JP2020084291A - Electrolyzer - Google Patents

Electrolyzer Download PDF

Info

Publication number
JP2020084291A
JP2020084291A JP2018223296A JP2018223296A JP2020084291A JP 2020084291 A JP2020084291 A JP 2020084291A JP 2018223296 A JP2018223296 A JP 2018223296A JP 2018223296 A JP2018223296 A JP 2018223296A JP 2020084291 A JP2020084291 A JP 2020084291A
Authority
JP
Japan
Prior art keywords
cathode
anode
fine powder
metal
platinum group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018223296A
Other languages
Japanese (ja)
Other versions
JP7262739B2 (en
Inventor
正己 奥山
Masami Okuyama
正己 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Graviton KK
Original Assignee
Graviton KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Graviton KK filed Critical Graviton KK
Priority to JP2018223296A priority Critical patent/JP7262739B2/en
Publication of JP2020084291A publication Critical patent/JP2020084291A/en
Application granted granted Critical
Publication of JP7262739B2 publication Critical patent/JP7262739B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

To provide an electrolyzer provided with an anode and a cathode having excellent catalytic activity regardless of a low platinum group metal content, capable of efficiently performing electrolysis by using the anode and the cathode, and generating a large amount of hydrogen gas in a short time.SOLUTION: An anode 11 and a cathode 12 forming an electrolyzer 10 are formed of at least one kind of a small amount of platinum group metal selected from various platinum group metals and at least two kinds of transition metals selected from various transition metals. A prescribed pore formation material is added to a metal fine powder mixture obtained by uniformly mixing and dispersing platinum group metal fine powders obtained by finely pulverizing the selected at least one kind of platinum group metal and transition metal fine powders obtained by pulverizing the selected at least two kinds of transition metals, and a prescribed binder, the metal fine powder mixture added with the pore formation material is molded into a sheet shape with a prescribed area, and the metal fine powder molding molded into the sheet shape with the prescribed area is degreased and sintered so as to be sheet-shaped electrodes with a microporous structure formed with many fine pores.SELECTED DRAWING: Figure 1

Description

本発明は、電気を利用して所定の水溶液を化学分解する電気分解装置に関する。 The present invention relates to an electrolyzer that chemically decomposes a predetermined aqueous solution using electricity.

反応管と、反応管内に収容された触媒体と、流体入口及び流体出口を有する筒状体とを備え、流体入口と流体出口とが筒状体の内部を流路として互いに連通し、反応管が流路内に配置され、触媒体が軸線を反応管の長手方向に平行にする向きに反応管に挿入され、触媒体が一定の軸線に沿って延在する基材と脱水素触媒を含む脱水素触媒層とを備え、基材が軸線を中心として回転する方向にねじれながら軸線に沿って延在する板状部を含み、板状部の表面上に脱水素触媒層が設けられている水素発生装置が開示されている(特許文献1参照)。 A reaction tube, a catalyst body housed in the reaction tube, and a tubular body having a fluid inlet and a fluid outlet, wherein the fluid inlet and the fluid outlet communicate with each other using the interior of the tubular body as a flow path. Is disposed in the flow channel, the catalyst body is inserted into the reaction tube in a direction in which the axis is parallel to the longitudinal direction of the reaction tube, and the catalyst body includes a base material extending along a certain axis and a dehydrogenation catalyst. A dehydrogenation catalyst layer, the base material includes a plate-shaped portion extending along the axis while twisting in a direction of rotation about the axis, and the dehydrogenation catalyst layer is provided on the surface of the plate-shaped portion. A hydrogen generator is disclosed (see Patent Document 1).

特開2016−55251号公報JP, 2016-55251, A

前記特許文献1に開示の水素発生装置の触媒体は、金属の成形体の表面を陽極酸化して金属の酸化物を含む金属酸化物膜を形成する工程と、金属酸化物膜に脱水素触媒を担持させる工程とから作られる。金属酸化物膜に脱水素触媒を担持させる工程では、 ヘキサクロロ白金(IV)酸イオンを含む酸性の塩化白金水溶液を金属酸化物膜と接触させることによって金属酸化物膜にヘキサクロロ白金(IV)酸イオンを付着させるとともに、ヘキサクロロ白金(IV)酸イオンが付着している金属酸化物膜を焼成して金属酸化物膜に脱水素触媒として白金を担持させる。 The catalyst body of the hydrogen generator disclosed in Patent Document 1 includes a step of forming a metal oxide film containing a metal oxide by anodizing the surface of a metal molded body, and a dehydrogenation catalyst on the metal oxide film. And the step of supporting. In the step of supporting the dehydrogenation catalyst on the metal oxide film, hexachloroplatinate (IV) acid ions are added to the metal oxide film by bringing an acidic platinum chloride aqueous solution containing hexachloroplatinate (IV) ion into contact with the metal oxide film. And the metal oxide film to which hexachloroplatinate (IV) acid ions are attached is baked to support platinum as a dehydrogenation catalyst on the metal oxide film.

電気分解装置の陽極及び陰極として各種の白金担持カーボンが広く利用されている。しかし、白金は、貴金属であり、その生産量に限りがある希少な資源であることから、その使用を抑えることが求められている。さらに、今後の電気分解装置の普及に向けて高価な白金の含有量を極力少なくするとともに、少ない量の白金とともに白金以外の金属を使用した陽極や陰極の開発が求められている。 Various platinum-supporting carbons are widely used as the anode and cathode of the electrolyzer. However, since platinum is a precious metal and a rare resource with a limited production amount, it is required to suppress its use. Further, in order to popularize electrolysis devices in the future, it is required to reduce the content of expensive platinum as much as possible and to develop an anode and a cathode using a metal other than platinum together with a small amount of platinum.

本発明の目的は、白金族金属の含有量を極力少なくすることができ、白金族金属の含有量が少ないにもかかわらず、優れた触媒活性(触媒作用)を有する陽極及び陰極を備え、その陽極及び陰極を使用して電気分解を効率よく行うことができ、短時間に多量の水素ガスを発生させることができる電気分解装置を提供することにある。 An object of the present invention is to provide a positive electrode and a negative electrode having excellent catalytic activity (catalytic action) even though the platinum group metal content can be minimized and the platinum group metal content is low. An object of the present invention is to provide an electrolyzer which can efficiently perform electrolysis using an anode and a cathode and can generate a large amount of hydrogen gas in a short time.

前記課題を解決するための本発明の電気分解装置は、陽極及び陰極と、陽極と陰極との間に位置してそれら極を接合する電極接合体膜とを備え、陽極及び陰極が、各種の白金族金属から選択された少なくとも1種類の少量の白金族金属と、各種の遷移金属から選択された少なくとも2種類の遷移金属とから形成され、陽極及び陰極は、選択された少なくとも1種類の白金族金属を微粉砕した白金族金属微粉体と選択された少なくとも2種類の遷移金属を微粉砕した遷移金属微粉体と所定のバインダーとを均一に混合・分散した金属微粉体混合物に所定の気孔形成材を添加し、気孔形成材を添加した金属微粉体混合物を所定面積の薄板状に成形し、所定面積の薄板状に成形した金属微粉体成形物を脱脂・焼結することで、多数の微細な気孔が形成されたマイクロポーラス構造の薄板状電極であり、マイクロポーラス構造の薄板状に成形された陽極及び陰極に電気を通電し、陽極で酸化反応を起こすとともに陰極で還元反応を起こすことで所定の水溶液を化学分解することを特徴とする。 The electrolyzer of the present invention for solving the above-mentioned problems includes an anode and a cathode, and an electrode assembly film that is located between the anode and the cathode and joins the electrodes, and the anode and the cathode are various. The anode and the cathode are made of at least one small amount of platinum group metal selected from the platinum group metals and at least two kinds of transition metals selected from various transition metals, and the anode and the cathode are made of at least one selected platinum group. Formation of predetermined pores in a fine metal powder mixture in which a platinum group metal fine powder obtained by finely pulverizing a group metal and a transition metal fine powder obtained by finely pulverizing at least two selected transition metals and a predetermined binder are uniformly mixed and dispersed Material is added and the fine pore metal mixture is added to form a thin plate with a predetermined area, and the fine metal powder formed into a thin plate with a predetermined area is degreased and sintered to produce a large number of fine particles. It is a thin plate electrode of microporous structure with various pores, and electricity is applied to the thin plate shaped anode and cathode of microporous structure, by causing an oxidation reaction at the anode and a reduction reaction at the cathode. It is characterized by chemically decomposing a predetermined aqueous solution.

本発明の電気分解装置の一例として、陽極及び前記陰極では、選択された少なくとも2種類の遷移金属の仕事関数の合成仕事関数が白金族金属の仕事関数に近似するように、各種の遷移金属の中から少なくとも2種類の遷移金属が選択されている。 As an example of the electrolyzer of the present invention, in the anode and the cathode, various transition metals are selected so that the composite work function of the work functions of at least two selected transition metals approximates to the work function of the platinum group metal. At least two kinds of transition metals are selected from among them.

本発明の電気分解装置の他の一例としては、陽極及び陰極に形成された気孔の平均径が、1〜100μmの範囲にある。 As another example of the electrolyzer of the present invention, the average diameter of the pores formed in the anode and the cathode is in the range of 1 to 100 μm.

本発明の電気分解装置の他の一例としては、陽極の厚み寸法と陰極の厚み寸法とが、0.03mm〜1.5mmの範囲にある。 As another example of the electrolyzer of the present invention, the thickness dimension of the anode and the thickness dimension of the cathode are in the range of 0.03 mm to 1.5 mm.

本発明の電気分解装置の他の一例としては、白金族金属が、Pt(白金)であり、遷移金属が、Ni(ニッケル)とFe(鉄)とであり、陽極及び陰極では、Niの仕事関数とFeの仕事関数との合成仕事関数が白金族金属の仕事関数に近似するように、Ptの白金族金属微粉体の金属微粉体混合物の全重量に対する重量比とNiの遷移金属微粉体の金属微粉体混合物の全重量に対する重量比とFeの遷移金属微粉体の金属微粉体混合物の全重量に対する重量比とが定められている。 As another example of the electrolyzer of the present invention, the platinum group metal is Pt (platinum), the transition metals are Ni (nickel) and Fe (iron), and the work of Ni in the anode and the cathode. Ratio of the Pt platinum group metal fine powder to the total weight of the metal fine powder mixture and the Ni transition metal fine powder so that the composite work function of the function and the work function of Fe approximates the work function of the platinum group metal. A weight ratio to the total weight of the metal fine powder mixture and a weight ratio of Fe transition metal fine powder to the total weight of the metal fine powder mixture are defined.

本発明の電気分解装置の他の一例としては、Ptの白金族金属微粉体の金属微粉体混合物の全重量に対する重量比が、4〜10%の範囲、Niの遷移金属微粉体の金属微粉体混合物の全重量に対する重量比が、45%〜48%の範囲、Feの遷移金属微粉体の金属微粉体混合物の全重量に対する重量比が、45%〜48%の範囲にある。 As another example of the electrolyzer of the present invention, the weight ratio of the platinum group metal fine powder of Pt to the total weight of the metal fine powder mixture is in the range of 4 to 10%, and the metal fine powder of the transition metal fine powder of Ni is The weight ratio to the total weight of the mixture is in the range of 45% to 48%, and the weight ratio of the transition metal fine powder of Fe to the total weight of the metal fine powder mixture is in the range of 45% to 48%.

本発明の電気分解装置の他の一例としては、マイクロポーラス構造の薄板状に成形された陽極及び陰極の気孔率が、70%〜85%の範囲にある。 As another example of the electrolyzer of the present invention, the porosity of the thin plate-shaped anode and cathode having a microporous structure is in the range of 70% to 85%.

本発明の電気分解装置の他の一例としては、マイクロポーラス構造の薄板に成形された陽極及び陰極の密度が、6.0g/cm〜8.0g/cmの範囲にある。 As another example of the electrolytic apparatus of the present invention, the anode and the density of the cathode which is formed into a thin microporous structure is in the range of 6.0g / cm 2 ~8.0g / cm 2 .

本発明の電気分解装置の他の一例としては、白金族金属の白金族金属微粉体の粒径と遷移金属の遷移金属微粉体の粒径とが、1μm〜100μmの範囲にある。 As another example of the electrolyzer of the present invention, the particle size of the platinum group metal fine powder of the platinum group metal and the particle size of the transition metal fine powder of the transition metal are in the range of 1 μm to 100 μm.

本発明に係る電気分解装置によれば、それに使用される陽極及び陰極が、各種の白金族金属から選択された少なくとも1種類の少量の白金族金属と各種の遷移金属から選択された少なくとも2種類の遷移金属とから形成され、
選択された少なくとも1種類の白金族金属を微粉砕した白金族金属微粉体と選択された少なくとも2種類の遷移金属を微粉砕した遷移金属微粉体と所定のバインダーとを均一に混合・分散した金属微粉体混合物に所定の気孔形成材を添加し、気孔形成材を添加した金属微粉体混合物を所定面積の薄板状に成形し、所定面積の薄板状に成形した金属微粉体成形物を脱脂・焼結することで、多数の微細な気孔が形成されたマイクロポーラス構造の薄板状電極であるから、白金族金属以外の遷移金属を使用することで、白金族金属の含有量を極力少なくすることができるとともに、白金族金属の触媒活性を利用するとともに遷移金属の触媒活性を利用した陽極及び陰極を使用して電気分解を効率よく行うことができ、短時間に多量の水素ガスを発生させることができる。
According to the electrolyzer according to the present invention, the anode and the cathode used therein are at least one small amount of platinum group metal selected from various platinum group metals and at least two types selected from various transition metals. Formed from a transition metal of
A metal in which a platinum group metal fine powder obtained by finely pulverizing at least one selected platinum group metal and a transition metal fine powder obtained by finely pulverizing at least two selected transition metals and a predetermined binder are uniformly mixed and dispersed. A predetermined pore-forming material is added to the fine powder mixture, the metal fine-powder mixture containing the pore-forming material is molded into a thin plate with a predetermined area, and the metal fine powder molded product with a thin plate with a predetermined area is degreased and baked. By binding, since it is a thin plate electrode having a microporous structure in which a large number of fine pores are formed, by using a transition metal other than the platinum group metal, the content of the platinum group metal can be minimized as much as possible. In addition, it is possible to efficiently perform electrolysis using the anode and the cathode that utilize the catalytic activity of the platinum group metal and the catalytic activity of the transition metal, and to generate a large amount of hydrogen gas in a short time. it can.

陽極及び陰極において、選択された少なくとも2種類の遷移金属の仕事関数の合成仕事関数が白金族金属の仕事関数に近似するように、各種の遷移金属の中から少なくとも2種類の遷移金属が選択されている電気分解装置は、合成仕事関数が白金族金属の仕事関数に近似するように各種の遷移金属の中から少なくとも2種類の遷移金属が選択されているから、白金族金属の含有量が少ないにもかかわらず、陽極及び陰極が白金を担持した電極と略同一の仕事関数を備え、陽極及び陰極が白金を担持した電極と略同様の触媒活性(触媒作用)を発揮し、選択された少なくとも2種類の遷移金属を含むとともに優れた触媒活性を有する陽極及び陰極を使用して電気分解を効率よく行うことができ、短時間に多量の水素ガスを発生させることができる。 At least two kinds of transition metals are selected from among various kinds of transition metals so that the composite work functions of the work functions of the selected at least two kinds of transition metals are close to the work functions of the platinum group metal in the anode and the cathode. In the electrolyzer, at least two kinds of transition metals are selected from among various kinds of transition metals so that the synthetic work function approximates the work function of platinum group metals, and thus the content of platinum group metals is small. Nevertheless, the anode and the cathode have substantially the same work function as the platinum-supported electrode, and the anode and the cathode exhibit substantially the same catalytic activity (catalytic action) as the platinum-supported electrode, and at least the selected Electrolysis can be efficiently carried out using an anode and a cathode containing two kinds of transition metals and having excellent catalytic activity, and a large amount of hydrogen gas can be generated in a short time.

陽極及び陰極に形成された気孔の平均径が1〜100μmの範囲にある電気分解装置は、陽極及び陰極に形成された気孔の平均径が1〜100μmの範囲にあるから、陽極及び陰極の単位体積当たりに多数の気孔が形成され、陽極及び陰極の比表面積を大きくすることができ、それら気孔を液体が通流することで液体を陽極及び陰極の接触面に広範囲に接触させることができ、陽極及び陰極の触媒作用を最大限に利用することができる。電気分解装置は、平均径が1〜100μmの範囲の気孔を有するとともに優れた触媒活性を有する陽極及び陰極を使用して電気分解を効率よく行うことができ、短時間に多量の水素ガスを発生させることができる。 Since the electrolysis apparatus in which the average diameter of the pores formed in the anode and the cathode is in the range of 1 to 100 μm, the average diameter of the pores formed in the anode and the cathode is in the range of 1 to 100 μm. A large number of pores are formed per volume, the specific surface area of the anode and the cathode can be increased, and the liquid can be brought into wide contact with the contact surfaces of the anode and the cathode by allowing the liquid to flow through the pores. The catalysis of the anode and the cathode can be fully utilized. The electrolyzer can efficiently perform electrolysis by using an anode and a cathode having an average diameter in the range of 1 to 100 μm and having excellent catalytic activity, and generate a large amount of hydrogen gas in a short time. Can be made

陽極の厚み寸法と陰極の厚み寸法とが0.03mm〜1.5mmの範囲にある電気分解装置は、陽極及び陰極の厚み寸法を前記範囲にすることで、陽極及び陰極の電気抵抗を小さくすることができ、陽極や陰極に電流をスムースに流すことができる。電気分解装置は、陽極及び陰極が白金族金属を担持した電極と略同様の触媒活性(触媒作用)を有するとともに、陽極及び陰極の電気抵抗が小さく、陽極及び陰極に電流がスムースに流れるから、優れた触媒活性を有するとともに電位抵抗が小さい陽極及び陰極を使用して電気分解を効率よく行うことができ、短時間に多量の水素ガスを発生させることができる。 The electrolysis device in which the thickness dimension of the anode and the thickness dimension of the cathode are in the range of 0.03 mm to 1.5 mm reduces the electrical resistance of the anode and the cathode by setting the thickness dimension of the anode and the cathode in the above range. Therefore, the current can be smoothly passed through the anode and the cathode. The electrolyzer has an anode and a cathode having substantially the same catalytic activity (catalyst action) as an electrode supporting a platinum group metal, and the electric resistance of the anode and the cathode is small, and a current flows smoothly through the anode and the cathode. Electrolysis can be efficiently performed using an anode and a cathode having excellent catalytic activity and low potential resistance, and a large amount of hydrogen gas can be generated in a short time.

