JP2020035651A - Solid polymer fuel cell - Google Patents

Solid polymer fuel cell Download PDF

Info

Publication number
JP2020035651A
JP2020035651A JP2018161216A JP2018161216A JP2020035651A JP 2020035651 A JP2020035651 A JP 2020035651A JP 2018161216 A JP2018161216 A JP 2018161216A JP 2018161216 A JP2018161216 A JP 2018161216A JP 2020035651 A JP2020035651 A JP 2020035651A
Authority
JP
Japan
Prior art keywords
fine powder
electrode
metal
alloy
air electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018161216A
Other languages
Japanese (ja)
Other versions
JP7171024B2 (en
Inventor
正己 奥山
Masami Okuyama
正己 奥山
鈴木 健治
Kenji Suzuki
健治 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Graviton KK
Original Assignee
Graviton KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Graviton KK filed Critical Graviton KK
Priority to JP2018161216A priority Critical patent/JP7171024B2/en
Publication of JP2020035651A publication Critical patent/JP2020035651A/en
Application granted granted Critical
Publication of JP7171024B2 publication Critical patent/JP7171024B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

To provide a solid polymer fuel cell including a fuel electrode and an air electrode having excellent catalytic activity, without using a platinum group metal.SOLUTION: A fuel electrode and an air electrode are transition metal lamination electrodes of porous structure where an austenitic stainless, Ni and Cu, selected so that the composite work function of predetermined metals is approximate to the work function of a platinum group metal are the raw material, and an alloy metal transmission metal fine powder mixture, produced by uniformly mixing and dispersing stainless alloy fine powder, Ni metal fine powder and Cu metal fine powder is compressed into sheet metal shape of a prescribed area, and calcined to form a large number of fine ducts. In the fuel electrode and the air electrode, weight ratios of the stainless alloy fine powder, Ni metal fine powder and Cu metal fine powder to the total weight of the transmission metal fine powder mixture are determined so that the composite work function of the stainless alloy fine powder, Ni metal fine powder and Cu metal fine powder is approximate to the work function of a platinum group metal.SELECTED DRAWING: Figure 1

Description

本発明は、複数のセルを有するセルスタックを備えた固体高分子形燃料電池に関する。   The present invention relates to a polymer electrolyte fuel cell including a cell stack having a plurality of cells.

固体高分子電解質膜と、固体高分子電解質膜を両面から挟持するアノード電極及びカソード電極と、液体燃料を収容する燃料容器と、アノード電極とカソード電極との間に設けられる気液分離性多孔質体からなる燃料気化層と、燃料気化層を両面から挟持する有孔固定板とを有し、カソード電極側に配置した有孔固定板の開口率がアノード電極側に配置した有孔固定板の開口率よりも大きい個体高分子形燃料電池が開示されている(特許文献1参照)。   A solid polymer electrolyte membrane, an anode electrode and a cathode electrode sandwiching the solid polymer electrolyte membrane from both sides, a fuel container containing a liquid fuel, and a gas-liquid separating porous provided between the anode electrode and the cathode electrode. A fuel vaporizing layer composed of a body, and a perforated fixing plate sandwiching the fuel vaporizing layer from both sides, and the aperture ratio of the perforated fixing plate disposed on the cathode electrode side is equal to that of the perforated fixing plate disposed on the anode electrode side. A solid polymer fuel cell having a larger aperture ratio is disclosed (see Patent Document 1).

特開2011−222119号公報JP 2011-222119 A

前記特許文献1に開示の個体高分子形燃料電池のカソード電極及びアノード電極の作成方法は、以下のとおりである。炭素粒子に粒子径が3〜5nmの範囲にある白金微粒子を重量比で55%担持させた触媒担持炭素微粒子を作り、その触媒担持炭素微粒子1gに5重量%ナフィオン溶液を適量加えて攪拌し、カソード電極用の触媒ペーストを作る。カソード電極用の触媒ペーストを基材としてのカーボンペーパー上に8mg/cmの量で塗布した後、乾燥させて4cm×4cmのカソード電極を作製する。次に、白金微粒子に替えて粒子径が3〜5nmの範囲にある白金(Pt)−ルテニウム(Ru)合金微粒子(Ruの割合は60at%)を重量比で55%担持させた触媒担持炭素微粒子を作り、その触媒担持炭素微粒子1gに5重量%ナフィオン溶液を適量加えて攪拌し、アノード電極用の触媒ペーストを作る。アノード電極用の触媒ペーストを基材としてのカーボンペーパー上に8mg/cmの量で塗布した後、乾燥させて4cm×4cmのアノード電極を作製する。 The method for producing the cathode electrode and the anode electrode of the solid polymer fuel cell disclosed in Patent Document 1 is as follows. A catalyst-supporting carbon fine particle in which 55% by weight of platinum fine particles having a particle diameter in a range of 3 to 5 nm is supported on the carbon particle, and an appropriate amount of a 5% by weight Nafion solution is added to 1 g of the catalyst-supporting carbon fine particle, followed by stirring. Make a catalyst paste for the cathode electrode. A catalyst paste for a cathode electrode is applied on carbon paper as a base material in an amount of 8 mg / cm 2 , and then dried to produce a 4 cm × 4 cm cathode electrode. Next, catalyst-loaded carbon fine particles carrying 55% by weight of platinum (Pt) -ruthenium (Ru) alloy fine particles (Ru ratio: 60 at%) having a particle diameter in the range of 3 to 5 nm instead of platinum fine particles. And an appropriate amount of a 5% by weight Nafion solution is added to 1 g of the catalyst-supporting carbon fine particles, followed by stirring to prepare a catalyst paste for an anode electrode. An anode electrode catalyst paste is applied on carbon paper as a base material in an amount of 8 mg / cm 2 , and then dried to produce a 4 cm × 4 cm anode electrode.

固体高分子形燃料電池の電極触媒として各種の白金担持カーボンが広く利用されている。しかし、白金族元素は、貴金属であり、その生産量に限りがある希少な資源であることから、その使用量を抑えることが求められている。さらに、今後の固体高分子形燃料電池の普及に向けて高価な白金以外の金属を利用した非白金触媒を有する廉価な電極の開発が求められている。   Various platinum-supported carbons are widely used as electrode catalysts for polymer electrolyte fuel cells. However, the platinum group element is a noble metal and is a scarce resource with a limited production amount. Therefore, it is required to reduce the amount of the platinum group element used. Further, with the spread of polymer electrolyte fuel cells in the future, development of inexpensive electrodes having a non-platinum catalyst using a metal other than expensive platinum is required.

本発明の目的は、白金族元素を使用することなく優れた触媒活性(触媒作用)を有する燃料極及び空気極を備え、非白金の燃料極及び空気極を使用して十分な電気を発電することができ、負荷に十分な電気エネルギーを供給することができる固体高分子形燃料電池を提供することにある。   An object of the present invention is to provide a fuel electrode and an air electrode having excellent catalytic activity (catalysis) without using a platinum group element, and to generate sufficient electricity using a non-platinum fuel electrode and an air electrode. It is an object of the present invention to provide a polymer electrolyte fuel cell capable of supplying sufficient electric energy to a load.

前記課題を解決するための本発明の固体高分子形燃料電池の特徴は、複数のセルを有するセルスタックを備え、セルが、燃料極及び空気極と、燃料極と空気極との間に位置する電極接合体膜と、燃料極の外側と空気極の外側とに位置するセパレータとから形成され、燃料極及び空気極が、所定の金属の仕事関数の合成仕事関数が白金族元素の仕事関数に近似するように選択されたオーステナイト系ステンレスとNiとCuとを原料とし、オーステナイト系ステンレスを微粉砕したステンレスアロイ微粉体とNiを微粉砕したNiメタル微粉体とCuを微粉砕したCuメタル微粉体とを均一に混合・分散したアロイ・メタル遷移金属微粉体混合物を所定面積の薄板状に圧縮した後に焼成して多数の微細な流路を形成したポーラス構造の遷移金属薄板電極であり、燃料極及び空気極では、ステンレスアロイアロイ微粉体とNiメタル微粉体とCuメタル微粉体との仕事関数の合成仕事関数が白金族元素の仕事関数に近似するように、遷移金属微粉体混合物の全重量に対するステンレスアロイアロイ微粉体の重量比とNiメタル微粉体の重量比とCuメタル微粉体の重量比とが決定されていることにある。   A feature of the polymer electrolyte fuel cell of the present invention for solving the above-mentioned problem is that the polymer electrolyte fuel cell includes a cell stack having a plurality of cells, and the cells are located between the fuel electrode and the air electrode, and between the fuel electrode and the air electrode. Electrode assembly film, and a separator located outside the fuel electrode and outside the air electrode, the fuel electrode and the air electrode have a work function of a platinum group element in which the composite work function of the work function of a predetermined metal is Using austenitic stainless steel, Ni, and Cu selected to approximate to, austenitic stainless steel finely pulverized stainless alloy fine powder, Ni finely pulverized Ni metal fine powder, and Cu finely pulverized Cu metal fine powder A transition metal with a porous structure in which an alloy-metal transition metal fine powder mixture in which a body is uniformly mixed and dispersed is compressed into a thin plate having a predetermined area and then fired to form a number of fine channels. At the fuel electrode and the air electrode, the transition metal is used so that the composite work function of the work functions of the stainless alloy fine powder, the Ni metal fine powder, and the Cu metal fine powder is close to the work function of the platinum group element. The weight ratio of the stainless alloy fine powder, the weight ratio of the Ni metal fine powder, and the weight ratio of the Cu metal fine powder to the total weight of the fine powder mixture are determined.

本発明の固体高分子形燃料電池の一例としては、アロイ・メタル遷移金属微粉体混合物の全重量に対するステンレスアロイ微粉体の重量比が、47〜49%の範囲にあり、アロイ・メタル遷移金属微粉体混合物の全重量に対するNiメタル微粉体の重量比が、47〜49%の範囲にあり、アロイ・メタル遷移金属微粉体混合物の全重量に対するCuメタル微粉体の重量比が、2〜6%の範囲にある。   As an example of the polymer electrolyte fuel cell of the present invention, the weight ratio of the stainless alloy fine powder to the total weight of the alloy-metal transition metal fine powder mixture is in the range of 47 to 49%, The weight ratio of the Ni metal fine powder to the total weight of the body mixture is in the range of 47 to 49%, and the weight ratio of the Cu metal fine powder to the total weight of the alloy / metal transition metal fine powder mixture is 2 to 6%. In range.

本発明の固体高分子形燃料電池の他の一例としては、燃料極及び空気極であるポーラス構造の遷移金属薄板電極の厚み寸法が、0.03mm〜0.3mmの範囲にある。   In another example of the polymer electrolyte fuel cell according to the present invention, the thickness of the porous transition metal sheet electrode, which is the fuel electrode and the air electrode, is in the range of 0.03 mm to 0.3 mm.

本発明の固体高分子形燃料電池の他の一例としては、燃料極及び空気極であるポーラス構造の遷移金属薄板電極の空隙率が、15%〜30%の範囲にある。   As another example of the polymer electrolyte fuel cell of the present invention, the porosity of the porous transition metal sheet electrode, which is the fuel electrode and the air electrode, is in the range of 15% to 30%.

本発明の固体高分子形燃料電池の他の一例としては、燃料極及び空気極であるポーラス構造の遷移金属薄板電極の密度が、5.0g/cm〜7.0g/cmの範囲にある。 As another example of the polymer electrolyte fuel cell of the present invention, the density of the transition metal sheet electrodes of porous structure is a fuel electrode and an air electrode is in the range of 5.0g / cm 2 ~7.0g / cm 2 is there.

本発明の固体高分子形燃料電池の他の一例としては、ステンレスアロイ微粉体とNiメタル微粉体とCuメタル微粉体との粒径が、10μm〜200μmの範囲にある。   As another example of the polymer electrolyte fuel cell of the present invention, the particle diameter of the fine stainless alloy powder, the fine Ni metal powder, and the fine Cu metal powder is in the range of 10 μm to 200 μm.

本発明の固体高分子形燃料電池の他の一例として、燃料極及び空気極であるポーラス構造の遷移金属薄板電極では、所定面積の薄板状に圧縮したアロイ・メタル金属微粉体混合物の焼成時に最も融点の低いCuメタル微粉体が溶融し、溶融したCuメタル微粉体をバインダーとしてステンレスアロイ微粉体とNiメタル微粉体とが接合されている。   As another example of the polymer electrolyte fuel cell of the present invention, in the case of a porous transition metal thin plate electrode that is a fuel electrode and an air electrode, most of the alloy metal metal fine powder mixture compressed into a thin plate having a predetermined area is fired. The Cu metal fine powder having a low melting point is melted, and the stainless alloy fine powder and the Ni metal fine powder are joined using the melted Cu metal fine powder as a binder.

本発明の固体高分子形燃料電池の他の一例としては、オーステナイト系ステンレスが、SUS304とSUS316とSUS340とのうちの少なくとも1つであり、ステンレスアロイ微粉体が、SUS304アロイ微粉体とSUS316アロイ微粉体とSUS340アロイ微粉体とのうちの少なくとも1つである。   As another example of the polymer electrolyte fuel cell of the present invention, the austenitic stainless steel is at least one of SUS304, SUS316 and SUS340, and the stainless alloy fine powder is SUS304 alloy fine powder and SUS316 alloy fine powder. At least one of a body and SUS340 alloy fine powder.

本発明の固体高分子形燃料電池の他の一例として、固体高分子形燃料電池では、燃料極に供給される水素の雰囲気が相対湿度95%〜100%の範囲にあり、水素の温度が45℃〜55℃の範囲にある。   As another example of the polymer electrolyte fuel cell of the present invention, in the polymer electrolyte fuel cell, the atmosphere of hydrogen supplied to the fuel electrode is in the range of 95% to 100% relative humidity, and the temperature of hydrogen is 45%. C. to 55.degree.

本発明の固体高分子形燃料電池の他の一例として、固体高分子形燃料電池では、燃料極に供給される水素の供給圧力が+0.06MPa〜+0.08MPaの範囲にある。   As another example of the polymer electrolyte fuel cell of the present invention, in the polymer electrolyte fuel cell, the supply pressure of hydrogen supplied to the fuel electrode is in the range of +0.06 MPa to +0.08 MPa.

