm. A platinum group metal produced by the metal fine powder preparation step of preparing fine powder and finely pulverizing iron with a fine pulverizer to obtain transition metal fine powder of Fe having a particle size of 1 μm to 100 μm, and the metal fine powder preparation step. The weight ratio of the Pt fine powder to the total weight (100%) of the metal fine powder mixture obtained by mixing the fine powder and the transition metal fine powder is determined in the range of 4% to 10%, and the total weight of the metal fine powder mixture ( 100%) is determined in the range of 45% to 48%, and the weight ratio of Fe fine powder to the total weight (100%) of the metal fine powder mixture is set to 45% to 48%. a fine powder weight ratio determination step determined in the range, a fine powder of Pt, a fine powder of Ni and a fine powder of Fe in the weight ratio determined by the fine powder weight ratio determination step, a powdery resin binder, and a predetermined amount of A fine powder of Pt, a fine powder of Ni, a fine powder of Fe, a binder, and a pore-forming material are uniformly mixed and dispersed by the mixer. A metal fine powder mixture preparation process for making a solid mixture, and the metal fine powder mixture prepared by the metal fine powder mixture preparation process are put into an injection molding machine or an extruder, and the metal fine powder mixture is injection molded by the injection molding machine. Alternatively, a metal fine powder mixture is extruded by an extruder to form a thin plate having a predetermined area with a thickness dimension of 0.03 mm to 1.5 mm. The metal fine powder molding produced by the step and the metal fine powder molding preparation step is degreased, the degreased metal fine powder molding is put into a firing furnace, and the metal fine powder molding is placed in the firing furnace at 900 ° C. to 1400. Sintering (firing) for 2 to 6 hours at a temperature of ° C. produces a microporous structure in which a large number of fine pores are formed and a thin plate-like anode and cathode with a thickness dimension in the range of 0.03 mm to 1.5 mm. and a microporous structure thin plate electrode forming step .

本発明の一例としては、陽極及び陰極に形成された気孔の平均径が1~100μmの範囲にある。 As an example of the present invention, the average diameter of pores formed in the anode and cathode is in the range of 1 to 100 μm.

本発明の他の一例としては、マイクロポーラス構造の薄板状に成形された陽極及び陰極の気孔率が70%~85%の範囲にある。 As another example of the present invention, the porosity of the thin plate-shaped anode and cathode having a microporous structure is in the range of 70% to 85%.

本発明の他の一例としては、マイクロポーラス構造の薄板に成形された陽極及び陰極の密度が6.0g/cm~8.0g/cmの範囲にある。 As another example of the present invention, the density of the anode and cathode molded into the microporous thin plate is in the range of 6.0 g/cm 2 to 8.0 g/cm 2 .

本発明に係る電気分解装置によれば、それに使用される陽極及び陰極が、各種の白金族金属から選択された少なくとも1種類の少量の白金族金属と各種の遷移金属から選択された少なくとも2種類の遷移金属とから形成され、
選択された少なくとも1種類の白金族金属を微粉砕した白金族金属微粉体と選択された少なくとも2種類の遷移金属を微粉砕した遷移金属微粉体と所定のバインダーとを均一に混合・分散した金属微粉体混合物に所定の気孔形成材を添加し、気孔形成材を添加した金属微粉体混合物を所定面積の薄板状に成形し、所定面積の薄板状に成形した金属微粉体成形物を脱脂・焼結することで、多数の微細な気孔が形成されたマイクロポーラス構造の薄板状電極であるから、白金族金属以外の遷移金属を使用することで、白金族金属の含有量を極力少なくすることができるとともに、白金族金属の触媒活性を利用するとともに遷移金属の触媒活性を利用した陽極及び陰極を使用して電気分解を効率よく行うことができ、短時間に多量の水素ガスを発生させることができる。
According to the electrolysis apparatus according to the present invention, the anode and cathode used therein are at least one small amount of platinum group metal selected from various platinum group metals and at least two types selected from various transition metals. formed from transition metals and
A metal obtained by uniformly mixing and dispersing a platinum group metal fine powder obtained by finely pulverizing at least one selected platinum group metal, a transition metal fine powder obtained by finely pulverizing at least two selected transition metals, and a predetermined binder. A predetermined pore-forming material is added to the fine powder mixture, the metal fine powder mixture to which the pore-forming material has been added is formed into a thin plate having a predetermined area, and the metal fine powder molded article formed into a thin plate having a predetermined area is degreased and sintered. By bonding, the microporous thin plate electrode has a large number of fine pores. Therefore, by using transition metals other than platinum group metals, it is possible to reduce the content of platinum group metals as much as possible. In addition, electrolysis can be efficiently performed using the anode and cathode that utilize the catalytic activity of the platinum group metal and the catalytic activity of the transition metal, and a large amount of hydrogen gas can be generated in a short time. can.

陽極及び陰極において、選択された少なくとも2種類の遷移金属の仕事関数の合成仕事関数が白金族金属の仕事関数に近似するように、各種の遷移金属の中から少なくとも2種類の遷移金属が選択されている電気分解装置は、合成仕事関数が白金族金属の仕事関数に近似するように各種の遷移金属の中から少なくとも2種類の遷移金属が選択されているから、白金族金属の含有量が少ないにもかかわらず、陽極及び陰極が白金を担持した電極と略同一の仕事関数を備え、陽極及び陰極が白金を担持した電極と略同様の触媒活性(触媒作用)を発揮し、選択された少なくとも2種類の遷移金属を含むとともに優れた触媒活性を有する陽極及び陰極を使用して電気分解を効率よく行うことができ、短時間に多量の水素ガスを発生させることができる。 At least two transition metals are selected from among various transition metals in the anode and cathode such that the composite work function of the work functions of the at least two selected transition metals approximates the work function of the platinum group metal. At least two transition metals are selected from various transition metals such that the composite work function approximates the work function of the platinum group metal, so that the electrolyzer has a low platinum group metal content. Nevertheless, the anode and cathode have substantially the same work function as the platinum-supported electrode, exhibit substantially the same catalytic activity (catalytic action) as the platinum-supported electrode, and select at least Electrolysis can be efficiently performed by using an anode and a cathode containing two kinds of transition metals and having excellent catalytic activity, and a large amount of hydrogen gas can be generated in a short time.

陽極及び陰極に形成された気孔の平均径が1~100μmの範囲にある電気分解装置は、陽極及び陰極に形成された気孔の平均径が1~100μmの範囲にあるから、陽極及び陰極の単位体積当たりに多数の気孔が形成され、陽極及び陰極の比表面積を大きくすることができ、それら気孔を液体が通流することで液体を陽極及び陰極の接触面に広範囲に接触させることができ、陽極及び陰極の触媒作用を最大限に利用することができる。電気分解装置は、平均径が1~100μmの範囲の気孔を有するとともに優れた触媒活性を有する陽極及び陰極を使用して電気分解を効率よく行うことができ、短時間に多量の水素ガスを発生させることができる。 The average diameter of the pores formed in the anode and the cathode is in the range of 1 to 100 μm. A large number of pores are formed per volume, the specific surface area of the anode and the cathode can be increased, and the liquid flows through the pores, so that the liquid can contact the contact surface of the anode and the cathode over a wide range, Anodic and cathodic catalysis can be optimized. The electrolyzer can efficiently perform electrolysis using an anode and a cathode having pores with an average diameter of 1 to 100 μm and excellent catalytic activity, and generates a large amount of hydrogen gas in a short time. can be made

陽極の厚み寸法と陰極の厚み寸法とが0.03mm~1.5mmの範囲にある電気分解装置は、陽極及び陰極の厚み寸法を前記範囲にすることで、陽極及び陰極の電気抵抗を小さくすることができ、陽極や陰極に電流をスムースに流すことができる。電気分解装置は、陽極及び陰極が白金族金属を担持した電極と略同様の触媒活性(触媒作用)を有するとともに、陽極及び陰極の電気抵抗が小さく、陽極及び陰極に電流がスムースに流れるから、優れた触媒活性を有するとともに電位抵抗が小さい陽極及び陰極を使用して電気分解を効率よく行うことができ、短時間に多量の水素ガスを発生させることができる。 In an electrolyzer in which the thickness dimension of the anode and the thickness dimension of the cathode are in the range of 0.03 mm to 1.5 mm, the electrical resistance of the anode and the cathode is reduced by setting the thickness dimension of the anode and the cathode in the above range. This allows the current to flow smoothly through the anode and cathode. In the electrolysis device, the anode and cathode have approximately the same catalytic activity (catalytic action) as the platinum group metal-supporting electrode, and the electrical resistance of the anode and cathode is small, and the current flows smoothly through the anode and cathode. Electrolysis can be efficiently performed by using an anode and a cathode having excellent catalytic activity and low potential resistance, and a large amount of hydrogen gas can be generated in a short time.

白金族金属がPt(白金)であり、遷移金属がNi(ニッケル)とFe(鉄)とであり、Niの仕事関数とFeの仕事関数との合成仕事関数が白金族金属の仕事関数に近似するように、Ptの白金族金属微粉体の金属微粉体混合物の全重量に対する重量比とNiの遷移金属微粉体の金属微粉体混合物の全重量に対する重量比とFeの遷移金属微粉体の金属微粉体混合物の全重量に対する重量比とが定められている電気分解装置は、遷移金属の合成仕事関数が白金族金属の仕事関数に近似するように、金属微粉体混合物の全重量に対するPtの白金族金属微粉体の重量比や金属微粉体混合物の全重量に対するNiの遷移金属微粉体の重量比、金属微粉体混合物の全重量に対するFeの遷移金属微粉体の重量比が決定されているから、陽極や陰極が白金を担持した電極と略同一の仕事関数を備え、陽極や陰極が優れた触媒活性(触媒作用)を有し、陽極や陰極が白金を担持した電極と略同様の触媒活性(触媒作用)を発揮することで、その陽極及び陰極を使用して電気分解を効率よく行うことができ、短時間に多量の水素ガスを発生させることができる。電気分解装置は、陽極及び陰極がNi(ニッケル)とFe(鉄)とを含み、Pt(白金)の含有量が少ないから、陽極や陰極の材料費を低減させることができ、電気分解装置を廉価に作ることができるとともに、電気分解装置の運転コストを下げることができる。 The platinum group metal is Pt (platinum), the transition metals are Ni (nickel) and Fe (iron), and the composite work function of the work function of Ni and the work function of Fe approximates the work function of the platinum group metal. The weight ratio of the platinum group metal fine powder of Pt to the total weight of the metal fine powder mixture, the weight ratio of the transition metal fine powder of Ni to the total weight of the metal fine powder mixture, and the metal fine powder of the transition metal fine powder of Fe The electrolyser, in which the weight ratio of Pt to the total weight of the fine metal powder mixture is defined, is such that the composite work function of the transition metals approximates the work function of the platinum group metals. Since the weight ratio of the metal fine powder, the weight ratio of the Ni transition metal fine powder to the total weight of the metal fine powder mixture, and the weight ratio of the Fe transition metal fine powder to the total weight of the metal fine powder mixture are determined, the anode and the cathode have almost the same work function as the platinum-supported electrode, the anode and the cathode have excellent catalytic activity (catalytic action), and the anode and the cathode have almost the same catalytic activity as the platinum-supported electrode (catalytic By exerting the action), electrolysis can be efficiently performed using the anode and cathode, and a large amount of hydrogen gas can be generated in a short time. In the electrolyzer, the anode and cathode contain Ni (nickel) and Fe (iron), and the content of Pt (platinum) is small, so the material cost of the anode and cathode can be reduced, and the electrolyzer can be used. It can be made inexpensively and the operating cost of the electrolyzer can be lowered.

Ptの白金族金属微粉体の金属微粉体混合物の全重量に対する重量比が4~10%の範囲、Niの遷移金属微粉体の金属微粉体混合物の全重量に対する重量比が45%~48%の範囲、Feの遷移金属微粉体の金属微粉体混合物の全重量に対する重量比が45%~48%の範囲にある電気分解装置は、合成仕事関数が白金族金属の仕事関数に近似するNi(ニッケル)とFe(鉄)とを選択するとともに、金属微粉体混合物の全重量に対するPtの白金族金属微粉体の重量比や金属微粉体混合物の全重量に対するNiの遷移金属微粉体の重量比、金属微粉体混合物の全重量に対するFeの遷移金属微粉体の重量比を前記範囲にすることで、Niの遷移金属微粉体とFeの遷移金属微粉体との仕事関数の合成仕事関数を白金族金属の仕事関数に近似させることができ、Ptの含有量が少ないにもかかわらず、陽極や陰極が優れた触媒活性(触媒作用)を有し、陽極や陰極が白金を担持した電極と略同様の触媒活性(触媒作用)を発揮することで、その陽極及び陰極を使用して電気分解を効率よく行うことができ、短時間に多量の水素ガスを発生させることができる。電気分解装置は、陽極及び陰極が前記重量比のNi(ニッケル)とFe(鉄)とを含み、金属微粉体混合物の全重量に対するPt(白金)の重量比が小さく、Pt(白金)の含有量が少ないから、陽極や陰極の材料費を低減させることができ、電気分解装置を廉価に作ることができるとともに、電気分解装置の運転コストを下げることができる。 The weight ratio of the platinum group metal fine powder of Pt to the total weight of the metal fine powder mixture is in the range of 4 to 10%, and the weight ratio of the transition metal fine powder of Ni to the total weight of the metal fine powder mixture is in the range of 45% to 48%. Electrolyzers in which the weight ratio of the transition metal fine powder of Fe to the total weight of the metal fine powder mixture is in the range of 45% to 48% include Ni (nickel ) and Fe (iron), the weight ratio of platinum group metal fine powder of Pt to the total weight of the metal fine powder mixture, the weight ratio of Ni transition metal fine powder to the total weight of the metal fine powder mixture, the metal By setting the weight ratio of the Fe transition metal fine powder to the total weight of the fine powder mixture within the above range, the combined work function of the Ni transition metal fine powder and the Fe transition metal fine powder is the same as that of the platinum group metal. The work function can be approximated, the anode and cathode have excellent catalytic activity (catalytic action) despite the low Pt content, and the anode and cathode are catalysts that are almost the same as platinum-supported electrodes. By exhibiting activity (catalytic action), electrolysis can be efficiently performed using the anode and cathode, and a large amount of hydrogen gas can be generated in a short time. In the electrolyzer, the anode and cathode contain Ni (nickel) and Fe (iron) in the above weight ratio, the weight ratio of Pt (platinum) to the total weight of the fine metal powder mixture is small, and Pt (platinum) is contained Since the amount is small, the material cost of the anode and cathode can be reduced, and the electrolyzer can be manufactured at a low cost, and the operating cost of the electrolyzer can be reduced.

マイクロポーラス構造の薄板状に成形された陽極及び陰極の気孔率が70%~85%の範囲にある電気分解装置は、陽極及び陰極の気孔率を前記範囲にすることで、陽極及び陰極が多数の微細な気孔(通路孔)を有する多孔質(気孔の平均径1~100μmのマイクロポーラス構造)に成形され、陽極及び陰極の比表面積を大きくすることができ、それら気孔を液体が通流しつつ液体を陽極や陰極のそれら気孔における接触面に広範囲に接触させることが可能となり、陽極や陰極が白金を担持した電極と略同様の触媒活性(触媒作用)を確実に発揮し、触媒機能を十分かつ確実に利用することが可能であって優れた触媒活性(触媒作用)を有する陽極及び陰極を使用して電気分解を効率よく行うことができ、短時間に多量の水素ガスを発生させることができる。 An electrolyzer having a porosity in the range of 70% to 85% for an anode and a cathode formed into a thin plate with a microporous structure has a large number of anodes and cathodes by setting the porosity of the anode and the cathode in the above range. It is formed into a porous structure (a microporous structure with an average pore diameter of 1 to 100 μm) having fine pores (passage holes) of , and the specific surface area of the anode and cathode can be increased, and the liquid flows through the pores. It is possible to bring the liquid into contact with the contact surface of the pores of the anode and cathode over a wide range, and the anode and cathode reliably exhibit almost the same catalytic activity (catalytic action) as the platinum-supported electrode, and the catalytic function is sufficiently achieved. Electrolysis can be efficiently performed using an anode and a cathode that can be reliably used and have excellent catalytic activity (catalytic action), and a large amount of hydrogen gas can be generated in a short time. can.

マイクロポーラス構造の薄板に成形された陽極及び陰極の密度が6.0g/cm~8.0g/cmの範囲にある電気分解装置は、陽極及び陰極の密度を前記範囲にすることで、陽極及び陰極が多数の微細な気孔(通路孔)を有する多孔質(気孔の平均径1~100μmのマイクロポーラス構造)に成形され、陽極及び陰極の比表面積を大きくすることができ、それら気孔を液体が通流しつつ液体を陽極や陰極のそれら気孔における接触面に広範囲に接触させることが可能となり、陽極や陰極が白金を担持した電極と略同様の触媒活性(触媒作用)を確実に発揮し、触媒機能を十分かつ確実に利用することが可能であって優れた触媒活性(触媒作用)を有する陽極及び陰極を使用して電気分解を効率よく行うことができ、短時間に多量の水素ガスを発生させることができる。 An electrolyzer in which the densities of anodes and cathodes formed into thin plates with a microporous structure are in the range of 6.0 g/cm 2 to 8.0 g/cm 2 , by setting the densities of the anodes and cathodes in the above range, The anode and cathode are formed into a porous structure having a large number of fine pores (passage pores) (microporous structure with an average pore diameter of 1 to 100 μm), and the specific surface area of the anode and cathode can be increased. While the liquid is flowing, it is possible to bring the liquid into contact with the contact surfaces of the pores of the anode and cathode over a wide range, and the anode and cathode reliably exhibit almost the same catalytic activity (catalytic action) as the platinum-supported electrode. , It is possible to use the catalytic function sufficiently and reliably, and electrolysis can be efficiently performed using the anode and cathode having excellent catalytic activity (catalytic action), and a large amount of hydrogen gas can be produced in a short time. can be generated.