白金族金属がPt(白金)であり、遷移金属がNi(ニッケル)とFe(鉄)とであり、Niの仕事関数とFeの仕事関数との合成仕事関数が白金族金属の仕事関数に近似するように、Ptの白金族金属微粉体の金属微粉体混合物の全重量に対する重量比とNiの遷移金属微粉体の金属微粉体混合物の全重量に対する重量比とFeの遷移金属微粉体の金属微粉体混合物の全重量に対する重量比とが定められている電気分解装置は、遷移金属の合成仕事関数が白金族金属の仕事関数に近似するように、金属微粉体混合物の全重量に対するPtの白金族金属微粉体の重量比や金属微粉体混合物の全重量に対するNiの遷移金属微粉体の重量比、金属微粉体混合物の全重量に対するFeの遷移金属微粉体の重量比が決定されているから、陽極や陰極が白金を担持した電極と略同一の仕事関数を備え、陽極や陰極が優れた触媒活性(触媒作用)を有し、陽極や陰極が白金を担持した電極と略同様の触媒活性(触媒作用)を発揮することで、その陽極及び陰極を使用して電気分解を効率よく行うことができ、短時間に多量の水素ガスを発生させることができる。電気分解装置は、陽極及び陰極がNi(ニッケル)とFe(鉄)とを含み、Pt(白金)の含有量が少ないから、陽極や陰極の材料費を低減させることができ、電気分解装置を廉価に作ることができるとともに、電気分解装置の運転コストを下げることができる。 The platinum group metal is Pt (platinum), the transition metals are Ni (nickel) and Fe (iron), and the combined work function of the work function of Ni and the work function of Fe is close to the work function of the platinum group metal. Thus, the weight ratio of Pt platinum group metal fine powder to the total weight of the metal fine powder mixture and the weight ratio of Ni transition metal fine powder to the total weight of the metal fine powder mixture and Fe transition metal fine powder to the metal fine powder The electrolysis apparatus, in which the weight ratio to the total weight of the body mixture is defined, is such that the composite work function of the transition metal approximates the work function of the platinum group metal, and the platinum group of Pt relative to the total weight of the fine metal powder mixture. Since the weight ratio of the metal fine powder, the weight ratio of the transition metal fine powder of Ni to the total weight of the metal fine powder mixture, and the weight ratio of the transition metal fine powder of Fe to the total weight of the metal fine powder mixture are determined, The cathode and the cathode have almost the same work function as the platinum-supported electrode, the anode and the cathode have excellent catalytic activity (catalysis), and the anode and the cathode have the same catalytic activity (catalyst) as the platinum-supported electrode. By exhibiting the action), electrolysis can be efficiently performed using the anode and the cathode, and a large amount of hydrogen gas can be generated in a short time. In the electrolyzer, since the anode and the cathode contain Ni (nickel) and Fe (iron) and the content of Pt (platinum) is small, the material cost of the anode and the cathode can be reduced. It can be manufactured at low cost and the operating cost of the electrolyzer can be reduced.

Ptの白金族金属微粉体の金属微粉体混合物の全重量に対する重量比が4〜10%の範囲、Niの遷移金属微粉体の金属微粉体混合物の全重量に対する重量比が45%〜48%の範囲、Feの遷移金属微粉体の金属微粉体混合物の全重量に対する重量比が45%〜48%の範囲にある電気分解装置は、合成仕事関数が白金族金属の仕事関数に近似するNi(ニッケル)とFe(鉄)とを選択するとともに、金属微粉体混合物の全重量に対するPtの白金族金属微粉体の重量比や金属微粉体混合物の全重量に対するNiの遷移金属微粉体の重量比、金属微粉体混合物の全重量に対するFeの遷移金属微粉体の重量比を前記範囲にすることで、Niの遷移金属微粉体とFeの遷移金属微粉体との仕事関数の合成仕事関数を白金族金属の仕事関数に近似させることができ、Ptの含有量が少ないにもかかわらず、陽極や陰極が優れた触媒活性(触媒作用)を有し、陽極や陰極が白金を担持した電極と略同様の触媒活性(触媒作用)を発揮することで、その陽極及び陰極を使用して電気分解を効率よく行うことができ、短時間に多量の水素ガスを発生させることができる。電気分解装置は、陽極及び陰極が前記重量比のNi(ニッケル)とFe(鉄)とを含み、金属微粉体混合物の全重量に対するPt(白金)の重量比が小さく、Pt(白金)の含有量が少ないから、陽極や陰極の材料費を低減させることができ、電気分解装置を廉価に作ることができるとともに、電気分解装置の運転コストを下げることができる。 The weight ratio of Pt platinum group metal fine powder to the total weight of the metal fine powder mixture is in the range of 4 to 10%, and the weight ratio of Ni transition metal fine powder to the total weight of the metal fine powder mixture is 45% to 48%. Range, the electrolysis device having a weight ratio of the transition metal fine powder of Fe to the total weight of the fine metal powder mixture in the range of 45% to 48% has a synthetic work function of Ni (nickel) close to that of a platinum group metal. ) And Fe (iron), the weight ratio of the platinum group metal fine powder of Pt to the total weight of the metal fine powder mixture, the weight ratio of the transition metal fine powder of Ni to the total weight of the metal fine powder mixture, and the metal By setting the weight ratio of the Fe transition metal fine powder to the total weight of the fine powder mixture within the above range, the synthetic work function of the work functions of the Ni transition metal fine powder and the Fe transition metal fine powder can be calculated as follows. A catalyst that can be approximated to a work function and has excellent catalytic activity (catalysis) in the anode and the cathode even though the Pt content is small, and the anode and the cathode are substantially the same as the platinum-supported electrode. By exhibiting the activity (catalytic action), electrolysis can be efficiently performed using the anode and the cathode, and a large amount of hydrogen gas can be generated in a short time. In the electrolyzer, the anode and the cathode include Ni (nickel) and Fe (iron) in the weight ratios described above, the weight ratio of Pt (platinum) to the total weight of the fine metal powder mixture is small, and Pt (platinum) is contained. Since the amount is small, the material cost of the anode and the cathode can be reduced, the electrolyzer can be manufactured at low cost, and the operating cost of the electrolyzer can be reduced.

マイクロポーラス構造の薄板状に成形された陽極及び陰極の気孔率が70%〜85%の範囲にある電気分解装置は、陽極及び陰極の気孔率を前記範囲にすることで、陽極及び陰極が多数の微細な気孔(通路孔)を有する多孔質(気孔の平均径1〜100μmのマイクロポーラス構造)に成形され、陽極及び陰極の比表面積を大きくすることができ、それら気孔を液体が通流しつつ液体を陽極や陰極のそれら気孔における接触面に広範囲に接触させることが可能となり、陽極や陰極が白金を担持した電極と略同様の触媒活性(触媒作用)を確実に発揮し、触媒機能を十分かつ確実に利用することが可能であって優れた触媒活性(触媒作用)を有する陽極及び陰極を使用して電気分解を効率よく行うことができ、短時間に多量の水素ガスを発生させることができる。 The electrolyzer in which the porosity of the anode and cathode formed in the shape of a microporous thin plate is in the range of 70% to 85%, a large number of anodes and cathodes can be obtained by adjusting the porosities of the anode and cathode to the above range. Is formed into a porous structure having fine pores (passage holes) (microporous structure having an average diameter of pores of 1 to 100 μm), the specific surface area of the anode and the cathode can be increased, and liquid flows through these pores. It is possible to bring the liquid into contact with the contact surfaces of the pores of the anode and cathode over a wide range, and the anode and cathode reliably exhibit the same catalytic activity (catalytic action) as the platinum-supported electrode, ensuring a sufficient catalytic function. In addition, it is possible to efficiently use the anode and the cathode, which can be reliably used and have excellent catalytic activity (catalyst action), to efficiently perform electrolysis, and to generate a large amount of hydrogen gas in a short time. it can.

マイクロポーラス構造の薄板に成形された陽極及び陰極の密度が6.0g/cm〜8.0g/cmの範囲にある電気分解装置は、陽極及び陰極の密度を前記範囲にすることで、陽極及び陰極が多数の微細な気孔(通路孔)を有する多孔質(気孔の平均径1〜100μmのマイクロポーラス構造)に成形され、陽極及び陰極の比表面積を大きくすることができ、それら気孔を液体が通流しつつ液体を陽極や陰極のそれら気孔における接触面に広範囲に接触させることが可能となり、陽極や陰極が白金を担持した電極と略同様の触媒活性(触媒作用)を確実に発揮し、触媒機能を十分かつ確実に利用することが可能であって優れた触媒活性(触媒作用)を有する陽極及び陰極を使用して電気分解を効率よく行うことができ、短時間に多量の水素ガスを発生させることができる。 Micro density of the shaped anode and cathode sheet of the porous structure electrolyzer in the range of 6.0g / cm 2 ~8.0g / cm 2, by making the density of the anode and cathode to said range, The anode and the cathode are molded into a porous structure having a large number of fine pores (passage holes) (microporous structure having an average diameter of the pores of 1 to 100 μm), and the specific surface area of the anode and the cathode can be increased. It is possible to bring the liquid into wide contact with the contact surfaces of the pores of the anode and cathode while the liquid is flowing, and the anode and cathode reliably exhibit the same catalytic activity (catalytic action) as the electrode supporting platinum. , The catalytic function can be used sufficiently and reliably, and the electrolysis can be efficiently performed using the anode and the cathode having excellent catalytic activity (catalytic action), and a large amount of hydrogen gas can be obtained in a short time. Can be generated.

白金族金属の白金族金属微粉体の粒径と遷移金属の遷移金属微粉体の粒径とが1μm〜100μmの範囲にある電気分解装置は、白金族金属の白金族金属微粉体や遷移金属の遷移金属微粉体の粒径を前記範囲にすることで、陽極及び陰極が多数の微細な気孔(通路孔)を有する多孔質(気孔の平均径1〜100μmのマイクロポーラス構造)に成形され、陽極及び陰極の比表面積を大きくすることができ、それら気孔を液体が通流しつつ液体を陽極や陰極のそれら気孔における接触面に広範囲に接触させることが可能となり、陽極や陰極が白金を担持した電極と略同様の触媒活性(触媒作用)を確実に発揮し、触媒機能を十分かつ確実に利用することが可能であって優れた触媒活性(触媒作用)を有する陽極及び陰極を使用して電気分解を効率よく行うことができ、短時間に多量の水素ガスを発生させることができる。 An electrolysis apparatus in which the particle size of the platinum group metal fine powder of the platinum group metal and the particle size of the transition metal fine powder of the transition metal are in the range of 1 μm to 100 μm is used for the electrolysis device of the platinum group metal of the platinum group metal and the transition metal. By setting the particle size of the transition metal fine powder within the above range, the anode and the cathode are formed into a porous structure having a large number of fine pores (passage holes) (microporous structure having an average pore diameter of 1 to 100 μm), And, the specific surface area of the cathode can be increased, and it becomes possible to bring the liquid into wide contact with the contact surface of the pores of the anode and the cathode while the liquid flows through the pores, and the anode or the cathode carries platinum. Electrolysis using an anode and a cathode that can exhibit catalytic activity (catalyst action) almost the same as above, and can fully and surely utilize the catalytic function and has excellent catalytic activity (catalyst action). Can be efficiently performed, and a large amount of hydrogen gas can be generated in a short time.

一例として示す電気分解装置の側面図。The side view of the electrolysis apparatus shown as an example. 一例として示す陽極及び陰極の斜視図。The perspective view of the anode and the cathode shown as an example. 陽極及び陰極の一例として示す部分拡大図。The elements on larger scale shown as an example of an anode and a cathode. 電気分解装置を使用した電気分解の一例を説明する図。The figure explaining an example of electrolysis using an electrolyzer. 電気分解装置を利用した水素ガス発生システムの一例を示す図。The figure which shows an example of the hydrogen gas generation system using an electrolyzer. 空気極(陽極)及び燃料極(陰極)を使用した固体高分子形燃料電池の側面図。FIG. 3 is a side view of a polymer electrolyte fuel cell using an air electrode (anode) and a fuel electrode (cathode). 陽極及び陰極の起電圧試験の結果を示す図。The figure which shows the result of the electromotive voltage test of an anode and a cathode. 陽極及び陰極のI−V特性試験の結果を示す図。The figure which shows the result of the IV characteristic test of an anode and a cathode. 陽極及び陰極の製造方法を説明する図。6A to 6C are views illustrating a method of manufacturing an anode and a cathode.

一例として示す電気分解装置10の側面図である図1等の添付の図面を参照し、本発明に係る電気分解装置及び電気分解装置に使用する陽極及び陰極の製造方法の詳細を説明すると、以下のとおりである。なお、図2は、一例として示す陽極11及び陰極12の斜視図であり、図3は、陽極11及び陰極12の一例として示す部分拡大図である。図2では、厚み方向を矢印Xで示し、径方向を矢印Yで示す。 With reference to the accompanying drawings such as FIG. 1 which is a side view of the electrolysis apparatus 10 shown as an example, the details of the electrolysis apparatus according to the present invention and a method for manufacturing an anode and a cathode used in the electrolysis apparatus will be described below. It is as follows. 2 is a perspective view of the anode 11 and the cathode 12 shown as an example, and FIG. 3 is a partially enlarged view showing the anode 11 and the cathode 12 as an example. In FIG. 2, the thickness direction is indicated by arrow X, and the radial direction is indicated by arrow Y.

電気分解装置10(水素ガス発生装置)は、陽極11(アノード)と、陰極12(カソード)と、陽極11及び陰極12の間に位置(介在)する固体高分子電解質膜13(電極接合体膜)(スルホン酸基を有するフッ素系イオン交換膜)と、陽極給電部材14及び陰極給電部材15と、陽極用貯水槽16及び陰極用貯水槽17と、陽極主電極18及び陰極主電極19とから形成されている。 The electrolyzer 10 (hydrogen gas generator) includes an anode 11 (anode), a cathode 12 (cathode), and a solid polymer electrolyte membrane 13 (electrode assembly membrane) located (interposed) between the anode 11 and the cathode 12. ) (Fluorine-based ion exchange membrane having sulfonic acid group), anode power supply member 14 and cathode power supply member 15, anode water storage tank 16 and cathode water storage tank 17, anode main electrode 18 and cathode main electrode 19 Has been formed.

電気分解装置10は、陽極11及び陰極12に電気を通電し、陽極11で酸化反応を起こすとともに陰極12で還元反応を起こすことで所定の水溶液を化学分解する。電気分解装置10では、陽極11及び陰極12、固体高分子電解質膜13が厚み方向へ重なり合って一体化し、膜/電極接合体20 (Membrane Electrode Assembly, MEA)を構成し、膜/電極接合体20を陽極給電部材14と陰極給電部材15とが挟み込んでいる。膜/電極接合体20では、ホットプレスによって固体高分子電解質膜13の一方の面に陽極11の面が隙間なく密着し、固体高分子電解質膜13の他方の面に陰極12の面が隙間なく密着している。固体高分子電解質膜13は、プロトン導電性があり、電子導電性がない。 The electrolyzer 10 energizes the anode 11 and the cathode 12 to cause an oxidation reaction at the anode 11 and a reduction reaction at the cathode 12, thereby chemically decomposing a predetermined aqueous solution. In the electrolyzer 10, the anode 11 and the cathode 12 and the solid polymer electrolyte membrane 13 are integrated in the thickness direction by overlapping and forming a membrane/electrode assembly 20 (Membrane Electrode Assembly, MEA). Is sandwiched between the anode power feeding member 14 and the cathode power feeding member 15. In the membrane/electrode assembly 20, the surface of the anode 11 is closely attached to one surface of the solid polymer electrolyte membrane 13 by hot pressing and the surface of the cathode 12 is closely attached to the other surface of the solid polymer electrolyte membrane 13 by hot pressing. It is in close contact. The solid polymer electrolyte membrane 13 has proton conductivity and no electron conductivity.

陽極給電部材14は、陽極11の外側に位置して陽極11に密着し、陽極11に+の電流を給電する。陽極用貯水槽16は、陽極給電部材14の外側に位置して陽極給電部材14に密着している。陽極主電極18は、陽極用貯水槽16の外側に位置して陽極給電部材14に+の電流を給電する。陰極給電部材15は、陰極12の外側に位置して陰極12に密着し、陰極12に−の電流を給電する。陰極用貯水槽17は、陰極給電部材15の外側に位置して陰極給電部材15に密着している。陰極主電極19は、陰極用貯水槽17の外側に位置して陰極給電部材15に−の電流を給電する。 The anode power supply member 14 is located outside the anode 11 and is in close contact with the anode 11, and supplies a positive current to the anode 11. The anode water storage tank 16 is located outside the anode power feeding member 14 and is in close contact with the anode power feeding member 14. The anode main electrode 18 is located outside the anode water storage tank 16 and supplies a positive current to the anode power supply member 14. The cathode power supply member 15 is located outside the cathode 12 and is in close contact with the cathode 12, and supplies a negative current to the cathode 12. The cathode water storage tank 17 is located outside the cathode power supply member 15 and is in close contact with the cathode power supply member 15. The cathode main electrode 19 is located outside the cathode water storage tank 17 and supplies negative current to the cathode power supply member 15.

電気分解装置10(水素ガス発生装置)に使用する陽極11及び陰極12は、前面21及び後面22を有するとともに、所定の面積及び所定の厚み寸法L1を有し、その平面形状が四角形に成形されている。陽極11及び陰極12は、多数の微細な気孔23(連続かつ独立通路孔)を有する多孔質(マイクロポーラス構造)の薄板状電極24(発泡金属電極)である。気孔23には、水溶液(液体)が通流する。なお、陽極11や陰極12の平面形状に特に制限はなく、四角形の他に、その用途にあわせて円形や楕円形等の他のあらゆる平面形状に成形することができる。 The anode 11 and the cathode 12 used in the electrolyzer 10 (hydrogen gas generator) have a front surface 21 and a rear surface 22, have a predetermined area and a predetermined thickness dimension L1, and have a planar shape formed into a quadrangle. ing. The anode 11 and the cathode 12 are porous (microporous structure) thin plate electrodes 24 (foamed metal electrodes) having a large number of fine pores 23 (continuous and independent passage holes). An aqueous solution (liquid) flows through the pores 23. The planar shapes of the anode 11 and the cathode 12 are not particularly limited, and in addition to the quadrangle, any other planar shape such as a circle or an ellipse can be formed according to the application.

陽極11及び陰極12は、粉状に加工された白金族金属49と、粉状に加工された遷移金属50の中から選択された少なくとも2種類の遷移金属50とから形成されている。白金族金属49としては、白金(Pt)、パラジウム(Pb)、ロジウム(Rh)、ルテニウム(Ru)、イリジウム(Ir)、オスミウム(Os)を使用することができる。白金族金属49には、それらのうちの少なくとも1種類が使用される。遷移金属50としては、3d遷移金属や4d遷移金属が使用される。3d遷移金属には、Ti(チタン)、Cr(クロム)、Mn(マンガン)、Fe(鉄)、Co(コバルト)、Ni(ニッケル)、Cu(銅)、Zn(亜鉛)が使用される。4d遷移金属には、Nb(ニオブ)、Mo(モリブデン)、Ag(銀)が使用される。遷移金属50には、それらのうちの少なくとも2種類が使用される。 The anode 11 and the cathode 12 are formed of a powder-processed platinum group metal 49 and at least two kinds of transition metals 50 selected from powder-processed transition metals 50. As the platinum group metal 49, platinum (Pt), palladium (Pb), rhodium (Rh), ruthenium (Ru), iridium (Ir), osmium (Os) can be used. For the platinum group metal 49, at least one of them is used. As the transition metal 50, 3d transition metal or 4d transition metal is used. Ti (titanium), Cr (chromium), Mn (manganese), Fe (iron), Co (cobalt), Ni (nickel), Cu (copper), and Zn (zinc) are used as the 3d transition metal. Nb (niobium), Mo (molybdenum), and Ag (silver) are used as the 4d transition metal. At least two of them are used for the transition metal 50.