本発明に係る固体高分子形燃料電池によれば、それに使用される燃料極及び空気極が所定の金属の仕事関数の合成仕事関数が白金族元素の仕事関数に近似するように選択されたオーステナイト系ステンレスとNiとCuとを原料とし、燃料極及び空気極がオーステナイト系ステンレスから作られたステンレスアロイ微粉体とNiから作られたNiメタル微粉体とCuから作られたCuメタル微粉体とを均一に混合・分散したアロイ・メタル遷移金属微粉体混合物を所定面積の薄板状に圧縮した後に焼成して多数の微細な流路(通路孔)を形成したポーラス構造の遷移金属薄板電極であり、ステンレスアロイ微粉体とNiメタル微粉体とCuメタル微粉体との仕事関数の合成仕事関数が白金族元素の仕事関数に近似するように、アロイ・メタル遷移金属微粉体混合物の全重量に対するステンレスアロイ微粉体の重量比とNiメタル微粉体の重量比とCuメタル微粉体の重量比とが決定されているから、燃料極や空気極が白金族元素を含む電極と略同一の仕事関数を備え、燃料極や空気極が優れた触媒活性(触媒作用)を有し、燃料極や空気極が白金族元素を含む電極と略同様の触媒活性(触媒作用)を発揮することで、非白金の燃料極及び空気極を使用して十分な電気を発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを供給することができる。固体高分子形燃料電池は、燃料極及び空気極がオーステナイト系ステンレスとNiとCuとを原料とし、高価な白金族元素が使用されておらず、燃料極及び空気極が非白金の電極であるから、固体高分子形燃料電池を廉価に作ることができる。   According to the polymer electrolyte fuel cell according to the present invention, the fuel electrode and the air electrode used for the austenite are selected such that the composite work function of the work function of a predetermined metal is close to the work function of a platinum group element. Austenitic stainless steel alloy powder made of austenitic stainless steel, Ni metal fine powder and Cu metal fine powder made of Cu A porous transition metal thin plate electrode in which a uniformly mixed and dispersed alloy-metal transition metal fine powder mixture is compressed into a thin plate having a predetermined area and then fired to form a large number of fine channels (passage holes). The composite work function of the stainless alloy fine powder, the Ni metal fine powder, and the Cu metal fine powder is adjusted so that the work function of the alloy metal approximates the work function of the platinum group element. Since the weight ratio of the stainless alloy fine powder, the weight ratio of the Ni metal fine powder, and the weight ratio of the Cu metal fine powder with respect to the total weight of the transferred metal fine powder mixture are determined, the fuel electrode and the air electrode use the platinum group element. The fuel electrode and the air electrode have excellent catalytic activity (catalysis), and the fuel electrode and the air electrode have substantially the same catalytic activity (catalysis) as the electrode containing a platinum group element. ), Sufficient electricity can be generated by using the non-platinum fuel electrode and the air electrode, and sufficient electric energy can be supplied to the load connected to the fuel cell. In the polymer electrolyte fuel cell, the fuel electrode and the air electrode are made of austenitic stainless steel, Ni and Cu, the expensive platinum group element is not used, and the fuel electrode and the air electrode are non-platinum electrodes. Therefore, a polymer electrolyte fuel cell can be manufactured at low cost.

アロイ・メタル遷移金属微粉体混合物の全重量に対するステンレスアロイ微粉体の重量比が47〜49%の範囲にあり、アロイ・メタル遷移金属微粉体混合物の全重量に対するNiメタル微粉体の重量比が47〜49%の範囲にあり、アロイ・メタル遷移金属微粉体混合物の全重量に対するCuメタル微粉体の重量比が2〜6%の範囲にある固体高分子形燃料電池は、アロイ・メタル遷移金属微粉体混合物の全重量に対するステンレスアロイ微粉体の重量比やNiメタル微粉体の重量比、Cuメタル微粉体の重量比を前記範囲にすることで、ステンレスアロイ微粉体とNiメタル微粉体とCuメタル微粉体との仕事関数の合成仕事関数を白金族元素の仕事関数に近似させることができ、燃料極及び空気極が白金族元素を含む電極と略同一の仕事関数を備え、燃料極や空気極が優れた触媒活性(触媒作用)を有し、燃料極や空気極が白金族元素を含む電極と略同様の触媒活性(触媒作用)を発揮することで、非白金の燃料極及び空気極を使用して十分な電気を発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを供給することができる。   The weight ratio of the stainless alloy fine powder to the total weight of the alloy-metal transition metal fine powder mixture is in the range of 47 to 49%, and the weight ratio of the Ni metal fine powder to the total weight of the alloy-metal transition metal fine powder mixture is 47. The polymer electrolyte fuel cell having a weight ratio of the Cu metal fine powder to the total weight of the alloy / metal transition metal powder mixture of 2 to 6% is in the range of from about 49% to about 49%. By setting the weight ratio of the fine powder of stainless alloy, the weight ratio of the fine powder of Ni metal, and the weight ratio of the fine powder of Cu metal to the total weight of the body mixture within the above ranges, the fine powder of stainless steel, the fine powder of Ni metal, and the fine powder of Cu metal can be obtained. The work function of the body and the work function of the platinum group element can be approximated to the work function of the platinum group element. By having a function, the fuel electrode and the air electrode have excellent catalytic activity (catalysis), and the fuel electrode and the air electrode exhibit almost the same catalytic activity (catalysis) as an electrode containing a platinum group element. Sufficient electricity can be generated using the non-platinum fuel electrode and the air electrode, and sufficient electric energy can be supplied to the load connected to the fuel cell.

燃料極及び空気極であるポーラス構造の遷移金属薄板電極の厚み寸法が0.03mm〜0.3mmの範囲にある固体高分子形燃料電池は、燃料極及び空気極の厚み寸法を前記範囲にすることで、燃料極及び空気極の電気抵抗を小さくすることができ、燃料極や空気極に電流をスムースに流すことができる。固体高分子形燃料電池は、燃料極及び空気極が白金族元素を含む電極と略同様の触媒活性(触媒作用)を有するとともに、燃料極及び空気極に電流がスムースに流れるから、非白金の燃料極及び空気極を使用して十分な電気を発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを供給することができる。   In the polymer electrolyte fuel cell in which the thickness of the porous transition metal sheet electrode serving as the fuel electrode and the air electrode is in the range of 0.03 mm to 0.3 mm, the thickness of the fuel electrode and the air electrode is set in the above range. Thus, the electric resistance of the fuel electrode and the air electrode can be reduced, and the current can flow smoothly to the fuel electrode and the air electrode. In a polymer electrolyte fuel cell, a fuel electrode and an air electrode have almost the same catalytic activity (catalysis) as an electrode containing a platinum group element, and current flows smoothly to the fuel electrode and the air electrode. Sufficient electricity can be generated using the fuel electrode and the air electrode, and sufficient electric energy can be supplied to the load connected to the fuel cell.

燃料極及び空気極であるポーラス構造の遷移金属薄板電極の空隙率が15%〜30%の範囲にある固体高分子形燃料電池は、遷移金属薄板電極の空隙率を前記範囲にすることで、燃料極及び空気極が多数の微細な流路(通路孔)を有する多孔質に成型され、燃料極及び空気極の比表面積を大きくすることができ、それら流路を気体が通流しつつ気体を燃料極や空気極のそれら流路における接触面に広く接触させることが可能となり、燃料極や空気極が白金族元素と略同様の触媒活性(触媒作用)を確実に発揮し、非白金の燃料極及び空気極を使用して十分な電気を発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを供給することができる。   The polymer electrolyte fuel cell in which the porosity of the porous transition metal sheet electrode, which is the fuel electrode and the air electrode, is in the range of 15% to 30%, by setting the porosity of the transition metal sheet electrode to the above range, The fuel electrode and the air electrode are formed into a porous body having a large number of fine channels (passage holes), and the specific surface area of the fuel electrode and the air electrode can be increased. It is possible to widely contact the contact surfaces of the fuel electrode and the air electrode in those flow paths, and the fuel electrode and the air electrode surely exhibit almost the same catalytic activity (catalysis) as the platinum group element, and the non-platinum fuel Sufficient electricity can be generated using the pole and the cathode, and sufficient electric energy can be supplied to the load connected to the fuel cell.

燃料極及び空気極であるポーラス構造の遷移金属薄板電極の密度が5.0g/cm〜7.0g/cmの範囲にある固体高分子形燃料電池は、遷移金属薄板電極の密度を前記範囲にすることで、燃料極及び空気極が多数の微細な流路(通路孔)を有する多孔質に成型され、燃料極及び空気極の比表面積を大きくすることができ、それら流路を気体が通流しつつ気体を燃料極や空気極のそれら流路における接触面に広く接触させることが可能となり、燃料極や空気極が白金族元素と略同様の触媒活性(触媒作用)を確実に発揮し、非白金の燃料極及び空気極を使用して十分な電気を発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを供給することができる。 Polymer electrolyte fuel cell density of the transition metal sheet electrodes of porous structure is a fuel electrode and an air electrode is in the range of 5.0g / cm 2 ~7.0g / cm 2, the density of the transition metal sheet electrodes By setting the range, the fuel electrode and the air electrode are formed into a porous body having a large number of fine channels (passage holes), and the specific surface area of the fuel electrode and the air electrode can be increased. Allows the gas to come into wide contact with the contact surfaces of the fuel electrode and air electrode in these flow paths while flowing, and the fuel electrode and air electrode reliably exhibit almost the same catalytic activity (catalysis) as the platinum group elements However, sufficient electricity can be generated using the non-platinum fuel electrode and the air electrode, and sufficient electric energy can be supplied to the load connected to the fuel cell.

ステンレスアロイ微粉体とNiメタル微粉体とCuメタル微粉体との粒径が10μm〜200μmの範囲にある固体高分子形燃料電池は、ステンレスアロイ微粉体やNiメタル微粉体、Cuメタル微粉体との粒径を前記範囲にすることで、燃料極及び空気極が多数の微細な流路(通路孔)を有する多孔質に成型され、燃料極及び空気極の比表面積を大きくすることができ、それら流路を気体が通流しつつ気体を燃料極や空気極のそれら流路における接触面に広く接触させることが可能となり、燃料極や空気極が白金族元素と略同様の触媒活性(触媒作用)を確実に発揮し、非白金の燃料極及び空気極を使用して十分な電気を発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを供給することができる。   The polymer electrolyte fuel cell in which the particle size of the stainless alloy fine powder, the Ni metal fine powder, and the Cu metal fine powder is in the range of 10 μm to 200 μm is made of a stainless alloy fine powder, a Ni metal fine powder, and a Cu metal fine powder. By setting the particle diameter in the above range, the fuel electrode and the air electrode are formed into a porous body having a large number of fine channels (passage holes), and the specific surface area of the fuel electrode and the air electrode can be increased. It is possible to cause the gas to come into wide contact with the contact surfaces of the fuel electrode and the air electrode in the flow path while the gas flows through the flow path, and the fuel electrode and the air electrode have almost the same catalytic activity (catalysis) as the platinum group element. , And sufficient electricity can be generated using the non-platinum fuel electrode and air electrode, and sufficient electric energy can be supplied to the load connected to the fuel cell.

所定面積の薄板状に圧縮した金属微粉体混合物の焼成時に最も融点の低いCuメタル微粉体が溶融し、溶融したCuメタル微粉体をバインダーとしてステンレスアロイ微粉体とNiメタル微粉体とが接合されている固体高分子形燃料電池は、最も融点のCuメタル微粉体をバインダーとしてステンレスアロイ微粉体とNiメタル微粉体とを接合することで、多数の微細な流路(通路孔)を有するポーラス構造であるにもかかわらず、燃料極や空気極が高い強度を有してその形状を維持することができるから、燃料極や空気極の触媒機能を十分かつ確実に利用することが可能であって優れた触媒活性(触媒作用)を有する非白金の燃料極や空気極を使用して十分な電気を発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを供給することができる。   The Cu metal fine powder having the lowest melting point is melted during firing of the metal fine powder mixture compressed into a thin plate having a predetermined area, and the stainless alloy fine powder and the Ni metal fine powder are joined using the melted Cu metal fine powder as a binder. The solid polymer fuel cell has a porous structure having a large number of fine flow paths (passage holes) by bonding stainless alloy fine powder and Ni metal fine powder using Cu metal fine powder having the highest melting point as a binder. Despite this, the anode and cathode have high strength and can maintain their shape, so it is possible to use the catalytic function of the anode and cathode sufficiently and reliably and it is excellent. Sufficient electric energy can be generated by using a non-platinum fuel electrode or air electrode having excellent catalytic activity (catalysis), and sufficient electric energy for the load connected to the fuel cell. It can be supplied.

オーステナイト系ステンレスがSUS304とSUS316とSUS340とのうちの少なくとも1つであり、ステンレスアロイ微粉体がSUS304アロイ微粉体とSUS316アロイ微粉体とSUS340アロイ微粉体とのうちの少なくとも1つである固体高分子形燃料電池は、それに使用される燃料極及び空気極が所定の金属の仕事関数の合成仕事関数が白金族元素の仕事関数に近似するように選択されたSUS304、SUS316、SUS340のうちの少なくとも1つとNiとCuとを原料とし、燃料極及び空気極がSUS304アロイ微粉体、SUS316アロイ微粉体、SUS340アロイ微粉体のうちの少なくとも1つとNiメタル微粉体とCuメタル微粉体とを均一に混合・分散したアロイ・メタル遷移金属微粉体混合物を所定面積の薄板状に圧縮した後に焼成して多数の微細な流路(通路孔)を形成したポーラス構造の遷移金属薄板電極であり、ステンレスアロイ微粉体とNiメタル微粉体とCuメタル微粉体との仕事関数の合成仕事関数が白金族元素の仕事関数に近似するように、アロイ・メタル遷移金属微粉体混合物の全重量に対するステンレスアロイ微粉体の重量比とNiメタル微粉体の重量比とCuメタル微粉体の重量比とが決定されているから、燃料極や空気極が白金族元素を含む電極と略同一の仕事関数を備え、燃料極や空気極が優れた触媒活性(触媒作用)を有し、燃料極や空気極が白金族元素を含む電極と略同様の触媒活性(触媒作用)を発揮することで、非白金の燃料極及び空気極を使用して十分な電気を発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを供給することができる。   A solid polymer in which the austenitic stainless steel is at least one of SUS304, SUS316 and SUS340, and the fine stainless alloy powder is at least one of SUS304 alloy fine powder, SUS316 alloy fine powder and SUS340 alloy fine powder. The fuel cell may include at least one of SUS 304, SUS 316, and SUS 340 in which the anode and cathode used in the fuel cell are selected such that the composite work function of the work function of the predetermined metal is close to the work function of the platinum group element. And Ni and Cu as raw materials, and the fuel electrode and the air electrode uniformly mix at least one of SUS304 alloy fine powder, SUS316 alloy fine powder, SUS340 alloy fine powder, Ni metal fine powder and Cu metal fine powder. Dispersed alloy / metal transition metal powder mixture Is a porous transition metal thin plate electrode in which a large number of fine flow paths (passage holes) are formed by compressing into a thin plate having a predetermined area and then baking to form a stainless steel fine powder, a Ni metal fine powder, and a Cu metal fine powder. The weight ratio of stainless alloy fine powder, the weight ratio of Ni metal fine powder and the weight ratio of Ni metal fine powder with respect to the total weight of the alloy / metal transition metal fine powder mixture, so that the work function of the work function approximates the work function of the platinum group element. Since the weight ratio of the metal fine powder is determined, the fuel electrode and the air electrode have substantially the same work function as the electrode containing the platinum group element, and the fuel electrode and the air electrode have excellent catalytic activity (catalysis). Having a fuel electrode and an air electrode exhibit substantially the same catalytic activity (catalysis) as an electrode containing a platinum group element to generate sufficient electricity using a non-platinum fuel electrode and an air electrode Can, fuel cell It is possible to supply enough electrical energy to the connected load.

燃料極に供給される水素の雰囲気が相対湿度95%〜100%の範囲にあり、水素の温度が45℃〜55℃の範囲にある固体高分子形燃料電池は、相対湿度95%〜100%の雰囲気で燃料極に水素を供給するとともに、45℃〜55℃の温度で燃料極に水素を供給することで、燃料極の触媒活性が増加し、燃料電池の起電力が向上し、非白金の燃料極や空気極を使用して十分な電気を確実に発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを確実に供給することができる。   In a polymer electrolyte fuel cell in which the atmosphere of hydrogen supplied to the fuel electrode is in the range of 95% to 100% relative humidity and the temperature of hydrogen is in the range of 45 ° C to 55 ° C, the relative humidity is 95% to 100%. By supplying hydrogen to the fuel electrode at an atmosphere of 45 ° C. and supplying hydrogen to the fuel electrode at a temperature of 45 ° C. to 55 ° C., the catalytic activity of the fuel electrode increases, the electromotive force of the fuel cell improves, Sufficient electricity can be reliably generated using the fuel electrode and the air electrode, and sufficient electric energy can be reliably supplied to the load connected to the fuel cell.

