WO2018069979A1 - Catalyst layer production method, catalyst layer, catalyst precursor, and catalyst precursor production method - Google Patents
Catalyst layer production method, catalyst layer, catalyst precursor, and catalyst precursor production method Download PDFInfo
- Publication number
- WO2018069979A1 WO2018069979A1 PCT/JP2016/080147 JP2016080147W WO2018069979A1 WO 2018069979 A1 WO2018069979 A1 WO 2018069979A1 JP 2016080147 W JP2016080147 W JP 2016080147W WO 2018069979 A1 WO2018069979 A1 WO 2018069979A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst
- catalyst precursor
- layer
- metal
- platinum
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to a method for producing a catalyst layer, a catalyst layer, a catalyst precursor, and a method for producing the catalyst precursor.
- a solid polymer fuel cell using a proton conductive solid polymer membrane operates at a lower temperature than other types of fuel cells such as a solid oxide fuel cell and a molten carbonate fuel cell. For this reason, the polymer electrolyte fuel cell is expected as a stationary power source or a power source for a moving body such as an automobile, and its practical use has been started.
- FCV fuel cell vehicles
- Patent Document 1 discloses a catalyst layer in which direct contact between a catalyst and a solid proton conductive material (electrolyte) is suppressed.
- Patent Document 1 According to the membrane electrode assembly (MEA) and the fuel cell having the catalyst layer described in Patent Document 1, the utilization efficiency of the catalyst is improved, and the amount of the catalyst used can be reduced while maintaining the power generation performance. On the other hand, Patent Document 1 requires the use of a conductive carrier having a hole for arranging a catalyst.
- the present invention has been made in view of the above circumstances, and an object thereof is to provide means for suppressing direct contact between a catalyst and an electrolyte.
- the present inventors have conducted intensive research to solve the above problems. As a result, the catalyst metal previously coated with an inorganic substance having catalytic metal adsorptivity was mixed with an electrolyte to form a catalyst layer, and then the removal of the inorganic substance was found to be an effective means, and the present invention was completed. .
- the method for producing a catalyst layer of the present invention includes the following steps (a) to (d) (first embodiment): (A) preparing a catalyst precursor 1 in which a platinum-containing catalyst metal is supported on a conductive carrier (step (a)); (B) The catalyst precursor 1 is coated with an inorganic substance adsorbed on a platinum-containing catalyst metal to prepare a catalyst precursor 2 (step (b)); (C) The catalyst precursor 2 is mixed with an electrolyte to form a catalyst precursor layer (step (c)); and (d) the inorganic substance is removed from the catalyst precursor layer (step (d)).
- the direct contact with a catalyst and electrolyte can be suppressed irrespective of the form and property of the structural member of a catalyst layer. Therefore, a membrane electrode assembly and a fuel cell excellent in power generation performance can be provided.
- the catalyst precursor 1 obtained by supporting a platinum-containing catalyst metal on a conductive support is also simply referred to as “catalyst precursor 1 according to the present invention” or “catalyst precursor 1”.
- the inorganic substance adsorbed on the platinum-containing catalyst metal is also simply referred to as “inorganic substance according to the present invention” or “inorganic substance”.
- the platinum-containing catalyst metal is also simply referred to as “catalyst metal according to the present invention” or “catalyst metal”.
- the ORR area specific activity is the ORR activation dominant current per unit mass of platinum (for example, a current value at 0.9 V), that is, the ORR mass specific activity (A / g_Pt) is expressed as the electrochemical per unit mass of platinum. It is a value divided by the effective surface area (m 2 / g_Pt).
- this phenomenon can be observed not only by MEA but also by RDE based on recent research results (see Non-Patent Document 2 above).
- the present inventors considered that when an electrode catalyst was mixed with an electrolyte to form a catalyst layer, the electrolyte caused a poisoning action on the catalyst metal and reduced the catalytic activity. That is, it was considered that the apparent ORR activity (ORR specific activity) was improved as the coverage of the catalyst metal by the electrolyte was lower.
- ORR activity ORR specific activity
- “poisoning action” means that the interaction between the electrolyte and the catalyst metal is strong, so that the opportunity for the reaction gas (especially oxygen) to contact the surface of the catalyst metal is reduced.
- the present inventors have intensively studied a means for reducing the coverage of the catalyst metal by the electrolyte, that is, a means for reducing the poisoning effect received by the catalyst metal.
- a catalyst (catalyst precursor 2) previously coated with an inorganic material that exhibits adsorptivity to the platinum-containing catalyst metal is mixed with an electrolyte to form a layer (catalyst precursor layer), and then the inorganic material is removed from the layer.
- the measures are effective.
- the catalyst precursor 2 in the catalyst precursor layer, the catalyst precursor 2 (particularly a catalyst metal) in a state of being coated with an inorganic substance is mixed with the electrolyte. For this reason, an inorganic substance intervenes between the catalyst precursor 2 (particularly the catalyst metal) and the electrolyte.
- the inorganic substance is removed from the catalyst precursor layer in this state, the electrolyte in contact with the inorganic substance (that is, covering the catalyst precursor 2) is removed together with the inorganic substance.
- the catalyst metal is not coated or hardly coated with the electrolyte, and is in a state of being directly exposed on the conductive support or in a state of being covered with water.
- the catalytic metal that is not in contact with the electrolyte is less likely to receive the poisoning action of the electrolyte.
- the opportunity for the reactive gas (especially oxygen) to come into contact with the catalytic metal surface is increased, and the formation of the three-phase interface of the reactive gas (especially oxygen), catalytic metal particles and water is promoted, and the catalytic activity (especially ORR specific activity) Will improve. Therefore, according to the above method, a catalyst layer exhibiting high catalytic activity (particularly oxygen reduction reaction (ORR) specific activity) can be obtained. Further, in the method of the present invention, since the catalyst (catalyst precursor 1) is previously coated with an inorganic substance, the structure of the catalyst (catalyst precursor 1) such as the presence or absence of pores of the conductive support and the shape of the catalyst metal, the electrolyte The type is not limited. Therefore, the method of the present invention can be applied to various forms of catalysts (conductive supports and catalytic metals) and electrolytes. In addition, the said mechanism is estimation and the technical scope of this invention is not restrict
- X to Y indicating a range includes X and Y, and means “X or more and Y or less”. Unless otherwise specified, measurements such as operation and physical properties are performed under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50% RH.
- Step (a) a catalyst precursor 1 obtained by supporting a platinum-containing catalyst metal on a conductive support is prepared.
- the conductive carrier functions as a carrier for supporting a catalyst metal, which will be described later, and an electron conduction path involved in the transfer of electrons between the catalyst particles and other members.
- the conductive support only needs to have a specific surface area for supporting the catalyst metal in a desired dispersed state, and may be either a carbon support or a non-carbon support.
- the “carbon carrier” refers to a carrier containing a carbon atom as a main component. “Containing carbon atoms as a main component” is a concept including both “consisting only of carbon atoms” and “substantially consisting of carbon atoms”, and may contain elements other than carbon atoms. “Substantially consists of carbon atoms” means that 2 to 3% by weight or less of impurities can be mixed.
- the non-carbon carrier refers to a material not corresponding to the definition of the above carbon carrier, and examples thereof include metal oxides.
- the carbon support include acetylene black, ketjen black, thermal black, oil furnace black, channel black, lamp black, graphitized carbon, and the like. More specifically, Vulcan (registered trademark) XC-72R, Vulcan (registered trademark) P, Black Pearls (registered trademark) 880, Black Pearls (registered trademark) 1100, Black Pearls (registered trademark) 1300, Black Pearls (registered) Trademark) 2000, Regal (registered trademark) 400 (above, manufactured by Cabot Japan Co., Ltd.), Ketjen Black (registered trademark) EC300J, Ketjen Black (registered trademark) EC600JD (above, manufactured by Lion Specialty Chemicals Co., Ltd.), # 3150, # 3250 (made by Mitsubishi Chemical Corporation), Denka Black (registered trademark) (made by Denka Corporation), and the like.
- Vulcan (registered trademark) XC-72R Vulcan (registered trademark) P
- the shape of the conductive carrier can have an arbitrary shape such as a particle shape, a plate shape, a column shape, a tubular shape, or an indefinite shape.
- the size of the conductive carrier is not particularly limited. From the viewpoint of controlling the ease of loading, the catalyst utilization rate, and the thickness of the electrode catalyst layer within an appropriate range, the average diameter of the conductive support is preferably 100 to 2000 nm, and preferably 200 to 1000 nm. More preferably, it is 300 to 500 nm.
- the average primary particle diameter is preferably 5 to 30 nm, and more preferably 10 to 20 nm. As the average primary particle diameter, a value measured by SEM or TEM is adopted.
- the “average diameter of the conductive carrier” is the crystallite diameter determined from the half-value width of the diffraction peak of the conductive carrier in X-ray diffraction (XRD), or the particle diameter of the conductive carrier examined by a transmission electron microscope (TEM). It can be measured as an average value of.
- the “average diameter of the conductive carrier” means the maximum diameter of the conductive carrier, which is examined from a transmission electron microscope image of a statistically significant number (for example, at least 200, preferably at least 300) of samples. Is the average value.
- the BET specific surface area of the conductive support may be a specific surface area sufficient to carry the catalyst metal and the spacer in a highly dispersed manner, but is preferably 10 to 5000 m 2 / g, more preferably 50 to 2000 m 2 / g. Even more preferably, it is 100 to 1000 m 2 / g, and particularly preferably 300 to 800 m 2 / g. With such a specific surface area, a sufficient catalytic metal can be supported on the conductive support, and high catalytic activity can be exhibited.
- the “BET specific surface area (m 2 / g carrier)” of the carrier is measured by a nitrogen adsorption method. Specifically, about 0.04 to 0.07 g of catalyst powder is precisely weighed and sealed in a sample tube. This sample tube is preliminarily dried at 90 ° C. for several hours in a vacuum dryer to obtain a measurement sample. For weighing, an electronic balance (AW220) manufactured by Shimadzu Corporation is used. In the case of a coated sheet, a net weight of about 0.03 to 0.04 g of the coated layer obtained by subtracting the Teflon (registered trademark) (base material) weight of the same area from the total weight of the coated sheet is used as the sample weight. .
- the BET specific surface area is measured under the following measurement conditions.
- a BET specific surface area is calculated from the slope and intercept by creating a BET plot from a relative pressure (P / P 0 ) range of about 0.00 to 0.45.
- the platinum-containing catalyst metal has a function of catalyzing an electrochemical reaction.
- the catalytic metal includes at least platinum. For this reason, catalytic activity, poisoning resistance to carbon monoxide, heat resistance, etc. can be improved. That is, the catalytic metal is platinum or contains a metal component other than platinum and platinum.
- the metal component other than platinum is not particularly limited and can be used in the same manner as a known catalyst component.
- ruthenium, iridium, rhodium, palladium, osmium, tungsten, lead, iron, copper, silver, chromium examples thereof include metals such as cobalt, nickel, manganese, vanadium, molybdenum, gallium, aluminum, and zinc.
- One or more metal components other than platinum may be used.
- the transition metal atom refers to a Group 3 element to a Group 12 element, and the type of the transition metal atom is not particularly limited. From the viewpoint of catalytic activity, the transition metal atom is preferably selected from the group consisting of vanadium, chromium, manganese, iron, cobalt, copper, zinc and zirconium.
- the composition of the alloy depends on the type of metal to be alloyed.
- the content of platinum is preferably 30 to 90 atomic%, and the content of the metal alloyed with platinum is preferably 10 to 70 atomic%.
- an alloy is a general term for a metal element having one or more metal elements or non-metal elements added and having metallic properties.
- the alloy structure consists of a eutectic alloy, which is a mixture of the component elements as separate crystals, a component element completely melted into a solid solution, and a component element composed of an intermetallic compound or a compound of a metal and a nonmetal. There is what is formed, and any may be sufficient.
- the shape of the catalyst metal is not particularly limited, and may be spherical (including particles, powders, granules), plates, needles, columns, squares, polyhedrons, and the like.
- the catalytic metal is spherical.
- the size of the catalyst metal is not particularly limited.
- the average particle diameter of the catalyst metal is preferably 1 nm to 30 nm, more preferably 2 nm to 10 nm, and even more preferably 3 nm to 5 nm. If it is such a range, melt
- the “average particle diameter of the catalyst metal” represents the maximum diameter of the catalyst metal.
- the above-mentioned “average particle diameter” is an average value of particle diameters of particles observed in several to several tens of fields using observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM).
- SEM scanning electron microscope
- TEM transmission electron microscope
- the supported amount (support rate) of the catalyst metal is not particularly limited, but is preferably 2 to 60% by weight when the weight of the catalyst precursor 1 (total weight of the conductive support and the catalyst metal) is 100% by weight. .
- it is preferable. More preferably, it is 5 to 50 weight%. If it is in such a range, the balance between the dispersibility of the catalytic metal on the conductive support and the catalytic activity can be appropriately controlled.
- the amount of catalyst metal supported can be examined by a conventionally known method such as inductively coupled plasma emission spectrometry (ICP-atomic emission spectroscopy), inductively coupled plasma mass spectrometry (ICP mass-spectrometry), or fluorescent X-ray analysis (XRF). .
- ICP-atomic emission spectroscopy inductively coupled plasma emission spectrometry
- ICP mass-spectrometry inductively coupled plasma mass spectrometry
- XRF fluorescent X-ray analysis
- the method for producing the catalyst precursor 1 (a method for supporting the catalyst metal on the conductive support) is not particularly limited, and a conventionally known method can be used.
- a conventionally known method can be used.
- methods such as a liquid phase reduction method, evaporation to dryness method, colloid adsorption method, spray pyrolysis method, reverse micelle (microemulsion method) can be used.
- liquid phase reduction method examples include a method in which a catalytic metal is deposited on the surface of a conductive support and then heat treatment is performed. Specifically, for example, a method in which a conductive support is immersed in a catalyst metal precursor solution for reduction and then heat treatment is performed.
- the catalyst metal precursor is not particularly limited and is appropriately selected depending on the type of catalyst metal used.
- Specific examples include chlorides, nitrates, sulfates, chlorides, acetates, and amine compounds of the catalyst metals such as platinum. More specifically, platinum chloride (hexachloroplatinic acid hexahydrate), palladium chloride, rhodium chloride, ruthenium chloride, cobalt chloride and other nitrates, palladium nitrate, rhodium nitrate, iridium nitrate and other nitrates, palladium sulfate, sulfuric acid Preferred examples include sulfates such as rhodium, acetates such as rhodium acetate, and ammine compounds such as dinitrodiammineplatinum nitrate and dinitrodiammine palladium.
- the solvent used for preparation of a catalyst metal precursor solution will not be restrict
- the concentration of the catalyst metal precursor in the catalyst metal precursor solution is not particularly limited, but is preferably 0.1 wt% or more and 50 wt% or less, more preferably 0.5 wt% or more and 20 wt% in terms of metal. % Or less.
- the reducing agent examples include hydrogen, hydrazine, sodium borohydride, sodium thiosulfate, citric acid, sodium citrate, L-ascorbic acid, sodium borohydride, formaldehyde, methanol, ethanol, ethylene, carbon monoxide and the like. . Note that a gaseous substance at room temperature such as hydrogen can be supplied by bubbling.
- the amount of the reducing agent is not particularly limited as long as it can reduce the catalyst metal precursor to the catalyst metal, and a known amount can be similarly applied.
- the deposition conditions are not particularly limited as long as the catalyst metal can be deposited on the conductive support.
- the precipitation temperature is preferably around the boiling point of the solvent (solvent boiling point ⁇ 10 ° C., more preferably solvent boiling point ⁇ 5 ° C.), more preferably from room temperature to 100 ° C.
- the deposition time is preferably 1 to 10 hours, more preferably 2 to 8 hours.
- the heat treatment temperature is preferably 300 to 1200 ° C., more preferably 500 to 1150 ° C., and still more preferably 700 to 1000 ° C.
- the heat treatment time is preferably 0.02 to 3 hours, more preferably 0.1 to 2 hours, and even more preferably 0.2 to 1.5 hours.
- the heat treatment step is preferably performed in an atmosphere containing hydrogen gas, more preferably in a hydrogen atmosphere.
- the catalyst precursor 1 may be manufactured by preparing a catalyst metal in advance and then supporting it on a conductive carrier.
- a highly active catalytic metal having a special form can be supported on a conductive support while maintaining its activity.
- a commercially available catalyst precursor 1 may be used.
- a platinum catalyst manufactured by Tanaka Kikinzoku Kogyo Co., Ltd. for example, TEC10E40E, TEC10E50E, TEC10E50E-HT, TEC10E60TPM, TEC10E70TPM, TEC10V40E, TEC10V40E, TEC10V50E, etc.
- TEC66E50, TEC61E54, TEC62E58 platinum catalyst manufactured by Johnson Massey (for example, HiSPEC series), a platinum catalyst manufactured by Ishifuku Metal Industry Co., Ltd., and the like.
- Step (b) In this step, the catalyst precursor 1 prepared in the step (a) is coated with an inorganic substance adsorbed on the platinum-containing catalyst metal to prepare the catalyst precursor 2.
- the catalyst precursor 1, particularly the catalyst metal 2, in which the catalyst metal is coated with an inorganic substance is obtained.
- the inorganic substance is not particularly limited as long as it has an adsorptivity to the metal constituting the catalyst metal, but an inorganic substance that selectively adsorbs to the metal (particularly platinum) constituting the catalyst metal is preferable.
- the inorganic substance is not particularly limited to the following, but is carbon monoxide; iodine (including ionic form), iodide Iodine compounds such as metal iodides such as lithium, sodium iodide, potassium iodide and cesium iodide; and bromine such as bromides (including ionic forms), metal bromides such as sodium bromide, potassium bromide and cesium bromide Compound etc.
- the inorganic substance may be used alone or in the form of a mixture of two or more.
- an inorganic substance is an iodine compound, a bromine compound, and carbon monoxide. That is, according to a preferred embodiment of the present invention, the inorganic substance is at least one selected from the group consisting of iodine compounds, bromine compounds, and carbon monoxide. More preferably, the inorganic substance is at least one selected from the group consisting of iodine compounds and bromine compounds. Particularly preferably, the inorganic substance is at least one selected from the group consisting of iodine (including iodine ions) and bromine (including bromine ions).
- the inorganic substance is preferably selected from compounds that can be ionized in an aqueous solution.
- an inorganic substance can adsorb
- the said form is especially effective when coat
- the catalyst metal (especially ORR specific activity) can be more effectively improved by more effectively reducing the coating of the catalyst metal with the electrolyte by the following step (d).
- the inorganic substance is at least one selected from the group consisting of iodine compounds and bromine compounds. Particularly preferably, the inorganic substance is at least one selected from the group consisting of iodine (including iodine ions) and bromine (including bromine ions).
- the method for coating the catalyst precursor 1 with an inorganic substance is not particularly limited, but it is preferable to mix the catalyst precursor 1 with a coating agent. That is, the present invention comprises preparing a catalyst precursor 1 formed by supporting a platinum-containing catalyst metal on a conductive support, and mixing the catalyst precursor 1 with a coating agent that adsorbs the platinum-containing catalyst metal.
- a method for producing the catalyst precursor of the invention is also provided (third aspect).
- the coating agent is not particularly limited as long as it has adsorptivity to the metal constituting the catalyst metal, and may be an inorganic compound or an organic compound.
- the coating agent is preferably one that selectively adsorbs to the metal (particularly platinum) constituting the catalyst metal.
- the metal (particularly platinum) constituting the catalyst metal specifically, although not particularly limited to the following, carbon monoxide, iodine, lithium iodide, sodium iodide, potassium iodide, Iodine compounds such as cesium iodide, inorganic compounds such as bromine compounds such as bromine, sodium bromide, potassium bromide and cesium bromide, quaternary ammoniums such as tetraalkylammonium iodide, pyridinium iodide, imidazolium iodide Examples include iodine salts of compounds, and organic compounds such as bromine salts of quaternary ammonium compounds such as tetraalkylammonium bromide, pyridinium bromide, and imidazolium bromide.
- the said coating agent may be used independently or may be used with the form of 2 or more types of mixtures.
- the coating agent is preferably an inorganic compound, and more preferably an iodine compound, a bromine compound, and carbon monoxide. That is, according to a preferred embodiment of the present invention, the coating agent is at least one selected from the group consisting of iodine compounds, bromine compounds, and carbon monoxide. More preferably, the coating agent is at least one selected from the group consisting of iodine compounds and bromine compounds. Particularly preferably, the coating agent is at least one selected from the group consisting of sodium iodide, potassium iodide, sodium bromide and potassium bromide.
- the coating agent can be specifically chemically adsorbed to a catalyst metal (particularly platinum), it can be strongly adsorbed to the catalyst metal due to the influence of charge interaction. Therefore, in the next step (c), when the catalyst precursor 2 is mixed with the electrolyte, the coating agent is more efficiently interposed between the catalyst metal and the electrolyte. For this reason, the catalyst metal (especially ORR specific activity) can be more effectively improved by more effectively reducing the coating of the catalyst metal with the electrolyte by the following step (d).
- the catalyst precursor 1 is mixed with a coating agent to obtain the catalyst precursor 2 in which the catalyst precursor 1 (particularly the catalyst metal) is coated with an inorganic substance.
- the coating form of the catalyst precursor 1 with an inorganic material includes both cases where the inorganic material and the coating agent are the same and different.
- the catalyst precursor 1 is coated using sodium iodide as a coating agent as in the following examples, the reduced iodine (I) or iodide ion (I ⁇ ) is converted into an inorganic substance as the catalyst precursor. 1 is assumed to be coated.
- the coating agent is preferably selected from compounds that can be ionized in an aqueous solution.
- the coating agent when the coating agent is ionized in the aqueous solution, the coating agent (and hence the inorganic substance) can be more strongly adsorbed to the catalyst precursor 1 (particularly the catalyst metal) by electrostatic interaction. This form is particularly effective when the catalyst precursor 1 is coated with an inorganic substance by immersing the catalyst precursor 1 in a coating solution. Therefore, in the next step (c), when the catalyst precursor 2 is mixed with the electrolyte, the inorganic substance is more efficiently interposed between the catalyst metal and the electrolyte.
- the catalyst metal (especially ORR specific activity) can be more effectively improved by more effectively reducing the coating of the catalyst metal with the electrolyte by the following step (d).
- the coating agent is particularly preferably at least one selected from the group consisting of sodium iodide, potassium iodide, sodium bromide and potassium bromide.
- the method for coating the catalyst precursor 1 with an inorganic material is not particularly limited, and a normal coating method can be used in the same manner or appropriately modified.
- a method in which the catalyst precursor 1 is immersed in a coating solution a method in which the coating solution is applied to the catalyst precursor 1 by a known means such as a screen printing method, a deposition method, or a spray method;
- Examples thereof include a method in which the catalyst precursor 1 is placed in an atmosphere containing a gaseous coating agent (when the inorganic substance is carbon monoxide).
- a method of immersing the catalyst precursor 1 in a coating solution is preferable.
- the solvent that can be used when the coating agent is used in the form of a solution is not particularly limited as long as it can dissolve the coating agent, and can be appropriately selected according to the type of the coating agent.
- water such as distilled water, ion-exchanged water, pure water, and ultrapure water; nitriles such as acetonitrile, methoxyacetonitrile, and propionitrile; carbonates such as ethylene carbonate; ethers such as diethyl ether and tetrahydrofuran Alcohols such as methanol, ethanol, propanol, isopropanol and the like can be mentioned.
- the concentration of the coating agent is not particularly limited, but is usually about 0.1 to 1 (w / v)%.
- the amount of the coating agent added is not particularly limited as long as it is an amount that can sufficiently cover the catalyst precursor 1 (particularly the catalyst metal).
- 1 mol of the inorganic substance is bonded to one metal atom (for example, 1 mol of Pt) adsorbed by the inorganic substance among the metals constituting the catalyst metal.
- the addition amount of a coating agent is substantially more than a reaction equivalent with the metal which an inorganic substance (coating agent) adsorb
- the coating agent is preferably used in an amount of 1 to 2 moles, more preferably more than 1 mole and 1.5 moles or less with respect to 1 mole of the catalyst metal adsorbed by the inorganic substance (coating agent).
- the catalyst metal is platinum alone, it is preferable to mix the coating agent at a ratio as described above with respect to 1 mol of platinum constituting the catalyst precursor 1.
- 1 mol of coating agents may adsorb
- a coating agent obtained by multiplying the reaction ratio by the above 1-2 times may be added.
- the addition (mixing) amount of the said coating agent is these total amounts.
- the coating conditions (for example, immersion conditions) of the catalyst precursor 1 with the coating agent are not particularly limited as long as the catalyst precursor 1 (particularly the catalyst metal) can be sufficiently coated with an inorganic substance.
- the coating (for example, immersion) temperature is preferably 10 to 50 ° C., more preferably 15 to 40 ° C.
- the coating (for example, dipping) time is preferably 10 minutes to 10 hours, more preferably 30 minutes to 2 hours.
- the coating solution may be stirred.
- the coating of the catalyst precursor 1 with an inorganic substance is preferably performed under acidic conditions. That is, according to a preferred embodiment, the catalyst precursor 1 is coated with the inorganic material under acidic conditions, or the catalyst precursor 1 and the coating agent are mixed under acidic conditions. Thereby, impurities adhering to the surface of the catalyst precursor 1 (especially catalyst metal) can be removed, and the catalyst precursor 1 (particularly catalyst metal) having a smooth surface with few impurities can be obtained. Therefore, the inorganic substance covers the catalyst metal more directly, and the catalyst precursor 2 having a dense film can be reliably obtained.
- the means for achieving this preferred form is not particularly limited, but for example, an acidic coating solution is used.
- the pH of the coating solution (liquid temperature: 25 ° C.) at this time is not particularly limited, but is preferably 1 or more and less than 6, and more preferably 2 to 4.
- a coating solution having such a pH impurities adhering to the surface of the catalyst precursor 1 (particularly the catalyst metal) can be more efficiently removed while suppressing elution of the catalyst metal. For this reason, an inorganic substance coat
- the acid that can be used to make the coating solution into the acidic solution as described above is not particularly limited, and examples thereof include hydrochloric acid, sulfuric acid, nitric acid, and perchloric acid (HClO 4 ).
- the addition amount of the acid is not particularly limited, but is preferably an amount that makes the pH of the coating solution as described above.
- the catalyst precursor 2 may be separated and washed to remove excess inorganic substances or acids (when used).
- the separation means of the catalyst precursor 2 is not particularly limited, and known methods such as filtration, centrifugation, and decantation can be used.
- the solvent (cleaning solution) used for cleaning the catalyst precursor 2 is not particularly limited, but can be used in the same manner as the solvent exemplified in the preparation of the inorganic solution.
- the solvent (cleaning liquid) used for cleaning the catalyst precursor 2 may be the same as or different from the solvent used in the preparation of the inorganic solution. From the viewpoints of suppression of side reactions and industrial viewpoints (simplification of prepared solvent), the same is preferable.
- the catalyst precursor 2 may be stirred and dispersed in the cleaning liquid using a homogenizer, an ultrasonic dispersion device, a magnetic stirrer, or the like. Moreover, you may repeat the said washing
- the catalyst precursor 2 after the coating treatment or the washing step as described above may be separated and dried if necessary.
- the separation means is the same as described above, the description thereof is omitted here.
- the drying temperature is preferably 20 to 80 ° C., more preferably 40 to 60 ° C.
- the drying time is preferably 15 minutes to 10 hours.
- the catalyst precursor 1 (in particular, the catalyst metal) coated with the inorganic substance is obtained.
- the catalyst precursor 2 of the said form is hard to receive the direct influence from an external environment by the film by an inorganic substance. For example, elution of a metal catalyst can be suppressed even in an acidic environment (see the following examples). That is, the catalyst precursor 2 is excellent in storage stability (deterioration during storage can be suppressed). Therefore, the present invention also provides a catalyst precursor in which a platinum-containing catalyst metal coated with an inorganic substance adsorbed on a platinum-containing catalyst metal is supported on a conductive support (second aspect).
- the catalyst precursor (particularly catalyst metal) is sufficiently coated to an extent that the direct contact between the catalyst precursor (particularly catalyst metal) and the electrolyte can be sufficiently suppressed when mixed with the electrolyte.
- the catalyst precursor is coated with an inorganic substance with a platinum surface area of 20% or more (upper limit: 100%).
- the catalyst precursor is coated with the inorganic material in a proportion of 30-90% platinum surface area, more preferably more than 40% and less than 70%.
- the value measured by the method described in [Verification of iodine covering ratio / catalyst powder] in the following examples is adopted as the covering ratio of the catalyst precursor.
- an inorganic substance is iodine, those skilled in the art can understand that even if it is other inorganic substances (including inorganic compound ions), it can be measured by the same method.
- Step (c) In this step, the catalyst precursor 2 prepared in the above step (b) is mixed with an electrolyte to form a catalyst precursor layer.
- the electrolyte is not particularly limited, but is preferably a polymer (polymer electrolyte) from the viewpoint of difficulty in covering the electrode catalyst.
- the polymer electrolyte is not particularly limited, and conventionally known knowledge can be appropriately referred to.
- Polymer electrolytes are roughly classified into fluorine-based polymer electrolytes and hydrocarbon-based polymer electrolytes depending on the type of ion exchange resin that is a constituent material. Of these, fluorine-based polymer electrolytes are preferred. That is, the electrolyte is preferably a fluorine-based polymer electrolyte.
- Examples of the ion exchange resin constituting the fluorine-based polymer electrolyte include Nafion (registered trademark, manufactured by DuPont), Aciplex (registered trademark, manufactured by Asahi Kasei Co., Ltd.), Flemion (registered trademark, manufactured by Asahi Glass Co., Ltd.), and the like.
- Perfluorocarbon sulfonic acid polymer perfluorocarbon phosphonic acid polymer, trifluorostyrene sulfonic acid polymer, ethylene tetrafluoroethylene-g-styrene sulfonic acid polymer, ethylene-tetrafluoroethylene copolymer, polyvinylidene fluoride-per Examples thereof include fluorocarbon sulfonic acid polymers. From the viewpoint of excellent heat resistance, chemical stability, durability, and mechanical strength, these fluorine-based polymer electrolytes are preferably used, and particularly preferably fluorine-based polymer electrolytes composed of perfluorocarbon sulfonic acid polymers. Is used.
- hydrocarbon polymer electrolytes include sulfonated polyethersulfone (S-PES), sulfonated polyaryletherketone, sulfonated polybenzimidazole alkyl, phosphonated polybenzimidazole alkyl, sulfonated polystyrene, sulfone.
- S-PES polyether ether ketone
- S-PEEK Polyether ether ketone
- S-PPP sulfonated polyphenylene
- These hydrocarbon polymer electrolytes are preferably used from the viewpoint of production such that the raw material is inexpensive, the production process is simple, and the selectivity of the material is high.
- the ion exchange resin mentioned above only 1 type may be used independently and 2 or more types may be used together. Moreover, it is not restricted only to the material mentioned above, Other materials may be used.
- the polymer electrolyte plays a role of transmitting protons generated around the catalyst active material on the fuel electrode side, and is also called a proton conductive polymer. For this reason, proton conductivity is important in polymer electrolytes responsible for proton transmission.
- the catalyst layer of this embodiment contains a polymer electrolyte having a small EW.
- the catalyst layer of the present embodiment preferably contains a polymer electrolyte having an EW of 1500 g / mol or less, more preferably a polymer electrolyte having 1200 g / mol or less, and particularly preferably a high electrolyte of 1100 g / mol or less. Contains molecular electrolytes.
- the EW of the polymer electrolyte is preferably 600 g / mol or more.
- EW Equivalent Weight
- the equivalent weight is the dry weight of the ion exchange membrane per equivalent of ion exchange group, and is expressed in units of “g / mol”.
- the catalyst precursor layer includes two or more types of polymer electrolytes having different EWs in the power generation surface.
- the polymer electrolyte having the lowest EW among the polymer electrolytes has a relative humidity of 90% in the gas in the flow path. It is preferable to use in the region below RH. By adopting such a material arrangement, the resistance value becomes small regardless of the current density region, and the battery performance can be improved.
- the polymer electrolyte used in the region where the relative humidity of the gas in the flow channel is 90% RH or less, that is, the EW of the polymer electrolyte having the lowest EW is desirably 900 g / mol or less. Thereby, the above-mentioned effect becomes more reliable and remarkable.
- the polymer electrolyte having the lowest EW is within 3/5 from the gas supply port of at least one of the fuel gas and the oxidant gas with respect to the flow path length. It is desirable to use it in the range area.
- the catalyst precursor layer may be a water repellent such as polytetrafluoroethylene, polyhexafluoropropylene or tetrafluoroethylene-hexafluoropropylene copolymer, a dispersant such as a surfactant, glycerin, ethylene glycol ( Additives such as thickeners such as EG), polyvinyl alcohol (PVA), and propylene glycol (PG), and pore-forming agents may be included.
- a water repellent such as polytetrafluoroethylene, polyhexafluoropropylene or tetrafluoroethylene-hexafluoropropylene copolymer
- a dispersant such as a surfactant
- glycerin ethylene glycol
- Additives such as thickeners such as EG), polyvinyl alcohol (PVA), and propylene glycol (PG), and pore-forming agents may be included.
- the electrolyte contained in the catalyst precursor layer of the present invention may contain a non-polymer within a range that does not impair the effects of the present invention.
- the non-polymer is a low molecular weight compound having a weight average molecular weight (Mw) of 10,000 or less, for example, a raw material (for example, a monomer) or an intermediate product (for example, an oligomer) of a polymer electrolyte such as Nafion (registered trademark). Etc., but is not limited to this.
- the method for producing the catalyst precursor layer is not particularly limited.
- a catalyst ink is prepared by mixing the catalyst precursor 2, an electrolyte, a solvent, and other additives as required, and this is applied and dried. can get.
- the amount of the electrolyte in the catalyst ink is not particularly limited, but is preferably 0.1 parts by weight or more and 2 parts by weight or less with respect to 1 part by weight of the conductive carrier in the catalyst precursor 2, and 0.2 weight. More preferably, it is at least 1.5 parts by weight.
- the solvent used for preparing the catalyst ink is not particularly limited as long as the catalyst precursor 2 and the electrolyte can be uniformly dispersed or dissolved and can be removed after coating.
- butyl alcohol acetate, dimethyl ether, ethylene glycol, and the like can be given. These may be used alone or in the form of a mixture of two or more.
- the solid concentration of the catalyst ink (total concentration of the catalyst precursor 2 and the electrolyte in the ink) is not particularly limited, but is preferably about 1 to 50% by weight, more preferably about 5 to 30% by weight.
- additives such as a water repellent, a dispersant, a thickener, and a pore-forming agent may be mixed as necessary.
- the amount added is preferably 5 to 20% by weight based on the total amount of the catalyst ink.
- the catalyst ink may be separately provided with a mixing promoting step for mixing well after mixing the above desired components, if necessary.
- the mixing promotion step is not particularly limited, but the catalyst ink is well dispersed with an ultrasonic homogenizer, or the catalyst ink is well pulverized with an apparatus such as a sand grinder, a circulating ball mill, or a circulating bead mill.
- Preferable examples include a defoaming operation such as a defoaming operation using a vacuum degassing operation or a hybrid mixer.
- a catalyst ink is applied to the surface of the substrate.
- the application method to the substrate is not particularly limited, and a known method can be used. Specifically, it can be performed using a known method such as a spray (spray coating) method, a gulliver printing method, a die coater method, a screen printing method, or a doctor blade method.
- a solid polymer electrolyte membrane (electrolyte layer) or a gas diffusion base material (gas diffusion layer) described in detail below can be used as the base material to which the catalyst ink is applied.
- a catalyst precursor layer is formed on the surface of a solid polymer electrolyte membrane (electrolyte layer) or a gas diffusion base material (gas diffusion layer), and then the obtained laminate is used as it is to produce a membrane electrode assembly. Can be used.
- a peelable substrate such as a polytetrafluoroethylene (PTFE) [Teflon (registered trademark)] sheet is used as the substrate, and after the catalyst precursor layer is formed on the substrate, the catalyst precursor layer portion is removed from the substrate.
- PTFE polytetrafluoroethylene
- the catalyst precursor layer may be obtained by peeling.
- the coating layer (film) of the catalyst ink is dried at room temperature (25 ° C.) to 150 ° C. for 1 to 60 minutes in an air atmosphere or an inert gas atmosphere. Thereby, a catalyst precursor layer is formed.
- the catalyst precursor layer thus formed at least a part of the catalyst precursor 2 (especially the catalyst metal) is coated with an inorganic substance.
- the catalyst precursor 2 is not easily affected by the external environment due to the inorganic coating. For example, elution of a metal catalyst can be suppressed even in an acidic environment (see the following examples). For this reason, the catalyst precursor layer containing the catalyst precursor 2 is also excellent in storage stability (deterioration during storage can be suppressed). Therefore, this invention also provides the catalyst precursor layer containing the catalyst precursor and electrolyte of this invention (4th aspect).
- the coating degree with the inorganic substance in the catalyst precursor layer may be such that direct contact between the catalyst precursor (particularly the catalyst metal) and the electrolyte can be sufficiently suppressed in the layer.
- the catalyst precursor is coated with an inorganic substance at a ratio of platinum surface area of 20% or more (upper limit: 100%).
- the catalyst precursor is coated with an inorganic substance at a platinum surface area of 30 to 100%, more preferably more than 50% and 100% or less.
- the value measured by the method described in [Verification of iodine coating ratio / catalyst layer] in the following examples is adopted as the coverage of the catalyst precursor.
- an inorganic substance is iodine
- those skilled in the art can understand that even if it is other inorganic substances (including inorganic compound ions), it can be measured by the same method.
- the coverage ratio of the catalyst precursor layer with the inorganic substance is substantially the same as the coverage ratio of the catalyst precursor with the inorganic substance defined in the second aspect. .
- each constituent element in the fourth aspect other than the above constituent elements is the same as that in the first aspect, the description thereof is omitted here.
- the film thickness (dry film thickness) of the catalyst precursor layer is not particularly limited, but is preferably 0.05 to 30 ⁇ m, more preferably 1 to 20 ⁇ m, still more preferably 1 to 15 ⁇ m, and particularly preferably 1 to 10 ⁇ m.
- Step (d) the inorganic substance is removed from the catalyst precursor layer in the step (c).
- the catalyst precursor 2 is maintained in a state of being coated with an inorganic substance.
- the inorganic material covering the catalyst precursor layer, particularly the catalyst precursor 2 (catalyst metal) is removed, and the electrolyte in contact (coating) with the catalyst precursor 2 is removed.
- This process reduces the coating (poisoning action) of the catalytic metal with the electrolyte, and the contact between the reactive gas (especially oxygen) and the catalytic metal surface, and hence the three-phase interface of the reactive gas (especially oxygen), catalytic metal particles and water. Promote the formation of Therefore, the catalytic activity (especially oxygen reduction reaction (ORR) specific activity) of the catalyst layer can be improved.
- ORR oxygen reduction reaction
- the inorganic substance is carbon monoxide (CO)
- CO carbon monoxide
- a method of supplying an oxygen-containing gas to oxidize CO by a chemical reaction, a method of increasing the temperature to promote CO desorption, or the like can be used.
- the removal of the inorganic substance is preferably performed by a haloform reaction. That is, according to a preferred embodiment of the present invention, the inorganic substance is at least one of an iodine compound and a bromine compound, and the inorganic substance is removed from the catalyst precursor layer by a haloform reaction.
- the inorganic material present in the catalyst precursor layer is reacted with a compound having an acetyl group or a compound that has an acetyl group by oxidation, and a base (haloform reaction), whereby the catalyst precursor layer, particularly the catalyst precursor.
- Chemical removal from 2 catalytic metal
- a compound having an acetyl group or a compound having an acetyl group by oxidation is collectively referred to as an “acetyl group-containing compound”.