陽極11及び陰極12では、選択された少なくとも2種類の遷移金属50の仕事関数(物質から電子を取り出すのに必要なエネルギー)の合成仕事関数が白金族金属の仕事関数に近似するように、遷移金属50の中から少なくとも2種類の遷移金属50が選択されている。白金の仕事関数は、5.65(eV)である。Tiの仕事関数は、4.14(eV)、Crの仕事関数は、4.5(eV)、Mnの仕事関数は、4.1(eV)、Feの仕事関数は、4.67(eV)、Coの仕事関数は、5.0(eV)、Niの仕事関数は、5.22(eV)、Cuの仕事関数は、5.10(eV)、Znの仕事関数は、3.63(eV)、Nbの仕事関数は、4.01(eV)、Moの仕事関数は、4.45(eV)、Agの仕事関数は、4.31(eV)である。 In the anode 11 and the cathode 12, transitions are made so that the composite work function of the work functions (energy required to extract electrons from the substance) of at least two kinds of selected transition metals 50 approximates the work function of the platinum group metal. At least two kinds of transition metals 50 are selected from the metals 50. The work function of platinum is 5.65 (eV). The work function of Ti is 4.14 (eV), the work function of Cr is 4.5 (eV), the work function of Mn is 4.1 (eV), and the work function of Fe is 4.67 (eV). ), the work function of Co is 5.0 (eV), the work function of Ni is 5.22 (eV), the work function of Cu is 5.10 (eV), and the work function of Zn is 3.63. (EV) and Nb have work functions of 4.01 (eV), Mo has a work function of 4.45 (eV), and Ag has a work function of 4.31 (eV).

陽極11及び陰極12は、白金族金属49の白金族金属微粉体(微粉状に加工されたPt(白金)、微粉状に加工されたPb(パラジウム)、微粉状に加工されたRh(ロジウム)、微粉状に加工されたRu(ルテニウム)、微粉状に加工されたIr(イリジウム)、微粉状に加工されたOs(オスミウム))と、各種の遷移金属50から選択された少なくとも2種類のそれら遷移金属50の遷移金属微粉体(微粉状に加工されたTi(チタン)、微粉状に加工されたCr(クロム)、微粉状に加工されたMn(マンガン)、微粉状に加工されたFe(鉄)、微粉状に加工されたCo(コバルト)、微粉状に加工されたNi(ニッケル)、微粉状に加工されたCu(銅)、微粉状に加工されたZn(亜鉛)、微粉状に加工されたNb(ニオブ)、微粉状に加工されたMo(モリブデン)、微粉状に加工されたAg(銀))と、所定のバインダー51(紛状の樹脂系バインダー)とを均一に混合・分散した金属微粉体混合物59を作り、金属微粉体混合物59に所定の気孔形成材58(発泡剤)を添加し(加え)、気孔形成材58を添加した金属微粉体混合物59を所定面積の薄板状に成形(押し出し成形又は射出成形)して薄板状の金属微粉体成形物60を作り、その金属微粉体成形物60を脱脂及び所定温度で焼結(焼成)することから作られている(図9参照)。 The anode 11 and the cathode 12 are platinum group metal fine powder of platinum group metal 49 (Pt (platinum) processed into fine powder, Pb (palladium) processed into fine powder, Rh (rhodium) processed into fine powder). , Finely powdered Ru (ruthenium), finely powdered Ir (iridium), finely powdered Os (osmium)), and at least two kinds of those selected from various transition metals 50 Transition metal fine powder of transition metal 50 (Ti (titanium) processed into a fine powder, Cr (chrome) processed into a fine powder, Mn (manganese) processed into a fine powder, Fe processed into a fine powder ( Iron), finely powdered Co (cobalt), finely powdered Ni (nickel), finely powdered Cu (copper), finely powdered Zn (zinc), finely powdered Processed Nb (niobium), finely powdered Mo (molybdenum), and finely powdered Ag (silver)) and a predetermined binder 51 (powder-like resin-based binder) are uniformly mixed. A dispersed fine metal powder mixture 59 is prepared, a predetermined pore forming material 58 (foaming agent) is added to (added to) the fine metal powder mixture 59, and the fine metal powder mixture 59 added with the fine pore forming material 58 is applied to a thin plate having a predetermined area. It is formed by molding (extrusion molding or injection molding) into a thin plate-shaped metal fine powder molded product 60, and degreasing and sintering (firing) the metal fine powder molded product 60 at a predetermined temperature ( (See FIG. 9).

陽極11及び陰極12では、選択された少なくとも2種類の遷移金属50の仕事関数の合成仕事関数が白金族金属の仕事関数に近似するように、白金族金属49の微粉体の金属微粉体混合物59の全重量に対する重量比が決定され、選択された少なくとも2種類の遷移金属50の微粉体の金属微粉体混合物59の全重量に対する重量比が決定されている。 In the anode 11 and the cathode 12, a metal-fine powder mixture 59 of a fine powder of a platinum group metal 49 so that the composite work function of the work functions of at least two selected transition metals 50 approximates the work function of a platinum group metal 49. Of the selected at least two kinds of transition metals 50 to the total weight of the metal fine powder mixture 59 are determined.

具体的には、白金族金属49の白金族金属微粉体の金属微粉体混合物59の全重量(100%)に対する重量比が4%〜10%の範囲、好ましくは、6%〜8%の範囲にあり、選択された遷移金属50のうちの1種類の遷移金属微粉体の金属微粉体混合物59の全重量(100%)に対する重量比が45%〜48%の範囲にあり、選択された遷移金属50のうちの他の1種類の遷移金属微粉体の金属微粉体混合物59の全重量(100%)に対する重量比が45%〜48%の範囲にある。 Specifically, the weight ratio of the platinum group metal 49 to the total weight (100%) of the platinum group metal fine powder to the metal fine powder mixture 59 is in the range of 4% to 10%, preferably in the range of 6% to 8%. And the weight ratio of one kind of transition metal fine powder among the selected transition metals 50 to the total weight (100%) of the metal fine powder mixture 59 is in the range of 45% to 48%, and the selected transition metal The weight ratio of the other transition metal fine powder of the metal 50 to the total weight (100%) of the fine metal powder mixture 59 is in the range of 45% to 48%.

白金族金属49の白金族金属微粉体の重量比、選択された1種類の遷移金属50の遷移金属微粉体の重量比、選択された他の1種類の遷移金属50の遷移金属微粉体の重量比が前記範囲外になると、それら遷移金属50の遷移金属微粉体の合成仕事関数を白金族金属の仕事関数に近似させることができないとともに、金属微粉体混合物59を成形した金属微粉体成形物60を脱脂・焼結(焼成)して作られた陽極11及び陰極12が白金を担持した電極と略同様の触媒活性(触媒作用)を発揮することができない。 Weight ratio of platinum group metal fine powder of platinum group metal 49, weight ratio of transition metal fine powder of one selected transition metal 50, weight of transition metal fine powder of another selected one kind of transition metal 50 When the ratio is out of the above range, the composite work function of the transition metal fine powders of the transition metals 50 cannot be approximated to the work function of the platinum group metal, and the metal fine powder mixture molded product 60 is obtained by molding the metal fine powder mixture 59. The anode 11 and the cathode 12 made by degreasing and sintering (sintering) cannot exhibit substantially the same catalytic activity (catalytic action) as the electrode supporting platinum.

電気分解装置10は、金属微粉体混合物59の全重量に対する白金族金属49の微粉体の重量比や選択された1種類の遷移金属50の微粉体の重量比、選択された他の1種類の遷移金属50の微粉体の重量比を前記範囲にすることで、選択された少なくとも2種類の遷移金属50の仕事関数の合成仕事関数が白金族金属の仕事関数に近似させることができ、陽極11及び陰極12が白金を担持した電極と略同一の仕事関数を備え、陽極11や陰極12が優れた触媒活性(触媒作用)を有し、陽極11や陰極12が白金を担持した電極と略同様の触媒活性(触媒作用)を発揮することで、陽極11や陰極12を使用して電気分解を効率よく行うことができ、短時間に多量の水素ガスを発生させることができる。 The electrolysis device 10 includes a weight ratio of the fine powder of the platinum group metal 49 to the total weight of the fine metal powder mixture 59, a weight ratio of the fine powder of the selected transition metal 50, and a weight ratio of the other selected one. By setting the weight ratio of the fine particles of the transition metal 50 within the above range, the composite work function of the work functions of at least two selected transition metals 50 can be approximated to the work function of the platinum group metal, and the anode 11 And the cathode 12 has substantially the same work function as the electrode supporting platinum, the anode 11 and the cathode 12 have excellent catalytic activity (catalyst action), and the anode 11 and the cathode 12 are substantially the same as the electrode supporting platinum. By exhibiting the catalytic activity (catalytic action), the electrolysis can be efficiently performed using the anode 11 and the cathode 12, and a large amount of hydrogen gas can be generated in a short time.

陽極11及び陰極12には、径が異なる多数の微細な気孔23(流路)(連続かつ独立通路孔)が形成されている。陽極11及び陰極12は、多数の微細な気孔23が形成されているから、その比表面積が大きい。それら気孔23は、陽極11及び陰極12の前面21に開口する複数の通流口25と、陽極11及び陰極12の後面22に開口する複数の通流口25とを有し、陽極11及び陰極12の前面21から後面22に向かって陽極11や陰極12をその厚み方向に貫通している。 A large number of fine pores 23 (flow paths) (continuous and independent passage holes) having different diameters are formed in the anode 11 and the cathode 12. The anode 11 and the cathode 12 have a large number of fine pores 23, and therefore have a large specific surface area. The pores 23 have a plurality of through holes 25 that open to the front surface 21 of the anode 11 and the cathode 12, and a plurality of through holes 25 that open to the rear surface 22 of the anode 11 and the cathode 12. The anode 11 and the cathode 12 penetrate in the thickness direction from the front surface 21 to the rear surface 22.

それら気孔23は、陽極11及び陰極12の前面21と後面22との間において陽極11や陰極12の厚み方向へ不規則に曲折しながら延びているとともに、陽極11及び陰極12の外周縁26から中心に向かって陽極11及び陰極12の径方向へ不規則に曲折しながら延びている。径方向へ隣接して厚み方向へ曲折して延びるそれら気孔23(流路)(連続かつ独立通路孔)は、径方向において部分的につながり、一方の気孔23と他方の気孔23とが互いに連通している。厚み方向へ隣接して径方向へ曲折して延びるそれら気孔23(流路)(連続かつ独立通路孔)は、厚み方向において部分的につながり、一方の気孔23と他方の気孔23とが互いに連通している。 The pores 23 extend irregularly in the thickness direction of the anode 11 and the cathode 12 between the front surface 21 and the rear surface 22 of the anode 11 and the cathode 12, and extend from the outer peripheral edge 26 of the anode 11 and the cathode 12. It extends toward the center while irregularly bending in the radial direction of the anode 11 and the cathode 12. The pores 23 (flow passages) (continuous and independent passage holes) that are adjacent to each other in the radial direction and bend in the thickness direction are partially connected in the radial direction, and one pore 23 and the other pore 23 communicate with each other. is doing. The pores 23 (flow passages) (continuous and independent passage holes) that are adjacent to each other in the thickness direction and bend and extend in the radial direction are partially connected in the thickness direction, and one pore 23 and the other pore 23 communicate with each other. is doing.

それら気孔23の開口面積(開口径)は、厚み方向に向かって一様ではなく、厚み方向に向かって不規則に変化しているとともに、径方向に向かって一様ではなく、径方向に向かって不規則に変化している。それら気孔23は、その開口面積(開口径)が大きくなったり、小さくなったりしながら厚み方向と径方向とへ不規則に開口している。また、陽極11や陰極12の前面21に開口する通流口25と後面22に開口する通流口25とは、その開口面積(開口径)が一様ではなく、その面積がすべて相違している。それら気孔23の開口径(平均開口径)や前後面21,22の通流口25の開口径(平均開口径)は、1μm〜100μmの範囲にある。 The opening area (opening diameter) of the pores 23 is not uniform in the thickness direction, changes irregularly in the thickness direction, and is not uniform in the radial direction but in the radial direction. Are changing irregularly. The pores 23 open irregularly in the thickness direction and the radial direction while the opening area (opening diameter) increases or decreases. The opening areas (opening diameters) of the flow openings 25 opening on the front surface 21 and the back surface 22 of the anode 11 and the cathode 12 are not uniform, and the areas are all different. There is. The opening diameter (average opening diameter) of the pores 23 and the opening diameter (average opening diameter) of the through holes 25 of the front and rear surfaces 21, 22 are in the range of 1 μm to 100 μm.

電気分解装置10は、それに使用する陽極11及び陰極12に厚み方向や径方向へ不規則に曲折しながら延びる複数の気孔23(流路)(連続かつ独立通路孔)が形成されているから、陽極11や陰極12の比表面積が大きく、それら気孔23を水溶液(液体)が通流しつつ水溶液(液体)を陽極11及び陰極12のそれら気孔23における接触面に広範囲に接触させることができ、陽極11や陰極12の触媒活性(触媒作用)を有効かつ最大限に利用することができる。 In the electrolyzer 10, a plurality of pores 23 (flow paths) (continuous and independent passage holes) that extend while being irregularly bent in the thickness direction and the radial direction are formed in the anode 11 and the cathode 12 used therein. The anode 11 and the cathode 12 have a large specific surface area, and while the aqueous solution (liquid) flows through the pores 23, the aqueous solution (liquid) can be brought into wide contact with the contact surfaces of the pores 23 of the anode 11 and the cathode 12. It is possible to effectively and maximize the catalytic activity (catalytic action) of the cathode 11 and the cathode 12.

陽極11及び陰極12(マイクロポーラス構造の薄板状電極24)は、その厚み寸法L1が0.03mm〜1.5mmの範囲、好ましくは、0.05mm〜1.0mmの範囲にある。陽極11及び陰極12の厚み寸法L1が0.03mm(0.05mm)未満では、その強度が低下し、衝撃が加えられたときに陽極11や陰極12が容易に破損又は損壊し、その形状を維持することができない場合がある。陽極11及び陰極12の厚み寸法L1が1.5mm(1.0mm)を超過すると、陽極11や陰極12の電気抵抗が大きくなり、陽極11及び陰極12に電流がスムースに流れず、陽極11及び陰極12が電気分解装置10(水素ガス発生装置)に使用されたときに電気分解装置10において効率よく電気分解を行うことができず、電気分解装置10において短時間に多量の水素ガスを発生させることができない。 The thickness dimension L1 of the anode 11 and the cathode 12 (thin plate electrode 24 having a microporous structure) is in the range of 0.03 mm to 1.5 mm, preferably in the range of 0.05 mm to 1.0 mm. When the thickness dimension L1 of the anode 11 and the cathode 12 is less than 0.03 mm (0.05 mm), the strength thereof decreases, and the anode 11 and the cathode 12 are easily damaged or destroyed when an impact is applied, and the shapes thereof are May not be able to maintain. When the thickness dimension L1 of the anode 11 and the cathode 12 exceeds 1.5 mm (1.0 mm), the electric resistance of the anode 11 and the cathode 12 increases, and the current does not smoothly flow to the anode 11 and the cathode 12, so that the anode 11 and When the cathode 12 is used in the electrolyzer 10 (hydrogen gas generator), the electrolyzer 10 cannot efficiently perform electrolysis, and the electrolyzer 10 generates a large amount of hydrogen gas in a short time. I can't.

電気分解装置10は、それに使用する陽極11及び陰極12の厚み寸法L1が0.03mm〜1.5mmの範囲、好ましくは、0.05mm〜1.0mmの範囲にあるから、陽極11及び陰極12が高い強度を有してその形状を維持することができ、陽極11や陰極12に衝撃が加えられたときの陽極11や陰極12の破損や損壊を防ぐことができる。更に、陽極11及び陰極12の電気抵抗を小さくすることができ、陽極11や陰極12に電流がスムースに流れ、陽極11及び陰極12が電気分解装置10(水素ガス発生装置)に使用されたときに電気分解装置10において効率よく電気分解を行うことができ、電気分解装置10において短時間に多量の水素ガスを発生させることができる。 Since the thickness dimension L1 of the anode 11 and the cathode 12 used in the electrolyzer 10 is in the range of 0.03 mm to 1.5 mm, preferably 0.05 mm to 1.0 mm, the anode 11 and the cathode 12 are used. Has a high strength and can maintain its shape, and it is possible to prevent breakage or damage of the anode 11 or the cathode 12 when the anode 11 or the cathode 12 is impacted. Furthermore, the electric resistance of the anode 11 and the cathode 12 can be reduced, and a current smoothly flows through the anode 11 and the cathode 12, and when the anode 11 and the cathode 12 are used in the electrolyzer 10 (hydrogen gas generator). In addition, electrolysis can be efficiently performed in the electrolysis device 10, and a large amount of hydrogen gas can be generated in the electrolysis device 10 in a short time.

陽極11及び陰極12(マイクロポーラス構造の薄板状電極24)は、その気孔率が70%〜85%の範囲にある。陽極11及び陰極12の気孔率が70%未満では、陽極11や陰極12に多数の微細な気孔23(連続かつ独立通路孔)が形成されず、陽極11及び陰極12の比表面積を大きくすることができない。陽極11及び陰極12の気孔率が85%を超過すると、気孔23(連続かつ独立通路孔)の開口面積(開口径)や前後面21,22の通流口25の開口面積(開口径)が必要以上に大きくなり、陽極11及び陰極12の強度が低下し、衝撃が加えられたときに陽極11や陰極12が容易に破損又は損壊し、その形状を維持することができない場合があるとともに、陽極11及び陰極12の触媒作用が低下し、触媒活性を発揮することができない。 The porosity of the anode 11 and the cathode 12 (thin plate electrode 24 having a microporous structure) is in the range of 70% to 85%. When the porosity of the anode 11 and the cathode 12 is less than 70%, many fine pores 23 (continuous and independent passage holes) are not formed in the anode 11 and the cathode 12, and the specific surface area of the anode 11 and the cathode 12 is increased. I can't. When the porosity of the anode 11 and the cathode 12 exceeds 85%, the opening area (opening diameter) of the pores 23 (continuous and independent passage holes) and the opening area (opening diameter) of the flow ports 25 of the front and rear surfaces 21, 22 are reduced. It becomes larger than necessary, the strength of the anode 11 and the cathode 12 decreases, and the anode 11 and the cathode 12 are easily damaged or damaged when an impact is applied, and the shape thereof may not be maintained, and The catalytic action of the anode 11 and the cathode 12 is reduced, and the catalytic activity cannot be exhibited.