燃料極に供給される水素の供給圧力が+0.06MPa〜+0.08MPaの範囲にある固体高分子形燃料電池は、+0.06MPa〜+0.08MPaの供給圧力で燃料極に水素を供給することで、燃料極の触媒活性が増加し、燃料電池の起電力が向上し、非白金の燃料極や空気極を使用して十分な電気を確実に発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを確実に供給することができる。   In a polymer electrolyte fuel cell in which the supply pressure of hydrogen supplied to the fuel electrode is in the range of +0.06 MPa to +0.08 MPa, hydrogen is supplied to the fuel electrode at a supply pressure of +0.06 MPa to +0.08 MPa. In addition, the catalytic activity of the fuel electrode increases, the electromotive force of the fuel cell improves, and sufficient electric power can be reliably generated using the non-platinum fuel electrode and the air electrode. Enough electric energy can be reliably supplied.

一例として示す固体高分子形燃料電池の斜視図。1 is a perspective view of a polymer electrolyte fuel cell shown as an example. セルスタックを形成するセルの一例を示す分解斜視図。FIG. 2 is an exploded perspective view showing an example of a cell forming a cell stack. セルの側面図。The side view of a cell. 一例として示す燃料極及び空気極の斜視図。FIG. 2 is a perspective view of a fuel electrode and an air electrode shown as an example. 燃料極及び空気極の一例として示す部分拡大正面図。FIG. 3 is a partially enlarged front view showing an example of a fuel electrode and an air electrode. 燃料極及び空気極の他の一例として示す部分拡大正面図。FIG. 7 is a partially enlarged front view showing another example of the fuel electrode and the air electrode. 固体高分子形燃料電池の発電を説明する図。FIG. 4 illustrates power generation of a polymer electrolyte fuel cell. 燃料極及び空気極の起電圧試験の結果を示す図。The figure which shows the result of the electromotive force test of a fuel electrode and an air electrode. 燃料極及び空気極のI−V特性試験の結果を示す図。The figure which shows the result of the IV characteristic test of a fuel electrode and an air electrode. 燃料極及び空気極の製造方法を説明する図。The figure explaining the manufacturing method of a fuel electrode and an air electrode.

一例として示す固体高分子形燃料電池10の斜視図である図1等の添付の図面を参照し、本発明に係る固体高分子形燃料電池の詳細を説明すると、以下のとおりである。なお、図2は、セルスタック12を形成するセル11の一例を示す分解斜視図であり、図3は、セル11の側面図である。図4は、一例として示す燃料極13及び空気極14の斜視図であり、図5は、燃料極13及び空気極14の一例として示す部分拡大正面図である。図6は、燃料極13及び空気極14の他の一例として示す部分拡大正面図である。図4では、厚み方向を矢印Xで示し、径方向を矢印Yで示す。   The details of the polymer electrolyte fuel cell according to the present invention will be described below with reference to the accompanying drawings such as FIG. 1 which is a perspective view of the polymer electrolyte fuel cell 10 shown as an example. FIG. 2 is an exploded perspective view showing an example of the cell 11 forming the cell stack 12, and FIG. 3 is a side view of the cell 11. FIG. 4 is a perspective view of the fuel electrode 13 and the air electrode 14 shown as an example, and FIG. 5 is a partially enlarged front view showing the fuel electrode 13 and the air electrode 14 as an example. FIG. 6 is a partially enlarged front view showing another example of the fuel electrode 13 and the air electrode 14. In FIG. 4, the thickness direction is indicated by an arrow X, and the radial direction is indicated by an arrow Y.

固体高分子形燃料電池10は、複数のセル11を有するセルスタック12(燃料電池スタック)を備え、水素と酸素とを供給することで電気エネルギーを生成する。セルスタック12では、複数のセル11(単セル)が一方向へ重なり合って直列に接続されている。セル11の一例としては、図2に示すように、燃料極13(アノード)及び空気極14(カソード)と、燃料極13及び空気極14の間に位置(介在)する固体高分子電解質膜15(電極接合体模)(スルホン酸基を有するフッ素系イオン交換膜)と、燃料極13の厚み方向外側に位置するセパレータ16(バイポーラプレート)と、空気極14の厚み方向外側に位置するセパレータ17(バイポーラプレート)とから形成されている。   The polymer electrolyte fuel cell 10 includes a cell stack 12 (fuel cell stack) having a plurality of cells 11, and generates electric energy by supplying hydrogen and oxygen. In the cell stack 12, a plurality of cells 11 (single cells) overlap in one direction and are connected in series. As an example of the cell 11, as shown in FIG. 2, a fuel electrode 13 (anode) and an air electrode 14 (cathode) and a solid polymer electrolyte membrane 15 located (interposed) between the fuel electrode 13 and the air electrode 14 (Simulated electrode assembly) (Fluorine ion exchange membrane having a sulfonic acid group), separator 16 (bipolar plate) located outside in thickness direction of fuel electrode 13, and separator 17 located outside in thickness direction of air electrode 14 (Bipolar plate).

それらセパレータ16,17には、反応ガス(水素や酸素等)の供給流路が刻設されている(彫り込まれている)。セル11では、図3に示すように、燃料極13や空気極14、固体高分子電解質膜15が厚み方向へ重なり合って一体化し、膜/電極接合体18(Membrane Electrode Assembly, MEA)を構成し、膜/電極接合体18をそれらセパレータ16,17が挟み込んでいる。固体高分子電解質膜15は、プロトン導電性があり、電子導電性がない。   In the separators 16 and 17, a supply flow path for a reaction gas (hydrogen, oxygen, or the like) is carved (engraved). In the cell 11, as shown in FIG. 3, the fuel electrode 13, the air electrode 14, and the solid polymer electrolyte membrane 15 are overlapped and integrated in the thickness direction to form a membrane / electrode assembly 18 (Membrane Electrode Assembly, MEA). The separator 16 and 17 sandwich the membrane / electrode assembly 18. The solid polymer electrolyte membrane 15 has proton conductivity and no electronic conductivity.

燃料極13とセパレータ16との間には、ガス拡散層19が形成され、空気極14とセパレータ17との間には、ガス拡散層20が形成されている。燃料極13とセパレータ16との間であってガス拡散層20の上部及び下部には、ガスシール21が設置されている。空気極14とセパレータ17との間であってガス拡散層20の上部及び下部には、ガスシール22が設置されている。   A gas diffusion layer 19 is formed between the fuel electrode 13 and the separator 16, and a gas diffusion layer 20 is formed between the air electrode 14 and the separator 17. A gas seal 21 is provided between the fuel electrode 13 and the separator 16 and above and below the gas diffusion layer 20. A gas seal 22 is provided between the air electrode 14 and the separator 17 and above and below the gas diffusion layer 20.

固体高分子形燃料電池10(セル11)に使用する燃料極13及び空気極14は、前面23及び後面24を有するとともに、所定の面積及び所定の厚み寸法L1を有し、その平面形状が四角形に成形されている。燃料極13及び空気極14は、多数の微細な流路25(通路孔)を有するポーラス構造(多孔質)の遷移金属薄板電極26(アロイ・メタル遷移金属薄板電極)である。流路25(通路孔)には、ガス(気体)が通流する。なお、燃料極13や空気極14の平面形状に特に制限はなく、四角形の他に、その用途にあわせて円形や楕円形等の他のあらゆる平面形状に成形することができる。   The fuel electrode 13 and the air electrode 14 used in the polymer electrolyte fuel cell 10 (cell 11) have a front surface 23 and a rear surface 24, have a predetermined area and a predetermined thickness L1, and have a square planar shape. It is molded into. The fuel electrode 13 and the air electrode 14 are transition metal thin plate electrodes 26 (alloy metal transition metal thin plate electrodes) having a porous structure (porous) having a large number of fine channels 25 (passage holes). Gas (gas) flows through the flow path 25 (passage hole). The planar shapes of the fuel electrode 13 and the air electrode 14 are not particularly limited, and may be formed into any other planar shape such as a circle or an ellipse according to the application in addition to a square.

燃料極13及び空気極14(ポーラス構造の遷移金属薄板電極26)は、所定の金属(遷移金属)の仕事関数(物質から電子を取り出すのに必要なエネルギー)の合成仕事関数が白金族元素の仕事関数に近似するように選択されたオーステナイト系ステンレス31(アロイ遷移金属)とNi32(ニッケル)(メタル遷移金属)とCu33(銅)(メタル遷移金属)とを原料としている。オーステナイト系ステンレス31には、SUS304とSUS316とSUS340とのうちの少なくとも1つが使用されている。オーステナイト系ステンレス31としては、SUS304を使用することが好ましいが、SUS316、SUS340、SUS304+SUS316、SUS304+SUS340、SUS304+SUS316+SUS340のいずれかを使用することもできる。SUS304の仕事関数は、4.7(eV)、SUS316の仕事関数は、4.85(eV)、SUS340の仕事関数は、4.76(eV)、Ni32の仕事関数は、5.22(eV)であり、Cu33の仕事関数は、5.10(eV)である。   The fuel electrode 13 and the air electrode 14 (transition metal thin plate electrode 26 having a porous structure) have a work function of a predetermined metal (transition metal) (energy required to extract electrons from a substance) having a work function of a platinum group element. The raw materials are austenitic stainless steel 31 (alloy transition metal), Ni32 (nickel) (metal transition metal), and Cu33 (copper) (metal transition metal) selected to approximate the work function. For the austenitic stainless steel 31, at least one of SUS304, SUS316 and SUS340 is used. As the austenitic stainless steel 31, SUS304 is preferably used, but any of SUS316, SUS340, SUS304 + SUS316, SUS304 + SUS340, SUS304 + SUS316 + SUS340 can be used. The work function of SUS304 is 4.7 (eV), the work function of SUS316 is 4.85 (eV), the work function of SUS340 is 4.76 (eV), and the work function of Ni32 is 5.22 (eV). ), And the work function of Cu33 is 5.10 (eV).

燃料極13及び空気極14は、オーステナイト系ステンレス31を微粉砕したステンレスアロイ微粉体34(微粉状のオーステナイト系ステンレス)とNi32を微粉砕したNiメタル微粉体35(微粉状のNi)とCu33を微粉砕したCuメタル微粉体36(微粉状のCu)とを均一に混合・分散したアロイ・メタル遷移金属微粉体混合物37を所定面積の薄板状に圧縮してアロイ・メタル遷移金属微粉体圧縮物38とし、そのアロイ・メタル遷移金属微粉体圧縮物38を焼成することから作られている(図10参照)。   The fuel electrode 13 and the air electrode 14 are made of stainless steel fine powder 34 (fine austenitic stainless steel) obtained by finely pulverizing austenitic stainless steel 31, Ni metal fine powder 35 (fine powdered Ni) obtained by finely pulverizing Ni32, and Cu33. An alloy / metal transition metal fine powder compressed product is obtained by compressing an alloy / metal transition metal fine powder mixture 37 in which finely pulverized Cu metal fine powder 36 (fine powder Cu) is uniformly mixed and dispersed into a thin plate having a predetermined area. 38, and is made by firing the compressed alloy / metal transition metal powder 38 (see FIG. 10).

ステンレスアロイ微粉体34には、SUS304アロイ微粉体とSUS316アロイ微粉体とSUS340アロイ微粉体とのうちの少なくとも1つが使用されている。ステンレスアロイ微粉体34としては、SUS304を微粉砕したSUS304アロイ微粉体(微粉状のSUS304)を使用することが好ましいが、SUS316を微粉砕したSUS316アロイ微粉体(微粉状のSUS316)、SUS340を微粉砕したSUS340アロイ微粉体(微粉状のSUS340)、SUS304アロイ微粉体+SUS316アロイ微粉体、SUS304アロイ微粉体+SUS340アロイ微粉体、SUS304アロイ微粉体+SUS316アロイ微粉体+SUS340アロイ微粉体のいずれかを使用することもできる。   As the stainless alloy fine powder 34, at least one of SUS304 alloy fine powder, SUS316 alloy fine powder, and SUS340 alloy fine powder is used. As the stainless alloy fine powder 34, it is preferable to use SUS304 alloy fine powder (fine powder SUS304) obtained by finely pulverizing SUS304, but SUS316 alloy fine powder (fine SUS316) obtained by finely pulverizing SUS316 and SUS340 are preferably used. Any of crushed SUS340 alloy fine powder (fine SUS340), SUS304 alloy fine powder + SUS316 alloy fine powder, SUS304 alloy fine powder + SUS340 alloy fine powder, SUS304 alloy fine powder + SUS316 alloy fine powder + SUS340 alloy fine powder Can also.

燃料極13及び空気極14(ポーラス構造の遷移金属薄板電極26)では、所定面積の薄板状に圧縮したアロイ・メタル金属微粉体混合物37の焼成時に最も融点の低いCuメタル微粉体36が溶融し、溶融したCuメタル微粉体36をバインダーとしてステンレスアロイ微粉体34とNiメタル微粉体35とが接合されている。なお、オーステナイト系ステンレス31(SUS304、SUS316、SUS340)の融点は、1400〜1450℃、Ni32の融点は、1455℃であり、Cu33の融点は、1084.5℃である。   At the fuel electrode 13 and the air electrode 14 (porous transition metal thin plate electrode 26), the Cu metal fine powder 36 having the lowest melting point is melted when the alloy-metal fine powder mixture 37 compressed into a thin plate having a predetermined area is fired. The stainless alloy fine powder 34 and the Ni metal fine powder 35 are joined using the molten Cu metal fine powder 36 as a binder. The melting point of the austenitic stainless steel 31 (SUS304, SUS316, SUS340) is 1400-1450 ° C, the melting point of Ni32 is 1455 ° C, and the melting point of Cu33 is 1084.5 ° C.

燃料極13及び空気極14(ポーラス構造の遷移金属薄板電極26)では、ステンレスアロイ微粉体34(SUS304アロイ微粉体とSUS316アロイ微粉体とSUS340アロイ微粉体とのうちの少なくとも1つ)の仕事関数とNiメタル微粉体35の仕事関数とCuメタル微粉体36の仕事関数との合成仕事関数が白金族元素の仕事関数に近似するように、アロイ・メタル遷移金属微粉体混合物37の全重量に対するステンレスアロイ微粉体34の重量比が決定され、アロイ・メタル遷移金属微粉体混合物37の全重量に対するNiメタル微粉体35の重量比が決定されているとともに、アロイ・メタル遷移金属微粉体混合物37の全重量に対するCuメタル微粉体36の重量比が決定されている。   The work function of the stainless alloy fine powder 34 (at least one of SUS304 alloy fine powder, SUS316 alloy fine powder, and SUS340 alloy fine powder) at the fuel electrode 13 and the air electrode 14 (porous transition metal sheet electrode 26). Stainless steel based on the total weight of the alloy-metal transition metal fine powder mixture 37 so that the composite work function of the work function of the Ni metal fine powder 35 and the work function of the Cu metal fine powder 36 approximates the work function of the platinum group element. The weight ratio of the alloy fine powder 34 is determined, the weight ratio of the Ni metal fine powder 35 to the total weight of the alloy / metal transition metal fine powder mixture 37 is determined, and the total weight of the alloy / metal transition metal fine powder mixture 37 is determined. The weight ratio of the Cu metal fine powder 36 to the weight is determined.