- the compound having an acetyl group is a compound represented by the formula: R—C ( ⁇ O) —CH 3 .
- R is a hydrogen atom (H), an alkyl group having 1 to 12 carbon atoms, or an aryl group having 6 to 20 carbon atoms.
- examples of the alkyl group having 1 to 12 carbon atoms include, but are not limited to, for example, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert- Examples include linear or branched alkyl groups such as butyl, pentyl, isopentyl, neopentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl and 2-ethylhexyl. It is done.
- the aryl group having 6 to 20 carbon atoms is not limited to the following, but includes, for example, phenyl group, benzyl group, phenethyl group, o-, m- or p-tolyl group, 2,3- or 2,4.
- -Xylyl group mesityl group, naphthyl group, anthryl group, phenanthryl group, biphenylyl group, benzhydryl group, trityl group and pyrenyl group.
- a compound that has an acetyl group by oxidation is a compound that generates a compound having an acetyl group as described above by being oxidized.
- Specific examples include ethanol and isopropyl alcohol.
- the compound having an acetyl group and the compound having an acetyl group by oxidation may be used alone or in a mixture of two or more. Further, the compound having an acetyl group and the compound having an acetyl group by oxidation may be used in combination of two or more.
- the addition amount of the compound having an acetyl group or the compound that has an acetyl group by oxidation is not particularly limited as long as it is an amount capable of removing a sufficient amount of the inorganic substance, and can be appropriately selected according to the amount of the inorganic substance.
- the addition amount of the compound having an acetyl group or the compound that has an acetyl group by oxidation is preferably larger than the amount of the inorganic substance charged in the step (b) (molar conversion). Specifically, the amount added is preferably more than 1 mole and not more than 10 moles and about 2 to 8 moles with respect to 1 mole of the inorganic charge in step (b).
- the said quantity in the case of using the compound which has an acetyl group by oxidation and the compound which has an acetyl group by oxidation as 2 or more types of mixtures is these total amounts.
- the base used in this embodiment is not particularly limited, and examples thereof include sodium hydroxide and potassium hydroxide.
- the above bases may be used alone or in a mixture of two or more.
- the base may be used in the form of a solution such as an aqueous solution.
- the amount of the base added is not particularly limited as long as a sufficient amount of the inorganic substance can be removed, and can be appropriately selected according to the amount of the inorganic substance. It is preferable that the amount of the base added is larger than the amount of the inorganic material charged in the step (b) (in terms of mole). Specifically, the amount added is preferably more than 1 mole and not more than 10 moles and about 2 to 8 moles with respect to 1 mole of the inorganic charge in step (b). In addition, the said amount in the case of using a base as a 2 or more types of mixture is these total amounts.
- the addition form of the acetyl group-containing compound and the base to the catalyst precursor layer is not particularly limited, but the acetyl group-containing compound and the base are preferably in the form of a solution in consideration of the removal efficiency of inorganic substances, operability, and the like.
- the addition method is not particularly limited, and conventionally known methods such as a coating / printing method, a dipping method, and a spraying method can be applied. Of these, it is preferable to immerse the catalyst precursor layer in a solution containing an acetyl group-containing compound and a base and degas the system by reducing the pressure in the state.
- the base and the acetyl group-containing compound can be uniformly and quickly permeated throughout the catalyst precursor layer and into the inside. Therefore, according to the said form, an inorganic substance can be removed more efficiently.
- the stirring conditions are not particularly limited, but the stirring temperature (solution temperature) is preferably 20 to 80 ° C., more preferably 40 to 70 ° C. in consideration of the further improvement effect of the removal efficiency of inorganic substances.
- the stirring time is preferably 20 minutes to 3 hours, more preferably 30 minutes to 2 hours.
- the order of adding the acetyl group-containing compound and the base to the catalyst precursor layer is not particularly limited. Specifically, (1) an acetyl group-containing compound and a base are collectively added to the catalyst precursor layer; (2) an acetyl group-containing compound is added to the catalyst precursor layer, and then a base is added; (3 ) After adding a base to the catalyst precursor layer, any of adding an acetyl group-containing compound may be used. Among these, the order of the above (3) is preferable. Particularly preferred is the order of (3) above in which the base is in the form of an aqueous solution and the acetyl group-containing compound is ethanol.
- the base and the acetyl group-containing compound (ethanol) can be uniformly permeated into the entire catalyst precursor layer and into the inside thereof. Therefore, according to the said form, an inorganic substance can be removed still more efficiently.
- the catalyst precursor layer may be washed to remove inorganic substances, excess acetyl group-containing compounds and bases.
- the solvent (cleaning solution) used for cleaning the catalyst precursor layer is not particularly limited, and examples thereof include water such as distilled water, ion-exchanged water, pure water, and ultrapure water.
- the catalyst precursor layer may be immersed in the cleaning liquid while stirring using a homogenizer, an ultrasonic dispersing device, a magnetic stirrer, or the like. Moreover, you may immerse in a washing
- the stirring operation and the decompression operation may be performed in combination. Moreover, you may repeat the said washing
- the cleaning conditions are not particularly limited, but considering the further improvement effect of the removal efficiency of inorganic substances, the cleaning temperature (cleaning liquid temperature) is preferably 20 to 80 ° C., more preferably 40 to 70 ° C.
- the washing (for example, stirring) time is preferably 20 minutes to 3 hours, more preferably 30 minutes to 2 hours. In addition, you may repeat the said washing
- the catalyst precursor layer may be separated and dried if necessary.
- the drying temperature is preferably 20 to 80 ° C., more preferably 40 to 60 ° C.
- the drying time is preferably 15 minutes to 10 hours.
- inorganic substances can be removed from the catalyst precursor layer.
- a part of the catalyst (particularly the catalyst metal) is coated with an inorganic substance, it is difficult to be directly affected by the external environment. For example, elution of a metal catalyst can be suppressed even in an acidic environment (see the following examples). For this reason, a catalyst layer containing a catalyst (particularly a catalyst metal) coated with an inorganic substance to some extent is excellent in durability and storage stability.
- the present invention includes a catalyst and an electrolyte in which a platinum-containing catalyst metal is supported on a conductive support, and the platinum is coated with an inorganic substance that adsorbs to the platinum-containing catalyst metal in a proportion of more than 0% and less than 10%.
- a platinum-containing catalyst metal is supported on a conductive support, and the platinum is coated with an inorganic substance that adsorbs to the platinum-containing catalyst metal in a proportion of more than 0% and less than 10%.
- the “ratio of platinum in the catalyst layer covered with an inorganic substance adsorbed on the platinum-containing catalyst metal” is also referred to as “platinum coverage of the catalyst layer”.
- the coverage of the catalyst with the inorganic substance is 0%, the catalyst layer (and hence the MEA or fuel cell having such a catalyst layer) is durable and storage stable (especially the elution of the catalyst metal in an acidic environment). ).
- the coating ratio of the catalyst with the inorganic substance is 10% or more, a sufficient amount of the catalyst metal is not directly exposed on the conductive support, so that the reaction gas (particularly oxygen) cannot sufficiently contact the surface of the catalyst metal,
- the catalyst layer is inferior in catalytic activity.
- the ratio of platinum covered with an inorganic substance in the catalyst layer is preferably 1% or more and 8% or less. Preferably it is more than 2% and less than 7%.
- Such a catalyst layer having a platinum coating ratio can exhibit catalyst activity, durability and storage stability in a better balance.
- the catalyst layer which concerns on a 5th aspect can be manufactured by a 1st aspect, you may manufacture by another method.
- the platinum coverage of the catalyst layer is determined by the fluorescent X-ray (XRF) in the coverage ratio of platinum inorganic substance (iodine) calculated by the method described in [Verification of iodine coverage / catalyst layer] in the following examples. The value multiplied by the quantified iodine removal rate is adopted.
- coating ratio (%) of platinum with inorganic substance (iodine) is expressed by the formula: 100 ⁇ (CO chemical adsorption surface area of Pt of catalyst precursor layer) / (CO chemical adsorption surface area of Pt of inorganic additive-free layer)] Sought by.
- an inorganic substance is an iodine, those skilled in the art can understand that it can measure by the same method even if it is another inorganic substance.
- the coverage can be substituted by quantifying the amount of iodine and the amount of platinum in the catalyst layer by fluorescent X-rays (XRF).
- XRF fluorescent X-rays
- the total area (m 2 ) that can be covered with iodine can be calculated if the average coating thickness (m) of iodine is known, what percentage is covered with respect to the surface area (m 2 / g) of Pt is obtained. be able to.
- the platinum coverage of iodine was 6% as described in the examples, but this was also reproduced by the above calculation method by assuming the average coating thickness of iodine to be 15 ⁇ m. can do. Therefore, the platinum coverage (%) by XRF can be substituted by the above calculation method.
- catalyst layer produced by the method of the present invention and the catalyst layer according to the fifth aspect are collectively referred to as “catalyst layer according to the present invention”.
- the film thickness (dry film thickness) of the catalyst layer is preferably 0.05 to 30 ⁇ m, more preferably 1 to 20 ⁇ m, still more preferably 1 to 10 ⁇ m, and particularly preferably 1 to 5 ⁇ m.
- the above film thickness is applied to both the cathode catalyst layer and the anode catalyst layer.
- the cathode catalyst layer and the anode catalyst layer may be the same or different.
- an alkali metal salt When an alkali metal salt is used as the base when removing the inorganic substance from the catalyst precursor layer, the proton (H + ) of the electrolyte is replaced with an alkali metal ion (for example, Na + ).
- an alkali metal ion for example, Na +
- a sulfonic acid polymer is used as an electrolyte and sodium hydroxide is used as a base, a sulfonic acid group (—SO 3 H) is converted into a sodium salt of sulfonic acid (—SO 3 Na).
- acid treatment is performed after the above-described inorganic removal operation, and an operation is performed to return alkali metal ions to protons (for example, sulfonate (for example, —SO 3 Na) to sulfonic acid group (—SO 3 H)). It is preferable. That is, according to a preferred embodiment of the present invention, acid treatment is performed after removing the inorganic substance.
- the acid used in the acid treatment is not particularly limited, may be mentioned hydrochloric acid, sulfuric acid, nitric acid, perchloric acid (HClO 4).
- the above acids may be used alone or in a mixture of two or more.
- the acid is preferably used in the form of a solution such as an aqueous solution.
- the amount of the acid added is not particularly limited as long as the alkali metal ion of the electrolyte can be sufficiently substituted with protons, and is appropriately selected according to the electrolytic mass.
- the acid is present in excess relative to the electrolyte.
- the acid concentration of the aqueous acid solution is preferably 3 to 20% by weight, more preferably 5 to 15% by weight.
- the acid treatment method is not particularly limited. Specifically, a conventionally known method such as a coating / printing method, a dipping method, or a spraying method can be applied. Among these, it is preferable to immerse the catalyst precursor layer in an acid solution and degas the system by reducing the pressure in the state. By this operation, the acid can be uniformly and quickly permeated throughout the catalyst precursor layer and into the inside thereof. Therefore, according to the said form, the alkali metal ion of electrolyte can be substituted by a proton efficiently and more rapidly. In addition, you may perform the said immersion and / or pressure reduction operation, stirring. Or after the said immersion and / or pressure reduction operation, you may stir the acid solution which put the catalyst precursor layer.
- the stirring conditions are not particularly limited, but the stirring temperature (solution temperature) is preferably 20 to 80 ° C., more preferably 40 to 70 ° C. in consideration of the further improvement effect of substitution efficiency.
- the stirring time is preferably 20 minutes to 3 hours, more preferably 30 minutes to 2 hours.
- the catalyst precursor layer may be washed to remove excess acid.
- the solvent (cleaning solution) used for cleaning the catalyst precursor layer is not particularly limited, and examples thereof include water such as distilled water, ion-exchanged water, pure water, and ultrapure water.
- the catalyst precursor layer may be stirred and dispersed in the cleaning liquid using a homogenizer, an ultrasonic dispersion device, a magnetic stirrer, or the like.
- the cleaning liquid may be depressurized during the cleaning. By these operations, the cleaning liquid can penetrate into the catalyst precursor layer.
- the stirring operation and the decompression operation may be performed in combination. Moreover, you may repeat the said washing
- the cleaning conditions are not particularly limited, but considering the further improvement effect of the removal efficiency of inorganic substances, the cleaning temperature (cleaning liquid temperature) is preferably 20 to 80 ° C., more preferably 40 to 70 ° C.
- the washing (for example, stirring) time is preferably 20 minutes to 3 hours, more preferably 30 minutes to 2 hours. In addition, you may repeat the said washing
- the catalyst precursor layer may be dried after the cleaning treatment as described above.
- drying conditions for example, the drying temperature is preferably 30 to 100 ° C., and more preferably 50 to 90 ° C.
- the drying time is preferably 5 minutes to 1 hour.
- a catalyst layer containing an electrolyte having a sufficient amount of protons can be provided. Further, in the catalyst layer obtained as described above, the catalyst metal is not coated or hardly coated with the electrolyte, and is in a state of being directly exposed on the conductive support.
- the coating ratio of the catalyst metal with the electrolyte may be sufficiently low, but is specifically 0.6 or less, preferably less than 0.5, more preferably 0.45 or less (lower limit: 0). is there. With such a low coverage, the catalytic metal is not in contact with the electrolyte, and the poisoning action by the electrolyte can be sufficiently suppressed.
- the opportunity for the reactive gas (especially oxygen) to come into contact with the catalytic metal surface is increased, and the formation of the three-phase interface of the reactive gas (especially oxygen), catalytic metal particles and water is promoted, and the catalytic activity (especially the ORR specific activity). Will improve. Further, the coating of the catalyst metal with the electrolyte can be reduced, and the reaction gas (especially O 2 ) can be supplied more quickly and more efficiently by the catalyst metal without going through the electrolyte, and the gas transportability can be further improved. In addition, the value measured by the method described in [Measurement of Electrolyte (Ionomer) Coverage] in the Examples below is adopted as the coating ratio of the catalyst metal with the electrolyte.
- the above method can be applied regardless of the form and properties of the components constituting the catalyst layer such as a catalyst (conductive carrier, catalyst metal) and an electrolyte. Therefore, since a catalyst and an electrolyte can be selected according to a desired effect, it is preferable from an industrial viewpoint.
- the catalyst layer according to the present invention is excellent in catalyst activity (particularly ORR specific activity). Moreover, the catalyst layer according to the present invention is excellent in durability and storage stability. For this reason, the catalyst layer according to the present invention can be suitably applied to fuel cell applications that require higher performance than household and mobile power sources. That is, the membrane / electrode assembly and the fuel cell included in the catalyst layer according to the present invention are excellent in power generation performance. The membrane / electrode assembly and the fuel cell in the catalyst layer according to the present invention are excellent in durability.
- MEA membrane electrode assembly
- the catalyst layer according to the present invention can be suitably used for a membrane electrode assembly (MEA). That is, the present invention also provides a membrane electrode assembly (MEA) having a catalyst layer according to the present invention, particularly a fuel cell electrode assembly (MEA). Such a membrane electrode assembly (MEA) can exhibit high power generation performance. Moreover, the membrane electrode assembly (MEA) having the catalyst layer according to the present invention is excellent in durability.
- the membrane electrode assembly (MEA) having the catalyst layer according to the present invention can be applied with the same configuration except that the catalyst layer according to the present invention is used instead of the conventional catalyst layer.
- MEA membrane electrode assembly
- this invention is not limited to the following form.
- the MEA is composed of an electrolyte membrane, an anode catalyst layer and an anode gas diffusion layer, a cathode catalyst layer and a cathode gas diffusion layer which are sequentially formed on both surfaces of the electrolyte membrane.
- the catalyst layer according to the present invention is used for at least one of the cathode catalyst layer and the anode catalyst layer.
- the electrolyte membrane is composed of, for example, a solid polymer electrolyte membrane.
- the solid polymer electrolyte membrane has a function of selectively allowing protons generated in the anode catalyst layer during operation of a fuel cell (such as PEFC) to permeate the cathode catalyst layer along the film thickness direction.
- the solid polymer electrolyte membrane also has a function as a partition for preventing the fuel gas supplied to the anode side and the oxidant gas supplied to the cathode side from being mixed.
- the electrolyte material constituting the solid polymer electrolyte membrane is not particularly limited, and conventionally known knowledge can be appropriately referred to.
- the above-mentioned fluorine-based polymer electrolyte or hydrocarbon-based polymer electrolyte can be used. In this case, it is not always necessary to use the same polymer electrolyte used for the catalyst layer.
- the thickness of the electrolyte membrane may be appropriately determined in consideration of the characteristics of the obtained fuel cell, and is not particularly limited.
- the thickness of the electrolyte membrane is usually about 5 to 300 ⁇ m. When the thickness of the electrolyte membrane is within such a range, the balance of strength during film formation, durability during use, and output characteristics during use can be appropriately controlled.
- the catalyst layer is a layer where the battery reaction actually proceeds. Specifically, the oxidation reaction of hydrogen proceeds in the anode catalyst layer, and the reduction reaction of oxygen proceeds in the cathode catalyst layer.
- the catalyst layer according to the present invention can be applied to both the cathode catalyst layer and the anode catalyst layer, it is preferably applied at least to the cathode catalyst layer in view of the necessity for improving the oxygen reduction activity. Needless to say, the present invention may be applied only to the anode catalyst layer or to both the cathode and the anode catalyst layer. For this reason, when the catalyst layer according to the present invention is used for only one side, a conventional catalyst layer can be used for the catalyst layer on the other side.
- the gas diffusion layer (anode gas diffusion layer, cathode gas diffusion layer) promotes diffusion of gas (fuel gas or oxidant gas) supplied through the gas flow path of the separator to the catalyst layer, and electronic conduction. It has a function as a path.
- the material constituting the base material of the gas diffusion layer is not particularly limited, and conventionally known knowledge can be appropriately referred to.
- a sheet-like material having conductivity and porosity such as a carbon woven fabric, a paper-like paper body, a felt, and a non-woven fabric can be used.
- the thickness of the substrate may be appropriately determined in consideration of the characteristics of the obtained gas diffusion layer, but may be about 30 to 500 ⁇ m. If the thickness of the substrate is within such a range, the balance between mechanical strength and diffusibility such as gas and water can be appropriately controlled.
- the gas diffusion layer preferably contains a water repellent for the purpose of further improving water repellency and preventing flooding.
- the water repellent is not particularly limited, but fluorine-based high repellents such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), polyhexafluoropropylene, and tetrafluoroethylene-hexafluoropropylene copolymer (FEP). Examples thereof include molecular materials, polypropylene, and polyethylene.
- the gas diffusion layer has a carbon particle layer (microporous layer; MPL, not shown) made of an aggregate of carbon particles containing a water repellent agent on the catalyst layer side of the substrate. You may have.
- MPL microporous layer
- the carbon particles contained in the carbon particle layer are not particularly limited, and conventionally known materials such as carbon black, graphite, and expanded graphite can be appropriately employed. Among them, carbon black such as oil furnace black, channel black, lamp black, thermal black, acetylene black and the like can be preferably used because of excellent electron conductivity and a large specific surface area.
- the average particle size of the carbon particles is preferably about 10 to 100 nm. Thereby, while being able to obtain the high drainage property by capillary force, it becomes possible to improve contact property with a catalyst layer.
- Examples of the water repellent used for the carbon particle layer include the same water repellents as described above.
- fluorine-based polymer materials can be preferably used because of excellent water repellency, corrosion resistance during electrode reaction, and the like.
- the mixing ratio of the carbon particles to the water repellent in the carbon particle layer is about 90:10 to 40:60 (carbon particles: water repellent) by weight in consideration of the balance between water repellency and electronic conductivity. It is good.
- a method for producing a membrane electrode assembly is not particularly limited, and a conventionally known method can be used. For example, a method of joining a gas diffusion layer to a catalyst layer transferred or applied to an electrolyte membrane by hot pressing and drying it, or a microporous layer side of the gas diffusion layer (when a microporous layer is not included)
- GDE gas diffusion electrodes
- two gas diffusion electrodes are prepared by applying a catalyst layer on one side of a base material layer in advance and drying, and then bonding the gas diffusion electrodes to both sides of a solid polymer electrolyte membrane by hot pressing.
- Application and bonding conditions such as hot pressing can be adjusted as appropriate according to the type of polymer electrolyte (perfluorosulfonic acid type or hydrocarbon type) in the solid polymer electrolyte membrane or catalyst layer. Good.
- the membrane electrode assembly (MEA) described above can be suitably used for a fuel cell. That is, the present invention also provides a fuel cell using the electrolyte membrane electrode assembly (MEA) including the catalyst layer according to the present invention. Such a fuel cell can exhibit high power generation performance (particularly weight specific activity) and durability.
- the fuel cell includes a pair of a membrane electrode assembly (MEA), an anode side separator having a fuel gas flow path through which fuel gas flows, and a cathode side separator having an oxidant gas flow path through which oxidant gas flows. And a separator.
- MEA membrane electrode assembly
- anode side separator having a fuel gas flow path through which fuel gas flows
- a cathode side separator having an oxidant gas flow path through which oxidant gas flows.
- a separator a separator.
- the fuel cell of the present invention is excellent in durability and can exhibit high power generation performance.
- MEA membrane electrode assembly
- FIG. 1 is a schematic diagram showing a basic configuration of a polymer electrolyte fuel cell (PEFC) 1 according to an embodiment of the present invention.
- the PEFC 1 first includes a solid polymer electrolyte membrane 2 and a pair of catalyst layers (an anode catalyst layer 3a and a cathode catalyst layer 3c) that sandwich the membrane.
- the laminate of the solid polymer electrolyte membrane 2 and the catalyst layers (3a, 3c) is further sandwiched between a pair of gas diffusion layers (GDL) (anode gas diffusion layer 4a and cathode gas diffusion layer 4c).
- GDL gas diffusion layers
- the polymer electrolyte membrane 2, the pair of catalyst layers (3a, 3c), and the pair of gas diffusion layers (4a, 4c) constitute a membrane electrode assembly (MEA) 10 in a stacked state.
- MEA membrane electrode assembly
- the MEA 10 is further sandwiched between a pair of separators (anode separator 5a and cathode separator 5c).
- the separators (5 a, 5 c) are illustrated so as to be positioned at both ends of the illustrated MEA 10.
- the separator is generally used as a separator for an adjacent PEFC (not shown).
- the MEAs are sequentially stacked via the separator to form a stack.
- a gas seal portion is disposed between the separator (5a, 5c) and the solid polymer electrolyte membrane 2, or between the PEFC 1 and another adjacent PEFC.
- the separators (5a, 5c) are obtained, for example, by forming a concavo-convex shape as shown in FIG. 1 by subjecting a thin plate having a thickness of 0.5 mm or less to a press treatment.
- the convex part seen from the MEA side of the separator (5a, 5c) is in contact with the MEA 10. Thereby, the electrical connection with MEA10 is ensured.
- a recess (space between the separator and the MEA generated due to the concavo-convex shape of the separator) viewed from the MEA side of the separator (5a, 5c) is a gas for circulating gas during operation of the PEFC 1 Functions as a flow path.
- a fuel gas for example, hydrogen
- an oxidant gas for example, air
- the recess viewed from the side opposite to the MEA side of the separator (5a, 5c) serves as a refrigerant flow path 7 for circulating a refrigerant (for example, water) for cooling the PEFC during operation of the PEFC 1.
- a refrigerant for example, water
- the separator is usually provided with a manifold (not shown). This manifold functions as a connection means for connecting cells when a stack is formed. With such a configuration, the mechanical strength of the fuel cell stack can be ensured.
- the separators (5a, 5c) are formed in an uneven shape.
- the separator is not limited to such a concavo-convex shape, and may be any form such as a flat plate shape and a partially concavo-convex shape as long as the functions of the gas flow path and the refrigerant flow path can be exhibited. Also good.
- the separator has a function of electrically connecting each cell in series when a plurality of single cells of a fuel cell such as a polymer electrolyte fuel cell are connected in series to form a fuel cell stack.
- the separator also functions as a partition that separates the fuel gas, the oxidant gas, and the coolant from each other.
- each of the separators is preferably provided with a gas flow path and a cooling flow path.
- a material constituting the separator conventionally known materials such as dense carbon graphite, carbon such as a carbon plate, and metal such as stainless steel can be appropriately employed without limitation.
- the thickness and size of the separator and the shape and size of each flow path provided are not particularly limited, and can be appropriately determined in consideration of the desired output characteristics of the obtained fuel cell.
- the manufacturing method of the fuel cell is not particularly limited, and conventionally known knowledge can be appropriately referred to in the field of the fuel cell.
- a fuel cell stack having a structure in which a plurality of membrane electrode assemblies (MEAs) are stacked and connected in series via a separator may be formed so that the fuel cell can exhibit a desired voltage.
- the shape of the fuel cell is not particularly limited, and may be determined as appropriate so that desired battery characteristics such as voltage can be obtained.
- PEFC and membrane electrode assembly use a catalyst layer having excellent power generation performance and durability. Therefore, the PEFC and membrane electrode assembly (MEA) are excellent in power generation performance and durability.
- the PEFC of this embodiment and the fuel cell stack using the same can be mounted on a vehicle as a driving power source, for example.
- the fuel cell as described above exhibits excellent power generation performance.
- the type of the fuel cell is not particularly limited.
- the solid polymer fuel cell has been described as an example.
- an alkaline fuel cell and a direct methanol fuel cell are used.
- a micro fuel cell in addition to the above, an alkaline fuel cell and a direct methanol fuel cell are used. And a micro fuel cell.
- a polymer electrolyte fuel cell (PEFC) is preferable because it is small and can achieve high density and high output.
- the fuel cell is useful as a stationary power source in addition to a power source for a moving body such as a vehicle in which a mounting space is limited.
- the fuel used when operating the fuel cell is not particularly limited.
- hydrogen, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, secondary butanol, tertiary butanol, dimethyl ether, diethyl ether, ethylene glycol, diethylene glycol and the like can be used.
- hydrogen and methanol are preferably used in that high output is possible.
- the application application of the fuel cell is not particularly limited, but it is preferably applied to a vehicle.
- the membrane electrode assembly including the catalyst layer according to the present invention is excellent in power generation performance and durability, and can be downsized. For this reason, the fuel cell of this invention is especially advantageous when this fuel cell is applied to a vehicle from the point of in-vehicle property.
- Example 1 Preparation of Catalyst Precursor A 1.27 g of sodium iodide (NaI) was mixed with 300 cc of ultrapure water whose temperature was controlled at 10 ° C., and stirred for 60 minutes with a magnetic stirrer. Thereafter, stirring was temporarily stopped, and 3 g of the following catalyst precursor 1 powder was added to prepare a precursor liquid. After adding perchloric acid (HClO 4 ) so that the pH of the precursor solution was 3, stirring was further performed for 60 minutes. Then, it filtered using the filter paper and obtained catalyst precursor 2 powder. As catalyst precursor 1 powder, platinum catalyst (Pt / C): Tanaka Kikinzoku Kogyo Co., Ltd., TEC10E50E-HT, platinum loading: 50% by weight) was used.
- platinum catalyst Pt / C: Tanaka Kikinzoku Kogyo Co., Ltd., TEC10E50E-HT, platinum loading: 50% by weight
- the filtered catalyst precursor 2 powder was added to 300 cc of ultrapure water, stirred for 30 minutes with a magnetic stirrer, and then filtered to wash the catalyst precursor 2 powder. After repeating this step twice, the filtered catalyst precursor 2 powder was dried at 60 ° C. for 30 minutes in a drying furnace to obtain catalyst precursor A in which platinum was covered with iodine.
- each catalyst precursor was purged with a nitrogen atmosphere at 25 ° C. (room temperature) for 3 minutes, and then switched to a hydrogen atmosphere.
- the ambient temperature was raised to 100 ° C. over 30 minutes, and the temperature was further maintained at that temperature for 30 minutes.
- the catalyst precursor was pretreated by switching to a nitrogen atmosphere and lowering the temperature to 50 ° C. over 30 minutes.
- CO adsorption on the catalyst precursor was started in the following manner. That is, after the above pretreatment, carbon monoxide (CO) is applied to the catalyst precursor (30 mg) exposed in a nitrogen (N 2 ) atmosphere at a pulse rate of 50 ⁇ l / time 20 times or more until equilibrium is reached. Supplied.
- CO carbon monoxide
- N 2 nitrogen
- the CO concentration in the nitrogen atmosphere decreases. Therefore, by measuring the change in CO concentration in the nitrogen atmosphere with a mass spectrometer, it is possible to quantify how much CO has been adsorbed (CO adsorption rate).
- the CO adsorption amount ( ⁇ l) was converted into the number of moles, and the CO chemical adsorption surface area (m 2 / g_Pt) of Pt was determined on the assumption that one molecule of CO was adsorbed per Pt atom.
- Example 2 Formation of Catalyst Precursor Layer A 5 g of ultrapure water was added to 5 g of catalyst precursor A obtained in Example 1 and mixed with a hybrid mixer.
- a mixed solvent 1 having a mixing weight ratio of water and 1-propanol (NPA) of 8/2 was prepared.
- the mixed solvent 1 was added to the mixture 1 so that the solid content (Pt + carbon carrier + ionomer) was 21% by weight to prepare catalyst ink 1.
- the catalyst ink 1 was pulverized for 10 minutes at a rotation speed of 1500 rpm using a bead mill. At this time, beads (made by zirconia, diameter: 1.5 mm) were used. Thereafter, the pulverized catalyst ink 1 is again defoamed with a hybrid mixer, and then applied onto a transfer substrate (Teflon (registered trademark) sheet) using a screen printer, and dried at 80 ° C. for 10 minutes to obtain a catalyst precursor. Layer A (thickness: 10 ⁇ m) was formed.
- Example 3 Formation of catalyst layer A A catalyst precursor layer A was formed in the same manner as in Example 2.
- This catalyst precursor layer A was subjected to iodine removal treatment according to the following method.
- the catalyst precursor layer A formed on the Teflon (registered trademark) sheet was immersed in this aqueous sodium hydroxide solution, and the aqueous solution was stirred with a magnetic stirrer for about 30 minutes. 25 drops (about 2.5 ml) of ethanol were put into this aqueous solution, and after stirring, evacuation was performed for 30 minutes (pressure after decompression: ⁇ 0.09 MPa), and sodium hydroxide was permeated into the catalyst precursor layer A. . Next, this aqueous solution was warmed to 60 ° C., stirred for 1 hour, and then washed with pure water.
- the catalyst precursor layer A was taken out from the aqueous solution, immersed in 300 ml of ultrapure water, heated to 60 ° C. and stirred for 1 hour, and then evacuated for 30 minutes (pressure after decompression: ⁇ 0.09 MPa). Further, the catalyst precursor layer A is taken out from the ultrapure water and washed with pure water to remove inorganic substances (iodine (I) or iodide ions (I ⁇ )) from the catalyst precursor layer A (particularly platinum) (catalyst). Layer A ′).
- the catalyst layer A ′ was immersed in a perchloric acid solution (HClO 4 25 g + ultra pure water 300 g), warmed to 60 ° C., stirred at the same temperature for 1 hour, and then evacuated for 30 minutes (pressure after decompression: ⁇ 0.09 MPa).
- a perchloric acid solution HlO 4 25 g + ultra pure water 300 g
- the catalyst layer A ′ is taken out from the perchloric acid solution, immersed in pure water, heated to 60 ° C., stirred for 1 hour, and then evacuated for 30 minutes (pressure after decompression: ⁇ 0.09 MPa). went.
- the catalyst layer A ′ was taken out from pure water, washed with pure water, and then dried at 80 ° C. for 10 minutes to obtain a catalyst layer A (thickness: 10 ⁇ m).
- the ionomer sodium ion (Na + ) contained in the catalyst layer A was replaced with protons (H + ).
- the amount of iodine in the catalyst layer A was quantified using fluorescent X-rays (XRF) to verify whether iodine was removed from platinum.
- XRF fluorescent X-rays
- Comparative Example 2 Formation of catalyst layer B
- the catalyst layer B (thickness: 10 ⁇ m) was made of Teflon (thickness: 10 ⁇ m). It was formed on a (registered trademark) sheet.
- the coverage of the catalyst (ionomer coverage) by the electrolyte is calculated using measurement of the electric double layer capacity formed at the interface between the catalyst electrolyte (ionomer) and water. In calculating the coverage, the coverage is calculated from the ratio of the electric double layer capacity in the low humidification state (5% RH) to the high humidification state (100% RH).
- an electrochemical measurement system HZ-3000 manufactured by Hokuto Denko Co., Ltd. and a frequency response analyzer FRA5020 manufactured by NF Circuit Design Block Co., Ltd. were used and the following measurement conditions were adopted.
- each battery was heated to 30 ° C. with a heater, and the electric double layer capacity was measured in a state where nitrogen gas and hydrogen gas adjusted to the humidified state were supplied to the working electrode and the counter electrode, respectively.
- the electric potential of the working electrode was oscillated at a frequency of 20 kHz to 10 mHz with an amplitude of ⁇ 10 mV while maintaining at 0.45 V.
- the real part and imaginary part of the impedance at each frequency are obtained from the response when the working electrode potential vibrates.
- Such measurement was performed in a low humidified state (5% RH) and a high humidified state (100% RH). Furthermore, after deactivating the Pt catalyst by flowing nitrogen gas containing CO at a concentration of 1% by volume to the working electrode at a rate of 1 NL / min for 15 minutes or more, the electric gas in the high humidification and low humidification states as described above is obtained.
- the multi-layer capacity is similarly measured. The electric double layer capacity is shown in terms of a value per area (mF / cm 2 ) of the catalyst layer.
- Example 4 Preparation of MEA1 5 g of ultrapure water was added to 5 g of the catalyst precursor A obtained in Example 1, and mixed with a hybrid mixer.
- a mixed solvent 1 having a mixing weight ratio of water and 1-propanol (NPA) of 8/2 was prepared.
- the mixed solvent 1 was added to the mixture 1 so that the solid content (Pt + carbon carrier + ionomer) was 21% by weight to prepare a cathode catalyst ink 1.
- the cathode catalyst ink 1 prepared above was pulverized for 10 minutes at a rotation speed of 1500 rpm using a bead mill. At this time, beads (made by zirconia, diameter: 1.5 mm) were used. Thereafter, the cathode catalyst ink 1 after pulverization is again defoamed with a hybrid mixer, and then applied to a transfer substrate (Teflon (registered trademark) sheet) by a screen printing method so that a platinum carrying amount becomes 0.35 mg / cm 2. And dried at 80 ° C. for 15 minutes. Thereby, the cathode catalyst precursor layer 1 ′ (thickness: 10 ⁇ m) was formed on the transfer substrate.
- a transfer substrate Teflon (registered trademark) sheet
- Example 3 the cathode catalyst layer 1 (thickness: 10 ⁇ m) was formed in the same manner as in Example 3 except that the cathode catalyst precursor layer 1 ′ thus obtained was used instead of the catalyst precursor layer A. did.
- the anode catalyst ink 1 prepared above was pulverized for 10 minutes at a rotation speed of 1500 rpm using a bead mill. At this time, beads (made by zirconia, diameter: 1.5 mm) were used. Thereafter, the pulverized anode catalyst ink 1 is again defoamed with a hybrid mixer, and then applied to a transfer substrate (Teflon (registered trademark) sheet) by a screen printing method so that the amount of platinum supported is 0.35 mg / cm 2. And dried at 80 ° C. for 15 minutes. Thereby, the anode catalyst layer 1 (thickness: 10 ⁇ m) was formed on the transfer substrate.
- a transfer substrate Teflon (registered trademark) sheet
- the cathode catalyst layer 1 (size: 5 cm ⁇ 5 cm) and the anode catalyst layer 1 (size: 5 cm ⁇ 5 cm) produced as described above were combined with a polymer electrolyte membrane (manufactured by Dupont, NAFION (registered trademark) XL, (Thickness: 27.5 ⁇ m). Subsequently, this was hot-pressed at 150 ° C. and 2 MPa for 10 minutes to obtain a membrane catalyst layer assembly (CCM: catalyst-coated membrane) 1. Both sides of the obtained membrane catalyst layer assembly (CCM) 1 were sandwiched between gas diffusion layers (24BC, manufactured by SGL Carbon Co., Ltd.) to obtain a membrane electrode assembly 1 (MEA1).
- a polymer electrolyte membrane manufactured by Dupont, NAFION (registered trademark) XL, (Thickness: 27.5 ⁇ m.
- Comparative Example 3 Production of MEA 2 In the same manner as in Example 4, a cathode catalyst precursor layer 1 ′ and an anode catalyst layer 1 were formed on a transfer substrate.
- the cathode catalyst layer 1 ′ (size: 5 cm ⁇ 5 cm) and the anode catalyst layer 1 (size: 5 cm ⁇ 5 cm) produced as described above were formed into a polymer electrolyte membrane (manufactured by Dupont, NAFION (registered trademark) XL). , Thickness: 27.5 ⁇ m). Next, this was hot-pressed at 150 ° C. and 2 MPa for 10 minutes to obtain a membrane catalyst layer assembly (CCM: catalyst-coated membrane) 2. Both surfaces of the obtained membrane catalyst layer assembly (CCM) 2 were sandwiched between gas diffusion layers (24BC, manufactured by SGL Carbon Co.) to obtain membrane electrode assembly 2 (MEA2). That is, Comparative Example 3 is the same as Example 4 except that iodine removal treatment and acid treatment were not performed in the formation of the cathode catalyst layer in Example 4.
- Comparative Example 4 Production of MEA 3 To 5 g of the catalyst precursor B obtained in Comparative Example 1, 5 g of ultrapure water was added and mixed with a hybrid mixer. Ionomer dispersion (Nafion (registered trademark) D2020, DuPont) so that the mixing weight ratio (in terms of solid content) of the conductive support (carbon) in the catalyst precursor B and the electrolyte (ionomer) is 1: 1. (Mixture 2). Separately, a mixed solvent 1 having a mixing weight ratio of water and 1-propanol (NPA) of 8/2 was prepared. The mixed solvent 1 was added to the mixture 2 so that the solid content (Pt + carbon carrier + ionomer) was 21% by weight to prepare catalyst ink 3.
- Ionomer dispersion Nafion (registered trademark) D2020, DuPont
- NPA 1-propanol
- the catalyst ink 3 prepared above was applied to a transfer substrate (Teflon (registered trademark) sheet) by a screen printing method so that the amount of platinum supported was 0.35 mg / cm 2 and dried at 80 ° C. for 15 minutes. The above operation was repeated twice to form a cathode catalyst layer 3 (thickness: 10 ⁇ m) and an anode catalyst layer 3 (thickness: 10 ⁇ m) on the transfer substrate.
- a transfer substrate Teflon (registered trademark) sheet
- the cathode catalyst layer 3 and the anode catalyst layer 3 (each size: 5 cm ⁇ 5 cm) produced as described above were formed into a polymer electrolyte membrane (manufactured by Dupont, NAFION (registered trademark) XL, thickness: 27.5 ⁇ m). Arranged on both sides. Next, this was hot-pressed at 150 ° C. and 2 MPa for 10 minutes to obtain a membrane catalyst layer assembly (CCM: catalyst-coated membrane) 3. Both surfaces of the obtained membrane catalyst layer assembly (CCM) 3 were sandwiched between gas diffusion layers (24BC, manufactured by SGL Carbon Co., Ltd.) to obtain a membrane electrode assembly 3 (MEA3).
- CCM membrane catalyst layer assembly
- the fuel cell is maintained at 80 ° C., oxygen gas conditioned to 100% RH is passed through the cathode, and hydrogen gas conditioned to 100% RH is passed through the anode, and the current density is 1.0 A.
- the electronic load was set to be / cm 2 and held for 15 minutes. Thereafter, the current density was gradually reduced until the cell voltage became 0.9 V or higher. At this time, each current density was held for 15 minutes to obtain the relationship between the current density and the potential.