電気分解装置10は、それに使用する陽極11及び陰極12(マイクロポーラス構造の薄板状電極24)の気孔率が前記範囲にあるから、陽極11や陰極12が開口面積(開口径)の異なる多数の微細な気孔23(平均径が1〜100μmの範囲の気孔13)や開口面積(開口径)の異なる多数の微細な前後面21,22の通流口25(平均径が1〜100μmの範囲の通流口25)を有する多孔質(マイクロポーラス構造)に成形され、陽極11や陰極12の比表面積を大きくすることができ、それら気孔23を水溶液(液体)が通流しつつ水溶液(液体)を陽極11及び陰極12のそれら気孔23における接触面に広く接触させることができるとともに、陽極11や陰極12の触媒活性(触媒作用)を有効かつ最大限に利用することができる。更に、陽極11及び陰極12の触媒作用が向上し、陽極11及び陰極12に優れた触媒活性を発揮させることができ、陽極11及び陰極12が電気分解装置10(水素ガス発生装置)に使用されたときに電気分解装置10において効率よく電気分解を行うことができ、電気分解装置10において短時間に多量の水素ガスを発生させることができる。 In the electrolyzer 10, since the porosities of the anode 11 and the cathode 12 (thin plate electrode 24 having a microporous structure) used for the electrolyzer 10 are within the above range, the anode 11 and the cathode 12 have a large opening area (opening diameter). The fine pores 23 (the pores 13 having an average diameter in the range of 1 to 100 μm) and the flow openings 25 (the average diameter in the range of 1 to 100 μm) of the numerous fine front and rear surfaces 21, 22 having different opening areas (opening diameters). It is formed into a porous (microporous structure) having a flow port 25), and the specific surface area of the anode 11 and the cathode 12 can be increased, and while the aqueous solution (liquid) flows through the pores 23, the aqueous solution (liquid) is discharged. The contact surfaces of the pores 23 of the anode 11 and the cathode 12 can be widely contacted, and the catalytic activity (catalytic action) of the anode 11 and the cathode 12 can be effectively and maximally utilized. Further, the catalytic action of the anode 11 and the cathode 12 is improved, and excellent catalytic activity can be exhibited in the anode 11 and the cathode 12, and the anode 11 and the cathode 12 are used in the electrolyzer 10 (hydrogen gas generator). In this case, the electrolysis device 10 can efficiently perform electrolysis, and the electrolysis device 10 can generate a large amount of hydrogen gas in a short time.

電気分解装置10は、それに使用する陽極11及び陰極12(マイクロポーラス構造の薄板状電極24)密度が6.0g/cm〜8.0g/cmの範囲、好ましくは、6.5g/cm〜7.5g/cmの範囲にある。陽極11及び陰極12の密度が6.0g/cm(6.5g/cm)未満では、陽極11や陰極12の強度が低下し、衝撃が加えられたときに陽極11や陰極12が容易に破損または損壊し、その形状を維持することができない場合があるとともに、陽極11や陰極12の触媒作用が低下し、触媒活性を発揮することができない。陽極11及び陰極12の密度が8.0g/cm(7.5g/cm)を超過すると、陽極11や陰極12に多数の微細な気孔23や多数の微細な通流口25が形成されず、陽極11や陰極12の比表面積を大きくすることができないとともに、陽極11や陰極12の触媒作用が低下し、陽極11や陰極12の触媒活性(触媒作用)を有効に利用することができない。 Electrolyzer 10 has a density of 6.0g / cm 2 ~8.0g / cm 2 range (thin plate electrode 24 of the micro-porous structure) anode 11 and cathode 12 for use therewith, preferably, 6.5 g / cm It is in the range of 2 to 7.5 g/cm 2 . When the densities of the anode 11 and the cathode 12 are less than 6.0 g/cm 2 (6.5 g/cm 2 ), the strength of the anode 11 and the cathode 12 decreases, and the anode 11 and the cathode 12 are easily formed when an impact is applied. In some cases, it may be damaged or damaged and the shape thereof may not be maintained, and the catalytic action of the anode 11 and the cathode 12 may be deteriorated and the catalytic activity may not be exhibited. When the densities of the anode 11 and the cathode 12 exceed 8.0 g/cm 2 (7.5 g/cm 2 ), many fine pores 23 and many fine flow holes 25 are formed in the anode 11 and the cathode 12. In addition, the specific surface area of the anode 11 or the cathode 12 cannot be increased, and the catalytic action of the anode 11 or the cathode 12 is lowered, so that the catalytic activity (catalytic action) of the anode 11 or the cathode 12 cannot be effectively used. ..

電気分解装置10は、それに使用する陽極11及び陰極12の密度が前記範囲にあるから、陽極11や陰極12が開口面積(開口径)の異なる多数の微細な気孔23(平均径が1〜100μmの範囲の気孔23)や開口面積(開口径)の異なる多数の微細な前後面21,22の通流口25(平均径が1〜100μmの範囲の通流口25)を有する多孔質(マイクロポーラス構造)に成形され、陽極11や陰極12の比表面積を大きくすることができ、それら気孔23を水溶液(液体)が通流しつつ水溶液(液体)を陽極11及び陰極12のそれら気孔23における接触面に広く接触させることができ、陽極11及び陰極12の触媒作用が向上し、陽極11や陰極12の触媒活性(触媒作用)を有効かつ最大限に利用することができる。 In the electrolyzer 10, since the densities of the anode 11 and the cathode 12 used therein are within the above range, the anode 11 and the cathode 12 have a large number of fine pores 23 (average diameter of 1 to 100 μm) having different opening areas (opening diameters). Of pores 23) and a large number of minute front and rear surfaces 21 and 22 having different opening areas (opening diameters) through holes 25 (through holes 25 having an average diameter in the range of 1 to 100 μm) are porous (micro). Porous structure), the specific surface area of the anode 11 and the cathode 12 can be increased, and the aqueous solution (liquid) flows through the pores 23 while the aqueous solution (liquid) contacts the pores 23 of the anode 11 and the cathode 12. It can be widely contacted with the surface, the catalytic action of the anode 11 and the cathode 12 is improved, and the catalytic activity (catalytic action) of the anode 11 and the cathode 12 can be effectively and maximally utilized.

電気分解装置10は、それに使用する陽極11及び陰極12の密度を前記範囲にすることで、陽極11及び陰極12が開口面積(開口径)の異なる多数の微細な気孔23や開口面積(開口径)の異なる多数の微細な前後面21,22の通流口25を有する多孔質に成形され、陽極11及び陰極12の比表面積を大きくすることができ、それら気孔23を水溶液(液体)が通流しつつ水溶液(液体)を陽極11や陰極12のそれら気孔23における接触面に広く接触させることが可能となり、陽極11や陰極12が白金族金属を含む電極と略同様の触媒活性(触媒作用)を確実に発揮し、陽極11や陰極12を使用して電気分解を効率よく行うことができ、短時間に多量の水素ガスを発生させることができる。 In the electrolyzer 10, by setting the densities of the anode 11 and the cathode 12 used therein to the above range, the anode 11 and the cathode 12 have a large number of fine pores 23 having different opening areas (opening diameters) and opening areas (opening diameters). ) Are formed into a porous structure having a plurality of minute front and rear surfaces 21 and 22 through holes 25, the specific surface area of the anode 11 and the cathode 12 can be increased, and the pores 23 can be passed by an aqueous solution (liquid). It becomes possible to bring the aqueous solution (liquid) into wide contact with the contact surfaces of the pores 23 of the anode 11 and the cathode 12 while flowing, and the catalytic activity (catalytic action) substantially the same as that of the electrode in which the anode 11 and the cathode 12 contain a platinum group metal. Can be reliably exhibited, and electrolysis can be efficiently performed using the anode 11 and the cathode 12, and a large amount of hydrogen gas can be generated in a short time.

Ptの微粉体(粉状に加工されたPt)、Pbの微粉状(粉状に加工されたPb)、Rhの微粉状(粉状に加工されたRh)、Ruの微粉状(粉状に加工されたRu)、Irの微粉状(粉状に加工されたIr)、Osの微粉状(粉状に加工されたOs)、Tiの微粉体(粉状に加工されたTi)、Crの微粉体(粉状に加工されたCr)、Mnの微粉体(粉状に加工されたMn)、Feの微粉体(粉状に加工されたFe)、Coの微粉体(粉状に加工されたCo)、Niの微粉体(粉状に加工されたNi)、Cuの微粉体(粉状に加工されたCu)、Znの微粉体(粉状に加工されたZn)、Nbの微粉体(粉状に加工されたNb)、Moの微粉体(粉状に加工されたMo)、Agの微粉体(粉状に加工されたAg)の粒径は、1μm〜100μmの範囲にある。 Fine powder of Pt (Pt processed into powder), Fine powder of Pb (Pb processed into powder), Fine powder of Rh (Rh processed into powder), Fine powder of Ru (in powder form) Processed Ru), Ir fine powder (Ir processed into powder), Os fine powder (Os processed into powder), Ti fine powder (Ti processed into powder), Cr Fine powder (Cr processed into powder), Mn fine powder (Mn processed into powder), Fe fine powder (Fe processed into powder), Co fine powder (processed into powder) Co), Ni fine powder (Ni processed into powder), Cu fine powder (Cu processed into powder), Zn fine powder (Zn processed into powder), Nb fine powder The particle size of (powder-processed Nb), Mo fine powder (powder-processed Mo), and Ag fine powder (powder-processed Ag) is in the range of 1 μm to 100 μm.

それら白金族金属49の微粉体の粒径やそれら遷移金属50の微粉体の粒径が1μm未満では、それら金属の微粉体によって気孔23(連続かつ独立通路孔)が塞がれ、陽極11及び陰極12に多数の微細な気孔23を形成することができず、陽極11や陰極12の比表面積を大きくすることができないとともに、陽極11及び陰極12の触媒作用が低下し、陽極11や陰極12の触媒活性(触媒作用)を有効に利用することができない。それら白金族金属49の微粉体の粒径やそれら遷移金属50の微粉体の粒径が100μmを超過すると、気孔23の開口面積(開口径)や前後面21,22の通流口25の開口面積(開口径)が必要以上に大きくなり、陽極11及び陰極12に多数の微細な気孔23を形成することができず、陽極11及び陰極12の比表面積を大きくすることができないとともに、陽極11及び陰極12の触媒作用が低下し、陽極11や陰極12の触媒活性(触媒作用)を有効に利用することができない。 When the particle size of the fine particles of the platinum group metal 49 or the particle size of the fine particles of the transition metal 50 is less than 1 μm, the fine particles of these metals block the pores 23 (continuous and independent passage holes), and the anode 11 and A large number of fine pores 23 cannot be formed in the cathode 12, the specific surface area of the anode 11 and the cathode 12 cannot be increased, and the catalytic action of the anode 11 and the cathode 12 decreases, so that the anode 11 and the cathode 12 It is impossible to effectively utilize the catalytic activity (catalytic action) of. When the particle size of the fine particles of the platinum group metal 49 or the particle size of the fine particles of the transition metal 50 exceeds 100 μm, the opening area (opening diameter) of the pores 23 and the openings of the flow ports 25 of the front and rear surfaces 21, 22 are formed. The area (opening diameter) becomes unnecessarily large, many fine pores 23 cannot be formed in the anode 11 and the cathode 12, the specific surface area of the anode 11 and the cathode 12 cannot be increased, and the anode 11 Moreover, the catalytic action of the cathode 12 is lowered, and the catalytic activity (catalytic action) of the anode 11 and the cathode 12 cannot be effectively utilized.

電気分解装置10は、陽極11及び陰極12を形成する白金族金属49の微粉体の粒径や遷移金属50の微粉体の粒径が前記範囲にあるから、陽極11や陰極12が開口面積(開口径)の異なる多数の微細な気孔23(平均径が1〜100μmの範囲の気孔25)や開口面積(開口径)の異なる多数の微細な前後面21,22の通流口25(平均径が1〜100μmの範囲の通流口25)を有する多孔質(マイクロポーラス構造)に成形され、陽極11や陰極12の比表面積を大きくすることができ、それら気孔23を水溶液(液体)が通流しつつ水溶液(液体)を陽極11や陰極12のそれら気孔23における接触面に広く接触させることができるとともに、陽極11や陰極12の触媒活性(触媒作用)を有効かつ最大限に利用することができる。更に、陽極11及び陰極12の触媒作用が向上し、陽極11や陰極12に優れた触媒活性を発揮させることができ、陽極11及び陰極12が電気分解装置10(水素ガス発生装置)に使用されたときに電気分解装置10において効率よく電気分解を行うことができ、電気分解装置10において短時間に多量の水素ガスを発生させることができる。 In the electrolyzer 10, since the particle size of the fine particles of the platinum group metal 49 and the particle size of the transition metal 50 that form the anode 11 and the cathode 12 are within the above range, the opening area of the anode 11 and the cathode 12 ( A large number of fine pores 23 having different opening diameters (pores 25 having an average diameter in the range of 1 to 100 μm) and a large number of fine front and rear surfaces 21 and 22 having different opening areas (opening diameter) through holes 25 (average diameter) Is formed into a porous (microporous structure) having a flow port 25) in the range of 1 to 100 μm, and the specific surface area of the anode 11 and the cathode 12 can be increased, and the pores 23 are allowed to pass through an aqueous solution (liquid). While flowing, the aqueous solution (liquid) can be brought into wide contact with the contact surfaces of the pores 23 of the anode 11 and the cathode 12, and the catalytic activity (catalytic action) of the anode 11 and the cathode 12 can be effectively and maximally utilized. it can. Further, the catalytic action of the anode 11 and the cathode 12 is improved, and excellent catalytic activity can be exhibited in the anode 11 and the cathode 12, and the anode 11 and the cathode 12 are used in the electrolyzer 10 (hydrogen gas generator). In this case, the electrolysis device 10 can efficiently perform electrolysis, and the electrolysis device 10 can generate a large amount of hydrogen gas in a short time.

陽極11及び陰極12(マイクロポーラス構造の薄板状電極24)に使用する白金族金属49や遷移金属50の具体例としては、図9に示すように、粉状に加工されたPt52(白金)の微粉体55(粒径:1μm〜100μm)と、粉状に加工されたNi53(ニッケル)の微粉体56(粒径:1μm〜100μm)と、粉状に加工されたFe54(鉄)の微粉体57(粒径:1μm〜100μm)とを原料としている。 Specific examples of the platinum group metal 49 and the transition metal 50 used for the anode 11 and the cathode 12 (thin plate electrode 24 having a microporous structure) include Pt 52 (platinum) processed into powder as shown in FIG. Fine powder 55 (particle diameter: 1 μm to 100 μm), fine powder Ni53 (nickel) fine powder 56 (particle diameter: 1 μm to 100 μm), and fine powder processed Fe54 (iron) fine powder 57 (particle size: 1 μm to 100 μm) is used as a raw material.

陽極11及び陰極12は、Pt52やNi53、Fe54の微粉体55〜57と所定のバインダー51とを均一に混合・分散した金属微粉体混合物59を作り、金属微粉体混合物59に気孔形成材58(発泡剤)を添加し、気孔形成材58を添加した金属微粉体混合物59を所定面積の薄板状に成形(押し出し成形又は射出成形)して金属微粉体成形物60を作り、その金属微粉体成形物60を脱脂するとともに所定温度で焼結(焼成)することで、多数の微細な気孔23(平均径が1〜100μmの範囲の気孔23)が形成されたマイクロポーラス構造かつ薄板状の電極に成形される。 For the anode 11 and the cathode 12, a fine metal powder mixture 59 is prepared by uniformly mixing and dispersing fine powders 55 to 57 of Pt 52, Ni 53, and Fe 54 and a predetermined binder 51, and the fine pore powder forming material 58 ( Foaming agent), and the fine metal powder mixture 59 to which the pore forming material 58 is added is molded (extrusion molding or injection molding) into a thin plate having a predetermined area to form a fine metal powder molding 60, and the fine metal powder molding is performed. By degreasing the object 60 and sintering (baking) at a predetermined temperature, a thin plate-like electrode having a microporous structure in which a large number of fine pores 23 (pores 23 having an average diameter in the range of 1 to 100 μm) are formed Molded.

陽極11及び陰極12では、Ni53の仕事関数とFe54の仕事関数との合成仕事関数が白金族金属の仕事関数に近似するように、Pt52の白金族金属微粉体55の金属微粉体混合物59の全重量に対する重量比、Ni53の遷移金属微粉体56の金属微粉体混合物59の全重量に対する重量比、Fe54の遷移金属微粉体57の金属微粉体混合物59の全重量に対する重量比が決定されている。 In the anode 11 and the cathode 12, all of the metal fine powder mixture 59 of the platinum group metal fine powder 55 of Pt 52 is made so that the combined work function of the work function of Ni 53 and the work function of Fe 54 approximates the work function of the platinum group metal. The weight ratio to the weight, the weight ratio of the transition metal fine powder 56 of Ni53 to the total weight of the metal fine powder mixture 59, and the weight ratio of the transition metal fine powder 57 of Fe54 to the total weight of the metal fine powder mixture 59 are determined.

金属微粉体混合物59の全重量(100%)に対するPt52(白金族金属49)の白金族金属微粉体55の重量比は、4%〜10%の範囲、好ましくは、5%〜8%の範囲であり、金属微粉体混合物59の全重量(100%)に対するNi53(遷移金属50)の遷移金属微粉体56の重量比は、45%〜48%の範囲である。金属微粉体混合物59の全重量(100%)に対するFe54(遷移金属50)の遷移金属微粉体57の重量比は、45〜48%の範囲である。 The weight ratio of the platinum group metal fine powder 55 of Pt52 (platinum group metal 49) to the total weight (100%) of the metal fine powder mixture 59 is in the range of 4% to 10%, preferably in the range of 5% to 8%. The weight ratio of the transition metal fine powder 56 of Ni53 (transition metal 50) to the total weight (100%) of the fine metal powder mixture 59 is in the range of 45% to 48%. The weight ratio of the transition metal fine powder 57 of Fe 54 (transition metal 50) to the total weight (100%) of the metal fine powder mixture 59 is in the range of 45 to 48%.

Pt52の白金族金属微粉体55の重量比、Ni53の遷移金属微粉体56の重量比、Fe54の遷移金属微粉体57の重量比が前記範囲外になると、Ni53の微粉体56とFe54の微粉体57との合成仕事関数を白金族金属の仕事関数に近似させることができないとともに、金属微粉体混合物59を成形した金属微粉体成形物60を脱脂・焼結して作られた陽極11及び陰極12が白金を担持した電極と略同様の触媒活性(触媒作用)を発揮することができない。 When the weight ratio of the platinum group metal fine powder 55 of Pt52, the weight ratio of the transition metal fine powder 56 of Ni53, and the weight ratio of the transition metal fine powder 57 of Fe54 are out of the above ranges, the fine powder 56 of Ni53 and the fine powder of Fe54 are The composite work function of 57 and the work function of the platinum group metal cannot be approximated, and the anode 11 and the cathode 12 made by degreasing and sintering the metal fine powder molded product 60 obtained by molding the metal fine powder mixture 59. Cannot exhibit substantially the same catalytic activity (catalytic action) as the electrode supporting platinum.