アロイ・メタル遷移金属微粉体混合物37の全重量(100%)に対するステンレスアロイ微粉体34の重量比は、47〜49%の範囲、好ましくは、48%である。アロイ・メタル遷移金属微粉体混合物37の全重量(100%)に対するNiメタル微粉体35の重量比は、47〜49%の範囲、好ましくは、48%である。アロイ・メタル遷移金属微粉体混合物37の全重量(100%)に対するCuメタル微粉体36の重量比は、2〜6%の範囲、好ましくは、4%である。   The weight ratio of the fine stainless alloy powder 34 to the total weight (100%) of the alloy / metal transition metal fine powder mixture 37 is in the range of 47 to 49%, preferably 48%. The weight ratio of the Ni metal fine powder 35 to the total weight (100%) of the alloy / metal transition metal fine powder mixture 37 is in the range of 47 to 49%, preferably 48%. The weight ratio of the Cu metal fine powder 36 to the total weight (100%) of the alloy / metal transition metal fine powder mixture 37 is in the range of 2 to 6%, preferably 4%.

ステンレスアロイ微粉体34の重量比やNiメタル微粉体35の重量比、Cuメタル微粉体36の重量比が前記範囲外になると、それら微粉体34〜36の合成仕事関数を白金族元素の仕事関数に近似させることができないとともに、アロイ・メタル遷移金属微粉体混合物37を圧縮した後に焼成して作られた燃料極13及び空気極14が白金族元素を含む電極と略同様の触媒活性(触媒作用)を発揮することができない。   When the weight ratio of the stainless alloy fine powder 34, the weight ratio of the Ni metal fine powder 35, and the weight ratio of the Cu metal fine powder 36 are out of the above ranges, the work function of the fine powders 34 to 36 is changed to the work function of the platinum group element. And the fuel electrode 13 and the air electrode 14 formed by compressing and firing the alloy-metal transition metal fine powder mixture 37 have substantially the same catalytic activity (catalytic action) as an electrode containing a platinum group element. ) Can not be demonstrated.

固体高分子形燃料電池10は、アロイ・メタル遷移金属微粉体混合物37の全重量に対するステンレスアロイ微粉体34の重量比やNiメタル微粉体35の重量比、Cuメタル微粉体36の重量比を前記範囲にすることで、ステンレスアロイ微粉体34とNiメタル微粉体35とCuメタル微粉体36との仕事関数の合成仕事関数を白金族元素の仕事関数に近似させることができ、燃料極13及び空気極14が白金族元素を含む電極と略同一の仕事関数を備え、燃料極13や空気極14が優れた触媒活性(触媒作用)を有し、燃料極13や空気極14が白金族元素を含む電極と略同様の触媒活性(触媒作用)を発揮することで、非白金の燃料極13及び空気極14を使用して十分な電気を発電することができ、燃料電池10に接続された負荷30分な電気エネルギーを供給することができる。   In the polymer electrolyte fuel cell 10, the weight ratio of the stainless alloy fine powder 34, the weight ratio of the Ni metal fine powder 35, and the weight ratio of the Cu metal fine powder 36 to the total weight of the alloy / metal transition metal By setting the range, the composite work function of the work functions of the stainless alloy fine powder 34, the Ni metal fine powder 35, and the Cu metal fine powder 36 can be approximated to the work function of the platinum group element. The electrode 14 has substantially the same work function as an electrode containing a platinum group element, the fuel electrode 13 and the air electrode 14 have excellent catalytic activity (catalysis), and the fuel electrode 13 and the air electrode 14 By exhibiting substantially the same catalytic activity (catalytic action) as the electrodes included, sufficient electricity can be generated using the non-platinum fuel electrode 13 and the air electrode 14, and the load connected to the fuel cell 10 can be generated. 0 minutes electrical energy can be supplied.

燃料極13及び空気極14(ポーラス構造の遷移金属薄板電極26)には、径が異なる多数の微細な流路25(通路孔)が形成されている。燃料極13及び空気極14は、多数の微細な流路25(通路孔)が形成されているから、それらの比表面積が大きい。それら流路25(通路孔)は、前面23に開口する複数の通流口27と後面24に開口する複数の通流口27とを有し、燃料極13や空気極14の前面23の通流口27と後面24の通流口27との間において前面23から後面24に向かって燃料極13や空気極14を貫通している。   The fuel electrode 13 and the air electrode 14 (porous transition metal thin plate electrode 26) are formed with a large number of fine channels 25 (passage holes) having different diameters. Since the fuel electrode 13 and the air electrode 14 have a large number of fine channels 25 (passage holes), their specific surface areas are large. The flow passages 25 (passage holes) have a plurality of flow openings 27 opening on the front surface 23 and a plurality of flow openings 27 opening on the rear surface 24. The fuel electrode 13 and the air electrode 14 penetrate from the front surface 23 toward the rear surface 24 between the flow port 27 and the flow port 27 on the rear surface 24.

それら流路25は、燃料極13や空気極14の前面23と後面24との間において燃料極13や空気極14の厚み方向へ不規則に曲折しながら延びているとともに、燃料極13や空気極14の外周縁28から中心に向かって燃料極13や空気極14の径方向へ不規則に曲折しながら延びている。径方向へ隣接して厚み方向へ曲折して延びるそれら流路25は、径方向において部分的につながり、一方の流路25と他方の流路25とが互いに連通している。厚み方向へ隣接して径方向へ曲折して延びるそれら流路24は、厚み方向において部分的につながり、一方の流路25と他方の流路25とが互いに連通している。   The flow passages 25 extend between the front surface 23 and the rear surface 24 of the fuel electrode 13 or the air electrode 14 while being bent irregularly in the thickness direction of the fuel electrode 13 or the air electrode 14. The electrode 14 extends from the outer peripheral edge 28 of the electrode 14 toward the center thereof while being bent irregularly in the radial direction of the fuel electrode 13 and the air electrode 14. The flow paths 25 that are adjacent to each other in the radial direction and extend in the thickness direction are partially connected in the radial direction, and one flow path 25 and the other flow path 25 communicate with each other. The flow paths 24 that extend adjacent to the thickness direction and bend in the radial direction are partially connected in the thickness direction, and one flow path 25 and the other flow path 25 communicate with each other.

それら流路25(通路孔)の開口面積(開口径)は、厚み方向に向かって一様ではなく、厚み方向に向かって不規則に変化しているとともに、径方向に向かって一様ではなく、径方向に向かって不規則に変化している。それら流路25は、その開口面積(開口径)が大きくなったり、小さくなったりしながら厚み方向と径方向とへ不規則に開口している。また、前面23に開口する通流口27と後面24に開口する通流口27とは、その開口面積(開口径)が一様ではなく、その面積がすべて相違している。それら流路25(通路孔)の開口径や前後面23,24の通流口27の開口径は、1μm〜100μmの範囲にある。   The opening areas (opening diameters) of the flow passages 25 (passage holes) are not uniform in the thickness direction, are irregularly changed in the thickness direction, and are not uniform in the radial direction. , Changing irregularly in the radial direction. The channels 25 are irregularly opened in the thickness direction and the radial direction while their opening area (opening diameter) is increased or decreased. The opening area (opening diameter) of the flow opening 27 opened on the front surface 23 and the flow opening 27 opened on the rear surface 24 are not uniform, and the areas are all different. The opening diameters of the flow paths 25 (passage holes) and the opening diameters of the flow openings 27 in the front and rear surfaces 23 and 24 are in the range of 1 μm to 100 μm.

固体高分子形燃料電池10は、それに使用する燃料極13及び空気極14に厚み方向や径方向へ不規則に曲折しながら延びる複数の流路25(通路孔)が形成されているから、燃料極13や空気極14の比表面積が大きく、それら流路25(通路孔)をガス(気体)が通流しつつガス(気体)を燃料極13及び空気極14のそれら流路25における接触面に広く接触させることができ、燃料極13や空気極14の触媒活性(触媒作用)を有効かつ最大限に利用することができる。   In the polymer electrolyte fuel cell 10, a plurality of flow paths 25 (passage holes) are formed in the fuel electrode 13 and the air electrode 14 that are used for the fuel cell 13 and the air electrode 14 so as to bend in an irregular manner in the thickness direction and the radial direction. The specific surface area of the electrode 13 and the air electrode 14 is large, and the gas (gas) flows through the flow path 25 (passage hole) while the gas (gas) flows to the contact surface of the fuel electrode 13 and the air electrode 14 in the flow path 25. The contact can be made widely, and the catalytic activity (catalysis) of the fuel electrode 13 or the air electrode 14 can be effectively and maximally utilized.

燃料極13及び空気極14(ポーラス構造の遷移金属薄板電極26)は、それらの厚み寸法L1が0.03mm〜0.3mmの範囲、好ましくは、0.05mm〜0.1mmの範囲にある。燃料極13及び空気極14の厚み寸法L1が0.03mm未満では、それらの強度が低下し、衝撃が加えられたときに燃料極13や空気極14が容易に破損又は損壊し、それらの形状を維持することができない場合がある。燃料極13及び空気極14の厚み寸法L1が0.3mmを超過すると、燃料極13や空気極14の電気抵抗が大きくなり、燃料極13や空気極14に電流がスムースに流れず、固体高分子形燃料電池10において十分な電気を発電することができず、燃料電池10に接続された負荷30(図7参照)に十分な電気エネルギーを供給することができない。   The fuel electrode 13 and the air electrode 14 (porous transition metal thin plate electrode 26) have a thickness L1 in the range of 0.03 mm to 0.3 mm, preferably in the range of 0.05 mm to 0.1 mm. If the thickness L1 of the fuel electrode 13 and the air electrode 14 is less than 0.03 mm, their strength is reduced, and the fuel electrode 13 and the air electrode 14 are easily damaged or damaged when an impact is applied, and their shapes are reduced. May not be able to maintain. When the thickness L1 of the fuel electrode 13 and the air electrode 14 exceeds 0.3 mm, the electric resistance of the fuel electrode 13 and the air electrode 14 increases, so that current does not flow smoothly to the fuel electrode 13 and the air electrode 14, and the solid height is increased. Sufficient electricity cannot be generated in the molecular fuel cell 10, and sufficient electric energy cannot be supplied to the load 30 (see FIG. 7) connected to the fuel cell 10.

固体高分子形燃料電池10は、燃料極13及び空気極14の厚み寸法L1が0.03mm〜0.3mmの範囲、好ましくは、0.05mm〜0.1mmの範囲にあるから、燃料極13や空気極14が高い強度を有してその形状を維持することができ、燃料極13や空気極14に衝撃が加えられたときの燃料極13や空気極14の破損や損壊を防ぐことができる。さらに、厚み寸法L1を前記範囲にすることで、燃料極13及び空気極14の電気抵抗を小さくすることができ、燃料極13や空気極14を電流がスムースに流れ、固体高分子形燃料電池10(セル11)において十分な電気を発電することができるとともに、燃料電池10に接続された負荷30に十分な電気エネルギーを供給することができる。   In the polymer electrolyte fuel cell 10, since the thickness L1 of the fuel electrode 13 and the air electrode 14 is in the range of 0.03 mm to 0.3 mm, preferably in the range of 0.05 mm to 0.1 mm, The cathode 13 and the cathode 14 have high strength and can maintain the shape, and it is possible to prevent the anode 13 and the cathode 14 from being damaged or damaged when a shock is applied to the anode 13 or the cathode 14. it can. Further, by setting the thickness dimension L1 within the above range, the electric resistance of the fuel electrode 13 and the air electrode 14 can be reduced, and the current flows smoothly through the fuel electrode 13 and the air electrode 14, and the polymer electrolyte fuel cell 10 (cell 11) can generate sufficient electricity, and can supply sufficient electric energy to the load 30 connected to the fuel cell 10.

燃料極13及び空気極14(ポーラス構造の遷移金属薄板電極26)は、その空隙率が15%〜30%の範囲、好ましくは、20%〜25%の範囲にあり、その相対密度が70%〜85%の範囲、好ましくは、75%〜80%の範囲にある。燃料極13及び空気極14の空隙率が15%未満であって相対密度が85%を超過すると、燃料極13や空気極14に多数の微細な流路25(通路孔)や多数の微細な通流口27が形成されず、燃料極13や空気極14の比表面積を大きくすることができず、燃料極13や空気極14の触媒活性(触媒作用)を有効に利用することができない。燃料極13及び空気極14(ポーラス構造のアロイ薄板電極26)の空隙率が30%を超過し、相対密度が70%未満では、流路25(通路孔)や通流口27の開口面積(開口径)が必要以上に大きくなり、燃料極13や空気極14の強度が低下し、衝撃が加えられたときに燃料極13や空気極14が容易に破損または損壊し、その形状を維持することができない場合がある。   The porosity of the fuel electrode 13 and the air electrode 14 (porous transition metal sheet electrode 26) is in the range of 15% to 30%, preferably 20% to 25%, and the relative density thereof is 70%. 8585%, preferably in the range of 75% -80%. When the porosity of the anode 13 and the cathode 14 is less than 15% and the relative density exceeds 85%, the anode 13 and the cathode 14 have a large number of fine channels 25 (passage holes) and a large number of minute holes. Since the flow opening 27 is not formed, the specific surface area of the fuel electrode 13 or the air electrode 14 cannot be increased, and the catalytic activity (catalysis) of the fuel electrode 13 or the air electrode 14 cannot be effectively used. If the porosity of the fuel electrode 13 and the air electrode 14 (alloy thin plate electrode 26 having a porous structure) exceeds 30% and the relative density is less than 70%, the opening area of the flow path 25 (passage hole) and the flow opening 27 ( (Aperture diameter) becomes unnecessarily large, the strength of the fuel electrode 13 or the air electrode 14 is reduced, and the fuel electrode 13 or the air electrode 14 is easily damaged or damaged when an impact is applied, and the shape is maintained. May not be possible.

固体高分子形燃料電池10は、それに使用する燃料極13及び空気極14の空隙率及び相対密度が前記範囲にあるから、燃料極13や空気極14が開口面積(開口径)の異なる多数の微細な流路25(通路孔)や開口面積(開口径)の異なる多数の微細な前後面23,24の通流口27を有する多孔質に成形され、燃料極13や空気極14の比表面積を大きくすることができ、それら流路25(通路孔)をガス(気体)が通流しつつガス(気体)を燃料極13及び空気極14のそれら流路25における接触面に広く接触させることができるとともに、燃料極13や空気極14の触媒活性(触媒作用)を有効かつ最大限に利用することができる。   In the polymer electrolyte fuel cell 10, since the porosity and relative density of the fuel electrode 13 and the air electrode 14 used in the polymer electrolyte fuel cell 10 are within the above range, the fuel electrode 13 and the air electrode 14 have a large number of different opening areas (opening diameters). It is formed into a porous body having a fine flow path 25 (passage hole) and a large number of fine front and rear surfaces 23 and 24 having different opening areas (opening diameters), and a specific surface area of the fuel electrode 13 and the air electrode 14. It is possible to make the gas (gas) widely contact the contact surfaces of the fuel electrode 13 and the air electrode 14 in the flow channel 25 while the gas (gas) flows through the flow channel 25 (passage hole). In addition to this, the catalytic activity (catalysis) of the fuel electrode 13 and the air electrode 14 can be used effectively and to the maximum.