白金族金属の白金族金属微粉体の粒径と遷移金属の遷移金属微粉体の粒径とが1μm~100μmの範囲にある電気分解装置は、白金族金属の白金族金属微粉体や遷移金属の遷移金属微粉体の粒径を前記範囲にすることで、陽極及び陰極が多数の微細な気孔(通路孔)を有する多孔質(気孔の平均径1~100μmのマイクロポーラス構造)に成形され、陽極及び陰極の比表面積を大きくすることができ、それら気孔を液体が通流しつつ液体を陽極や陰極のそれら気孔における接触面に広範囲に接触させることが可能となり、陽極や陰極が白金を担持した電極と略同様の触媒活性(触媒作用)を確実に発揮し、触媒機能を十分かつ確実に利用することが可能であって優れた触媒活性(触媒作用)を有する陽極及び陰極を使用して電気分解を効率よく行うことができ、短時間に多量の水素ガスを発生させることができる。 The electrolyzer in which the particle size of the platinum group metal fine powder of the platinum group metal and the particle size of the transition metal fine powder of the transition metal are in the range of 1 μm to 100 μm is used for the platinum group metal fine powder of the platinum group metal and the transition metal. By setting the particle diameter of the transition metal fine powder within the above range, the anode and the cathode are formed into a porous structure having a large number of fine pores (passage pores) (a microporous structure with an average pore diameter of 1 to 100 μm), and the anode And the specific surface area of the cathode can be increased, and while the liquid flows through the pores, the liquid can be brought into contact with the contact surfaces of the pores of the anode and the cathode over a wide range, and the anode and cathode are electrodes carrying platinum. Electrolysis using anodes and cathodes with excellent catalytic activity (catalytic action) that can reliably exhibit substantially the same catalytic activity (catalytic action) and can fully and reliably utilize the catalytic function can be performed efficiently, and a large amount of hydrogen gas can be generated in a short time.

一例として示す電気分解装置の側面図。The side view of the electrolyzer shown as an example. 一例として示す陽極及び陰極の斜視図。1 is a perspective view of an anode and a cathode shown as an example; FIG. 陽極及び陰極の一例として示す部分拡大図。FIG. 2 is a partially enlarged view showing an example of an anode and a cathode; 電気分解装置を使用した電気分解の一例を説明する図。The figure explaining an example of the electrolysis which uses an electrolysis apparatus. 電気分解装置を利用した水素ガス発生システムの一例を示す図。The figure which shows an example of the hydrogen gas generation system using an electrolyzer. 空気極(陽極)及び燃料極(陰極)を使用した固体高分子形燃料電池の側面図。FIG. 2 is a side view of a polymer electrolyte fuel cell using an air electrode (anode) and a fuel electrode (cathode); 陽極及び陰極の起電圧試験の結果を示す図。The figure which shows the result of the electromotive voltage test of an anode and a cathode. 陽極及び陰極のI-V特性試験の結果を示す図。FIG. 4 is a diagram showing the results of IV characteristic tests on anodes and cathodes; 陽極及び陰極の製造方法を説明する図。The figure explaining the manufacturing method of an anode and a cathode.

一例として示す電気分解装置10の側面図である図1等の添付の図面を参照し、本発明に係る電気分解装置及び電気分解装置に使用する陽極及び陰極の製造方法の詳細を説明すると、以下のとおりである。なお、図2は、一例として示す陽極11及び陰極12の斜視図であり、図3は、陽極11及び陰極12の一例として示す部分拡大図である。図2では、厚み方向を矢印Xで示し、径方向を矢印Yで示す。 With reference to the accompanying drawings such as FIG. 1, which is a side view of an electrolyzer 10 shown as an example, the details of the electrolyzer according to the present invention and the method of manufacturing the anode and cathode used in the electrolyzer will be described below. It is as follows. 2 is a perspective view of the anode 11 and the cathode 12 shown as an example, and FIG. 3 is a partially enlarged view showing the anode 11 and the cathode 12 as an example. In FIG. 2, arrow X indicates the thickness direction, and arrow Y indicates the radial direction.

電気分解装置10(水素ガス発生装置)は、陽極11(アノード)と、陰極12(カソード)と、陽極11及び陰極12の間に位置(介在)する固体高分子電解質膜13(電極接合体膜)(スルホン酸基を有するフッ素系イオン交換膜)と、陽極給電部材14及び陰極給電部材15と、陽極用貯水槽16及び陰極用貯水槽17と、陽極主電極18及び陰極主電極19とから形成されている。 The electrolyzer 10 (hydrogen gas generator) includes an anode 11 (anode), a cathode 12 (cathode), and a solid polymer electrolyte membrane 13 (electrode assembly membrane) located (interposed) between the anode 11 and the cathode 12. ) (a fluorine-based ion exchange membrane having a sulfonic acid group), the anode power supply member 14 and the cathode power supply member 15, the anode water tank 16 and the cathode water tank 17, the anode main electrode 18 and the cathode main electrode 19 formed.

電気分解装置10は、陽極11及び陰極12に電気を通電し、陽極11で酸化反応を起こすとともに陰極12で還元反応を起こすことで所定の水溶液を化学分解する。電気分解装置10では、陽極11及び陰極12、固体高分子電解質膜13が厚み方向へ重なり合って一体化し、膜/電極接合体20 (Membrane Electrode Assembly, MEA)を構成し、膜/電極接合体20を陽極給電部材14と陰極給電部材15とが挟み込んでいる。膜/電極接合体20では、ホットプレスによって固体高分子電解質膜13の一方の面に陽極11の面が隙間なく密着し、固体高分子電解質膜13の他方の面に陰極12の面が隙間なく密着している。固体高分子電解質膜13は、プロトン導電性があり、電子導電性がない。 The electrolyzer 10 supplies electricity to the anode 11 and the cathode 12, causing an oxidation reaction at the anode 11 and a reduction reaction at the cathode 12, thereby chemically decomposing a predetermined aqueous solution. In the electrolyzer 10, the anode 11, the cathode 12, and the solid polymer electrolyte membrane 13 are superimposed and integrated in the thickness direction to form a membrane electrode assembly (MEA). is sandwiched between the anode power supply member 14 and the cathode power supply member 15 . In the membrane/electrode assembly 20, the surface of the anode 11 is closely attached to one surface of the solid polymer electrolyte membrane 13 by hot pressing, and the surface of the cathode 12 is tightly attached to the other surface of the solid polymer electrolyte membrane 13. It's in close contact. The solid polymer electrolyte membrane 13 has proton conductivity and no electronic conductivity.

陽極給電部材14は、陽極11の外側に位置して陽極11に密着し、陽極11に+の電流を給電する。陽極用貯水槽16は、陽極給電部材14の外側に位置して陽極給電部材14に密着している。陽極主電極18は、陽極用貯水槽16の外側に位置して陽極給電部材14に+の電流を給電する。陰極給電部材15は、陰極12の外側に位置して陰極12に密着し、陰極12に-の電流を給電する。陰極用貯水槽17は、陰極給電部材15の外側に位置して陰極給電部材15に密着している。陰極主電極19は、陰極用貯水槽17の外側に位置して陰極給電部材15に-の電流を給電する。 The anode power supply member 14 is positioned outside the anode 11 and is in close contact with the anode 11 to supply positive current to the anode 11 . The anode water tank 16 is located outside the anode power supply member 14 and is in close contact with the anode power supply member 14 . The anode main electrode 18 is located outside the anode reservoir 16 and feeds positive current to the anode power supply member 14 . The cathode power supply member 15 is positioned outside the cathode 12 and is in close contact with the cathode 12 to supply negative current to the cathode 12 . The cathode water tank 17 is positioned outside the cathode power supply member 15 and is in close contact with the cathode power supply member 15 . The cathode main electrode 19 is positioned outside the cathode reservoir 17 and feeds a negative current to the cathode power supply member 15 .

電気分解装置10(水素ガス発生装置)に使用する陽極11及び陰極12は、前面21及び後面22を有するとともに、所定の面積及び所定の厚み寸法L1を有し、その平面形状が四角形に成形されている。陽極11及び陰極12は、多数の微細な気孔23(連続かつ独立通路孔)を有する多孔質(マイクロポーラス構造)の薄板状電極24(発泡金属電極)である。気孔23には、水溶液(液体)が通流する。なお、陽極11や陰極12の平面形状に特に制限はなく、四角形の他に、その用途にあわせて円形や楕円形等の他のあらゆる平面形状に成形することができる。 The anode 11 and the cathode 12 used in the electrolyzer 10 (hydrogen gas generator) have a front surface 21 and a rear surface 22, have a predetermined area and a predetermined thickness L1, and have a rectangular planar shape. ing. The anode 11 and the cathode 12 are porous (microporous structure) thin plate electrodes 24 (foam metal electrodes) having a large number of fine pores 23 (continuous and independent passage holes). An aqueous solution (liquid) flows through the pores 23 . The planar shapes of the anode 11 and the cathode 12 are not particularly limited, and they can be formed into any other planar shape such as a circle, an ellipse, etc., in addition to the quadrangle.

陽極11及び陰極12は、粉状に加工された白金族金属49と、粉状に加工された遷移金属50の中から選択された少なくとも2種類の遷移金属50とから形成されている。白金族金属49としては、白金(Pt)、パラジウム(Pb)、ロジウム(Rh)、ルテニウム(Ru)、イリジウム(Ir)、オスミウム(Os)を使用することができる。白金族金属49には、それらのうちの少なくとも1種類が使用される。遷移金属50としては、3d遷移金属や4d遷移金属が使用される。3d遷移金属には、Ti(チタン)、Cr(クロム)、Mn(マンガン)、Fe(鉄)、Co(コバルト)、Ni(ニッケル)、Cu(銅)、Zn(亜鉛)が使用される。4d遷移金属には、Nb(ニオブ)、Mo(モリブデン)、Ag(銀)が使用される。遷移金属50には、それらのうちの少なくとも2種類が使用される。 The anode 11 and the cathode 12 are formed of at least two types of transition metals 50 selected from platinum group metals 49 processed into powder and transition metals 50 processed into powder. As the platinum group metal 49, platinum (Pt), palladium (Pb), rhodium (Rh), ruthenium (Ru), iridium (Ir), and osmium (Os) can be used. At least one of them is used for the platinum group metal 49 . A 3d transition metal or a 4d transition metal is used as the transition metal 50 . Ti (titanium), Cr (chromium), Mn (manganese), Fe (iron), Co (cobalt), Ni (nickel), Cu (copper), and Zn (zinc) are used as 3d transition metals. Nb (niobium), Mo (molybdenum), and Ag (silver) are used as 4d transition metals. At least two of them are used for the transition metal 50 .

陽極11及び陰極12では、選択された少なくとも2種類の遷移金属50の仕事関数(物質から電子を取り出すのに必要なエネルギー)の合成仕事関数が白金族金属の仕事関数に近似するように、遷移金属50の中から少なくとも2種類の遷移金属50が選択されている。白金の仕事関数は、5.65(eV)である。Tiの仕事関数は、4.14(eV)、Crの仕事関数は、4.5(eV)、Mnの仕事関数は、4.1(eV)、Feの仕事関数は、4.67(eV)、Coの仕事関数は、5.0(eV)、Niの仕事関数は、5.22(eV)、Cuの仕事関数は、5.10(eV)、Znの仕事関数は、3.63(eV)、Nbの仕事関数は、4.01(eV)、Moの仕事関数は、4.45(eV)、Agの仕事関数は、4.31(eV)である。 At the anode 11 and the cathode 12, the transition metals 50 are selected so that the composite work function (the energy required to extract an electron from the material) of the at least two transition metals 50 approximates the work function of the platinum group metals. At least two transition metals 50 are selected from the metals 50 . The work function of platinum is 5.65 (eV). The work function of Ti is 4.14 (eV), the work function of Cr is 4.5 (eV), the work function of Mn is 4.1 (eV), and the work function of Fe is 4.67 (eV). ), the work function of Co is 5.0 (eV), the work function of Ni is 5.22 (eV), the work function of Cu is 5.10 (eV), and the work function of Zn is 3.63 (eV), the work function of Nb is 4.01 (eV), the work function of Mo is 4.45 (eV), and the work function of Ag is 4.31 (eV).

陽極11及び陰極12は、白金族金属49の白金族金属微粉体(微粉状に加工されたPt(白金)、微粉状に加工されたPb(パラジウム)、微粉状に加工されたRh(ロジウム)、微粉状に加工されたRu(ルテニウム)、微粉状に加工されたIr(イリジウム)、微粉状に加工されたOs(オスミウム))と、各種の遷移金属50から選択された少なくとも2種類のそれら遷移金属50の遷移金属微粉体(微粉状に加工されたTi(チタン)、微粉状に加工されたCr(クロム)、微粉状に加工されたMn(マンガン)、微粉状に加工されたFe(鉄)、微粉状に加工されたCo(コバルト)、微粉状に加工されたNi(ニッケル)、微粉状に加工されたCu(銅)、微粉状に加工されたZn(亜鉛)、微粉状に加工されたNb(ニオブ)、微粉状に加工されたMo(モリブデン)、微粉状に加工されたAg(銀))と、所定のバインダー51(紛状の樹脂系バインダー)とを均一に混合・分散した金属微粉体混合物59を作り、金属微粉体混合物59に所定の気孔形成材58(発泡剤)を添加し(加え)、気孔形成材58を添加した金属微粉体混合物59を所定面積の薄板状に成形(押し出し成形又は射出成形)して薄板状の金属微粉体成形物60を作り、その金属微粉体成形物60を脱脂及び所定温度で焼結(焼成)することから作られている(図9参照)。 The anode 11 and the cathode 12 are made of platinum group metal fine powder of the platinum group metal 49 (Pt (platinum) processed into fine powder, Pb (palladium) processed into fine powder, Rh (rhodium) processed into fine powder , Ru (ruthenium) processed into fine powder, Ir (iridium) processed into fine powder, Os (osmium) processed into fine powder), and at least two of them selected from various transition metals 50 Transition metal fine powder of transition metal 50 (Ti (titanium) processed into fine powder, Cr (chromium) processed into fine powder, Mn (manganese) processed into fine powder, Fe processed into fine powder ( Co (cobalt) processed into fine powder, Ni (nickel) processed into fine powder, Cu (copper) processed into fine powder, Zn (zinc) processed into fine powder, Processed Nb (niobium), Mo (molybdenum) processed into fine powder, Ag (silver) processed into fine powder) and a predetermined binder 51 (powdered resin binder) are uniformly mixed and mixed. A dispersed metal fine powder mixture 59 is prepared, a predetermined pore forming material 58 (foaming agent) is added (added) to the metal fine powder mixture 59, and the metal fine powder mixture 59 to which the pore forming material 58 is added is formed into a thin plate having a predetermined area. It is made by molding (extrusion molding or injection molding) into a thin plate-like metal fine powder molding 60, degreasing the metal fine powder molding 60, and sintering (firing) it at a predetermined temperature ( See Figure 9).

陽極11及び陰極12では、選択された少なくとも2種類の遷移金属50の仕事関数の合成仕事関数が白金族金属の仕事関数に近似するように、白金族金属49の微粉体の金属微粉体混合物59の全重量に対する重量比が決定され、選択された少なくとも2種類の遷移金属50の微粉体の金属微粉体混合物59の全重量に対する重量比が決定されている。 In the anode 11 and cathode 12, a fine metal powder mixture 59 of fine powders of the platinum group metal 49 is used such that the combined work function of the work functions of the at least two selected transition metals 50 approximates the work function of the platinum group metal. is determined, and the weight ratio of fine powders of at least two selected transition metals 50 to the total weight of the metal fine powder mixture 59 is determined.

具体的には、白金族金属49の白金族金属微粉体の金属微粉体混合物59の全重量(100%)に対する重量比が4%~10%の範囲、好ましくは、6%~8%の範囲にあり、選択された遷移金属50のうちの1種類の遷移金属微粉体の金属微粉体混合物59の全重量(100%)に対する重量比が45%~48%の範囲にあり、選択された遷移金属50のうちの他の1種類の遷移金属微粉体の金属微粉体混合物59の全重量(100%)に対する重量比が45%~48%の範囲にある。 Specifically, the weight ratio of the platinum group metal fine powder of the platinum group metal 49 to the total weight (100%) of the metal fine powder mixture 59 is in the range of 4% to 10%, preferably in the range of 6% to 8%. and the weight ratio of one type of transition metal fine powder of the selected transition metal 50 to the total weight (100%) of the metal fine powder mixture 59 is in the range of 45% to 48%, and the selected transition The weight ratio of the other transition metal fine powder of the metal 50 to the total weight (100%) of the metal fine powder mixture 59 is in the range of 45% to 48%.