電気分解装置10は、金属微粉体混合物59の全重量に対するPt52の微粉体55の重量比やNi53の微粉体56の重量比、Fe54の微粉体57の重量比を前記範囲にすることで、2種類の遷移金属50の仕事関数の合成仕事関数を白金族金属の仕事関数に近似させることができ、陽極11及び陰極12が白金族金属を担持した電極と略同一の仕事関数を備え、陽極11や陰極12が優れた触媒活性(触媒作用)を有し、陽極11や陰極12が白金を担持した電極と略同様の触媒活性(触媒作用)を発揮することで、陽極11や陰極12を使用して電気分解を効率よく行うことができ、短時間に多量の水素ガスを発生させることができる。 The electrolyzer 10 sets the weight ratio of the Pt 52 fine powder 55, the Ni 53 fine powder 56, and the Fe 54 fine powder 57 to the total weight of the metal fine powder mixture 59 within the above range. The composite work function of the work functions of the transition metals 50 of various kinds can be approximated to the work function of the platinum group metal, and the anode 11 and the cathode 12 have substantially the same work function as the electrode supporting the platinum group metal, and the anode 11 Since the cathode 11 and the cathode 12 have excellent catalytic activity (catalytic action), and the anode 11 and the cathode 12 exhibit substantially the same catalytic activity (catalytic action) as the electrode supporting platinum, the anode 11 and the cathode 12 are used. The electrolysis can be efficiently performed, and a large amount of hydrogen gas can be generated in a short time.

図4は、電気分解装置10を使用した電気分解の一例を説明する図であり、図5は、電気分解装置10を利用した水素ガス生成システム27の一例を示す図である。図4に示す電気分解では、水(水溶液)を電気分解し、水素と酸素とを発生させているが、水(HO)の他に、電気分解装置10を使用してNaOH水溶液、HSO水溶液、NaCl水溶液、AgNO水溶液、CuSO水溶液の電気分解が行われる。 FIG. 4 is a diagram illustrating an example of electrolysis using the electrolyzer 10, and FIG. 5 is a diagram illustrating an example of a hydrogen gas generation system 27 using the electrolyzer 10. In the electrolysis shown in FIG. 4, water (aqueous solution) is electrolyzed to generate hydrogen and oxygen. However, in addition to water (H 2 O), the electrolysis device 10 is used to generate an aqueous solution of NaOH, H Electrolysis of 2 SO 4 aqueous solution, NaCl aqueous solution, AgNO 3 aqueous solution, and CuSO 4 aqueous solution is performed.

電気分解装置10における水の電気分解では、図4に矢印で示すように、陽極用貯水槽16及び陰極用貯水槽17に水(HO)が給水され、陽極主電極18に電源から+の電流が給電されるとともに、陰極主電極19に電源から−の電流が給電される。陽極主電極18に給電された+の電流が陽極給電部材14から陽極11(アノード)に給電され、陰極主電極19に給電された−の電流が陰極給電部材15から陰極12(カソード)に給電される。 In the electrolysis of water in the electrolyzer 10, as shown by the arrows in FIG. 4, water (H 2 O) is supplied to the anode water storage tank 16 and the cathode water storage tank 17, and the anode main electrode 18 is supplied from the power source + The current is supplied to the cathode main electrode 19 as well as the negative current from the power supply. The positive current supplied to the anode main electrode 18 is supplied from the anode power supply member 14 to the anode 11 (anode), and the negative current supplied to the cathode main electrode 19 is supplied from the cathode power supply member 15 to the cathode 12 (cathode). To be done.

陽極11(電極)では、2HO→4H+4e+Oの陽極反応(触媒作用)によって酸素が生成され、陰極12(電極)では、4H+4e→2Hの陰極反応(触媒作用)によって水素が生成される。プロトン(水素イオン:H)は、固体高分子電解質膜13内を通って陽極11から陰極12(電極)へ移動する。固体高分子電解質膜12には、陽極11で生成されたプロトンが通流する。 At the anode 11 (electrode), oxygen is generated by the anodic reaction (catalytic action) of 2H 2 O→4H + +4e +O 2 , and at the cathode 12 (electrode), the cathodic reaction of 4H + +4e →2H 2 (catalytic action). ) Produces hydrogen. Protons (hydrogen ions: H + ) move through the solid polymer electrolyte membrane 13 from the anode 11 to the cathode 12 (electrode). Protons generated at the anode 11 flow through the solid polymer electrolyte membrane 12.

電気分解装置10は、陽極11(電極)や陰極12(電極)が白金族金属49の微粉体を含み、更に、陽極11や陰極12を形成する少なくとも2種類の遷移金属50の仕事関数の合成仕事関数が白金族金属の仕事関数に近似するように、遷移金属50の中から少なくとも2種類の遷移金属50が選択され、選択された遷移金属50の仕事関数の合成仕事関数が白金族金属の仕事関数に近似するように、白金族金属49の金属微粉体混合物59の全重量に対する重量比が決定され、選択された少なくとも2種類の遷移金属50の金属微粉体混合物59の全重量に対する重量比が決定されているから、陽極11及び陰極12が白金を担持した電極と略同一の仕事関数を備え、白金を担持した電極と略同様の触媒活性(触媒作用)を示し、水素がプロトンと電子とに効率よく分解される。 In the electrolyzer 10, the anode 11 (electrode) and the cathode 12 (electrode) include fine powder of platinum group metal 49, and further, the work functions of at least two kinds of transition metals 50 forming the anode 11 and the cathode 12 are synthesized. At least two kinds of transition metals 50 are selected from the transition metals 50 so that the work function is close to the work function of the platinum group metal, and the composite work function of the work functions of the selected transition metals 50 is the platinum group metal. The weight ratio of the platinum group metal 49 to the total weight of the fine metal powder mixture 59 is determined so as to approximate the work function, and the weight ratio of at least two selected transition metals 50 to the total weight of the fine metal powder mixture 59 is determined. Since the anode 11 and the cathode 12 have substantially the same work function as that of the platinum-supported electrode, they exhibit substantially the same catalytic activity (catalytic action) as the platinum-supported electrode, and hydrogen is a proton and an electron. And can be decomposed efficiently.

具体例として示した陽極11及び陰極12は、Pt52の微粉体55を含み、更に、仕事関数の合成仕事関数が白金族金属の仕事関数に近似するように、Ni53とFe54とが選択され、選択されたNi53とFe54との仕事関数の合計仕事関数が白金族金属の仕事関数に近似するように、金属微粉体混合物59の全重量に対するPt52の微粉体55の重量比が決定され、金属微粉体混合物59の全重量に対するNi53の微粉体56の重量比が決定されているとともに、金属微粉体混合物59の全重量に対するFe54の微粉体57の重量比が決定されているから、陽極11や陰極12が白金を担持した電極と略同一の仕事関数を備え、白金を担持した電極と略同様の触媒活性(触媒作用)を示し、水素がプロトンと電子とに効率よく分解される。 The anode 11 and the cathode 12 shown as specific examples include fine powder 55 of Pt 52, and Ni53 and Fe54 are selected and selected so that the composite work function of the work functions approximates the work function of the platinum group metal. The weight ratio of the fine powder 55 of Pt52 to the total weight of the fine metal powder mixture 59 is determined such that the total work function of the work functions of the Ni53 and Fe54 is approximated to the work function of the platinum group metal. Since the weight ratio of the fine powder 56 of Ni53 to the total weight of the mixture 59 and the weight ratio of the fine powder 57 of Fe54 to the total weight of the metal fine powder mixture 59 are determined, the anode 11 and the cathode 12 are Has a work function substantially the same as that of the electrode supporting platinum, exhibits substantially the same catalytic activity (catalytic action) as the electrode supporting platinum, and hydrogen is efficiently decomposed into protons and electrons.

なお、NaOH水溶液の電気分解では、陽極11において4OH→2HO+O+4eの陽極反応(触媒作用)が起こり、陰極12において2HO+2e→2OH+Hの陰極反応(触媒作用)が起こる。HSO水溶液の電気分解では、陽極11において2HO→O+4H+4eの陽極反応(触媒作用)が起こり、陰極12において2H+2e→Hの陰極反応(触媒作用)が起こる。 In the electrolysis of the NaOH aqueous solution, an anode reaction (catalytic action) of 4OH →2H 2 O+O 2 +4e occurs at the anode 11, and a cathode reaction (catalytic action) of 2H 2 O+2e →2OH +H 2 at the cathode 12. Happens. In the electrolysis of the H 2 SO 4 aqueous solution, an anodic reaction (catalytic action) of 2H 2 O→O 2 +4H + +4e occurs in the anode 11, and a cathodic reaction of 2H + +2e →H 2 in the cathode 12 (catalytic action). Happens.

NaCl水溶液の電気分解では、陽極11において2Cl→Cl+2eの陽極反応(触媒作用)が起こり、陰極12において2HO+2e→2OH+Hの陰極反応(触媒作用)が起こる。AgNO水溶液の電気分解では、陽極11において2HO→O+4H+4eの陽極反応(触媒作用)が起こり、陰極12においてAg+e→Agの陰極反応(触媒作用)が起こる。CuSO水溶液の電気分解では、陽極11において2HO→O+4H+4eの陽極反応(触媒作用)が起こり、陰極12においてCu2++2e→Cuの陰極反応(触媒作用)が起こる。 In the electrolysis of an aqueous NaCl solution, an anode reaction of 2Cl →Cl 2 +2e (catalytic action) occurs at the anode 11, and a cathode reaction of 2H 2 O+2e →2OH +H 2 occurs at the cathode 12 (catalytic action). In the electrolysis of the AgNO 3 aqueous solution, an anodic reaction (catalytic action) of 2H 2 O→O 2 +4H + +4e occurs at the anode 11, and a cathodic reaction (catalytic action) of Ag + +e →Ag occurs at the cathode 12. In the electrolysis of the CuSO 4 aqueous solution, an anodic reaction (catalytic action) of 2H 2 O→O 2 +4H + +4e occurs at the anode 11, and a cathodic reaction (catalytic action) of Cu 2+ +2e →Cu occurs at the cathode 12.

水素ガス生成システム27は、電気分解装置10と、電気分解装置10の陽極11と陰極12とに電気を給電する直流電源28と、水(純水)を貯水する貯水タンク29と、水(純水)を給水する給水ポンプ30と、酸素気液分離器31と、水(純水)を給水する2台の循環ポンプ32,33と、水素気液分離器34と、水素を貯めるボンベ35(水素タンク)とから形成されている。 The hydrogen gas generation system 27 includes a DC power supply 28 for supplying electricity to the electrolyzer 10, an anode 11 and a cathode 12 of the electrolyzer 10, a water storage tank 29 for storing water (pure water), and water (pure water). A water supply pump 30 for supplying water), an oxygen gas-liquid separator 31, two circulation pumps 32, 33 for supplying water (pure water), a hydrogen gas-liquid separator 34, and a cylinder 35 for storing hydrogen ( Hydrogen tank).

水素ガス生成システム27は、貯水タンク29に貯水された水(純水)が給水ポンプ30によって酸素気液分離器31に給水され、酸素気液分離器31から流出した水が電気分解装置10に給水される。直流電源28から電気分解装置10に電気が給電され、電気分解装置10において電気分解が行われることで水が水素と酸素とに分解される。酸素は、酸素気液分離器31に流入し、気液分離された後、大気に放出される。酸素気液分離器31において気液分離された水は循環ポンプ32によって再び電気分解装置10に給水される。水素は、水素気液分離器34に流入し、気液分離された後、ボンベ35(水素タンク)に流入する。水素気液分離器34おいて気液分離された水は循環ポンプ33によって再び電気分解装置10に給水される。 In the hydrogen gas generation system 27, the water (pure water) stored in the water storage tank 29 is supplied to the oxygen gas-liquid separator 31 by the water supply pump 30, and the water flowing out from the oxygen gas-liquid separator 31 is supplied to the electrolyzer 10. Water is supplied. Electricity is supplied from the DC power supply 28 to the electrolyzer 10, and electrolysis is performed in the electrolyzer 10 to decompose water into hydrogen and oxygen. Oxygen flows into the oxygen gas-liquid separator 31, is separated into gas and liquid, and is then released to the atmosphere. The water that has been gas-liquid separated in the oxygen gas-liquid separator 31 is supplied to the electrolyzer 10 again by the circulation pump 32. Hydrogen flows into the hydrogen gas-liquid separator 34, is gas-liquid separated, and then flows into the cylinder 35 (hydrogen tank). The water that has been gas-liquid separated in the hydrogen gas-liquid separator 34 is supplied to the electrolyzer 10 again by the circulation pump 33.

電気分解装置10(水素ガス生成システム27)は、それに使用される陽極11及び陰極12が白金族金属49と所定の遷移金属50の仕事関数の合成仕事関数が白金族金属の仕事関数に近似するように選択された少なくとも2種類の遷移金属50と所定のバインダー51(紛状の樹脂系バインダー)とを均一に混合・分散した金属微粉体混合物59を作り、金属微粉体混合物59に所定の気孔形成材58(発泡剤)を添加し(加え)、気孔形成材58を添加した金属微粉体混合物59を所定面積の薄板状に成形(押し出し成形又は射出成形)して薄板状の金属微粉体成形物60を作り、その金属微粉体成形物60を脱脂及び所定温度で焼結(焼成)することで多数の微細な気孔23や通流口25を形成したマイクロポーラス構造の薄板状電極24であり、遷移金属50の仕事関数の合成仕事関数が白金族金属の仕事関数に近似するように、金属微粉体混合物59の全重量に対する白金族金属49の重量比が決定され、金属微粉体混合物59の全重量に対するそれら遷移金属50の重量比が決定されているから、陽極11や陰極12が白金を担持した電極と略同一の仕事関数を備え、陽極11や陰極12が優れた触媒活性(触媒作用)を有し、陽極11や陰極12が白金を担持した電極と略同様の触媒活性(触媒作用)を発揮することで、その陽極11及び陰極12を使用して電気分解を効率よく行うことができ、短時間に多量の水素ガスを発生させることができる。 In the electrolyzer 10 (hydrogen gas generation system 27), the anode 11 and the cathode 12 used therein have a composite work function of the work functions of the platinum group metal 49 and the predetermined transition metal 50, and the work function approximates to the work function of the platinum group metal. A fine metal powder mixture 59 is prepared by uniformly mixing and dispersing at least two kinds of transition metals 50 selected as described above and a predetermined binder 51 (powder-like resin binder), and the fine metal powder mixture 59 has predetermined pores. A thin plate-shaped metal fine powder molding by adding (adding) the forming material 58 (foaming agent) and molding (extrusion molding or injection molding) the fine metal powder mixture 59 to which the pore forming material 58 is added into a thin plate having a predetermined area. A thin plate-like electrode 24 having a microporous structure in which a large number of fine pores 23 and flow ports 25 are formed by making a metal 60, degreasing and sintering (baking) the metal fine powder molded product 60. The weight ratio of the platinum group metal 49 to the total weight of the fine metal powder mixture 59 is determined so that the composite work function of the transition metal 50 and the work function of the platinum group metal is approximated. Since the weight ratio of the transition metals 50 to the total weight is determined, the anode 11 and the cathode 12 have substantially the same work function as the electrode supporting platinum, and the anode 11 and the cathode 12 have excellent catalytic activity (catalytic action). ), and the anode 11 and the cathode 12 exhibit substantially the same catalytic activity (catalyst action) as the electrode supporting platinum, so that the electrolysis can be efficiently performed using the anode 11 and the cathode 12. Therefore, a large amount of hydrogen gas can be generated in a short time.

また、白金族金属49としてPt52(白金)を原料とし、遷移金属50としてNi53(ニッケル)とFe54(鉄)とを原料とした陽極11及び陰極12を使用した電気分解装置10(水素ガス生成システム27)は、遷移金属50の仕事関数の合成仕事関数が白金族金属の仕事関数に近似するように、Ni53とFe54とが選択され、選択されたNi53とFe54との仕事関数の合計仕事関数が白金族金属の仕事関数に近似するように、金属微粉体混合物59の全重量に対するPt52の微粉体55の重量比が決定され、金属微粉体混合物59の全重量に対するNi53の微粉体56の重量比とFe54の微粉体57の重量比とが決定されているから、陽極11や陰極12が白金を担持した電極と略同一の仕事関数を備え、陽極11や陰極12が優れた触媒活性(触媒作用)を有し、陽極11や陰極12が白金を担持した電極と略同様の触媒活性(触媒作用)を発揮することで、その陽極11及び陰極12を使用して電気分解を効率よく行うことができ、短時間に多量の水素ガスを発生させることができる。 Further, Pt52 (platinum) as the platinum group metal 49 is used as a raw material, and Ni53 (nickel) and Fe54 (iron) are used as the transition metal 50 as raw materials. In 27), Ni53 and Fe54 are selected so that the composite work function of the work functions of the transition metal 50 approximates the work function of the platinum group metal, and the total work function of the selected work functions of Ni53 and Fe54 is The weight ratio of the fine powder 55 of Pt52 to the total weight of the fine metal powder mixture 59 is determined so as to approximate the work function of the platinum group metal, and the weight ratio of the fine powder 56 of Ni53 to the total weight of the fine metal powder mixture 59 is determined. And the weight ratio of the fine powder 57 of Fe54 are determined, the anode 11 and the cathode 12 have substantially the same work function as the electrode supporting platinum, and the anode 11 and the cathode 12 have excellent catalytic activity (catalytic action). ), and the anode 11 and the cathode 12 exhibit substantially the same catalytic activity (catalyst action) as the electrode supporting platinum, so that the electrolysis can be efficiently performed using the anode 11 and the cathode 12. Therefore, a large amount of hydrogen gas can be generated in a short time.

電気分解装置10(水素ガス生成システム27)は、陽極11及び陰極12の厚み寸法L1が0.03mm〜1.5mmの範囲、好ましくは、0.05mm〜1.0mmの範囲にあるから、陽極11及び陰極12の電気抵抗を小さくすることができ、陽極11や陰極12に電流をスムースに流すことができ、陽極11や陰極12を利用して電気分解を確実に行うことができる。 In the electrolyzer 10 (hydrogen gas generation system 27), the thickness dimension L1 of the anode 11 and the cathode 12 is in the range of 0.03 mm to 1.5 mm, preferably in the range of 0.05 mm to 1.0 mm. The electric resistances of the cathode 11 and the cathode 12 can be reduced, a current can be smoothly passed through the anode 11 and the cathode 12, and the electrolysis can be reliably performed by using the anode 11 and the cathode 12.