固体高分子形燃料電池10は、燃料極13(遷移金属薄板電極26)及び空気極14(遷移金属薄板電極26)の空隙率を前記範囲にすることで、燃料極13及び空気極14が多数の微細な流路25(通路孔)や開口面積(開口径)の異なる多数の微細な前後面23,24の通流口27を有する多孔質に成型され、燃料極13及び空気極14の比表面積を大きくすることができ、それら流路25を気体が通流しつつ気体を燃料極13や空気極14のそれら流路25における接触面に広く接触させることが可能となり、燃料極13や空気極14が白金族元素を含む電極と略同様の触媒活性(触媒作用)を確実に発揮し、非白金の燃料極13及び空気極14を使用して十分な電気を発電することができ、燃料電池10に接続された負荷30に十分な電気エネルギーを供給することができる。   In the polymer electrolyte fuel cell 10, the porosity of the fuel electrode 13 (transition metal sheet electrode 26) and the air electrode 14 (transition metal sheet electrode 26) is within the above range, so that the number of the fuel electrode 13 and the air electrode 14 is large. Of the fuel electrode 13 and the air electrode 14 having a plurality of fine front and rear surfaces 23 and 24 having different flow paths 25 (passage holes) and a plurality of fine front and rear surfaces 23 and 24 having different opening areas (opening diameters). The surface area can be increased, and the gas can be brought into wide contact with the contact surfaces of the fuel electrode 13 and the air electrode 14 in the flow channel 25 while the gas flows through the flow channel 25. 14 reliably exhibits substantially the same catalytic activity (catalysis) as an electrode containing a platinum group element, and can generate sufficient electricity using the non-platinum fuel electrode 13 and the air electrode 14. Enough for the load 30 connected to 10 It is possible to supply the electrical energy.

燃料極13及び空気極14(ポーラス構造の遷移金属薄板電極26)は、その密度が5.0g/cm〜7.0g/cmの範囲、好ましくは、5.5g/cm〜6.5g/cmの範囲にある。燃料極13及び空気極14の密度が5.0g/cm未満では、燃料極13や空気極14の強度が低下し、衝撃が加えられたときに燃料極13や空気極14が容易に破損または損壊し、その形状を維持することができない場合がある。燃料極13及び空気極14の密度が7.0g/cmを超過すると、燃料極13や空気極14に多数の微細な流路25(通路孔)や開口面積(開口径)の異なる多数の微細な前後面23,24の通流口27が形成されず、燃料極13や空気極14の比表面積を大きくすることができず、燃料極13や空気極14の触媒活性(触媒作用)を有効に利用することができない。 Anode 13 and cathode 14 (transition metal thin plate electrode 26 of the porous structure) in the range that the density of 5.0g / cm 2 ~7.0g / cm 2 , preferably, 5.5g / cm 2 ~6. It is in the range of 5 g / cm 2 . When the density of the fuel electrode 13 and the air electrode 14 is less than 5.0 g / cm 2 , the strength of the fuel electrode 13 and the air electrode 14 decreases, and the fuel electrode 13 and the air electrode 14 are easily damaged when an impact is applied. Or it may be damaged and its shape cannot be maintained. When the density of the fuel electrode 13 and the air electrode 14 exceeds 7.0 g / cm 2 , the fuel electrode 13 and the air electrode 14 have many fine channels 25 (passage holes) and a large number of different opening areas (opening diameters). Since the flow openings 27 of the fine front and rear surfaces 23 and 24 are not formed, the specific surface area of the anode 13 and the cathode 14 cannot be increased, and the catalytic activity (catalysis) of the anode 13 and the cathode 14 is reduced. It cannot be used effectively.

固体高分子形燃料電池10は、燃料極13及び空気極14の密度が前記範囲にあるから、燃料極13や空気極14が多数の微細な流路25(通路孔)や開口面積(開口径)の異なる多数の微細な前後面23,24の通流口27を有する多孔質に成形され、燃料極13や空気極14の比表面積を大きくすることができ、それら流路25(通路孔)をガス(気体)が通流しつつガス(気体)を燃料極13や空気極14のそれら流路25における接触面に広く接触させることができるとともに、燃料極13や空気極14の触媒活性(触媒作用)を有効かつ最大限に利用することができる。   In the polymer electrolyte fuel cell 10, since the densities of the fuel electrode 13 and the air electrode 14 are in the above range, the fuel electrode 13 and the air electrode 14 are formed of a large number of fine channels 25 (passage holes) and an opening area (an opening diameter ) Having a large number of fine front and rear surfaces 23, 24, which are formed into a porous material having a large flow area 27, so that the specific surface area of the fuel electrode 13 or the air electrode 14 can be increased. The gas (gas) can be brought into wide contact with the contact surfaces of the fuel electrode 13 and the air electrode 14 in the flow path 25 while the gas (gas) flows through the gas, and the catalytic activity of the fuel electrode 13 and the air electrode 14 (catalyst) Action) can be used effectively and to the maximum.

固体高分子形燃料電池10は、燃料極13(遷移金属薄板電極26)及び空気極14(遷移金属薄板電極26)の密度を前記範囲にすることで、燃料極13及び空気極14が多数の微細な流路25(通路孔)や開口面積(開口径)の異なる多数の微細な前後面23,24の通流口27を有する多孔質に成型され、燃料極13及び空気極14の比表面積を大きくすることができ、それら流路25を気体が通流しつつ気体を燃料極13や空気極14の接触面に広く接触させることが可能となり、燃料極13や空気極14が白金族元素を含む電極と略同様の触媒活性(触媒作用)を確実に発揮し、非白金の燃料極13及び空気極14を使用して十分な電気を発電することができ、燃料電池10に接続された負荷30に十分な電気エネルギーを供給することができる。   In the polymer electrolyte fuel cell 10, by setting the densities of the fuel electrode 13 (transition metal sheet electrode 26) and the air electrode 14 (transition metal sheet electrode 26) within the above range, the number of the fuel electrode 13 and the air electrode 14 increases. It is molded into a porous material having a fine flow path 25 (passage hole) and a number of fine front and rear surfaces 23 and 24 having different opening areas (opening diameters), and a specific surface area of the fuel electrode 13 and the air electrode 14. It is possible to make the gas come into wide contact with the contact surface of the fuel electrode 13 and the air electrode 14 while the gas flows through the flow passage 25, and the fuel electrode 13 and the air electrode 14 The same catalytic activity (catalytic action) as the electrodes included can be reliably exhibited, sufficient electricity can be generated using the non-platinum fuel electrode 13 and the air electrode 14, and the load connected to the fuel cell 10 can be generated. Supply enough electrical energy to 30 It is possible.

ステンレスアロイ微粉体34(SUS304アロイ微粉体とSUS316アロイ微粉体とSUS340アロイ微粉体とのうちの少なくとも1つ)の粒径やNiメタル微粉体35の粒径、Cuメタル微粉体36の粒径は、10μm〜200μmの範囲にある。ステンレスアロイ微粉体34やNiメタル微粉体35、Cuメタル微粉体36の粒径が10μm未満では、それら微粉体35〜36によって流路25(通路孔)や通流口27が塞がれ、燃料極13や空気極14に多数の微細な流路25や通流口27を形成することができず、燃料極13や空気極14の比表面積を大きくすることができず、燃料極13や空気極14の触媒活性(触媒作用)を有効に利用することができない。   The particle size of the stainless alloy fine powder 34 (at least one of SUS304 alloy fine powder, SUS316 alloy fine powder, and SUS340 alloy fine powder), the Ni metal fine powder 35, and the Cu metal fine powder 36 , In the range of 10 μm to 200 μm. When the particle size of the stainless alloy fine powder 34, the Ni metal fine powder 35, and the Cu metal fine powder 36 is less than 10 μm, the flow path 25 (passage hole) and the flow opening 27 are closed by the fine powders 35 to 36, and the fuel A large number of fine channels 25 and flow openings 27 cannot be formed in the electrode 13 and the air electrode 14, and the specific surface area of the fuel electrode 13 and the air electrode 14 cannot be increased. The catalytic activity (catalysis) of the electrode 14 cannot be effectively used.

ステンレスアロイ微粉体34やNiメタル微粉体35、Cuメタル微粉体36の粒径が200μmを超過すると、流路25(通路孔)の開口面積(開口径)や前後面23,24の通流口27の開口面積(開口径)が必要以上に大きくなり、燃料極13や空気極14に多数の微細な流路25や多数の微細な通流口27を形成することができず、燃料極13や空気極14の比表面積を大きくすることができず、燃料極13や空気極14の触媒活性(触媒作用)を有効に利用することができない。   If the particle diameter of the stainless alloy fine powder 34, the Ni metal fine powder 35, and the Cu metal fine powder 36 exceeds 200 μm, the opening area (opening diameter) of the flow passage 25 (passage hole) and the flow openings of the front and rear surfaces 23, 24 27, the opening area (opening diameter) of the fuel electrode 13 becomes unnecessarily large, so that a large number of fine channels 25 and a large number of fine passages 27 cannot be formed in the fuel electrode 13 and the air electrode 14, and the fuel electrode 13 And the specific surface area of the air electrode 14 cannot be increased, and the catalytic activity (catalysis) of the fuel electrode 13 and the air electrode 14 cannot be effectively used.

固体高分子形燃料電池10は、燃料極13及び空気極14を形成するステンレスアロイ微粉体34やNiメタル微粉体35、Cuメタル微粉体36の粒径が前記範囲にあるから、燃料極13や空気極14が開口面積(開口径)の異なる多数の微細な流路25(通路孔)や開口面積(開口径)の異なる多数の微細な前後面23,24の通流口27を有する多孔質に成型され、燃料極13や空気極14の比表面積を大きくすることができ、それら流路25を気体が通流しつつ気体を燃料極13や空気極14のそれら流路25における接触面に広く接触させることができるとともに、燃料極13や空気極14の触媒活性(触媒作用)を有効かつ最大限に利用することができる。   In the polymer electrolyte fuel cell 10, the particle diameters of the stainless alloy fine powder 34, the Ni metal fine powder 35, and the Cu metal fine powder 36 forming the fuel electrode 13 and the air electrode 14 are within the above ranges. The air electrode 14 is porous having a large number of fine flow channels 25 (passage holes) having different opening areas (opening diameters) and a large number of fine front and rear surfaces 23 and 24 having different opening areas (opening diameters). The specific surface area of the fuel electrode 13 and the air electrode 14 can be increased, and the gas is spread over the contact surface of the fuel electrode 13 and the air electrode 14 in the flow path 25 while the gas flows through the flow path 25. In addition to being able to make contact, the catalytic activity (catalytic action) of the fuel electrode 13 and the air electrode 14 can be used effectively and to the maximum.

図7は、固体高分子形燃料電池10の発電を説明する図であり、図8は、燃料極13及び空気極14の起電圧試験の結果を示す図である。図9は、燃料極13及び空気極14のI−V特性試験の結果を示す図である。固体高分子形燃料電池10では、図7に示すように、燃料極13(電極)に水素(燃料)が供給され、空気極14(電極)に空気(酸素)が供給される。   FIG. 7 is a diagram illustrating the power generation of the polymer electrolyte fuel cell 10, and FIG. 8 is a diagram illustrating the results of the electromotive force test of the fuel electrode 13 and the air electrode 14. FIG. 9 is a diagram showing the results of an IV characteristic test of the fuel electrode 13 and the air electrode 14. In the polymer electrolyte fuel cell 10, as shown in FIG. 7, hydrogen (fuel) is supplied to the fuel electrode 13 (electrode), and air (oxygen) is supplied to the air electrode 14 (electrode).

燃料極13に供給される水素(燃料)の雰囲気(燃料の相対湿度)は、相対湿度95%〜100%の範囲、好ましくは、100%であり、水素の温度は、45℃〜55℃の範囲、好ましくは、49℃〜51℃の範囲にある。燃料極13に供給される水素には、燃料極13に供給される前に蒸気発生器(図示せず)から蒸気が供給され、その雰囲(燃料の相対湿度)が95%〜100%(好ましくは、100%)に上昇するとともに、その温度が45℃〜55℃(好ましくは、49℃〜51℃)に上昇する。   The atmosphere (relative humidity of fuel) of hydrogen (fuel) supplied to the fuel electrode 13 is in the range of 95% to 100% relative humidity, preferably 100%, and the temperature of hydrogen is 45 ° C to 55 ° C. Range, preferably in the range of 49 ° C to 51 ° C. Before the hydrogen supplied to the anode 13 is supplied with steam from a steam generator (not shown) before being supplied to the anode 13, the atmosphere (relative humidity of the fuel) is 95% to 100% ( (Preferably 100%) and the temperature increases to 45 ° C to 55 ° C (preferably 49 ° C to 51 ° C).

燃料極13に供給される水素の供給圧力及び空気極14に供給される空気の供給圧力は、+0.06MPa〜+0.08MPaの範囲、好ましくは、+0.07MPaである。固体高分子形燃料電池10では、燃料極13に供給する水素及び空気極14に供給する空気を(給気)圧送する給気ポンプ(図示せず)が設置され、給気ポンプによって燃料極13に供給される水素の供給圧力が+0.06MPa〜+0.08MPaの範囲、好ましくは、+0.07MPaに昇圧されるとともに、給気ポンプによって空気極14に供給する空気の供給圧力が+0.06MPa〜+0.08MPaの範囲、好ましくは、+0.07MPaに昇圧される。   The supply pressure of hydrogen supplied to the fuel electrode 13 and the supply pressure of air supplied to the air electrode 14 are in the range of +0.06 MPa to +0.08 MPa, and preferably +0.07 MPa. In the polymer electrolyte fuel cell 10, an air supply pump (not shown) for pressure-feeding (air supply) hydrogen supplied to the fuel electrode 13 and air supplied to the air electrode 14 is installed. And the supply pressure of the hydrogen supplied to the air electrode 14 by the air supply pump is increased by +0.06 MPa to +0.06 MPa, preferably +0.07 MPa. The pressure is increased to a range of +0.08 MPa, preferably +0.07 MPa.

燃料極13(電極)では、水素がH→2H+2eの反応(触媒作用)によってプロトン(水素イオン、H)と電子とに分解される。その後、プロトンが固体高分子電解質膜15内を通って空気極14へ移動し、電子が導線29内を通って空気極14へ移動する。固体高分子電解質膜15には、燃料極13で生成されたプロトンが通流する。空気極14(電極)では、固体高分子電解質膜15から移動したプロトンと導線29を移動した電子とが空気中の酸素と反応し、4H+O+4e→2HOの反応によって水が生成される。 At the fuel electrode 13 (electrode), hydrogen is decomposed into protons (hydrogen ions, H + ) and electrons by a reaction (catalysis) of H 2 → 2H + + 2e . After that, protons move to the air electrode 14 through the solid polymer electrolyte membrane 15, and electrons move to the air electrode 14 through the conducting wire 29. Protons generated at the fuel electrode 13 flow through the solid polymer electrolyte membrane 15. At the air electrode 14 (electrode), protons transferred from the solid polymer electrolyte membrane 15 and electrons transferred on the conductive wire 29 react with oxygen in the air, and water is generated by the reaction of 4H + + O 2 + 4e → 2H 2 O. Is done.