- the electrochemical effective surface area (ECA) is obtained by using the electrochemical measurement system HZ-3000, sweeping the potential of the measurement object under the following conditions, and the amount of electricity and electrode due to proton adsorption on the catalyst Pt. From the weight of platinum, the electrochemical effective surface area (ECA) (m 2 / g_Pt) was calculated.
- Results are shown in Table 4 below. From the results shown in Table 4 below, the MEA 1 of Example 4 has a catalyst surface area and current density per platinum weight (ORR area ratio) as compared with MEA 2 of Comparative Example 3 that does not remove iodine and MEA 3 of Comparative Example 4 without treatment. It can be seen that both activity and ORR mass specific activity) are significantly higher. Therefore, the MEA having a catalyst layer obtained by the method of the present invention is expected to exhibit excellent power generation performance.
- Catalyst precursor 2 powder was prepared according to the following method. That is, 2 g of carbon support (Ketjen Black (registered trademark) KetjenBlackEC300J, average particle size: 40 nm, BET specific surface area: 800 m 2 / g, manufactured by Lion Corporation) is added to 500 mL of 0.5 M HNO 3 solution in a beaker. The mixture was added and stirred and mixed with a stirrer at 300 rpm for 30 minutes at room temperature (25 ° C.). Subsequently, a carbon support was obtained by performing a heat treatment at 80 ° C. for 2 hours under stirring at 300 rpm.
- carbon support Ketjen Black (registered trademark) KetjenBlackEC300J, average particle size: 40 nm, BET specific surface area: 800 m 2 / g, manufactured by Lion Corporation
- 0.2 g of the acid-treated carbon carrier A prepared above was added to 100 ml of ultrapure water placed in a beaker, and sonication was performed for 15 minutes to obtain a carrier suspension A.
- the carrier suspension A was continuously stirred at 150 rpm at room temperature (25 ° C.) until it was added to the catalyst precursor particles.
- catalyst precursor particles Pt—Co mixed
- a solution containing particles was obtained.
- the carrier suspension A containing 0.2 g of the acid-treated carbon carrier A was added to this solution, and stirred and mixed with a stirrer at room temperature (25 ° C.) for 48 hours to carry the catalyst precursor particles on the carrier. .
- the catalyst precursor particle-supported carrier was filtered and washed with ultrapure water. The filtration and washing operations were repeated a total of 3 times, followed by filtration to obtain a catalyst particle-supporting carrier.
- the catalyst particle-supported carrier was dried at 60 ° C. for 12 hours, and then a heat treatment step was performed at 600 ° C. for 60 minutes in an argon atmosphere. Thereby, the catalyst precursor 2 was obtained.
- the catalyst particle 2 support concentration (supported amount) of the catalyst precursor 2 was 33% by weight (platinum supported amount: 30% by weight, cobalt supported amount: 3% by weight) with respect to the support.
- the supported concentration was measured by ICP analysis. The same applies hereinafter.
- Example 1 a catalyst precursor C was obtained in the same manner as in Example 1 except that the catalyst precursor 2 powder prepared above was used instead of the catalyst precursor 1 powder (Pt / C). .
- Catalyst precursor 2 platinum supported amount: 30% by weight, cobalt supported amount: 3% by weight
- This catalyst precursor 2 was used as it was to obtain a catalyst precursor D.
- PEFC Polymer electrolyte fuel cell
- Solid polymer electrolyte membrane 3 ... Catalyst layer, 3a ... anode catalyst layer, 3c ... cathode catalyst layer, 4a ... anode gas diffusion layer, 4c ... cathode gas diffusion layer, 5, ... Separator, 5a ... anode separator, 5c ... cathode separator, 6a ... anode gas flow path, 6c ... cathode gas flow path, 7: Refrigerant flow path, 10: Membrane electrode assembly (MEA).
- MEA Membrane electrode assembly
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Catalysts (AREA)
Abstract
The present invention provides a means for suppressing direct contact between a catalyst and an electrolyte. This catalyst layer production method comprises: preparing a catalyst precursor 1 obtained by having a platinum-containing catalyst metal supported on a conductive carrier; preparing a catalyst precursor 2 by cladding the catalyst precursor 1 with an inorganic material that adheres to the platinum-containing catalyst metal; forming a catalyst precursor layer by mixing the catalyst precursor 2 with an electrolyte; and further removing the inorganic material from the catalyst precursor layer.
Description
本発明は、触媒層の製造方法、触媒層、ならびに触媒前駆体および当該触媒前駆体の製造方法に関する。
The present invention relates to a method for producing a catalyst layer, a catalyst layer, a catalyst precursor, and a method for producing the catalyst precursor.
プロトン伝導性固体高分子膜を用いた固体高分子形燃料電池は、例えば、固体酸化物形燃料電池や溶融炭酸塩形燃料電池など、他のタイプの燃料電池と比較して低温で作動する。このため、固体高分子形燃料電池は、定置用電源や、自動車などの移動体用動力源として期待されており、その実用も開始されている。
A solid polymer fuel cell using a proton conductive solid polymer membrane operates at a lower temperature than other types of fuel cells such as a solid oxide fuel cell and a molten carbonate fuel cell. For this reason, the polymer electrolyte fuel cell is expected as a stationary power source or a power source for a moving body such as an automobile, and its practical use has been started.
燃料電池自動車(FCV)の低コスト化のためには、FCシステムやスタックの簡素化(部品/材料数の削減)、さらには部品/材料のコスト低減が必要である。特に後者については、FCスタックに使用される白金などの貴金属使用量を低減することが、非常に大きなインパクトを有する。これは、FCVの本格普及期においても、貴金属量は量産によるコスト低減効果が見込めないためである。したがって、FCV 1台あたりの貴金属使用量を低減するための電極触媒材料や触媒層の開発が求められている。
In order to reduce the cost of fuel cell vehicles (FCV), it is necessary to simplify the FC system and stack (reduction in the number of parts / materials) and further reduce the cost of parts / materials. Particularly for the latter, reducing the amount of noble metal used such as platinum used in the FC stack has a very large impact. This is because the amount of precious metals cannot be expected to reduce costs by mass production even during the full-scale diffusion of FCV. Therefore, development of electrode catalyst materials and catalyst layers for reducing the amount of precious metal used per FCV is required.
上記課題を解決することを目的として、例えば、特許文献1には、触媒と固体プロトン伝導材(電解質)との直接接触を抑えた触媒層が開示される。
For the purpose of solving the above problems, for example, Patent Document 1 discloses a catalyst layer in which direct contact between a catalyst and a solid proton conductive material (electrolyte) is suppressed.
上記特許文献1に記載の触媒層を有する膜電極接合体(MEA)や燃料電池によれば、触媒の利用効率が向上し、発電性能を維持しながら触媒の使用量を低減できる。一方、上記特許文献1は、触媒を配置するための孔を有する導電性担体を使用することを必要とする。
According to the membrane electrode assembly (MEA) and the fuel cell having the catalyst layer described in Patent Document 1, the utilization efficiency of the catalyst is improved, and the amount of the catalyst used can be reduced while maintaining the power generation performance. On the other hand, Patent Document 1 requires the use of a conductive carrier having a hole for arranging a catalyst.
FCVの性能の向上の観点からは、このような孔を持たないまたは少ない導電性担体を使用することが好ましい場合があり、このような場合など、上記特許文献1は必ずしも好適に使用できない場合ある。このため、導電性担体の孔の有無など触媒層の構成部材の形態や性状によらず、触媒と電解質との直接接触を抑える手段が求められている。
From the viewpoint of improving the performance of FCV, it may be preferable to use a conductive support having no or few such pores. In such a case, the above-mentioned Patent Document 1 may not always be suitably used. . For this reason, there is a need for means for suppressing direct contact between the catalyst and the electrolyte regardless of the form and properties of the constituent members of the catalyst layer, such as the presence or absence of pores in the conductive carrier.
したがって、本発明は、上記事情を鑑みてなされたものであり、触媒と電解質との直接接触を抑える手段を提供することを目的とする。
Therefore, the present invention has been made in view of the above circumstances, and an object thereof is to provide means for suppressing direct contact between a catalyst and an electrolyte.
本発明者らは、上記の問題を解決すべく、鋭意研究を行った。その結果、予め触媒金属吸着性を有する無機物で被覆した触媒金属を電解質と混合して触媒層を形成した後、無機物を除去することが有効な手段であることを見出し、本発明を完成させた。
The present inventors have conducted intensive research to solve the above problems. As a result, the catalyst metal previously coated with an inorganic substance having catalytic metal adsorptivity was mixed with an electrolyte to form a catalyst layer, and then the removal of the inorganic substance was found to be an effective means, and the present invention was completed. .
本発明の触媒層の製造方法は、下記(a)~(d)の工程を有する(第1の態様):
(a)白金含有触媒金属を導電性担体に担持してなる触媒前駆体1を準備し(工程(a));
(b)前記触媒前駆体1を、白金含有触媒金属に吸着する無機物で被覆して、触媒前駆体2を準備し(工程(b));
(c)前記触媒前駆体2を電解質と混合して、触媒前駆層を形成し(工程(c));さらに
(d)前記触媒前駆層から前記無機物を除去する(工程(d))。上記構成によれば、触媒層の構成部材の形態や性状によらず、触媒と電解質との直接接触を抑えられる。ゆえに、発電性能に優れる膜電極接合体および燃料電池を提供できる。 The method for producing a catalyst layer of the present invention includes the following steps (a) to (d) (first embodiment):
(A) preparing acatalyst precursor 1 in which a platinum-containing catalyst metal is supported on a conductive carrier (step (a));
(B) Thecatalyst precursor 1 is coated with an inorganic substance adsorbed on a platinum-containing catalyst metal to prepare a catalyst precursor 2 (step (b));
(C) The catalyst precursor 2 is mixed with an electrolyte to form a catalyst precursor layer (step (c)); and (d) the inorganic substance is removed from the catalyst precursor layer (step (d)). According to the said structure, the direct contact with a catalyst and electrolyte can be suppressed irrespective of the form and property of the structural member of a catalyst layer. Therefore, a membrane electrode assembly and a fuel cell excellent in power generation performance can be provided.
(a)白金含有触媒金属を導電性担体に担持してなる触媒前駆体1を準備し(工程(a));
(b)前記触媒前駆体1を、白金含有触媒金属に吸着する無機物で被覆して、触媒前駆体2を準備し(工程(b));
(c)前記触媒前駆体2を電解質と混合して、触媒前駆層を形成し(工程(c));さらに
(d)前記触媒前駆層から前記無機物を除去する(工程(d))。上記構成によれば、触媒層の構成部材の形態や性状によらず、触媒と電解質との直接接触を抑えられる。ゆえに、発電性能に優れる膜電極接合体および燃料電池を提供できる。 The method for producing a catalyst layer of the present invention includes the following steps (a) to (d) (first embodiment):
(A) preparing a
(B) The
(C) The catalyst precursor 2 is mixed with an electrolyte to form a catalyst precursor layer (step (c)); and (d) the inorganic substance is removed from the catalyst precursor layer (step (d)). According to the said structure, the direct contact with a catalyst and electrolyte can be suppressed irrespective of the form and property of the structural member of a catalyst layer. Therefore, a membrane electrode assembly and a fuel cell excellent in power generation performance can be provided.
本明細書において、白金含有触媒金属を導電性担体に担持してなる触媒前駆体1を、単に「本発明に係る触媒前駆体1」または「触媒前駆体1」とも称する。また、白金含有触媒金属に吸着する無機物を、単に「本発明に係る無機物」または「無機物」とも称する。さらに、白金含有触媒金属を、単に「本発明に係る触媒金属」または「触媒金属」とも称する。
In this specification, the catalyst precursor 1 obtained by supporting a platinum-containing catalyst metal on a conductive support is also simply referred to as “catalyst precursor 1 according to the present invention” or “catalyst precursor 1”. The inorganic substance adsorbed on the platinum-containing catalyst metal is also simply referred to as “inorganic substance according to the present invention” or “inorganic substance”. Further, the platinum-containing catalyst metal is also simply referred to as “catalyst metal according to the present invention” or “catalyst metal”.
これまで、電極触媒材料については、日本のみならず世界レベルで研究開発競争が繰り広げられている。例えば、日本ではNEDOが牽引してきた固体高分子形燃料電池実用化開発事業(~H26年度)で、パラジウムをコアとし、白金をシェルとしたコアシェル触媒、白金コバルト合金の表層に白金スキン層を設けてなるPtCoスキン触媒などが開発されている。これらの触媒は、電極触媒単体評価において、従来の白金触媒に対して高い活性や耐久性が得られている。また、米国エネルギー省(DOE)がリードしてきたFCプロジェクトでは、白金ニッケルから作製されたナノフレーム触媒など、高い活性を示す電極触媒材料が開発されている。これらの単体評価は、例えば回転ディスク電極(RDE)法などハーフセルでの評価結果が主である。しかし、実際のMEAでの評価は、ハーフセルに比べて、活性や耐久性が概して低下するという問題があった。
So far, electrocatalytic materials have been in competition not only in Japan but also at the world level. For example, in Japan, a polymer electrolyte fuel cell commercialization development project (up to FY2014) led by NEDO, a core-shell catalyst with palladium as the core and platinum as the shell, and a platinum skin layer on the surface of the platinum-cobalt alloy A PtCo skin catalyst is being developed. These catalysts have high activity and durability compared to conventional platinum catalysts in the evaluation of a single electrode catalyst. In addition, in the FC project led by the US Department of Energy (DOE), highly active electrocatalyst materials such as nano-frame catalysts made from platinum nickel have been developed. These single unit evaluations are mainly based on evaluation results in a half cell such as a rotating disk electrode (RDE) method. However, the evaluation with an actual MEA has a problem that the activity and durability are generally lower than that of a half cell.
上記問題の原因は、MEAとハーフセルとの運転条件の違い(温度、湿度など)、および電極触媒材料や触媒層の構造変化などモノに起因する違いに大別され、多くの研究機関で要因解析が実施されている。そのような状況の中で、本発明者らは鋭意検討を重ねてきた結果、モノに起因する原因の1つとして、触媒層に含まれる電解質(アイオノマー)が白金粒子等の触媒金属を被覆する割合が、触媒層としての活性を支配する重要因子であることを発見した。即ち、アイオノマーの触媒金属被覆率が高いほど見かけの酸素還元反応(ORR)活性は低下することを見出した。これは、アイオノマーが触媒金属に対して被毒作用をもたらすためであり、アイオノマーと触媒金属との相互作用が強いために、ORR反応物質である酸素分子が触媒金属表面に吸着する機会が減り、結果的に見かけのORR活性が低くなるという現象である。この現象によるORR活性への影響は、ORR面積比活性(A/cm2_Pt)を評価することにより確認できる(上記非特許文献1参照)。ここで、ORR面積比活性は、単位白金質量あたりのORR活性化支配電流(例えば0.9Vのときの電流値)、即ちORR質量比活性(A/g_Pt)を、白金単位質量当たりの電気化学的有効表面積(m2/g_Pt)で除した値である。また、この現象は、近年の研究成果により、MEAのみならずRDEでも観測できることがわかってきた(上記非特許文献2参照)。
The causes of the above problems are broadly divided into differences in operating conditions (temperature, humidity, etc.) between MEA and half-cell, and differences due to things such as electrode catalyst materials and catalyst layer structural changes. Has been implemented. Under such circumstances, as a result of intensive studies, the present inventors have, as one of the causes caused by things, an electrolyte (ionomer) contained in the catalyst layer coats a catalyst metal such as platinum particles. It has been discovered that the ratio is an important factor governing the activity as a catalyst layer. That is, it has been found that the apparent oxygen reduction (ORR) activity decreases as the ionomer catalytic metal coverage increases. This is because the ionomer has a poisoning effect on the catalytic metal, and since the interaction between the ionomer and the catalytic metal is strong, the chance that the oxygen molecule as the ORR reactant is adsorbed on the catalytic metal surface decreases. As a result, the apparent ORR activity is lowered. The influence of this phenomenon on the ORR activity can be confirmed by evaluating the ORR area specific activity (A / cm 2 —Pt) (see Non-Patent Document 1 above). Here, the ORR area specific activity is the ORR activation dominant current per unit mass of platinum (for example, a current value at 0.9 V), that is, the ORR mass specific activity (A / g_Pt) is expressed as the electrochemical per unit mass of platinum. It is a value divided by the effective surface area (m 2 / g_Pt). Moreover, it has been found that this phenomenon can be observed not only by MEA but also by RDE based on recent research results (see Non-Patent Document 2 above).
以上のことから、本発明者らは、電極触媒を電解質と混合して触媒層を形成した際、電解質が触媒金属に対して被毒作用をもたらして触媒活性を低下させると考えた。すなわち、電解質による触媒金属の被覆率が低いほど、見かけのORR活性(ORR比活性)は向上すると考えた。ここで、「被毒作用」とは、電解質と触媒金属との相互作用が強いために、反応ガス(特に酸素)が触媒金属の表面に接触する機会が減少することをいう。上記知見に基づいて、本発明者らは、電解質による触媒金属の被覆率の低減手段、すなわち触媒金属が受ける被毒作用の低減手段について鋭意検討を行った。その結果、白金含有触媒金属に対して吸着性を示す無機物で予め被覆した触媒(触媒前駆体2)を電解質と混合して層(触媒前駆層)を形成した後、この無機物を層から除去する手段が有効であることを見出した。当該方法によると、触媒前駆層では、無機物で被覆された状態の触媒前駆体2(特に触媒金属)が電解質と混在している。このため、触媒前駆体2(特に触媒金属)と電解質との間には無機物が介在する。次に、この状態で触媒前駆層から無機物を除去すると、無機物と接触(即ち、触媒前駆体2を被覆)している電解質は無機物と共に除去される。このため、得られる触媒層では、触媒金属は電解質で被覆されないまたはほとんど被覆されず、導電性担体上に直接暴露した状態あるいは水で覆われた状態となる。このように電解質と非接触である触媒金属は、電解質による被毒作用を受けにくい、または受けない。ゆえに、反応ガス(特に酸素)が触媒金属表面に接触する機会が増加し、反応ガス(特に酸素)、触媒金属粒子および水の三相界面の形成が促進され、触媒活性(特にORR比活性)が向上する。ゆえに、上記方法によると、高い触媒活性(特に酸素還元反応(ORR)比活性)を発揮する触媒層が得られる。また、本発明の方法は、触媒(触媒前駆体1)を予め無機物で被覆するため、導電性担体の空孔の有無や触媒金属の形状などの触媒(触媒前駆体1)の構成、電解質の種類などが限定されない。ゆえに、本発明の方法は、様々な形態の触媒(導電性担体や触媒金属)および電解質に適用できる。なお、上記メカニズムは推測であり、本発明の技術的範囲は上記推測によって制限されない。
From the above, the present inventors considered that when an electrode catalyst was mixed with an electrolyte to form a catalyst layer, the electrolyte caused a poisoning action on the catalyst metal and reduced the catalytic activity. That is, it was considered that the apparent ORR activity (ORR specific activity) was improved as the coverage of the catalyst metal by the electrolyte was lower. Here, “poisoning action” means that the interaction between the electrolyte and the catalyst metal is strong, so that the opportunity for the reaction gas (especially oxygen) to contact the surface of the catalyst metal is reduced. Based on the above findings, the present inventors have intensively studied a means for reducing the coverage of the catalyst metal by the electrolyte, that is, a means for reducing the poisoning effect received by the catalyst metal. As a result, a catalyst (catalyst precursor 2) previously coated with an inorganic material that exhibits adsorptivity to the platinum-containing catalyst metal is mixed with an electrolyte to form a layer (catalyst precursor layer), and then the inorganic material is removed from the layer. We found that the measures are effective. According to this method, in the catalyst precursor layer, the catalyst precursor 2 (particularly a catalyst metal) in a state of being coated with an inorganic substance is mixed with the electrolyte. For this reason, an inorganic substance intervenes between the catalyst precursor 2 (particularly the catalyst metal) and the electrolyte. Next, when the inorganic substance is removed from the catalyst precursor layer in this state, the electrolyte in contact with the inorganic substance (that is, covering the catalyst precursor 2) is removed together with the inorganic substance. For this reason, in the obtained catalyst layer, the catalyst metal is not coated or hardly coated with the electrolyte, and is in a state of being directly exposed on the conductive support or in a state of being covered with water. Thus, the catalytic metal that is not in contact with the electrolyte is less likely to receive the poisoning action of the electrolyte. Therefore, the opportunity for the reactive gas (especially oxygen) to come into contact with the catalytic metal surface is increased, and the formation of the three-phase interface of the reactive gas (especially oxygen), catalytic metal particles and water is promoted, and the catalytic activity (especially ORR specific activity) Will improve. Therefore, according to the above method, a catalyst layer exhibiting high catalytic activity (particularly oxygen reduction reaction (ORR) specific activity) can be obtained. Further, in the method of the present invention, since the catalyst (catalyst precursor 1) is previously coated with an inorganic substance, the structure of the catalyst (catalyst precursor 1) such as the presence or absence of pores of the conductive support and the shape of the catalyst metal, the electrolyte The type is not limited. Therefore, the method of the present invention can be applied to various forms of catalysts (conductive supports and catalytic metals) and electrolytes. In addition, the said mechanism is estimation and the technical scope of this invention is not restrict | limited by the said estimation.
以下、本発明の実施の形態を説明する。なお、本発明は、以下の実施の形態のみには限定されない。また、本明細書において、範囲を示す「X~Y」は、XおよびYを含み、「X以上Y以下」を意味する。また、特記しない限り、操作および物性等の測定は室温(20~25℃)/相対湿度40~50%RHの条件で行う。
Hereinafter, embodiments of the present invention will be described. In addition, this invention is not limited only to the following embodiment. Further, in this specification, “X to Y” indicating a range includes X and Y, and means “X or more and Y or less”. Unless otherwise specified, measurements such as operation and physical properties are performed under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50% RH.
[工程(a)]
本工程では、白金含有触媒金属を導電性担体に担持してなる触媒前駆体1を準備する。 [Step (a)]
In this step, acatalyst precursor 1 obtained by supporting a platinum-containing catalyst metal on a conductive support is prepared.
本工程では、白金含有触媒金属を導電性担体に担持してなる触媒前駆体1を準備する。 [Step (a)]
In this step, a
ここで、導電性担体は、後述する触媒金属を担持するための担体、および触媒粒子と他の部材との間での電子の授受に関与する電子伝導パスとして機能する。導電性担体としては、触媒金属を所望の分散状態で担持させるための比表面積を有していればよく、カーボン担体、非カーボン担体のいずれであってもよい。ここで、「カーボン担体」とは、主成分として炭素原子を含む担体を指す。「主成分として炭素原子を含む」とは、「炭素原子のみからなる」および「実質的に炭素原子からなる」の双方を含む概念であり、炭素原子以外の元素が含まれていてもよい。「実質的に炭素原子からなる」とは、2~3重量%以下の不純物の混入が許容されうることを意味する。非カーボン担体とは、上記のカーボン担体の定義に該当しないものを指し、金属酸化物などが挙げられる。
Here, the conductive carrier functions as a carrier for supporting a catalyst metal, which will be described later, and an electron conduction path involved in the transfer of electrons between the catalyst particles and other members. The conductive support only needs to have a specific surface area for supporting the catalyst metal in a desired dispersed state, and may be either a carbon support or a non-carbon support. Here, the “carbon carrier” refers to a carrier containing a carbon atom as a main component. “Containing carbon atoms as a main component” is a concept including both “consisting only of carbon atoms” and “substantially consisting of carbon atoms”, and may contain elements other than carbon atoms. “Substantially consists of carbon atoms” means that 2 to 3% by weight or less of impurities can be mixed. The non-carbon carrier refers to a material not corresponding to the definition of the above carbon carrier, and examples thereof include metal oxides.
カーボン担体の具体例としては、アセチレンブラック、ケッチェンブラック、サーマルブラック、オイルファーネスブラック、チャネルブラック、ランプブラック、黒鉛化カーボンなどが挙げられる。より具体的には、バルカン(登録商標)XC-72R、バルカン(登録商標)P、ブラックパールズ(登録商標)880、ブラックパールズ(登録商標)1100、ブラックパールズ(登録商標)1300、ブラックパールズ(登録商標)2000、リーガル(登録商標)400(以上、キャボットジャパン株式会社製)、ケッチェンブラック(登録商標)EC300J、ケッチェンブラック(登録商標)EC600JD(以上、ライオン・スペシャリティ・ケミカルズ株式会社製)、#3150、#3250(三菱化学株式会社製)、デンカブラック(登録商標)(デンカ株式会社製)などが挙げられる。
Specific examples of the carbon support include acetylene black, ketjen black, thermal black, oil furnace black, channel black, lamp black, graphitized carbon, and the like. More specifically, Vulcan (registered trademark) XC-72R, Vulcan (registered trademark) P, Black Pearls (registered trademark) 880, Black Pearls (registered trademark) 1100, Black Pearls (registered trademark) 1300, Black Pearls (registered) Trademark) 2000, Regal (registered trademark) 400 (above, manufactured by Cabot Japan Co., Ltd.), Ketjen Black (registered trademark) EC300J, Ketjen Black (registered trademark) EC600JD (above, manufactured by Lion Specialty Chemicals Co., Ltd.), # 3150, # 3250 (made by Mitsubishi Chemical Corporation), Denka Black (registered trademark) (made by Denka Corporation), and the like.
導電性担体の形状は、粒子状、板状、柱状、管状、不定形状など、任意の形状を有することができる。
The shape of the conductive carrier can have an arbitrary shape such as a particle shape, a plate shape, a column shape, a tubular shape, or an indefinite shape.
導電性担体の大きさは、特に限定されない。担持の容易さ、触媒利用率、電極触媒層の厚みを適切な範囲で制御するなどの観点から、導電性担体の平均径は、100~2000nmであることが好ましく、200~1000nmであることがより好ましく、300~500nmであることがさらにより好ましい。また、一次粒子が連結あるいは凝集して導電性担体を形成している場合、平均一次粒子径は5~30nmであることが好ましく、10~20nmであることがさらにより好ましい。平均一次粒子径は、SEMやTEMにより測定した値を採用する。「導電性担体の平均径」は、X線回折(XRD)における導電性担体の回折ピークの半値幅より求められる結晶子径や、透過型電子顕微鏡(TEM)により調べられる導電性担体の粒子径の平均値として測定されうる。本明細書では、「導電性担体の平均径」は、統計上有意な数(例えば、少なくとも200個、好ましくは少なくとも300個)のサンプルについて透過型電子顕微鏡像より調べられる導電性担体の最大径の平均値である。
The size of the conductive carrier is not particularly limited. From the viewpoint of controlling the ease of loading, the catalyst utilization rate, and the thickness of the electrode catalyst layer within an appropriate range, the average diameter of the conductive support is preferably 100 to 2000 nm, and preferably 200 to 1000 nm. More preferably, it is 300 to 500 nm. When primary particles are connected or aggregated to form a conductive carrier, the average primary particle diameter is preferably 5 to 30 nm, and more preferably 10 to 20 nm. As the average primary particle diameter, a value measured by SEM or TEM is adopted. The “average diameter of the conductive carrier” is the crystallite diameter determined from the half-value width of the diffraction peak of the conductive carrier in X-ray diffraction (XRD), or the particle diameter of the conductive carrier examined by a transmission electron microscope (TEM). It can be measured as an average value of. In the present specification, the “average diameter of the conductive carrier” means the maximum diameter of the conductive carrier, which is examined from a transmission electron microscope image of a statistically significant number (for example, at least 200, preferably at least 300) of samples. Is the average value.
導電性担体のBET比表面積は、触媒金属およびスペーサーを高分散担持させるのに十分な比表面積であればよいが、好ましくは10~5000m2/gであり、より好ましくは50~2000m2/gであり、さらにより好ましくは100~1000m2/gであり、特に好ましくは300~800m2/gである。このような比表面積であれば、導電性担体に十分な触媒金属を担持でき、高い触媒活性を発揮することができる。
The BET specific surface area of the conductive support may be a specific surface area sufficient to carry the catalyst metal and the spacer in a highly dispersed manner, but is preferably 10 to 5000 m 2 / g, more preferably 50 to 2000 m 2 / g. Even more preferably, it is 100 to 1000 m 2 / g, and particularly preferably 300 to 800 m 2 / g. With such a specific surface area, a sufficient catalytic metal can be supported on the conductive support, and high catalytic activity can be exhibited.
なお、担体の「BET比表面積(m2/g担体)」は、窒素吸着法により測定される。詳細には、触媒粉末約0.04~0.07gを精秤し、試料管に封入する。この試料管を真空乾燥器で90℃×数時間予備乾燥し、測定用サンプルとする。秤量には、島津製作所株式会社製電子天秤(AW220)を用いる。なお、塗布シートの場合には、これの全質量から、同面積のテフロン(登録商標)(基材)質量を差し引いた塗布層の正味の質量約0.03~0.04gを試料質量として用いる。次に、下記測定条件にて、BET比表面積を測定する。吸着・脱着等温線の吸着側において、相対圧(P/P0)約0.00~0.45の範囲から、BETプロットを作成することで、その傾きと切片からBET比表面積を算出する。
The “BET specific surface area (m 2 / g carrier)” of the carrier is measured by a nitrogen adsorption method. Specifically, about 0.04 to 0.07 g of catalyst powder is precisely weighed and sealed in a sample tube. This sample tube is preliminarily dried at 90 ° C. for several hours in a vacuum dryer to obtain a measurement sample. For weighing, an electronic balance (AW220) manufactured by Shimadzu Corporation is used. In the case of a coated sheet, a net weight of about 0.03 to 0.04 g of the coated layer obtained by subtracting the Teflon (registered trademark) (base material) weight of the same area from the total weight of the coated sheet is used as the sample weight. . Next, the BET specific surface area is measured under the following measurement conditions. On the adsorption side of the adsorption / desorption isotherm, a BET specific surface area is calculated from the slope and intercept by creating a BET plot from a relative pressure (P / P 0 ) range of about 0.00 to 0.45.
また、白金含有触媒金属(触媒金属)は、電気的化学反応の触媒作用をする機能を有する。触媒金属は少なくとも白金を含む。このため、触媒活性、一酸化炭素などに対する耐被毒性、耐熱性などを向上できる。すなわち、触媒金属は、白金であるまたは白金と白金以外の金属成分を含む。
Also, the platinum-containing catalyst metal (catalyst metal) has a function of catalyzing an electrochemical reaction. The catalytic metal includes at least platinum. For this reason, catalytic activity, poisoning resistance to carbon monoxide, heat resistance, etc. can be improved. That is, the catalytic metal is platinum or contains a metal component other than platinum and platinum.
白金以外の金属成分としては、特に制限はなく公知の触媒成分が同様にして使用でき、具体的には、ルテニウム、イリジウム、ロジウム、パラジウム、オスミウム、タングステン、鉛、鉄、銅、銀、クロム、コバルト、ニッケル、マンガン、バナジウム、モリブデン、ガリウム、アルミニウム、亜鉛などの金属などが挙げられる。白金以外の金属成分は1種であっても2種以上であってもよい。なかでも、触媒性能の観点からは、遷移金属であることが好ましい。ここで、遷移金属原子とは、第3族元素から第12族元素を指し、遷移金属原子の種類もまた、特に制限されない。触媒活性の観点から、遷移金属原子は、バナジウム、クロム、マンガン、鉄、コバルト、銅、亜鉛およびジルコニウムからなる群より選択されることが好ましい。
The metal component other than platinum is not particularly limited and can be used in the same manner as a known catalyst component. Specifically, ruthenium, iridium, rhodium, palladium, osmium, tungsten, lead, iron, copper, silver, chromium, Examples thereof include metals such as cobalt, nickel, manganese, vanadium, molybdenum, gallium, aluminum, and zinc. One or more metal components other than platinum may be used. Especially, it is preferable that it is a transition metal from a viewpoint of catalyst performance. Here, the transition metal atom refers to a Group 3 element to a Group 12 element, and the type of the transition metal atom is not particularly limited. From the viewpoint of catalytic activity, the transition metal atom is preferably selected from the group consisting of vanadium, chromium, manganese, iron, cobalt, copper, zinc and zirconium.
合金の組成は、合金化する金属の種類にもよるが、例えば、白金の含有量を30~90原子%とし、白金と合金化する金属の含有量を10~70原子%とするのがよい。なお、合金とは、一般に金属元素に1種以上の金属元素または非金属元素を加えたものであって、金属的性質を持っているものの総称である。合金の組織には、成分元素が別個の結晶となるいわば混合物である共晶合金、成分元素が完全に溶け合い固溶体となっているもの、成分元素が金属間化合物または金属と非金属との化合物を形成しているものなどがあり、いずれであってもよい。
The composition of the alloy depends on the type of metal to be alloyed. For example, the content of platinum is preferably 30 to 90 atomic%, and the content of the metal alloyed with platinum is preferably 10 to 70 atomic%. . In general, an alloy is a general term for a metal element having one or more metal elements or non-metal elements added and having metallic properties. The alloy structure consists of a eutectic alloy, which is a mixture of the component elements as separate crystals, a component element completely melted into a solid solution, and a component element composed of an intermetallic compound or a compound of a metal and a nonmetal. There is what is formed, and any may be sufficient.
触媒金属の形状は、特に制限されず、球状(粒子状、粉末状、顆粒状を包含する)、板状、針状、柱状、角状、多面体状などであってもよい。好ましくは、触媒金属は球状である。
The shape of the catalyst metal is not particularly limited, and may be spherical (including particles, powders, granules), plates, needles, columns, squares, polyhedrons, and the like. Preferably, the catalytic metal is spherical.
触媒金属の大きさは特に制限されない。例えば、触媒金属の平均粒径は、1nm以上30nm以下であることが好ましく、2nm以上10nm以下であることがより好ましく、3nm以上5nm以下であることがさらにより好ましい。かような範囲であれば、触媒金属の単位重量当たりの活性(重量比活性)を高くしつつ、触媒金属の溶解や凝集を抑制することができる。なお、本明細書において、「触媒金属の平均粒径」は、触媒金属の最大直径を表す。上記「平均粒径」は、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用い、数~数十視野中に観察される粒子の粒子径の平均値が採用される。
The size of the catalyst metal is not particularly limited. For example, the average particle diameter of the catalyst metal is preferably 1 nm to 30 nm, more preferably 2 nm to 10 nm, and even more preferably 3 nm to 5 nm. If it is such a range, melt | dissolution and aggregation of a catalyst metal can be suppressed, raising the activity per unit weight (weight specific activity) of a catalyst metal. In the present specification, the “average particle diameter of the catalyst metal” represents the maximum diameter of the catalyst metal. The above-mentioned “average particle diameter” is an average value of particle diameters of particles observed in several to several tens of fields using observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). The
触媒金属の担持量(担持率)は、特に制限されないが、触媒前駆体1の重量(導電性担体および触媒金属の合計重量)を100重量%としたとき、好ましくは2~60重量%である。かような範囲にすることで、触媒金属同士の凝集が抑制され、また、電極触媒層の厚さの増加を抑制できるため好ましい。より好ましくは5重量%以上50重量%以下である。かような範囲にあれば、導電性担体上での触媒金属の分散性と触媒活性とのバランスが適切に制御されうる。なお、触媒金属の担持量は、誘導結合プラズマ発光分析(ICP atomic emission spectrometry)や誘導結合プラズマ質量分析(ICP mass spectrometry)、蛍光X線分析(XRF)など、従来公知の方法によって調べることができる。
The supported amount (support rate) of the catalyst metal is not particularly limited, but is preferably 2 to 60% by weight when the weight of the catalyst precursor 1 (total weight of the conductive support and the catalyst metal) is 100% by weight. . By setting it as such a range, since aggregation of catalyst metals is suppressed and the increase in the thickness of an electrode catalyst layer can be suppressed, it is preferable. More preferably, it is 5 to 50 weight%. If it is in such a range, the balance between the dispersibility of the catalytic metal on the conductive support and the catalytic activity can be appropriately controlled. The amount of catalyst metal supported can be examined by a conventionally known method such as inductively coupled plasma emission spectrometry (ICP-atomic emission spectroscopy), inductively coupled plasma mass spectrometry (ICP mass-spectrometry), or fluorescent X-ray analysis (XRF). .
触媒前駆体1の製造方法(導電性担体への触媒金属の担持方法)は特に限定されず、従来公知の方法を用いることができる。例えば、液相還元法、蒸発乾固法、コロイド吸着法、噴霧熱分解法、逆ミセル(マイクロエマルジョン法)などの方法が使用できる。
The method for producing the catalyst precursor 1 (a method for supporting the catalyst metal on the conductive support) is not particularly limited, and a conventionally known method can be used. For example, methods such as a liquid phase reduction method, evaporation to dryness method, colloid adsorption method, spray pyrolysis method, reverse micelle (microemulsion method) can be used.
液相還元法の例としては、導電性担体の表面に触媒金属を析出させた後、熱処理を行う方法などが挙げられる。具体的には、例えば、触媒金属前駆体溶液に、導電性担体を浸漬して還元した後、熱処理を行う方法などが挙げられる。
Examples of the liquid phase reduction method include a method in which a catalytic metal is deposited on the surface of a conductive support and then heat treatment is performed. Specifically, for example, a method in which a conductive support is immersed in a catalyst metal precursor solution for reduction and then heat treatment is performed.
ここで、触媒金属前駆体としては、特に制限されず、使用される触媒金属の種類によって適宜選択される。具体的には、上記白金などの触媒金属の塩化物、硝酸塩、硫酸塩、塩化物、酢酸塩およびアミン化合物などが例示できる。より具体的には、塩化白金(ヘキサクロロ白金酸六水和物)、塩化パラジウム、塩化ロジウム、塩化ルテニウム、塩化コバルトなどの塩化物、硝酸パラジウム、硝酸ロジウム、硝酸イリジウムなどの硝酸塩、硫酸パラジウム、硫酸ロジウムなどの硫酸塩、酢酸ロジウムなどの酢酸塩、ジニトロジアンミン白金硝酸、ジニトロジアンミンパラジウムなどのアンミン化合物などが好ましく、例示される。また、触媒金属前駆体溶液の調製に使用される溶媒は、触媒金属前駆体を溶解できるものであれば特に制限されず、使用される触媒金属前駆体の種類によって適宜選択される。具体的には、水、酸、アルカリ、有機溶媒などが挙げられる。触媒金属前駆体溶液中の触媒金属前駆体の濃度は、特に制限されないが、金属換算で0.1重量%以上50重量%以下であることが好ましく、より好ましくは0.5重量%以上20重量%以下である。
Here, the catalyst metal precursor is not particularly limited and is appropriately selected depending on the type of catalyst metal used. Specific examples include chlorides, nitrates, sulfates, chlorides, acetates, and amine compounds of the catalyst metals such as platinum. More specifically, platinum chloride (hexachloroplatinic acid hexahydrate), palladium chloride, rhodium chloride, ruthenium chloride, cobalt chloride and other nitrates, palladium nitrate, rhodium nitrate, iridium nitrate and other nitrates, palladium sulfate, sulfuric acid Preferred examples include sulfates such as rhodium, acetates such as rhodium acetate, and ammine compounds such as dinitrodiammineplatinum nitrate and dinitrodiammine palladium. Moreover, the solvent used for preparation of a catalyst metal precursor solution will not be restrict | limited especially if a catalyst metal precursor can be melt | dissolved, According to the kind of catalyst metal precursor used, it selects suitably. Specifically, water, an acid, an alkali, an organic solvent, etc. are mentioned. The concentration of the catalyst metal precursor in the catalyst metal precursor solution is not particularly limited, but is preferably 0.1 wt% or more and 50 wt% or less, more preferably 0.5 wt% or more and 20 wt% in terms of metal. % Or less.