電気分解装置10(水素ガス生成システム27)は、陽極11及び陰極12が各種の遷移金属50から選択された廉価な遷移金属50(たとえば、Ni53、Fe54)を含み、金属微粉体混合物59の全重量に対するそれら遷移金属50の微粉体の重量比(Ni53の微粉体56の重量比、Fe54の微粉体57の重量比)が前記範囲にあり、金属微粉体混合物59の全重量に対する白金族金属49の微粉体の重量比(Pt52の微粉体55の重量比)が前記範囲にあり、高価な白金族金属49(Pt52)の含有量が少ないから、陽極11や陰極12の材料費を低減させることができ、電気分解装置10(水素ガス生成システム27)を廉価に作ることができるとともに、電気分解装置10(水素ガス生成システム27)の運転コストを下げることができる。 In the electrolyzer 10 (hydrogen gas generation system 27), the anode 11 and the cathode 12 include an inexpensive transition metal 50 (for example, Ni53, Fe54) selected from various transition metals 50, and the entire metal fine powder mixture 59 is contained. The weight ratio of the fine powder of the transition metal 50 to the weight (the weight ratio of the fine powder 56 of Ni53, the weight ratio of the fine powder 57 of Fe54) is within the above range, and the platinum group metal 49 to the total weight of the fine metal powder mixture 59 is 49. The weight ratio of the fine powder of (5) (the weight ratio of the fine powder 55 of Pt52) is within the above range, and the content of the expensive platinum group metal 49 (Pt52) is small, so that the material cost of the anode 11 and the cathode 12 can be reduced. Therefore, the electrolyzer 10 (hydrogen gas generation system 27) can be manufactured at low cost, and the operating cost of the electrolyzer 10 (hydrogen gas generation system 27) can be reduced.

図6は、空気極38(陽極11)及び燃料極37(陰極12)を使用した固体高分子形燃料電池36の側面図であり、図7は、陽極11(空気極38)及び陰極12(燃料極37)の起電圧試験の結果を示す図である。図8は、陽極11(空気極38)及び陰極12(燃料極37)のI−V特性試験の結果を示す図である。図6では、負荷48が接続された状態を示しているが、起電圧試験では、負荷48が存在せず、無負荷である。起電圧試験及びI−V特性試験では、図6に示す固体高分子形燃料電池36に電気分解装置10において使用した陽極11(空気極38)及び陰極12(燃料極37)を使用し、無負荷においてその起電圧を測定し、固体高分子形燃料電池36に負荷48を接続し、そのI−V特性を測定した。 FIG. 6 is a side view of a polymer electrolyte fuel cell 36 using an air electrode 38 (anode 11) and a fuel electrode 37 (cathode 12), and FIG. 7 is a side view of the anode 11 (air electrode 38) and the cathode 12 ( It is a figure which shows the result of the electromotive voltage test of the fuel electrode 37). FIG. 8 is a diagram showing the results of the IV characteristic test of the anode 11 (air electrode 38) and the cathode 12 (fuel electrode 37). FIG. 6 shows a state in which the load 48 is connected, but in the electromotive voltage test, the load 48 does not exist and there is no load. In the electromotive voltage test and the IV characteristic test, the anode 11 (air electrode 38) and the cathode 12 (fuel electrode 37) used in the electrolyzer 10 were used in the polymer electrolyte fuel cell 36 shown in FIG. The electromotive voltage was measured under a load, the load 48 was connected to the polymer electrolyte fuel cell 36, and the IV characteristic was measured.

固体高分子形燃料電池36は、図6に示すように、燃料極37(陰極12)及び空気極38(陽極11)と、燃料極37及び空気極38の間に位置(介在)する固体高分子電解質膜39(電極接合体膜)(スルホン酸基を有するフッ素系イオン交換膜)と、燃料極37の厚み方向外側に位置するセパレータ40(バイポーラプレート)と、空気極38の厚み方向外側に位置するセパレータ41(バイポーラプレート)とから形成されている。 As shown in FIG. 6, the polymer electrolyte fuel cell 36 includes a fuel electrode 37 (cathode 12) and an air electrode 38 (anode 11), and a solid height position (interposition) between the fuel electrode 37 and the air electrode 38. The molecular electrolyte membrane 39 (electrode assembly membrane) (fluorine-based ion exchange membrane having a sulfonic acid group), the separator 40 (bipolar plate) located on the outer side in the thickness direction of the fuel electrode 37, and the outer side in the thickness direction of the air electrode 38. It is formed from the separator 41 (bipolar plate) located.

それらセパレータ40,41には、反応ガス(水素や酸素等)の供給流路が刻設されている(彫り込まれている)。燃料極37や空気極38、固体高分子電解質膜39が厚み方向へ重なり合って一体化し、膜/電極接合体42(Membrane Electrode Assembly, MEA)を構成し、膜/電極接合体42をそれらセパレータ40,41が挟み込んでいる。固体高分子電解質膜39は、プロトン導電性があり、電子導電性がない。 A supply channel for a reaction gas (hydrogen, oxygen, etc.) is engraved (engraved) on the separators 40, 41. The fuel electrode 37, the air electrode 38, and the solid polymer electrolyte membrane 39 are overlapped and integrated in the thickness direction to form a membrane/electrode assembly 42 (Membrane Electrode Assembly, MEA), and the membrane/electrode assembly 42 is separated by the separator 40. , 41 are sandwiched. The solid polymer electrolyte membrane 39 has proton conductivity and no electron conductivity.

燃料極37とセパレータ40との間には、ガス拡散層43が形成され、空気極38とセパレータ41との間には、ガス拡散層44が形成されている。燃料極37とセパレータ40との間であってガス拡散層43の上部及び下部には、ガスシール45が設置されている。空気極38とセパレータ41との間であってガス拡散層44の上部及び下部には、ガスシール46が設置されている。 A gas diffusion layer 43 is formed between the fuel electrode 37 and the separator 40, and a gas diffusion layer 44 is formed between the air electrode 38 and the separator 41. Gas seals 45 are installed between the fuel electrode 37 and the separator 40 and above and below the gas diffusion layer 43. Gas seals 46 are installed between the air electrode 38 and the separator 41 and above and below the gas diffusion layer 44.

固体高分子形燃料電池36では、燃料極37(陰極12)に水素(燃料)が供給され、空気極38(陽極11)に空気(酸素)が供給される。燃料極37では、水素がH→2H+2eの反応(触媒作用)によってプロトン(水素イオン、H)と電子とに分解される。その後、プロトンが固体高分子電解質膜39内を通って燃料極37から空気極38へ移動し、電子が導線47内を通って空気極38へ移動する。固体高分子電解質膜39には、燃料極37で生成されたプロトンが通流する。空気極38では、固体高分子電解質膜39から移動したプロトンと導線47を移動した電子とが空気中の酸素と反応し、4H+O+4e→2HOの反応によって水が生成される。 In the polymer electrolyte fuel cell 36, hydrogen (fuel) is supplied to the fuel electrode 37 (cathode 12) and air (oxygen) is supplied to the air electrode 38 (anode 11). At the fuel electrode 37, hydrogen is decomposed into protons (hydrogen ions, H + ) and electrons by the reaction (catalysis) of H 2 →2H + +2e . Thereafter, the protons move from the fuel electrode 37 to the air electrode 38 through the solid polymer electrolyte membrane 39, and the electrons move to the air electrode 38 through the lead wire 47. Protons generated at the fuel electrode 37 flow through the solid polymer electrolyte membrane 39. At the air electrode 38, the protons that have moved from the solid polymer electrolyte membrane 39 and the electrons that have moved through the lead wire 47 react with oxygen in the air, and water is produced by the reaction of 4H + +O 2 +4e→2H 2 O.

固体高分子形燃料電池36は、燃料極37(陰極12)及び空気極38(陽極12)が白金族金属49の微粉体を含み、更に、燃料極37及び空気極38を形成する遷移金属50の仕事関数の合成仕事関数が白金族金属の仕事関数に近似するように、遷移金属50の中から少なくとも2種類の遷移金属50が選択され、選択された遷移金属50の仕事関数の合成仕事関数が白金族金属の仕事関数に近似するように、白金族金属49の微粉体の金属微粉体混合物59の全重量に対する重量比が決定され、選択された遷移金属50の微粉体の金属微粉体混合物59の全重量に対する重量比が決定されているから、燃料極37及び空気極38が白金を担持した電極と略同一の仕事関数を備え、白金を担持した電極と略同様の触媒活性(触媒作用)を示し、水素がプロトンと電子とに効率よく分解される。 In the polymer electrolyte fuel cell 36, a fuel electrode 37 (cathode 12) and an air electrode 38 (anode 12) contain fine powder of platinum group metal 49, and a transition metal 50 forming the fuel electrode 37 and the air electrode 38. At least two kinds of transition metals 50 are selected from the transition metals 50 so that the composite work function of the selected transition metals 50 is close to the work function of the platinum group metal. Is determined to approximate the work function of the platinum group metal, the weight ratio of the fine powder of platinum group metal 49 to the total weight of the fine metal powder mixture 59 is determined, and the fine metal mixture of the fine powder of transition metal 50 is selected. Since the weight ratio of 59 to the total weight is determined, the fuel electrode 37 and the air electrode 38 have substantially the same work function as that of the platinum-supported electrode, and have substantially the same catalytic activity (catalytic action) as the platinum-supported electrode. ), hydrogen is efficiently decomposed into protons and electrons.

具体例として示した固体高分子形燃料電池36の燃料極37(陰極12)及び空気極38(陽極12)は、Pt52の白金族金属微粉体55を含み、更に、仕事関数の合成仕事関数が白金族金属の仕事関数に近似するように、Ni53とFe54とが選択され、選択されたNi53とFe54との仕事関数の合計仕事関数が白金族金属の仕事関数に近似するように、金属微粉体混合物59の全重量に対するPt52の微粉体55の重量比が決定され、金属微粉体混合物59の全重量に対するNi53の微粉体56の重量比が決定されているとともに、金属微粉体混合物59の全重量に対するFe54の微粉体57の重量比とが決定されているから、燃料極37や空気極38が白金を担持した電極と略同一の仕事関数を備え、白金を担持した電極と略同様の触媒活性(触媒作用)を示し、水素がプロトンと電子とに効率よく分解される。 The fuel electrode 37 (cathode 12) and the air electrode 38 (anode 12) of the polymer electrolyte fuel cell 36 shown as a specific example contain the platinum group metal fine powder 55 of Pt 52, and the work function of the composite work function is Ni53 and Fe54 are selected so as to approximate the work function of the platinum group metal, and the fine metal powder is selected so that the total work function of the selected work functions of Ni53 and Fe54 approximates the work function of the platinum group metal. The weight ratio of the Pt 52 fine powder 55 to the total weight of the mixture 59 is determined, the weight ratio of the Ni 53 fine powder 56 to the total weight of the metal fine powder mixture 59 is determined, and the total weight of the metal fine powder mixture 59 is determined. Since the weight ratio of the fine powder 57 of Fe54 to that of Fe is determined, the fuel electrode 37 and the air electrode 38 have substantially the same work function as the electrode supporting platinum, and the catalytic activity is substantially the same as that of the electrode supporting platinum. (Catalytic action), and hydrogen is efficiently decomposed into protons and electrons.

起電圧試験では、水素ガスを注入してから15分の間、電極(燃料極37や空気極38)と電極(燃料極37や空気極38)との間(電極間)の電圧(V)を測定した。図7の起電圧試験の結果を示す図では、横軸に測定時間(min)を表し、縦軸に電極(燃料極37や空気極38)と電極(燃料極37や空気極38)との間(電極間)の電圧(V)を表す。燃料極37(陰極12)及び空気極38(陽極12)を使用した固体高分子形燃料電池36では、図7に示すように、電極間の電圧が1.07(V)〜1.088(V)であった。 In the electromotive voltage test, the voltage (V) between the electrodes (fuel electrode 37 and air electrode 38) and the electrodes (fuel electrode 37 and air electrode 38) (between electrodes) for 15 minutes after hydrogen gas was injected. Was measured. In the diagram showing the results of the electromotive force test in FIG. 7, the horizontal axis represents the measurement time (min), and the vertical axis represents the electrodes (fuel electrode 37 and air electrode 38) and electrodes (fuel electrode 37 and air electrode 38). The voltage (V) between the electrodes (between the electrodes) is represented. In the polymer electrolyte fuel cell 36 using the fuel electrode 37 (cathode 12) and the air electrode 38 (anode 12), as shown in FIG. 7, the voltage between the electrodes is 1.07 (V) to 1.088 ( V).

I−V特性試験では、電極(燃料極37や空気極38)と電極(燃料極37や空気極38)との間(電極間)に負荷48を接続し、電圧と電流との関係を測定した。図8のI−V特性試験の結果を示す図では、横軸に電流(A)を表し、縦軸に電圧(V)を表す。燃料極37(陰極12)及び空気極38(陽極12)を使用した固体高分子形燃料電池36では、図8に示すように、緩やかな電圧降下が認められた。図7の起電圧試験の結果や図8のI−V特性試験の結果に示すように、燃料極37(陰極12)及び空気極38(陽極12)が電子を放出させて水素イオンとなる反応を促進させる優れた触媒作用を有するとともに、優れた酸素還元機能(触媒作用)を有することが確認された。 In the IV characteristic test, a load 48 is connected between the electrodes (fuel electrode 37 or air electrode 38) and the electrodes (fuel electrode 37 or air electrode 38) (between the electrodes), and the relationship between voltage and current is measured. did. In the diagram showing the results of the IV characteristic test in FIG. 8, the horizontal axis represents current (A) and the vertical axis represents voltage (V). In the polymer electrolyte fuel cell 36 using the fuel electrode 37 (cathode 12) and the air electrode 38 (anode 12), a gradual voltage drop was observed as shown in FIG. As shown in the results of the electromotive force test of FIG. 7 and the results of the IV characteristic test of FIG. 8, a reaction in which the fuel electrode 37 (cathode 12) and the air electrode 38 (anode 12) emit electrons to become hydrogen ions. It was confirmed that it has an excellent oxygen reduction function (catalytic action) as well as an excellent catalytic action for promoting oxygen.

図9は、電気分解装置10に使用する陽極11及び陰極12の製造方法を説明する図である。陽極11及び陰極12は、図9に示すように、金属選択工程S1、金属微粉体作成工程S2、微粉体重量比決定工程S3、金属微粉体混合物作成工程S4、金属微粉体成形物作成工程S5、マイクロポーラス構造薄板電極作成工程S6を有する電極製造方法によって製造される。電極製造方法では、白金族金属49と少なくとも2種類の遷移金属50とを原料として電気分解装置10(固体高分子形燃料電池36)に使用する陽極11(空気極38)及び陰極12(燃料極37)を製造する。 FIG. 9 is a diagram illustrating a method of manufacturing the anode 11 and the cathode 12 used in the electrolyzer 10. As shown in FIG. 9, the anode 11 and the cathode 12 include a metal selecting step S1, a metal fine powder producing step S2, a fine powder weight ratio determining step S3, a metal fine powder mixture producing step S4, and a metal fine powder molded article producing step S5. , Is manufactured by an electrode manufacturing method including a microporous thin plate electrode forming step S6. In the electrode manufacturing method, the anode 11 (air electrode 38) and the cathode 12 (fuel electrode) used in the electrolyzer 10 (solid polymer fuel cell 36) using the platinum group metal 49 and at least two kinds of transition metals 50 as raw materials. 37) is produced.

金属選択工程S1では、各種の白金族金属49の中から少なくとも1種類の白金族金属49(白金(Pt)、パラジウム(Pb)、ロジウム(Rh)、ルテニウム(Ru)、イリジウム(Ir)、オスミウム(Os))を選択し、各種の遷移金属50から選択する少なくとも2種類の遷移金属50の仕事関数の合成仕事関数が白金族金属の仕事関数に近似するように、各種の遷移金属50の中から少なくとも2種類の遷移金属50(Ti(チタン)、Cr(クロム)、Mn(マンガン)、Fe(鉄)、Co(コバルト)、Ni(ニッケル)、Cu(銅)、Zn(亜鉛)、Nb(ニオブ)、Mo(モリブデン)、Ag(銀))を選択する。なお、陽極11及び陰極12に使用する白金族金属49としてPt52(白金)が選択され、陽極11及び陰極12に使用する遷移金属50としてNi53(ニッケル)、Fe54(鉄)が選択されたものとする。 In the metal selection step S1, at least one platinum group metal 49 (platinum (Pt), palladium (Pb), rhodium (Rh), ruthenium (Ru), iridium (Ir), osmium is selected from among various platinum group metals 49. (Os)) is selected and selected from various transition metals 50. Among the various transition metals 50, the composite work functions of the work functions of at least two transition metals 50 are approximated to the work functions of platinum group metals. To at least two kinds of transition metals 50 (Ti (titanium), Cr (chromium), Mn (manganese), Fe (iron), Co (cobalt), Ni (nickel), Cu (copper), Zn (zinc), Nb (Niobium), Mo (molybdenum), Ag (silver)) is selected. In addition, Pt52 (platinum) is selected as the platinum group metal 49 used for the anode 11 and the cathode 12, and Ni53 (nickel) and Fe54 (iron) are selected as the transition metal 50 used for the anode 11 and the cathode 12. To do.

金属微粉体作成工程S2では、微粉砕機によって白金52(Pt)を1μm〜100μmの粒径に微粉砕し、粒径が1μm〜100μmのPt52の白金族金属微粉体55を作り、微粉砕機によってNi53(ニッケル)を1μm〜100μmの粒径に微粉砕し、粒径が1μm〜100μmのNi53の遷移金属微粉体56を作るとともに、微粉砕機によってFe54(鉄)を1μm〜100μmの粒径に微粉砕し、粒径が1μm〜100μmのFe54の遷移金属微粉体57を作る。 In the fine metal powder preparation step S2, platinum 52 (Pt) is finely pulverized by a fine pulverizer to a particle size of 1 μm to 100 μm, and a platinum group metal fine powder 55 of Pt 52 having a particle size of 1 μm to 100 μm is produced. Ni53 (nickel) is finely pulverized to a particle size of 1 μm to 100 μm to make a transition metal fine powder 56 of Ni53 having a particle size of 1 μm to 100 μm, and Fe54 (iron) is grained to a particle size of 1 μm to 100 μm by a fine pulverizer. Then, the transition metal fine powder 57 of Fe54 having a particle diameter of 1 μm to 100 μm is prepared.

電極製造方法は、Pt52(白金族金属49)やNi53(遷移金属50)、Fe54(遷移金属50)を1μm〜100μmの粒径に微粉砕することで、多数の微細な気孔23(通路孔)を有する多孔質に成形されて比表面積が大きいポーラス構造かつ薄板状の陽極11や陰極12を作ることができ、それら気孔23を水溶液(液体)やガス(気体)が通流しつつ水溶液(液体)やガス(気体)を陽極11(空気極38)及び陰極12(燃料極37)のそれら気孔23における接触面に広く接触させることが可能な陽極11(空気極38)及び陰極12(燃料極37)を作ることができる。 The electrode manufacturing method is to pulverize Pt52 (platinum group metal 49), Ni53 (transition metal 50), and Fe54 (transition metal 50) to a particle size of 1 μm to 100 μm to obtain a large number of fine pores 23 (passage holes). It is possible to form a thin plate-shaped anode 11 or cathode 12 having a porous structure having a large specific surface area and having a large specific surface area, and the aqueous solution (liquid) while the aqueous solution (liquid) or gas (gas) flows through the pores 23. The anode 11 (air electrode 38) and the cathode 12 (fuel electrode 37) capable of widely contacting the contact surfaces in the pores 23 of the anode 11 (air electrode 38) and the cathode 12 (fuel electrode 37) with a gas or gas. ) Can be made.