白金族金属49の白金族金属微粉体の重量比、選択された1種類の遷移金属50の遷移金属微粉体の重量比、選択された他の1種類の遷移金属50の遷移金属微粉体の重量比が前記範囲外になると、それら遷移金属50の遷移金属微粉体の合成仕事関数を白金族金属の仕事関数に近似させることができないとともに、金属微粉体混合物59を成形した金属微粉体成形物60を脱脂・焼結(焼成)して作られた陽極11及び陰極12が白金を担持した電極と略同様の触媒活性(触媒作用)を発揮することができない。 Weight ratio of platinum group metal fine powder of platinum group metal 49, weight ratio of transition metal fine powder of one selected transition metal 50, weight of transition metal fine powder of another selected transition metal 50 If the ratio is outside the above range, the composite work function of the transition metal fine powders of the transition metals 50 cannot be approximated to the work function of the platinum group metal, and the metal fine powder molding 60 formed by molding the metal fine powder mixture 59 cannot be obtained. The anode 11 and the cathode 12 produced by degreasing and sintering (firing) cannot exhibit substantially the same catalytic activity (catalytic action) as an electrode supporting platinum.

電気分解装置10は、金属微粉体混合物59の全重量に対する白金族金属49の微粉体の重量比や選択された1種類の遷移金属50の微粉体の重量比、選択された他の1種類の遷移金属50の微粉体の重量比を前記範囲にすることで、選択された少なくとも2種類の遷移金属50の仕事関数の合成仕事関数が白金族金属の仕事関数に近似させることができ、陽極11及び陰極12が白金を担持した電極と略同一の仕事関数を備え、陽極11や陰極12が優れた触媒活性(触媒作用)を有し、陽極11や陰極12が白金を担持した電極と略同様の触媒活性(触媒作用)を発揮することで、陽極11や陰極12を使用して電気分解を効率よく行うことができ、短時間に多量の水素ガスを発生させることができる。 The electrolyzer 10 has a weight ratio of the fine powder of the platinum group metal 49 to the total weight of the metal fine powder mixture 59, a weight ratio of the fine powder of the selected one type of transition metal 50, and a selected other type. By setting the weight ratio of the fine powder of the transition metal 50 within the above range, the composite work function of the work functions of at least two selected transition metals 50 can be approximated to the work function of the platinum group metal. And the cathode 12 has substantially the same work function as the electrode supporting platinum, the anode 11 and the cathode 12 have excellent catalytic activity (catalytic action), and the anode 11 and the cathode 12 are substantially the same as the electrode supporting platinum By exerting the catalytic activity (catalytic action) of , electrolysis can be efficiently performed using the anode 11 and the cathode 12, and a large amount of hydrogen gas can be generated in a short time.

陽極11及び陰極12には、径が異なる多数の微細な気孔23(流路)(連続かつ独立通路孔)が形成されている。陽極11及び陰極12は、多数の微細な気孔23が形成されているから、その比表面積が大きい。それら気孔23は、陽極11及び陰極12の前面21に開口する複数の通流口25と、陽極11及び陰極12の後面22に開口する複数の通流口25とを有し、陽極11及び陰極12の前面21から後面22に向かって陽極11や陰極12をその厚み方向に貫通している。 The anode 11 and the cathode 12 are formed with a large number of fine pores 23 (channels) (continuous and independent passage holes) having different diameters. Since the anode 11 and the cathode 12 are formed with a large number of fine pores 23, their specific surface areas are large. The pores 23 have a plurality of flow holes 25 opening to the front surface 21 of the anode 11 and the cathode 12 and a plurality of flow holes 25 opening to the rear surface 22 of the anode 11 and the cathode 12. The anode 11 and the cathode 12 are penetrated in the thickness direction from the front surface 21 to the rear surface 22 of 12 .

それら気孔23は、陽極11及び陰極12の前面21と後面22との間において陽極11や陰極12の厚み方向へ不規則に曲折しながら延びているとともに、陽極11及び陰極12の外周縁26から中心に向かって陽極11及び陰極12の径方向へ不規則に曲折しながら延びている。径方向へ隣接して厚み方向へ曲折して延びるそれら気孔23(流路)(連続かつ独立通路孔)は、径方向において部分的につながり、一方の気孔23と他方の気孔23とが互いに連通している。厚み方向へ隣接して径方向へ曲折して延びるそれら気孔23(流路)(連続かつ独立通路孔)は、厚み方向において部分的につながり、一方の気孔23と他方の気孔23とが互いに連通している。 The pores 23 extend between the front surface 21 and the rear surface 22 of the anode 11 and the cathode 12 while irregularly bending in the thickness direction of the anode 11 and the cathode 12, and extend from the outer peripheral edges 26 of the anode 11 and the cathode 12. It extends in the radial direction of the anode 11 and the cathode 12 while being irregularly bent toward the center. The pores 23 (channels) (continuous and independent passage holes) that are adjacent in the radial direction and extend in a curved manner in the thickness direction are partially connected in the radial direction, and the pores 23 on one side and the pores 23 on the other side communicate with each other. are doing. The pores 23 (channels) (continuous and independent passage holes) that are adjacent to each other in the thickness direction and extend in a radial direction are partially connected in the thickness direction, and the pores 23 on one side and the pores 23 on the other side communicate with each other. are doing.

それら気孔23の開口面積(開口径)は、厚み方向に向かって一様ではなく、厚み方向に向かって不規則に変化しているとともに、径方向に向かって一様ではなく、径方向に向かって不規則に変化している。それら気孔23は、その開口面積(開口径)が大きくなったり、小さくなったりしながら厚み方向と径方向とへ不規則に開口している。また、陽極11や陰極12の前面21に開口する通流口25と後面22に開口する通流口25とは、その開口面積(開口径)が一様ではなく、その面積がすべて相違している。それら気孔23の開口径(平均開口径)や前後面21,22の通流口25の開口径(平均開口径)は、1μm~100μmの範囲にある。 The opening area (opening diameter) of the pores 23 is not uniform in the thickness direction, but varies irregularly in the thickness direction. changes irregularly. The pores 23 open irregularly in the thickness direction and the radial direction while their opening areas (opening diameters) increase and decrease. In addition, the opening areas (opening diameters) of the flow holes 25 that open to the front surface 21 of the anode 11 and the cathode 12 and the flow holes 25 that open to the rear surface 22 are not uniform, and the areas are all different. there is The aperture diameter (average aperture diameter) of the pores 23 and the aperture diameter (average aperture diameter) of the flow ports 25 of the front and rear surfaces 21 and 22 are in the range of 1 μm to 100 μm.

電気分解装置10は、それに使用する陽極11及び陰極12に厚み方向や径方向へ不規則に曲折しながら延びる複数の気孔23(流路)(連続かつ独立通路孔)が形成されているから、陽極11や陰極12の比表面積が大きく、それら気孔23を水溶液(液体)が通流しつつ水溶液(液体)を陽極11及び陰極12のそれら気孔23における接触面に広範囲に接触させることができ、陽極11や陰極12の触媒活性(触媒作用)を有効かつ最大限に利用することができる。 The electrolyzer 10 is formed with a plurality of pores 23 (channels) (continuous and independent passage holes) extending irregularly in the thickness direction and radial direction in the anode 11 and the cathode 12 used therein. The specific surface area of the anode 11 and the cathode 12 is large, and the aqueous solution (liquid) flows through the pores 23, and the aqueous solution (liquid) can be brought into contact with the contact surfaces of the pores 23 of the anode 11 and the cathode 12 over a wide range. The catalytic activity (catalysis) of 11 and the cathode 12 can be effectively and maximized.

陽極11及び陰極12(マイクロポーラス構造の薄板状電極24)は、その厚み寸法L1が0.03mm~1.5mmの範囲、好ましくは、0.05mm~1.0mmの範囲にある。陽極11及び陰極12の厚み寸法L1が0.03mm(0.05mm)未満では、その強度が低下し、衝撃が加えられたときに陽極11や陰極12が容易に破損又は損壊し、その形状を維持することができない場合がある。陽極11及び陰極12の厚み寸法L1が1.5mm(1.0mm)を超過すると、陽極11や陰極12の電気抵抗が大きくなり、陽極11及び陰極12に電流がスムースに流れず、陽極11及び陰極12が電気分解装置10(水素ガス発生装置)に使用されたときに電気分解装置10において効率よく電気分解を行うことができず、電気分解装置10において短時間に多量の水素ガスを発生させることができない。 The anode 11 and the cathode 12 (microporous thin plate electrodes 24) have a thickness L1 in the range of 0.03 mm to 1.5 mm, preferably in the range of 0.05 mm to 1.0 mm. If the thickness dimension L1 of the anode 11 and the cathode 12 is less than 0.03 mm (0.05 mm), the strength of the anode 11 and the cathode 12 is reduced, and the anode 11 and the cathode 12 are easily broken or damaged when impact is applied, and their shapes are deformed. may not be maintained. When the thickness dimension L1 of the anode 11 and the cathode 12 exceeds 1.5 mm (1.0 mm), the electrical resistance of the anode 11 and the cathode 12 increases, and the current does not flow smoothly through the anode 11 and the cathode 12. When the cathode 12 is used in the electrolyzer 10 (hydrogen gas generator), electrolysis cannot be efficiently performed in the electrolyzer 10, and a large amount of hydrogen gas is generated in the electrolyzer 10 in a short time. I can't.

電気分解装置10は、それに使用する陽極11及び陰極12の厚み寸法L1が0.03mm~1.5mmの範囲、好ましくは、0.05mm~1.0mmの範囲にあるから、陽極11及び陰極12が高い強度を有してその形状を維持することができ、陽極11や陰極12に衝撃が加えられたときの陽極11や陰極12の破損や損壊を防ぐことができる。更に、陽極11及び陰極12の電気抵抗を小さくすることができ、陽極11や陰極12に電流がスムースに流れ、陽極11及び陰極12が電気分解装置10(水素ガス発生装置)に使用されたときに電気分解装置10において効率よく電気分解を行うことができ、電気分解装置10において短時間に多量の水素ガスを発生させることができる。 Since the thickness L1 of the anode 11 and the cathode 12 used in the electrolyzer 10 is in the range of 0.03 mm to 1.5 mm, preferably in the range of 0.05 mm to 1.0 mm, the anode 11 and the cathode 12 has high strength and can maintain its shape, and can prevent breakage or damage of the anode 11 or the cathode 12 when an impact is applied to the anode 11 or the cathode 12 . Furthermore, the electrical resistance of the anode 11 and the cathode 12 can be reduced, the current flows smoothly through the anode 11 and the cathode 12, and when the anode 11 and the cathode 12 are used in the electrolyzer 10 (hydrogen gas generator) In addition, electrolysis can be efficiently performed in the electrolyzer 10, and a large amount of hydrogen gas can be generated in the electrolyzer 10 in a short time.

陽極11及び陰極12(マイクロポーラス構造の薄板状電極24)は、その気孔率が70%~85%の範囲にある。陽極11及び陰極12の気孔率が70%未満では、陽極11や陰極12に多数の微細な気孔23(連続かつ独立通路孔)が形成されず、陽極11及び陰極12の比表面積を大きくすることができない。陽極11及び陰極12の気孔率が85%を超過すると、気孔23(連続かつ独立通路孔)の開口面積(開口径)や前後面21,22の通流口25の開口面積(開口径)が必要以上に大きくなり、陽極11及び陰極12の強度が低下し、衝撃が加えられたときに陽極11や陰極12が容易に破損又は損壊し、その形状を維持することができない場合があるとともに、陽極11及び陰極12の触媒作用が低下し、触媒活性を発揮することができない。 The anode 11 and the cathode 12 (microporous thin plate electrodes 24) have a porosity in the range of 70% to 85%. When the porosity of the anode 11 and the cathode 12 is less than 70%, a large number of fine pores 23 (continuous and independent passage pores) are not formed in the anode 11 and the cathode 12, and the specific surface areas of the anode 11 and the cathode 12 are increased. can't When the porosity of the anode 11 and the cathode 12 exceeds 85%, the opening area (opening diameter) of the pores 23 (continuous and independent passage holes) and the opening area (opening diameter) of the flow holes 25 of the front and rear surfaces 21 and 22 are reduced. When the anode 11 and the cathode 12 become larger than necessary, the strength of the anode 11 and the cathode 12 is lowered, and when an impact is applied, the anode 11 and the cathode 12 may be easily damaged or damaged, and may not be able to maintain their shape. The catalytic action of the anode 11 and the cathode 12 is lowered, and the catalytic activity cannot be exhibited.

電気分解装置10は、それに使用する陽極11及び陰極12(マイクロポーラス構造の薄板状電極24)の気孔率が前記範囲にあるから、陽極11や陰極12が開口面積(開口径)の異なる多数の微細な気孔23(平均径が1~100μmの範囲の気孔13)や開口面積(開口径)の異なる多数の微細な前後面21,22の通流口25(平均径が1~100μmの範囲の通流口25)を有する多孔質(マイクロポーラス構造)に成形され、陽極11や陰極12の比表面積を大きくすることができ、それら気孔23を水溶液(液体)が通流しつつ水溶液(液体)を陽極11及び陰極12のそれら気孔23における接触面に広く接触させることができるとともに、陽極11や陰極12の触媒活性(触媒作用)を有効かつ最大限に利用することができる。更に、陽極11及び陰極12の触媒作用が向上し、陽極11及び陰極12に優れた触媒活性を発揮させることができ、陽極11及び陰極12が電気分解装置10(水素ガス発生装置)に使用されたときに電気分解装置10において効率よく電気分解を行うことができ、電気分解装置10において短時間に多量の水素ガスを発生させることができる。 Since the porosity of the anode 11 and the cathode 12 (microporous structure thin plate electrode 24) used in the electrolyzer 10 is within the above range, the anode 11 and the cathode 12 have a large number of different opening areas (opening diameters). Fine pores 23 (pores 13 with an average diameter in the range of 1 to 100 μm) and a large number of fine flow holes 25 of the front and rear surfaces 21 and 22 with different opening areas (opening diameters) (average diameter in the range of 1 to 100 μm) It is molded into a porous (microporous structure) having a flow port 25), and the specific surface area of the anode 11 and the cathode 12 can be increased. The contact surfaces of the pores 23 of the anode 11 and the cathode 12 can be widely contacted, and the catalytic activity (catalysis) of the anode 11 and the cathode 12 can be effectively and maximally utilized. Furthermore, the catalytic action of the anode 11 and the cathode 12 is improved, the anode 11 and the cathode 12 can exhibit excellent catalytic activity, and the anode 11 and the cathode 12 are used in the electrolyzer 10 (hydrogen gas generator). The electrolyzer 10 can efficiently electrolyze the hydrogen gas, and a large amount of hydrogen gas can be generated in the electrolyzer 10 in a short time.

電気分解装置10は、それに使用する陽極11及び陰極12(マイクロポーラス構造の薄板状電極24)密度が6.0g/cm~8.0g/cmの範囲、好ましくは、6.5g/cm~7.5g/cmの範囲にある。陽極11及び陰極12の密度が6.0g/cm(6.5g/cm)未満では、陽極11や陰極12の強度が低下し、衝撃が加えられたときに陽極11や陰極12が容易に破損または損壊し、その形状を維持することができない場合があるとともに、陽極11や陰極12の触媒作用が低下し、触媒活性を発揮することができない。陽極11及び陰極12の密度が8.0g/cm(7.5g/cm)を超過すると、陽極11や陰極12に多数の微細な気孔23や多数の微細な通流口25が形成されず、陽極11や陰極12の比表面積を大きくすることができないとともに、陽極11や陰極12の触媒作用が低下し、陽極11や陰極12の触媒活性(触媒作用)を有効に利用することができない。 The electrolyzer 10 has an anode 11 and a cathode 12 (microporous thin plate electrodes 24) with a density in the range of 6.0 g/cm 2 to 8.0 g/cm 2 , preferably 6.5 g/cm 2 . 2 to 7.5 g/cm 2 . If the densities of the anode 11 and the cathode 12 are less than 6.0 g/cm 2 (6.5 g/cm 2 ), the strength of the anode 11 and the cathode 12 is lowered, and the anode 11 and the cathode 12 are easily broken when impact is applied. In addition, the catalytic action of the anode 11 and the cathode 12 is lowered, and the catalytic activity cannot be exhibited. When the densities of the anode 11 and the cathode 12 exceed 8.0 g/cm 2 (7.5 g/cm 2 ), a large number of fine pores 23 and a large number of fine flow openings 25 are formed in the anode 11 and the cathode 12. Therefore, the specific surface area of the anode 11 and the cathode 12 cannot be increased, and the catalytic action of the anode 11 and the cathode 12 is lowered, so that the catalytic activity (catalytic action) of the anode 11 and the cathode 12 cannot be effectively used. .

電気分解装置10は、それに使用する陽極11及び陰極12の密度が前記範囲にあるから、陽極11や陰極12が開口面積(開口径)の異なる多数の微細な気孔23(平均径が1~100μmの範囲の気孔23)や開口面積(開口径)の異なる多数の微細な前後面21,22の通流口25(平均径が1~100μmの範囲の通流口25)を有する多孔質(マイクロポーラス構造)に成形され、陽極11や陰極12の比表面積を大きくすることができ、それら気孔23を水溶液(液体)が通流しつつ水溶液(液体)を陽極11及び陰極12のそれら気孔23における接触面に広く接触させることができ、陽極11及び陰極12の触媒作用が向上し、陽極11や陰極12の触媒活性(触媒作用)を有効かつ最大限に利用することができる。 Since the density of the anode 11 and the cathode 12 used in the electrolyzer 10 is within the above range, the anode 11 and the cathode 12 have a large number of fine pores 23 (average diameter 1 to 100 μm) with different opening areas (opening diameters). pores 23) and a large number of fine flow holes 25 of the front and rear surfaces 21 and 22 with different opening areas (opening diameters) (flow holes 25 with an average diameter in the range of 1 to 100 μm) (micro It is possible to increase the specific surface area of the anode 11 and the cathode 12, and the aqueous solution (liquid) flows through the pores 23 and the aqueous solution (liquid) is in contact with the pores 23 of the anode 11 and the cathode 12. It can be brought into contact with the surface widely, the catalytic action of the anode 11 and the cathode 12 is improved, and the catalytic activity (catalytic action) of the anode 11 and the cathode 12 can be effectively and maximized.