還元剤としては、水素、ヒドラジン、ホウ素化水素ナトリウム、チオ硫酸ナトリウム、クエン酸、クエン酸ナトリウム、L-アスコルビン酸、水素化ホウ素ナトリウム、ホルムアルデヒド、メタノール、エタノール、エチレン、一酸化炭素などが挙げられる。なお、水素などの常温でガス状の物質は、バブリングで供給することもできる。還元剤の量は、上記触媒金属前駆体を触媒金属に還元できる量であれば特に制限されず、公知の量を同様にして適用できる。
Examples of the reducing agent include hydrogen, hydrazine, sodium borohydride, sodium thiosulfate, citric acid, sodium citrate, L-ascorbic acid, sodium borohydride, formaldehyde, methanol, ethanol, ethylene, carbon monoxide and the like. . Note that a gaseous substance at room temperature such as hydrogen can be supplied by bubbling. The amount of the reducing agent is not particularly limited as long as it can reduce the catalyst metal precursor to the catalyst metal, and a known amount can be similarly applied.
析出条件は、触媒金属が導電性担体上に析出されうる条件であれば特に制限されない。例えば、析出温度は、好ましくは溶媒の沸点付近(溶媒沸点±10℃、より好ましくは溶媒沸点±5℃)の温度であり、より好ましくは室温~100℃である。また、析出時間は、好ましくは1~10時間であり、より好ましくは2~8時間である。なお、上記析出工程は、必要であれば、撹拌、混合しながら行ってもよい。これにより、触媒金属前駆体が還元され、触媒金属が導電性担体上に生成する。
The deposition conditions are not particularly limited as long as the catalyst metal can be deposited on the conductive support. For example, the precipitation temperature is preferably around the boiling point of the solvent (solvent boiling point ± 10 ° C., more preferably solvent boiling point ± 5 ° C.), more preferably from room temperature to 100 ° C. The deposition time is preferably 1 to 10 hours, more preferably 2 to 8 hours. In addition, you may perform the said precipitation process, stirring and mixing if necessary. As a result, the catalytic metal precursor is reduced, and catalytic metal is generated on the conductive support.
熱処理条件としては、例えば、熱処理温度は、好ましくは300~1200℃であり、より好ましくは500~1150℃であり、さらにより好ましくは700~1000℃である。また、熱処理時間は、好ましくは0.02~3時間であり、より好ましくは0.1~2時間であり、さらにより好ましくは0.2~1.5時間である。なお、触媒金属前駆体の還元促進効果の観点から、熱処理工程は、水素ガスを含む雰囲気下、より好ましくは水素雰囲気下で行うことが好ましい。
As the heat treatment conditions, for example, the heat treatment temperature is preferably 300 to 1200 ° C., more preferably 500 to 1150 ° C., and still more preferably 700 to 1000 ° C. The heat treatment time is preferably 0.02 to 3 hours, more preferably 0.1 to 2 hours, and even more preferably 0.2 to 1.5 hours. From the viewpoint of the effect of promoting the reduction of the catalytic metal precursor, the heat treatment step is preferably performed in an atmosphere containing hydrogen gas, more preferably in a hydrogen atmosphere.
または、触媒金属を予め作製してから導電性担体に担持させることによって、触媒前駆体1を作製してもよい。この方法の場合、特殊な形態を有する高活性な触媒金属を、その活性を保持したまま、導電性担体に担持させることができる。
Alternatively, the catalyst precursor 1 may be manufactured by preparing a catalyst metal in advance and then supporting it on a conductive carrier. In the case of this method, a highly active catalytic metal having a special form can be supported on a conductive support while maintaining its activity.
または、触媒前駆体1は市販品を使用してもよい。具体的には、田中貴金属工業株式会社製の白金触媒(例えば、TEC10E40E、TEC10E50E、TEC10E50E-HT、TEC10E60TPM、TEC10E70TPM、TEC10V30E、TEC10V40E、TEC10V50Eなど)、田中貴金属工業株式会社製の白金・ルテニウム触媒(例えば、TEC66E50、TEC61E54、TEC62E58)、ジョンソンマッセー社製の白金触媒(例えば、HiSPECシリーズなど)、石福金属興業株式会社製の白金触媒などが挙げられる。
Alternatively, a commercially available catalyst precursor 1 may be used. Specifically, a platinum catalyst manufactured by Tanaka Kikinzoku Kogyo Co., Ltd. (for example, TEC10E40E, TEC10E50E, TEC10E50E-HT, TEC10E60TPM, TEC10E70TPM, TEC10V40E, TEC10V40E, TEC10V50E, etc.), platinum / ruthenium catalyst manufactured by Tanaka Kikinzoku Kogyo Co., Ltd. TEC66E50, TEC61E54, TEC62E58), a platinum catalyst manufactured by Johnson Massey (for example, HiSPEC series), a platinum catalyst manufactured by Ishifuku Metal Industry Co., Ltd., and the like.
[工程(b)]
本工程では、上記工程(a)で準備した触媒前駆体1を、白金含有触媒金属に吸着する無機物で被覆して、触媒前駆体2を準備する。本工程により、触媒前駆体1、特に触媒金属は、無機物で被覆された触媒前駆体2が得られる。 [Step (b)]
In this step, thecatalyst precursor 1 prepared in the step (a) is coated with an inorganic substance adsorbed on the platinum-containing catalyst metal to prepare the catalyst precursor 2. By this step, the catalyst precursor 1, particularly the catalyst metal 2, in which the catalyst metal is coated with an inorganic substance, is obtained.
本工程では、上記工程(a)で準備した触媒前駆体1を、白金含有触媒金属に吸着する無機物で被覆して、触媒前駆体2を準備する。本工程により、触媒前駆体1、特に触媒金属は、無機物で被覆された触媒前駆体2が得られる。 [Step (b)]
In this step, the
無機物は、触媒金属を構成する金属に対して吸着性を有するものであればよいが、触媒金属を構成する金属(特に白金)に対して選択的に吸着するものが好ましい。触媒金属を構成する金属(特に白金)に対する高い選択吸着性などを考慮すると、具体的には、無機物としては、以下に特に制限されないが、一酸化炭素;ヨウ素(イオン形態を含む)、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化カリウム、ヨウ化セシウムなどの金属ヨウ化物等のヨウ素化合物;ならびに臭素(イオン形態を含む)、臭化ナトリウム、臭化カリウム、臭化セシウムなどの金属臭化物等の臭素化合物などが挙げられる。ここで、無機物は、単独で使用されてもまたは2種以上の混合物の形態で使用されてもよい。これらのうち、無機物は、ヨウ素化合物、臭素化合物および一酸化炭素であることが好ましい。すなわち、本発明の好ましい形態によると、無機物は、ヨウ素化合物、臭素化合物および一酸化炭素からなる群より選択される少なくとも一種である。より好ましくは、無機物は、ヨウ素化合物および臭素化合物からなる群より選択される少なくとも一種である。特に好ましくは、無機物は、ヨウ素(ヨウ素イオンを含む)および臭素(臭素イオンを含む)からなる群より選択される少なくとも一種である。このような無機物は、触媒金属(特に白金)に対して、特異的に化学吸着できるため、電荷相互作用の影響により、触媒金属に強く吸着できる。ゆえに、次工程(c)において、触媒前駆体2を電解質と混合した際に、無機物が触媒金属と電解質との間により効率的に介在する。このため、下記工程(d)により、電解質による触媒金属の被覆をより有効に低減して、触媒活性(特にORR比活性)をより有効に向上できる。
The inorganic substance is not particularly limited as long as it has an adsorptivity to the metal constituting the catalyst metal, but an inorganic substance that selectively adsorbs to the metal (particularly platinum) constituting the catalyst metal is preferable. Considering the high selective adsorption property to the metal (especially platinum) constituting the catalyst metal, specifically, the inorganic substance is not particularly limited to the following, but is carbon monoxide; iodine (including ionic form), iodide Iodine compounds such as metal iodides such as lithium, sodium iodide, potassium iodide and cesium iodide; and bromine such as bromides (including ionic forms), metal bromides such as sodium bromide, potassium bromide and cesium bromide Compound etc. are mentioned. Here, the inorganic substance may be used alone or in the form of a mixture of two or more. Among these, it is preferable that an inorganic substance is an iodine compound, a bromine compound, and carbon monoxide. That is, according to a preferred embodiment of the present invention, the inorganic substance is at least one selected from the group consisting of iodine compounds, bromine compounds, and carbon monoxide. More preferably, the inorganic substance is at least one selected from the group consisting of iodine compounds and bromine compounds. Particularly preferably, the inorganic substance is at least one selected from the group consisting of iodine (including iodine ions) and bromine (including bromine ions). Since such an inorganic substance can be specifically chemically adsorbed to the catalyst metal (particularly platinum), it can be strongly adsorbed to the catalyst metal due to the influence of the charge interaction. Therefore, in the next step (c), when the catalyst precursor 2 is mixed with the electrolyte, the inorganic substance is more efficiently interposed between the catalyst metal and the electrolyte. For this reason, the catalyst metal (especially ORR specific activity) can be more effectively improved by more effectively reducing the coating of the catalyst metal with the electrolyte by the following step (d).
本形態では、無機物は、水溶液中で電離し得る化合物から選択されることが好ましい。このように、無機物が水溶液中で電離することによって、静電相互作用により無機物はより強く触媒前駆体1(特に触媒金属)に吸着できる。当該形態は、触媒前駆体1を無機物溶液の中に浸漬することにより、触媒前駆体1を無機物で被覆する際に特に有効である。ゆえに、次工程(c)において、触媒前駆体2を電解質と混合した際に、無機物が触媒金属と電解質との間により効率的に介在する。このため、下記工程(d)により、電解質による触媒金属の被覆をより有効に低減して、触媒活性(特にORR比活性)をより有効に向上できる。上記観点からは、無機物は、ヨウ素化合物および臭素化合物からなる群より選択される少なくとも一種である。特に好ましくは、無機物は、ヨウ素(ヨウ素イオンを含む)および臭素(臭素イオンを含む)からなる群より選択される少なくとも一種である。
In this embodiment, the inorganic substance is preferably selected from compounds that can be ionized in an aqueous solution. Thus, when an inorganic substance ionizes in aqueous solution, an inorganic substance can adsorb | suck more strongly to the catalyst precursor 1 (especially catalyst metal) by an electrostatic interaction. The said form is especially effective when coat | covering the catalyst precursor 1 with an inorganic substance by immersing the catalyst precursor 1 in an inorganic substance solution. Therefore, in the next step (c), when the catalyst precursor 2 is mixed with the electrolyte, the inorganic substance is more efficiently interposed between the catalyst metal and the electrolyte. For this reason, the catalyst metal (especially ORR specific activity) can be more effectively improved by more effectively reducing the coating of the catalyst metal with the electrolyte by the following step (d). From the above viewpoint, the inorganic substance is at least one selected from the group consisting of iodine compounds and bromine compounds. Particularly preferably, the inorganic substance is at least one selected from the group consisting of iodine (including iodine ions) and bromine (including bromine ions).
上記触媒前駆体1の無機物による被覆方法は、特に制限されないが、触媒前駆体1を被覆剤と混合することによることが好ましい。すなわち、本発明は、白金含有触媒金属を導電性担体に担持してなる触媒前駆体1を準備し、前記触媒前駆体1を白金含有触媒金属に吸着する被覆剤と混合することを有する、本発明の触媒前駆体の製造方法をも提供する(第3の態様)。ここで、被覆剤としては、触媒金属を構成する金属に対して吸着性を有するものであればよく、無機化合物または有機化合物であってもよい。被覆剤は、触媒金属を構成する金属(特に白金)に対して選択的に吸着するものが好ましい。触媒金属を構成する金属(特に白金)に対する高い選択吸着性などを考慮すると、具体的には、以下に特に制限されないが、一酸化炭素、ヨウ素、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化カリウム、ヨウ化セシウム等のヨウ素化合物、臭素、臭化ナトリウム、臭化カリウム、臭化セシウム等の臭素化合物などの無機化合物、テトラアルキルアンモニウムヨーダイド、ピリジニウムヨーダイド、イミダゾリウムヨーダイド等の第4級アンモニウム化合物のヨウ素塩、ならびにテトラアルキルアンモニウムブロミド、ピリジニウムブロミド、イミダゾリウムブロミド等の第4級アンモニウム化合物の臭素塩などの有機化合物などが挙げられる。上記被覆剤は、単独で使用されてもまたは2種以上の混合物の形態で使用されてもよい。これらのうち、被覆剤は、無機化合物であることが好ましく、ヨウ素化合物、臭素化合物および一酸化炭素であることがより好ましい。すなわち、本発明の好ましい形態によると、被覆剤は、ヨウ素化合物、臭素化合物および一酸化炭素からなる群より選択される少なくとも一種である。より好ましくは、被覆剤は、ヨウ素化合物および臭素化合物からなる群より選択される少なくとも一種である。特に好ましくは、被覆剤は、ヨウ化ナトリウム、ヨウ化カリウム、臭化ナトリウムおよび臭化カリウムからなる群より選択される少なくとも一種である。このような被覆剤は、触媒金属(特に白金)に対して、特異的に化学吸着できるため、電荷相互作用の影響により、触媒金属に強く吸着できる。ゆえに、次工程(c)において、触媒前駆体2を電解質と混合した際に、被覆剤が触媒金属と電解質との間により効率的に介在する。このため、下記工程(d)により、電解質による触媒金属の被覆をより有効に低減して、触媒活性(特にORR比活性)をより有効に向上できる。なお、触媒前駆体1を被覆剤と混合して、触媒前駆体1(特に触媒金属が)が無機物で被覆された触媒前駆体2が得られる。この際、触媒前駆体1の無機物による被覆形態は、無機物と被覆剤は同じ場合および異なる場合双方を包含する。例えば、下記実施例によるように、ヨウ化ナトリウムを被覆剤として使用して触媒前駆体1を被覆した場合は、還元されたヨウ素(I)またはヨウ化物イオン(I-)が無機物として触媒前駆体1を被覆すると推測される。
The method for coating the catalyst precursor 1 with an inorganic substance is not particularly limited, but it is preferable to mix the catalyst precursor 1 with a coating agent. That is, the present invention comprises preparing a catalyst precursor 1 formed by supporting a platinum-containing catalyst metal on a conductive support, and mixing the catalyst precursor 1 with a coating agent that adsorbs the platinum-containing catalyst metal. A method for producing the catalyst precursor of the invention is also provided (third aspect). Here, the coating agent is not particularly limited as long as it has adsorptivity to the metal constituting the catalyst metal, and may be an inorganic compound or an organic compound. The coating agent is preferably one that selectively adsorbs to the metal (particularly platinum) constituting the catalyst metal. In view of the high selective adsorption property to the metal (particularly platinum) constituting the catalyst metal, specifically, although not particularly limited to the following, carbon monoxide, iodine, lithium iodide, sodium iodide, potassium iodide, Iodine compounds such as cesium iodide, inorganic compounds such as bromine compounds such as bromine, sodium bromide, potassium bromide and cesium bromide, quaternary ammoniums such as tetraalkylammonium iodide, pyridinium iodide, imidazolium iodide Examples include iodine salts of compounds, and organic compounds such as bromine salts of quaternary ammonium compounds such as tetraalkylammonium bromide, pyridinium bromide, and imidazolium bromide. The said coating agent may be used independently or may be used with the form of 2 or more types of mixtures. Of these, the coating agent is preferably an inorganic compound, and more preferably an iodine compound, a bromine compound, and carbon monoxide. That is, according to a preferred embodiment of the present invention, the coating agent is at least one selected from the group consisting of iodine compounds, bromine compounds, and carbon monoxide. More preferably, the coating agent is at least one selected from the group consisting of iodine compounds and bromine compounds. Particularly preferably, the coating agent is at least one selected from the group consisting of sodium iodide, potassium iodide, sodium bromide and potassium bromide. Since such a coating agent can be specifically chemically adsorbed to a catalyst metal (particularly platinum), it can be strongly adsorbed to the catalyst metal due to the influence of charge interaction. Therefore, in the next step (c), when the catalyst precursor 2 is mixed with the electrolyte, the coating agent is more efficiently interposed between the catalyst metal and the electrolyte. For this reason, the catalyst metal (especially ORR specific activity) can be more effectively improved by more effectively reducing the coating of the catalyst metal with the electrolyte by the following step (d). The catalyst precursor 1 is mixed with a coating agent to obtain the catalyst precursor 2 in which the catalyst precursor 1 (particularly the catalyst metal) is coated with an inorganic substance. At this time, the coating form of the catalyst precursor 1 with an inorganic material includes both cases where the inorganic material and the coating agent are the same and different. For example, when the catalyst precursor 1 is coated using sodium iodide as a coating agent as in the following examples, the reduced iodine (I) or iodide ion (I − ) is converted into an inorganic substance as the catalyst precursor. 1 is assumed to be coated.
本形態では、被覆剤は、水溶液中で電離し得る化合物から選択されることが好ましい。このように、被覆剤が水溶液中で電離することによって、静電相互作用により被覆剤(ゆえに無機物)はより強く触媒前駆体1(特に触媒金属)に吸着できる。当該形態は、触媒前駆体1を被覆剤溶液の中に浸漬することにより、触媒前駆体1を無機物で被覆する際に特に有効である。ゆえに、次工程(c)において、触媒前駆体2を電解質と混合した際に、無機物が触媒金属と電解質との間により効率的に介在する。このため、下記工程(d)により、電解質による触媒金属の被覆をより有効に低減して、触媒活性(特にORR比活性)をより有効に向上できる。上記観点からは、被覆剤は、ヨウ化ナトリウム、ヨウ化カリウム、臭化ナトリウムおよび臭化カリウムからなる群より選択される少なくとも一種であることが特に好ましい。
In this embodiment, the coating agent is preferably selected from compounds that can be ionized in an aqueous solution. As described above, when the coating agent is ionized in the aqueous solution, the coating agent (and hence the inorganic substance) can be more strongly adsorbed to the catalyst precursor 1 (particularly the catalyst metal) by electrostatic interaction. This form is particularly effective when the catalyst precursor 1 is coated with an inorganic substance by immersing the catalyst precursor 1 in a coating solution. Therefore, in the next step (c), when the catalyst precursor 2 is mixed with the electrolyte, the inorganic substance is more efficiently interposed between the catalyst metal and the electrolyte. For this reason, the catalyst metal (especially ORR specific activity) can be more effectively improved by more effectively reducing the coating of the catalyst metal with the electrolyte by the following step (d). From the above viewpoint, the coating agent is particularly preferably at least one selected from the group consisting of sodium iodide, potassium iodide, sodium bromide and potassium bromide.
触媒前駆体1を無機物で被覆する方法は、特に制限されず、通常の被覆方法を同様にしてまたは適宜修正して起用できる。具体的には、触媒前駆体1を被覆剤溶液の中に浸漬する方法;被覆剤溶液をスクリーン印刷法、沈積法やスプレー法等の公知の手段で触媒前駆体1に塗布する方法;(特に無機物が一酸化炭素である場合には)ガス状の被覆剤を含む雰囲気中に触媒前駆体1を置く方法などが挙げられる。これらのうち、より均一な被覆、操作のしやすさなどを考慮すると、触媒前駆体1を被覆剤溶液の中に浸漬する方法が好ましい。
The method for coating the catalyst precursor 1 with an inorganic material is not particularly limited, and a normal coating method can be used in the same manner or appropriately modified. Specifically, a method in which the catalyst precursor 1 is immersed in a coating solution; a method in which the coating solution is applied to the catalyst precursor 1 by a known means such as a screen printing method, a deposition method, or a spray method; Examples thereof include a method in which the catalyst precursor 1 is placed in an atmosphere containing a gaseous coating agent (when the inorganic substance is carbon monoxide). Among these, in consideration of more uniform coating and ease of operation, a method of immersing the catalyst precursor 1 in a coating solution is preferable.
上記したように、被覆剤を溶液の形態で使用する場合に使用できる溶媒は、被覆剤を溶解できるものであれば特に制限されず、被覆剤の種類に応じて適宜選択できる。具体的には、蒸留水、イオン交換水、純水、超純水等の水;アセトニトリル、メトキシアセトニトリル、プロピオニトリル等のニトリル類;エチレンカーボネート等のカーボネート類;ジエチルエーテル、テトラヒドロフラン等のエーテル類;メタノール、エタノール、プロパノール、イソプロパノール等のアルコールなどが挙げられる。ここで、被覆剤の濃度は、特に制限されないが、通常、0.1~1(w/v)%程度である。
As described above, the solvent that can be used when the coating agent is used in the form of a solution is not particularly limited as long as it can dissolve the coating agent, and can be appropriately selected according to the type of the coating agent. Specifically, water such as distilled water, ion-exchanged water, pure water, and ultrapure water; nitriles such as acetonitrile, methoxyacetonitrile, and propionitrile; carbonates such as ethylene carbonate; ethers such as diethyl ether and tetrahydrofuran Alcohols such as methanol, ethanol, propanol, isopropanol and the like can be mentioned. Here, the concentration of the coating agent is not particularly limited, but is usually about 0.1 to 1 (w / v)%.
また、被覆剤の添加量は、触媒前駆体1(特に触媒金属)を十分被覆できる量であれば特に制限されない。通常、触媒金属を構成する金属のうち無機物が吸着する金属1原子(例えば、Pt 1モル)に対して、無機物1モルが結合する。このため、被覆剤の添加量は、無機物(被覆剤)が吸着する金属と実質的に反応当量以上であることが好ましい。具体的には、被覆剤を、無機物(被覆剤)が吸着する触媒金属1モルに対して、好ましくは1~2モル、より好ましくは1モルを超えて1.5モル以下の割合で、触媒前駆体1と混合することが好ましい。このため、例えば、触媒金属が白金単独である場合には、被覆剤を、触媒前駆体1を構成する白金1モルに対して、上記したような割合で混合することが好ましい。また、金属への無機物の吸着形態によっては、金属2原子や3原子(2または3モル)に対して被覆剤1モルが吸着する場合もある。その場合、反応比率に対して上述の1~2倍を乗じた被覆剤を添加すると良い。なお、2種以上の被覆剤を使用する場合には、上記被覆剤の添加(混合)量はこれらの合計量である。
Further, the amount of the coating agent added is not particularly limited as long as it is an amount that can sufficiently cover the catalyst precursor 1 (particularly the catalyst metal). Usually, 1 mol of the inorganic substance is bonded to one metal atom (for example, 1 mol of Pt) adsorbed by the inorganic substance among the metals constituting the catalyst metal. For this reason, it is preferable that the addition amount of a coating agent is substantially more than a reaction equivalent with the metal which an inorganic substance (coating agent) adsorb | sucks. Specifically, the coating agent is preferably used in an amount of 1 to 2 moles, more preferably more than 1 mole and 1.5 moles or less with respect to 1 mole of the catalyst metal adsorbed by the inorganic substance (coating agent). It is preferable to mix with the precursor 1. For this reason, for example, when the catalyst metal is platinum alone, it is preferable to mix the coating agent at a ratio as described above with respect to 1 mol of platinum constituting the catalyst precursor 1. Moreover, 1 mol of coating agents may adsorb | suck with respect to metal 2 atom or 3 atom (2 or 3 mol) depending on the adsorption | suction form of the inorganic substance to a metal. In that case, a coating agent obtained by multiplying the reaction ratio by the above 1-2 times may be added. In addition, when using 2 or more types of coating agents, the addition (mixing) amount of the said coating agent is these total amounts.
触媒前駆体1の被覆剤による被覆条件(例えば、浸漬条件)は、触媒前駆体1(特に触媒金属)を無機物で十分被覆できる量であれば特に制限されない。例えば、被覆(例えば、浸漬)温度は、好ましくは10~50℃であり、より好ましくは15~40℃である。また、被覆(例えば、浸漬)時間は、好ましくは10分~10時間であり、より好ましくは30分~2時間である。なお、触媒前駆体1を被覆剤溶液の中に浸漬する場合には、被覆剤溶液を撹拌してもよい。
The coating conditions (for example, immersion conditions) of the catalyst precursor 1 with the coating agent are not particularly limited as long as the catalyst precursor 1 (particularly the catalyst metal) can be sufficiently coated with an inorganic substance. For example, the coating (for example, immersion) temperature is preferably 10 to 50 ° C., more preferably 15 to 40 ° C. The coating (for example, dipping) time is preferably 10 minutes to 10 hours, more preferably 30 minutes to 2 hours. In addition, when the catalyst precursor 1 is immersed in a coating solution, the coating solution may be stirred.
触媒前駆体1の無機物による被覆は、酸性条件下で行うことが好ましい。すなわち、好ましい形態によると、触媒前駆体1の前記無機物による被覆を酸性条件下で行う、または触媒前駆体1と被覆剤との混合を酸性条件下で行う。これにより、触媒前駆体1(特に触媒金属)表面に付着している不純物を除去でき、不純物が少なくかつ平滑な表面を有する触媒前駆体1(特に触媒金属)が得られる。したがって、無機物がより直接的に触媒金属を覆うこととなり、緻密な被膜を有する触媒前駆体2が確実に得られる。本好ましい形態を達成する手段としては、特に制限されないが、例えば、酸性な被覆剤溶液を使用する。この際の被覆剤溶液(液温:25℃)のpHは、特に制限されないが、好ましくは1以上6未満であり、より好ましくは2~4である。このようなpHの被覆剤溶液を用いることにより、触媒金属の溶出は抑えつつ、触媒前駆体1(特に触媒金属)表面に付着している不純物をより効率よく除去できる。このため、無機物がさらにより直接的に触媒金属を被覆し、より緻密な被膜を有する触媒前駆体2が確実に得られる。また、被覆剤溶液を上記したような酸性溶液にするために使用できる酸としては、特に制限されないが、塩酸、硫酸、硝酸、過塩素酸(HClO4)などを挙げることができる。酸の添加量は、特に制限されないが、上記したような被覆剤溶液のpHをなるような量であることが好ましい。
The coating of the catalyst precursor 1 with an inorganic substance is preferably performed under acidic conditions. That is, according to a preferred embodiment, the catalyst precursor 1 is coated with the inorganic material under acidic conditions, or the catalyst precursor 1 and the coating agent are mixed under acidic conditions. Thereby, impurities adhering to the surface of the catalyst precursor 1 (especially catalyst metal) can be removed, and the catalyst precursor 1 (particularly catalyst metal) having a smooth surface with few impurities can be obtained. Therefore, the inorganic substance covers the catalyst metal more directly, and the catalyst precursor 2 having a dense film can be reliably obtained. The means for achieving this preferred form is not particularly limited, but for example, an acidic coating solution is used. The pH of the coating solution (liquid temperature: 25 ° C.) at this time is not particularly limited, but is preferably 1 or more and less than 6, and more preferably 2 to 4. By using a coating solution having such a pH, impurities adhering to the surface of the catalyst precursor 1 (particularly the catalyst metal) can be more efficiently removed while suppressing elution of the catalyst metal. For this reason, an inorganic substance coat | covers a catalyst metal more directly, and the catalyst precursor 2 which has a denser film is obtained reliably. The acid that can be used to make the coating solution into the acidic solution as described above is not particularly limited, and examples thereof include hydrochloric acid, sulfuric acid, nitric acid, and perchloric acid (HClO 4 ). The addition amount of the acid is not particularly limited, but is preferably an amount that makes the pH of the coating solution as described above.
上記したような被覆処理後は、必要であれば、触媒前駆体2を分離し、洗浄して、余分な無機物や(使用した場合には)酸を除去してもよい。ここで、触媒前駆体2の分離手段は特に制限されず、ろ過、遠心分離、デカンテーション等の公知方法が使用できる。また、触媒前駆体2の洗浄に使用される溶媒(洗浄液)は、特に制限されないが、上記無機物溶液の調製で例示した溶媒と同様にして使用できる。ここで、触媒前駆体2の洗浄に使用される溶媒(洗浄液)は、無機物溶液の調製で使用される溶媒と同じであってもまたは異なるものであってもよい。副反応の抑制、産業上の観点(用意する溶媒の簡略化)などの観点から、同じであることが好ましい。また、洗浄の際に、ホモジナイザー、超音波分散装置、マグネチックスターラーなどを用いて、触媒前駆体2を洗浄液中に撹拌・分散させてもよい。また、上記洗浄工程は、必要であれば、繰り返し行ってもよい。
After the coating treatment as described above, if necessary, the catalyst precursor 2 may be separated and washed to remove excess inorganic substances or acids (when used). Here, the separation means of the catalyst precursor 2 is not particularly limited, and known methods such as filtration, centrifugation, and decantation can be used. Further, the solvent (cleaning solution) used for cleaning the catalyst precursor 2 is not particularly limited, but can be used in the same manner as the solvent exemplified in the preparation of the inorganic solution. Here, the solvent (cleaning liquid) used for cleaning the catalyst precursor 2 may be the same as or different from the solvent used in the preparation of the inorganic solution. From the viewpoints of suppression of side reactions and industrial viewpoints (simplification of prepared solvent), the same is preferable. Further, at the time of cleaning, the catalyst precursor 2 may be stirred and dispersed in the cleaning liquid using a homogenizer, an ultrasonic dispersion device, a magnetic stirrer, or the like. Moreover, you may repeat the said washing | cleaning process as needed.
上記したような被覆処理後または洗浄工程後の触媒前駆体2は、必要であれば分離、乾燥してもよい。ここで、分離手段は上記と同様であるため、ここでは説明を省略する。また、乾燥条件としては、例えば、乾燥温度は、好ましくは20~80℃であり、より好ましくは40~60℃である。また、乾燥時間は、好ましくは15分~10時間である。
The catalyst precursor 2 after the coating treatment or the washing step as described above may be separated and dried if necessary. Here, since the separation means is the same as described above, the description thereof is omitted here. As drying conditions, for example, the drying temperature is preferably 20 to 80 ° C., more preferably 40 to 60 ° C. The drying time is preferably 15 minutes to 10 hours.
このようにして触媒前駆体1(特に触媒金属が)無機物で被覆された触媒前駆体2が得られる。当該形態の触媒前駆体2は、無機物による被膜により、外部の環境からの直接の影響を受けにくい。例えば、酸性環境下などにあっても、金属触媒の溶出を抑制できる(下記実施例参照)。すなわち、触媒前駆体2は、貯蔵安定性に優れる(保管中の劣化を抑制できる)。したがって、本発明は、白金含有触媒金属に吸着する無機物で被覆された白金含有触媒金属が導電性担体に担持されてなる触媒前駆体をも提供する(第2の態様)。ここで、触媒前駆体の無機物による被覆程度は、電解質と混合された際に触媒前駆体(特に触媒金属)と電解質との直接接触を十分抑制できる程度に触媒前駆体(特に触媒金属)が十分無機物で被覆されていればよい。具体的には、触媒前駆体は、白金の表面積が20%以上(上限:100%)の割合で無機物で被覆される。好ましくは、触媒前駆体は、白金の表面積が30~90%、より好ましくは40%を超えて70%未満の割合で無機物で被覆される。なお、上記触媒前駆体の被覆率は、下記実施例の[ヨウ素被覆割合の検証/触媒粉末]に記載される方法によって測定される値を採用する。なお、下記方法では、無機物がヨウ素であるが、他の無機物(無機化合物イオンを含む)であっても同様の方法で測定できることは、当業者であれば理解できる。
Thus, the catalyst precursor 1 (in particular, the catalyst metal) coated with the inorganic substance is obtained. The catalyst precursor 2 of the said form is hard to receive the direct influence from an external environment by the film by an inorganic substance. For example, elution of a metal catalyst can be suppressed even in an acidic environment (see the following examples). That is, the catalyst precursor 2 is excellent in storage stability (deterioration during storage can be suppressed). Therefore, the present invention also provides a catalyst precursor in which a platinum-containing catalyst metal coated with an inorganic substance adsorbed on a platinum-containing catalyst metal is supported on a conductive support (second aspect). Here, the catalyst precursor (particularly catalyst metal) is sufficiently coated to an extent that the direct contact between the catalyst precursor (particularly catalyst metal) and the electrolyte can be sufficiently suppressed when mixed with the electrolyte. What is necessary is just to be coat | covered with the inorganic substance. Specifically, the catalyst precursor is coated with an inorganic substance with a platinum surface area of 20% or more (upper limit: 100%). Preferably, the catalyst precursor is coated with the inorganic material in a proportion of 30-90% platinum surface area, more preferably more than 40% and less than 70%. In addition, the value measured by the method described in [Verification of iodine covering ratio / catalyst powder] in the following examples is adopted as the covering ratio of the catalyst precursor. In addition, in the following method, although an inorganic substance is iodine, those skilled in the art can understand that even if it is other inorganic substances (including inorganic compound ions), it can be measured by the same method.
なお、上記構成要件以外の第2及び第3の態様における各構成要件は、上記第1の態様と同様であるため、ここでは説明を省略する。
In addition, since each structural requirement in the 2nd and 3rd aspect other than the said structural requirement is the same as that of the said 1st aspect, description is abbreviate | omitted here.
[工程(c)]
本工程では、上記工程(b)で準備した触媒前駆体2を電解質と混合して、触媒前駆層を形成する。 [Step (c)]
In this step, the catalyst precursor 2 prepared in the above step (b) is mixed with an electrolyte to form a catalyst precursor layer.
本工程では、上記工程(b)で準備した触媒前駆体2を電解質と混合して、触媒前駆層を形成する。 [Step (c)]
In this step, the catalyst precursor 2 prepared in the above step (b) is mixed with an electrolyte to form a catalyst precursor layer.
ここで、電解質は、特に制限されないが、電極触媒の被覆されにくさの観点から、高分子(高分子電解質)であることが好ましい。
Here, the electrolyte is not particularly limited, but is preferably a polymer (polymer electrolyte) from the viewpoint of difficulty in covering the electrode catalyst.
高分子電解質は、特に限定されず従来公知の知見が適宜参照されうる。高分子電解質は、構成材料であるイオン交換樹脂の種類によって、フッ素系高分子電解質と炭化水素系高分子電解質とに大別される。これらのうち、フッ素系高分子電解質が好ましい。すなわち、電解質は、フッ素系高分子電解質であることが好ましい。
The polymer electrolyte is not particularly limited, and conventionally known knowledge can be appropriately referred to. Polymer electrolytes are roughly classified into fluorine-based polymer electrolytes and hydrocarbon-based polymer electrolytes depending on the type of ion exchange resin that is a constituent material. Of these, fluorine-based polymer electrolytes are preferred. That is, the electrolyte is preferably a fluorine-based polymer electrolyte.
フッ素系高分子電解質を構成するイオン交換樹脂としては、例えば、ナフィオン(登録商標、デュポン社製)、アシプレックス(登録商標、旭化成株式会社製)、フレミオン(登録商標、旭硝子株式会社製)などのパーフルオロカーボンスルホン酸系ポリマー、パーフルオロカーボンホスホン酸系ポリマー、トリフルオロスチレンスルホン酸系ポリマー、エチレンテトラフルオロエチレン-g-スチレンスルホン酸系ポリマー、エチレン-テトラフルオロエチレン共重合体、ポリビニリデンフルオリド-パーフルオロカーボンスルホン酸系ポリマーなどが挙げられる。耐熱性、化学的安定性、耐久性、機械強度に優れるという観点からは、これらのフッ素系高分子電解質が好ましく用いられ、特に好ましくはパーフルオロカーボンスルホン酸系ポリマーから構成されるフッ素系高分子電解質が用いられる。
Examples of the ion exchange resin constituting the fluorine-based polymer electrolyte include Nafion (registered trademark, manufactured by DuPont), Aciplex (registered trademark, manufactured by Asahi Kasei Co., Ltd.), Flemion (registered trademark, manufactured by Asahi Glass Co., Ltd.), and the like. Perfluorocarbon sulfonic acid polymer, perfluorocarbon phosphonic acid polymer, trifluorostyrene sulfonic acid polymer, ethylene tetrafluoroethylene-g-styrene sulfonic acid polymer, ethylene-tetrafluoroethylene copolymer, polyvinylidene fluoride-per Examples thereof include fluorocarbon sulfonic acid polymers. From the viewpoint of excellent heat resistance, chemical stability, durability, and mechanical strength, these fluorine-based polymer electrolytes are preferably used, and particularly preferably fluorine-based polymer electrolytes composed of perfluorocarbon sulfonic acid polymers. Is used.
炭化水素系高分子電解質として、具体的には、スルホン化ポリエーテルスルホン(S-PES)、スルホン化ポリアリールエーテルケトン、スルホン化ポリベンズイミダゾールアルキル、ホスホン化ポリベンズイミダゾールアルキル、スルホン化ポリスチレン、スルホン化ポリエーテルエーテルケトン(S-PEEK)、スルホン化ポリフェニレン(S-PPP)などが挙げられる。原料が安価で製造工程が簡便であり、かつ材料の選択性が高いといった製造上の観点からは、これらの炭化水素系高分子電解質が好ましく用いられる。なお、上述したイオン交換樹脂は、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。また、上述した材料のみに制限されず、その他の材料が用いられてもよい。
Specific examples of hydrocarbon polymer electrolytes include sulfonated polyethersulfone (S-PES), sulfonated polyaryletherketone, sulfonated polybenzimidazole alkyl, phosphonated polybenzimidazole alkyl, sulfonated polystyrene, sulfone. Polyether ether ketone (S-PEEK), sulfonated polyphenylene (S-PPP), and the like. These hydrocarbon polymer electrolytes are preferably used from the viewpoint of production such that the raw material is inexpensive, the production process is simple, and the selectivity of the material is high. In addition, as for the ion exchange resin mentioned above, only 1 type may be used independently and 2 or more types may be used together. Moreover, it is not restricted only to the material mentioned above, Other materials may be used.
高分子電解質は、燃料極側の触媒活物質周辺で発生したプロトンを伝達する役割を果たすことから、プロトン伝導性高分子とも呼ばれる。このため、プロトンの伝達を担う高分子電解質においては、プロトンの伝導度が重要となる。ここで、高分子電解質のEWが大きすぎる場合には触媒層全体でのイオン伝導性が低下する。したがって、本形態の触媒層は、EWの小さい高分子電解質を含むことが好ましい。具体的には、本形態の触媒層は、好ましくはEWが1500g/mol以下の高分子電解質を含み、より好ましくは1200g/mol以下の高分子電解質を含み、特に好ましくは1100g/mol以下の高分子電解質を含む。
The polymer electrolyte plays a role of transmitting protons generated around the catalyst active material on the fuel electrode side, and is also called a proton conductive polymer. For this reason, proton conductivity is important in polymer electrolytes responsible for proton transmission. Here, when the EW of the polymer electrolyte is too large, the ionic conductivity in the entire catalyst layer is lowered. Therefore, it is preferable that the catalyst layer of this embodiment contains a polymer electrolyte having a small EW. Specifically, the catalyst layer of the present embodiment preferably contains a polymer electrolyte having an EW of 1500 g / mol or less, more preferably a polymer electrolyte having 1200 g / mol or less, and particularly preferably a high electrolyte of 1100 g / mol or less. Contains molecular electrolytes.
一方、EWが小さすぎる場合には、親水性が高すぎて、水の円滑な移動が困難となる。かような観点から、高分子電解質のEWは600g/mol以上であることが好ましい。なお、EW(Equivalent Weight)は、プロトン伝導性を有する交換基の当量重量を表している。当量重量は、イオン交換基1当量あたりのイオン交換膜の乾燥重量であり、「g/mol」の単位で表される。
On the other hand, if the EW is too small, the hydrophilicity is too high and it becomes difficult to smoothly move water. From such a viewpoint, the EW of the polymer electrolyte is preferably 600 g / mol or more. Note that EW (Equivalent Weight) represents an equivalent weight of an exchange group having proton conductivity. The equivalent weight is the dry weight of the ion exchange membrane per equivalent of ion exchange group, and is expressed in units of “g / mol”.