燃料極13(電極)や空気極14(電極)は、仕事関数の合成仕事関数が白金族元素の仕事関数に近似するように選択されたオーステナイト系ステンレス31(アロイ遷移金属)とNi32(メタル遷移金属)とCu33(メタル遷移金属)とを原料とし、ステンレスアロイ微粉体34(SUS304アロイ微粉体とSUS316アロイ微粉体とSUS340アロイ微粉体とのうちの少なくとも1つ)とNiメタル微粉体35とCuメタル微粉体36との仕事関数の合成仕事関数が白金族元素の仕事関数に近似するように、アロイ・メタル遷移金属微粉体混合物37の全重量に対するステンレスアロイ微粉体34の重量比とNiメタル微粉体35の重量比とCuメタル微粉体36の重量比とが決定されているから、燃料極13や空気極14が白金族元素を含む電極と略同一の仕事関数を備え、白金族元素を含む電極と略同様の触媒活性(触媒作用)を示し、水素がプロトンと電子とに効率よく分解される。   The fuel electrode 13 (electrode) and the air electrode 14 (electrode) are made of austenitic stainless steel 31 (alloy transition metal) and Ni32 (metal transition metal), whose work functions are selected so that the composite work function is close to the work function of a platinum group element. Using stainless steel alloy fine powder 34 (at least one of SUS304 alloy fine powder, SUS316 alloy fine powder and SUS340 alloy fine powder), Ni metal fine powder 35 and Cu The weight ratio of the stainless alloy fine powder 34 to the total weight of the alloy / metal transition metal fine powder mixture 37 and the Ni metal fine powder are set so that the work function of the work function with the metal fine powder 36 is close to the work function of the platinum group element. Since the weight ratio of the body 35 and the weight ratio of the Cu metal fine powder 36 are determined, the fuel electrode 13 and the air electrode 14 An electrode having substantially the same work function including gold group elements, illustrates the electrode and substantially the same catalytic activity containing a platinum group element (catalysis), hydrogen is decomposed efficiently into protons and electrons.

起電圧試験では、水素ガスを注入してから15分の間、電極(燃料極13や空気極14)と電極(燃料極13や空気極14)との間(電極間)の電圧(V)を測定した。図7の起電圧試験の結果を示す図では、横軸に測定時間(min)を表し、縦軸に電極(燃料極13や空気極14)と電極(燃料極13や空気極14)との間(電極間)の電圧(V)を表す。白金族元素を利用した(担持させた)電極(白金電極)を使用した固体高分子形燃料電池では、図7の起電圧試験の結果を示す図から分かるように、電極間の電圧が1.079(V)前後であったのに対し、非白金の電極(燃料極13や空気極14)を使用した固体高分子形燃料電池10では、電極(燃料極13や空気極14)と電極(燃料極13や空気極14)との間(電極間)の電圧(起電力)が1.04(V)〜1.02(V)であった。   In the electromotive force test, the voltage (V) between the electrodes (the fuel electrode 13 and the air electrode 14) and the electrode (the fuel electrode 13 and the air electrode 14) (between the electrodes) for 15 minutes after the hydrogen gas was injected. Was measured. In the diagram showing the results of the electromotive force test in FIG. 7, the measurement time (min) is represented on the horizontal axis, and the vertical axis represents the relationship between the electrode (fuel electrode 13 or air electrode 14) and the electrode (fuel electrode 13 or air electrode 14). Represents the voltage (V) between the electrodes (between the electrodes). In a polymer electrolyte fuel cell using an electrode (platinum electrode) utilizing (supporting) a platinum group element, as can be seen from the diagram showing the results of the electromotive force test in FIG. 079 (V), whereas the polymer electrolyte fuel cell 10 using non-platinum electrodes (the fuel electrode 13 and the air electrode 14) and the electrode (the fuel electrode 13 and the air electrode 14) and the electrode ( The voltage (electromotive force) between the fuel electrode 13 and the air electrode 14 (between the electrodes) was 1.04 (V) to 1.02 (V).

I−V特性試験では、電極(燃料極13や空気極14)と電極(燃料極13や空気極14)との間(電極間)に負荷30を接続し、電圧と電流との関係を測定した。図8のI−V特性試験の結果を示す図では、横軸に電流(A)を表し、縦軸に電圧(V)を表す。燃料極13(非白金電極)及び空気極14(非白金電極)を使用した固体高分子形燃料電池10では、図8のI−V特性試験の結果を示す図から分かるように、白金族元素を利用した(担持させた)電極(白金電極)を使用した固体高分子形燃料電池の電圧降下率と大差のない結果が得られた。図7の起電圧試験の結果や図8のI−V特性試験の結果に示すように、白金族元素を利用していない非白金の燃料極13及び空気極14が電子を放出させて水素イオンとなる反応を促進させる優れた触媒作用を有するとともに、白金を利用した電極と略同様の酸素還元機能(触媒作用)を有することが確認された。   In the IV characteristic test, a load 30 is connected between the electrodes (the fuel electrode 13 and the air electrode 14) and the electrodes (the fuel electrode 13 and the air electrode 14) (between the electrodes), and the relationship between the voltage and the current is measured. did. In FIG. 8 showing the results of the IV characteristic test, the horizontal axis represents current (A), and the vertical axis represents voltage (V). In the polymer electrolyte fuel cell 10 using the fuel electrode 13 (non-platinum electrode) and the air electrode 14 (non-platinum electrode), as can be seen from the results of the IV characteristic test in FIG. The result obtained was not substantially different from the voltage drop rate of a polymer electrolyte fuel cell using an electrode (platinum electrode) using (supported) the polymer. As shown in the result of the electromotive force test in FIG. 7 and the result of the IV characteristic test in FIG. 8, the non-platinum fuel electrode 13 and the air electrode 14 which do not use a platinum group element emit electrons to generate hydrogen ions. It has been confirmed that the compound has an excellent catalytic action to promote the reaction to become, and has an oxygen reduction function (catalytic action) substantially similar to that of an electrode using platinum.

固体高分子形燃料電池10は、それに使用される燃料極13及び空気極14が所定の金属の仕事関数の合成仕事関数が白金族元素の仕事関数に近似するように選択されたオーステナイト系ステンレス31(SUS304とSUS316とSUS340とのうちの少なくとも1つ)(アロイ遷移金属)とNi32(メタル遷移金属)とCu33(メタル遷移金属)とを原料とし、オーステナイト系ステンレス31から作られたステンレスアロイ微粉体34(SUS304アロイ微粉体とSUS316アロイ微粉体とSUS340アロイ微粉体とのうちの少なくとも1つ)とNi32(ニッケル)から作られたNiメタル微粉体35とCu33(銅)から作られたCuメタル微粉体36とを均一に混合・分散したアロイ・メタル遷移金属微粉体混合物37を所定面積の薄板状に圧縮した後に焼成して多数の微細な流路25や通流口27を形成したポーラス構造の遷移金属薄板電極14であり、ステンレスアロイ微粉体34とNiメタル微粉体35とCuメタル微粉体36との仕事関数の合成仕事関数が白金族元素の仕事関数に近似するように、アロイ・メタル遷移金属微粉体混合物37の全重量に対するステンレスアロイ微粉体34の重量比とNiメタル微粉体35の重量比とCuメタル微粉体36の重量比とが決定されているから、燃料極13や空気極14が白金族元素を含む電極と略同一の仕事関数を備え、燃料極13や空気極14が優れた触媒活性(触媒作用)を有し、燃料極13や空気極14が白金族元素を含む電極と略同様の触媒活性(触媒作用)を発揮することで、非白金の燃料極13及び空気極14を使用して十分な電気を発電することができ、燃料電池10に接続された負荷30に十分な電気エネルギーを供給することができる。   The polymer electrolyte fuel cell 10 includes an austenitic stainless steel 31 whose anode 13 and air electrode 14 are selected such that the work function of the work function of a predetermined metal is close to the work function of a platinum group element. (At least one of SUS304, SUS316 and SUS340) Fine powder of stainless alloy made from austenitic stainless steel 31 using (alloy transition metal), Ni32 (metal transition metal) and Cu33 (metal transition metal) as raw materials 34 (at least one of SUS304 alloy fine powder, SUS316 alloy fine powder and SUS340 alloy fine powder), Ni metal fine powder 35 made of Ni32 (nickel), and Cu metal fine powder made of Cu33 (copper) Alloy / metal transition metal fine powder mixed and dispersed uniformly with the body 36 The transition metal sheet electrode 14 having a porous structure in which the object 37 is compressed into a thin plate having a predetermined area and then fired to form a large number of fine channels 25 and through holes 27. The stainless alloy fine powder 34 and the Ni metal fine powder are formed. The weight ratio of the stainless alloy fine powder 34 to the total weight of the alloy / metal transition metal fine powder mixture 37 so that the work function of the work function of the body 35 and the Cu metal fine powder 36 approximates the work function of the platinum group element. And the weight ratio of the Ni metal fine powder 35 and the weight ratio of the Cu metal fine powder 36, the fuel electrode 13 and the air electrode 14 have substantially the same work function as the electrode containing the platinum group element, The electrode 13 and the air electrode 14 have excellent catalytic activity (catalytic action), and the fuel electrode 13 and the air electrode 14 exhibit almost the same catalytic activity (catalytic action) as an electrode containing a platinum group element. platinum Use anode 13 and cathode 14 can power sufficient electricity can be supplied enough electrical energy to the load 30 connected to the fuel cell 10.

固体高分子形燃料電池10は、燃料極13及び空気極14がオーステナイト系ステンレス31(SUS304とSUS316とSUS340とのうちの少なくとも1つ)(アロイ遷移金属)とNi32(メタル遷移金属)とCu33(メタル遷移金属)とを原料とし、高価な白金族元素が使用されておらず、燃料極13及び空気極14が非白金の電極であるから、固体高分子形燃料電池10を廉価に作ることができる。   In the polymer electrolyte fuel cell 10, the fuel electrode 13 and the air electrode 14 are made of an austenitic stainless steel 31 (at least one of SUS304, SUS316, and SUS340) (alloy transition metal), Ni32 (metal transition metal), and Cu33 ( Metal transition metal), no expensive platinum group element is used, and the fuel electrode 13 and the air electrode 14 are non-platinum electrodes, so that the polymer electrolyte fuel cell 10 can be manufactured at low cost. it can.

固体高分子形燃料電池10は、相対湿度95%〜100%の雰囲気の水素(燃料)を燃料極13に供給し、45℃〜55℃の温度の水素を燃料極13に供給し、+0.06MPa〜+0.08MPaの供給圧力で燃料極13に水素を供給するとともに+0.06MPa〜+0.08MPaの供給圧力で空気極14に空気(酸素)を供給することで、燃料極13や空気極14の触媒活性が増加し、燃料電池10の起電力が向上し、非白金の燃料極13や空気極14を使用して十分な電気を確実に発電することができ、燃料電池10に接続された負荷30に十分な電気エネルギーを確実に供給することができる。   The polymer electrolyte fuel cell 10 supplies hydrogen (fuel) in an atmosphere having a relative humidity of 95% to 100% to the fuel electrode 13, supplies hydrogen at a temperature of 45 ° C. to 55 ° C. to the fuel electrode 13, and supplies +0. By supplying hydrogen to the fuel electrode 13 at a supply pressure of 06 MPa to +0.08 MPa and supplying air (oxygen) to the air electrode 14 at a supply pressure of +0.06 MPa to +0.08 MPa, the fuel electrode 13 and the air electrode 14 are supplied. The catalytic activity of the fuel cell 10 is increased, the electromotive force of the fuel cell 10 is improved, sufficient electricity can be reliably generated using the non-platinum fuel electrode 13 and the air electrode 14, and the fuel cell 10 is connected to the fuel cell 10. Sufficient electric energy can be reliably supplied to the load 30.

図10は、燃料極13及び空気極14の製造方法を説明する図である。燃料極13(電極)及び空気極14(電極)は、図10に示すように、金属微粉体作成工程S1、微粉体重量比決定工程S2、アロイ・メタル遷移金属微粉体混合物作成工程S3、アロイ・メタル遷移金属微粉体圧縮物作成工程S4、遷移金属薄板電極作成工程S5を有する電極製造方法によって製造される。電極製造方法は、所定の金属の仕事関数の合成仕事関数が白金族元素の仕事関数に近似するように選択されたオーステナイト系ステンレス31(SUS304とSUS316とSUS340とのうちの少なくとも1つ)(アロイ遷移金属)とNi32(メタル遷移金属)とCu33(メタル遷移金属)とを原料として燃料極13(電極)及び空気極14(電極)を製造する。   FIG. 10 is a diagram illustrating a method of manufacturing the fuel electrode 13 and the air electrode 14. As shown in FIG. 10, the fuel electrode 13 (electrode) and the air electrode 14 (electrode) are made of a metal fine powder preparation step S1, a fine powder weight ratio determination step S2, an alloy / metal transition metal fine powder mixture preparation step S3, and an alloy. -It is manufactured by an electrode manufacturing method including a metal transition metal fine powder compressed material creation step S4 and a transition metal thin plate electrode creation step S5. The electrode manufacturing method includes an austenitic stainless steel 31 (at least one of SUS304, SUS316, and SUS340) (alloy) selected such that the work function of a predetermined metal is close to the work function of a platinum group element. A fuel electrode 13 (electrode) and an air electrode 14 (electrode) are manufactured using transition metals), Ni32 (metal transition metal) and Cu33 (metal transition metal) as raw materials.

金属微粉体作成工程S1では、オーステナイト系ステンレス31を微粉砕してステンレスアロイ微粉体34(SUS304アロイ微粉体(微粉状のSUS304)とSUS316アロイ微粉体(微粉状のSUS316)とSUS340アロイ微粉体(微粉状のSUS340)とのうちの少なくとも1つ)を作り、Ni32を微粉砕してNiメタル微粉体35(微粉状のNi)を作るとともに、Cu33を微粉砕してCuメタル微粉体36(微粉状のCu)を作る。   In the metal fine powder preparation step S1, the austenitic stainless steel 31 is finely pulverized to finely powder the stainless alloy 34 (SUS304 alloy fine powder (fine powder SUS304), SUS316 alloy fine powder (fine powder SUS316), and SUS340 alloy fine powder ( At least one of SUS340 in the form of fine powder) and finely pulverizing Ni32 to form fine Ni powder 35 (fine Ni), and finely pulverizing Cu33 to form fine Cu metal powder 36 (fine powder). In the form of Cu).

金属微粉体作成工程S1では、微粉砕機によってオーステナイト系ステンレス31(SUS304とSUS316とSUS340とのうちの少なくとも1つ)を10μm〜200μmの粒径に微粉砕し、微粉砕機によってNi32を10μm〜200μmの粒径に微粉砕するとともに、微粉砕機によってCu33を10μm〜200μmの粒径に微粉砕する。   In the metal fine powder preparation step S1, the austenitic stainless steel 31 (at least one of SUS304, SUS316, and SUS340) is finely pulverized to a particle diameter of 10 μm to 200 μm by a fine pulverizer, and Ni32 is reduced to 10 μm to While finely pulverizing to a particle size of 200 μm, Cu33 is finely pulverized by a pulverizer to a particle size of 10 μm to 200 μm.