電気分解装置10は、それに使用する陽極11及び陰極12の密度を前記範囲にすることで、陽極11及び陰極12が開口面積(開口径)の異なる多数の微細な気孔23や開口面積(開口径)の異なる多数の微細な前後面21,22の通流口25を有する多孔質に成形され、陽極11及び陰極12の比表面積を大きくすることができ、それら気孔23を水溶液(液体)が通流しつつ水溶液(液体)を陽極11や陰極12のそれら気孔23における接触面に広く接触させることが可能となり、陽極11や陰極12が白金族金属を含む電極と略同様の触媒活性(触媒作用)を確実に発揮し、陽極11や陰極12を使用して電気分解を効率よく行うことができ、短時間に多量の水素ガスを発生させることができる。 By setting the densities of the anode 11 and the cathode 12 used therein in the above range, the electrolyzer 10 has a large number of fine pores 23 with different opening areas (opening diameters) and opening areas (opening diameters). ), the specific surface area of the anode 11 and the cathode 12 can be increased, and an aqueous solution (liquid) can pass through these pores 23. While flowing, the aqueous solution (liquid) can be widely contacted with the contact surfaces of the pores 23 of the anode 11 and the cathode 12, and the anode 11 and the cathode 12 have substantially the same catalytic activity (catalytic action) as the electrode containing the platinum group metal. can be reliably exhibited, electrolysis can be efficiently performed using the anode 11 and the cathode 12, and a large amount of hydrogen gas can be generated in a short time.

Ptの微粉体(粉状に加工されたPt)、Pbの微粉状(粉状に加工されたPb)、Rhの微粉状(粉状に加工されたRh)、Ruの微粉状(粉状に加工されたRu)、Irの微粉状(粉状に加工されたIr)、Osの微粉状(粉状に加工されたOs)、Tiの微粉体(粉状に加工されたTi)、Crの微粉体(粉状に加工されたCr)、Mnの微粉体(粉状に加工されたMn)、Feの微粉体(粉状に加工されたFe)、Coの微粉体(粉状に加工されたCo)、Niの微粉体(粉状に加工されたNi)、Cuの微粉体(粉状に加工されたCu)、Znの微粉体(粉状に加工されたZn)、Nbの微粉体(粉状に加工されたNb)、Moの微粉体(粉状に加工されたMo)、Agの微粉体(粉状に加工されたAg)の粒径は、1μm~100μmの範囲にある。 Pt fine powder (powder processed Pt), Pb fine powder (powder processed Pb), Rh fine powder (powder processed Rh), Ru fine powder (powder processed Ru), fine powder of Ir (Ir processed into powder), fine powder of Os (Os processed into powder), fine powder of Ti (Ti processed into powder), Cr fine powder (Cr processed into powder), fine powder of Mn (Mn processed into powder), fine powder of Fe (Fe processed into powder), fine powder of Co (processed into powder) Co), fine Ni powder (Ni processed into powder), fine Cu powder (Cu processed into powder), fine Zn powder (Zn processed into powder), fine Nb powder (Nb processed into powder), fine powder of Mo (Mo processed into powder), and fine powder of Ag (Ag processed into powder) have a particle size in the range of 1 μm to 100 μm.

それら白金族金属49の微粉体の粒径やそれら遷移金属50の微粉体の粒径が1μm未満では、それら金属の微粉体によって気孔23(連続かつ独立通路孔)が塞がれ、陽極11及び陰極12に多数の微細な気孔23を形成することができず、陽極11や陰極12の比表面積を大きくすることができないとともに、陽極11及び陰極12の触媒作用が低下し、陽極11や陰極12の触媒活性(触媒作用)を有効に利用することができない。それら白金族金属49の微粉体の粒径やそれら遷移金属50の微粉体の粒径が100μmを超過すると、気孔23の開口面積(開口径)や前後面21,22の通流口25の開口面積(開口径)が必要以上に大きくなり、陽極11及び陰極12に多数の微細な気孔23を形成することができず、陽極11及び陰極12の比表面積を大きくすることができないとともに、陽極11及び陰極12の触媒作用が低下し、陽極11や陰極12の触媒活性(触媒作用)を有効に利用することができない。 If the particle size of the fine powder of the platinum group metal 49 or the fine powder of the transition metal 50 is less than 1 μm, the pores 23 (continuous and independent passage holes) are blocked by the fine powder of these metals, and the anode 11 and A large number of fine pores 23 cannot be formed in the cathode 12, and the specific surface area of the anode 11 and the cathode 12 cannot be increased. cannot effectively utilize the catalytic activity (catalysis) of If the particle size of the fine powder of the platinum group metal 49 or the fine powder of the transition metal 50 exceeds 100 μm, the opening area (opening diameter) of the pores 23 and the openings of the flow ports 25 of the front and rear surfaces 21 and 22 The area (opening diameter) becomes unnecessarily large, a large number of fine pores 23 cannot be formed in the anode 11 and the cathode 12, the specific surface areas of the anode 11 and the cathode 12 cannot be increased, and the anode 11 In addition, the catalytic action of the cathode 12 is lowered, and the catalytic activity (catalytic action) of the anode 11 and the cathode 12 cannot be effectively used.

電気分解装置10は、陽極11及び陰極12を形成する白金族金属49の微粉体の粒径や遷移金属50の微粉体の粒径が前記範囲にあるから、陽極11や陰極12が開口面積(開口径)の異なる多数の微細な気孔23(平均径が1~100μmの範囲の気孔25)や開口面積(開口径)の異なる多数の微細な前後面21,22の通流口25(平均径が1~100μmの範囲の通流口25)を有する多孔質(マイクロポーラス構造)に成形され、陽極11や陰極12の比表面積を大きくすることができ、それら気孔23を水溶液(液体)が通流しつつ水溶液(液体)を陽極11や陰極12のそれら気孔23における接触面に広く接触させることができるとともに、陽極11や陰極12の触媒活性(触媒作用)を有効かつ最大限に利用することができる。更に、陽極11及び陰極12の触媒作用が向上し、陽極11や陰極12に優れた触媒活性を発揮させることができ、陽極11及び陰極12が電気分解装置10(水素ガス発生装置)に使用されたときに電気分解装置10において効率よく電気分解を行うことができ、電気分解装置10において短時間に多量の水素ガスを発生させることができる。 Since the particle size of the fine powder of the platinum group metal 49 and the particle size of the fine powder of the transition metal 50 forming the anode 11 and the cathode 12 are within the above ranges, the anode 11 and the cathode 12 have an opening area ( A large number of fine pores 23 with different opening diameters (pores 25 with an average diameter in the range of 1 to 100 μm) and a large number of fine flow holes 25 of the front and rear surfaces 21 and 22 with different opening areas (opening diameters) (average diameter is formed into a porous (microporous structure) having a flow port 25) in the range of 1 to 100 μm, and the specific surface area of the anode 11 and the cathode 12 can be increased, and an aqueous solution (liquid) can pass through these pores 23. While flowing, the aqueous solution (liquid) can be widely contacted with the contact surfaces of the pores 23 of the anode 11 and the cathode 12, and the catalytic activity (catalysis) of the anode 11 and the cathode 12 can be effectively and maximized. can. Furthermore, the catalytic action of the anode 11 and the cathode 12 is improved, the anode 11 and the cathode 12 can exhibit excellent catalytic activity, and the anode 11 and the cathode 12 are used in the electrolyzer 10 (hydrogen gas generator). The electrolyzer 10 can efficiently electrolyze the hydrogen gas, and a large amount of hydrogen gas can be generated in the electrolyzer 10 in a short time.

陽極11及び陰極12(マイクロポーラス構造の薄板状電極24)に使用する白金族金属49や遷移金属50の具体例としては、図9に示すように、粉状に加工されたPt52(白金)の微粉体55(粒径:1μm~100μm)と、粉状に加工されたNi53(ニッケル)の微粉体56(粒径:1μm~100μm)と、粉状に加工されたFe54(鉄)の微粉体57(粒径:1μm~100μm)とを原料としている。 As a specific example of the platinum group metal 49 and the transition metal 50 used for the anode 11 and the cathode 12 (microporous thin plate electrode 24), as shown in FIG. Fine powder 55 (particle size: 1 μm to 100 μm), fine powder 56 (particle size: 1 μm to 100 μm) of Ni53 (nickel) processed into powder, and fine powder of Fe54 (iron) processed into powder 57 (particle size: 1 μm to 100 μm).

陽極11及び陰極12は、Pt52やNi53、Fe54の微粉体55~57と所定のバインダー51とを均一に混合・分散した金属微粉体混合物59を作り、金属微粉体混合物59に気孔形成材58(発泡剤)を添加し、気孔形成材58を添加した金属微粉体混合物59を所定面積の薄板状に成形(押し出し成形又は射出成形)して金属微粉体成形物60を作り、その金属微粉体成形物60を脱脂するとともに所定温度で焼結(焼成)することで、多数の微細な気孔23(平均径が1~100μmの範囲の気孔23)が形成されたマイクロポーラス構造かつ薄板状の電極に成形される。 The anode 11 and the cathode 12 prepare a fine metal powder mixture 59 by uniformly mixing and dispersing fine powders 55 to 57 of Pt 52, Ni 53 and Fe 54 and a predetermined binder 51. A fine metal powder mixture 59 to which a foaming agent is added and a pore-forming material 58 is added is molded (extrusion molding or injection molding) into a thin plate having a predetermined area to produce a fine metal powder molding 60, which is then molded into fine metal powder. By degreasing and sintering (firing) the object 60 at a predetermined temperature, a microporous structure and thin plate electrode in which a large number of fine pores 23 (pores 23 with an average diameter in the range of 1 to 100 μm) are formed. molded.

陽極11及び陰極12では、Ni53の仕事関数とFe54の仕事関数との合成仕事関数が白金族金属の仕事関数に近似するように、Pt52の白金族金属微粉体55の金属微粉体混合物59の全重量に対する重量比、Ni53の遷移金属微粉体56の金属微粉体混合物59の全重量に対する重量比、Fe54の遷移金属微粉体57の金属微粉体混合物59の全重量に対する重量比が決定されている。 In the anode 11 and the cathode 12, the entire metal fine powder mixture 59 of the platinum group metal fine powder 55 of Pt 52 is added so that the composite work function of the work function of Ni 53 and the work function of Fe 54 approximates the work function of the platinum group metal. The weight to weight ratio, the weight ratio of the transition metal fine powder 56 of Ni 53 to the total weight of the metal fine powder mixture 59, and the weight ratio of the transition metal fine powder 57 of Fe 54 to the total weight of the metal fine powder mixture 59 are determined.

金属微粉体混合物59の全重量(100%)に対するPt52(白金族金属49)の白金族金属微粉体55の重量比は、4%~10%の範囲、好ましくは、5%~8%の範囲であり、金属微粉体混合物59の全重量(100%)に対するNi53(遷移金属50)の遷移金属微粉体56の重量比は、45%~48%の範囲である。金属微粉体混合物59の全重量(100%)に対するFe54(遷移金属50)の遷移金属微粉体57の重量比は、45~48%の範囲である。 The weight ratio of the platinum group metal fine powder 55 of Pt52 (platinum group metal 49) to the total weight (100%) of the metal fine powder mixture 59 is in the range of 4% to 10%, preferably in the range of 5% to 8%. and the weight ratio of the fine transition metal powder 56 of Ni 53 (transition metal 50) to the total weight (100%) of the fine metal powder mixture 59 is in the range of 45% to 48%. The weight ratio of the fine transition metal powder 57 of Fe 54 (transition metal 50) to the total weight (100%) of the fine metal powder mixture 59 is in the range of 45-48%.

Pt52の白金族金属微粉体55の重量比、Ni53の遷移金属微粉体56の重量比、Fe54の遷移金属微粉体57の重量比が前記範囲外になると、Ni53の微粉体56とFe54の微粉体57との合成仕事関数を白金族金属の仕事関数に近似させることができないとともに、金属微粉体混合物59を成形した金属微粉体成形物60を脱脂・焼結して作られた陽極11及び陰極12が白金を担持した電極と略同様の触媒活性(触媒作用)を発揮することができない。 When the weight ratio of the platinum group metal fine powder 55 of Pt 52, the weight ratio of the transition metal fine powder 56 of Ni 53, and the weight ratio of the transition metal fine powder 57 of Fe 54 are outside the above ranges, the Ni 53 fine powder 56 and the Fe 54 fine powder Anode 11 and cathode 12 produced by degreasing and sintering a metal fine powder molding 60 formed by molding a metal fine powder mixture 59 while the composite work function of 57 cannot be approximated to the work function of a platinum group metal. cannot exhibit substantially the same catalytic activity (catalytic action) as an electrode supporting platinum.

電気分解装置10は、金属微粉体混合物59の全重量に対するPt52の微粉体55の重量比やNi53の微粉体56の重量比、Fe54の微粉体57の重量比を前記範囲にすることで、2種類の遷移金属50の仕事関数の合成仕事関数を白金族金属の仕事関数に近似させることができ、陽極11及び陰極12が白金族金属を担持した電極と略同一の仕事関数を備え、陽極11や陰極12が優れた触媒活性(触媒作用)を有し、陽極11や陰極12が白金を担持した電極と略同様の触媒活性(触媒作用)を発揮することで、陽極11や陰極12を使用して電気分解を効率よく行うことができ、短時間に多量の水素ガスを発生させることができる。 By setting the weight ratio of the fine powder 55 of Pt 52, the weight ratio of the fine powder 56 of Ni 53, and the weight ratio of the fine powder 57 of Fe 54 to the total weight of the metal fine powder mixture 59 within the above range, the electrolyzer 10 The composite work function of the work function of the transition metal 50 of the type can be approximated to the work function of the platinum group metal such that the anode 11 and the cathode 12 have substantially the same work function as the electrode carrying the platinum group metal, and the anode 11 and the cathode 12 have excellent catalytic activity (catalytic action), and the anode 11 and the cathode 12 exhibit substantially the same catalytic activity (catalytic action) as the platinum-supported electrode, so that the anode 11 and the cathode 12 are used. Then, electrolysis can be efficiently performed, and a large amount of hydrogen gas can be generated in a short time.

図4は、電気分解装置10を使用した電気分解の一例を説明する図であり、図5は、電気分解装置10を利用した水素ガス生成システム27の一例を示す図である。図4に示す電気分解では、水(水溶液)を電気分解し、水素と酸素とを発生させているが、水(HO)の他に、電気分解装置10を使用してNaOH水溶液、HSO水溶液、NaCl水溶液、AgNO水溶液、CuSO水溶液の電気分解が行われる。 FIG. 4 is a diagram illustrating an example of electrolysis using the electrolyzer 10, and FIG. 5 is a diagram illustrating an example of a hydrogen gas generation system 27 using the electrolyzer 10. As shown in FIG. In the electrolysis shown in FIG. 4, water ( aqueous solution) is electrolyzed to generate hydrogen and oxygen. 2SO4 aqueous solution, NaCl aqueous solution, AgNO3 aqueous solution, CuSO4 aqueous solution are electrolyzed.

電気分解装置10における水の電気分解では、図4に矢印で示すように、陽極用貯水槽16及び陰極用貯水槽17に水(HO)が給水され、陽極主電極18に電源から+の電流が給電されるとともに、陰極主電極19に電源から-の電流が給電される。陽極主電極18に給電された+の電流が陽極給電部材14から陽極11(アノード)に給電され、陰極主電極19に給電された-の電流が陰極給電部材15から陰極12(カソード)に給電される。 In the electrolysis of water in the electrolyzer 10, water (H 2 O) is supplied to the anode reservoir 16 and the cathode reservoir 17 as indicated by arrows in FIG. A current of - is supplied to the cathode main electrode 19 from the power source. A positive current fed to the anode main electrode 18 is fed from the anode feeding member 14 to the anode 11 (anode), and a negative current fed to the cathode main electrode 19 is fed from the cathode feeding member 15 to the cathode 12 (cathode). be done.

陽極11(電極)では、2HO→4H+4e+Oの陽極反応(触媒作用)によって酸素が生成され、陰極12(電極)では、4H+4e→2Hの陰極反応(触媒作用)によって水素が生成される。プロトン(水素イオン:H)は、固体高分子電解質膜13内を通って陽極11から陰極12(電極)へ移動する。固体高分子電解質膜12には、陽極11で生成されたプロトンが通流する。 At the anode 11 (electrode), oxygen is generated by the anodic reaction (catalysis) of 2H 2 O→4H + +4e +O 2 , and at the cathode 12 (electrode), the cathodic reaction (catalysis) of 4H + +4e →2H 2 ) produces hydrogen. Protons (hydrogen ions: H + ) move from the anode 11 to the cathode 12 (electrode) through the solid polymer electrolyte membrane 13 . Protons generated at the anode 11 flow through the solid polymer electrolyte membrane 12 .