また、触媒前駆層は、EWが異なる2種類以上の高分子電解質を発電面内に含み、この際、高分子電解質のうち最もEWが低い高分子電解質が流路内ガスの相対湿度が90%RH以下の領域に用いることが好ましい。このような材料配置を採用することにより、電流密度領域によらず、抵抗値が小さくなって、電池性能の向上を図ることができる。流路内ガスの相対湿度が90%RH以下の領域に用いる高分子電解質、すなわちEWが最も低い高分子電解質のEWとしては、900g/mol以下であることが望ましい。これにより、上述の効果がより確実、顕著なものとなる。
The catalyst precursor layer includes two or more types of polymer electrolytes having different EWs in the power generation surface. At this time, the polymer electrolyte having the lowest EW among the polymer electrolytes has a relative humidity of 90% in the gas in the flow path. It is preferable to use in the region below RH. By adopting such a material arrangement, the resistance value becomes small regardless of the current density region, and the battery performance can be improved. The polymer electrolyte used in the region where the relative humidity of the gas in the flow channel is 90% RH or less, that is, the EW of the polymer electrolyte having the lowest EW is desirably 900 g / mol or less. Thereby, the above-mentioned effect becomes more reliable and remarkable.
さらに、EWが最も低い高分子電解質を冷却水の入口と出口の平均温度よりも高い領域に用いることが望ましい。これによって、電流密度領域によらず、抵抗値が小さくなって、電池性能のさらなる向上を図ることができる。
Furthermore, it is desirable to use a polymer electrolyte with the lowest EW in a region higher than the average temperature of the cooling water inlet and outlet. As a result, the resistance value is reduced regardless of the current density region, and the battery performance can be further improved.
さらには、燃料電池システムの抵抗値を小さくするとする観点から、EWが最も低い高分子電解質は、流路長に対して燃料ガス及び酸化剤ガスの少なくとも一方のガス供給口から3/5以内の範囲の領域に用いることが望ましい。
Furthermore, from the viewpoint of reducing the resistance value of the fuel cell system, the polymer electrolyte having the lowest EW is within 3/5 from the gas supply port of at least one of the fuel gas and the oxidant gas with respect to the flow path length. It is desirable to use it in the range area.
触媒前駆層には、必要に応じて、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体などの撥水剤、界面活性剤などの分散剤、グリセリン、エチレングリコール(EG)、ポリビニルアルコール(PVA)、プロピレングリコール(PG)などの増粘剤、造孔剤等の添加剤が含まれていても構わない。
If necessary, the catalyst precursor layer may be a water repellent such as polytetrafluoroethylene, polyhexafluoropropylene or tetrafluoroethylene-hexafluoropropylene copolymer, a dispersant such as a surfactant, glycerin, ethylene glycol ( Additives such as thickeners such as EG), polyvinyl alcohol (PVA), and propylene glycol (PG), and pore-forming agents may be included.
また、本発明の触媒前駆層に含まれる電解質は、本発明の作用効果を損なわない範囲内で、非高分子を含んでもよい。当該非高分子は、重量平均分子量(Mw)が10,000以下の低分子量化合物、例えば、ナフィオン(登録商標)等の高分子電解質の原料(例えば、モノマー)や中間生成物(例えば、オリゴマー)等を含むが、これに制限されない。
Further, the electrolyte contained in the catalyst precursor layer of the present invention may contain a non-polymer within a range that does not impair the effects of the present invention. The non-polymer is a low molecular weight compound having a weight average molecular weight (Mw) of 10,000 or less, for example, a raw material (for example, a monomer) or an intermediate product (for example, an oligomer) of a polymer electrolyte such as Nafion (registered trademark). Etc., but is not limited to this.
触媒前駆層の製造方法は、特に制限されず、例えば、触媒前駆体2、電解質、溶剤および必要に応じてその他の添加剤を混合して触媒インクを調製し、これを塗布および乾燥することで得られる。
The method for producing the catalyst precursor layer is not particularly limited. For example, a catalyst ink is prepared by mixing the catalyst precursor 2, an electrolyte, a solvent, and other additives as required, and this is applied and dried. can get.
触媒インクにおける電解質の配合量は、特に制限されないが、触媒前駆体2中の導電性担体 1重量部に対して、0.1重量部以上2重量部以下であることが好ましく、0.2重量部以上1.5重量部以下であることがより好ましい。
The amount of the electrolyte in the catalyst ink is not particularly limited, but is preferably 0.1 parts by weight or more and 2 parts by weight or less with respect to 1 part by weight of the conductive carrier in the catalyst precursor 2, and 0.2 weight. More preferably, it is at least 1.5 parts by weight.
触媒インクの調製に用いられる溶剤としては、触媒前駆体2および電解質を均一に分散あるいは溶解でき、かつ塗布後に除去可能なものであれば特に制限されない。具体的には、水、n-ヘキサノール、シクロヘキサノール、メタノール、エタノール、1-プロパノール(n-プロピルアルコール)、イソプロパノール、n-ブタノール、sec-ブタノール、イソブタノール、およびtert-ブタノールなどの炭素数1~4の低級アルコール、プロピレングリコール、ベンゼン、トルエン、キシレンなどが挙げられる。これらの他にも、酢酸ブチルアルコール、ジメチルエーテル、エチレングリコールなどが挙げられる。これらは、1種を単独で使用してもあるいは2種以上の混合液の状態で使用してもよい。
The solvent used for preparing the catalyst ink is not particularly limited as long as the catalyst precursor 2 and the electrolyte can be uniformly dispersed or dissolved and can be removed after coating. Specifically, water, n-hexanol, cyclohexanol, methanol, ethanol, 1-propanol (n-propyl alcohol), isopropanol, n-butanol, sec-butanol, isobutanol, tert-butanol, etc. -4 lower alcohols, propylene glycol, benzene, toluene, xylene and the like. Besides these, butyl alcohol acetate, dimethyl ether, ethylene glycol, and the like can be given. These may be used alone or in the form of a mixture of two or more.
触媒インクの固形分濃度(インクにおける触媒前駆体2及び電解質との合計濃度)は、特に制限されないが、好ましくは1~50重量%、より好ましくは5~30重量%程度とするのが好ましい。
The solid concentration of the catalyst ink (total concentration of the catalyst precursor 2 and the electrolyte in the ink) is not particularly limited, but is preferably about 1 to 50% by weight, more preferably about 5 to 30% by weight.
触媒インクには、必要に応じて、撥水剤、分散剤、増粘剤、造孔剤などの添加剤を混合してもよい。これらの添加剤を使用する場合、その添加量は、それぞれ、触媒インクの全量に対して、好ましくは5~20重量%である。
In the catalyst ink, additives such as a water repellent, a dispersant, a thickener, and a pore-forming agent may be mixed as necessary. When these additives are used, the amount added is preferably 5 to 20% by weight based on the total amount of the catalyst ink.
また、触媒インクは、上記所望の成分を混合した後、必要であれば、良好に混合するための混合促進工程を別途設けてもよい。ここで、混合促進工程としては、特に制限されないが、触媒インクを超音波ホモジナイザーでよく分散する、あるいは、触媒インクをサンドグラインダー、循環式ボールミル、循環式ビーズミルなどの装置でよく粉砕させた後、減圧脱泡操作、ハイブリッドミキサーなどを用いて脱泡操作などの脱泡処理を行うことなどが好ましく挙げられる。
In addition, the catalyst ink may be separately provided with a mixing promoting step for mixing well after mixing the above desired components, if necessary. Here, the mixing promotion step is not particularly limited, but the catalyst ink is well dispersed with an ultrasonic homogenizer, or the catalyst ink is well pulverized with an apparatus such as a sand grinder, a circulating ball mill, or a circulating bead mill. Preferable examples include a defoaming operation such as a defoaming operation using a vacuum degassing operation or a hybrid mixer.
次に、基材の表面に触媒インクを塗布する。基材への塗布方法は、特に制限されず、公知の方法を使用できる。具体的には、スプレー(スプレー塗布)法、ガリバー印刷法、ダイコーター法、スクリーン印刷法、ドクターブレード法など、公知の方法を用いて行うことができる。
Next, a catalyst ink is applied to the surface of the substrate. The application method to the substrate is not particularly limited, and a known method can be used. Specifically, it can be performed using a known method such as a spray (spray coating) method, a gulliver printing method, a die coater method, a screen printing method, or a doctor blade method.
この際、触媒インクを塗布する基材としては、下記に詳述する固体高分子電解質膜(電解質層)やガス拡散基材(ガス拡散層)を使用することができる。かような場合には、固体高分子電解質膜(電解質層)またはガス拡散基材(ガス拡散層)の表面に触媒前駆層を形成した後、得られた積層体をそのまま膜電極接合体の製造に利用することができる。あるいは、基材としてポリテトラフルオロエチレン(PTFE)[テフロン(登録商標)]シート等の剥離可能な基材を使用し、基材上に触媒前駆層を形成した後に基材から触媒前駆層部分を剥離することにより、触媒前駆層を得てもよい。
In this case, as the base material to which the catalyst ink is applied, a solid polymer electrolyte membrane (electrolyte layer) or a gas diffusion base material (gas diffusion layer) described in detail below can be used. In such a case, a catalyst precursor layer is formed on the surface of a solid polymer electrolyte membrane (electrolyte layer) or a gas diffusion base material (gas diffusion layer), and then the obtained laminate is used as it is to produce a membrane electrode assembly. Can be used. Alternatively, a peelable substrate such as a polytetrafluoroethylene (PTFE) [Teflon (registered trademark)] sheet is used as the substrate, and after the catalyst precursor layer is formed on the substrate, the catalyst precursor layer portion is removed from the substrate. The catalyst precursor layer may be obtained by peeling.
最後に、触媒インクの塗布層(膜)を、空気雰囲気下あるいは不活性ガス雰囲気下、室温(25℃)~150℃で、1~60分間、乾燥する。これにより、触媒前駆層が形成される。
Finally, the coating layer (film) of the catalyst ink is dried at room temperature (25 ° C.) to 150 ° C. for 1 to 60 minutes in an air atmosphere or an inert gas atmosphere. Thereby, a catalyst precursor layer is formed.
このようにして形成された触媒前駆層では、触媒前駆体2(特に触媒金属が)の少なくとも一部が無機物で被覆されている。上述したように、触媒前駆体2は、無機物による被膜により、外部の環境からの直接の影響を受けにくい。例えば、酸性環境下などにあっても、金属触媒の溶出を抑制できる(下記実施例参照)。このため、触媒前駆体2を含む触媒前駆層もまた、貯蔵安定性に優れる(保管中の劣化を抑制できる)。したがって、本発明は、本発明の触媒前駆体および電解質を含む触媒前駆層をも提供する(第4の態様)。ここで、触媒前駆層における無機物による被覆程度は、層中で触媒前駆体(特に触媒金属)と電解質との直接接触を十分抑制できる程度であればよい。具体的には、触媒前駆層において触媒前駆体は、白金の表面積が20%以上(上限:100%)の割合で無機物で被覆される。好ましくは、触媒前駆層において、触媒前駆体は、白金の表面積が30~100%、より好ましくは50%を超えて100以下%の割合で無機物で被覆される。なお、上記触媒前駆体の被覆率は、下記実施例の[ヨウ素被覆割合の検証/触媒層]に記載される方法によって測定される値を採用する。なお、下記方法では、無機物がヨウ素であるが、他の無機物(無機化合物イオンを含む)であっても同様の方法で測定できることは、当業者であれば理解できる。なお、工程(b)から(c)にかけて無機物は添加しないので、触媒前駆層の無機物による被覆率は、上記第2の態様で規定した触媒前駆体の無機物による被覆率と実質的に同じである。
In the catalyst precursor layer thus formed, at least a part of the catalyst precursor 2 (especially the catalyst metal) is coated with an inorganic substance. As described above, the catalyst precursor 2 is not easily affected by the external environment due to the inorganic coating. For example, elution of a metal catalyst can be suppressed even in an acidic environment (see the following examples). For this reason, the catalyst precursor layer containing the catalyst precursor 2 is also excellent in storage stability (deterioration during storage can be suppressed). Therefore, this invention also provides the catalyst precursor layer containing the catalyst precursor and electrolyte of this invention (4th aspect). Here, the coating degree with the inorganic substance in the catalyst precursor layer may be such that direct contact between the catalyst precursor (particularly the catalyst metal) and the electrolyte can be sufficiently suppressed in the layer. Specifically, in the catalyst precursor layer, the catalyst precursor is coated with an inorganic substance at a ratio of platinum surface area of 20% or more (upper limit: 100%). Preferably, in the catalyst precursor layer, the catalyst precursor is coated with an inorganic substance at a platinum surface area of 30 to 100%, more preferably more than 50% and 100% or less. In addition, the value measured by the method described in [Verification of iodine coating ratio / catalyst layer] in the following examples is adopted as the coverage of the catalyst precursor. In addition, in the following method, although an inorganic substance is iodine, those skilled in the art can understand that even if it is other inorganic substances (including inorganic compound ions), it can be measured by the same method. In addition, since an inorganic substance is not added from step (b) to (c), the coverage ratio of the catalyst precursor layer with the inorganic substance is substantially the same as the coverage ratio of the catalyst precursor with the inorganic substance defined in the second aspect. .
また、上記構成要件以外の第4の態様における各構成要件は、上記第1の態様と同様であるため、ここでは説明を省略する。
In addition, since each constituent element in the fourth aspect other than the above constituent elements is the same as that in the first aspect, the description thereof is omitted here.
触媒前駆層の膜厚(乾燥膜厚)は、特に制限されないが、好ましくは0.05~30μm、より好ましくは1~20μm、さらにより好ましくは1~15μm、特に好ましくは1~10μmである。
The film thickness (dry film thickness) of the catalyst precursor layer is not particularly limited, but is preferably 0.05 to 30 μm, more preferably 1 to 20 μm, still more preferably 1 to 15 μm, and particularly preferably 1 to 10 μm.
[工程(d)]
本工程では、上記工程(c)で触媒前駆層から前記無機物を除去する。上記工程(c)にて形成された触媒前駆層では、触媒前駆体2は無機物で被覆された状態で維持されている。本工程で、触媒前駆層、特に触媒前駆体2(触媒金属)を被覆している無機物を除去すると共に、触媒前駆体2と接触(被覆)している電解質を除去する。当該工程により、電解質による触媒金属の被覆(被毒作用)を低減し、反応ガス(特に酸素)と触媒金属表面との接触、ゆえに反応ガス(特に酸素)、触媒金属粒子および水の三相界面の形成を促進する。ゆえに、触媒層の触媒活性(特に酸素還元反応(ORR)比活性)を向上できる。 [Step (d)]
In this step, the inorganic substance is removed from the catalyst precursor layer in the step (c). In the catalyst precursor layer formed in the step (c), the catalyst precursor 2 is maintained in a state of being coated with an inorganic substance. In this step, the inorganic material covering the catalyst precursor layer, particularly the catalyst precursor 2 (catalyst metal) is removed, and the electrolyte in contact (coating) with the catalyst precursor 2 is removed. This process reduces the coating (poisoning action) of the catalytic metal with the electrolyte, and the contact between the reactive gas (especially oxygen) and the catalytic metal surface, and hence the three-phase interface of the reactive gas (especially oxygen), catalytic metal particles and water. Promote the formation of Therefore, the catalytic activity (especially oxygen reduction reaction (ORR) specific activity) of the catalyst layer can be improved.
本工程では、上記工程(c)で触媒前駆層から前記無機物を除去する。上記工程(c)にて形成された触媒前駆層では、触媒前駆体2は無機物で被覆された状態で維持されている。本工程で、触媒前駆層、特に触媒前駆体2(触媒金属)を被覆している無機物を除去すると共に、触媒前駆体2と接触(被覆)している電解質を除去する。当該工程により、電解質による触媒金属の被覆(被毒作用)を低減し、反応ガス(特に酸素)と触媒金属表面との接触、ゆえに反応ガス(特に酸素)、触媒金属粒子および水の三相界面の形成を促進する。ゆえに、触媒層の触媒活性(特に酸素還元反応(ORR)比活性)を向上できる。 [Step (d)]
In this step, the inorganic substance is removed from the catalyst precursor layer in the step (c). In the catalyst precursor layer formed in the step (c), the catalyst precursor 2 is maintained in a state of being coated with an inorganic substance. In this step, the inorganic material covering the catalyst precursor layer, particularly the catalyst precursor 2 (catalyst metal) is removed, and the electrolyte in contact (coating) with the catalyst precursor 2 is removed. This process reduces the coating (poisoning action) of the catalytic metal with the electrolyte, and the contact between the reactive gas (especially oxygen) and the catalytic metal surface, and hence the three-phase interface of the reactive gas (especially oxygen), catalytic metal particles and water. Promote the formation of Therefore, the catalytic activity (especially oxygen reduction reaction (ORR) specific activity) of the catalyst layer can be improved.
例えば、無機物が一酸化炭素(CO)である場合には、酸素含有ガスを供給しCOを化学反応で酸化させる方法、温度を上げてCOの脱離を促進させる方法などが使用できる。
For example, when the inorganic substance is carbon monoxide (CO), a method of supplying an oxygen-containing gas to oxidize CO by a chemical reaction, a method of increasing the temperature to promote CO desorption, or the like can be used.
また、例えば、無機物がヨウ素化合物または臭素化合物である場合には、無機物の除去はハロホルム反応により行われることが好ましい。すなわち、本発明の好ましい形態によると、無機物はヨウ素化合物および臭素化合物の少なくとも一方であり、前記触媒前駆体層からの前記無機物の除去をハロホルム反応により行う。
For example, when the inorganic substance is an iodine compound or a bromine compound, the removal of the inorganic substance is preferably performed by a haloform reaction. That is, according to a preferred embodiment of the present invention, the inorganic substance is at least one of an iodine compound and a bromine compound, and the inorganic substance is removed from the catalyst precursor layer by a haloform reaction.
以下、上記好ましい形態について詳細に説明する。
Hereinafter, the preferable mode will be described in detail.
本形態では、触媒前駆層に存在する無機物を、アセチル基を有する化合物または酸化によりアセチル基を有するようになる化合物、および塩基と反応させる(ハロホルム反応)ことにより、触媒前駆層、特に触媒前駆体2(触媒金属)から化学的に除去する。例えば、下記実施例3では、無機物の除去はヨードホルム反応によると推測される。なお、以下では、アセチル基を有する化合物または酸化によりアセチル基を有するようになる化合物を、一括して、「アセチル基含有化合物」とも称する。
In this embodiment, the inorganic material present in the catalyst precursor layer is reacted with a compound having an acetyl group or a compound that has an acetyl group by oxidation, and a base (haloform reaction), whereby the catalyst precursor layer, particularly the catalyst precursor. Chemical removal from 2 (catalytic metal). For example, in Example 3 below, it is assumed that the removal of inorganic substances is due to iodoform reaction. Hereinafter, a compound having an acetyl group or a compound having an acetyl group by oxidation is collectively referred to as an “acetyl group-containing compound”.
ここで、アセチル基を有する化合物は、式:R-C(=O)-CH3で表わされる化合物である。上記式において、Rは、水素原子(H)、炭素原子数1~12のアルキル基または炭素原子数6~20のアリール基がある。ここで、炭素原子数1~12のアルキル基としては、以下に制限されないが、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基及び2-エチルヘキシル基等の、直鎖または分岐鎖のアルキル基が挙げられる。また、炭素原子数6~20のアリール基としては、以下に制限されないが、例えば、フェニル基、ベンジル基、フェネチル基、o-、m-若しくはp-トリル基、2,3-若しくは2,4-キシリル基、メシチル基、ナフチル基、アントリル基、フェナントリル基、ビフェニリル基、ベンズヒドリル基、トリチル基及びピレニル基などが挙げられる。
Here, the compound having an acetyl group is a compound represented by the formula: R—C (═O) —CH 3 . In the above formula, R is a hydrogen atom (H), an alkyl group having 1 to 12 carbon atoms, or an aryl group having 6 to 20 carbon atoms. Here, examples of the alkyl group having 1 to 12 carbon atoms include, but are not limited to, for example, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert- Examples include linear or branched alkyl groups such as butyl, pentyl, isopentyl, neopentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl and 2-ethylhexyl. It is done. The aryl group having 6 to 20 carbon atoms is not limited to the following, but includes, for example, phenyl group, benzyl group, phenethyl group, o-, m- or p-tolyl group, 2,3- or 2,4. -Xylyl group, mesityl group, naphthyl group, anthryl group, phenanthryl group, biphenylyl group, benzhydryl group, trityl group and pyrenyl group.
酸化によりアセチル基を有するようになる化合物は、酸化されることにより上記したようなアセチル基を有する化合物を生成する化合物である。具体的には、エタノール、イソプロピルアルコールなどが挙げられる。上記アセチル基を有する化合物および酸化によりアセチル基を有するようになる化合物は、それぞれ、単独で使用されてもまたは2種以上の混合物で使用されてもよい。また、上記アセチル基を有する化合物および酸化によりアセチル基を有するようになる化合物は、2種以上組み合わせて使用されてもよい。
A compound that has an acetyl group by oxidation is a compound that generates a compound having an acetyl group as described above by being oxidized. Specific examples include ethanol and isopropyl alcohol. The compound having an acetyl group and the compound having an acetyl group by oxidation may be used alone or in a mixture of two or more. Further, the compound having an acetyl group and the compound having an acetyl group by oxidation may be used in combination of two or more.
アセチル基を有する化合物または酸化によりアセチル基を有するようになる化合物の添加量は、十分量の無機物を除去できる量であれば特に制限されず、無機物量に応じて適切に選択できる。アセチル基を有する化合物または酸化によりアセチル基を有するようになる化合物の添加量は、工程(b)での無機物の仕込み量(モル換算)より多く存在することが好ましい。具体的には、上記添加量は、工程(b)での無機物の仕込み量 1モルに対して、1モルを超え10モル以下、2~8モル程度であることが好ましい。なお、アセチル基を有する化合物および酸化によりアセチル基を有するようになる化合物を2種以上の混合物として使用する場合の上記量は、これらの合計量である。
The addition amount of the compound having an acetyl group or the compound that has an acetyl group by oxidation is not particularly limited as long as it is an amount capable of removing a sufficient amount of the inorganic substance, and can be appropriately selected according to the amount of the inorganic substance. The addition amount of the compound having an acetyl group or the compound that has an acetyl group by oxidation is preferably larger than the amount of the inorganic substance charged in the step (b) (molar conversion). Specifically, the amount added is preferably more than 1 mole and not more than 10 moles and about 2 to 8 moles with respect to 1 mole of the inorganic charge in step (b). In addition, the said quantity in the case of using the compound which has an acetyl group by oxidation and the compound which has an acetyl group by oxidation as 2 or more types of mixtures is these total amounts.
また、本形態で使用される塩基は、特に制限されないが、例えば、水酸化ナトリウム、水酸化カリウムなどが挙げられる。上記塩基は、単独で使用されてもまたは2種以上の混合物で使用されてもよい。また、塩基は、水溶液など、溶液の形態で使用されてもよい。
The base used in this embodiment is not particularly limited, and examples thereof include sodium hydroxide and potassium hydroxide. The above bases may be used alone or in a mixture of two or more. The base may be used in the form of a solution such as an aqueous solution.
塩基の添加量は、十分量の無機物を除去できる量であれば特に制限されず、無機物量に応じて適切に選択できる。塩基の添加量は、工程(b)での無機物の仕込み量(モル換算)より多く存在することが好ましい。具体的には、上記添加量は、工程(b)での無機物の仕込み量 1モルに対して、1モルを超え10モル以下、2~8モル程度であることが好ましい。なお、塩基を2種以上の混合物として使用する場合の上記量は、これらの合計量である。
The amount of the base added is not particularly limited as long as a sufficient amount of the inorganic substance can be removed, and can be appropriately selected according to the amount of the inorganic substance. It is preferable that the amount of the base added is larger than the amount of the inorganic material charged in the step (b) (in terms of mole). Specifically, the amount added is preferably more than 1 mole and not more than 10 moles and about 2 to 8 moles with respect to 1 mole of the inorganic charge in step (b). In addition, the said amount in the case of using a base as a 2 or more types of mixture is these total amounts.
触媒前駆層へのアセチル基含有化合物及び塩基の添加形態は特に制限されないが、無機物の除去効率、操作性などを考慮すると、アセチル基含有化合物及び塩基は溶液の形態であることが好ましい。また、添加方法としては、特に制限されるものではなく、塗布・印刷法、浸漬法、噴霧法など、従来公知の方法を適用することができる。これらのうち、触媒前駆層を、アセチル基含有化合物及び塩基を含む溶液に浸漬し、その状態で系内を減圧にして脱泡させることが好ましい。当該操作により、塩基及びアセチル基含有化合物を触媒前駆層全体にかつ内部にまで均一にかつ素早く浸透させることができる。ゆえに、当該形態によると、無機物をより効率よく除去できる。なお、上記浸漬および/または減圧操作は、撹拌しながら行ってもよい。または、上記浸漬後および/または減圧操作後に、触媒前駆層を入れた溶液を撹拌してもよい。このような操作により、ハロホルム反応が触媒前駆層内部にわたってより効率よく進行する。ゆえに、当該形態によると、無機物をより効率よく除去できる。なお、上記撹拌条件は、特に制限されないが、無機物の除去効率のさらなる向上効果を考慮すると、撹拌温度(溶液温度)は、好ましくは20~80℃、より好ましくは40~70℃である。また、撹拌時間は、好ましくは20分~3時間、より好ましくは30分~2時間である。
The addition form of the acetyl group-containing compound and the base to the catalyst precursor layer is not particularly limited, but the acetyl group-containing compound and the base are preferably in the form of a solution in consideration of the removal efficiency of inorganic substances, operability, and the like. The addition method is not particularly limited, and conventionally known methods such as a coating / printing method, a dipping method, and a spraying method can be applied. Of these, it is preferable to immerse the catalyst precursor layer in a solution containing an acetyl group-containing compound and a base and degas the system by reducing the pressure in the state. By this operation, the base and the acetyl group-containing compound can be uniformly and quickly permeated throughout the catalyst precursor layer and into the inside. Therefore, according to the said form, an inorganic substance can be removed more efficiently. In addition, you may perform the said immersion and / or pressure reduction operation, stirring. Or you may stir the solution which put the catalyst precursor layer after the said immersion and / or pressure reduction operation. By such an operation, the haloform reaction proceeds more efficiently over the inside of the catalyst precursor layer. Therefore, according to the said form, an inorganic substance can be removed more efficiently. The stirring conditions are not particularly limited, but the stirring temperature (solution temperature) is preferably 20 to 80 ° C., more preferably 40 to 70 ° C. in consideration of the further improvement effect of the removal efficiency of inorganic substances. The stirring time is preferably 20 minutes to 3 hours, more preferably 30 minutes to 2 hours.
触媒前駆層に対して、アセチル基含有化合物及び塩基の添加順序は、特に制限されない。具体的には、(1)触媒前駆層に、アセチル基含有化合物及び塩基を一括して添加する;(2)触媒前駆層に、アセチル基含有化合物を添加した後、塩基を添加する;(3)触媒前駆層に、塩基を添加した後、アセチル基含有化合物を添加する、のいずれでもよい。これらのうち、上記(3)の順序が好ましい。特に好ましくは、塩基を水溶液の形態とし、かつアセチル基含有化合物がエタノールである上記(3)の順序である。当該形態によると、エタノールが水よりも表面張力が低いため、塩基及びアセチル基含有化合物(エタノール)を触媒前駆層全体にかつ内部にまで均一に浸透することができる。ゆえに、当該形態によると、無機物をさらに効率よく除去できる。
The order of adding the acetyl group-containing compound and the base to the catalyst precursor layer is not particularly limited. Specifically, (1) an acetyl group-containing compound and a base are collectively added to the catalyst precursor layer; (2) an acetyl group-containing compound is added to the catalyst precursor layer, and then a base is added; (3 ) After adding a base to the catalyst precursor layer, any of adding an acetyl group-containing compound may be used. Among these, the order of the above (3) is preferable. Particularly preferred is the order of (3) above in which the base is in the form of an aqueous solution and the acetyl group-containing compound is ethanol. According to this embodiment, since ethanol has a lower surface tension than water, the base and the acetyl group-containing compound (ethanol) can be uniformly permeated into the entire catalyst precursor layer and into the inside thereof. Therefore, according to the said form, an inorganic substance can be removed still more efficiently.
上記したような無機物除去操作後は、必要であれば、触媒前駆層を洗浄して、無機物や余分なアセチル基含有化合物及び塩基を除去してもよい。ここで、触媒前駆層の洗浄に使用される溶媒(洗浄液)は、特に制限されないが、蒸留水、イオン交換水、純水、超純水等の水などが挙げられる。また、洗浄中、ホモジナイザー、超音波分散装置、マグネチックスターラーなどを用いて攪拌しながら、触媒前駆層を洗浄液中に浸漬してもよい。また、洗浄中、減圧下で洗浄液に浸漬してもよい。これらの操作により、洗浄液が触媒前駆層内部にまで浸透できる。上記撹拌操作および減圧操作は、組み合わせて行ってもよい。また、上記洗浄工程は、必要であれば、繰り返し行ってもよい。上記洗浄条件は、特に制限されないが、無機物の除去効率のさらなる向上効果を考慮すると、洗浄温度(洗浄液温度)は、好ましくは20~80℃、より好ましくは40~70℃である。また、洗浄(例えば撹拌)時間は、好ましくは20分~3時間、より好ましくは30分~2時間である。なお、上記洗浄工程は、必要であれば、繰り返し行ってもよい。
After the inorganic substance removing operation as described above, if necessary, the catalyst precursor layer may be washed to remove inorganic substances, excess acetyl group-containing compounds and bases. Here, the solvent (cleaning solution) used for cleaning the catalyst precursor layer is not particularly limited, and examples thereof include water such as distilled water, ion-exchanged water, pure water, and ultrapure water. Further, during the cleaning, the catalyst precursor layer may be immersed in the cleaning liquid while stirring using a homogenizer, an ultrasonic dispersing device, a magnetic stirrer, or the like. Moreover, you may immerse in a washing | cleaning liquid under pressure reduction during washing | cleaning. By these operations, the cleaning liquid can penetrate into the catalyst precursor layer. The stirring operation and the decompression operation may be performed in combination. Moreover, you may repeat the said washing | cleaning process as needed. The cleaning conditions are not particularly limited, but considering the further improvement effect of the removal efficiency of inorganic substances, the cleaning temperature (cleaning liquid temperature) is preferably 20 to 80 ° C., more preferably 40 to 70 ° C. The washing (for example, stirring) time is preferably 20 minutes to 3 hours, more preferably 30 minutes to 2 hours. In addition, you may repeat the said washing | cleaning process as needed.
また、上記洗浄操作後に、触媒前駆層を、必要であれば分離、乾燥してもよい。ここで、分離手段は上記工程(b)と同様であるため、ここでは説明を省略する。また、乾燥条件としては、例えば、乾燥温度は、好ましくは20~80℃であり、より好ましくは40~60℃である。また、乾燥時間は、好ましくは15分~10時間である。
Further, after the above washing operation, the catalyst precursor layer may be separated and dried if necessary. Here, since the separation means is the same as that in the step (b), the description is omitted here. As drying conditions, for example, the drying temperature is preferably 20 to 80 ° C., more preferably 40 to 60 ° C. The drying time is preferably 15 minutes to 10 hours.
上記により、無機物を触媒前駆層から除去できる。一方、上述したように、一部触媒(特に触媒金属)が無機物で被覆されると、外部の環境からの直接の影響を受けにくい。例えば、酸性環境下などにあっても、金属触媒の溶出を抑制できる(下記実施例参照)。このため、ある程度無機物で被覆された触媒(特に触媒金属)を含む触媒層は、耐久性および貯蔵安定性に優れる。すなわち、本発明は、白金含有触媒金属が導電性担体に担持されてなる触媒および電解質を含み、前記白金が0%を超えて10%未満の割合で白金含有触媒金属に吸着する無機物で被覆されてなる触媒層をも提供する(第5の態様)。以下では、上記「触媒層における白金が白金含有触媒金属に吸着する無機物で被覆される割合」を、「触媒層の白金被覆率」とも称する。上記無機物による触媒の被覆割合が0%であるときには、触媒層(ゆえに、このような触媒層を有するMEAまたは燃料電池)は、耐久性および貯蔵安定性(特に酸性環境下での触媒金属の溶出)に劣る。逆に、上記無機物による触媒の被覆割合が10%以上であると、十分量の触媒金属が導電性担体上に直接暴露しないため、反応ガス(特に酸素)が十分触媒金属表面に接触できず、触媒層は触媒活性に劣る。触媒活性と耐久性や貯蔵安定性とのより良好なバランスを考慮すると、触媒層において白金が無機物で被覆される割合(触媒層の白金被覆率)は、好ましくは1%以上8%以下、より好ましくは2%を超え7%未満である。このような白金被覆率の触媒層は、触媒活性ならびに耐久性及び貯蔵安定性をより良好なバランスで発揮できる。なお、第5の態様に係る触媒層は、第1の態様によって製造できるが、他の方法によって製造されてもよい。上記触媒層の白金被覆率は、下記実施例の[ヨウ素被覆割合の検証/触媒層]に記載される方法によって算出される白金の無機物(ヨウ素)による被覆割合に蛍光X線(XRF)にて定量されたヨウ素除去率をかけた値を採用する。なお、上記「白金の無機物(ヨウ素)による被覆割合(%)」は、式:100-(触媒前駆層のPtのCO化学吸着表面積)/(無機物無添加層のPtのCO化学吸着表面積)]によって求められる。なお、下記方法では、無機物がヨウ素であるが、他の無機物であっても同様の方法で測定できることは、当業者であれば理解できる。
In this way, inorganic substances can be removed from the catalyst precursor layer. On the other hand, as described above, when a part of the catalyst (particularly the catalyst metal) is coated with an inorganic substance, it is difficult to be directly affected by the external environment. For example, elution of a metal catalyst can be suppressed even in an acidic environment (see the following examples). For this reason, a catalyst layer containing a catalyst (particularly a catalyst metal) coated with an inorganic substance to some extent is excellent in durability and storage stability. That is, the present invention includes a catalyst and an electrolyte in which a platinum-containing catalyst metal is supported on a conductive support, and the platinum is coated with an inorganic substance that adsorbs to the platinum-containing catalyst metal in a proportion of more than 0% and less than 10%. (5th aspect) is also provided. Hereinafter, the “ratio of platinum in the catalyst layer covered with an inorganic substance adsorbed on the platinum-containing catalyst metal” is also referred to as “platinum coverage of the catalyst layer”. When the coverage of the catalyst with the inorganic substance is 0%, the catalyst layer (and hence the MEA or fuel cell having such a catalyst layer) is durable and storage stable (especially the elution of the catalyst metal in an acidic environment). ). On the contrary, when the coating ratio of the catalyst with the inorganic substance is 10% or more, a sufficient amount of the catalyst metal is not directly exposed on the conductive support, so that the reaction gas (particularly oxygen) cannot sufficiently contact the surface of the catalyst metal, The catalyst layer is inferior in catalytic activity. In consideration of a better balance between catalyst activity and durability and storage stability, the ratio of platinum covered with an inorganic substance in the catalyst layer (platinum coverage of the catalyst layer) is preferably 1% or more and 8% or less. Preferably it is more than 2% and less than 7%. Such a catalyst layer having a platinum coating ratio can exhibit catalyst activity, durability and storage stability in a better balance. In addition, although the catalyst layer which concerns on a 5th aspect can be manufactured by a 1st aspect, you may manufacture by another method. The platinum coverage of the catalyst layer is determined by the fluorescent X-ray (XRF) in the coverage ratio of platinum inorganic substance (iodine) calculated by the method described in [Verification of iodine coverage / catalyst layer] in the following examples. The value multiplied by the quantified iodine removal rate is adopted. The above-mentioned “coating ratio (%) of platinum with inorganic substance (iodine)” is expressed by the formula: 100− (CO chemical adsorption surface area of Pt of catalyst precursor layer) / (CO chemical adsorption surface area of Pt of inorganic additive-free layer)] Sought by. In addition, in the following method, although an inorganic substance is an iodine, those skilled in the art can understand that it can measure by the same method even if it is another inorganic substance.
また、蛍光X線(XRF)にて触媒層中のヨウ素量及び白金量を定量することで、被覆率の代用が可能である。被覆率(%)を出す場合には、幾つかの仮定をおくことで見積もることができる。すなわち、X線強度比をモル比と仮定した場合、得られたヨウ素/白金のモル比、白金の仕込み重量と密度、およびヨウ素の仕込み量と密度から、白金1gあたりに含まれるヨウ素の体積(m3)が得られる。また、ヨウ素の平均被覆厚さ(m)がわかればヨウ素の被覆できる総面積(m2)が算出できるため、Ptの表面積(m2/g)に対して何%を被覆しているかを求めることができる。今回、実施例に記載のようにヨウ素の白金被覆率は6%であると見積もられたが、これは、ヨウ素の平均被覆厚さを15μmとみなすことで上記の算出方法でも6%を再現することができる。従って、XRFによる白金被覆率(%)は、上記の算出方法で代用することができる。
Further, the coverage can be substituted by quantifying the amount of iodine and the amount of platinum in the catalyst layer by fluorescent X-rays (XRF). When calculating the coverage (%), it can be estimated by making several assumptions. That is, assuming that the X-ray intensity ratio is a molar ratio, the volume of iodine contained in 1 g of platinum (from the obtained iodine / platinum molar ratio, the charged weight and density of platinum, and the charged amount and density of iodine ( m 3 ) is obtained. Further, since the total area (m 2 ) that can be covered with iodine can be calculated if the average coating thickness (m) of iodine is known, what percentage is covered with respect to the surface area (m 2 / g) of Pt is obtained. be able to. This time, it was estimated that the platinum coverage of iodine was 6% as described in the examples, but this was also reproduced by the above calculation method by assuming the average coating thickness of iodine to be 15 μm. can do. Therefore, the platinum coverage (%) by XRF can be substituted by the above calculation method.
本明細書では、本発明の方法によって製造される触媒層および上記第5の態様に係る触媒層を、一括して「本発明に係る触媒層」とも称する。
In the present specification, the catalyst layer produced by the method of the present invention and the catalyst layer according to the fifth aspect are collectively referred to as “catalyst layer according to the present invention”.
触媒層の膜厚(乾燥膜厚)は、好ましくは0.05~30μm、より好ましくは1~20μm、さらにより好ましくは1~10μm、特に好ましくは1~5μmである。なお、上記膜厚は、カソード触媒層およびアノード触媒層双方に適用される。カソード触媒層およびアノード触媒層は、同じであってもあるいは異なってもよい。
The film thickness (dry film thickness) of the catalyst layer is preferably 0.05 to 30 μm, more preferably 1 to 20 μm, still more preferably 1 to 10 μm, and particularly preferably 1 to 5 μm. The above film thickness is applied to both the cathode catalyst layer and the anode catalyst layer. The cathode catalyst layer and the anode catalyst layer may be the same or different.
なお、無機物を触媒前駆層から除去する際に、塩基としてアルカリ金属塩を使用すると、電解質のプロトン(H+)がアルカリ金属イオン(例えば、Na+)に置換される。例えば、電解質としてスルホン酸系ポリマーを使用し、塩基として水酸化ナトリウムを使用すると、スルホン酸基(-SO3H)がスルホン酸のナトリウム塩(-SO3Na)に変換されている。このため、上記無機物の除去操作後に酸処理を行い、アルカリ金属イオンをプロトンに(例えば、スルホン酸塩(例えば、-SO3Na)をスルホン酸基(-SO3H)に)戻す操作を行うことが好ましい。すなわち、本発明の好ましい形態によると、無機物を除去した後に酸処理を行う。
When an alkali metal salt is used as the base when removing the inorganic substance from the catalyst precursor layer, the proton (H + ) of the electrolyte is replaced with an alkali metal ion (for example, Na + ). For example, when a sulfonic acid polymer is used as an electrolyte and sodium hydroxide is used as a base, a sulfonic acid group (—SO 3 H) is converted into a sodium salt of sulfonic acid (—SO 3 Na). For this reason, acid treatment is performed after the above-described inorganic removal operation, and an operation is performed to return alkali metal ions to protons (for example, sulfonate (for example, —SO 3 Na) to sulfonic acid group (—SO 3 H)). It is preferable. That is, according to a preferred embodiment of the present invention, acid treatment is performed after removing the inorganic substance.