電極製造方法は、オーステナイト系ステンレス31やNi32、Cu33を10μm〜200μmの粒径に微粉砕することで、多数の微細な流路25(通路孔)及び開口面積(開口径)の異なる多数の微細な前後面23,24の通流口27を有する多孔質に成型されて比表面積が大きいポーラス構造の遷移金属薄板電極26を作ることができ、それら流路25を気体が通流しつつ気体を燃料極13及び空気極14のそれら流路25における接触面に広く接触させることが可能な非白金の燃料極13及び空気極14を作ることができる。   The electrode is manufactured by finely pulverizing austenitic stainless steel 31, Ni32, or Cu33 to a particle diameter of 10 μm to 200 μm, thereby forming a large number of fine channels 25 (passage holes) and a large number of fine particles having different opening areas (opening diameters). A porous transition metal thin plate electrode 26 having a large specific surface area and having a large specific surface area can be produced by forming a porous transition metal thin plate electrode 26 having flow ports 27 of the front and rear surfaces 23 and 24. The non-platinum fuel electrode 13 and the air electrode 14 can be made to be able to widely contact the contact surfaces of the electrode 13 and the air electrode 14 in the flow path 25.

微粉体重量比決定工程S2では、金属微粉体作成工程S1によって作られたオーステナイトアロイ微粉体34とNiメタル微粉体35とCuメタル微粉体36との仕事関数の合成仕事関数が白金族元素の仕事関数に近似するように、アロイ・メタル遷移金属微粉体混合物37の全重量に対するオーステナイトアロイ微粉体34の重量比を決定し、アロイ・メタル遷移金属微粉体混合物37の全重量に対するNiメタル微粉体35の重量比を決定するとともに、アロイ・メタル遷移金属微粉体混合物37の全重量に対するCuメタル微粉体36の重量比を決定する。   In the fine powder weight ratio determining step S2, the work function of the work function of the austenitic alloy fine powder 34, the Ni metal fine powder 35, and the Cu metal fine powder 36 produced in the metal fine powder forming step S1 is the work of the platinum group element. To approximate the function, the weight ratio of the austenitic alloy fine powder 34 to the total weight of the alloy-metal transition metal fine powder mixture 37 is determined, and the Ni metal fine powder 35 to the total weight of the alloy-metal transition metal fine powder mixture 37 is determined. And the weight ratio of the Cu metal fine powder 36 to the total weight of the alloy-metal transition metal fine powder mixture 37 is determined.

微粉体重量比決定工程S2では、アロイ・メタル遷移金属微粉体混合物37の全重量(100%)に対するステンレスアロイ微粉体34の重量比を47〜49%の範囲(好ましくは48%)で決定し、アロイ・メタル遷移金属微粉体混合物37の全重量(100%)に対するNiメタル微粉体35の重量比を47〜49%の範囲(好ましくは48%)で決定するとともに、アロイ・メタル遷移金属微粉体混合物37の全重量(100%)に対するCuメタル微粉体36の重量比を2〜6%の範囲(好ましくは2%)で決定する。   In the fine powder weight ratio determining step S2, the weight ratio of the stainless alloy fine powder 34 to the total weight (100%) of the alloy / metal transition metal fine powder mixture 37 is determined in the range of 47 to 49% (preferably 48%). The weight ratio of the Ni metal fine powder 35 to the total weight (100%) of the alloy / metal transition metal fine powder mixture 37 is determined in the range of 47 to 49% (preferably 48%), and the alloy / metal transition metal fine powder is determined. The weight ratio of the Cu metal fine powder 36 to the total weight (100%) of the body mixture 37 is determined in the range of 2 to 6% (preferably 2%).

電極製造方法は、アロイ・メタル遷移金属微粉体混合物37の全重量に対するステンレスアロイ微粉体34の重量比やNiメタル微粉体35の重量比、Cuメタル微粉体36の重量比を前記範囲において決定することで、ステンレスアロイ微粉体34とNiメタル微粉体35とCuメタル微粉体36との仕事関数の合成仕事関数を白金族元素の仕事関数に近似させることができ、燃料極13(電極)や空気極14(電極)が白金族元素を含む電極と略同一の仕事関数を備え、白金族元素を含む電極と略同様の触媒活性(触媒作用)を発揮することができ、優れた触媒活性(触媒作用)を有して触媒機能を十分かつ確実に利用することが可能な固体高分子形燃料電池10の非白金の燃料極13及び空気極14を作ることができる。   In the electrode manufacturing method, the weight ratio of the stainless alloy fine powder 34, the weight ratio of the Ni metal fine powder 35, and the weight ratio of the Cu metal fine powder 36 to the total weight of the alloy / metal transition metal fine powder mixture 37 are determined within the above ranges. Accordingly, the work function of the stainless alloy fine powder 34, the Ni metal fine powder 35, and the Cu metal fine powder 36 can be approximated to the work function of the platinum group element, and the fuel electrode 13 (electrode) and air The electrode 14 (electrode) has substantially the same work function as the electrode containing the platinum group element, and can exhibit almost the same catalytic activity (catalytic action) as the electrode containing the platinum group element. The non-platinum fuel electrode 13 and the air electrode 14 of the polymer electrolyte fuel cell 10 having the function of (1) and capable of utilizing the catalytic function sufficiently and reliably can be produced.

アロイ・メタル遷移金属微粉体混合物作成工程S3では、微粉体重量比決定工程S2によって決定した重量比のステンレスアロイ微粉体34と微粉体重量比決定工程S2によって決定した重量比のNiメタル微粉体35と微粉体重量比決定工程S2によって決定した重量比のCuメタル微粉体36とを混合機に投入し、混合機によってステンレスアロイ微粉体34、Niメタル微粉体35、Cuメタル微粉体36を攪拌・混合し、ステンレスアロイ微粉体34、Niメタル微粉体35、Cuメタル微粉体36が均一に混合・分散したアロイ・メタル遷移金属微粉体混合物37を作る。   In the alloy / metal transition metal fine powder mixture preparing step S3, the stainless alloy fine powder 34 having the weight ratio determined in the fine powder weight ratio determining step S2 and the Ni metal fine powder 35 having the weight ratio determined in the fine powder weight ratio determining step S2. And the Cu metal fine powder 36 having the weight ratio determined in the fine powder weight ratio determining step S2 are put into a mixer, and the stainless alloy fine powder 34, the Ni metal fine powder 35, and the Cu metal fine powder 36 are stirred by the mixer. The mixture is mixed to form an alloy-metal transition metal fine powder mixture 37 in which the stainless alloy fine powder 34, the Ni metal fine powder 35, and the Cu metal fine powder 36 are uniformly mixed and dispersed.

アロイ・メタル遷移金属微粉体圧縮物作成工程S4では、アロイ・メタル遷移金属微粉体混合物作成工程S3によって作られたアロイ・メタル遷移金属微粉体混合物37を所定圧力で加圧し、アロイ・メタル遷移金属微粉体混合物37を所定面積の薄板状に圧縮したアロイ・メタル遷移金属微粉体圧縮物38を作る。アロイ・メタル遷移金属微粉体圧縮物作成工程S4では、アロイ・メタル遷移金属微粉体混合物37を金型に入れ、金型をプレス機によって加圧(プレス)するプレス加工によってアロイ・メタル遷移金属微粉体圧縮物38を作る。   In the alloy / metal transition metal fine powder compressed material producing step S4, the alloy / metal transition metal fine powder mixture 37 produced in the alloy / metal transition metal fine powder mixture producing step S3 is pressurized at a predetermined pressure, and the alloy / metal transition metal An alloy / metal transition metal fine powder compact 38 is prepared by compressing the fine powder mixture 37 into a thin plate having a predetermined area. In the alloy / metal transition metal fine powder compressed material preparation step S4, the alloy / metal transition metal fine powder mixture 37 is put into a mold, and the alloy / metal transition metal fine powder is pressed by a press machine. A compressed body 38 is made.

プレス加工時におけるプレス圧(圧力)は、500Mpa〜800Mpaの範囲にある。プレス圧(圧力)が500Mpa未満では、アロイ・メタル遷移金属微粉体圧縮物38(遷移金属薄板電極26)に形成される流路25(通路孔)や通流口27の開口面積(開口径)が大きくなり、アロイ・メタル遷移金属微粉体圧縮物38(遷移金属薄板電極26)の厚み寸法L1を0.03mm〜0.3mm(好ましくは、0.05mm〜0.1mm)にしつつ開口径が1μm〜100μmの範囲の多数の微細な流路25(通路孔)や通流口27をアロイ・メタル遷移金属微粉体圧縮物38(遷移金属薄板電極26)に形成することができない。   The press pressure (pressure) during the press working is in the range of 500 MPa to 800 MPa. When the pressing pressure (pressure) is less than 500 MPa, the opening area (opening diameter) of the flow passage 25 (passage hole) and the flow opening 27 formed in the compressed alloy-metal transition metal fine powder 38 (transition metal thin plate electrode 26). The opening diameter of the compressed alloy metal transition metal fine powder 38 (transition metal thin plate electrode 26) is reduced while the thickness dimension L1 is set to 0.03 mm to 0.3 mm (preferably 0.05 mm to 0.1 mm). A large number of fine channels 25 (passage holes) and passages 27 in the range of 1 μm to 100 μm cannot be formed in the alloy-metal transition metal fine powder compact 38 (transition metal sheet electrode 26).

プレス圧(圧力)が800Mpaを超過すると、アロイ・メタル遷移金属微粉体圧縮物38(遷移金属薄板電極26)に形成される流路25(通路孔)や通流口27の開口面積(開口径)が必要以上に小さくなり、アロイ・メタル遷移金属微粉体圧縮物38(遷移金属薄板電極26)の厚み寸法L1を0.03mm〜0.3mm(好ましくは、0.05mm〜0.1mm)にしつつ開口径が1μm〜100μmの範囲の多数の微細な流路25(通路孔)や通流口27をアロイ・メタル遷移金属微粉体圧縮物49(遷移金属薄板電極14)に形成することができない。   When the pressing pressure (pressure) exceeds 800 MPa, the opening area (opening diameter) of the flow passage 25 (passage hole) and the flow opening 27 formed in the compressed alloy metal transition metal fine powder 38 (transition metal thin plate electrode 26). ) Becomes unnecessarily small, and the thickness dimension L1 of the compressed alloy metal transition metal fine powder 38 (transition metal thin plate electrode 26) is set to 0.03 mm to 0.3 mm (preferably 0.05 mm to 0.1 mm). In addition, a large number of fine flow paths 25 (passage holes) and flow openings 27 having an opening diameter in the range of 1 μm to 100 μm cannot be formed in the alloy-metal transition metal fine powder compact 49 (transition metal thin plate electrode 14). .

電極製造方法は、アロイ・メタル遷移金属微粉体混合物37を前記範囲の圧力で加圧(圧縮)することで、アロイ・メタル遷移金属微粉体圧縮物38(遷移金属薄板電極26)の厚み寸法L1を0.03mm〜0.3mm(好ましくは、0.05mm〜0.1mm)にしつつ開口径が1μm〜100μmの範囲の多数の微細な流路25(通路孔)や通流口27を形成したアロイ・メタル遷移金属微粉体圧縮物38(遷移金属薄板電極26)を形成することができる。電極製造方法は、厚み寸法L1が0.03mm〜0.3mmの範囲(好ましくは、0.05mm〜0.1mmの範囲)の燃料極13(電極)及び空気極14(電極)を作ることができるから、電気抵抗を小さくすることができ、電流をスムースに流すことが可能な固体高分子形燃料電池10の非白金の燃料極13及び空気極14を作ることができる。   In the electrode manufacturing method, the alloy metal transition metal fine powder mixture 37 is pressurized (compressed) at a pressure within the above range, thereby forming a thickness L1 of the alloy metal transition metal fine powder compressed material 38 (transition metal thin plate electrode 26). And a large number of fine flow passages 25 (passage holes) and passage holes 27 having an opening diameter in the range of 1 μm to 100 μm were formed while reducing the diameter to 0.03 mm to 0.3 mm (preferably 0.05 mm to 0.1 mm). The alloy-metal transition metal fine powder compact 38 (transition metal sheet electrode 26) can be formed. According to the electrode manufacturing method, the fuel electrode 13 (electrode) and the air electrode 14 (electrode) having the thickness dimension L1 in the range of 0.03 mm to 0.3 mm (preferably in the range of 0.05 mm to 0.1 mm) can be formed. Accordingly, the non-platinum fuel electrode 13 and the air electrode 14 of the polymer electrolyte fuel cell 10 capable of reducing the electric resistance and allowing the current to flow smoothly can be formed.

遷移金属薄板電極作成工程S5では、アロイ・メタル遷移金属微粉体圧縮物作成工程S4によって作られたアロイ・メタル遷移金属微粉体圧縮物38を炉(電気炉)に投入し、アロイ・メタル遷移金属微粉体圧縮物37を炉において所定温度で焼成(焼結)して多数の微細な流路25(通路孔)や通流口27を形成したポーラス構造の遷移金属薄板電極26(燃料極13及び空気極14)を作る。   In the transition metal sheet electrode forming step S5, the alloy-metal transition metal fine powder compact 38 produced in the alloy-metal transition metal fine powder compact forming step S4 is charged into a furnace (electric furnace), and the alloy-metal transition metal is formed. The fine powder compact 37 is fired (sintered) at a predetermined temperature in a furnace to form a porous transition metal thin plate electrode 26 (the fuel electrode 13 and the fuel electrode 13) having a large number of fine channels 25 (pass holes) and through holes 27 formed therein. Make the cathode 14).

遷移金属薄板電極作成工程S5では、最も融点の低いCuメタル微粉体36を溶融させる温度でアロイ・メタル遷移金属微粉体圧縮物38を長時間焼成する。焼成(焼結)時間は、3時間〜6時間である。遷移金属薄板電極作成工程S5では、所定面積の薄板状に圧縮したアロイ・メタル遷移金属微粉体圧縮物38の焼成時において、最も融点の低いCuメタル微粉体36が溶融し、溶融したCuメタル微粉体36をバインダーとしてステンレスアロイ微粉体34とNiメタル微粉体35とを接合(固着)する。   In the transition metal thin plate electrode forming step S5, the compressed alloy metal transition metal fine powder 38 is fired for a long time at a temperature at which the Cu metal fine powder 36 having the lowest melting point is melted. The firing (sintering) time is 3 hours to 6 hours. In the transition metal thin plate electrode forming step S5, the Cu metal fine powder 36 having the lowest melting point is melted during firing of the alloy metal transition metal fine powder compressed material 38 compressed into a thin plate having a predetermined area, and the molten Cu metal fine powder is melted. Using the body 36 as a binder, the stainless alloy fine powder 34 and the Ni metal fine powder 35 are joined (fixed).

電極製造方法は、金属微粉体作成工程S1や微粉体重量比決定工程S2、アロイ・メタル遷移金属微粉体混合物作成工程S3、アロイ・メタル遷移金属微粉体圧縮物作成工程S4、遷移金属薄板電極作成工程S5の各工程によって厚み寸法L1が0.03mm〜0.3mmの範囲(好ましくは、0.05mm〜0.1mmの範囲)であって多数の微細な流路13(通路孔)や通流口27を形成した燃料極13(電極)及び空気極14(電極)を製造することができ、白金族元素を使用しない非白金の燃料極13及び空気極14を廉価に作ることができるとともに、優れた触媒活性(触媒作用)を有して触媒機能を十分かつ確実に利用することが可能な燃料極13及び空気極14を作ることができる。   The electrode manufacturing method includes a metal fine powder preparation step S1, a fine powder weight ratio determination step S2, an alloy / metal transition metal fine powder mixture preparation step S3, an alloy / metal transition metal fine powder compressed product preparation step S4, and a transition metal sheet electrode preparation. The thickness L1 is in the range of 0.03 mm to 0.3 mm (preferably in the range of 0.05 mm to 0.1 mm) due to each step of the step S5, and a large number of fine flow paths 13 (passage holes) and flow paths The fuel electrode 13 (electrode) and the air electrode 14 (electrode) having the opening 27 can be manufactured, and the non-platinum fuel electrode 13 and the air electrode 14 that do not use a platinum group element can be manufactured at low cost. The fuel electrode 13 and the air electrode 14 having excellent catalytic activity (catalytic action) and capable of utilizing the catalytic function sufficiently and reliably can be produced.