電気分解装置10は、陽極11(電極)や陰極12(電極)が白金族金属49の微粉体を含み、更に、陽極11や陰極12を形成する少なくとも2種類の遷移金属50の仕事関数の合成仕事関数が白金族金属の仕事関数に近似するように、遷移金属50の中から少なくとも2種類の遷移金属50が選択され、選択された遷移金属50の仕事関数の合成仕事関数が白金族金属の仕事関数に近似するように、白金族金属49の金属微粉体混合物59の全重量に対する重量比が決定され、選択された少なくとも2種類の遷移金属50の金属微粉体混合物59の全重量に対する重量比が決定されているから、陽極11及び陰極12が白金を担持した電極と略同一の仕事関数を備え、白金を担持した電極と略同様の触媒活性(触媒作用)を示し、水素がプロトンと電子とに効率よく分解される。 The electrolyzer 10 has an anode 11 (electrode) and a cathode 12 (electrode) containing fine powder of a platinum group metal 49, and furthermore, at least two types of transition metals 50 forming the anode 11 and the cathode 12 are synthesized. At least two transition metals 50 are selected from among the transition metals 50 such that the work function approximates the work function of the platinum group metal, and the composite work function of the selected transition metals 50 is the work function of the platinum group metal. The weight ratio of the platinum group metal 49 to the total weight of the fine metal powder mixture 59 is determined to approximate the work function, and the weight ratio of at least two selected transition metals 50 to the total weight of the fine metal powder mixture 59 is determined. is determined, the anode 11 and the cathode 12 have substantially the same work function as the platinum-supported electrode, exhibit substantially the same catalytic activity (catalytic action) as the platinum-supported electrode, and hydrogen has protons and electrons efficiently decomposed into

具体例として示した陽極11及び陰極12は、Pt52の微粉体55を含み、更に、仕事関数の合成仕事関数が白金族金属の仕事関数に近似するように、Ni53とFe54とが選択され、選択されたNi53とFe54との仕事関数の合計仕事関数が白金族金属の仕事関数に近似するように、金属微粉体混合物59の全重量に対するPt52の微粉体55の重量比が決定され、金属微粉体混合物59の全重量に対するNi53の微粉体56の重量比が決定されているとともに、金属微粉体混合物59の全重量に対するFe54の微粉体57の重量比が決定されているから、陽極11や陰極12が白金を担持した電極と略同一の仕事関数を備え、白金を担持した電極と略同様の触媒活性(触媒作用)を示し、水素がプロトンと電子とに効率よく分解される。 The exemplary anode 11 and cathode 12 include fine powder 55 of Pt 52, and Ni 53 and Fe 54 are selected and selected such that the composite work function of the work function approximates that of the platinum group metals. The weight ratio of the Pt52 fine powder 55 to the total weight of the metal fine powder mixture 59 is determined so that the total work function of the work functions of Ni53 and Fe54 approximates the work function of the platinum group metal, and the metal fine powder Since the weight ratio of the Ni53 fine powder 56 with respect to the total weight of the mixture 59 is determined, and the weight ratio of the Fe54 fine powder 57 with respect to the total weight of the metal fine powder mixture 59 is also determined, the anode 11 and the cathode 12 has substantially the same work function as the platinum-supported electrode, exhibits substantially the same catalytic activity (catalytic action) as the platinum-supported electrode, and efficiently decomposes hydrogen into protons and electrons.

なお、NaOH水溶液の電気分解では、陽極11において4OH→2HO+O+4eの陽極反応(触媒作用)が起こり、陰極12において2HO+2e→2OH+Hの陰極反応(触媒作用)が起こる。HSO水溶液の電気分解では、陽極11において2HO→O+4H+4eの陽極反応(触媒作用)が起こり、陰極12において2H+2e→Hの陰極反応(触媒作用)が起こる。 In the electrolysis of an aqueous NaOH solution, an anodic reaction (catalytic action) of 4OH →2H 2 O+O 2 +4e occurs at the anode 11, and a cathodic reaction (catalytic action) of 2H 2 O+2e →2OH +H 2 occurs at the cathode 12. happens. In the electrolysis of the H 2 SO 4 aqueous solution, the anodic reaction (catalysis) of 2H 2 O→O 2 +4H + +4e occurs at the anode 11 and the cathodic reaction (catalysis) of 2H + +2e →H 2 occurs at the cathode 12 . happens.

NaCl水溶液の電気分解では、陽極11において2Cl→Cl+2eの陽極反応(触媒作用)が起こり、陰極12において2HO+2e→2OH+Hの陰極反応(触媒作用)が起こる。AgNO水溶液の電気分解では、陽極11において2HO→O+4H+4eの陽極反応(触媒作用)が起こり、陰極12においてAg+e→Agの陰極反応(触媒作用)が起こる。CuSO水溶液の電気分解では、陽極11において2HO→O+4H+4eの陽極反応(触媒作用)が起こり、陰極12においてCu2++2e→Cuの陰極反応(触媒作用)が起こる。 In the electrolysis of an aqueous NaCl solution, an anodic reaction (catalysis) of 2Cl →Cl 2 +2e occurs at the anode 11 and a cathodic reaction (catalysis) of 2H 2 O+2e →2OH +H 2 occurs at the cathode 12 . In the electrolysis of the AgNO 3 aqueous solution, an anodic reaction (catalytic action) of 2H 2 O→O 2 +4H + +4e occurs at the anode 11 and a cathodic reaction (catalytic action) of Ag + +e →Ag occurs at the cathode 12 . In the electrolysis of a CuSO 4 aqueous solution, an anodic reaction (catalytic action) of 2H 2 O→O 2 +4H + +4e occurs at the anode 11 and a cathodic reaction (catalytic action) of Cu 2+ +2e →Cu occurs at the cathode 12 .

水素ガス生成システム27は、電気分解装置10と、電気分解装置10の陽極11と陰極12とに電気を給電する直流電源28と、水(純水)を貯水する貯水タンク29と、水(純水)を給水する給水ポンプ30と、酸素気液分離器31と、水(純水)を給水する2台の循環ポンプ32,33と、水素気液分離器34と、水素を貯めるボンベ35(水素タンク)とから形成されている。 The hydrogen gas generation system 27 includes the electrolyzer 10, a DC power supply 28 that supplies electricity to the anode 11 and the cathode 12 of the electrolyzer 10, a water storage tank 29 that stores water (pure water), and water (pure water). water), an oxygen gas-liquid separator 31, two circulation pumps 32 and 33 for supplying water (pure water), a hydrogen gas-liquid separator 34, and a cylinder 35 for storing hydrogen ( hydrogen tank).

水素ガス生成システム27は、貯水タンク29に貯水された水(純水)が給水ポンプ30によって酸素気液分離器31に給水され、酸素気液分離器31から流出した水が電気分解装置10に給水される。直流電源28から電気分解装置10に電気が給電され、電気分解装置10において電気分解が行われることで水が水素と酸素とに分解される。酸素は、酸素気液分離器31に流入し、気液分離された後、大気に放出される。酸素気液分離器31において気液分離された水は循環ポンプ32によって再び電気分解装置10に給水される。水素は、水素気液分離器34に流入し、気液分離された後、ボンベ35(水素タンク)に流入する。水素気液分離器34おいて気液分離された水は循環ポンプ33によって再び電気分解装置10に給水される。 In the hydrogen gas generation system 27 , water (pure water) stored in a water storage tank 29 is supplied to an oxygen-gas-liquid separator 31 by a water supply pump 30 , and the water flowing out of the oxygen-gas-liquid separator 31 is supplied to the electrolyzer 10 . be watered. Electricity is supplied from the DC power supply 28 to the electrolyzer 10, and electrolysis is performed in the electrolyzer 10 to decompose water into hydrogen and oxygen. Oxygen flows into the oxygen-gas-liquid separator 31 and is released into the atmosphere after gas-liquid separation. The water separated into gas and liquid in the oxygen-gas-liquid separator 31 is supplied to the electrolyzer 10 again by the circulation pump 32 . Hydrogen flows into the hydrogen gas-liquid separator 34, is separated into gas and liquid, and then flows into the cylinder 35 (hydrogen tank). The water separated into gas and liquid in the hydrogen gas-liquid separator 34 is supplied to the electrolyzer 10 again by the circulation pump 33 .

電気分解装置10(水素ガス生成システム27)は、それに使用される陽極11及び陰極12が白金族金属49と所定の遷移金属50の仕事関数の合成仕事関数が白金族金属の仕事関数に近似するように選択された少なくとも2種類の遷移金属50と所定のバインダー51(紛状の樹脂系バインダー)とを均一に混合・分散した金属微粉体混合物59を作り、金属微粉体混合物59に所定の気孔形成材58(発泡剤)を添加し(加え)、気孔形成材58を添加した金属微粉体混合物59を所定面積の薄板状に成形(押し出し成形又は射出成形)して薄板状の金属微粉体成形物60を作り、その金属微粉体成形物60を脱脂及び所定温度で焼結(焼成)することで多数の微細な気孔23や通流口25を形成したマイクロポーラス構造の薄板状電極24であり、遷移金属50の仕事関数の合成仕事関数が白金族金属の仕事関数に近似するように、金属微粉体混合物59の全重量に対する白金族金属49の重量比が決定され、金属微粉体混合物59の全重量に対するそれら遷移金属50の重量比が決定されているから、陽極11や陰極12が白金を担持した電極と略同一の仕事関数を備え、陽極11や陰極12が優れた触媒活性(触媒作用)を有し、陽極11や陰極12が白金を担持した電極と略同様の触媒活性(触媒作用)を発揮することで、その陽極11及び陰極12を使用して電気分解を効率よく行うことができ、短時間に多量の水素ガスを発生させることができる。 The electrolyzer 10 (hydrogen gas generation system 27) has an anode 11 and a cathode 12 used therein, which are composed of the work functions of the platinum group metal 49 and the predetermined transition metal 50. The work function approximates the work function of the platinum group metal. A fine metal powder mixture 59 is prepared by uniformly mixing and dispersing at least two kinds of transition metals 50 selected as described above and a predetermined binder 51 (powdered resin binder), and the fine metal powder mixture 59 is provided with predetermined pores. A forming material 58 (foaming agent) is added (added), and the metal fine powder mixture 59 to which the pore forming material 58 is added is molded into a thin plate having a predetermined area (extrusion molding or injection molding) to form a thin plate-like metal fine powder. It is a thin plate electrode 24 with a microporous structure in which a large number of fine pores 23 and flow holes 25 are formed by degreasing and sintering (firing) the metal fine powder molding 60 at a predetermined temperature. , the weight ratio of the platinum group metal 49 to the total weight of the metal fine powder mixture 59 is determined such that the composite work function of the work function of the transition metal 50 approximates the work function of the platinum group metal; Since the weight ratio of the transition metals 50 to the total weight is determined, the anode 11 and the cathode 12 have substantially the same work function as the platinum-supported electrode, and the anode 11 and the cathode 12 have excellent catalytic activity (catalytic action). ), and the anode 11 and the cathode 12 exhibit substantially the same catalytic activity (catalytic action) as an electrode supporting platinum, so that electrolysis can be efficiently performed using the anode 11 and the cathode 12. It is possible to generate a large amount of hydrogen gas in a short time.

また、白金族金属49としてPt52(白金)を原料とし、遷移金属50としてNi53(ニッケル)とFe54(鉄)とを原料とした陽極11及び陰極12を使用した電気分解装置10(水素ガス生成システム27)は、遷移金属50の仕事関数の合成仕事関数が白金族金属の仕事関数に近似するように、Ni53とFe54とが選択され、選択されたNi53とFe54との仕事関数の合計仕事関数が白金族金属の仕事関数に近似するように、金属微粉体混合物59の全重量に対するPt52の微粉体55の重量比が決定され、金属微粉体混合物59の全重量に対するNi53の微粉体56の重量比とFe54の微粉体57の重量比とが決定されているから、陽極11や陰極12が白金を担持した電極と略同一の仕事関数を備え、陽極11や陰極12が優れた触媒活性(触媒作用)を有し、陽極11や陰極12が白金を担持した電極と略同様の触媒活性(触媒作用)を発揮することで、その陽極11及び陰極12を使用して電気分解を効率よく行うことができ、短時間に多量の水素ガスを発生させることができる。 In addition, the electrolyzer 10 (hydrogen gas generation system 27) Ni53 and Fe54 are selected such that the composite work function of the work function of the transition metal 50 approximates the work function of the platinum group metal, and the total work function of the work functions of the selected Ni53 and Fe54 is The weight ratio of Pt 52 fine powder 55 to the total weight of metal fine powder mixture 59 is determined to approximate the work function of the platinum group metal, and the weight ratio of Ni 53 fine powder 56 to the total weight of metal fine powder mixture 59 is determined. and the weight ratio of the fine powder 57 of Fe 54 is determined, the anode 11 and the cathode 12 have substantially the same work function as the platinum-supporting electrode, and the anode 11 and the cathode 12 have excellent catalytic activity (catalytic action ), and the anode 11 and the cathode 12 exhibit substantially the same catalytic activity (catalytic action) as an electrode supporting platinum, so that electrolysis can be efficiently performed using the anode 11 and the cathode 12. It is possible to generate a large amount of hydrogen gas in a short time.

電気分解装置10(水素ガス生成システム27)は、陽極11及び陰極12の厚み寸法L1が0.03mm~1.5mmの範囲、好ましくは、0.05mm~1.0mmの範囲にあるから、陽極11及び陰極12の電気抵抗を小さくすることができ、陽極11や陰極12に電流をスムースに流すことができ、陽極11や陰極12を利用して電気分解を確実に行うことができる。 In the electrolyzer 10 (hydrogen gas generation system 27), the thickness dimension L1 of the anode 11 and the cathode 12 is in the range of 0.03 mm to 1.5 mm, preferably 0.05 mm to 1.0 mm. The electrical resistance of 11 and cathode 12 can be reduced, the current can flow smoothly through anode 11 and cathode 12, and electrolysis can be reliably performed using anode 11 and cathode 12.

電気分解装置10(水素ガス生成システム27)は、陽極11及び陰極12が各種の遷移金属50から選択された廉価な遷移金属50(たとえば、Ni53、Fe54)を含み、金属微粉体混合物59の全重量に対するそれら遷移金属50の微粉体の重量比(Ni53の微粉体56の重量比、Fe54の微粉体57の重量比)が前記範囲にあり、金属微粉体混合物59の全重量に対する白金族金属49の微粉体の重量比(Pt52の微粉体55の重量比)が前記範囲にあり、高価な白金族金属49(Pt52)の含有量が少ないから、陽極11や陰極12の材料費を低減させることができ、電気分解装置10(水素ガス生成システム27)を廉価に作ることができるとともに、電気分解装置10(水素ガス生成システム27)の運転コストを下げることができる。 Electrolyzer 10 (hydrogen gas generation system 27) includes anode 11 and cathode 12 containing inexpensive transition metal 50 (eg, Ni53, Fe54) selected from various transition metals 50, The weight ratio of the fine powder of the transition metal 50 to the weight (the weight ratio of the fine powder 56 of Ni 53 and the weight ratio of the fine powder 57 of Fe 54) is within the above range, and the platinum group metal 49 to the total weight of the metal fine powder mixture 59 The weight ratio of the fine powder of Pt52 (the weight ratio of the fine powder 55 of Pt52) is within the above range, and the content of the expensive platinum group metal 49 (Pt52) is small, so the material cost of the anode 11 and the cathode 12 can be reduced. Thus, the electrolyzer 10 (hydrogen gas generation system 27) can be manufactured at low cost, and the operating cost of the electrolyzer 10 (hydrogen gas generation system 27) can be reduced.

図6は、空気極38(陽極11)及び燃料極37(陰極12)を使用した固体高分子形燃料電池36の側面図であり、図7は、陽極11(空気極38)及び陰極12(燃料極37)の起電圧試験の結果を示す図である。図8は、陽極11(空気極38)及び陰極12(燃料極37)のI-V特性試験の結果を示す図である。図6では、負荷48が接続された状態を示しているが、起電圧試験では、負荷48が存在せず、無負荷である。起電圧試験及びI-V特性試験では、図6に示す固体高分子形燃料電池36に電気分解装置10において使用した陽極11(空気極38)及び陰極12(燃料極37)を使用し、無負荷においてその起電圧を測定し、固体高分子形燃料電池36に負荷48を接続し、そのI-V特性を測定した。 FIG. 6 is a side view of a polymer electrolyte fuel cell 36 using an air electrode 38 (anode 11) and a fuel electrode 37 (cathode 12), and FIG. FIG. 10 is a diagram showing the results of an electromotive force test of a fuel electrode 37); FIG. 8 is a diagram showing the results of an IV characteristic test of the anode 11 (air electrode 38) and cathode 12 (fuel electrode 37). FIG. 6 shows a state in which the load 48 is connected, but in the electromotive voltage test, the load 48 is not present and there is no load. In the electromotive voltage test and IV characteristic test, the anode 11 (air electrode 38) and the cathode 12 (fuel electrode 37) used in the electrolyzer 10 were used in the polymer electrolyte fuel cell 36 shown in FIG. The electromotive voltage was measured at the load, the load 48 was connected to the polymer electrolyte fuel cell 36, and the IV characteristics were measured.

固体高分子形燃料電池36は、図6に示すように、燃料極37(陰極12)及び空気極38(陽極11)と、燃料極37及び空気極38の間に位置(介在)する固体高分子電解質膜39(電極接合体膜)(スルホン酸基を有するフッ素系イオン交換膜)と、燃料極37の厚み方向外側に位置するセパレータ40(バイポーラプレート)と、空気極38の厚み方向外側に位置するセパレータ41(バイポーラプレート)とから形成されている。 As shown in FIG. 6, the polymer electrolyte fuel cell 36 includes a fuel electrode 37 (cathode 12), an air electrode 38 (anode 11), and a solid high electrode positioned (interposed) between the fuel electrode 37 and the air electrode 38. A molecular electrolyte membrane 39 (electrode assembly membrane) (fluorine-based ion exchange membrane having sulfonic acid groups), a separator 40 (bipolar plate) located outside the fuel electrode 37 in the thickness direction, and outside the air electrode 38 in the thickness direction It is formed from a positioned separator 41 (bipolar plate).