微粉体重量比決定工程S3では、金属微粉体作成工程S2によって作られたNi53の微粉体56とFe54の微粉体57との仕事関数の合成仕事関数が白金族金属の仕事関数に近似するように、金属微粉体混合物59の全重量に対するPt52の微粉体55の重量比を決定し、金属微粉体混合物59の全重量に対するNi53の微粉体56の重量比を決定するとともに、金属微粉体混合物59の全重量に対するFe54の微粉体57の重量比を決定する。 In the fine powder weight ratio determining step S3, the combined work function of the work functions of the Ni53 fine powder 56 and the Fe54 fine powder 57 produced in the metal fine powder producing step S2 is approximated to the work function of the platinum group metal. The weight ratio of the Pt 52 fine powder 55 to the total weight of the metal fine powder mixture 59 is determined, and the weight ratio of the Ni 53 fine powder 56 to the total weight of the metal fine powder mixture 59 is determined. The weight ratio of the fine powder 57 of Fe54 to the total weight is determined.

微粉体重量比決定工程S3では、金属微粉体混合物59の全重量(100%)に対するPt52(白金族金属49)の微粉体55の重量比を4%〜10%の範囲、好ましくは、5%〜8%の範囲で決定する。微粉体重量比決定工程S3では、金属微粉体混合物59の全重量(100%)に対するNi53(遷移金属50)の微粉体56の重量比を45%〜48%の範囲で決定し、金属微粉体混合物59の全重量(100%)に対するFe54(遷移金属50)の微粉体57の重量比を45%〜48%の範囲で決定する。 In the fine powder weight ratio determining step S3, the weight ratio of the fine powder 55 of Pt52 (platinum group metal 49) to the total weight (100%) of the metal fine powder mixture 59 is in the range of 4% to 10%, preferably 5%. Determine in the range of ~8%. In the fine powder weight ratio determining step S3, the weight ratio of the fine powder 56 of Ni53 (transition metal 50) to the total weight (100%) of the metal fine powder mixture 59 is determined within the range of 45% to 48%. The weight ratio of the fine powder 57 of Fe54 (transition metal 50) to the total weight (100%) of the mixture 59 is determined in the range of 45% to 48%.

電極製造方法は、合成仕事関数が白金族金属の仕事関数に近似するように遷移金属50のNi53(ニッケル)とFe54(鉄)とを選択するとともに、合成仕事関数が白金族金属の仕事関数に近似するように、金属微粉体混合物59の全重量に対するPt52の微粉体55の重量比や金属微粉体混合物59の全重量に対するNi53の微粉体56の重量比、金属微粉体混合物59の全重量に対するFe54の微粉体57の重量比を前記範囲において決定することで、Ni53の微粉体56とFe54の微粉体57との仕事関数の合成仕事関数を白金族金属の仕事関数に近似させることができ、白金族金属49(Pt52)の含有量が少ないにもかかわらず、白金を担持した電極と略同一の仕事関数を備え、白金を担持した電極と略同様の触媒活性(触媒作用)を発揮することができ、優れた触媒活性(触媒作用)を有して触媒機能を十分かつ確実に利用することが可能な白金族金属少含有の陽極11(空気極38)及び陰極12(燃料極37)を作ることができる。 The electrode manufacturing method selects Ni53 (nickel) and Fe54 (iron) of the transition metal 50 so that the synthetic work function approximates the work function of the platinum group metal, and the synthetic work function is the work function of the platinum group metal. Similarly, the weight ratio of the fine powder 55 of Pt 52 to the total weight of the fine metal powder mixture 59, the weight ratio of the fine powder 56 of Ni 53 to the total weight of the fine metal powder mixture 59, and the total weight of the fine metal powder mixture 59 are similar. By determining the weight ratio of the fine powder 57 of Fe54 in the above range, the composite work function of the work functions of the fine powder 56 of Ni53 and the fine powder 57 of Fe54 can be approximated to the work function of the platinum group metal, Despite having a low content of platinum group metal 49 (Pt52), it has a work function substantially the same as that of the electrode supporting platinum and exhibits substantially the same catalytic activity (catalytic action) as the electrode supporting platinum. And an anode 11 (air electrode 38) and a cathode 12 (fuel electrode 37) containing a small amount of a platinum group metal, which are capable of providing excellent catalytic activity (catalyst action) and can sufficiently and reliably utilize the catalytic function. Can be made.

電極製造方法は、金属微粉体混合物59の全重量に対するNi53(遷移金属50)の微粉体56の重量比や金属微粉体混合物59の全重量に対するFe54(遷移金属50)の微粉体57の重量比が前記範囲にあり、金属微粉体混合物59の全重量に対するPt52(白金族金属49)の微粉体55の重量比が前記範囲にあるから、高価な白金族金属49(Pt52)の含有量が少なく、陽極11(空気極38)及び陰極12(燃料極37)を廉価に作ることができる。 The electrode manufacturing method includes a weight ratio of the fine powder 56 of Ni53 (transition metal 50) to the total weight of the fine metal powder mixture 59 and a weight ratio of fine powder 57 of Fe54 (transition metal 50) to the total weight of the fine metal powder mixture 59. Is in the above range, and the weight ratio of the fine powder 55 of Pt52 (platinum group metal 49) to the total weight of the fine metal powder mixture 59 is in the above range. Therefore, the content of expensive platinum group metal 49 (Pt52) is small. The anode 11 (air electrode 38) and the cathode 12 (fuel electrode 37) can be manufactured at low cost.

金属微粉体混合物作成工程S4では、微粉体重量比決定工程S3によって決定した重量比のPt52の微粉体55と微粉体重量比決定工程S3によって決定した重量比のNi53の微粉体56と微粉体重量比決定工程S3によって決定した重量比のFe54の微粉体57とバインダー51(粉状の樹脂系バインダー)とを混合機に投入し、混合機によってPt52の微粉体55、Ni53の微粉体56、Fe54の微粉体57、バインダー51を攪拌・混合し、Pt52の微粉体55、Ni53の微粉体56、Fe54の微粉体57、バインダー51が均一に混合・分散した金属微粉体混合物59(発泡金属成形材)を作る。次に、金属微粉体混合物59に所定量の気孔形成材58(粉体の発泡剤)を添加する。所定量の気孔形成材58を混合機又は攪拌機に投入し、混合機又は攪拌機によって金属微粉体混合物59に気孔形成材58を均一に混合・分散させた金属微粉体混合物59(発泡金属成形材料)を作る。気孔形成材58(粉体の発泡剤)の添加量によって陽極11(空気極38)及び陰極12(燃料極37)に形成される気孔25の平均径や気孔率が決まる。 In the fine metal powder mixture forming step S4, the fine powder 55 of Pt52 having the weight ratio determined in the fine powder weight ratio determining step S3 and the fine powder 56 of Ni53 and fine powder weight having the weight ratio determined in the fine powder weight ratio determining step S3. The fine powder 57 of Fe54 and the binder 51 (powder-like resin binder) having the weight ratio determined in the ratio determining step S3 are charged into a mixer, and the fine powder 55 of Pt52, the fine powder 56 of Ni53, and the Fe54 are mixed by the mixer. The fine powder 57 of No. 5 and the binder 51 are agitated and mixed, and the fine powder 55 of Pt 52, the fine powder 56 of Ni 53, the fine powder 57 of Fe 54, and the fine metal powder mixture 59 in which the binder 51 is uniformly mixed and dispersed (foam metal molding material). )make. Next, a predetermined amount of pore forming material 58 (powder blowing agent) is added to the metal fine powder mixture 59. A fine metal powder mixture 59 (foam metal molding material) in which a predetermined amount of pore forming material 58 is put into a mixer or stirrer and the fine metal powder mixture 59 is uniformly mixed and dispersed by the mixer or stirrer. make. The average diameter and porosity of the pores 25 formed in the anode 11 (air electrode 38) and the cathode 12 (fuel electrode 37) are determined by the addition amount of the pore forming material 58 (powder of powder).

金属微粉体成形物作成工程S5では、金属微粉体混合物作成工程S4によって作られた金属微粉体混合物59(発泡金属成形材料)を射出成形機(図示せず)や押出成形機(図示せず)に投入し、金属微粉体混合物59を射出成形機によって射出成形(金属粉末射出成形)し、又は、金属微粉体混合物59を押出成形機によって押し出し成形(金属粉末押出成形)し、金属微粉体混合物59を所定面積の薄板状(厚み寸法L1が0.03mm〜1.5mmの範囲、好ましくは、0.05mm〜1.0mmの範囲)に成形した金属微粉体成形物60(発泡金属成形物)を作る。 In the metal fine powder molded product producing step S5, the metal fine powder mixture 59 (foam metal molding material) produced in the metal fine powder mixture producing step S4 is injected into an injection molding machine (not shown) or an extrusion molding machine (not shown). And the metal fine powder mixture 59 is injection-molded by an injection molding machine (metal powder injection molding), or the metal fine powder mixture 59 is extruded by an extrusion molding machine (metal powder extrusion molding). Metal fine powder molded product 60 (foamed metal molded product) formed by molding 59 into a thin plate having a predetermined area (thickness dimension L1 is in the range of 0.03 mm to 1.5 mm, preferably 0.05 mm to 1.0 mm). make.

マイクロポーラス構造薄板電極作成工程S6では、金属微粉体成形物作成工程S5の金属粉末射出成形や金属粉末押出成形によって作られた金属微粉体成形物60(発泡金属成形物)を脱脂し、脱脂した金属微粉体成形物60を焼成炉(燃焼炉、電気炉等)に投入し、金属微粉体成形物60を焼成炉において所定温度で所定時間焼結(焼成)して多数の微細な気孔23(通路孔)を形成したマイクロポーラス構造かつ薄板状(厚み寸法L1が0.03mm〜1.5mmの範囲、好ましくは、0.05mm〜1.0mmの範囲)の陽極11(空気極38)及び陰極12(燃料極37)を作る。 In the microporous structure thin plate electrode producing step S6, the metal fine powder molded article 60 (foamed metal molded article) produced by the metal powder injection molding or the metal powder extrusion molding in the metal fine powder molded article producing step S5 is degreased and degreased. The metal fine powder molded product 60 is put into a firing furnace (combustion furnace, electric furnace, etc.), and the metal fine powder molded product 60 is sintered (fired) at a predetermined temperature for a predetermined time in the firing furnace to obtain a large number of fine pores 23 ( Anode 11 (air electrode 38) and cathode having a microporous structure and a thin plate shape (thickness dimension L1 is in the range of 0.03 mm to 1.5 mm, preferably in the range of 0.05 mm to 1.0 mm) in which passage holes are formed. 12 (fuel electrode 37) is made.

焼結温度は、900℃〜1400℃である。焼結(焼成)時間は、2時間〜6時間である。マイクロポーラス構造薄板電極作成工程S6では、所定面積の薄板状に成形した金属微粉体成形物60の焼結時において、金属微粉体成形物60の内部において気孔形成材58(粉体の発泡剤)が発泡した後、気孔形成材58が金属微粉体成形物60の内部から消失し、多数の微細な気孔23(流路)(連続かつ独立通路孔)が形成されたマイクロポーラス構造かつ薄板状の陽極11(空気極38)及び陰極12(燃料極37)が製造される。 The sintering temperature is 900°C to 1400°C. The sintering (firing) time is 2 to 6 hours. In the microporous structure thin plate electrode forming step S6, the pore forming material 58 (powder foaming agent) is formed inside the metal fine powder molded product 60 when the metal fine powder molded product 60 molded into a thin plate having a predetermined area is sintered. After the foaming, the pore-forming material 58 disappears from the inside of the fine metal powder product 60, and a large number of fine pores 23 (flow paths) (continuous and independent passage holes) are formed to have a microporous structure and a thin plate shape. The anode 11 (air electrode 38) and the cathode 12 (fuel electrode 37) are manufactured.

電極製造方法は、金属粉末射出成形や金属粉末押出成形によってPt52の微粉体55とNi53の微粉体56とFe54の微粉体57とがバインダー51を介して連結され、金属粉末射出成形や金属粉末押出成形によって作られた金属微粉体成形物60(発泡金属成形物)が所定の強度を有するとともに、金属微粉体成形物60を焼結することで、多数の微細な気孔23(通路孔)を有するマイクロポーラス構造かつ薄板状の陽極11(空気極38)及び陰極12(燃料極37)を作ることができるとともに、高い強度を有して形状を維持することができ、衝撃が加えられたときの破損や損壊を防ぐことが可能な非白金の陽極11(空気極38)及び陰極12(燃料極37)を作ることができる。 In the electrode manufacturing method, the fine powder 55 of Pt 52, the fine powder 56 of Ni 53, and the fine powder 57 of Fe 54 are connected via the binder 51 by metal powder injection molding or metal powder extrusion molding, and metal powder injection molding or metal powder extrusion is performed. The metal fine powder molded product 60 (foamed metal molded product) formed by molding has a predetermined strength, and has a large number of fine pores 23 (passage holes) by sintering the metal fine powder molded product 60. The thin plate-shaped anode 11 (air electrode 38) and cathode 12 (fuel electrode 37) having a micro-porous structure can be formed, and the shape can be maintained with high strength, so that when the impact is applied, A non-platinum anode 11 (air electrode 38) and cathode 12 (fuel electrode 37) that can prevent breakage and damage can be made.

電極製造方法は、各種の白金族金属49の中から少なくとも1種類の白金族金属49(Pt52)を選択し、各種の遷移金属50から選択する少なくとも2種類の遷移金属50の仕事関数の合成仕事関数が白金族金属の仕事関数に近似するように、各種の遷移金属50の中から少なくとも2種類の遷移金属50(たとえば、Ni53、Fe54)を選択する金属選択工程S1と、金属選択工程S1によって選択された少なくとも1種類の白金族金属49(Pt52)を微粉砕して白金族金属微粉体(Pt52の微粉体55)を作り、金属選択工程S1によって選択された少なくとも2種類の遷移金属50を微粉砕して遷移金属微粉体(Ni53の微粉体56、Fe54の微粉体57)を作る金属微粉体作成工程S2と、金属微粉体作成工程S2によって作られた少なくとも2種類の遷移金属微粉体の仕事関数の合成仕事関数が白金族金属の仕事関数に近似するように、白金族金属微粉体(Pt52の微粉体55)の重量比と少なくとも2種類の遷移金属微粉体(Ni53の微粉体56、Fe54の微粉体57)の重量比とを決定する微粉体重量比決定工程S3と、微粉体重量比決定工程S3によって決定した重量比の白金族金属微粉体(Pt52の微粉体55)及び少なくとも2種類の遷移金属微粉体(Ni53の微粉体56、Fe54の微粉体57)に所定のバインダー51を加え、それらを均一に混合・分散して金属微粉体混合物59(発泡金属成形材料)を作り、金属微粉体混合物59に所定の気孔形成材58を添加する金属微粉体混合物作成工程S4と、金属微粉体混合物作成工程S4によって作られた金属微粉体混合物59を薄板状に成形(金属粉末押出成形又は金属粉末射出成形)して金属微粉体成形物59(発泡金属成形物)を作る金属微粉体成形物作成工程S5と、金属微粉体成形物作成工程S5によって作られた金属微粉体成形物59を脱脂するとともに金属微粉体成形物59を所定温度で焼結して多数の微細な気孔23が形成されたマイクロポーラス構造の薄板状の陽極11(空気極38)及び陰極12(燃料極37)を作るマイクロポーラス構造薄板電極作成工程S6との各工程によって陽極11(空気極38)及び陰極12(燃料極37)を製造するから、それら工程S1〜S6によって厚み寸法L1が0.03mm〜1.5mmの範囲(好ましくは、0.05mm〜1.0mmの範囲)であって多数の微細な気孔23(通路孔)を形成した陽極11(空気極38)及び陰極12(燃料極37)(マイクロポーラス構造薄板状電極)を製造することができ、陽極11(空気極38)及び陰極12(燃料極37)を廉価に作ることができるとともに、優れた触媒活性(触媒作用)を有して触媒機能を十分かつ確実に利用することが可能な白金族金属少含有の陽極11(空気極38)及び陰極12(燃料極37)を作ることができる。 The electrode manufacturing method is to select at least one kind of platinum group metal 49 (Pt52) from among various kinds of platinum group metals 49, and select a work function of at least two kinds of transition metals 50 selected from various kinds of transition metals 50. The metal selection step S1 for selecting at least two kinds of transition metals 50 (for example, Ni53, Fe54) from the various transition metals 50 so that the function approximates the work function of the platinum group metal, and the metal selection step S1. At least one selected platinum group metal 49 (Pt52) is pulverized to form a platinum group metal fine powder (fine powder 55 of Pt52), and at least two transition metals 50 selected in the metal selection step S1 are obtained. A fine metal powder preparation step S2 for finely pulverizing the fine transition metal powder (fine powder 56 of Ni53, fine powder 57 of Fe54) and at least two kinds of fine transition metal powders produced by the fine metal powder preparation step S2. Work function composition so that the work function approximates the work function of the platinum group metal, and the weight ratio of the platinum group metal fine powder (fine powder 55 of Pt52) and at least two kinds of transition metal fine powder (fine powder 56 of Ni53, The fine powder weight ratio determining step S3 for determining the weight ratio of the fine powder 57) of Fe54, and the platinum group metal fine powder (fine powder 55 of Pt52) and at least 2 of the weight ratio determined in the fine powder weight ratio determining step S3. A predetermined binder 51 is added to various kinds of fine transition metal powders (fine powder 56 of Ni53, fine powder 57 of Fe54), and these are uniformly mixed and dispersed to form a fine metal powder mixture 59 (foam metal molding material). The metal fine powder mixture producing step S4 of adding a predetermined pore forming material 58 to the metal fine powder mixture 59 and the metal fine powder mixture 59 produced by the metal fine powder mixture producing step S4 are formed into a thin plate (metal powder extrusion molding). Or metal powder injection molding) to form a metal fine powder molded product 59 (foamed metal molded product), and a metal fine powder molded product 59 produced by the metal fine powder molded product manufacturing step S5. The thin plate-shaped anode 11 (air electrode 38) and cathode 12 (fuel electrode 37) having a microporous structure in which a large number of fine pores 23 are formed by degreasing and sintering the metal fine powder molded product 59 at a predetermined temperature. Since the anode 11 (air electrode 38) and the cathode 12 (fuel electrode 37) are manufactured by the respective steps of the microporous structure thin plate electrode forming step S6 for manufacturing the above, the thickness dimension L1 is 0.03 mm to 1 in the steps S1 to S6. In the range of 0.5 mm (preferably in the range of 0.05 mm to 1.0 mm) It is possible to manufacture the anode 11 (air electrode 38) and the cathode 12 (fuel electrode 37) (microporous structure thin plate electrode) in which a large number of fine pores 23 (passage holes) are formed, and the anode 11 (air electrode 38). Also, the cathode 11 (fuel electrode 37) can be manufactured at a low cost, and the anode 11 contains a small amount of platinum group metal, which has an excellent catalytic activity (catalytic action) and can sufficiently and surely utilize the catalytic function. (Air electrode 38) and cathode 12 (fuel electrode 37) can be made.