以下、無機物除去後の酸処理について具体的に説明する。
Hereinafter, the acid treatment after removing the inorganic substance will be specifically described.
酸処理に使用される酸としては、特に制限されないが、塩酸、硫酸、硝酸、過塩素酸(HClO4)などを挙げることができる。上記酸は、単独で使用されてもまたは2種以上の混合物で使用されてもよい。また、酸は、水溶液など、溶液の形態で使用されることが好ましい。酸の添加量は、電解質のアルカリ金属イオンを十分プロトンに置換できるであれば特に制限されず、電解質量に応じて適宜選択される。好ましくは、酸が、電解質に対して過剰に存在する。酸水溶液の酸濃度が、好ましくは3~20重量%、より好ましくは5~15重量%である。
The acid used in the acid treatment is not particularly limited, may be mentioned hydrochloric acid, sulfuric acid, nitric acid, perchloric acid (HClO 4). The above acids may be used alone or in a mixture of two or more. The acid is preferably used in the form of a solution such as an aqueous solution. The amount of the acid added is not particularly limited as long as the alkali metal ion of the electrolyte can be sufficiently substituted with protons, and is appropriately selected according to the electrolytic mass. Preferably, the acid is present in excess relative to the electrolyte. The acid concentration of the aqueous acid solution is preferably 3 to 20% by weight, more preferably 5 to 15% by weight.
上記酸処理方法は、特に制限されない。具体的には、塗布・印刷法、浸漬法、噴霧法など、従来公知の方法を適用することができる。これらのうち、触媒前駆層を酸溶液に浸漬し、その状態で系内を減圧にして脱泡させることが好ましい。当該操作により、酸を触媒前駆層全体にかつ内部にまで均一にかつ素早く浸透することができる。ゆえに、当該形態によると、電解質のアルカリ金属イオンをプロトンにより効率よくかつより速やかに置換できる。なお、上記浸漬および/または減圧操作は、撹拌しながら行ってもよい。または、上記浸漬後および/または減圧操作後に、触媒前駆層を入れた酸溶液を撹拌してもよい。このような操作により、上記置換反応が触媒前駆層内部にわたってより効率よく進行する。ゆえに、当該形態によると、電解質のアルカリ金属イオンをプロトンにより効率よくかつより速やかに置換できる。なお、上記撹拌条件は、特に制限されないが、置換効率のさらなる向上効果を考慮すると、撹拌温度(溶液温度)は、好ましくは20~80℃、より好ましくは40~70℃である。また、撹拌時間は、好ましくは20分~3時間、より好ましくは30分~2時間である。
The acid treatment method is not particularly limited. Specifically, a conventionally known method such as a coating / printing method, a dipping method, or a spraying method can be applied. Among these, it is preferable to immerse the catalyst precursor layer in an acid solution and degas the system by reducing the pressure in the state. By this operation, the acid can be uniformly and quickly permeated throughout the catalyst precursor layer and into the inside thereof. Therefore, according to the said form, the alkali metal ion of electrolyte can be substituted by a proton efficiently and more rapidly. In addition, you may perform the said immersion and / or pressure reduction operation, stirring. Or after the said immersion and / or pressure reduction operation, you may stir the acid solution which put the catalyst precursor layer. By such an operation, the substitution reaction proceeds more efficiently over the catalyst precursor layer. Therefore, according to the said form, the alkali metal ion of electrolyte can be substituted by a proton efficiently and more rapidly. The stirring conditions are not particularly limited, but the stirring temperature (solution temperature) is preferably 20 to 80 ° C., more preferably 40 to 70 ° C. in consideration of the further improvement effect of substitution efficiency. The stirring time is preferably 20 minutes to 3 hours, more preferably 30 minutes to 2 hours.
上記したような酸処理後は、必要であれば、触媒前駆層を洗浄して、余分な酸を除去してもよい。ここで、触媒前駆層の洗浄に使用される溶媒(洗浄液)は、特に制限されないが、蒸留水、イオン交換水、純水、超純水等の水などが挙げられる。また、洗浄中、ホモジナイザー、超音波分散装置、マグネチックスターラーなどを用いて、触媒前駆層を洗浄液中に撹拌・分散させてもよい。また、洗浄中、洗浄液を減圧にしたりしてもよい。これらの操作により、洗浄液が触媒前駆層内部にまで浸透できる。上記撹拌操作および減圧操作は、組み合わせて行ってもよい。また、上記洗浄工程は、必要であれば、繰り返し行ってもよい。上記洗浄条件は、特に制限されないが、無機物の除去効率のさらなる向上効果を考慮すると、洗浄温度(洗浄液温度)は、好ましくは20~80℃、より好ましくは40~70℃である。また、洗浄(例えば撹拌)時間は、好ましくは20分~3時間、より好ましくは30分~2時間である。なお、上記洗浄工程は、必要であれば、繰り返し行ってもよい。
After the acid treatment as described above, if necessary, the catalyst precursor layer may be washed to remove excess acid. Here, the solvent (cleaning solution) used for cleaning the catalyst precursor layer is not particularly limited, and examples thereof include water such as distilled water, ion-exchanged water, pure water, and ultrapure water. Further, during the cleaning, the catalyst precursor layer may be stirred and dispersed in the cleaning liquid using a homogenizer, an ultrasonic dispersion device, a magnetic stirrer, or the like. Further, the cleaning liquid may be depressurized during the cleaning. By these operations, the cleaning liquid can penetrate into the catalyst precursor layer. The stirring operation and the decompression operation may be performed in combination. Moreover, you may repeat the said washing | cleaning process as needed. The cleaning conditions are not particularly limited, but considering the further improvement effect of the removal efficiency of inorganic substances, the cleaning temperature (cleaning liquid temperature) is preferably 20 to 80 ° C., more preferably 40 to 70 ° C. The washing (for example, stirring) time is preferably 20 minutes to 3 hours, more preferably 30 minutes to 2 hours. In addition, you may repeat the said washing | cleaning process as needed.
上記したような洗浄処理後に、触媒前駆層を乾燥してもよい。ここで、乾燥条件としては、例えば、乾燥温度は、好ましくは30~100℃であり、より好ましくは50~90℃である。また、乾燥時間は、好ましくは5分~1時間である。
The catalyst precursor layer may be dried after the cleaning treatment as described above. Here, as drying conditions, for example, the drying temperature is preferably 30 to 100 ° C., and more preferably 50 to 90 ° C. The drying time is preferably 5 minutes to 1 hour.
上記により、十分量のプロトンを有する電解質を含む触媒層が提供できる。また、上記したようにして得られる触媒層では、触媒金属は電解質で被覆されないまたはほとんど被覆されず、導電性担体上に直接暴露した状態である。ここで、触媒金属の電解質による被覆割合は、十分低ければよいが、具体的には、0.6以下であり、好ましくは0.5未満、より好ましくは0.45以下(下限:0)である。このような低い被覆率であれば、触媒金属は電解質と非接触である、電解質による被毒作用を十分抑えられる。ゆえに、反応ガス(特に酸素)が触媒金属表面に接触する機会が増加し、反応ガス(特に酸素)、触媒金属粒子および水の三相界面の形成が促進され、触媒活性(特にORR比活性)が向上する。また、電解質による触媒金属の被覆を低減して、より電解質を介さずに反応ガス(特にO2)が直接触媒金属により速やかにかつより効率よく供給され、ガス輸送性をより向上できる。なお、上記触媒金属の電解質による被覆割合は、下記実施例の[電解質(アイオノマー)被覆率の測定]に記載される方法によって測定される値を採用する。
As described above, a catalyst layer containing an electrolyte having a sufficient amount of protons can be provided. Further, in the catalyst layer obtained as described above, the catalyst metal is not coated or hardly coated with the electrolyte, and is in a state of being directly exposed on the conductive support. Here, the coating ratio of the catalyst metal with the electrolyte may be sufficiently low, but is specifically 0.6 or less, preferably less than 0.5, more preferably 0.45 or less (lower limit: 0). is there. With such a low coverage, the catalytic metal is not in contact with the electrolyte, and the poisoning action by the electrolyte can be sufficiently suppressed. Therefore, the opportunity for the reactive gas (especially oxygen) to come into contact with the catalytic metal surface is increased, and the formation of the three-phase interface of the reactive gas (especially oxygen), catalytic metal particles and water is promoted, and the catalytic activity (especially the ORR specific activity). Will improve. Further, the coating of the catalyst metal with the electrolyte can be reduced, and the reaction gas (especially O 2 ) can be supplied more quickly and more efficiently by the catalyst metal without going through the electrolyte, and the gas transportability can be further improved. In addition, the value measured by the method described in [Measurement of Electrolyte (Ionomer) Coverage] in the Examples below is adopted as the coating ratio of the catalyst metal with the electrolyte.
また、上記方法は、触媒(導電性担体、触媒金属)及び電解質などの触媒層を構成する成分の形態や性状によらず、適用できる。ゆえに、所望の効果に応じて、触媒や電解質を選択できるため、産業上の観点からも好ましい。
Further, the above method can be applied regardless of the form and properties of the components constituting the catalyst layer such as a catalyst (conductive carrier, catalyst metal) and an electrolyte. Therefore, since a catalyst and an electrolyte can be selected according to a desired effect, it is preferable from an industrial viewpoint.
本発明に係る触媒層は、触媒活性(特にORR比活性)に優れる。また、本発明に係る触媒層は、耐久性や貯蔵安定性にも優れる。このため、本発明に係る触媒層は、家庭用や移動体駆動用の電源などより高性能が求められる燃料電池用途により好適に適用できる。すなわち、本発明に係る触媒層に有する膜電極接合体および燃料電池は、発電性能に優れる。本発明に係る触媒層に有する膜電極接合体および燃料電池は、耐久性にも優れる。
The catalyst layer according to the present invention is excellent in catalyst activity (particularly ORR specific activity). Moreover, the catalyst layer according to the present invention is excellent in durability and storage stability. For this reason, the catalyst layer according to the present invention can be suitably applied to fuel cell applications that require higher performance than household and mobile power sources. That is, the membrane / electrode assembly and the fuel cell included in the catalyst layer according to the present invention are excellent in power generation performance. The membrane / electrode assembly and the fuel cell in the catalyst layer according to the present invention are excellent in durability.
以下では、本発明に係る触媒層を備える膜電極接合体(MEA)および燃料電池について説明する。
Hereinafter, a membrane electrode assembly (MEA) including a catalyst layer and a fuel cell according to the present invention will be described.
<膜電極接合体(MEA)>
上述したように本発明に係る触媒層は、膜電極接合体(MEA)に好適に使用できる。すなわち、本発明は、本発明に係る触媒層を有する膜電極接合体(MEA)、特に燃料電池電極接合体(MEA)をも提供する。かような膜電極接合体(MEA)は、高い発電性能を発揮できる。また、本発明に係る触媒層を有する膜電極接合体(MEA)は、耐久性に優れる。 <Membrane electrode assembly (MEA)>
As described above, the catalyst layer according to the present invention can be suitably used for a membrane electrode assembly (MEA). That is, the present invention also provides a membrane electrode assembly (MEA) having a catalyst layer according to the present invention, particularly a fuel cell electrode assembly (MEA). Such a membrane electrode assembly (MEA) can exhibit high power generation performance. Moreover, the membrane electrode assembly (MEA) having the catalyst layer according to the present invention is excellent in durability.
上述したように本発明に係る触媒層は、膜電極接合体(MEA)に好適に使用できる。すなわち、本発明は、本発明に係る触媒層を有する膜電極接合体(MEA)、特に燃料電池電極接合体(MEA)をも提供する。かような膜電極接合体(MEA)は、高い発電性能を発揮できる。また、本発明に係る触媒層を有する膜電極接合体(MEA)は、耐久性に優れる。 <Membrane electrode assembly (MEA)>
As described above, the catalyst layer according to the present invention can be suitably used for a membrane electrode assembly (MEA). That is, the present invention also provides a membrane electrode assembly (MEA) having a catalyst layer according to the present invention, particularly a fuel cell electrode assembly (MEA). Such a membrane electrode assembly (MEA) can exhibit high power generation performance. Moreover, the membrane electrode assembly (MEA) having the catalyst layer according to the present invention is excellent in durability.
本発明に係る触媒層を有する膜電極接合体(MEA)は、従来の触媒層に代えて、本発明に係る触媒層を用いる以外は、同様の構成を適用できる。以下に、本発明のMEAの好ましい形態を説明するが、本発明は下記形態に限定されない。
The membrane electrode assembly (MEA) having the catalyst layer according to the present invention can be applied with the same configuration except that the catalyst layer according to the present invention is used instead of the conventional catalyst layer. Although the preferable form of MEA of this invention is demonstrated below, this invention is not limited to the following form.
MEAは、電解質膜、上記電解質膜の両面に順次形成されるアノード触媒層およびアノードガス拡散層ならびにカソード触媒層およびカソードガス拡散層から構成される。そしてこの膜電極接合体(MEA)において、前記カソード触媒層およびアノード触媒層の少なくとも一方に本発明に係る触媒層が使用される。
The MEA is composed of an electrolyte membrane, an anode catalyst layer and an anode gas diffusion layer, a cathode catalyst layer and a cathode gas diffusion layer which are sequentially formed on both surfaces of the electrolyte membrane. In this membrane electrode assembly (MEA), the catalyst layer according to the present invention is used for at least one of the cathode catalyst layer and the anode catalyst layer.
[電解質膜]
電解質膜は、例えば、固体高分子電解質膜から構成される。この固体高分子電解質膜は、例えば、燃料電池(PEFCなど)の運転時にアノード触媒層で生成したプロトンを膜厚方向に沿ってカソード触媒層へと選択的に透過させる機能を有する。また、固体高分子電解質膜は、アノード側に供給される燃料ガスとカソード側に供給される酸化剤ガスとを混合させないための隔壁としての機能をも有する。 [Electrolyte membrane]
The electrolyte membrane is composed of, for example, a solid polymer electrolyte membrane. For example, the solid polymer electrolyte membrane has a function of selectively allowing protons generated in the anode catalyst layer during operation of a fuel cell (such as PEFC) to permeate the cathode catalyst layer along the film thickness direction. The solid polymer electrolyte membrane also has a function as a partition for preventing the fuel gas supplied to the anode side and the oxidant gas supplied to the cathode side from being mixed.
電解質膜は、例えば、固体高分子電解質膜から構成される。この固体高分子電解質膜は、例えば、燃料電池(PEFCなど)の運転時にアノード触媒層で生成したプロトンを膜厚方向に沿ってカソード触媒層へと選択的に透過させる機能を有する。また、固体高分子電解質膜は、アノード側に供給される燃料ガスとカソード側に供給される酸化剤ガスとを混合させないための隔壁としての機能をも有する。 [Electrolyte membrane]
The electrolyte membrane is composed of, for example, a solid polymer electrolyte membrane. For example, the solid polymer electrolyte membrane has a function of selectively allowing protons generated in the anode catalyst layer during operation of a fuel cell (such as PEFC) to permeate the cathode catalyst layer along the film thickness direction. The solid polymer electrolyte membrane also has a function as a partition for preventing the fuel gas supplied to the anode side and the oxidant gas supplied to the cathode side from being mixed.
固体高分子電解質膜を構成する電解質材料としては特に限定されず従来公知の知見が適宜参照されうる。例えば、上記のフッ素系高分子電解質や炭化水素系高分子電解質を用いることができる。この際、触媒層に用いられる高分子電解質と必ずしも同じものを用いる必要はない。
The electrolyte material constituting the solid polymer electrolyte membrane is not particularly limited, and conventionally known knowledge can be appropriately referred to. For example, the above-mentioned fluorine-based polymer electrolyte or hydrocarbon-based polymer electrolyte can be used. In this case, it is not always necessary to use the same polymer electrolyte used for the catalyst layer.
電解質膜の厚さは、得られる燃料電池の特性を考慮して適宜決定すればよく、特に制限されない。電解質膜の厚さは、通常は5~300μm程度である。電解質膜の厚さがかような範囲内の値であると、製膜時の強度や使用時の耐久性および使用時の出力特性のバランスが適切に制御されうる。
The thickness of the electrolyte membrane may be appropriately determined in consideration of the characteristics of the obtained fuel cell, and is not particularly limited. The thickness of the electrolyte membrane is usually about 5 to 300 μm. When the thickness of the electrolyte membrane is within such a range, the balance of strength during film formation, durability during use, and output characteristics during use can be appropriately controlled.
[触媒層]
触媒層は、実際に電池反応が進行する層である。具体的には、アノード触媒層では水素の酸化反応が進行し、カソード触媒層では酸素の還元反応が進行する。なお、本発明に係る触媒層は、カソード触媒層およびアノード触媒層双方に適用できるが、酸素還元活性の向上の必要性を考慮すると、少なくともカソード触媒層に適用されることが好ましい。なお、アノード触媒層のみに適用されても、またはカソード及びアノード触媒層双方に適用されてもよいことはいうまでもない。このため、一方にのみ本発明に係る触媒層を使用する場合には、他方の側の触媒層には従来を同様の触媒層が使用できる。 [Catalyst layer]
The catalyst layer is a layer where the battery reaction actually proceeds. Specifically, the oxidation reaction of hydrogen proceeds in the anode catalyst layer, and the reduction reaction of oxygen proceeds in the cathode catalyst layer. Although the catalyst layer according to the present invention can be applied to both the cathode catalyst layer and the anode catalyst layer, it is preferably applied at least to the cathode catalyst layer in view of the necessity for improving the oxygen reduction activity. Needless to say, the present invention may be applied only to the anode catalyst layer or to both the cathode and the anode catalyst layer. For this reason, when the catalyst layer according to the present invention is used for only one side, a conventional catalyst layer can be used for the catalyst layer on the other side.
触媒層は、実際に電池反応が進行する層である。具体的には、アノード触媒層では水素の酸化反応が進行し、カソード触媒層では酸素の還元反応が進行する。なお、本発明に係る触媒層は、カソード触媒層およびアノード触媒層双方に適用できるが、酸素還元活性の向上の必要性を考慮すると、少なくともカソード触媒層に適用されることが好ましい。なお、アノード触媒層のみに適用されても、またはカソード及びアノード触媒層双方に適用されてもよいことはいうまでもない。このため、一方にのみ本発明に係る触媒層を使用する場合には、他方の側の触媒層には従来を同様の触媒層が使用できる。 [Catalyst layer]
The catalyst layer is a layer where the battery reaction actually proceeds. Specifically, the oxidation reaction of hydrogen proceeds in the anode catalyst layer, and the reduction reaction of oxygen proceeds in the cathode catalyst layer. Although the catalyst layer according to the present invention can be applied to both the cathode catalyst layer and the anode catalyst layer, it is preferably applied at least to the cathode catalyst layer in view of the necessity for improving the oxygen reduction activity. Needless to say, the present invention may be applied only to the anode catalyst layer or to both the cathode and the anode catalyst layer. For this reason, when the catalyst layer according to the present invention is used for only one side, a conventional catalyst layer can be used for the catalyst layer on the other side.
[ガス拡散層]
ガス拡散層(アノードガス拡散層、カソードガス拡散層)は、セパレータのガス流路を介して供給されたガス(燃料ガスまたは酸化剤ガス)の触媒層への拡散を促進する機能、および電子伝導パスとしての機能を有する。 [Gas diffusion layer]
The gas diffusion layer (anode gas diffusion layer, cathode gas diffusion layer) promotes diffusion of gas (fuel gas or oxidant gas) supplied through the gas flow path of the separator to the catalyst layer, and electronic conduction. It has a function as a path.
ガス拡散層(アノードガス拡散層、カソードガス拡散層)は、セパレータのガス流路を介して供給されたガス(燃料ガスまたは酸化剤ガス)の触媒層への拡散を促進する機能、および電子伝導パスとしての機能を有する。 [Gas diffusion layer]
The gas diffusion layer (anode gas diffusion layer, cathode gas diffusion layer) promotes diffusion of gas (fuel gas or oxidant gas) supplied through the gas flow path of the separator to the catalyst layer, and electronic conduction. It has a function as a path.
ガス拡散層の基材を構成する材料は特に限定されず、従来公知の知見が適宜参照されうる。例えば、炭素製の織物、紙状抄紙体、フェルト、不織布といった導電性および多孔質性を有するシート状材料が挙げられる。基材の厚さは、得られるガス拡散層の特性を考慮して適宜決定すればよいが、30~500μm程度とすればよい。基材の厚さがかような範囲内の値であれば、機械的強度とガスおよび水などの拡散性とのバランスが適切に制御されうる。
The material constituting the base material of the gas diffusion layer is not particularly limited, and conventionally known knowledge can be appropriately referred to. For example, a sheet-like material having conductivity and porosity such as a carbon woven fabric, a paper-like paper body, a felt, and a non-woven fabric can be used. The thickness of the substrate may be appropriately determined in consideration of the characteristics of the obtained gas diffusion layer, but may be about 30 to 500 μm. If the thickness of the substrate is within such a range, the balance between mechanical strength and diffusibility such as gas and water can be appropriately controlled.
ガス拡散層は、撥水性をより高めてフラッディング現象などを防止することを目的として、撥水剤を含むことが好ましい。撥水剤としては、特に限定されないが、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、ポリヘキサフルオロプロピレン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)などのフッ素系の高分子材料、ポリプロピレン、ポリエチレンなどが挙げられる。
The gas diffusion layer preferably contains a water repellent for the purpose of further improving water repellency and preventing flooding. The water repellent is not particularly limited, but fluorine-based high repellents such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), polyhexafluoropropylene, and tetrafluoroethylene-hexafluoropropylene copolymer (FEP). Examples thereof include molecular materials, polypropylene, and polyethylene.
また、撥水性をより向上させるために、ガス拡散層は、撥水剤を含むカーボン粒子の集合体からなるカーボン粒子層(マイクロポーラス層;MPL、図示せず)を基材の触媒層側に有するものであってもよい。
In order to further improve the water repellency, the gas diffusion layer has a carbon particle layer (microporous layer; MPL, not shown) made of an aggregate of carbon particles containing a water repellent agent on the catalyst layer side of the substrate. You may have.
カーボン粒子層に含まれるカーボン粒子は特に限定されず、カーボンブラック、グラファイト、膨張黒鉛などの従来公知の材料が適宜採用されうる。なかでも、電子伝導性に優れ、比表面積が大きいことから、オイルファーネスブラック、チャネルブラック、ランプブラック、サーマルブラック、アセチレンブラックなどのカーボンブラックが好ましく用いられうる。カーボン粒子の平均粒径は、10~100nm程度とするのがよい。これにより、毛細管力による高い排水性が得られるとともに、触媒層との接触性も向上させることが可能となる。
The carbon particles contained in the carbon particle layer are not particularly limited, and conventionally known materials such as carbon black, graphite, and expanded graphite can be appropriately employed. Among them, carbon black such as oil furnace black, channel black, lamp black, thermal black, acetylene black and the like can be preferably used because of excellent electron conductivity and a large specific surface area. The average particle size of the carbon particles is preferably about 10 to 100 nm. Thereby, while being able to obtain the high drainage property by capillary force, it becomes possible to improve contact property with a catalyst layer.
カーボン粒子層に用いられる撥水剤としては、上述した撥水剤と同様のものが挙げられる。なかでも、撥水性、電極反応時の耐食性などに優れることから、フッ素系の高分子材料が好ましく用いられうる。
Examples of the water repellent used for the carbon particle layer include the same water repellents as described above. Among these, fluorine-based polymer materials can be preferably used because of excellent water repellency, corrosion resistance during electrode reaction, and the like.
カーボン粒子層におけるカーボン粒子と撥水剤との混合比は、撥水性および電子伝導性のバランスを考慮して、重量比で90:10~40:60(カーボン粒子:撥水剤)程度とするのがよい。なお、カーボン粒子層の厚さについても特に制限はなく、得られるガス拡散層の撥水性を考慮して適宜決定すればよい。
The mixing ratio of the carbon particles to the water repellent in the carbon particle layer is about 90:10 to 40:60 (carbon particles: water repellent) by weight in consideration of the balance between water repellency and electronic conductivity. It is good. In addition, there is no restriction | limiting in particular also about the thickness of a carbon particle layer, What is necessary is just to determine suitably in consideration of the water repellency of the gas diffusion layer obtained.
[膜電極接合体(MEA)の製造方法]
膜電極接合体(MEA)の作製方法としては、特に制限されず、従来公知の方法を使用できる。例えば、電解質膜に触媒層をホットプレスで転写または塗布し、これを乾燥したものに、ガス拡散層を接合する方法や、ガス拡散層の微多孔質層側(微多孔質層を含まない場合には、基材層の片面に触媒層を予め塗布して乾燥することによりガス拡散電極(GDE)を2枚作製し、固体高分子電解質膜の両面にこのガス拡散電極をホットプレスで接合する方法を使用することができる。ホットプレスなどの塗布、接合条件は、固体高分子電解質膜や触媒層内の高分子電解質の種類(パ-フルオロスルホン酸系や炭化水素系)によって適宜調整すればよい。 [Production method of membrane electrode assembly (MEA)]
A method for producing a membrane electrode assembly (MEA) is not particularly limited, and a conventionally known method can be used. For example, a method of joining a gas diffusion layer to a catalyst layer transferred or applied to an electrolyte membrane by hot pressing and drying it, or a microporous layer side of the gas diffusion layer (when a microporous layer is not included) First, two gas diffusion electrodes (GDE) are prepared by applying a catalyst layer on one side of a base material layer in advance and drying, and then bonding the gas diffusion electrodes to both sides of a solid polymer electrolyte membrane by hot pressing. Application and bonding conditions such as hot pressing can be adjusted as appropriate according to the type of polymer electrolyte (perfluorosulfonic acid type or hydrocarbon type) in the solid polymer electrolyte membrane or catalyst layer. Good.
膜電極接合体(MEA)の作製方法としては、特に制限されず、従来公知の方法を使用できる。例えば、電解質膜に触媒層をホットプレスで転写または塗布し、これを乾燥したものに、ガス拡散層を接合する方法や、ガス拡散層の微多孔質層側(微多孔質層を含まない場合には、基材層の片面に触媒層を予め塗布して乾燥することによりガス拡散電極(GDE)を2枚作製し、固体高分子電解質膜の両面にこのガス拡散電極をホットプレスで接合する方法を使用することができる。ホットプレスなどの塗布、接合条件は、固体高分子電解質膜や触媒層内の高分子電解質の種類(パ-フルオロスルホン酸系や炭化水素系)によって適宜調整すればよい。 [Production method of membrane electrode assembly (MEA)]
A method for producing a membrane electrode assembly (MEA) is not particularly limited, and a conventionally known method can be used. For example, a method of joining a gas diffusion layer to a catalyst layer transferred or applied to an electrolyte membrane by hot pressing and drying it, or a microporous layer side of the gas diffusion layer (when a microporous layer is not included) First, two gas diffusion electrodes (GDE) are prepared by applying a catalyst layer on one side of a base material layer in advance and drying, and then bonding the gas diffusion electrodes to both sides of a solid polymer electrolyte membrane by hot pressing. Application and bonding conditions such as hot pressing can be adjusted as appropriate according to the type of polymer electrolyte (perfluorosulfonic acid type or hydrocarbon type) in the solid polymer electrolyte membrane or catalyst layer. Good.
<燃料電池>
上述した膜電極接合体(MEA)は、燃料電池に好適に使用できる。すなわち、本発明は、本発明に係る触媒層を含む電解質膜電極接合体(MEA)を用いてなる燃料電池をも提供する。かような燃料電池は、高い発電性能(特に重量比活性)および耐久性を発揮できる。 <Fuel cell>
The membrane electrode assembly (MEA) described above can be suitably used for a fuel cell. That is, the present invention also provides a fuel cell using the electrolyte membrane electrode assembly (MEA) including the catalyst layer according to the present invention. Such a fuel cell can exhibit high power generation performance (particularly weight specific activity) and durability.
上述した膜電極接合体(MEA)は、燃料電池に好適に使用できる。すなわち、本発明は、本発明に係る触媒層を含む電解質膜電極接合体(MEA)を用いてなる燃料電池をも提供する。かような燃料電池は、高い発電性能(特に重量比活性)および耐久性を発揮できる。 <Fuel cell>
The membrane electrode assembly (MEA) described above can be suitably used for a fuel cell. That is, the present invention also provides a fuel cell using the electrolyte membrane electrode assembly (MEA) including the catalyst layer according to the present invention. Such a fuel cell can exhibit high power generation performance (particularly weight specific activity) and durability.
ここで、燃料電池は、膜電極接合体(MEA)と、燃料ガスが流れる燃料ガス流路を有するアノード側セパレータと酸化剤ガスが流れる酸化剤ガス流路を有するカソード側セパレータとからなる一対のセパレータとを有する。本発明の燃料電池は、耐久性に優れ、かつ高い発電性能を発揮できる。
Here, the fuel cell includes a pair of a membrane electrode assembly (MEA), an anode side separator having a fuel gas flow path through which fuel gas flows, and a cathode side separator having an oxidant gas flow path through which oxidant gas flows. And a separator. The fuel cell of the present invention is excellent in durability and can exhibit high power generation performance.
以下、適宜図面を参照しながら、本発明に係る触媒層を有する膜電極接合体(MEA)および燃料電池の一実施形態を詳細に説明する。しかし、本発明は、以下の実施形態のみには制限されない。なお、各図面は説明の便宜上誇張されて表現されており、各図面における各構成要素の寸法比率が実際とは異なる場合がある。また、本発明の実施の形態について図面を参照しながら説明した場合では、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
Hereinafter, an embodiment of a membrane electrode assembly (MEA) having a catalyst layer and a fuel cell according to the present invention will be described in detail with reference to the drawings as appropriate. However, the present invention is not limited only to the following embodiments. Each drawing is exaggerated for convenience of explanation, and the dimensional ratio of each component in each drawing may be different from the actual one. Further, in the case where the embodiments of the present invention are described with reference to the drawings, the same reference numerals are given to the same elements in the description of the drawings, and duplicate descriptions are omitted.
図1は、本発明の一実施形態に係る固体高分子形燃料電池(PEFC)1の基本構成を示す概略図である。PEFC1は、まず、固体高分子電解質膜2と、これを挟持する一対の触媒層(アノード触媒層3aおよびカソード触媒層3c)とを有する。そして、固体高分子電解質膜2と触媒層(3a、3c)との積層体はさらに、一対のガス拡散層(GDL)(アノードガス拡散層4aおよびカソードガス拡散層4c)により挟持されている。このように、固体高分子電解質膜2、一対の触媒層(3a、3c)および一対のガス拡散層(4a、4c)は、積層された状態で膜電極接合体(MEA)10を構成する。
FIG. 1 is a schematic diagram showing a basic configuration of a polymer electrolyte fuel cell (PEFC) 1 according to an embodiment of the present invention. The PEFC 1 first includes a solid polymer electrolyte membrane 2 and a pair of catalyst layers (an anode catalyst layer 3a and a cathode catalyst layer 3c) that sandwich the membrane. The laminate of the solid polymer electrolyte membrane 2 and the catalyst layers (3a, 3c) is further sandwiched between a pair of gas diffusion layers (GDL) (anode gas diffusion layer 4a and cathode gas diffusion layer 4c). Thus, the polymer electrolyte membrane 2, the pair of catalyst layers (3a, 3c), and the pair of gas diffusion layers (4a, 4c) constitute a membrane electrode assembly (MEA) 10 in a stacked state.
PEFC1において、MEA10はさらに、一対のセパレータ(アノードセパレータ5aおよびカソードセパレータ5c)により挟持されている。図1において、セパレータ(5a、5c)は、図示したMEA10の両端に位置するように図示されている。ただし、複数のMEAが積層されてなる燃料電池スタックでは、セパレータは、隣接するPEFC(図示せず)のためのセパレータとしても用いられるのが一般的である。換言すれば、燃料電池スタックにおいてMEAは、セパレータを介して順次積層されることにより、スタックを構成することとなる。なお、実際の燃料電池スタックにおいては、セパレータ(5a、5c)と固体高分子電解質膜2との間や、PEFC1とこれと隣接する他のPEFCとの間にガスシール部が配置されるが、図1ではこれらの記載を省略する。
In PEFC1, the MEA 10 is further sandwiched between a pair of separators (anode separator 5a and cathode separator 5c). In FIG. 1, the separators (5 a, 5 c) are illustrated so as to be positioned at both ends of the illustrated MEA 10. However, in a fuel cell stack in which a plurality of MEAs are stacked, the separator is generally used as a separator for an adjacent PEFC (not shown). In other words, in the fuel cell stack, the MEAs are sequentially stacked via the separator to form a stack. In an actual fuel cell stack, a gas seal portion is disposed between the separator (5a, 5c) and the solid polymer electrolyte membrane 2, or between the PEFC 1 and another adjacent PEFC. These descriptions are omitted in FIG.
セパレータ(5a、5c)は、例えば、厚さ0.5mm以下の薄板にプレス処理を施すことで図1に示すような凹凸状の形状に成形することにより得られる。セパレータ(5a、5c)のMEA側から見た凸部はMEA10と接触している。これにより、MEA10との電気的な接続が確保される。また、セパレータ(5a、5c)のMEA側から見た凹部(セパレータの有する凹凸状の形状に起因して生じるセパレータとMEAとの間の空間)は、PEFC1の運転時にガスを流通させるためのガス流路として機能する。具体的には、アノードセパレータ5aのガス流路6aには燃料ガス(例えば、水素など)を流通させ、カソードセパレータ5cのガス流路6cには酸化剤ガス(例えば、空気など)を流通させる。
The separators (5a, 5c) are obtained, for example, by forming a concavo-convex shape as shown in FIG. 1 by subjecting a thin plate having a thickness of 0.5 mm or less to a press treatment. The convex part seen from the MEA side of the separator (5a, 5c) is in contact with the MEA 10. Thereby, the electrical connection with MEA10 is ensured. Further, a recess (space between the separator and the MEA generated due to the concavo-convex shape of the separator) viewed from the MEA side of the separator (5a, 5c) is a gas for circulating gas during operation of the PEFC 1 Functions as a flow path. Specifically, a fuel gas (for example, hydrogen) is circulated through the gas flow path 6a of the anode separator 5a, and an oxidant gas (for example, air) is circulated through the gas flow path 6c of the cathode separator 5c.
一方、セパレータ(5a、5c)のMEA側とは反対の側から見た凹部は、PEFC1の運転時にPEFCを冷却するための冷媒(例えば、水)を流通させるための冷媒流路7とされる。さらに、セパレータには通常、マニホールド(図示せず)が設けられる。このマニホールドは、スタックを構成した際に各セルを連結するための連結手段として機能する。かような構成とすることで、燃料電池スタックの機械的強度が確保されうる。
On the other hand, the recess viewed from the side opposite to the MEA side of the separator (5a, 5c) serves as a refrigerant flow path 7 for circulating a refrigerant (for example, water) for cooling the PEFC during operation of the PEFC 1. . Further, the separator is usually provided with a manifold (not shown). This manifold functions as a connection means for connecting cells when a stack is formed. With such a configuration, the mechanical strength of the fuel cell stack can be ensured.
なお、図1に示す実施形態においては、セパレータ(5a、5c)は凹凸状の形状に成形されている。ただし、セパレータは、かような凹凸状の形態のみに限定されるわけではなく、ガス流路および冷媒流路の機能を発揮できる限り、平板状、一部凹凸状などの任意の形態であってもよい。
In the embodiment shown in FIG. 1, the separators (5a, 5c) are formed in an uneven shape. However, the separator is not limited to such a concavo-convex shape, and may be any form such as a flat plate shape and a partially concavo-convex shape as long as the functions of the gas flow path and the refrigerant flow path can be exhibited. Also good.
[セパレータ]
セパレータは、固体高分子形燃料電池などの燃料電池の単セルを複数個直列に接続して燃料電池スタックを構成する際に、各セルを電気的に直列に接続する機能を有する。また、セパレータは、燃料ガス、酸化剤ガス、および冷却剤を互に分離する隔壁としての機能も有する。これらの流路を確保するため、上述したように、セパレータのそれぞれにはガス流路および冷却流路が設けられていることが好ましい。セパレータを構成する材料としては、緻密カーボングラファイト、炭素板などのカーボンや、ステンレスなどの金属など、従来公知の材料が適宜制限なく採用できる。セパレータの厚さやサイズ、設けられる各流路の形状やサイズなどは特に限定されず、得られる燃料電池の所望の出力特性などを考慮して適宜決定できる。 [Separator]
The separator has a function of electrically connecting each cell in series when a plurality of single cells of a fuel cell such as a polymer electrolyte fuel cell are connected in series to form a fuel cell stack. The separator also functions as a partition that separates the fuel gas, the oxidant gas, and the coolant from each other. In order to secure these flow paths, as described above, each of the separators is preferably provided with a gas flow path and a cooling flow path. As a material constituting the separator, conventionally known materials such as dense carbon graphite, carbon such as a carbon plate, and metal such as stainless steel can be appropriately employed without limitation. The thickness and size of the separator and the shape and size of each flow path provided are not particularly limited, and can be appropriately determined in consideration of the desired output characteristics of the obtained fuel cell.
セパレータは、固体高分子形燃料電池などの燃料電池の単セルを複数個直列に接続して燃料電池スタックを構成する際に、各セルを電気的に直列に接続する機能を有する。また、セパレータは、燃料ガス、酸化剤ガス、および冷却剤を互に分離する隔壁としての機能も有する。これらの流路を確保するため、上述したように、セパレータのそれぞれにはガス流路および冷却流路が設けられていることが好ましい。セパレータを構成する材料としては、緻密カーボングラファイト、炭素板などのカーボンや、ステンレスなどの金属など、従来公知の材料が適宜制限なく採用できる。セパレータの厚さやサイズ、設けられる各流路の形状やサイズなどは特に限定されず、得られる燃料電池の所望の出力特性などを考慮して適宜決定できる。 [Separator]
The separator has a function of electrically connecting each cell in series when a plurality of single cells of a fuel cell such as a polymer electrolyte fuel cell are connected in series to form a fuel cell stack. The separator also functions as a partition that separates the fuel gas, the oxidant gas, and the coolant from each other. In order to secure these flow paths, as described above, each of the separators is preferably provided with a gas flow path and a cooling flow path. As a material constituting the separator, conventionally known materials such as dense carbon graphite, carbon such as a carbon plate, and metal such as stainless steel can be appropriately employed without limitation. The thickness and size of the separator and the shape and size of each flow path provided are not particularly limited, and can be appropriately determined in consideration of the desired output characteristics of the obtained fuel cell.
燃料電池の製造方法は、特に制限されることなく、燃料電池の分野において従来公知の知見が適宜参照されうる。
The manufacturing method of the fuel cell is not particularly limited, and conventionally known knowledge can be appropriately referred to in the field of the fuel cell.
さらに、燃料電池が所望する電圧を発揮できるように、セパレータを介して膜電極接合体(MEA)を複数積層して直列に繋いだ構造の燃料電池スタックを形成してもよい。燃料電池の形状などは、特に限定されず、所望する電圧などの電池特性が得られるように適宜決定すればよい。
Furthermore, a fuel cell stack having a structure in which a plurality of membrane electrode assemblies (MEAs) are stacked and connected in series via a separator may be formed so that the fuel cell can exhibit a desired voltage. The shape of the fuel cell is not particularly limited, and may be determined as appropriate so that desired battery characteristics such as voltage can be obtained.