それらセパレータ40,41には、反応ガス(水素や酸素等)の供給流路が刻設されている(彫り込まれている)。燃料極37や空気極38、固体高分子電解質膜39が厚み方向へ重なり合って一体化し、膜/電極接合体42(Membrane Electrode Assembly, MEA)を構成し、膜/電極接合体42をそれらセパレータ40,41が挟み込んでいる。固体高分子電解質膜39は、プロトン導電性があり、電子導電性がない。 The separators 40 and 41 are engraved with supply channels for reactant gases (hydrogen, oxygen, etc.). A fuel electrode 37, an air electrode 38, and a solid polymer electrolyte membrane 39 are superimposed and integrated in the thickness direction to form a membrane electrode assembly (MEA). , 41 are interposed. The solid polymer electrolyte membrane 39 has proton conductivity and no electronic conductivity.

燃料極37とセパレータ40との間には、ガス拡散層43が形成され、空気極38とセパレータ41との間には、ガス拡散層44が形成されている。燃料極37とセパレータ40との間であってガス拡散層43の上部及び下部には、ガスシール45が設置されている。空気極38とセパレータ41との間であってガス拡散層44の上部及び下部には、ガスシール46が設置されている。 A gas diffusion layer 43 is formed between the fuel electrode 37 and the separator 40 , and a gas diffusion layer 44 is formed between the air electrode 38 and the separator 41 . Gas seals 45 are installed above and below the gas diffusion layer 43 between the fuel electrode 37 and the separator 40 . Gas seals 46 are installed above and below the gas diffusion layer 44 between the air electrode 38 and the separator 41 .

固体高分子形燃料電池36では、燃料極37(陰極12)に水素(燃料)が供給され、空気極38(陽極11)に空気(酸素)が供給される。燃料極37では、水素がH→2H+2eの反応(触媒作用)によってプロトン(水素イオン、H)と電子とに分解される。その後、プロトンが固体高分子電解質膜39内を通って燃料極37から空気極38へ移動し、電子が導線47内を通って空気極38へ移動する。固体高分子電解質膜39には、燃料極37で生成されたプロトンが通流する。空気極38では、固体高分子電解質膜39から移動したプロトンと導線47を移動した電子とが空気中の酸素と反応し、4H+O+4e→2HOの反応によって水が生成される。 In the polymer electrolyte fuel cell 36, hydrogen (fuel) is supplied to the fuel electrode 37 (cathode 12), and air (oxygen) is supplied to the air electrode 38 (anode 11). At the fuel electrode 37, hydrogen is decomposed into protons (hydrogen ions, H.sup. + ) and electrons by the reaction (catalysis) of H.sub.22H.sup .++2e.sup.-. After that, protons move from the fuel electrode 37 to the air electrode 38 through the solid polymer electrolyte membrane 39 , and electrons move to the air electrode 38 through the conducting wire 47 . Protons generated at the fuel electrode 37 flow through the solid polymer electrolyte membrane 39 . At the air electrode 38, the protons transferred from the solid polymer electrolyte membrane 39 and the electrons transferred through the conducting wire 47 react with oxygen in the air, and water is produced by the reaction 4H + +O 2 +4e→2H 2 O.

固体高分子形燃料電池36は、燃料極37(陰極12)及び空気極38(陽極12)が白金族金属49の微粉体を含み、更に、燃料極37及び空気極38を形成する遷移金属50の仕事関数の合成仕事関数が白金族金属の仕事関数に近似するように、遷移金属50の中から少なくとも2種類の遷移金属50が選択され、選択された遷移金属50の仕事関数の合成仕事関数が白金族金属の仕事関数に近似するように、白金族金属49の微粉体の金属微粉体混合物59の全重量に対する重量比が決定され、選択された遷移金属50の微粉体の金属微粉体混合物59の全重量に対する重量比が決定されているから、燃料極37及び空気極38が白金を担持した電極と略同一の仕事関数を備え、白金を担持した電極と略同様の触媒活性(触媒作用)を示し、水素がプロトンと電子とに効率よく分解される。 In the polymer electrolyte fuel cell 36, the fuel electrode 37 (cathode 12) and the air electrode 38 (anode 12) contain fine powder of a platinum group metal 49, and the transition metal 50 forming the fuel electrode 37 and the air electrode 38 is added. At least two transition metals 50 are selected from among the transition metals 50 such that the composite work function of the work function of The weight ratio of the fine powder of the platinum group metal 49 to the total weight of the metal fine powder mixture 59 is determined such that the is close to the work function of the platinum group metal, and the selected transition metal 50 fine powder of the metal fine powder mixture Since the weight ratio of 59 to the total weight of 59 is determined, the anode 37 and cathode 38 have substantially the same work function as the platinum-supported electrode, and have substantially the same catalytic activity (catalytic activity) as the platinum-supported electrode. ) and hydrogen is efficiently decomposed into protons and electrons.

具体例として示した固体高分子形燃料電池36の燃料極37(陰極12)及び空気極38(陽極12)は、Pt52の白金族金属微粉体55を含み、更に、仕事関数の合成仕事関数が白金族金属の仕事関数に近似するように、Ni53とFe54とが選択され、選択されたNi53とFe54との仕事関数の合計仕事関数が白金族金属の仕事関数に近似するように、金属微粉体混合物59の全重量に対するPt52の微粉体55の重量比が決定され、金属微粉体混合物59の全重量に対するNi53の微粉体56の重量比が決定されているとともに、金属微粉体混合物59の全重量に対するFe54の微粉体57の重量比とが決定されているから、燃料極37や空気極38が白金を担持した電極と略同一の仕事関数を備え、白金を担持した電極と略同様の触媒活性(触媒作用)を示し、水素がプロトンと電子とに効率よく分解される。 The fuel electrode 37 (cathode 12) and the air electrode 38 (anode 12) of the polymer electrolyte fuel cell 36 shown as a specific example contain platinum group metal fine powder 55 of Pt 52, and furthermore, the composite work function of the work function is Ni53 and Fe54 are selected so as to approximate the work function of the platinum group metal, and the fine metal powder is selected so that the total work function of the work functions of the selected Ni53 and Fe54 approximates the work function of the platinum group metal. The weight ratio of Pt 52 fine powder 55 to the total weight of the mixture 59 is determined, the weight ratio of Ni 53 fine powder 56 to the total weight of the metal fine powder mixture 59 is determined, and the total weight of the metal fine powder mixture 59 is determined. Since the weight ratio of the fine powder 57 of Fe 54 is determined, the fuel electrode 37 and the air electrode 38 have substantially the same work function as the platinum-supported electrode, and have substantially the same catalytic activity as the platinum-supported electrode. (catalytic action), and hydrogen is efficiently decomposed into protons and electrons.

起電圧試験では、水素ガスを注入してから15分の間、電極(燃料極37や空気極38)と電極(燃料極37や空気極38)との間(電極間)の電圧(V)を測定した。図7の起電圧試験の結果を示す図では、横軸に測定時間(min)を表し、縦軸に電極(燃料極37や空気極38)と電極(燃料極37や空気極38)との間(電極間)の電圧(V)を表す。燃料極37(陰極12)及び空気極38(陽極12)を使用した固体高分子形燃料電池36では、図7に示すように、電極間の電圧が1.07(V)~1.088(V)であった。 In the electromotive voltage test, the voltage (V) between the electrodes (the fuel electrode 37 and the air electrode 38) and the electrodes (the fuel electrode 37 and the air electrode 38) was measured for 15 minutes after the hydrogen gas was injected. was measured. In the diagram showing the results of the electromotive voltage test in FIG. 7, the horizontal axis represents the measurement time (min), and the vertical axis represents the difference between the electrodes (the fuel electrode 37 and the air electrode 38) and the electrodes (the fuel electrode 37 and the air electrode 38). represents the voltage (V) between (between the electrodes). In the polymer electrolyte fuel cell 36 using the fuel electrode 37 (cathode 12) and the air electrode 38 (anode 12), as shown in FIG. V).

I-V特性試験では、電極(燃料極37や空気極38)と電極(燃料極37や空気極38)との間(電極間)に負荷48を接続し、電圧と電流との関係を測定した。図8のI-V特性試験の結果を示す図では、横軸に電流(A)を表し、縦軸に電圧(V)を表す。燃料極37(陰極12)及び空気極38(陽極12)を使用した固体高分子形燃料電池36では、図8に示すように、緩やかな電圧降下が認められた。図7の起電圧試験の結果や図8のI-V特性試験の結果に示すように、燃料極37(陰極12)及び空気極38(陽極12)が電子を放出させて水素イオンとなる反応を促進させる優れた触媒作用を有するとともに、優れた酸素還元機能(触媒作用)を有することが確認された。 In the IV characteristic test, the load 48 is connected between the electrodes (the fuel electrode 37 and the air electrode 38) and the electrodes (the fuel electrode 37 and the air electrode 38) (between the electrodes), and the relationship between voltage and current is measured. bottom. In FIG. 8 showing the results of the IV characteristic test, the horizontal axis represents current (A) and the vertical axis represents voltage (V). In the polymer electrolyte fuel cell 36 using the fuel electrode 37 (cathode 12) and the air electrode 38 (anode 12), a moderate voltage drop was observed as shown in FIG. As shown in the electromotive voltage test results of FIG. 7 and the IV characteristic test results of FIG. It was confirmed that it has an excellent oxygen reduction function (catalytic action) while having an excellent catalytic action that promotes

図9は、電気分解装置10に使用する陽極11及び陰極12の製造方法を説明する図である。陽極11及び陰極12は、図9に示すように、金属選択工程S1、金属微粉体作成工程S2、微粉体重量比決定工程S3、金属微粉体混合物作成工程S4、金属微粉体成形物作成工程S5、マイクロポーラス構造薄板電極作成工程S6を有する電極製造方法によって製造される。電極製造方法では、白金族金属49と少なくとも2種類の遷移金属50とを原料として電気分解装置10(固体高分子形燃料電池36)に使用する陽極11(空気極38)及び陰極12(燃料極37)を製造する。 9A and 9B are diagrams illustrating a method for manufacturing the anode 11 and the cathode 12 used in the electrolyzer 10. FIG. As shown in FIG. 9, the anode 11 and the cathode 12 are subjected to a metal selection step S1, a metal fine powder preparation step S2, a fine powder weight ratio determination step S3, a metal fine powder mixture preparation step S4, and a metal fine powder molding preparation step S5. , is manufactured by an electrode manufacturing method having a microporous structure thin plate electrode manufacturing step S6. In the electrode manufacturing method, the platinum group metal 49 and at least two transition metals 50 are used as raw materials to produce the anode 11 (air electrode 38) and the cathode 12 (fuel electrode 37).

金属選択工程S1では、各種の白金族金属49の中から少なくとも1種類の白金族金属49(白金(Pt)、パラジウム(Pb)、ロジウム(Rh)、ルテニウム(Ru)、イリジウム(Ir)、オスミウム(Os))を選択し、各種の遷移金属50から選択する少なくとも2種類の遷移金属50の仕事関数の合成仕事関数が白金族金属の仕事関数に近似するように、各種の遷移金属50の中から少なくとも2種類の遷移金属50(Ti(チタン)、Cr(クロム)、Mn(マンガン)、Fe(鉄)、Co(コバルト)、Ni(ニッケル)、Cu(銅)、Zn(亜鉛)、Nb(ニオブ)、Mo(モリブデン)、Ag(銀))を選択する。なお、陽極11及び陰極12に使用する白金族金属49としてPt52(白金)が選択され、陽極11及び陰極12に使用する遷移金属50としてNi53(ニッケル)、Fe54(鉄)が選択されたものとする。 In the metal selection step S1, at least one platinum group metal 49 (platinum (Pt), palladium (Pb), rhodium (Rh), ruthenium (Ru), iridium (Ir), osmium (Os)), and among the various transition metals 50, the composition of the work functions of at least two transition metals 50 selected from the various transition metals 50 such that the work function approximates the work function of the platinum group metals. from at least two transition metals 50 (Ti (titanium), Cr (chromium), Mn (manganese), Fe (iron), Co (cobalt), Ni (nickel), Cu (copper), Zn (zinc), Nb (niobium), Mo (molybdenum), Ag (silver)). Pt52 (platinum) was selected as the platinum group metal 49 used for the anode 11 and the cathode 12, and Ni53 (nickel) and Fe54 (iron) were selected as the transition metals 50 used for the anode 11 and the cathode 12. do.

金属微粉体作成工程S2では、微粉砕機によって白金52(Pt)を1μm~100μmの粒径に微粉砕し、粒径が1μm~100μmのPt52の白金族金属微粉体55を作り、微粉砕機によってNi53(ニッケル)を1μm~100μmの粒径に微粉砕し、粒径が1μm~100μmのNi53の遷移金属微粉体56を作るとともに、微粉砕機によってFe54(鉄)を1μm~100μmの粒径に微粉砕し、粒径が1μm~100μmのFe54の遷移金属微粉体57を作る。 In the metal fine powder preparation step S2, platinum 52 (Pt) is finely ground to a particle size of 1 μm to 100 μm by a fine grinder to produce platinum group metal fine powder 55 of Pt 52 having a particle size of 1 μm to 100 μm, and the fine grinder Ni53 (nickel) is finely pulverized to a particle size of 1 μm to 100 μm by using a fine pulverizer, and Fe54 (iron) is finely ground to a particle size of 1 μm to 100 μm. , to make Fe54 transition metal fine powder 57 with a particle size of 1 μm to 100 μm.

電極製造方法は、Pt52(白金族金属49)やNi53(遷移金属50)、Fe54(遷移金属50)を1μm~100μmの粒径に微粉砕することで、多数の微細な気孔23(通路孔)を有する多孔質に成形されて比表面積が大きいポーラス構造かつ薄板状の陽極11や陰極12を作ることができ、それら気孔23を水溶液(液体)やガス(気体)が通流しつつ水溶液(液体)やガス(気体)を陽極11(空気極38)及び陰極12(燃料極37)のそれら気孔23における接触面に広く接触させることが可能な陽極11(空気極38)及び陰極12(燃料極37)を作ることができる。 In the electrode manufacturing method, Pt 52 (platinum group metal 49), Ni 53 (transition metal 50), and Fe 54 (transition metal 50) are pulverized to a particle size of 1 μm to 100 μm to form a large number of fine pores 23 (passage holes). It is possible to make a thin plate anode 11 and cathode 12 with a porous structure and a large specific surface area, and an aqueous solution (liquid) or a gas (gas) flows through these pores 23 while an aqueous solution (liquid) The anode 11 (air electrode 38) and the cathode 12 (fuel electrode 37) that can widely contact the contact surface of the pores 23 of the anode 11 (air electrode 38) and the cathode 12 (fuel electrode 37) and gas (gas) ) can be made.

微粉体重量比決定工程S3では、金属微粉体作成工程S2によって作られたNi53の微粉体56とFe54の微粉体57との仕事関数の合成仕事関数が白金族金属の仕事関数に近似するように、金属微粉体混合物59の全重量に対するPt52の微粉体55の重量比を決定し、金属微粉体混合物59の全重量に対するNi53の微粉体56の重量比を決定するとともに、金属微粉体混合物59の全重量に対するFe54の微粉体57の重量比を決定する。 In the fine powder weight ratio determining step S3, the composite work function of the work functions of the Ni53 fine powder 56 and the Fe54 fine powder 57 produced in the metal fine powder producing step S2 is adjusted so as to approximate the work function of the platinum group metal. , the weight ratio of Pt52 fine powder 55 to the total weight of the metal fine powder mixture 59 is determined, the weight ratio of the Ni53 fine powder 56 to the total weight of the metal fine powder mixture 59 is determined, and the weight ratio of the metal fine powder mixture 59 is determined. Determine the weight ratio of Fe54 fine powder 57 to the total weight.

微粉体重量比決定工程S3では、金属微粉体混合物59の全重量(100%)に対するPt52(白金族金属49)の微粉体55の重量比を4%~10%の範囲、好ましくは、5%~8%の範囲で決定する。微粉体重量比決定工程S3では、金属微粉体混合物59の全重量(100%)に対するNi53(遷移金属50)の微粉体56の重量比を45%~48%の範囲で決定し、金属微粉体混合物59の全重量(100%)に対するFe54(遷移金属50)の微粉体57の重量比を45%~48%の範囲で決定する。 In the fine powder weight ratio determination step S3, the weight ratio of the fine powder 55 of Pt52 (platinum group metal 49) to the total weight (100%) of the fine metal powder mixture 59 is set within a range of 4% to 10%, preferably 5%. Determined in the range of ~8%. In the fine powder weight ratio determination step S3, the weight ratio of the fine powder 56 of Ni 53 (transition metal 50) to the total weight (100%) of the fine metal powder mixture 59 is determined in the range of 45% to 48%. The weight ratio of fine powder 57 of Fe 54 (transition metal 50) to the total weight (100%) of mixture 59 is determined in the range of 45% to 48%.