電極製造方法は、優れた触媒活性(触媒作用)を有して触媒機能を十分かつ確実に利用することが可能な白金族金属少含有の陽極11(空気極38)及び陰極12(燃料極37)を作ることができ、電気分解装置10(水素ガス生成システム27)や固体高分子形燃料電池36に好適に使用することが可能な陽極11(空気極38)及び陰極12(燃料極37)を作ることができる。電極製造方法は、工程S1〜S6によって作られた陽極11(空気極38)及び陰極12(燃料極37)が白金族金属を担持した電極と略同様の触媒活性(触媒作用)を発揮するから、電気分解装置10において電気分解を効率よく行うことができ、短時間に多量の水素ガスを発生させることが可能な陽極11及び陰極12作ることができるとともに、固体高分子形燃料電池36において十分な電気を発電することが可能であって固体高分子形燃料電池36に接続された負荷48に十分な電気エネルギーを供給することが可能な白金族金属少含有の空気極38及び燃料極37を作ることができる。 The electrode manufacturing method includes a positive electrode 11 (air electrode 38) and a negative electrode 12 (fuel electrode 37) containing a small amount of platinum group metal, which has an excellent catalytic activity (catalytic action) and can sufficiently and reliably utilize the catalytic function. ), and can be suitably used for the electrolyzer 10 (hydrogen gas generation system 27) and the polymer electrolyte fuel cell 36. The anode 11 (air electrode 38) and the cathode 12 (fuel electrode 37). Can be made. In the electrode manufacturing method, the anode 11 (air electrode 38) and the cathode 12 (fuel electrode 37) produced by steps S1 to S6 exhibit substantially the same catalytic activity (catalytic action) as the platinum group metal-supported electrode. In addition, the electrolysis device 10 can efficiently perform electrolysis, and the anode 11 and the cathode 12 that can generate a large amount of hydrogen gas in a short time can be formed, and the solid polymer fuel cell 36 is sufficient. An air electrode 38 and a fuel electrode 37 containing a small amount of platinum group metal capable of generating various electricity and supplying sufficient electric energy to a load 48 connected to the polymer electrolyte fuel cell 36. Can be made.

10 電気分解装置
11 陽極(電極)
12 陰極(電極)
13 固体高分子電解質膜
14 陽極給電部材
15 陰極給電部材
16 陽極用貯水槽
17 陰極用貯水槽
18 陽極主電極
19 陰極主電極
20 膜/電極接合体
21 前面
22 後面
23 気孔(連続かつ独立通路孔)
24 マイクロポーラス構造の薄板状電極
25 通流口
26 外周縁
27 水素ガス生成システム
28 直流電源
29 貯水タンク
30 給水ポンプ
31 酸素気液分離器
32 循環ポンプ
33 循環ポンプ
34 水素気液分離器
35 ボンベ
36 固体高分子形燃料電池
37 燃料極
38 空気極
39 固体高分子電解質膜
40 セパレータ
41 セパレータ
42 膜/電極接合体
43 ガス拡散層
44 ガス拡散層
45 ガスシール
46 ガスシール
47 導線
48 負荷
49 白金族金属
50 遷移金属
51 バインダー
52 Pt(白金)
53 Ni(ニッケル)
54 Fe(鉄)
55 Pt(白金)の微粉体(白金族金属微粉体)
56 Ni(ニッケル)の微粉体(遷移金属微粉体)
57 Fe(鉄)の微粉体(遷移金属微粉体)
58 気孔形成材(発泡剤)
59 金属微粉体混合物
60 金属微粉体成形物
L1 厚み寸法
S1 金属選択工程
S2 金属微粉体作成工程
S3 微粉体重量比決定工程
S4 金属微粉体混合物作成工程
S5 金属微粉体成形物作成工程
S6 マイクロポーラス構造薄板電極作成工程
10 Electrolyzer 11 Anode (electrode)
12 Cathode (electrode)
13 Solid Polymer Electrolyte Membrane 14 Anode Power Feeding Member 15 Cathode Power Feeding Member 16 Anode Water Storage Tank 17 Cathode Water Storage Tank 18 Anode Main Electrode 19 Cathode Main Electrode 20 Membrane/Electrode Assembly 21 Front Surface 22 Rear Surface 23 Pore (Continuous and independent passage hole )
24 Microporous Thin Plate Electrode 25 Flow Port 26 Outer Edge 27 Hydrogen Gas Generation System 28 DC Power Supply 29 Water Storage Tank 30 Water Supply Pump 31 Oxygen Gas Liquid Separator 32 Circulation Pump 33 Circulation Pump 34 Hydrogen Gas Liquid Separator 35 Cylinder 36 Polymer electrolyte fuel cell 37 Fuel electrode 38 Air electrode 39 Solid polymer electrolyte membrane 40 Separator 41 Separator 42 Membrane/electrode assembly 43 Gas diffusion layer 44 Gas diffusion layer 45 Gas seal 46 Gas seal 47 Conductive wire 48 Load 49 Platinum group metal 50 transition metal 51 binder 52 Pt (platinum)
53 Ni (nickel)
54 Fe (iron)
55 Pt (platinum) fine powder (platinum group metal fine powder)
56 Ni (nickel) fine powder (transition metal fine powder)
57 Fe (iron) fine powder (transition metal fine powder)
58 Pore forming material (foaming agent)
59 Metal fine powder mixture 60 Metal fine powder molded product L1 Thickness dimension S1 Metal selection process S2 Metal fine powder preparation process S3 Fine powder weight ratio determination process S4 Metal fine powder mixture preparation process S5 Metal fine powder molded product production process S6 Microporous structure Thin plate electrode making process

Claims (9)

陽極及び陰極と、前記陽極と前記陰極との間に位置してそれら極を接合する電極接合体膜とを備え、
前記陽極及び前記陰極が、各種の白金族金属から選択された少なくとも1種類の少量の白金族金属と、各種の遷移金属から選択された少なくとも2種類の遷移金属とから形成され、
前記陽極及び前記陰極は、前記選択された少なくとも1種類の白金族金属を微粉砕した白金族金属微粉体と前記選択された少なくとも2種類の遷移金属を微粉砕した遷移金属微粉体と所定のバインダーとを均一に混合・分散した金属微粉体混合物に所定の気孔形成材を添加し、前記気孔形成材を添加した金属微粉体混合物を所定面積の薄板状に成形し、前記所定面積の薄板状に成形した金属微粉体成形物を脱脂・焼結することで、多数の微細な気孔が形成されたマイクロポーラス構造の薄板状電極であり、
前記マイクロポーラス構造の薄板状に成形された前記陽極及び前記陰極に電気を通電し、該陽極で酸化反応を起こすとともに該陰極で還元反応を起こすことで所定の水溶液を化学分解することを特徴とする電気分解装置。
An anode and a cathode, and an electrode assembly film that is located between the anode and the cathode and joins the electrodes,
The anode and the cathode are formed from a small amount of at least one platinum group metal selected from various platinum group metals and at least two types of transition metals selected from various transition metals,
The anode and the cathode are a platinum group metal fine powder obtained by finely grinding the selected at least one platinum group metal, a transition metal fine powder obtained by finely grinding the selected at least two types of transition metals, and a predetermined binder. Add a predetermined pore-forming material to the metal fine powder mixture in which and are uniformly mixed and dispersed, and mold the metal fine-powder mixture to which the pore-forming material is added into a thin plate shape with a predetermined area, into a thin plate shape with the predetermined area. A thin plate electrode with a microporous structure in which a large number of fine pores are formed by degreasing and sintering the formed metal fine powder molded product,
Characteristically, a predetermined aqueous solution is chemically decomposed by supplying electricity to the anode and the cathode formed in the shape of a microporous thin plate to cause an oxidation reaction at the anode and a reduction reaction at the cathode. Electrolyzer.
前記陽極及び前記陰極では、前記選択された少なくとも2種類の遷移金属の仕事関数の合成仕事関数が白金族金属の仕事関数に近似するように、前記各種の遷移金属の中から少なくとも2種類の遷移金属が選択されている請求項1に記載の電気分解装置。 In the anode and the cathode, at least two kinds of transition metals are selected from the various transition metals so that the composite work function of the work functions of the selected at least two kinds of transition metals approximates to the work function of the platinum group metal. The electrolyzer according to claim 1, wherein a metal is selected. 前記陽極及び前記陰極に形成された気孔の平均径が、1〜100μmの範囲にある請求項1又は請求項2に記載の電気分解装置。 The electrolyzer according to claim 1 or 2, wherein an average diameter of pores formed in the anode and the cathode is in a range of 1 to 100 µm. 前記陽極の厚み寸法と前記陰極の厚み寸法とが、0.03mm〜1.5mmの範囲にある請求項1ないし請求項3いずれかに記載の電気分解装置。 The electrolyzer according to any one of claims 1 to 3, wherein the thickness of the anode and the thickness of the cathode are in the range of 0.03 mm to 1.5 mm. 前記白金族金属が、Pt(白金)であり、前記遷移金属が、Ni(ニッケル)とFe(鉄)とであり、前記陽極及び前記陰極では、前記Niの仕事関数と前記Feの仕事関数との合成仕事関数が前記白金族金属の仕事関数に近似するように、前記Ptの白金族金属微粉体の前記金属微粉体混合物の全重量に対する重量比と前記Niの遷移金属微粉体の該金属微粉体混合物の全重量に対する重量比と前記Feの遷移金属微粉体の該金属微粉体混合物の全重量に対する重量比とが定められている請求項1ないし請求項4いずれかに記載の電気分解装置。 The platinum group metal is Pt (platinum), the transition metal is Ni (nickel) and Fe (iron), the work function of Ni and the work function of Fe in the anode and the cathode Ratio of the platinum group metal fine powder of Pt to the total weight of the metal fine powder mixture and the metal powder of the transition metal fine powder of Ni such that the synthetic work function of Pt is close to the work function of the platinum group metal. The electrolysis apparatus according to any one of claims 1 to 4, wherein a weight ratio to the total weight of the body mixture and a weight ratio of the transition metal fine powder of Fe to the total weight of the fine metal powder mixture are defined. 前記Ptの白金族金属微粉体の前記金属微粉体混合物の全重量に対する重量比が、4〜10%の範囲、前記Niの遷移金属微粉体の前記金属微粉体混合物の全重量に対する重量比が、45%〜48%の範囲、前記Feの遷移金属微粉体の前記金属微粉体混合物の全重量に対する重量比が、45%〜48%の範囲にある請求項5に記載の電気分解装置。 The weight ratio of the Pt platinum group metal fine powder to the total weight of the metal fine powder mixture is in the range of 4 to 10%, and the weight ratio of the Ni transition metal fine powder to the total weight of the metal fine powder mixture is The electrolyzer according to claim 5, wherein the weight ratio of the transition metal fine powder of Fe to the total weight of the fine metal powder mixture is in the range of 45% to 48%, and in the range of 45% to 48%. 前記マイクロポーラス構造の薄板状に成形された前記陽極及び前記陰極の気孔率が、70%〜85%の範囲にある請求項1ないし請求項6いずれかに記載の電気分解装置。 The electrolyzer according to any one of claims 1 to 6, wherein the porosity of the anode and the cathode formed into a thin plate shape of the microporous structure is in the range of 70% to 85%. 前記マイクロポーラス構造の薄板に成形された前記陽極及び前記陰極の密度が、6.0g/cm〜8.0g/cmの範囲にある請求項1ないし請求項7いずれかに記載の電気分解装置。 Electrolysis according to the micro density of the anode and the cathode is formed into a thin plate of a porous structure, any claims 1 to 7 in the range of 6.0g / cm 2 ~8.0g / cm 2 apparatus. 前記白金族金属の白金族金属微粉体の粒径と前記遷移金属の遷移金属微粉体の粒径とが、1μm〜100μmの範囲にある請求項1ないし請求項8いずれかに記載の電気分解装置。 9. The electrolyzer according to claim 1, wherein the particle size of the platinum group metal fine powder of the platinum group metal and the particle size of the transition metal fine powder of the transition metal are in the range of 1 μm to 100 μm. ..
JP2018223296A 2018-11-29 2018-11-29 Manufacturing method for anode and cathode of electrolyzer Active JP7262739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018223296A JP7262739B2 (en) 2018-11-29 2018-11-29 Manufacturing method for anode and cathode of electrolyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018223296A JP7262739B2 (en) 2018-11-29 2018-11-29 Manufacturing method for anode and cathode of electrolyzer

Publications (2)

Publication Number Publication Date
JP2020084291A true JP2020084291A (en) 2020-06-04
JP7262739B2 JP7262739B2 (en) 2023-04-24

Family

ID=70906708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018223296A Active JP7262739B2 (en) 2018-11-29 2018-11-29 Manufacturing method for anode and cathode of electrolyzer

Country Status (1)

Country Link
JP (1) JP7262739B2 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55158287A (en) * 1979-05-24 1980-12-09 Asahi Glass Co Ltd Electrolysis method of alkali chloride
JP2007504624A (en) * 2003-09-03 2007-03-01 サイミックス テクノロジーズ, インコーポレイテッド Platinum-nickel-iron fuel cell catalyst
JP2008016338A (en) * 2006-07-06 2008-01-24 Toyota Motor Corp Fuel cell, porous platinum sheet, and manufacturing method of fuel cell
JP2009102669A (en) * 2007-10-19 2009-05-14 Fuji Electric Retail Systems Co Ltd Electrode for electrolysis and manufacturing method therefor
JP2010505043A (en) * 2006-09-29 2010-02-18 モット コーポレイション Sinter bonded porous metal coating
JP2010065283A (en) * 2008-09-11 2010-03-25 Dainippon Printing Co Ltd Catalyst layer paste composition, catalyst layer with transfer substrate, electrode of electrolytic cell for hydrogen generation and method for manufacturing the electrode, membrane catalyst layer assembly, electrolytic cell for hydrogen generation, and method for manufacturing the cell
JP2011092940A (en) * 2010-12-27 2011-05-12 Furukawa Electric Co Ltd:The Cathode electrode catalyst for fuel cell and fuel cell using the same
JP2014159012A (en) * 2013-02-20 2014-09-04 Tokyo Metropolitan Univ Catalyzer and method for manufacturing the same
JP2017010738A (en) * 2015-06-20 2017-01-12 株式会社健明 Electrode material for fuel cell, manufacturing method therefor, and fuel cell
JP2017095746A (en) * 2015-11-20 2017-06-01 鈴木 健治 Hydrogen generator and hot-water feed system
JP2017098004A (en) * 2015-11-20 2017-06-01 株式会社健明 Electrode material for fuel cell and method of manufacturing the same
JP2018510262A (en) * 2015-02-09 2018-04-12 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Reduction method and electrolysis system for electrochemical use of carbon dioxide
JP2018522365A (en) * 2015-10-22 2018-08-09 コーチョアン リン Fuel cell electrode material and apparatus

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55158287A (en) * 1979-05-24 1980-12-09 Asahi Glass Co Ltd Electrolysis method of alkali chloride
JP2007504624A (en) * 2003-09-03 2007-03-01 サイミックス テクノロジーズ, インコーポレイテッド Platinum-nickel-iron fuel cell catalyst
JP2008016338A (en) * 2006-07-06 2008-01-24 Toyota Motor Corp Fuel cell, porous platinum sheet, and manufacturing method of fuel cell
JP2010505043A (en) * 2006-09-29 2010-02-18 モット コーポレイション Sinter bonded porous metal coating
JP2009102669A (en) * 2007-10-19 2009-05-14 Fuji Electric Retail Systems Co Ltd Electrode for electrolysis and manufacturing method therefor
JP2010065283A (en) * 2008-09-11 2010-03-25 Dainippon Printing Co Ltd Catalyst layer paste composition, catalyst layer with transfer substrate, electrode of electrolytic cell for hydrogen generation and method for manufacturing the electrode, membrane catalyst layer assembly, electrolytic cell for hydrogen generation, and method for manufacturing the cell
JP2011092940A (en) * 2010-12-27 2011-05-12 Furukawa Electric Co Ltd:The Cathode electrode catalyst for fuel cell and fuel cell using the same
JP2014159012A (en) * 2013-02-20 2014-09-04 Tokyo Metropolitan Univ Catalyzer and method for manufacturing the same
JP2018510262A (en) * 2015-02-09 2018-04-12 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Reduction method and electrolysis system for electrochemical use of carbon dioxide
JP2017010738A (en) * 2015-06-20 2017-01-12 株式会社健明 Electrode material for fuel cell, manufacturing method therefor, and fuel cell
JP2018522365A (en) * 2015-10-22 2018-08-09 コーチョアン リン Fuel cell electrode material and apparatus
JP2017095746A (en) * 2015-11-20 2017-06-01 鈴木 健治 Hydrogen generator and hot-water feed system
JP2017098004A (en) * 2015-11-20 2017-06-01 株式会社健明 Electrode material for fuel cell and method of manufacturing the same

Also Published As

Publication number Publication date
JP7262739B2 (en) 2023-04-24

Similar Documents

Publication Publication Date Title
US9023549B2 (en) Gas diffusion electrode
Li et al. Layer reduction method for fabricating Pd-coated Ni foams as high-performance ethanol electrode for anion-exchange membrane fuel cells
US10669640B2 (en) Ultral-low loading of Pt-decorated Ni electrocatalyst, manufacturing method of the same and anion exchange membrane water electrolyzer using the same
JP6786426B2 (en) Electrochemical reduction device and method for producing a hydrogenated product of an aromatic hydrocarbon compound
Park et al. Direct fabrication of gas diffusion cathode by pulse electrodeposition for proton exchange membrane water electrolysis
KR20100068029A (en) Method for preparing catalyst slurry for fuel cell
WO2019244840A1 (en) Electrode
KR101860763B1 (en) Non-precious Metal Electrocatalyst, Proton Exchange Membrane Water Electrolyzer Using The Same And Method For Preparing The Same
WO2020080530A1 (en) Electrode and electrode manufacturing method
JP7171030B2 (en) Manufacturing method for anode and cathode of electrolyzer
JP7281157B2 (en) Polymer electrolyte fuel cell and electrode manufacturing method
JP7262739B2 (en) Manufacturing method for anode and cathode of electrolyzer
JP7199080B2 (en) Electrolyzer and electrode manufacturing method
JP7411920B2 (en) Method for manufacturing anode and cathode of electrolyzer
JP7235284B2 (en) polymer electrolyte fuel cell
JP2020164933A (en) Electrolysis apparatus
JP7179314B2 (en) Manufacturing method for anode and cathode of electrolyzer
JP7171024B2 (en) Method for manufacturing fuel electrode and air electrode for polymer electrolyte fuel cell
JP7193109B2 (en) Electrode and electrode manufacturing method
JP2020087812A (en) Electrode and electrode manufacturing method
JP2020140843A (en) Electrode and method for manufacturing the same
JP2020167041A (en) Electrode and manufacturing method thereof
JP7141695B2 (en) Manufacturing method for anode and cathode of electrolyzer
JP2020064786A (en) Polymer electrolyte fuel cell
JP2020140844A (en) Solid polymer type fuel battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200617

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210512

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230405

R150 Certificate of patent or registration of utility model

Ref document number: 7262739

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150