上述したPEFCや膜電極接合体(MEA)は、発電性能および耐久性に優れる触媒層を用いている。したがって、当該PEFCや膜電極接合体(MEA)は発電性能および耐久性に優れる。
The above-described PEFC and membrane electrode assembly (MEA) use a catalyst layer having excellent power generation performance and durability. Therefore, the PEFC and membrane electrode assembly (MEA) are excellent in power generation performance and durability.
本実施形態のPEFCやこれを用いた燃料電池スタックは、例えば、車両に駆動用電源として搭載されうる。
The PEFC of this embodiment and the fuel cell stack using the same can be mounted on a vehicle as a driving power source, for example.
上記のような燃料電池は、優れた発電性能を発揮する。ここで、燃料電池の種類としては、特に限定されず、上記した説明中では固体高分子形燃料電池を例に挙げて説明したが、この他にも、アルカリ型燃料電池、ダイレクトメタノール型燃料電池、マイクロ燃料電池などが挙げられる。なかでも小型かつ高密度・高出力化が可能であるから、固体高分子形燃料電池(PEFC)が好ましく挙げられる。また、前記燃料電池は、搭載スペースが限定される車両などの移動体用電源の他、定置用電源などとして有用である。なかでも、比較的長時間の運転停止後に高い出力電圧が要求される自動車などの移動体用電源として用いられることが特に好ましい。
The fuel cell as described above exhibits excellent power generation performance. Here, the type of the fuel cell is not particularly limited. In the above description, the solid polymer fuel cell has been described as an example. However, in addition to the above, an alkaline fuel cell and a direct methanol fuel cell are used. And a micro fuel cell. Among them, a polymer electrolyte fuel cell (PEFC) is preferable because it is small and can achieve high density and high output. The fuel cell is useful as a stationary power source in addition to a power source for a moving body such as a vehicle in which a mounting space is limited. Among them, it is particularly preferable to use as a power source for a mobile body such as an automobile that requires a high output voltage after a relatively long time of operation stop.
燃料電池を運転する際に用いられる燃料は特に限定されない。例えば、水素、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、第2級ブタノール、第3級ブタノール、ジメチルエーテル、ジエチルエーテル、エチレングリコール、ジエチレングリコールなどが用いられうる。なかでも、高出力化が可能である点で、水素やメタノールが好ましく用いられる。
The fuel used when operating the fuel cell is not particularly limited. For example, hydrogen, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, secondary butanol, tertiary butanol, dimethyl ether, diethyl ether, ethylene glycol, diethylene glycol and the like can be used. Of these, hydrogen and methanol are preferably used in that high output is possible.
また、燃料電池の適用用途は特に限定されるものではないが、車両に適用することが好ましい。本発明に係る触媒層を含む膜電極接合体は、発電性能および耐久性に優れ、小型化が実現可能である。このため、本発明の燃料電池は、車載性の点から、車両に該燃料電池を適用した場合、特に有利である。
Further, the application application of the fuel cell is not particularly limited, but it is preferably applied to a vehicle. The membrane electrode assembly including the catalyst layer according to the present invention is excellent in power generation performance and durability, and can be downsized. For this reason, the fuel cell of this invention is especially advantageous when this fuel cell is applied to a vehicle from the point of in-vehicle property.
本発明の効果を、以下の実施例および比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。なお、下記実施例において、特記しない限り、操作は室温(25℃)で行われた。また、特記しない限り、「%」および「部」は、それぞれ、「重量%」および「重量部」を意味する。
The effect of the present invention will be described using the following examples and comparative examples. However, the technical scope of the present invention is not limited only to the following examples. In the following examples, the operation was performed at room temperature (25 ° C.) unless otherwise specified. Unless otherwise specified, “%” and “part” mean “% by weight” and “part by weight”, respectively.
実施例1:触媒前駆体Aの調製
10℃に温度制御した300ccの超純水に、ヨウ化ナトリウム(NaI)を1.27g混合し、マグネチックスターラーで60分間撹拌した。その後、一旦撹拌を停止し、下記触媒前駆体1粉末3gを添加し、前駆体液を調製した。この前駆体液のpHが3となるように、過塩素酸(HClO4)を加えた後、追加で撹拌を60分間行った。その後、ろ紙を用いて濾過し、触媒前駆体2粉末を得た。なお、触媒前駆体1粉末として、白金触媒(Pt/C):田中貴金属工業株式会社製、TEC10E50E-HT、白金担持量:50重量%)を使用した。 Example 1 Preparation of Catalyst Precursor A 1.27 g of sodium iodide (NaI) was mixed with 300 cc of ultrapure water whose temperature was controlled at 10 ° C., and stirred for 60 minutes with a magnetic stirrer. Thereafter, stirring was temporarily stopped, and 3 g of the followingcatalyst precursor 1 powder was added to prepare a precursor liquid. After adding perchloric acid (HClO 4 ) so that the pH of the precursor solution was 3, stirring was further performed for 60 minutes. Then, it filtered using the filter paper and obtained catalyst precursor 2 powder. As catalyst precursor 1 powder, platinum catalyst (Pt / C): Tanaka Kikinzoku Kogyo Co., Ltd., TEC10E50E-HT, platinum loading: 50% by weight) was used.
10℃に温度制御した300ccの超純水に、ヨウ化ナトリウム(NaI)を1.27g混合し、マグネチックスターラーで60分間撹拌した。その後、一旦撹拌を停止し、下記触媒前駆体1粉末3gを添加し、前駆体液を調製した。この前駆体液のpHが3となるように、過塩素酸(HClO4)を加えた後、追加で撹拌を60分間行った。その後、ろ紙を用いて濾過し、触媒前駆体2粉末を得た。なお、触媒前駆体1粉末として、白金触媒(Pt/C):田中貴金属工業株式会社製、TEC10E50E-HT、白金担持量:50重量%)を使用した。 Example 1 Preparation of Catalyst Precursor A 1.27 g of sodium iodide (NaI) was mixed with 300 cc of ultrapure water whose temperature was controlled at 10 ° C., and stirred for 60 minutes with a magnetic stirrer. Thereafter, stirring was temporarily stopped, and 3 g of the following
その後、ろ過した触媒前駆体2粉末を300ccの超純水に加え、マグネチックスターラーで30分撹拌した後にろ過することにより、触媒前駆体2粉末を洗浄した。この工程を2回繰り返した後、ろ過した触媒前駆体2粉末を、乾燥炉において60℃で30分間乾燥させることにより、白金がヨウ素で被覆される触媒前駆体Aを得た。
Thereafter, the filtered catalyst precursor 2 powder was added to 300 cc of ultrapure water, stirred for 30 minutes with a magnetic stirrer, and then filtered to wash the catalyst precursor 2 powder. After repeating this step twice, the filtered catalyst precursor 2 powder was dried at 60 ° C. for 30 minutes in a drying furnace to obtain catalyst precursor A in which platinum was covered with iodine.
比較例1:触媒前駆体Bの調製
白金触媒(Pt/C)(田中貴金属工業株式会社製、TEC10E50E-HT)をそのまま使用し、触媒前駆体Bとした。 Comparative Example 1 Preparation of Catalyst Precursor B A platinum catalyst (Pt / C) (manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., TEC10E50E-HT) was used as it was to prepare catalyst precursor B.
白金触媒(Pt/C)(田中貴金属工業株式会社製、TEC10E50E-HT)をそのまま使用し、触媒前駆体Bとした。 Comparative Example 1 Preparation of Catalyst Precursor B A platinum catalyst (Pt / C) (manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., TEC10E50E-HT) was used as it was to prepare catalyst precursor B.
[ヨウ素被覆割合の検証/触媒粉末]
上記実施例1および比較例1で得られた触媒前駆体AおよびBについて、下記方法によってヨウ素被覆割合を評価した。具体的には、各触媒前駆体粉末について、一酸化炭素(CO)を吸着させることで、Pt表面積のうちどの程度の割合がヨウ素で被覆されているかを検証した。 [Verification of iodine coating ratio / catalyst powder]
For the catalyst precursors A and B obtained in Example 1 and Comparative Example 1, the iodine coating ratio was evaluated by the following method. Specifically, for each catalyst precursor powder, carbon monoxide (CO) was adsorbed to verify how much of the Pt surface area was covered with iodine.
上記実施例1および比較例1で得られた触媒前駆体AおよびBについて、下記方法によってヨウ素被覆割合を評価した。具体的には、各触媒前駆体粉末について、一酸化炭素(CO)を吸着させることで、Pt表面積のうちどの程度の割合がヨウ素で被覆されているかを検証した。 [Verification of iodine coating ratio / catalyst powder]
For the catalyst precursors A and B obtained in Example 1 and Comparative Example 1, the iodine coating ratio was evaluated by the following method. Specifically, for each catalyst precursor powder, carbon monoxide (CO) was adsorbed to verify how much of the Pt surface area was covered with iodine.
すなわち、各触媒前駆体にCOを吸着させるために、触媒前駆体に関して前処理を行った後、CO吸着量を計測した。前処理は次の通りに行った。まず、各触媒前駆体を窒素雰囲気に25℃(室温)で3分間パージした後、水素雰囲気に切り替えた。次に、雰囲気温度を30分かけて100℃まで昇温し、そこで更に同温度で30分間保持をした。その後、窒素雰囲気に切り替えて、50℃まで30分間かけて降温することにより、触媒前駆体の前処理を行った。
That is, in order to adsorb CO to each catalyst precursor, the pretreatment of the catalyst precursor was performed, and then the CO adsorption amount was measured. Pretreatment was performed as follows. First, each catalyst precursor was purged with a nitrogen atmosphere at 25 ° C. (room temperature) for 3 minutes, and then switched to a hydrogen atmosphere. Next, the ambient temperature was raised to 100 ° C. over 30 minutes, and the temperature was further maintained at that temperature for 30 minutes. Thereafter, the catalyst precursor was pretreated by switching to a nitrogen atmosphere and lowering the temperature to 50 ° C. over 30 minutes.
上記前処理を行った後、以下の要領で、触媒前駆体へのCO吸着を開始した。すなわち、上記前処理後、窒素(N2)雰囲気中に晒された触媒前駆体(30mg)に対して、一酸化炭素(CO)を50μl/回のパルスで、平衡状態になるまで20回以上供給した。ここで、白金(Pt)表面にCOが吸着すると、窒素雰囲気中のCO濃度が下がる。このため、窒素雰囲気中のCO濃度変化を質量分析器で測定することで、どの程度のCOが吸着したか(CO吸着率)を定量することができる。CO吸着量(μl)をモル数に変換し、Pt 1原子あたりにCOが1分子吸着すると仮定してPtのCO化学吸着表面積(m2/g_Pt)を求めた。結果を下記表1に示す。下記表1から、ヨウ素を添加した実施例1の触媒前駆体AのPtのCO化学吸着表面積は、ヨウ素を添加してない比較例1の触媒前駆体Bの表面積の47(=20×100/43)%であることが分かる。これから、白金の全表面積の53(=100-47)%が被覆されたと考えられる。
After the pretreatment, CO adsorption on the catalyst precursor was started in the following manner. That is, after the above pretreatment, carbon monoxide (CO) is applied to the catalyst precursor (30 mg) exposed in a nitrogen (N 2 ) atmosphere at a pulse rate of 50 μl / time 20 times or more until equilibrium is reached. Supplied. Here, when CO is adsorbed on the platinum (Pt) surface, the CO concentration in the nitrogen atmosphere decreases. Therefore, by measuring the change in CO concentration in the nitrogen atmosphere with a mass spectrometer, it is possible to quantify how much CO has been adsorbed (CO adsorption rate). The CO adsorption amount (μl) was converted into the number of moles, and the CO chemical adsorption surface area (m 2 / g_Pt) of Pt was determined on the assumption that one molecule of CO was adsorbed per Pt atom. The results are shown in Table 1 below. From Table 1 below, the CO chemisorption surface area of Pt of the catalyst precursor A of Example 1 to which iodine was added was 47 (= 20 × 100 /) of the surface area of the catalyst precursor B of Comparative Example 1 to which iodine was not added. 43) It turns out that it is%. From this, it is considered that 53 (= 100-47)% of the total surface area of platinum was coated.
実施例2:触媒前駆層Aの形成
実施例1で得られた触媒前駆体A 5gに超純水5gを加えて、ハイブリッドミキサーで混合した。触媒前駆体A中の導電性担体(カーボン)重量と電解質(アイオノマー)との混合重量比率(固形分換算)が1:1となるように、アイオノマー分散液(Nafion(登録商標)D2020、EW=1000g/mol、DuPont社製)を加えた(混合物1)。別途、水と1-プロパノール(NPA)との混合重量比が8/2である混合溶媒1を調製した。この混合溶媒1を、上記混合物1に、固形分率(Pt+カーボン担体+アイオノマー)が21重量%となるよう添加して、触媒インク1を調製した。この触媒インク1を、ビーズミルを用いて、1500rpmの回転数で10分間粉砕した。この際、ビーズ(ジルコニア製、直径:1.5mm)を使用した。その後、粉砕後の触媒インク1を再びハイブリッドミキサーで脱泡した後、スクリーンプリンターを用いて転写基材(テフロン(登録商標)シート)上に塗布し、80℃で10分間乾燥して、触媒前駆層A(厚み:10μm)を形成した。 Example 2 Formation of Catalyst Precursor Layer A 5 g of ultrapure water was added to 5 g of catalyst precursor A obtained in Example 1 and mixed with a hybrid mixer. An ionomer dispersion (Nafion (registered trademark) D2020, EW =) so that the mixing weight ratio (in terms of solid content) of the conductive carrier (carbon) in the catalyst precursor A and the electrolyte (ionomer) is 1: 1. (1000 g / mol, manufactured by DuPont) was added (mixture 1). Separately, a mixed solvent 1 having a mixing weight ratio of water and 1-propanol (NPA) of 8/2 was prepared. The mixed solvent 1 was added to themixture 1 so that the solid content (Pt + carbon carrier + ionomer) was 21% by weight to prepare catalyst ink 1. The catalyst ink 1 was pulverized for 10 minutes at a rotation speed of 1500 rpm using a bead mill. At this time, beads (made by zirconia, diameter: 1.5 mm) were used. Thereafter, the pulverized catalyst ink 1 is again defoamed with a hybrid mixer, and then applied onto a transfer substrate (Teflon (registered trademark) sheet) using a screen printer, and dried at 80 ° C. for 10 minutes to obtain a catalyst precursor. Layer A (thickness: 10 μm) was formed.
実施例1で得られた触媒前駆体A 5gに超純水5gを加えて、ハイブリッドミキサーで混合した。触媒前駆体A中の導電性担体(カーボン)重量と電解質(アイオノマー)との混合重量比率(固形分換算)が1:1となるように、アイオノマー分散液(Nafion(登録商標)D2020、EW=1000g/mol、DuPont社製)を加えた(混合物1)。別途、水と1-プロパノール(NPA)との混合重量比が8/2である混合溶媒1を調製した。この混合溶媒1を、上記混合物1に、固形分率(Pt+カーボン担体+アイオノマー)が21重量%となるよう添加して、触媒インク1を調製した。この触媒インク1を、ビーズミルを用いて、1500rpmの回転数で10分間粉砕した。この際、ビーズ(ジルコニア製、直径:1.5mm)を使用した。その後、粉砕後の触媒インク1を再びハイブリッドミキサーで脱泡した後、スクリーンプリンターを用いて転写基材(テフロン(登録商標)シート)上に塗布し、80℃で10分間乾燥して、触媒前駆層A(厚み:10μm)を形成した。 Example 2 Formation of Catalyst Precursor Layer A 5 g of ultrapure water was added to 5 g of catalyst precursor A obtained in Example 1 and mixed with a hybrid mixer. An ionomer dispersion (Nafion (registered trademark) D2020, EW =) so that the mixing weight ratio (in terms of solid content) of the conductive carrier (carbon) in the catalyst precursor A and the electrolyte (ionomer) is 1: 1. (1000 g / mol, manufactured by DuPont) was added (mixture 1). Separately, a mixed solvent 1 having a mixing weight ratio of water and 1-propanol (NPA) of 8/2 was prepared. The mixed solvent 1 was added to the
実施例3:触媒層Aの形成
実施例2と同様にして、触媒前駆層Aを形成した。 Example 3: Formation of catalyst layer A A catalyst precursor layer A was formed in the same manner as in Example 2.
実施例2と同様にして、触媒前駆層Aを形成した。 Example 3: Formation of catalyst layer A A catalyst precursor layer A was formed in the same manner as in Example 2.
この触媒前駆層Aについて、下記方法に従って、ヨウ素除去処理を行った。
This catalyst precursor layer A was subjected to iodine removal treatment according to the following method.
300mlの超純水に1.5gの水酸化ナトリウム(NaOH)を入れ、水酸化ナトリウム水溶液(NaOH濃度:0.125mol/l)を調製した。
1.5 g of sodium hydroxide (NaOH) was added to 300 ml of ultrapure water to prepare an aqueous sodium hydroxide solution (NaOH concentration: 0.125 mol / l).
上記テフロン(登録商標)シート上に形成された触媒前駆層Aをこの水酸化ナトリウム水溶液中に浸漬し、水溶液をマグネチックスターラーで30分ほど撹拌した。この水溶液中にエタノールを25滴(約2.5ml)入れ、撹拌後、30分間真空引き(減圧後の圧力:-0.09MPa)を行い、水酸化ナトリウムを触媒前駆層A内に浸透させた。次に、この水溶液を60℃に温め、1時間撹拌した後、純水で洗浄した。
The catalyst precursor layer A formed on the Teflon (registered trademark) sheet was immersed in this aqueous sodium hydroxide solution, and the aqueous solution was stirred with a magnetic stirrer for about 30 minutes. 25 drops (about 2.5 ml) of ethanol were put into this aqueous solution, and after stirring, evacuation was performed for 30 minutes (pressure after decompression: −0.09 MPa), and sodium hydroxide was permeated into the catalyst precursor layer A. . Next, this aqueous solution was warmed to 60 ° C., stirred for 1 hour, and then washed with pure water.
さらに、水溶液から触媒前駆層Aを取り出し、300mlの超純水に浸漬し、60℃に温めて1時間撹拌した後、30分間真空引き(減圧後の圧力:-0.09MPa)を行った。さらに、超純水から触媒前駆層Aを取り出し、純水で洗浄することによって、無機物(ヨウ素(I)またはヨウ化物イオン(I-))を触媒前駆層A(特に白金)から除去した(触媒層A’)。
Further, the catalyst precursor layer A was taken out from the aqueous solution, immersed in 300 ml of ultrapure water, heated to 60 ° C. and stirred for 1 hour, and then evacuated for 30 minutes (pressure after decompression: −0.09 MPa). Further, the catalyst precursor layer A is taken out from the ultrapure water and washed with pure water to remove inorganic substances (iodine (I) or iodide ions (I − )) from the catalyst precursor layer A (particularly platinum) (catalyst). Layer A ′).
この触媒層A’を過塩素酸溶液(HClO4 25g+超純水 300g)に浸漬し、これを60℃に温め、同温度で1時間撹拌した後に、30分間真空引き(減圧後の圧力:-0.09MPa)を行った。次に、触媒層A’を過塩素酸溶液から取り出し、純水に浸漬し、これを60℃に温め、1時間撹拌した後に、30分間真空引き(減圧後の圧力:-0.09MPa)を行った。さらに、触媒層A’を純水から取り出し、純水で洗浄した後、80℃で10分間乾燥して、触媒層A(厚み:10μm)を得た。この過塩素酸処理により、触媒層Aに含まれるアイオノマーのナトリウムイオン(Na+)をプロトン(H+)に置換した。
The catalyst layer A ′ was immersed in a perchloric acid solution (HClO 4 25 g + ultra pure water 300 g), warmed to 60 ° C., stirred at the same temperature for 1 hour, and then evacuated for 30 minutes (pressure after decompression: − 0.09 MPa). Next, the catalyst layer A ′ is taken out from the perchloric acid solution, immersed in pure water, heated to 60 ° C., stirred for 1 hour, and then evacuated for 30 minutes (pressure after decompression: −0.09 MPa). went. Further, the catalyst layer A ′ was taken out from pure water, washed with pure water, and then dried at 80 ° C. for 10 minutes to obtain a catalyst layer A (thickness: 10 μm). By this perchloric acid treatment, the ionomer sodium ion (Na + ) contained in the catalyst layer A was replaced with protons (H + ).
このようにして得られた触媒層Aについて、蛍光X線(XRF)を用いて、触媒層A内部のヨウ素量を定量することにより、白金からヨウ素が除去されたかを検証した。その結果、触媒層Aでは、上記ヨウ素除去前の触媒前駆層Aに存在していたヨウ素のうち89.7重量%が除去されたことを確認した。また、蛍光X線(XRF)にて触媒層中のヨウ素量及び白金量を定量し、これらの値からヨウ素の被覆率[=(ヨウ素量)×100/(ヨウ素量+白金量)]を算出したところ、6%であった。
For the catalyst layer A thus obtained, the amount of iodine in the catalyst layer A was quantified using fluorescent X-rays (XRF) to verify whether iodine was removed from platinum. As a result, in the catalyst layer A, it was confirmed that 89.7% by weight of the iodine present in the catalyst precursor layer A before the removal of iodine was removed. In addition, the amount of iodine and platinum in the catalyst layer is quantified by X-ray fluorescence (XRF), and the iodine coverage [= (iodine amount) × 100 / (iodine amount + platinum amount)] is calculated from these values. As a result, it was 6%.
比較例2:触媒層Bの形成
実施例2において、触媒前駆体Bを触媒前駆体Aの代わりに使用する以外は、実施例2と同様にして、触媒層B(厚み:10μm)をテフロン(登録商標)シート上に形成した。 Comparative Example 2: Formation of catalyst layer B In Example 2, except that the catalyst precursor B was used instead of the catalyst precursor A, the catalyst layer B (thickness: 10 μm) was made of Teflon (thickness: 10 μm). It was formed on a (registered trademark) sheet.
実施例2において、触媒前駆体Bを触媒前駆体Aの代わりに使用する以外は、実施例2と同様にして、触媒層B(厚み:10μm)をテフロン(登録商標)シート上に形成した。 Comparative Example 2: Formation of catalyst layer B In Example 2, except that the catalyst precursor B was used instead of the catalyst precursor A, the catalyst layer B (thickness: 10 μm) was made of Teflon (thickness: 10 μm). It was formed on a (registered trademark) sheet.
[ヨウ素被覆割合の検証/触媒層]
上記実施例2で得られた触媒前駆層A及び上記比較例2で得られた触媒層Bについて、触媒前駆体について行った前述の[ヨウ素被覆割合の検証/触媒粉末]と同様にして、各触媒層についてヨウ素被覆の検証を行った。なお、各触媒層をテフロン(登録商標)シートから掻き落とし、これを上記[ヨウ素被覆割合の検証/触媒粉末]において触媒前駆体の代わりに使用する以外は、上記[ヨウ素被覆割合の検証/触媒粉末]と同様にして、CO化学吸着により表面積を計測した。結果を下記表2に示す。下記表2の結果では、触媒前駆層AにおけるPtのCO化学吸着表面積が触媒前駆体Aに対して若干減る(つまりヨウ素が多く吸着する)結果となったが、この差は誤差範囲内と考えられ、比較例2の触媒層Bに対して有意にヨウ素が存在していると考察される。また、比較例2の触媒層BにおけるPtのCO化学吸着表面積が比較例1の触媒前駆体Bと同じ値になっているが、これは、COはヨウ素を通過できないが、アイオノマーは通過できるためであると推察される。 [Verification of iodine coating ratio / catalyst layer]
Each of the catalyst precursor layer A obtained in Example 2 and the catalyst layer B obtained in Comparative Example 2 was subjected to the same procedure as in [Verification of iodine coverage / catalyst powder] performed for the catalyst precursor. The catalyst layer was verified for iodine coating. In addition, each catalyst layer is scraped off from a Teflon (registered trademark) sheet and used in place of the catalyst precursor in the above [Verification of Iodine Covering Ratio / Catalyst Powder]. Similarly to [Powder], the surface area was measured by CO chemical adsorption. The results are shown in Table 2 below. In the results of Table 2 below, the CO chemical adsorption surface area of Pt in the catalyst precursor layer A was slightly reduced with respect to the catalyst precursor A (that is, a large amount of iodine was adsorbed), but this difference is considered to be within the error range. Thus, it is considered that iodine is significantly present in the catalyst layer B of Comparative Example 2. Moreover, although the CO chemical adsorption surface area of Pt in the catalyst layer B of Comparative Example 2 is the same value as that of the catalyst precursor B of Comparative Example 1, this is because CO cannot pass iodine but ionomer can pass. It is guessed that.
上記実施例2で得られた触媒前駆層A及び上記比較例2で得られた触媒層Bについて、触媒前駆体について行った前述の[ヨウ素被覆割合の検証/触媒粉末]と同様にして、各触媒層についてヨウ素被覆の検証を行った。なお、各触媒層をテフロン(登録商標)シートから掻き落とし、これを上記[ヨウ素被覆割合の検証/触媒粉末]において触媒前駆体の代わりに使用する以外は、上記[ヨウ素被覆割合の検証/触媒粉末]と同様にして、CO化学吸着により表面積を計測した。結果を下記表2に示す。下記表2の結果では、触媒前駆層AにおけるPtのCO化学吸着表面積が触媒前駆体Aに対して若干減る(つまりヨウ素が多く吸着する)結果となったが、この差は誤差範囲内と考えられ、比較例2の触媒層Bに対して有意にヨウ素が存在していると考察される。また、比較例2の触媒層BにおけるPtのCO化学吸着表面積が比較例1の触媒前駆体Bと同じ値になっているが、これは、COはヨウ素を通過できないが、アイオノマーは通過できるためであると推察される。 [Verification of iodine coating ratio / catalyst layer]
Each of the catalyst precursor layer A obtained in Example 2 and the catalyst layer B obtained in Comparative Example 2 was subjected to the same procedure as in [Verification of iodine coverage / catalyst powder] performed for the catalyst precursor. The catalyst layer was verified for iodine coating. In addition, each catalyst layer is scraped off from a Teflon (registered trademark) sheet and used in place of the catalyst precursor in the above [Verification of Iodine Covering Ratio / Catalyst Powder]. Similarly to [Powder], the surface area was measured by CO chemical adsorption. The results are shown in Table 2 below. In the results of Table 2 below, the CO chemical adsorption surface area of Pt in the catalyst precursor layer A was slightly reduced with respect to the catalyst precursor A (that is, a large amount of iodine was adsorbed), but this difference is considered to be within the error range. Thus, it is considered that iodine is significantly present in the catalyst layer B of Comparative Example 2. Moreover, although the CO chemical adsorption surface area of Pt in the catalyst layer B of Comparative Example 2 is the same value as that of the catalyst precursor B of Comparative Example 1, this is because CO cannot pass iodine but ionomer can pass. It is guessed that.
また、下記表2から、実施例2の触媒前駆層AのPtのCO化学吸着表面積は、ヨウ素を添加してない比較例2の触媒層Bの表面積の40(=17×100/43)%であることが分かる。これから、白金の全表面積の60(=100-40)%がヨウ素に被覆されたと考えられる。一方、上記実施例3にて、触媒層Aでは、上記ヨウ素除去前の触媒前駆層Aに存在していたヨウ素のうち89.7重量%が除去されたことを確認した。このため、触媒層Aでは、白金が約6(=60×(1-0.897))%の割合でヨウ素で被覆されていると考えられる。
Moreover, from the following Table 2, the CO chemical adsorption surface area of Pt of the catalyst precursor layer A of Example 2 is 40 (= 17 × 100/43)% of the surface area of the catalyst layer B of Comparative Example 2 to which iodine is not added. It turns out that it is. From this, it is considered that 60 (= 100-40)% of the total surface area of platinum was covered with iodine. On the other hand, in Example 3, it was confirmed that 89.7 wt% of the iodine present in the catalyst precursor layer A before the iodine removal was removed in the catalyst layer A. Therefore, in the catalyst layer A, it is considered that platinum is covered with iodine at a ratio of about 6 (= 60 × (1−0.897))%.
[電解質(アイオノマー)被覆率の測定]
上記実施例2で得られた触媒前駆層A、実施例3で得られた触媒層Aおよび比較例2で得られた触媒層Bについて、下記参考文献1および2に記載の方法に従って、触媒金属(Pt)への電解質(アイオノマー)被覆率を測定した。なお、参考文献1および2は下記のとおりである:
参考文献1:国際公開第2012/053638号
参考文献2:Hiroshi Iden, Atsushi Ohma,“An in situ technique for analyzing ionomer coverage in catalyst layers”, Journal of Electroanalytical Chemistry 693, (2013) 34-41。 [Measurement of electrolyte (ionomer) coverage]
For the catalyst precursor layer A obtained in Example 2 above, the catalyst layer A obtained in Example 3 and the catalyst layer B obtained in Comparative Example 2, the catalyst metal was prepared according to the methods described inReferences 1 and 2 below. The electrolyte (ionomer) coverage on (Pt) was measured. References 1 and 2 are as follows:
Reference 1: International Publication No. 2012/053638 Reference 2: Hiroshi Iden, Atsushi Ohma, “An in situ technique for analyzing ionomer coverage in catalyst layers”, Journal of Electroanalytical Chemistry 693, (2013) 34-41.
上記実施例2で得られた触媒前駆層A、実施例3で得られた触媒層Aおよび比較例2で得られた触媒層Bについて、下記参考文献1および2に記載の方法に従って、触媒金属(Pt)への電解質(アイオノマー)被覆率を測定した。なお、参考文献1および2は下記のとおりである:
参考文献1:国際公開第2012/053638号
参考文献2:Hiroshi Iden, Atsushi Ohma,“An in situ technique for analyzing ionomer coverage in catalyst layers”, Journal of Electroanalytical Chemistry 693, (2013) 34-41。 [Measurement of electrolyte (ionomer) coverage]
For the catalyst precursor layer A obtained in Example 2 above, the catalyst layer A obtained in Example 3 and the catalyst layer B obtained in Comparative Example 2, the catalyst metal was prepared according to the methods described in
Reference 1: International Publication No. 2012/053638 Reference 2: Hiroshi Iden, Atsushi Ohma, “An in situ technique for analyzing ionomer coverage in catalyst layers”, Journal of Electroanalytical Chemistry 693, (2013) 34-41.
具体的には、触媒の電解質(アイオノマー)および水との界面に形成される電気二重層容量の計測を用いて、電解質による触媒の被覆率(アイオノマー被覆率)を算出する。なお、被覆率の算出に当たっては、高加湿状態(100%RH)に対する低加湿状態(5%RH)の電気二重層容量の比より算出する。なお、使用機器としては、北斗電工株式会社製電気化学測定システムHZ-3000と、エヌエフ回路設計ブロック社製周波数応答分析器FRA5020を用い、下記測定条件を採用した。
Specifically, the coverage of the catalyst (ionomer coverage) by the electrolyte is calculated using measurement of the electric double layer capacity formed at the interface between the catalyst electrolyte (ionomer) and water. In calculating the coverage, the coverage is calculated from the ratio of the electric double layer capacity in the low humidification state (5% RH) to the high humidification state (100% RH). As the equipment used, an electrochemical measurement system HZ-3000 manufactured by Hokuto Denko Co., Ltd. and a frequency response analyzer FRA5020 manufactured by NF Circuit Design Block Co., Ltd. were used and the following measurement conditions were adopted.
まず、それぞれの電池をヒーターによって30℃に加温し、作用極及び対極に、それぞれ上記加湿状態に調整した窒素ガス及び水素ガスを供給した状態で電気二重層容量を計測した。電気二重層容量の測定に際しては、上記測定条件に示したように、0.45Vで保持し、さらに、±10mVの振幅で、20kHz~10mHzの周波数範囲で作用極の電位を振動させた。ここで、作用極電位の振動時の応答から、各周波数におけるインピーダンスの実部、虚部が得られる。この虚部(Z”)と角速度ω(周波数から変換)の関係が下記式1で表されるため、虚部の逆数を角速度の-2乗について整理し、角速度の-2乗が0のときの値を外挿することによって、電気二重層容量Cdlが求められる。
First, each battery was heated to 30 ° C. with a heater, and the electric double layer capacity was measured in a state where nitrogen gas and hydrogen gas adjusted to the humidified state were supplied to the working electrode and the counter electrode, respectively. When measuring the electric double layer capacity, as shown in the above measurement conditions, the electric potential of the working electrode was oscillated at a frequency of 20 kHz to 10 mHz with an amplitude of ± 10 mV while maintaining at 0.45 V. Here, the real part and imaginary part of the impedance at each frequency are obtained from the response when the working electrode potential vibrates. Since the relationship between the imaginary part (Z ″) and the angular velocity ω (converted from the frequency) is expressed by the following formula 1, the reciprocal of the imaginary part is arranged with respect to −2 to the angular velocity, and Is extrapolated to obtain the electric double layer capacitance C dl .
このような測定を低加湿状態(5%RH)及び高加湿状態(100%RH)で実施した。さらに、作用極に濃度1体積%のCOを含む窒素ガスを1NL/分で15分以上流通させることによって、Pt触媒を失活させたのち、上記のような高加湿及び低加湿状態における電気二重層容量をそれぞれ同様に計測する。なお、電気二重層容量は、触媒層の面積当たりの値(mF/cm2)に換算して示した。
Such measurement was performed in a low humidified state (5% RH) and a high humidified state (100% RH). Furthermore, after deactivating the Pt catalyst by flowing nitrogen gas containing CO at a concentration of 1% by volume to the working electrode at a rate of 1 NL / min for 15 minutes or more, the electric gas in the high humidification and low humidification states as described above is obtained. The multi-layer capacity is similarly measured. The electric double layer capacity is shown in terms of a value per area (mF / cm 2 ) of the catalyst layer.
このようにして算出された高加湿及び低加湿状態における電気二重層容量に基づいて、高加湿状態(100%RH)に対する低加湿状態(5%RH)の電気二重層容量の比より算出し、アイオノマー被覆率とする。
Based on the electric double layer capacity in the high humidification and low humidification state calculated in this way, calculated from the ratio of the electric double layer capacity in the low humidification state (5% RH) to the high humidification state (100% RH), Ionomer coverage.
結果を下記表3に示す。下記表3の結果から、実施例3の触媒層Aでのアイオノマー被覆率が比較例2の触媒層Bに比して有意に低いことがわかる。ゆえに、本発明の方法により、触媒金属の電解質による被覆を有効に抑制できることが考察される。
The results are shown in Table 3 below. From the results in Table 3 below, it can be seen that the ionomer coverage in the catalyst layer A of Example 3 is significantly lower than that of the catalyst layer B of Comparative Example 2. Therefore, it is considered that the coating of the catalyst metal by the electrolyte can be effectively suppressed by the method of the present invention.
実施例4:MEA1の作製
実施例1で得られた触媒前駆体A 5gに超純水5gを加えて、ハイブリッドミキサーで混合した。触媒前駆体A中の導電性担体(カーボン)重量と電解質(アイオノマー)との混合重量比率(固形分換算)が1:1となるように、アイオノマー分散液(Nafion(登録商標)D2020、EW=1000g/mol、DuPont社製)を加えた(混合物1)。別途、水と1-プロパノール(NPA)との混合重量比が8/2である混合溶媒1を調製した。この混合溶媒1を、上記混合物1に、固形分率(Pt+カーボン担体+アイオノマー)が21重量%となるよう添加して、カソード触媒インク1を調製した。 Example 4: Preparation of MEA1 5 g of ultrapure water was added to 5 g of the catalyst precursor A obtained in Example 1, and mixed with a hybrid mixer. An ionomer dispersion (Nafion (registered trademark) D2020, EW =) so that the mixing weight ratio (in terms of solid content) of the conductive carrier (carbon) in the catalyst precursor A and the electrolyte (ionomer) is 1: 1. (1000 g / mol, manufactured by DuPont) was added (mixture 1). Separately, a mixed solvent 1 having a mixing weight ratio of water and 1-propanol (NPA) of 8/2 was prepared. The mixed solvent 1 was added to themixture 1 so that the solid content (Pt + carbon carrier + ionomer) was 21% by weight to prepare a cathode catalyst ink 1.
実施例1で得られた触媒前駆体A 5gに超純水5gを加えて、ハイブリッドミキサーで混合した。触媒前駆体A中の導電性担体(カーボン)重量と電解質(アイオノマー)との混合重量比率(固形分換算)が1:1となるように、アイオノマー分散液(Nafion(登録商標)D2020、EW=1000g/mol、DuPont社製)を加えた(混合物1)。別途、水と1-プロパノール(NPA)との混合重量比が8/2である混合溶媒1を調製した。この混合溶媒1を、上記混合物1に、固形分率(Pt+カーボン担体+アイオノマー)が21重量%となるよう添加して、カソード触媒インク1を調製した。 Example 4: Preparation of MEA1 5 g of ultrapure water was added to 5 g of the catalyst precursor A obtained in Example 1, and mixed with a hybrid mixer. An ionomer dispersion (Nafion (registered trademark) D2020, EW =) so that the mixing weight ratio (in terms of solid content) of the conductive carrier (carbon) in the catalyst precursor A and the electrolyte (ionomer) is 1: 1. (1000 g / mol, manufactured by DuPont) was added (mixture 1). Separately, a mixed solvent 1 having a mixing weight ratio of water and 1-propanol (NPA) of 8/2 was prepared. The mixed solvent 1 was added to the
上記で調製したカソード触媒インク1を、ビーズミルを用いて、1500rpmの回転数で10分間粉砕した。この際、ビーズ(ジルコニア製、直径:1.5mm)を使用した。その後、粉砕後のカソード触媒インク1を再びハイブリッドミキサーで脱泡した後、白金担持量が0.35mg/cm2になるように転写基材(テフロン(登録商標)シート)にスクリーン印刷法によって塗布し、80℃で15分乾燥した。これにより、カソード触媒前駆層1’(厚み:10μm)を転写基材上に形成した。
The cathode catalyst ink 1 prepared above was pulverized for 10 minutes at a rotation speed of 1500 rpm using a bead mill. At this time, beads (made by zirconia, diameter: 1.5 mm) were used. Thereafter, the cathode catalyst ink 1 after pulverization is again defoamed with a hybrid mixer, and then applied to a transfer substrate (Teflon (registered trademark) sheet) by a screen printing method so that a platinum carrying amount becomes 0.35 mg / cm 2. And dried at 80 ° C. for 15 minutes. Thereby, the cathode catalyst precursor layer 1 ′ (thickness: 10 μm) was formed on the transfer substrate.
実施例3において、このようにして得られたカソード触媒前駆層1’を触媒前駆層Aの代わりに使用する以外は、実施例3と同様にして、カソード触媒層1(厚み:10μm)を形成した。
In Example 3, the cathode catalyst layer 1 (thickness: 10 μm) was formed in the same manner as in Example 3 except that the cathode catalyst precursor layer 1 ′ thus obtained was used instead of the catalyst precursor layer A. did.
比較例1で得られた触媒前駆体B 5gに超純水5gを加えて、ハイブリッドミキサーで混合した。触媒前駆体B中の導電性担体(カーボン)重量と電解質(アイオノマー)との混合重量比率(固形分換算)が1:1となるように、アイオノマー分散液(Nafion(登録商標)D2020、EW=1000g/mol、DuPont社製)を加えた(混合物2)。別途、水と1-プロパノール(NPA)との混合重量比が8/2である混合溶媒1を調製した。この混合溶媒1を、上記混合物2に、固形分率(Pt+カーボン担体+アイオノマー)が21重量%となるよう添加して、アノード触媒インク1を調製した。
5 g of the catalyst precursor B obtained in Comparative Example 1 was added to 5 g of ultrapure water and mixed with a hybrid mixer. An ionomer dispersion (Nafion (registered trademark) D2020, EW =) so that the mixing weight ratio (in terms of solid content) of the conductive support (carbon) and the electrolyte (ionomer) in the catalyst precursor B is 1: 1. (1000 g / mol, manufactured by DuPont) was added (mixture 2). Separately, a mixed solvent 1 having a mixing weight ratio of water and 1-propanol (NPA) of 8/2 was prepared. The mixed solvent 1 was added to the mixture 2 so that the solid content (Pt + carbon carrier + ionomer) was 21% by weight to prepare an anode catalyst ink 1.