電極製造方法は、合成仕事関数が白金族金属の仕事関数に近似するように遷移金属50のNi53(ニッケル)とFe54(鉄)とを選択するとともに、合成仕事関数が白金族金属の仕事関数に近似するように、金属微粉体混合物59の全重量に対するPt52の微粉体55の重量比や金属微粉体混合物59の全重量に対するNi53の微粉体56の重量比、金属微粉体混合物59の全重量に対するFe54の微粉体57の重量比を前記範囲において決定することで、Ni53の微粉体56とFe54の微粉体57との仕事関数の合成仕事関数を白金族金属の仕事関数に近似させることができ、白金族金属49(Pt52)の含有量が少ないにもかかわらず、白金を担持した電極と略同一の仕事関数を備え、白金を担持した電極と略同様の触媒活性(触媒作用)を発揮することができ、優れた触媒活性(触媒作用)を有して触媒機能を十分かつ確実に利用することが可能な白金族金属少含有の陽極11(空気極38)及び陰極12(燃料極37)を作ることができる。 In the electrode manufacturing method, Ni53 (nickel) and Fe54 (iron) of the transition metal 50 are selected so that the composite work function approximates the work function of the platinum group metal, and the composite work function is similar to that of the platinum group metal. As an approximation, the weight ratio of the fine powder 55 of Pt 52 to the total weight of the fine metal powder mixture 59, the weight ratio of the fine powder 56 of Ni 53 to the total weight of the fine metal powder mixture 59, and the weight ratio of the fine powder 56 to the total weight of the fine metal powder mixture 59 By determining the weight ratio of the Fe54 fine powder 57 within the above range, the composite work function of the work functions of the Ni53 fine powder 56 and the Fe54 fine powder 57 can be approximated to the work function of the platinum group metal, Despite the low content of the platinum group metal 49 (Pt52), it has substantially the same work function as the platinum-supported electrode and exhibits substantially the same catalytic activity (catalytic action) as the platinum-supported electrode. Anode 11 (air electrode 38) and cathode 12 (fuel electrode 37) containing a small amount of platinum group metals that have excellent catalytic activity (catalytic action) and can fully and reliably utilize the catalytic function can be made.

電極製造方法は、金属微粉体混合物59の全重量に対するNi53(遷移金属50)の微粉体56の重量比や金属微粉体混合物59の全重量に対するFe54(遷移金属50)の微粉体57の重量比が前記範囲にあり、金属微粉体混合物59の全重量に対するPt52(白金族金属49)の微粉体55の重量比が前記範囲にあるから、高価な白金族金属49(Pt52)の含有量が少なく、陽極11(空気極38)及び陰極12(燃料極37)を廉価に作ることができる。 In the electrode manufacturing method, the weight ratio of Ni53 (transition metal 50) fine powder 56 to the total weight of metal fine powder mixture 59 and the weight ratio of Fe54 (transition metal 50) fine powder 57 to the total weight of metal fine powder mixture 59 are determined. is within the above range, and the weight ratio of the fine powder 55 of Pt52 (platinum group metal 49) to the total weight of the metal fine powder mixture 59 is within the above range, so the content of the expensive platinum group metal 49 (Pt52) is small. , the anode 11 (air electrode 38) and the cathode 12 (fuel electrode 37) can be manufactured at low cost.

金属微粉体混合物作成工程S4では、微粉体重量比決定工程S3によって決定した重量比のPt52の微粉体55と微粉体重量比決定工程S3によって決定した重量比のNi53の微粉体56と微粉体重量比決定工程S3によって決定した重量比のFe54の微粉体57とバインダー51(粉状の樹脂系バインダー)とを混合機に投入し、混合機によってPt52の微粉体55、Ni53の微粉体56、Fe54の微粉体57、バインダー51を攪拌・混合し、Pt52の微粉体55、Ni53の微粉体56、Fe54の微粉体57、バインダー51が均一に混合・分散した金属微粉体混合物59(発泡金属成形材)を作る。次に、金属微粉体混合物59に所定量の気孔形成材58(粉体の発泡剤)を添加する。所定量の気孔形成材58を混合機又は攪拌機に投入し、混合機又は攪拌機によって金属微粉体混合物59に気孔形成材58を均一に混合・分散させた金属微粉体混合物59(発泡金属成形材料)を作る。気孔形成材58(粉体の発泡剤)の添加量によって陽極11(空気極38)及び陰極12(燃料極37)に形成される気孔25の平均径や気孔率が決まる。 In the metal fine powder mixture preparation step S4, fine powder 55 of Pt52 having the weight ratio determined in the fine powder weight ratio determining step S3 and fine powder 56 of Ni53 having the weight ratio determined in the fine powder weight ratio determining step S3 and the fine powder weight. The Fe54 fine powder 57 and the binder 51 (powder resin binder) having the weight ratio determined in the ratio determination step S3 are put into a mixer, and the mixer is used to mix Pt52 fine powder 55, Ni53 fine powder 56, and Fe54. Fine powder 57 of Pt 52, fine powder 56 of Ni 53, fine powder 57 of Fe 54, fine powder 57 of Fe 54, and fine metal powder mixture 59 in which binder 51 is uniformly mixed and dispersed (metal foam molding material )make. Next, a predetermined amount of pore forming material 58 (powder foaming agent) is added to the metal fine powder mixture 59 . A predetermined amount of pore-forming material 58 is put into a mixer or stirrer, and the pore-forming material 58 is uniformly mixed and dispersed in the fine metal powder mixture 59 by the mixer or stirrer to form a fine metal powder mixture 59 (metal foam molding material). make. The average diameter and porosity of the pores 25 formed in the anode 11 (air electrode 38) and the cathode 12 (fuel electrode 37) are determined by the amount of the pore forming material 58 (powder foaming agent) added.

金属微粉体成形物作成工程S5では、金属微粉体混合物作成工程S4によって作られた金属微粉体混合物59(発泡金属成形材料)を射出成形機(図示せず)や押出成形機(図示せず)に投入し、金属微粉体混合物59を射出成形機によって射出成形(金属粉末射出成形)し、又は、金属微粉体混合物59を押出成形機によって押し出し成形(金属粉末押出成形)し、金属微粉体混合物59を所定面積の薄板状(厚み寸法L1が0.03mm~1.5mmの範囲、好ましくは、0.05mm~1.0mmの範囲)に成形した金属微粉体成形物60(発泡金属成形物)を作る。 In the metal fine powder molding producing step S5, the metal fine powder mixture 59 (foamed metal molding material) produced in the metal fine powder mixture producing step S4 is injected into an injection molding machine (not shown) or an extruder (not shown). Then, the metal fine powder mixture 59 is injection molded (metal powder injection molding) by an injection molding machine, or the metal fine powder mixture 59 is extruded by an extruder (metal powder extrusion molding), and the metal fine powder mixture 59 is molded into a thin plate having a predetermined area (thickness dimension L1 is in the range of 0.03 mm to 1.5 mm, preferably in the range of 0.05 mm to 1.0 mm). make.

マイクロポーラス構造薄板電極作成工程S6では、金属微粉体成形物作成工程S5の金属粉末射出成形や金属粉末押出成形によって作られた金属微粉体成形物60(発泡金属成形物)を脱脂し、脱脂した金属微粉体成形物60を焼成炉(燃焼炉、電気炉等)に投入し、金属微粉体成形物60を焼成炉において所定温度で所定時間焼結(焼成)して多数の微細な気孔23(通路孔)を形成したマイクロポーラス構造かつ薄板状(厚み寸法L1が0.03mm~1.5mmの範囲、好ましくは、0.05mm~1.0mmの範囲)の陽極11(空気極38)及び陰極12(燃料極37)を作る。 In the microporous structure thin plate electrode production step S6, the fine metal powder molding 60 (foamed metal molding) produced by metal powder injection molding or metal powder extrusion molding in the metal fine powder molding production step S5 is degreased and degreased. The metal fine powder molding 60 is put into a firing furnace (combustion furnace, electric furnace, etc.), and the metal fine powder molding 60 is sintered (fired) in the firing furnace at a predetermined temperature for a predetermined time to form a large number of fine pores 23 ( An anode 11 (air electrode 38) and a cathode having a microporous structure and a thin plate (thickness L1 in the range of 0.03 mm to 1.5 mm, preferably in the range of 0.05 mm to 1.0 mm) with passage holes) 12 (fuel electrode 37).

焼結温度は、900℃~1400℃である。焼結(焼成)時間は、2時間~6時間である。マイクロポーラス構造薄板電極作成工程S6では、所定面積の薄板状に成形した金属微粉体成形物60の焼結時において、金属微粉体成形物60の内部において気孔形成材58(粉体の発泡剤)が発泡した後、気孔形成材58が金属微粉体成形物60の内部から消失し、多数の微細な気孔23(流路)(連続かつ独立通路孔)が形成されたマイクロポーラス構造かつ薄板状の陽極11(空気極38)及び陰極12(燃料極37)が製造される。 The sintering temperature is between 900°C and 1400°C. The sintering (firing) time is 2 to 6 hours. In the microporous structure thin plate electrode forming step S6, during the sintering of the metal fine powder molding 60 formed into a thin plate having a predetermined area, the pore forming material 58 (powder foaming agent) is added inside the metal fine powder molding 60. After foaming, the pore-forming material 58 disappears from the inside of the metal fine powder molding 60, and a microporous structure and thin plate-like structure in which a large number of fine pores 23 (channels) (continuous and independent passage holes) are formed. Anode 11 (cathode 38) and cathode 12 (anode 37) are manufactured.

電極製造方法は、金属粉末射出成形や金属粉末押出成形によってPt52の微粉体55とNi53の微粉体56とFe54の微粉体57とがバインダー51を介して連結され、金属粉末射出成形や金属粉末押出成形によって作られた金属微粉体成形物60(発泡金属成形物)が所定の強度を有するとともに、金属微粉体成形物60を焼結することで、多数の微細な気孔23(通路孔)を有するマイクロポーラス構造かつ薄板状の陽極11(空気極38)及び陰極12(燃料極37)を作ることができるとともに、高い強度を有して形状を維持することができ、衝撃が加えられたときの破損や損壊を防ぐことが可能な非白金の陽極11(空気極38)及び陰極12(燃料極37)を作ることができる。 In the electrode manufacturing method, fine powder 55 of Pt 52, fine powder 56 of Ni 53, and fine powder 57 of Fe 54 are connected via a binder 51 by metal powder injection molding or metal powder extrusion. The metal fine powder molding 60 (foamed metal molding) produced by molding has a predetermined strength, and by sintering the metal fine powder molding 60, it has a large number of fine pores 23 (passage holes). The anode 11 (air electrode 38) and the cathode 12 (fuel electrode 37) having a microporous structure and a thin plate can be made, and the shape can be maintained with high strength, and when an impact is applied. Non-platinum anodes 11 (cathode 38) and cathodes 12 (anode 37) can be made to prevent breakage and damage.

電極製造方法は、各種の白金族金属49の中から少なくとも1種類の白金族金属49(Pt52)を選択し、各種の遷移金属50から選択する少なくとも2種類の遷移金属50の仕事関数の合成仕事関数が白金族金属の仕事関数に近似するように、各種の遷移金属50の中から少なくとも2種類の遷移金属50(たとえば、Ni53、Fe54)を選択する金属選択工程S1と、金属選択工程S1によって選択された少なくとも1種類の白金族金属49(Pt52)を微粉砕して白金族金属微粉体(Pt52の微粉体55)を作り、金属選択工程S1によって選択された少なくとも2種類の遷移金属50を微粉砕して遷移金属微粉体(Ni53の微粉体56、Fe54の微粉体57)を作る金属微粉体作成工程S2と、金属微粉体作成工程S2によって作られた少なくとも2種類の遷移金属微粉体の仕事関数の合成仕事関数が白金族金属の仕事関数に近似するように、白金族金属微粉体(Pt52の微粉体55)の重量比と少なくとも2種類の遷移金属微粉体(Ni53の微粉体56、Fe54の微粉体57)の重量比とを決定する微粉体重量比決定工程S3と、微粉体重量比決定工程S3によって決定した重量比の白金族金属微粉体(Pt52の微粉体55)及び少なくとも2種類の遷移金属微粉体(Ni53の微粉体56、Fe54の微粉体57)に所定のバインダー51を加え、それらを均一に混合・分散して金属微粉体混合物59(発泡金属成形材料)を作り、金属微粉体混合物59に所定の気孔形成材58を添加する金属微粉体混合物作成工程S4と、金属微粉体混合物作成工程S4によって作られた金属微粉体混合物59を薄板状に成形(金属粉末押出成形又は金属粉末射出成形)して金属微粉体成形物59(発泡金属成形物)を作る金属微粉体成形物作成工程S5と、金属微粉体成形物作成工程S5によって作られた金属微粉体成形物59を脱脂するとともに金属微粉体成形物59を所定温度で焼結して多数の微細な気孔23が形成されたマイクロポーラス構造の薄板状の陽極11(空気極38)及び陰極12(燃料極37)を作るマイクロポーラス構造薄板電極作成工程S6との各工程によって陽極11(空気極38)及び陰極12(燃料極37)を製造するから、それら工程S1~S6によって厚み寸法L1が0.03mm~1.5mmの範囲(好ましくは、0.05mm~1.0mmの範囲)であって多数の微細な気孔23(通路孔)を形成した陽極11(空気極38)及び陰極12(燃料極37)(マイクロポーラス構造薄板状電極)を製造することができ、陽極11(空気極38)及び陰極12(燃料極37)を廉価に作ることができるとともに、優れた触媒活性(触媒作用)を有して触媒機能を十分かつ確実に利用することが可能な白金族金属少含有の陽極11(空気極38)及び陰極12(燃料極37)を作ることができる。 The electrode manufacturing method selects at least one platinum group metal 49 (Pt 52) from various platinum group metals 49, and at least two transition metals 50 selected from various transition metals 50. By a metal selection step S1 of selecting at least two transition metals 50 (for example, Ni53, Fe54) from various transition metals 50 such that the function approximates the work function of a platinum group metal, and a metal selection step S1 At least one selected platinum group metal 49 (Pt 52) is pulverized to produce fine platinum group metal powder (fine powder 55 of Pt 52), and at least two transition metals 50 selected by a metal selection step S1 are A metal fine powder preparation step S2 for pulverizing to make transition metal fine powder (Ni53 fine powder 56, Fe54 fine powder 57), and at least two types of transition metal fine powder prepared by the metal fine powder preparation step S2 The weight ratio of the platinum group metal fine powder (Pt52 fine powder 55) and at least two transition metal fine powders (Ni53 fine powder 56, a fine powder weight ratio determining step S3 for determining the weight ratio of the fine powder 57) of Fe54; and the platinum group metal fine powder (fine powder 55 of Pt52) and at least two A predetermined binder 51 is added to different types of transition metal fine powder (Ni53 fine powder 56, Fe54 fine powder 57), and they are uniformly mixed and dispersed to prepare a metal fine powder mixture 59 (foam metal molding material), A metal fine powder mixture preparation step S4 of adding a predetermined pore forming material 58 to the metal fine powder mixture 59, and the metal fine powder mixture 59 prepared by the metal fine powder mixture preparation step S4 is formed into a thin plate (metal powder extrusion molding). or metal powder injection molding) to form a metal fine powder molded product 59 (foamed metal molded product), and the metal fine powder molded product 59 produced by the metal fine powder molded product manufacturing step S5. are degreased and the metal fine powder molding 59 is sintered at a predetermined temperature to form a microporous thin plate anode 11 (air electrode 38) and cathode 12 (fuel electrode 37) having a large number of fine pores 23. Since the anode 11 (air electrode 38) and the cathode 12 (fuel electrode 37) are manufactured by each step of the microporous structure thin plate electrode preparation step S6, the thickness dimension L1 is 0.03 mm to 1 Anode 11 (air electrode 38) and cathode 12 (fuel electrode 37) having a range of 0.5 mm (preferably 0.05 mm to 1.0 mm) and having a large number of fine pores 23 (passage holes) ( A microporous structure thin plate electrode) can be manufactured, and the anode 11 (air electrode 38) and cathode 12 (fuel electrode 37) can be manufactured at low cost, and have excellent catalytic activity (catalytic action). An anode 11 (air electrode 38) and a cathode 12 (fuel electrode 37) containing a small amount of platinum group metal, which can fully and reliably utilize the catalytic function, can be produced.

電極製造方法は、優れた触媒活性(触媒作用)を有して触媒機能を十分かつ確実に利用することが可能な白金族金属少含有の陽極11(空気極38)及び陰極12(燃料極37)を作ることができ、電気分解装置10(水素ガス生成システム27)や固体高分子形燃料電池36に好適に使用することが可能な陽極11(空気極38)及び陰極12(燃料極37)を作ることができる。電極製造方法は、工程S1~S6によって作られた陽極11(空気極38)及び陰極12(燃料極37)が白金族金属を担持した電極と略同様の触媒活性(触媒作用)を発揮するから、電気分解装置10において電気分解を効率よく行うことができ、短時間に多量の水素ガスを発生させることが可能な陽極11及び陰極12作ることができるとともに、固体高分子形燃料電池36において十分な電気を発電することが可能であって固体高分子形燃料電池36に接続された負荷48に十分な電気エネルギーを供給することが可能な白金族金属少含有の空気極38及び燃料極37を作ることができる。 In the electrode manufacturing method, the anode 11 (air electrode 38) and the cathode 12 (fuel electrode 37) containing a small amount of platinum group metals that have excellent catalytic activity (catalytic action) and can fully and reliably utilize the catalytic function ), and can be suitably used for the electrolyzer 10 (hydrogen gas generation system 27) and polymer electrolyte fuel cell 36. Anode 11 (air electrode 38) and cathode 12 (fuel electrode 37) can be made. In the electrode manufacturing method, the anode 11 (air electrode 38) and the cathode 12 (fuel electrode 37) produced by steps S1 to S6 exhibit substantially the same catalytic activity (catalytic action) as an electrode carrying a platinum group metal. , the anode 11 and the cathode 12 can be produced so that the electrolysis can be efficiently performed in the electrolyzer 10 and a large amount of hydrogen gas can be generated in a short time, and the polymer electrolyte fuel cell 36 can sufficiently The air electrode 38 and the fuel electrode 37 containing little platinum group metal are capable of generating sufficient electricity and supplying sufficient electrical energy to the load 48 connected to the polymer electrolyte fuel cell 36. can be made.

10 電気分解装置
11 陽極(電極)
12 陰極(電極)
13 固体高分子電解質膜
14 陽極給電部材
15 陰極給電部材
16 陽極用貯水槽
17 陰極用貯水槽
18 陽極主電極
19 陰極主電極
20 膜/電極接合体
21 前面
22 後面
23 気孔(連続かつ独立通路孔)
24 マイクロポーラス構造の薄板状電極
25 通流口
26 外周縁
27 水素ガス生成システム
28 直流電源
29 貯水タンク
30 給水ポンプ
31 酸素気液分離器
32 循環ポンプ
33 循環ポンプ
34 水素気液分離器
35 ボンベ
36 固体高分子形燃料電池
37 燃料極
38 空気極
39 固体高分子電解質膜
40 セパレータ
41 セパレータ
42 膜/電極接合体
43 ガス拡散層
44 ガス拡散層
45 ガスシール
46 ガスシール
47 導線
48 負荷
49 白金族金属
50 遷移金属
51 バインダー
52 Pt(白金)
53 Ni(ニッケル)
54 Fe(鉄)
55 Pt(白金)の微粉体(白金族金属微粉体)
56 Ni(ニッケル)の微粉体(遷移金属微粉体)
57 Fe(鉄)の微粉体(遷移金属微粉体)
58 気孔形成材(発泡剤)
59 金属微粉体混合物
60 金属微粉体成形物
L1 厚み寸法
S1 金属選択工程
S2 金属微粉体作成工程
S3 微粉体重量比決定工程
S4 金属微粉体混合物作成工程
S5 金属微粉体成形物作成工程
S6 マイクロポーラス構造薄板電極作成工程
10 electrolyzer 11 anode (electrode)
12 cathode (electrode)
13 Solid polymer electrolyte membrane 14 Anode feed member 15 Cathode feed member 16 Anode water tank 17 Cathode water tank 18 Anode main electrode 19 Cathode main electrode 20 Membrane/electrode assembly 21 Front surface 22 Rear surface 23 Pores (continuous and independent passage holes )
24 Microporous structure thin plate electrode 25 Flow port 26 Peripheral edge 27 Hydrogen gas generation system 28 DC power supply 29 Water storage tank 30 Water supply pump 31 Oxygen gas-liquid separator 32 Circulation pump 33 Circulation pump 34 Hydrogen gas-liquid separator 35 Cylinder 36 Polymer electrolyte fuel cell 37 Fuel electrode 38 Air electrode 39 Solid polymer electrolyte membrane 40 Separator 41 Separator 42 Membrane/electrode assembly 43 Gas diffusion layer 44 Gas diffusion layer 45 Gas seal 46 Gas seal 47 Wire 48 Load 49 Platinum group metal 50 transition metal 51 binder 52 Pt (platinum)
53 Ni (nickel)
54 Fe (iron)
55 Pt (platinum) fine powder (platinum group metal fine powder)
56 Ni (nickel) fine powder (transition metal fine powder)
57 Fe (iron) fine powder (transition metal fine powder)
58 Pore formers (foaming agents)
59 Metal fine powder mixture 60 Metal fine powder molding L1 Thickness dimension S1 Metal selection step S2 Metal fine powder preparation step S3 Fine powder weight ratio determination step S4 Metal fine powder mixture preparation step S5 Metal fine powder molding preparation step S6 Microporous structure Thin plate electrode making process

Claims (4)

陽極及び陰極と、前記陽極と前記陰極との間に位置してそれら極を接合する電極接合体膜とを備えた電気分解装置の該陽極及び該陰極の製造方法において
前記陽極及び陰極の製造方法が、各種の白金族金属の中から白金(Pt)を選択するとともに、合成仕事関数が前記白金の仕事関数(5.65(eV))に近似するように、各種の遷移金属の中から仕事関数が5.22(eV)のニッケル(Ni)と前記仕事関数が4.67(eV)の鉄(Fe)とを選択する金属選択工程と、
微粉砕機によって前記白金を微粉砕して粒径が1μm~100μmのPtの白金族金属微粉体を作り、前記微粉砕機によって前記ニッケルを微粉砕して粒径が1μm~100μmのNiの遷移金属微粉体を作るとともに、前記微粉砕機によって前記鉄を微粉砕して粒径が1μm~100μmのFeの遷移金属微粉体を作る金属微粉体作成工程と、
前記金属微粉体作成工程によって作られた前記白金族金属微粉体と前記遷移金属微粉体とを混合した金属微粉体混合物の全重量(100%)に対する前記Ptの微粉体の重量比を4%~10%の範囲に決定し、前記金属微粉体混合物の全重量(100%)に対する前記Niの微粉体の重量比を45%~48%の範囲で決定するとともに、前記金属微粉体混合物の全重量(100%)に対する前記Feの微粉体の重量比を45%~48%の範囲で決定する微粉体重量比決定工程と、
前記微粉体重量比決定工程によって決定した重量比の前記Ptの微粉体と前記Niの微粉体と前記Feの微粉体と、粉状の樹脂系バインダー及び所定量の気孔形成材とを混合機に投入し、前記混合機によって前記Ptの微粉体、前記Niの微粉体、前記Feの微粉体、前記バインダー、前記気孔形成材を攪拌・混合してそれらが均一に混合・分散した金属微粉体混合物を作る金属微粉体混合物作成工程と、
前記金属微粉体混合物作成工程によって作られた金属微粉体混合物を射出成形機又は押出成形機に投入し、前記金属微粉体混合物を前記射出成形機によって射出成形し、又は、前記金属微粉体混合物を前記押出成形機によって押し出し成形し、厚み寸法が0.03mm~1.5mmの範囲の所定面積の薄板状に成形した金属微粉体成形物を作る金属微粉体成形物作成工程と、
前記金属微粉体成形物作成工程によって作られた金属微粉体成形物を脱脂し、前記脱脂した金属微粉体成形物を焼成炉に投入し、前記金属微粉体成形物を焼成炉において900℃~1400℃の温度で2時間~6時間時間焼結(焼成)して多数の微細な気孔を形成したマイクロポーラス構造かつ厚み寸法が0.03mm~1.5mmの範囲の薄板状の前記陽極及び前記陰極を作るマイクロポーラス構造薄板電極作成工程とを有することを特徴とする陽極及び陰極の製造方法
In a method for producing the anode and the cathode of an electrolyzer comprising an anode, a cathode, and an electrode assembly film positioned between the anode and the cathode and joining the electrodes,
The method of manufacturing the anode and cathode selects platinum (Pt) from various platinum group metals, and various a metal selection step of selecting nickel (Ni) having a work function of 5.22 (eV) and iron (Fe) having a work function of 4.67 (eV) from transition metals of
The platinum is pulverized by a pulverizer to produce Pt platinum group metal fine powder having a particle size of 1 μm to 100 μm, and the nickel is pulverized by the pulverizer to a Ni transition of a particle size of 1 μm to 100 μm. A metal fine powder preparation step of preparing fine metal powder and finely pulverizing the iron with the fine grinder to prepare transition metal fine powder of Fe having a particle size of 1 μm to 100 μm;
The weight ratio of the Pt fine powder to the total weight (100%) of the metal fine powder mixture obtained by mixing the platinum group metal fine powder and the transition metal fine powder produced by the metal fine powder production step is 4% to 4%. 10% range, the weight ratio of the Ni fine powder to the total weight (100%) of the metal fine powder mixture is determined in the range of 45% to 48%, and the total weight of the metal fine powder mixture A fine powder weight ratio determining step of determining the weight ratio of the fine powder of Fe to (100%) in the range of 45% to 48%;
The fine powder of Pt, the fine powder of Ni, and the fine powder of Fe in the weight ratio determined by the fine powder weight ratio determination step, a powdery resin binder, and a predetermined amount of pore-forming material are placed in a mixer. A fine metal powder mixture in which the fine powder of Pt, the fine powder of Ni, the fine powder of Fe, the binder, and the pore-forming material are stirred and mixed by the mixer to uniformly mix and disperse them. A metal fine powder mixture preparation step for making
The metal fine powder mixture prepared by the metal fine powder mixture preparation step is put into an injection molding machine or an extruder, and the metal fine powder mixture is injection molded by the injection molding machine, or the metal fine powder mixture is a step of producing a metal fine powder molding by extruding with the extruder to form a metal fine powder molding into a thin plate having a predetermined area with a thickness dimension in the range of 0.03 mm to 1.5 mm;
The metal fine powder molding produced by the metal fine powder molding preparation step is degreased, the degreased metal fine powder molding is put into a firing furnace, and the metal fine powder molding is placed in the firing furnace at 900°C to 1400°C. The anode and the cathode have a thin plate-like microporous structure in which a large number of fine pores are formed by sintering (firing) for 2 hours to 6 hours at a temperature of ° C. and the thickness dimension is in the range of 0.03 mm to 1.5 mm. A method for manufacturing an anode and a cathode, characterized by comprising a microporous structure thin plate electrode manufacturing step .
前記陽極及び前記陰極に形成された気孔の平均径が、1~100μmの範囲にある請求項1に記載の陽極及び陰極の製造方法 2. The method for producing an anode and a cathode according to claim 1, wherein the average diameter of pores formed in said anode and said cathode is in the range of 1 to 100 μm. 前記マイクロポーラス構造の薄板状に成形された前記陽極及び前記陰極の気孔率が、70%~85%の範囲にある請求項1又は請求項2に記載の陽極及び陰極の製造方法 3. The method for producing an anode and a cathode according to claim 1, wherein the anode and the cathode molded into thin plates of the microporous structure have a porosity in the range of 70% to 85%. 前記マイクロポーラス構造の薄板に成形された前記陽極及び前記陰極の密度が、6.0g/cm~8.0g/cmの範囲にある請求項1ないし請求項3いずれかに記載の陽極及び陰極の製造方法


The anode and the cathode according to any one of claims 1 to 3, wherein the density of the anode and the cathode molded into the microporous thin plate is in the range of 6.0 g/cm 2 to 8.0 g/cm 2 . Cathode manufacturing method .


JP2018223296A 2018-11-29 2018-11-29 Manufacturing method for anode and cathode of electrolyzer Active JP7262739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018223296A JP7262739B2 (en) 2018-11-29 2018-11-29 Manufacturing method for anode and cathode of electrolyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018223296A JP7262739B2 (en) 2018-11-29 2018-11-29 Manufacturing method for anode and cathode of electrolyzer

Publications (2)

Publication Number Publication Date
JP2020084291A JP2020084291A (en) 2020-06-04
JP7262739B2 true JP7262739B2 (en) 2023-04-24

Family

ID=70906708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018223296A Active JP7262739B2 (en) 2018-11-29 2018-11-29 Manufacturing method for anode and cathode of electrolyzer

Country Status (1)

Country Link
JP (1) JP7262739B2 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007504624A (en) 2003-09-03 2007-03-01 サイミックス テクノロジーズ, インコーポレイテッド Platinum-nickel-iron fuel cell catalyst
JP2008016338A (en) 2006-07-06 2008-01-24 Toyota Motor Corp Fuel cell, porous platinum sheet, and manufacturing method of fuel cell
JP2009102669A (en) 2007-10-19 2009-05-14 Fuji Electric Retail Systems Co Ltd Electrode for electrolysis and manufacturing method therefor
JP2010505043A (en) 2006-09-29 2010-02-18 モット コーポレイション Sinter bonded porous metal coating
JP2010065283A (en) 2008-09-11 2010-03-25 Dainippon Printing Co Ltd Catalyst layer paste composition, catalyst layer with transfer substrate, electrode of electrolytic cell for hydrogen generation and method for manufacturing the electrode, membrane catalyst layer assembly, electrolytic cell for hydrogen generation, and method for manufacturing the cell
JP2011092940A (en) 2010-12-27 2011-05-12 Furukawa Electric Co Ltd:The Cathode electrode catalyst for fuel cell and fuel cell using the same
JP2014159012A (en) 2013-02-20 2014-09-04 Tokyo Metropolitan Univ Catalyzer and method for manufacturing the same
JP2017010738A (en) 2015-06-20 2017-01-12 株式会社健明 Electrode material for fuel cell, manufacturing method therefor, and fuel cell
JP2017098004A (en) 2015-11-20 2017-06-01 株式会社健明 Electrode material for fuel cell and method of manufacturing the same
JP2017095746A (en) 2015-11-20 2017-06-01 鈴木 健治 Hydrogen generator and hot-water feed system
JP2018510262A (en) 2015-02-09 2018-04-12 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Reduction method and electrolysis system for electrochemical use of carbon dioxide
JP2018522365A (en) 2015-10-22 2018-08-09 コーチョアン リン Fuel cell electrode material and apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55158287A (en) * 1979-05-24 1980-12-09 Asahi Glass Co Ltd Electrolysis method of alkali chloride

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007504624A (en) 2003-09-03 2007-03-01 サイミックス テクノロジーズ, インコーポレイテッド Platinum-nickel-iron fuel cell catalyst
JP2008016338A (en) 2006-07-06 2008-01-24 Toyota Motor Corp Fuel cell, porous platinum sheet, and manufacturing method of fuel cell
JP2010505043A (en) 2006-09-29 2010-02-18 モット コーポレイション Sinter bonded porous metal coating
JP2009102669A (en) 2007-10-19 2009-05-14 Fuji Electric Retail Systems Co Ltd Electrode for electrolysis and manufacturing method therefor
JP2010065283A (en) 2008-09-11 2010-03-25 Dainippon Printing Co Ltd Catalyst layer paste composition, catalyst layer with transfer substrate, electrode of electrolytic cell for hydrogen generation and method for manufacturing the electrode, membrane catalyst layer assembly, electrolytic cell for hydrogen generation, and method for manufacturing the cell
JP2011092940A (en) 2010-12-27 2011-05-12 Furukawa Electric Co Ltd:The Cathode electrode catalyst for fuel cell and fuel cell using the same
JP2014159012A (en) 2013-02-20 2014-09-04 Tokyo Metropolitan Univ Catalyzer and method for manufacturing the same
JP2018510262A (en) 2015-02-09 2018-04-12 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Reduction method and electrolysis system for electrochemical use of carbon dioxide
JP2017010738A (en) 2015-06-20 2017-01-12 株式会社健明 Electrode material for fuel cell, manufacturing method therefor, and fuel cell
JP2018522365A (en) 2015-10-22 2018-08-09 コーチョアン リン Fuel cell electrode material and apparatus
JP2017098004A (en) 2015-11-20 2017-06-01 株式会社健明 Electrode material for fuel cell and method of manufacturing the same
JP2017095746A (en) 2015-11-20 2017-06-01 鈴木 健治 Hydrogen generator and hot-water feed system

Also Published As

Publication number Publication date
JP2020084291A (en) 2020-06-04

Similar Documents

Publication Publication Date Title
US9023549B2 (en) Gas diffusion electrode
JP5178959B2 (en) Oxygen gas diffusion cathode, electrolytic cell using the same, chlorine gas production method, and sodium hydroxide production method
US20030068544A1 (en) Bifunctional catalytic electrode
Park et al. Direct fabrication of gas diffusion cathode by pulse electrodeposition for proton exchange membrane water electrolysis
JP2017179601A (en) Separator for electrolytic cells, electrolytic cell, electrochemical reduction device, and method for producing hydrogenated body of aromatic hydrocarbon compound
WO2018037774A1 (en) Cathode, electrolysis cell for producing organic hydride, and organic hydride production method
WO2019244840A1 (en) Electrode
US20200080212A1 (en) Organic hydride production device
JP7171030B2 (en) Manufacturing method for anode and cathode of electrolyzer
WO2020080530A1 (en) Electrode and electrode manufacturing method
JP7262739B2 (en) Manufacturing method for anode and cathode of electrolyzer
JP7199080B2 (en) Electrolyzer and electrode manufacturing method
JP7281157B2 (en) Polymer electrolyte fuel cell and electrode manufacturing method
JP7411920B2 (en) Method for manufacturing anode and cathode of electrolyzer
JP7179314B2 (en) Manufacturing method for anode and cathode of electrolyzer
JP7235284B2 (en) polymer electrolyte fuel cell
JP2020164933A (en) Electrolysis apparatus
JP7193109B2 (en) Electrode and electrode manufacturing method
JP7141695B2 (en) Manufacturing method for anode and cathode of electrolyzer
JP2020140843A (en) Electrode and method for manufacturing the same
JP2020087812A (en) Electrode and electrode manufacturing method
JP2020167041A (en) Electrode and manufacturing method thereof
JP2020064786A (en) Polymer electrolyte fuel cell
JP2020035651A (en) Solid polymer fuel cell
JP2020002397A (en) Electrolysis apparatus and electrode manufacturing method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200617

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210512

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230405

R150 Certificate of patent or registration of utility model

Ref document number: 7262739

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150