電極製造方法は、それによって作られた燃料極13(電極)及び空気極14(電極)が白金族元素を含む電極と略同様の触媒活性(触媒作用)を発揮するから、固体高分子形燃料電池10において十分な電気を発電することが可能であって固体高分子形燃料電池10に接続された負荷30に十分な電気エネルギーを供給することが可能な非白金の燃料極13及び空気極14を作ることができる。   In the electrode manufacturing method, the fuel electrode 13 (electrode) and the air electrode 14 (electrode) produced by the method exhibit substantially the same catalytic activity (catalysis) as an electrode containing a platinum group element. The non-platinum fuel electrode 13 and the air electrode 14 capable of generating sufficient electricity in the battery 10 and supplying sufficient electric energy to the load 30 connected to the polymer electrolyte fuel cell 10 Can be made.

電極製造方法は、最も融点のCuメタル微粉体36をバインダーとしてステンレスアロイ微粉体34とNiメタル微粉体35とを接合することで、多数の微細な流路25(通路孔)や通流口27を有するポーラス構造の遷移金属薄板電極26(燃料極13及び空気極14)を作ることができるとともに、高い強度を有して形状を維持することができ、衝撃が加えられたときの破損や損壊を防ぐことが可能な非白金の燃料極13(電極)及び空気極14(電極)を作ることができる。   The electrode is manufactured by joining the stainless alloy fine powder 34 and the Ni metal fine powder 35 with the Cu metal fine powder 36 having the highest melting point as a binder, thereby forming a large number of fine flow paths 25 (passage holes) and through holes 27. The transition metal thin plate electrode 26 (the fuel electrode 13 and the air electrode 14) having a porous structure can be formed, the shape can be maintained with high strength, and the electrode can be damaged or damaged when an impact is applied. A non-platinum fuel electrode 13 (electrode) and an air electrode 14 (electrode) can be made which can prevent the occurrence of the above problem.

10 固体高分子形燃料電池
11 セル
12 セルスタック
13 燃料極(電極)
14 空気極(電極)
15 固体高分子電解質膜
16 セパレータ
17 セパレータ
18 膜/電極接合体
19 ガス拡散層
20 ガス拡散層
21 ガスシール
22 ガスシール
23 前面
24 後面
25 流路(通路孔)
26 ポーラス構造の遷移金属薄板電極
27 通流口
28 外周縁
29 導線
30 負荷
31 オーステナイト系ステンレス(アロイ遷移金属)
32 Ni(メタル遷移金属)
33 Cu(メタル遷移金属)
34 ステンレスアロイ微粉体
35 Niメタル微粉体
36 Cuメタル微粉体
37 アロイ・メタル遷移金属微粉体混合物
38 アロイ・メタル遷移金属微粉体圧縮物
L1 厚み寸法
S1 金属微粉体作成工程
S2 微粉体重量比決定工程
S3 アロイ・メタル遷移金属微粉体混合物作成工程
S4 アロイ・メタル遷移金属微粉体圧縮物作成工程
S5 遷移金属薄板電極作成工程
Reference Signs List 10 polymer electrolyte fuel cell 11 cell 12 cell stack 13 fuel electrode (electrode)
14 Air electrode (electrode)
DESCRIPTION OF SYMBOLS 15 Solid polymer electrolyte membrane 16 Separator 17 Separator 18 Membrane / electrode assembly 19 Gas diffusion layer 20 Gas diffusion layer 21 Gas seal 22 Gas seal 23 Front 24 Back 25 Channel (passage hole)
26 Transition metal thin plate electrode of porous structure 27 Flow opening 28 Outer edge 29 Conductor 30 Load 31 Austenitic stainless steel (alloy transition metal)
32 Ni (metal transition metal)
33 Cu (metal transition metal)
34 Fine powder of stainless alloy 35 Fine powder of Ni metal 36 Fine powder of Cu metal 37 Mixture of fine powder of alloy and metal transition metal 38 Compressed alloy and metal transition metal powder L1 Thickness dimension S1 Metal fine powder preparation step S2 Fine powder weight ratio determination step S3 Alloy / Metal transition metal fine powder mixture preparation process S4 Alloy / Metal transition metal fine powder compressed product creation process S5 Transition metal thin plate electrode preparation process

Claims (10)

複数のセルを有するセルスタックを備え、前記セルが、燃料極及び空気極と、前記燃料極と前記空気極との間に位置する電極接合体膜と、前記燃料極の外側と前記空気極の外側とに位置するセパレータとから形成され、
前記燃料極及び前記空気極が、所定の金属の仕事関数の合成仕事関数が白金族元素の仕事関数に近似するように選択されたオーステナイト系ステンレスとNiとCuとを原料とし、前記オーステナイト系ステンレスを微粉砕したステンレスアロイ微粉体と前記Niを微粉砕したNiメタル微粉体と前記Cuを微粉砕したCuメタル微粉体とを均一に混合・分散したアロイ・メタル遷移金属微粉体混合物を所定面積の薄板状に圧縮した後に焼成して多数の微細な流路を形成したポーラス構造の遷移金属薄板電極であり、
前記燃料極及び前記空気極では、前記ステンレスアロイ微粉体と前記Niメタル微粉体と前記Cuメタル微粉体との仕事関数の合成仕事関数が白金族元素の仕事関数に近似するように、前記アロイ・メタル遷移金属微粉体混合物の全重量に対する前記ステンレスアロイ微粉体の重量比と前記Niメタル微粉体の重量比と前記Cuメタル微粉体の重量比とが決定されていることを特徴とする固体高分子形燃料電池。
The fuel cell further includes a cell stack having a plurality of cells, wherein the cells include a fuel electrode and an air electrode, an electrode assembly film located between the fuel electrode and the air electrode, and a fuel electrode and an air electrode. Formed from the outside and the separator located on the
The fuel electrode and the air electrode are made of austenitic stainless steel, Ni, and Cu selected such that a composite work function of a work function of a predetermined metal is close to a work function of a platinum group element, and the austenitic stainless steel is used as the fuel electrode and the air electrode. An alloy-metal transition metal fine powder mixture obtained by uniformly mixing and dispersing a finely pulverized stainless alloy fine powder, a finely pulverized Ni metal fine powder, and a finely pulverized Cu metal fine powder is mixed with a predetermined area. It is a transition metal thin plate electrode of a porous structure in which a large number of fine channels are formed by firing after being compressed into a thin plate shape,
At the fuel electrode and the air electrode, the alloy alloy and the Ni metal fine powder and the Cu metal fine powder, so that the composite work function of the work function of the platinum group element approximates the work function of the platinum alloy. A solid polymer, wherein a weight ratio of the stainless alloy fine powder, a weight ratio of the Ni metal fine powder, and a weight ratio of the Cu metal fine powder to the total weight of the metal transition metal fine powder mixture are determined. Shaped fuel cell.
前記アロイ・メタル遷移金属微粉体混合物の全重量に対する前記ステンレスアロイ微粉体の重量比が、47〜49%の範囲にあり、前記アロイ・メタル遷移金属微粉体混合物の全重量に対する前記Niメタル微粉体の重量比が、47〜49%の範囲にあり、前記アロイ・メタル遷移金属微粉体混合物の全重量に対する前記Cuメタル微粉体の重量比が、2〜6%の範囲にある請求項1に記載の固体高分子形燃料電池。   The weight ratio of the stainless alloy fine powder to the total weight of the alloy-metal transition metal fine powder mixture is in the range of 47 to 49%, and the Ni metal fine powder relative to the total weight of the alloy-metal transition metal fine powder mixture The weight ratio of the Cu metal fine powder to the total weight of the alloy-metal transition metal fine powder mixture is in the range of 2 to 6%. Polymer electrolyte fuel cell. 前記燃料極及び前記空気極であるポーラス構造の遷移金属薄板電極の厚み寸法が、0.03mm〜0.3mmの範囲にある請求項1または請求項2記載の固体高分子形燃料電池。   3. The polymer electrolyte fuel cell according to claim 1, wherein the thickness of the porous transition metal sheet electrode serving as the fuel electrode and the air electrode is in a range of 0.03 mm to 0.3 mm. 4. 前記燃料極及び前記空気極であるポーラス構造の遷移金属薄板電極の空隙率が、15%〜30%の範囲にある請求項1ないし請求項3いずれかに記載の固体高分子形燃料電池。   The polymer electrolyte fuel cell according to any one of claims 1 to 3, wherein the porosity of the porous transition metal sheet electrode serving as the fuel electrode and the air electrode is in a range of 15% to 30%. 前記燃料極及び前記空気極であるポーラス構造の遷移金属薄板電極の密度が、5.0g/cm〜7.0g/cmの範囲にある請求項1ないし請求項4いずれかに記載の固体高分子形燃料電池。 The density of the transition metal sheet electrodes of porous structure is the fuel electrode and the air electrode, 5.0g / cm 2 ~7.0g / cm in the range of 2 claims 1 to 4 solid according to any one Polymer fuel cells. 前記ステンレスアロイ微粉体と前記Niメタル微粉体と前記Cuメタル微粉体との粒径が、10μm〜200μmの範囲にある請求項1ないし請求項5いずれかに記載の固体高分子形燃料電池。   The polymer electrolyte fuel cell according to any one of claims 1 to 5, wherein a particle diameter of the stainless alloy fine powder, the Ni metal fine powder, and the Cu metal fine powder is in a range of 10 µm to 200 µm. 前記燃料極及び前記空気極であるポーラス構造の遷移金属薄板電極では、所定面積の薄板状に圧縮した前記アロイ・メタル金属微粉体混合物の焼成時に最も融点の低い前記Cuメタル微粉体が溶融し、溶融したCuメタル微粉体をバインダーとして前記ステンレスアロイ微粉体と前記Niメタル微粉体とが接合されている請求項1ないし請求項6いずれかに記載の固体高分子形燃料電池。   In the transition metal sheet electrode having a porous structure that is the fuel electrode and the air electrode, the Cu metal fine powder having the lowest melting point is melted during firing of the alloy metal metal powder mixture compressed into a sheet having a predetermined area, The polymer electrolyte fuel cell according to any one of claims 1 to 6, wherein the stainless alloy fine powder and the Ni metal fine powder are joined by using a molten Cu metal fine powder as a binder. 前記オーステナイト系ステンレスが、SUS304とSUS316とSUS340とのうちの少なくとも1つであり、前記ステンレスアロイ微粉体が、SUS304アロイ微粉体とSUS316アロイ微粉体とSUS340アロイ微粉体とのうちの少なくとも1つである請求項1ないし請求項7いずれかに記載の固体高分子形燃料電池。   The austenitic stainless steel is at least one of SUS304, SUS316 and SUS340, and the stainless alloy fine powder is at least one of SUS304 alloy fine powder, SUS316 alloy fine powder and SUS340 alloy fine powder. The polymer electrolyte fuel cell according to any one of claims 1 to 7. 前記固体高分子形燃料電池では、前記燃料極に供給される水素の雰囲気が相対湿度95%〜100%の範囲にあり、前記水素の温度が45℃〜55℃の範囲にある請求項1ないし請求項8いずれかに記載の固体高分子形燃料電池。   The said polymer electrolyte fuel cell WHEREIN: The atmosphere of the hydrogen supplied to the said fuel electrode is in the range of 95-100% of relative humidity, and the temperature of the said hydrogen is in the range of 45-55 degreeC. The polymer electrolyte fuel cell according to claim 8. 前記固体高分子形燃料電池では、前記燃料極に供給される水素の供給圧力が+0.06MPa〜+0.08MPaの範囲にある請求項1ないし請求項9いずれかに記載の固体高分子形燃料電池。   10. The polymer electrolyte fuel cell according to claim 1, wherein in the polymer electrolyte fuel cell, a supply pressure of hydrogen supplied to the fuel electrode is in a range of +0.06 MPa to +0.08 MPa. .
JP2018161216A 2018-08-30 2018-08-30 Method for manufacturing fuel electrode and air electrode for polymer electrolyte fuel cell Active JP7171024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018161216A JP7171024B2 (en) 2018-08-30 2018-08-30 Method for manufacturing fuel electrode and air electrode for polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018161216A JP7171024B2 (en) 2018-08-30 2018-08-30 Method for manufacturing fuel electrode and air electrode for polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2020035651A true JP2020035651A (en) 2020-03-05
JP7171024B2 JP7171024B2 (en) 2022-11-15

Family

ID=69668494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018161216A Active JP7171024B2 (en) 2018-08-30 2018-08-30 Method for manufacturing fuel electrode and air electrode for polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP7171024B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112713281A (en) * 2021-01-13 2021-04-27 范钦柏 Fuel cell bipolar plate and fuel cell stack

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017098004A (en) * 2015-11-20 2017-06-01 株式会社健明 Electrode material for fuel cell and method of manufacturing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017098004A (en) * 2015-11-20 2017-06-01 株式会社健明 Electrode material for fuel cell and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112713281A (en) * 2021-01-13 2021-04-27 范钦柏 Fuel cell bipolar plate and fuel cell stack

Also Published As

Publication number Publication date
JP7171024B2 (en) 2022-11-15

Similar Documents

Publication Publication Date Title
WO2019244840A1 (en) Electrode
WO2020080530A1 (en) Electrode and electrode manufacturing method
CN100388539C (en) Composite catalytic layer proton exchange membrane fuel cell electrode and its preparing method
JP7281157B2 (en) Polymer electrolyte fuel cell and electrode manufacturing method
JP7171024B2 (en) Method for manufacturing fuel electrode and air electrode for polymer electrolyte fuel cell
JP7171027B2 (en) Method for manufacturing fuel electrode and air electrode for polymer electrolyte fuel cell
WO2020017623A1 (en) Electrode and electrode manufacturing method
JP7281158B2 (en) Polymer electrolyte fuel cell and electrode manufacturing method
JP2020004527A (en) Solid polymer electrolyte fuel cell and electrode manufacturing method
EP2273589A1 (en) Membrane electrode assembly and fuel cell
JP2020064786A (en) Polymer electrolyte fuel cell
JP7171030B2 (en) Manufacturing method for anode and cathode of electrolyzer
JP7235284B2 (en) polymer electrolyte fuel cell
WO2020045643A1 (en) Electrode
JP7199080B2 (en) Electrolyzer and electrode manufacturing method
JP7179314B2 (en) Manufacturing method for anode and cathode of electrolyzer
JP7193111B2 (en) Carbon nanotube electrode or carbon nanohorn electrode and electrode manufacturing method
WO2020059783A1 (en) Electrode
JP7141695B2 (en) Manufacturing method for anode and cathode of electrolyzer
JP2020140844A (en) Solid polymer type fuel battery
JP2020167064A (en) Solid polymer fuel cell
KR100610262B1 (en) Preparation Method of Membrane Electrode Assembly with Perfluoro-ionomer powder
JP2020087812A (en) Electrode and electrode manufacturing method
JP2020140843A (en) Electrode and method for manufacturing the same
JP7411920B2 (en) Method for manufacturing anode and cathode of electrolyzer

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200617

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210512

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220614

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221026

R150 Certificate of patent or registration of utility model

Ref document number: 7171024

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150