上記で調製したアノード触媒インク1を、ビーズミルを用いて、1500rpmの回転数で10分間粉砕した。この際、ビーズ(ジルコニア製、直径:1.5mm)を使用した。その後、粉砕後のアノード触媒インク1を再びハイブリッドミキサーで脱泡した後、白金担持量が0.35mg/cm2になるように転写基材(テフロン(登録商標)シート)にスクリーン印刷法によって塗布し、80℃で15分乾燥した。これにより、アノード触媒層1(厚み:10μm)を転写基材上に形成した。
The anode catalyst ink 1 prepared above was pulverized for 10 minutes at a rotation speed of 1500 rpm using a bead mill. At this time, beads (made by zirconia, diameter: 1.5 mm) were used. Thereafter, the pulverized anode catalyst ink 1 is again defoamed with a hybrid mixer, and then applied to a transfer substrate (Teflon (registered trademark) sheet) by a screen printing method so that the amount of platinum supported is 0.35 mg / cm 2. And dried at 80 ° C. for 15 minutes. Thereby, the anode catalyst layer 1 (thickness: 10 μm) was formed on the transfer substrate.
上記のようにして作製したカソード触媒層1(大きさ:5cm×5cm)及びアノード触媒層1(大きさ:5cm×5cm)を、高分子電解質膜(Dupont社製、NAFION(登録商標)XL、厚み:27.5μm)の両面にそれぞれ配置した。次いで、これを、150℃、2MPaで10分間ホットプレスを行うことにより、膜触媒層接合体(CCM:catalyst coated membrane)1を得た。得られた膜触媒層接合体(CCM)1の両面をガス拡散層(24BC,SGLカーボン社製)で挟持し、膜電極接合体1(MEA1)を得た。
The cathode catalyst layer 1 (size: 5 cm × 5 cm) and the anode catalyst layer 1 (size: 5 cm × 5 cm) produced as described above were combined with a polymer electrolyte membrane (manufactured by Dupont, NAFION (registered trademark) XL, (Thickness: 27.5 μm). Subsequently, this was hot-pressed at 150 ° C. and 2 MPa for 10 minutes to obtain a membrane catalyst layer assembly (CCM: catalyst-coated membrane) 1. Both sides of the obtained membrane catalyst layer assembly (CCM) 1 were sandwiched between gas diffusion layers (24BC, manufactured by SGL Carbon Co., Ltd.) to obtain a membrane electrode assembly 1 (MEA1).
比較例3:MEA2の作製
実施例4と同様にして、カソード触媒前駆層1’およびアノード触媒層1を転写基材上にそれぞれ形成した。 Comparative Example 3: Production of MEA 2 In the same manner as in Example 4, a cathodecatalyst precursor layer 1 ′ and an anode catalyst layer 1 were formed on a transfer substrate.
実施例4と同様にして、カソード触媒前駆層1’およびアノード触媒層1を転写基材上にそれぞれ形成した。 Comparative Example 3: Production of MEA 2 In the same manner as in Example 4, a cathode
上記のようにして作製したカソード触媒層1’(大きさ:5cm×5cm)及びアノード触媒層1(大きさ:5cm×5cm)を、高分子電解質膜(Dupont社製、NAFION(登録商標)XL、厚み:27.5μm)の両面にそれぞれ配置した。次いで、これを、150℃、2MPaで10分間ホットプレスを行うことにより、膜触媒層接合体(CCM:catalyst coated membrane)2を得た。得られた膜触媒層接合体(CCM)2の両面をガス拡散層(24BC,SGLカーボン社製)で挟持し、膜電極接合体2(MEA2)を得た。すなわち、比較例3は、実施例4において、カソード触媒層の形成においてヨウ素除去処理及び酸処理を行わなかった以外は、実施例4と同様である。
The cathode catalyst layer 1 ′ (size: 5 cm × 5 cm) and the anode catalyst layer 1 (size: 5 cm × 5 cm) produced as described above were formed into a polymer electrolyte membrane (manufactured by Dupont, NAFION (registered trademark) XL). , Thickness: 27.5 μm). Next, this was hot-pressed at 150 ° C. and 2 MPa for 10 minutes to obtain a membrane catalyst layer assembly (CCM: catalyst-coated membrane) 2. Both surfaces of the obtained membrane catalyst layer assembly (CCM) 2 were sandwiched between gas diffusion layers (24BC, manufactured by SGL Carbon Co.) to obtain membrane electrode assembly 2 (MEA2). That is, Comparative Example 3 is the same as Example 4 except that iodine removal treatment and acid treatment were not performed in the formation of the cathode catalyst layer in Example 4.
比較例4:MEA3の作製
比較例1で得られた触媒前駆体B 5gに超純水5gを加えて、ハイブリッドミキサーで混合した。触媒前駆体B中の導電性担体(カーボン)重量と電解質(アイオノマー)との混合重量比率(固形分換算)が1:1となるように、アイオノマー分散液(Nafion(登録商標)D2020,DuPont社製)を加えた(混合物2)。別途、水と1-プロパノール(NPA)との混合重量比が8/2である混合溶媒1を調製した。この混合溶媒1を、上記混合物2に、固形分率(Pt+カーボン担体+アイオノマー)が21重量%となるよう添加して、触媒インク3を調製した。 Comparative Example 4: Production of MEA 3 To 5 g of the catalyst precursor B obtained in Comparative Example 1, 5 g of ultrapure water was added and mixed with a hybrid mixer. Ionomer dispersion (Nafion (registered trademark) D2020, DuPont) so that the mixing weight ratio (in terms of solid content) of the conductive support (carbon) in the catalyst precursor B and the electrolyte (ionomer) is 1: 1. (Mixture 2). Separately, a mixed solvent 1 having a mixing weight ratio of water and 1-propanol (NPA) of 8/2 was prepared. The mixed solvent 1 was added to the mixture 2 so that the solid content (Pt + carbon carrier + ionomer) was 21% by weight to prepare catalyst ink 3.
比較例1で得られた触媒前駆体B 5gに超純水5gを加えて、ハイブリッドミキサーで混合した。触媒前駆体B中の導電性担体(カーボン)重量と電解質(アイオノマー)との混合重量比率(固形分換算)が1:1となるように、アイオノマー分散液(Nafion(登録商標)D2020,DuPont社製)を加えた(混合物2)。別途、水と1-プロパノール(NPA)との混合重量比が8/2である混合溶媒1を調製した。この混合溶媒1を、上記混合物2に、固形分率(Pt+カーボン担体+アイオノマー)が21重量%となるよう添加して、触媒インク3を調製した。 Comparative Example 4: Production of MEA 3 To 5 g of the catalyst precursor B obtained in Comparative Example 1, 5 g of ultrapure water was added and mixed with a hybrid mixer. Ionomer dispersion (Nafion (registered trademark) D2020, DuPont) so that the mixing weight ratio (in terms of solid content) of the conductive support (carbon) in the catalyst precursor B and the electrolyte (ionomer) is 1: 1. (Mixture 2). Separately, a mixed solvent 1 having a mixing weight ratio of water and 1-propanol (NPA) of 8/2 was prepared. The mixed solvent 1 was added to the mixture 2 so that the solid content (Pt + carbon carrier + ionomer) was 21% by weight to prepare catalyst ink 3.
上記で調製した触媒インク3を、白金担持量が0.35mg/cm2になるように転写基材(テフロン(登録商標)シート)にスクリーン印刷法によって塗布し、80℃で15分乾燥した。上記操作を2回繰り返し、カソード触媒層3(厚み:10μm)およびアノード触媒層3(厚み:10μm)を転写基材上に形成した。
The catalyst ink 3 prepared above was applied to a transfer substrate (Teflon (registered trademark) sheet) by a screen printing method so that the amount of platinum supported was 0.35 mg / cm 2 and dried at 80 ° C. for 15 minutes. The above operation was repeated twice to form a cathode catalyst layer 3 (thickness: 10 μm) and an anode catalyst layer 3 (thickness: 10 μm) on the transfer substrate.
上記のようにして作製したカソード触媒層3およびアノード触媒層3(それぞれの大きさ:5cm×5cm)を、高分子電解質膜(Dupont社製、NAFION(登録商標)XL、厚み:27.5μm)の両面にそれぞれ配置した。次いで、これを、150℃、2MPaで10分間ホットプレスを行うことにより、膜触媒層接合体(CCM:catalyst coated membrane)3を得た。得られた膜触媒層接合体(CCM)3の両面をガス拡散層(24BC,SGLカーボン社製)で挟持し、膜電極接合体3(MEA3)を得た。
The cathode catalyst layer 3 and the anode catalyst layer 3 (each size: 5 cm × 5 cm) produced as described above were formed into a polymer electrolyte membrane (manufactured by Dupont, NAFION (registered trademark) XL, thickness: 27.5 μm). Arranged on both sides. Next, this was hot-pressed at 150 ° C. and 2 MPa for 10 minutes to obtain a membrane catalyst layer assembly (CCM: catalyst-coated membrane) 3. Both surfaces of the obtained membrane catalyst layer assembly (CCM) 3 were sandwiched between gas diffusion layers (24BC, manufactured by SGL Carbon Co., Ltd.) to obtain a membrane electrode assembly 3 (MEA3).
[ORR活性および表面積の評価]
上記実施例4および比較例3~4で得られたMEA 1~3について、電池性能(ORR活性)および電気化学的有効表面積(ECA)を評価した。なお、電池性能(ORR活性)および電気化学的有効表面積(ECA)は、それぞれ、燃料電池実用化推進協議会(FCCJ)が発行した「固体高分子形燃料電池の目標・研究開発課題と評価方法の提案(平成23年1月)」のIII-3-2およびIII-3-4に従って測定した。 [Evaluation of ORR activity and surface area]
With respect to MEAs 1 to 3 obtained in Example 4 and Comparative Examples 3 to 4, battery performance (ORR activity) and electrochemical effective surface area (ECA) were evaluated. Cell performance (ORR activity) and electrochemical effective surface area (ECA) were published by the Fuel Cell Practical Use Promotion Council (FCCJ). (Proposal (January 2011)) III-3-2 and III-3-4.
上記実施例4および比較例3~4で得られたMEA 1~3について、電池性能(ORR活性)および電気化学的有効表面積(ECA)を評価した。なお、電池性能(ORR活性)および電気化学的有効表面積(ECA)は、それぞれ、燃料電池実用化推進協議会(FCCJ)が発行した「固体高分子形燃料電池の目標・研究開発課題と評価方法の提案(平成23年1月)」のIII-3-2およびIII-3-4に従って測定した。 [Evaluation of ORR activity and surface area]
With respect to MEAs 1 to 3 obtained in Example 4 and Comparative Examples 3 to 4, battery performance (ORR activity) and electrochemical effective surface area (ECA) were evaluated. Cell performance (ORR activity) and electrochemical effective surface area (ECA) were published by the Fuel Cell Practical Use Promotion Council (FCCJ). (Proposal (January 2011)) III-3-2 and III-3-4.
具体的には、燃料電池を80℃に保持し、カソードには100%RHに調湿した酸素ガス、アノードには100%RHに調湿した水素ガスをそれぞれ流通させ、電流密度が1.0A/cm2となるように電子負荷を設定し、15分保持した。その後、セル電圧が0.9V以上となるまで、段階的に電流密度を低下させた。このとき、各電流密度に15分保持するようにして、電流密度と電位の関係を取得した。そして、100%RH条件で取得した電気化学的有効表面積(ECA)を用いて、触媒表面積あたりの電流密度(下記表中の「ORR面積比活性(Is)(μA/cm2_Pt)」)および白金重量あたりの電流密度(下記表中の「ORR質量比活性(Im)(A/g_Pt)」)に換算し、0.9Vにおける電流密度を比較した。
Specifically, the fuel cell is maintained at 80 ° C., oxygen gas conditioned to 100% RH is passed through the cathode, and hydrogen gas conditioned to 100% RH is passed through the anode, and the current density is 1.0 A. The electronic load was set to be / cm 2 and held for 15 minutes. Thereafter, the current density was gradually reduced until the cell voltage became 0.9 V or higher. At this time, each current density was held for 15 minutes to obtain the relationship between the current density and the potential. Then, using the electrochemical effective surface area (ECA) obtained under 100% RH conditions, the current density per catalyst surface area (“ORR area specific activity (Is) (μA / cm 2 _Pt)” in the table below) and The current density per weight of platinum (“ORR mass specific activity (Im) (A / g_Pt)” in the table below) was converted to a current density at 0.9 V.
なお、電気化学的有効表面積(ECA)は、上記電気化学測定システムHZ-3000を用いて、以下の条件のもとに測定対象の電位を掃引し、触媒Ptに対するプロトンの吸着による電気量および電極の白金重量から、電気化学的有効表面積(ECA)(m2/g_Pt)を算出した。
The electrochemical effective surface area (ECA) is obtained by using the electrochemical measurement system HZ-3000, sweeping the potential of the measurement object under the following conditions, and the amount of electricity and electrode due to proton adsorption on the catalyst Pt. From the weight of platinum, the electrochemical effective surface area (ECA) (m 2 / g_Pt) was calculated.
結果は、下記表4に示す。下記表4の結果から、実施例4のMEA1は、ヨウ素を除去しない比較例3のMEA2および無処理の比較例4のMEA3に比して、触媒表面積及び白金重量あたりの電流密度(ORR面積比活性およびORR質量比活性)双方が有意に高いことがわかる。ゆえに、本発明の方法によって得られる触媒層を有するMEAは、優れた発電性能を発揮できることが期待される。
Results are shown in Table 4 below. From the results shown in Table 4 below, the MEA 1 of Example 4 has a catalyst surface area and current density per platinum weight (ORR area ratio) as compared with MEA 2 of Comparative Example 3 that does not remove iodine and MEA 3 of Comparative Example 4 without treatment. It can be seen that both activity and ORR mass specific activity) are significantly higher. Therefore, the MEA having a catalyst layer obtained by the method of the present invention is expected to exhibit excellent power generation performance.
また、実施例3の触媒層Aを有する実施例4のMEA1と比較例2の触媒層Bを有する比較例4のMEA3との比較から、アイオノマー被覆率及びORR活性は高い逆相間関係が認められる。このため、ORR活性(特にORR面積比活性)の差はアイオノマー被覆率の差に由来し、アイオノマーによる触媒金属の被覆を抑制することで、MEA(ゆえに燃料電池)の性能を向上できると考察される。
Further, from comparison between MEA 1 of Example 4 having catalyst layer A of Example 3 and MEA 3 of Comparative Example 4 having catalyst layer B of Comparative Example 2, a high reverse phase relationship is observed in ionomer coverage and ORR activity. . For this reason, the difference in ORR activity (especially ORR area specific activity) originates from the difference in ionomer coverage, and it is considered that the performance of MEA (and hence fuel cell) can be improved by suppressing the coating of the catalytic metal by the ionomer. The
[I-V評価]
上記実施例4および比較例3~4で得られたMEA 1~3について、以下のWet条件およびDry条件で発電試験評価を行った。下記条件において、負荷電流密度を0~2.0A/cm2の範囲で掃引し、電流電位(I-V)曲線を得た。Wet及びDry条件下での発電試験評価結果(I-V曲線)を、それぞれ、図2及び図3に示す。図2及び図3から、実施例4のMEA1は、ヨウ素を除去しない比較例3のMEA2および無処理の比較例4のMEA3に比して、高電流密度域でも高い電位を維持できることが分かる。また、上記特長は特にDry条件で観察される。 [IV evaluation]
For the MEAs 1 to 3 obtained in Example 4 and Comparative Examples 3 to 4, power generation test evaluation was performed under the following Wet conditions and Dry conditions. Under the following conditions, the load current density was swept in the range of 0 to 2.0 A / cm 2 to obtain a current potential (IV) curve. The power generation test evaluation results (IV curves) under the wet and dry conditions are shown in FIGS. 2 and 3, respectively. 2 and 3, it can be seen that theMEA 1 of Example 4 can maintain a high potential even in a high current density region as compared with the MEA 2 of Comparative Example 3 that does not remove iodine and the MEA 3 of Comparative Example 4 without any treatment. In addition, the above features are observed especially under Dry conditions.
上記実施例4および比較例3~4で得られたMEA 1~3について、以下のWet条件およびDry条件で発電試験評価を行った。下記条件において、負荷電流密度を0~2.0A/cm2の範囲で掃引し、電流電位(I-V)曲線を得た。Wet及びDry条件下での発電試験評価結果(I-V曲線)を、それぞれ、図2及び図3に示す。図2及び図3から、実施例4のMEA1は、ヨウ素を除去しない比較例3のMEA2および無処理の比較例4のMEA3に比して、高電流密度域でも高い電位を維持できることが分かる。また、上記特長は特にDry条件で観察される。 [IV evaluation]
For the MEAs 1 to 3 obtained in Example 4 and Comparative Examples 3 to 4, power generation test evaluation was performed under the following Wet conditions and Dry conditions. Under the following conditions, the load current density was swept in the range of 0 to 2.0 A / cm 2 to obtain a current potential (IV) curve. The power generation test evaluation results (IV curves) under the wet and dry conditions are shown in FIGS. 2 and 3, respectively. 2 and 3, it can be seen that the
実施例5:触媒前駆体Cの調製
下記の方法に従って、触媒前駆体2粉末を調製した。すなわち、ビーカーにいれた0.5MのHNO3溶液500mLに、カーボン担体(ケッチェンブラック(登録商標)KetjenBlackEC300J、平均粒子径:40nm、BET比表面積:800m2/g、ライオン株式会社製)2gを添加し、室温(25℃)で30分、300rpmでスターラーで撹拌・混合した。続いて、300rpmの撹拌下で、80℃、2時間の熱処理を行ってカーボン担体を得た。そして、カーボン担体をろ過した後、超純水で洗浄した。上記ろ過・洗浄操作を計3回繰り返した。このカーボン担体を60℃で24時間乾燥させた後、酸処理カーボン担体A(BET比表面積=850m2/g、平均粒子径=40nm)を得た。 Example 5: Preparation of catalyst precursor C Catalyst precursor 2 powder was prepared according to the following method. That is, 2 g of carbon support (Ketjen Black (registered trademark) KetjenBlackEC300J, average particle size: 40 nm, BET specific surface area: 800 m 2 / g, manufactured by Lion Corporation) is added to 500 mL of 0.5 M HNO 3 solution in a beaker. The mixture was added and stirred and mixed with a stirrer at 300 rpm for 30 minutes at room temperature (25 ° C.). Subsequently, a carbon support was obtained by performing a heat treatment at 80 ° C. for 2 hours under stirring at 300 rpm. Then, after filtering the carbon support, it was washed with ultrapure water. The above filtration and washing operations were repeated a total of 3 times. After the carbon support was dried at 60 ° C. for 24 hours, an acid-treated carbon support A (BET specific surface area = 850 m 2 / g, average particle diameter = 40 nm) was obtained.
下記の方法に従って、触媒前駆体2粉末を調製した。すなわち、ビーカーにいれた0.5MのHNO3溶液500mLに、カーボン担体(ケッチェンブラック(登録商標)KetjenBlackEC300J、平均粒子径:40nm、BET比表面積:800m2/g、ライオン株式会社製)2gを添加し、室温(25℃)で30分、300rpmでスターラーで撹拌・混合した。続いて、300rpmの撹拌下で、80℃、2時間の熱処理を行ってカーボン担体を得た。そして、カーボン担体をろ過した後、超純水で洗浄した。上記ろ過・洗浄操作を計3回繰り返した。このカーボン担体を60℃で24時間乾燥させた後、酸処理カーボン担体A(BET比表面積=850m2/g、平均粒子径=40nm)を得た。 Example 5: Preparation of catalyst precursor C Catalyst precursor 2 powder was prepared according to the following method. That is, 2 g of carbon support (Ketjen Black (registered trademark) KetjenBlackEC300J, average particle size: 40 nm, BET specific surface area: 800 m 2 / g, manufactured by Lion Corporation) is added to 500 mL of 0.5 M HNO 3 solution in a beaker. The mixture was added and stirred and mixed with a stirrer at 300 rpm for 30 minutes at room temperature (25 ° C.). Subsequently, a carbon support was obtained by performing a heat treatment at 80 ° C. for 2 hours under stirring at 300 rpm. Then, after filtering the carbon support, it was washed with ultrapure water. The above filtration and washing operations were repeated a total of 3 times. After the carbon support was dried at 60 ° C. for 24 hours, an acid-treated carbon support A (BET specific surface area = 850 m 2 / g, average particle diameter = 40 nm) was obtained.
次に、ビーカーに入れた100ml超純水に、上記にて作製された酸処理カーボン担体A0.2gを添加し、15分間超音波処理を行って担体懸濁液Aを得た。触媒前駆粒子に添加するまで、担体懸濁液Aを室温(25℃)、150rpmで撹拌し続けた。
Next, 0.2 g of the acid-treated carbon carrier A prepared above was added to 100 ml of ultrapure water placed in a beaker, and sonication was performed for 15 minutes to obtain a carrier suspension A. The carrier suspension A was continuously stirred at 150 rpm at room temperature (25 ° C.) until it was added to the catalyst precursor particles.
ビーカーに入れた1000ml超純水に、0.105Mの塩化コバルト(CoCl2・6H2O)水溶液 0.36mL(Co量で9mg)、1.32Mの塩化白金酸(H2[PtCl6]・6H2O)水溶液 0.13mL(白金量で91mg)を投入した。これを、室温(25℃)で5分間、スターラーで撹拌・混合して、混合液を調製した。
To 1000 ml ultrapure water placed in a beaker, 0.36 mL of 0.105 M cobalt chloride (CoCl 2 .6H 2 O) aqueous solution (9 mg in Co amount), 1.32 M chloroplatinic acid (H 2 [PtCl 6 ]. 6H 2 O) aqueous solution 0.13 mL (91 mg in terms of platinum) was added. This was stirred and mixed with a stirrer at room temperature (25 ° C.) for 5 minutes to prepare a mixed solution.
別途、クエン酸三ナトリウム二水和物 1.2g、水素化ホウ素ナトリウム 0.4gを超純水100mLに溶解して、還元剤溶液を調製した。
Separately, 1.2 g of trisodium citrate dihydrate and 0.4 g of sodium borohydride were dissolved in 100 mL of ultrapure water to prepare a reducing agent solution.
上記で得られた混合液に、上記で調製した還元剤溶液 100mLを投入し、室温(25℃)で30分間、スターラーで撹拌・混合し、還元析出させて、触媒前駆粒子(Pt-Co混合粒子)を含む溶液を得た。次に、この溶液に、酸処理カーボン担体A0.2gを含む担体懸濁液Aを添加して、室温(25℃)で48時間、スターラーで撹拌・混合し、触媒前駆粒子を担体に担持した。その後、この触媒前駆粒子担持担体をろ過した後、超純水で洗浄した。上記濾過・洗浄操作を計3回繰り返した後、ろ過を行い、触媒粒子担持担体を得た。この触媒粒子担持担体を60℃で12時間乾燥させた後、アルゴン雰囲気下で、600℃で60分間、熱処理工程を実施した。これにより、触媒前駆体2を得た。この触媒前駆体2の触媒粒子の担持濃度(担持量)は、担体に対して、33重量%(白金担持量:30重量%、コバルト担持量:3重量%)であった。担持濃度はICP分析により測定した。以下、同様である。
100 mL of the reducing agent solution prepared above is added to the mixed solution obtained above, stirred and mixed with a stirrer at room temperature (25 ° C.) for 30 minutes, and reduced and precipitated to obtain catalyst precursor particles (Pt—Co mixed). A solution containing particles) was obtained. Next, the carrier suspension A containing 0.2 g of the acid-treated carbon carrier A was added to this solution, and stirred and mixed with a stirrer at room temperature (25 ° C.) for 48 hours to carry the catalyst precursor particles on the carrier. . Thereafter, the catalyst precursor particle-supported carrier was filtered and washed with ultrapure water. The filtration and washing operations were repeated a total of 3 times, followed by filtration to obtain a catalyst particle-supporting carrier. The catalyst particle-supported carrier was dried at 60 ° C. for 12 hours, and then a heat treatment step was performed at 600 ° C. for 60 minutes in an argon atmosphere. Thereby, the catalyst precursor 2 was obtained. The catalyst particle 2 support concentration (supported amount) of the catalyst precursor 2 was 33% by weight (platinum supported amount: 30% by weight, cobalt supported amount: 3% by weight) with respect to the support. The supported concentration was measured by ICP analysis. The same applies hereinafter.
実施例1において、触媒前駆体1粉末(Pt/C)の代わりに、上記にて調製した触媒前駆体2粉末を使用する以外は、実施例1と同様にして、触媒前駆体Cを得た。
In Example 1, a catalyst precursor C was obtained in the same manner as in Example 1 except that the catalyst precursor 2 powder prepared above was used instead of the catalyst precursor 1 powder (Pt / C). .
比較例5:触媒前駆体Dの調製
上記実施例5と同様にして、触媒前駆体2(白金担持量:30重量%、コバルト担持量:3重量%)を調製した。この触媒前駆体2をそのまま使用し、触媒前駆体Dとした。 Comparative Example 5: Preparation of catalyst precursor D Catalyst precursor 2 (platinum supported amount: 30% by weight, cobalt supported amount: 3% by weight) was prepared in the same manner as in Example 5 above. This catalyst precursor 2 was used as it was to obtain a catalyst precursor D.
上記実施例5と同様にして、触媒前駆体2(白金担持量:30重量%、コバルト担持量:3重量%)を調製した。この触媒前駆体2をそのまま使用し、触媒前駆体Dとした。 Comparative Example 5: Preparation of catalyst precursor D Catalyst precursor 2 (platinum supported amount: 30% by weight, cobalt supported amount: 3% by weight) was prepared in the same manner as in Example 5 above. This catalyst precursor 2 was used as it was to obtain a catalyst precursor D.
[ヨウ素の被覆有無による触媒金属成分の溶出試験]
上記実施例5および比較例5で得られた触媒前駆体CおよびDについて、下記方法によって、触媒金属成分の溶出を評価した。具体的には、各触媒前駆体を、それぞれ、同じ導電性担体(カーボン)重量となるように過塩素酸(HClO4)水溶液 0.5mol/Lに浸漬し、30時間放置した。所定時間放置後、過塩素酸水溶液中に溶け出したPtおよびCoをICP-MSで定量した。 [Elution test of catalytic metal components with or without iodine coating]
For the catalyst precursors C and D obtained in Example 5 and Comparative Example 5, elution of the catalyst metal component was evaluated by the following method. Specifically, each catalyst precursor was immersed in 0.5 mol / L of a perchloric acid (HClO 4 ) aqueous solution so as to have the same conductive carrier (carbon) weight, and left for 30 hours. After standing for a predetermined time, Pt and Co dissolved in the perchloric acid aqueous solution were quantified by ICP-MS.
上記実施例5および比較例5で得られた触媒前駆体CおよびDについて、下記方法によって、触媒金属成分の溶出を評価した。具体的には、各触媒前駆体を、それぞれ、同じ導電性担体(カーボン)重量となるように過塩素酸(HClO4)水溶液 0.5mol/Lに浸漬し、30時間放置した。所定時間放置後、過塩素酸水溶液中に溶け出したPtおよびCoをICP-MSで定量した。 [Elution test of catalytic metal components with or without iodine coating]
For the catalyst precursors C and D obtained in Example 5 and Comparative Example 5, elution of the catalyst metal component was evaluated by the following method. Specifically, each catalyst precursor was immersed in 0.5 mol / L of a perchloric acid (HClO 4 ) aqueous solution so as to have the same conductive carrier (carbon) weight, and left for 30 hours. After standing for a predetermined time, Pt and Co dissolved in the perchloric acid aqueous solution were quantified by ICP-MS.
結果を下記表5に示す。表5の結果から、ヨウ素で被覆した触媒前駆体Cは、非被覆の触媒前駆体Dに対して、PtおよびCo何れも溶出量が抑えられていることがわかる。この結果から、本発明の触媒前駆体は保管する場合には触媒溶出による劣化が抑制できると考察される。また、本発明の触媒前駆体を用いて形成された触媒層もまた、ヨウ素で被覆することで同様の効果が得られると考えられる。
The results are shown in Table 5 below. From the results of Table 5, it can be seen that the catalyst precursor C coated with iodine has a suppressed elution amount of both Pt and Co compared to the uncoated catalyst precursor D. From this result, it is considered that the catalyst precursor of the present invention can suppress deterioration due to catalyst elution when stored. Moreover, it is thought that the same effect is acquired by also covering the catalyst layer formed using the catalyst precursor of this invention with an iodine.
1…固体高分子形燃料電池(PEFC)、
2…固体高分子電解質膜、
3…触媒層、
3a…アノード触媒層、
3c…カソード触媒層、
4a…アノードガス拡散層、
4c…カソードガス拡散層、
5、…セパレータ、
5a…アノードセパレータ、
5c…カソードセパレータ、
6a…アノードガス流路、
6c…カソードガス流路、
7…冷媒流路、
10…膜電極接合体(MEA)。 1 ... Polymer electrolyte fuel cell (PEFC),
2 ... Solid polymer electrolyte membrane,
3 ... Catalyst layer,
3a ... anode catalyst layer,
3c ... cathode catalyst layer,
4a ... anode gas diffusion layer,
4c ... cathode gas diffusion layer,
5, ... Separator,
5a ... anode separator,
5c ... cathode separator,
6a ... anode gas flow path,
6c ... cathode gas flow path,
7: Refrigerant flow path,
10: Membrane electrode assembly (MEA).
2…固体高分子電解質膜、
3…触媒層、
3a…アノード触媒層、
3c…カソード触媒層、
4a…アノードガス拡散層、
4c…カソードガス拡散層、
5、…セパレータ、
5a…アノードセパレータ、
5c…カソードセパレータ、
6a…アノードガス流路、
6c…カソードガス流路、
7…冷媒流路、
10…膜電極接合体(MEA)。 1 ... Polymer electrolyte fuel cell (PEFC),
2 ... Solid polymer electrolyte membrane,
3 ... Catalyst layer,
3a ... anode catalyst layer,
3c ... cathode catalyst layer,
4a ... anode gas diffusion layer,
4c ... cathode gas diffusion layer,
5, ... Separator,
5a ... anode separator,
5c ... cathode separator,
6a ... anode gas flow path,
6c ... cathode gas flow path,
7: Refrigerant flow path,
10: Membrane electrode assembly (MEA).
Claims (15)
- 白金含有触媒金属を導電性担体に担持してなる触媒前駆体1を準備し、
前記触媒前駆体1を、白金含有触媒金属に吸着する無機物で被覆して、触媒前駆体2を準備し、
前記触媒前駆体2を電解質と混合して、触媒前駆層を形成し、さらに
前記触媒前駆層から前記無機物を除去する、
ことを有する、触媒層の製造方法。 Preparing a catalyst precursor 1 comprising a platinum-containing catalyst metal supported on a conductive carrier;
The catalyst precursor 1 is coated with an inorganic substance adsorbed on a platinum-containing catalyst metal to prepare a catalyst precursor 2,
The catalyst precursor 2 is mixed with an electrolyte to form a catalyst precursor layer, and the inorganic substance is removed from the catalyst precursor layer.
A method for producing a catalyst layer. - 前記触媒前駆体1の前記無機物による被覆を酸性条件下で行う、請求項1に記載の方法。 The method according to claim 1, wherein the catalyst precursor 1 is coated with the inorganic substance under acidic conditions.
- 前記無機物は、ヨウ素化合物、臭素化合物および一酸化炭素からなる群より選択される少なくとも一種である、請求項1または2に記載の方法。 The method according to claim 1 or 2, wherein the inorganic substance is at least one selected from the group consisting of iodine compounds, bromine compounds and carbon monoxide.
- 前記無機物はヨウ素化合物および臭素化合物の少なくとも一方であり、前記触媒前駆体層からの前記無機物の除去をハロホルム反応により行う、請求項3に記載の方法。 The method according to claim 3, wherein the inorganic substance is at least one of an iodine compound and a bromine compound, and the inorganic substance is removed from the catalyst precursor layer by a haloform reaction.
- 前記無機物を除去した後に触媒前駆層を酸処理する、請求項4に記載の方法。 The method according to claim 4, wherein the catalyst precursor layer is acid-treated after removing the inorganic substance.
- 前記無機物は、水溶液中で電離し得る化合物から選択される、請求項1~5のいずれか1項に記載の方法。 The method according to any one of claims 1 to 5, wherein the inorganic substance is selected from compounds that can be ionized in an aqueous solution.
- 白金含有触媒金属が導電性担体に担持されてなる触媒および電解質を含み、前記白金が0%を超えて10%未満の割合で白金含有触媒金属に吸着する無機物で被覆されてなる触媒層。 A catalyst layer comprising a catalyst and an electrolyte in which a platinum-containing catalyst metal is supported on a conductive support, and the platinum being coated with an inorganic substance that adsorbs to the platinum-containing catalyst metal in a proportion of more than 0% and less than 10%.
- 白金含有触媒金属に吸着する無機物で被覆された白金含有触媒金属が導電性担体に担持されてなる触媒前駆体。 A catalyst precursor in which a platinum-containing catalyst metal coated with an inorganic substance adsorbed on a platinum-containing catalyst metal is supported on a conductive carrier.
- 前記無機物は、ヨウ素化合物、臭素化合物および一酸化炭素からなる群より選択される少なくとも一種である、請求項8に記載の触媒前駆体。 The catalyst precursor according to claim 8, wherein the inorganic substance is at least one selected from the group consisting of an iodine compound, a bromine compound, and carbon monoxide.
- 前記無機物は、水溶液中で電離し得る化合物から選択される、請求項8または9に記載の触媒前駆体。 The catalyst precursor according to claim 8 or 9, wherein the inorganic substance is selected from compounds that can be ionized in an aqueous solution.
- 請求項8~10のいずれか1項に記載の触媒前駆体および電解質を含む触媒前駆層。 A catalyst precursor layer comprising the catalyst precursor according to any one of claims 8 to 10 and an electrolyte.
- 白金含有触媒金属を導電性担体に担持してなる触媒前駆体1を準備し、前記触媒前駆体1を白金含有触媒金属に吸着する被覆剤と混合することを有する、請求項8~10のいずれか1項に記載の触媒前駆体の製造方法。 The catalyst precursor 1 comprising a platinum-containing catalyst metal supported on a conductive carrier is prepared, and the catalyst precursor 1 is mixed with a coating that adsorbs the platinum-containing catalyst metal. A method for producing the catalyst precursor according to claim 1.
- 前記触媒前駆体1と前記被覆剤との混合を酸性条件下で行う、請求項12に記載の方法。 The method according to claim 12, wherein the catalyst precursor 1 and the coating agent are mixed under acidic conditions.
- 前記被覆剤は、ヨウ素化合物、臭素化合物および一酸化炭素からなる群より選択される少なくとも一種である、請求項12または13に記載の方法。 The method according to claim 12 or 13, wherein the coating agent is at least one selected from the group consisting of iodine compounds, bromine compounds and carbon monoxide.
- 前記被覆剤は、水溶液中で電離する、請求項12~14のいずれか1項に記載の方法。 The method according to any one of claims 12 to 14, wherein the coating agent is ionized in an aqueous solution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/080147 WO2018069979A1 (en) | 2016-10-11 | 2016-10-11 | Catalyst layer production method, catalyst layer, catalyst precursor, and catalyst precursor production method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/080147 WO2018069979A1 (en) | 2016-10-11 | 2016-10-11 | Catalyst layer production method, catalyst layer, catalyst precursor, and catalyst precursor production method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018069979A1 true WO2018069979A1 (en) | 2018-04-19 |
Family
ID=61905335
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/080147 WO2018069979A1 (en) | 2016-10-11 | 2016-10-11 | Catalyst layer production method, catalyst layer, catalyst precursor, and catalyst precursor production method |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018069979A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111063901A (en) * | 2018-10-17 | 2020-04-24 | 现代自动车株式会社 | Catalyst composite for fuel cell and method for manufacturing the same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007131926A (en) * | 2005-11-11 | 2007-05-31 | Kansai Electric Power Co Inc:The | Platinum nanoparticle, production method therefor, and electrode for fuel cell using the same |
JP2010077473A (en) * | 2008-09-25 | 2010-04-08 | Aisin Seiki Co Ltd | Method for producing platinum nanoparticle |
JP2011071007A (en) * | 2009-09-28 | 2011-04-07 | Toppan Printing Co Ltd | Electrode for fuel cell and this manufacturing method, membrane electrode assembly, and fuel cell |
JP2013045694A (en) * | 2011-08-25 | 2013-03-04 | Nissan Motor Co Ltd | Electrode catalyst layer for fuel cell, electrode for fuel cell, membrane electrode assembly for fuel cell and fuel cell |
-
2016
- 2016-10-11 WO PCT/JP2016/080147 patent/WO2018069979A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007131926A (en) * | 2005-11-11 | 2007-05-31 | Kansai Electric Power Co Inc:The | Platinum nanoparticle, production method therefor, and electrode for fuel cell using the same |
JP2010077473A (en) * | 2008-09-25 | 2010-04-08 | Aisin Seiki Co Ltd | Method for producing platinum nanoparticle |
JP2011071007A (en) * | 2009-09-28 | 2011-04-07 | Toppan Printing Co Ltd | Electrode for fuel cell and this manufacturing method, membrane electrode assembly, and fuel cell |
JP2013045694A (en) * | 2011-08-25 | 2013-03-04 | Nissan Motor Co Ltd | Electrode catalyst layer for fuel cell, electrode for fuel cell, membrane electrode assembly for fuel cell and fuel cell |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111063901A (en) * | 2018-10-17 | 2020-04-24 | 现代自动车株式会社 | Catalyst composite for fuel cell and method for manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5998277B2 (en) | Fuel cell catalyst and fuel cell electrode catalyst layer including the same | |
JP6461805B2 (en) | Catalyst carbon powder, catalyst using the catalyst carbon powder, electrode catalyst layer, membrane electrode assembly, and fuel cell | |
US10573901B2 (en) | Catalyst and manufacturing method thereof, and electrode catalyst layer using the catalyst | |
JP6113837B2 (en) | Catalyst, electrode catalyst layer using the catalyst, membrane electrode assembly, and fuel cell | |
JP5998275B2 (en) | Fuel cell catalyst, electrode catalyst layer using the fuel cell catalyst, membrane electrode assembly, and fuel cell | |
JP6628867B2 (en) | Electrode catalyst, membrane electrode assembly and fuel cell using the electrode catalyst | |
JP6276870B2 (en) | Electrode catalyst layer for fuel cell, membrane electrode assembly for fuel cell and fuel cell using the catalyst layer | |
JPWO2015020079A1 (en) | Catalyst particles and electrode catalyst, electrolyte membrane-electrode assembly and fuel cell using the same | |
JP2016054065A (en) | Manufacturing method of electrode catalyst | |
JP6721679B2 (en) | Electrode catalyst, method for producing the same, and electrode catalyst layer using the electrode catalyst | |
WO2018069979A1 (en) | Catalyst layer production method, catalyst layer, catalyst precursor, and catalyst precursor production method | |
JP6183120B2 (en) | Membrane electrode assembly for fuel cell and fuel cell | |
JP6862792B2 (en) | Method of manufacturing electrode catalyst | |
JP6191368B2 (en) | Membrane electrode assembly for fuel cell and fuel cell | |
JP2018181674A (en) | Catalyst for fuel cell | |
JP2018116815A (en) | Electrode catalyst, membrane electrode assembly using electrode catalyst, and fuel battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16918708 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16918708 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |