JP2011071007A - Electrode for fuel cell and this manufacturing method, membrane electrode assembly, and fuel cell - Google Patents

Electrode for fuel cell and this manufacturing method, membrane electrode assembly, and fuel cell Download PDF

Info

Publication number
JP2011071007A
JP2011071007A JP2009222260A JP2009222260A JP2011071007A JP 2011071007 A JP2011071007 A JP 2011071007A JP 2009222260 A JP2009222260 A JP 2009222260A JP 2009222260 A JP2009222260 A JP 2009222260A JP 2011071007 A JP2011071007 A JP 2011071007A
Authority
JP
Japan
Prior art keywords
fuel cell
electrode
metal catalyst
catalyst particles
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009222260A
Other languages
Japanese (ja)
Inventor
Katsuyuki Kishi
克行 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2009222260A priority Critical patent/JP2011071007A/en
Publication of JP2011071007A publication Critical patent/JP2011071007A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode for a fuel cell, its manufacturing method, a membrane electrode assembly, and the fuel cell wherein deterioration of catalyst particles can be suppressed and the catalyst particles can be utilized effectively. <P>SOLUTION: The electrode for the fuel cell is provided wherein metal catalyst particles are contained in which a compound that has at least one proton-dissociating group in a molecule and contains a nitrogen-containing heterocyclic ring portion is adsorbed. Moreover, the manufacturing method of the electrode for the fuel cell uses catalyst ink which is prepared by mixing: the metal oxide particles in which the compound that has at least one proton-dissociating group in the molecule and that contains a nitrogen-containing heterocyclic ring portion is adsorbed to the surface of the metal catalyst particles; an ion conductive electrolyte; and a solvent. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、固体高分子型燃料電池の燃料電池用電極に関する。   The present invention relates to a fuel cell electrode of a polymer electrolyte fuel cell.

近年、環境問題やエネルギー問題の有効な解決策として、燃料電池が注目を浴びている。燃料電池とは、水素などの燃料を酸素などの酸化剤を用いて酸化し、これに伴う化学エネルギーを電気エネルギーに変換するものである。   In recent years, fuel cells have attracted attention as effective solutions for environmental problems and energy problems. A fuel cell is one that oxidizes a fuel such as hydrogen using an oxidant such as oxygen and converts chemical energy associated therewith into electrical energy.

燃料電池は、電解質の種類によって、アルカリ型、リン酸型、固体高分子型、溶融炭酸塩型、固体酸化物型などに分類される。固体高分子型燃料電池(PEFC)は、低温作動、高出力密度であり、小型化・軽量化が可能であることから、携帯用電源、家庭用電源、車載用動力源としての応用が期待されている。   Fuel cells are classified into alkali type, phosphoric acid type, solid polymer type, molten carbonate type, solid oxide type, etc., depending on the type of electrolyte. The polymer electrolyte fuel cell (PEFC) is operated at a low temperature, has a high output density, and can be reduced in size and weight. Therefore, it is expected to be applied as a portable power source, a household power source, and an in-vehicle power source. ing.

しかし、固体高分子型燃料電池(PEFC)の電極では、触媒粒子が溶出、再析出したりして、触媒粒子の表面積が低下し、電池特性が低下するという課題がある。   However, in an electrode of a polymer electrolyte fuel cell (PEFC), there is a problem that catalyst particles are eluted and re-deposited, the surface area of the catalyst particles is reduced, and the battery characteristics are deteriorated.

一方、燃料電池の電極は、金属触媒粒子担持カーボンとイオン伝導性電解質から構成されており、電極反応は金属触媒粒子とイオン伝導性電解質の接点で起こる。しかし、一般的にイオン伝導性電解質として高分子電解質が用いられており、高分子電解質がカーボン粒子とカーボン粒子の隙間に入ることができず、有効に利用されていない金属触媒粒子が存在している。そのため、多くの金属触媒粒子を用いる必要があり、燃料電池の高コストの要因になっている。   On the other hand, the electrode of the fuel cell is composed of metal catalyst particle-supporting carbon and an ion conductive electrolyte, and the electrode reaction occurs at the contact point between the metal catalyst particle and the ion conductive electrolyte. However, a polymer electrolyte is generally used as the ion conductive electrolyte, and the polymer electrolyte cannot enter the gap between the carbon particles and there are metal catalyst particles that are not effectively used. Yes. Therefore, it is necessary to use many metal catalyst particles, which is a high cost factor of the fuel cell.

特許文献1では、含窒素複素環部分を含む化合物が、電極触媒粒子の溶解の抑制に有効であり、含窒素複素環部分を含む化合物の使用量を抑制する方法が提案されている。   Patent Document 1 proposes a method in which a compound containing a nitrogen-containing heterocyclic moiety is effective for suppressing dissolution of the electrode catalyst particles, and the amount of the compound containing the nitrogen-containing heterocyclic moiety is suppressed.

しかし、特許文献1では、触媒粒子の劣化を抑制することはできるが、金属イオン交換や金属イオンを対イオンに戻す工程が必要であり、製造工程が増加するという課題がある。 However, Patent Document 1 can suppress deterioration of the catalyst particles, but requires a step of metal ion exchange or returning the metal ions to a counter ion, resulting in an increase in manufacturing steps.

特開2008−047401号公報JP 2008-047401 A

本発明は、上述の従来の課題を解決しようとするものであり、燃料電池用電極において、触媒粒子の劣化を抑制し、また、電解質が入ることができないカーボン粒子表面の微細孔(20nm以下)やカーボン粒子間の隙間(20nm以上40nm以下)に存在する触媒を有効に利用することにより、発電特性に優れ、簡易に製造することのできる燃料電池用電極及びこの製造方法、膜電極接合体並びに燃料電池を提供することを目的とする。   The present invention is intended to solve the above-described conventional problems, and in a fuel cell electrode, the deterioration of catalyst particles is suppressed, and the fine pores (20 nm or less) on the surface of carbon particles where electrolyte cannot enter. And an electrode for a fuel cell that is excellent in power generation characteristics and can be easily manufactured by effectively using a catalyst existing in a gap (20 nm to 40 nm) between carbon particles and carbon particles, a manufacturing method thereof, a membrane electrode assembly, and An object is to provide a fuel cell.

上述の課題を解決するために、本発明者等は、鋭意検討を重ねた結果、少なくとも一つのプロトン解離基を分子内に有し含窒素複素環部分を含む化合物を金属触媒粒子に吸着させれば、触媒粒子の劣化を抑制することができ、また触媒粒子を有効に利用することができる燃料電池用電極を提供できるという知見を得て、本発明を成すに至った。   In order to solve the above-mentioned problems, the present inventors have made extensive studies, and as a result, have been able to adsorb compounds containing at least one proton-dissociating group in the molecule and containing a nitrogen-containing heterocyclic moiety to the metal catalyst particles. As a result, the inventors have obtained the knowledge that the deterioration of the catalyst particles can be suppressed and the fuel cell electrode capable of effectively using the catalyst particles can be provided, and the present invention has been achieved.

本発明の請求項1に係る発明は、少なくとも一つのプロトン解離基を分子内に有し含窒素複素環部分を含む化合物が吸着した金属触媒粒子を含むことを特徴とする燃料電池用電極としたものである。   The invention according to claim 1 of the present invention provides a fuel cell electrode comprising metal catalyst particles adsorbed with a compound having at least one proton dissociating group in the molecule and containing a nitrogen-containing heterocyclic moiety. Is.

本発明の請求項2に係る発明は、プロトン解離基が、スルホン酸基であることを特徴とする請求項1に記載の燃料電池用電極としたものである。   The invention according to claim 2 of the present invention is the fuel cell electrode according to claim 1, wherein the proton dissociation group is a sulfonic acid group.

本発明の請求項3に係る発明は、含窒素複素環部分は、ピリジン環を含むことを特徴とする請求項1または2に記載の燃料電池用電極としたものである。   The invention according to claim 3 of the present invention is the fuel cell electrode according to claim 1 or 2, wherein the nitrogen-containing heterocyclic moiety includes a pyridine ring.

本発明の請求項4に係る発明は、金属触媒粒子は、白金または白金合金を含むことを特徴とする請求項1乃至3のいずれか1項に記載の燃料電池用電極としたものである。   The invention according to claim 4 of the present invention is the fuel cell electrode according to any one of claims 1 to 3, wherein the metal catalyst particles include platinum or a platinum alloy.

本発明の請求項5に係る発明は、少なくとも一つのプロトン解離基を分子内に有し含窒素複素環部分を含む化合物を金属触媒粒子の表面に吸着させ、化合物をその表面に吸着させた金属触媒属粒子と、高分子電解質と、溶媒とを混合して触媒インクを調製し、触媒インクを用いて製造すること特徴とする燃料電池用電極の製造方法としたものである。   The invention according to claim 5 of the present invention is a metal in which a compound having at least one proton dissociating group in the molecule and containing a nitrogen-containing heterocyclic moiety is adsorbed on the surface of the metal catalyst particle, and the compound is adsorbed on the surface. A fuel cell electrode manufacturing method is characterized in that a catalyst ink is prepared by mixing catalyst genus particles, a polymer electrolyte, and a solvent, and manufacturing using the catalyst ink.

本発明の請求項6に係る発明は、請求項1乃至4のいずれか1項に記載の燃料電池用電極を備えることを特徴とする膜電極接合体としたものである。   An invention according to claim 6 of the present invention is a membrane electrode assembly comprising the fuel cell electrode according to any one of claims 1 to 4.

本発明の請求項7に係る発明は、請求項1乃至4のいずれか1項に記載の燃料電池用電極を備えることを特徴とする燃料電池としたものである。   The invention according to claim 7 of the present invention is a fuel cell comprising the fuel cell electrode according to any one of claims 1 to 4.

本発明によれば、少なくとも一つのプロトン解離基を分子内に有し含窒素複素環部分を含む化合物を金属触媒粒子に吸着させることにより、触媒粒子の劣化を抑制することができ、さらに、触媒粒子の担体であるカーボン粒子の分散性を向上させて、触媒粒子を有効に利用することができるため、長時間の使用が可能であり、発電特性に優れた燃料電池用電極及びこの製造方法、膜電極接合体並びに燃料電池を提供することができる。   According to the present invention, the catalyst particles can be prevented from deteriorating by adsorbing the metal catalyst particles with a compound having at least one proton-dissociating group in the molecule and containing a nitrogen-containing heterocyclic moiety. Since the dispersibility of the carbon particles as the particle carrier can be improved and the catalyst particles can be used effectively, it can be used for a long time, and the fuel cell electrode excellent in power generation characteristics and a method for producing the same, A membrane electrode assembly and a fuel cell can be provided.

本発明の実施の形態に係る膜電極結合体の一実施態様の断面説明図である。It is a section explanatory view of one mode of a membrane electrode assembly concerning an embodiment of the invention. 本発明の実施の形態に係る膜電極結合体を備える燃料電池の単セルの構成を示す分解断面図である。It is a disassembled sectional view which shows the structure of the single cell of a fuel cell provided with the membrane electrode assembly which concerns on embodiment of this invention. 本発明の実施の形態に係る燃料電極用電解質の分子構造を模式的に示す説明図である。It is explanatory drawing which shows typically the molecular structure of the electrolyte for fuel electrodes which concerns on embodiment of this invention. 従来の燃料電極用電解質の分子構造を模式的に示す説明図である。It is explanatory drawing which shows typically the molecular structure of the electrolyte for conventional fuel electrodes.

以下、本発明の実施形態を、図1乃至図4を参照して、詳細に説明する。本発明は、固体高分子型燃料電池の燃料電池用電極に関するものであり、少なくとも一つのプロトン解離基を分子内に有し含窒素複素環部分を含む化合物が吸着している金属触媒粒子を含むことを特徴とする燃料電池用電極に関するものである。   Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. 1 to 4. The present invention relates to an electrode for a fuel cell of a polymer electrolyte fuel cell, and includes metal catalyst particles having at least one proton dissociating group in the molecule and adsorbing a compound containing a nitrogen-containing heterocyclic moiety. The present invention relates to an electrode for a fuel cell.

なお、含窒素複素環とは、環を構成している元素のうち1個またはそれ以上が窒素原子である環状化合物であり、かつ芳香族性を有しているものを指す。このようなものとしては、ピリジン環、ピロール環、チアゾール環、オキサゾール環、イミダゾール環、ピラゾール環、トリアジン環、ピリダジン環、ピリミジン環、ピラジン環や、これらを一部に含有する多環式複素環(例えばインドール環、プリン環、キノリン環、イソキノリン環、シンノリン環、キナゾリン環、キノキサリン環、フタラジン環、プテリジン環、アクリジン環、フェナジン環、フェナントロリン環など)などを挙げることができる。含窒素複素環の中でも、ピリジン環が好ましい。   The nitrogen-containing heterocyclic ring refers to a cyclic compound in which one or more elements constituting the ring are nitrogen atoms and has aromaticity. Examples of such a ring include a pyridine ring, a pyrrole ring, a thiazole ring, an oxazole ring, an imidazole ring, a pyrazole ring, a triazine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, and a polycyclic heterocyclic ring partially containing these. (For example, indole ring, purine ring, quinoline ring, isoquinoline ring, cinnoline ring, quinazoline ring, quinoxaline ring, phthalazine ring, pteridine ring, acridine ring, phenazine ring, phenanthroline ring, etc.). Of the nitrogen-containing heterocycles, a pyridine ring is preferred.

本発明におけるピリジン環を含む複素環とは、ビピリジン環、ターピリジン環、フェナントロリン環、キノリン環、ナフチリジン環、フェナンチリジン環、アクリジン環が挙げられる。特に、ビピリジン環、ターピリジン環、フェナントロリン環は金属触媒粒子との吸着性に優れるため、触媒粒子の劣化をより抑制することができるため好ましい。 Examples of the heterocyclic ring including a pyridine ring in the present invention include a bipyridine ring, a terpyridine ring, a phenanthroline ring, a quinoline ring, a naphthyridine ring, a phenanthridine ring, and an acridine ring. In particular, a bipyridine ring, a terpyridine ring, and a phenanthroline ring are preferable because they have excellent adsorptivity with the metal catalyst particles and can further suppress deterioration of the catalyst particles.

本発明における含窒素複素環部分を含む化合物は、カーボン粒子間の隙間に入ることが可能な大きさである20nm以上40nm以下であることが好ましく、カーボン粒子表面の微細孔に入ることが可能な大きさである20nm以下であることがさらに好ましい。   The compound containing a nitrogen-containing heterocyclic moiety in the present invention is preferably 20 nm or more and 40 nm or less, which is a size capable of entering a gap between carbon particles, and can enter micropores on the surface of carbon particles. More preferably, the size is 20 nm or less.

本発明おける含窒素複素環部分を含む化合物は、金属触媒粒子に吸着されていることにより、触媒粒子の劣化を抑制することができ、触媒粒子の担体であるカーボン粒子の分散性が向上して、カーボン粒子間の隙間にも高分子電解質が入り、触媒粒子の利用率を向上させることができる。さらに、少なくとも一つのプロトン解離基を分子内に有し含窒素複素環部分を含む化合物が金属触媒粒子に吸着していることより、高分子電解質が入り込めない微細孔に存在する触媒粒子にもプロトンが移動することが可能になり、触媒粒子を有効に利用することができる。   The compound containing a nitrogen-containing heterocyclic moiety in the present invention can suppress the deterioration of the catalyst particles by being adsorbed on the metal catalyst particles, and the dispersibility of the carbon particles that are the support of the catalyst particles is improved. The polymer electrolyte also enters the gaps between the carbon particles, and the utilization rate of the catalyst particles can be improved. Furthermore, since the compound having at least one proton-dissociating group in the molecule and containing a nitrogen-containing heterocyclic moiety is adsorbed on the metal catalyst particles, the catalyst particles present in the fine pores into which the polymer electrolyte cannot enter are also present. Protons can move and the catalyst particles can be used effectively.

本発明におけるプロトン解離基としては、スルホン酸基、カルボン酸基、リン酸基などが挙げられる。特に、イオン伝導性が高いことから、スルホン酸基が好ましい。   Examples of proton dissociation groups in the present invention include sulfonic acid groups, carboxylic acid groups, and phosphoric acid groups. In particular, a sulfonic acid group is preferable because of high ion conductivity.

図1は本発明の膜電極結合体の一実施態様の断面説明図である。本発明の実施形態に係る膜電極接合体は、図1に示したような積層構造からなる。
イオン交換膜1の両面に空気極側電極触媒層2および燃料極側電極触媒層3を接合・積層して膜電極結合体12が形成される。電極触媒層2、3は、それぞれ導電剤としてのカーボンブラック粒子、反応触媒、本発明により製造された燃料電池電極用電解質から構成されている。
FIG. 1 is a cross-sectional explanatory view of one embodiment of the membrane electrode assembly of the present invention. The membrane electrode assembly according to the embodiment of the present invention has a laminated structure as shown in FIG.
The membrane electrode assembly 12 is formed by joining and laminating the air electrode side electrode catalyst layer 2 and the fuel electrode side electrode catalyst layer 3 on both surfaces of the ion exchange membrane 1. The electrode catalyst layers 2 and 3 are each composed of carbon black particles as a conductive agent, a reaction catalyst, and an electrolyte for a fuel cell electrode produced according to the present invention.

本発明で用いる金属触媒粒子としては、白金やパラジウム、ルテニウム、イリジウム、ロジウム、オスミウムの白金族元素の他、鉄、鉛、銅、クロム、コバルト、ニッケル、マンガン、バナジウム、モリブデン、ガリウム、アルミニウムなどの金属又はこれらの合金、または酸化物、複酸化物等を使用してもよい。その中でも、白金や白金合金が好ましい。金属触媒粒子に、白金または白金合金などを用いることにより、高い電極活性を示す燃料電池用電極を製造できる。また、これらの触媒の粒径は、20nmより大きいと触媒の活性が低下し、0.5nmより小さいと触媒の安定性が低下するため、0.5nm以上20nm以下が好ましい。更に好ましくは、1nm以上5nm以下が良い。 As the metal catalyst particles used in the present invention, platinum, palladium, ruthenium, iridium, rhodium, osmium, platinum group elements, iron, lead, copper, chromium, cobalt, nickel, manganese, vanadium, molybdenum, gallium, aluminum, etc. Or an alloy thereof, an oxide, a double oxide, or the like may be used. Of these, platinum and platinum alloys are preferred. By using platinum or a platinum alloy as the metal catalyst particles, a fuel cell electrode exhibiting high electrode activity can be produced. In addition, when the particle size of these catalysts is larger than 20 nm, the activity of the catalyst is lowered, and when it is smaller than 0.5 nm, the stability of the catalyst is lowered. More preferably, it is 1 nm or more and 5 nm or less.

これらの金属触媒粒子を担持する本発明で使用する電子伝導性の導電剤は、一般的に、カーボン粒子が使用される。カーボン粒子の種類は、微粒子状で導電性を有し、触媒におかされないものであればどのようなものでも構わないが、カーボンブラックやグラファイト、黒鉛、活性炭、カーボンファイバー、カーボンナノチューブ、フラーレンを使用してもよい。カーボン粒子の粒径は、10nmより小さいと電子伝導パスが形成されにくくなり、また1000nmより大きいと電極触媒層のガス拡散が低下したり、触媒の利用率が低下したりするので、10nm以上1000nm以下程度が好ましい。更に好ましくは、10nm以上100nm以下が良い。 Generally, carbon particles are used for the electron conductive conductive agent used in the present invention carrying these metal catalyst particles. Any type of carbon particles can be used as long as they are in the form of fine particles, have conductivity and are not affected by the catalyst, but carbon black, graphite, graphite, activated carbon, carbon fiber, carbon nanotube, fullerene are used. May be. When the particle size of the carbon particles is smaller than 10 nm, it becomes difficult to form an electron conduction path, and when the particle size is larger than 1000 nm, gas diffusion in the electrode catalyst layer decreases or the utilization factor of the catalyst decreases. The following degree is preferable. More preferably, it is 10 nm or more and 100 nm or less.

図2は、この膜電極結合体12を備えた固体高分子型燃料電池の単セルの一実施態様の構成を示す分解断面図である。膜電極結合体12の空気極側電極触媒層2および燃料極側電極触媒層3と対向して、それぞれカーボンペーパーにカーボンブラックとポリテトラフルオロエチレン(PTFE)の混合物を塗布した構造を持つ空気極側ガス拡散層4および燃料極側ガス拡散層5が配置されている。これにより、それぞれ空気極6および燃料極7が構成される。そして、空気極側ガス拡散層4および燃料極側ガス拡散層5に対向して反応ガス流通用のガス流路8を備え、相対する主面に冷却水流通用の冷却水流路9を備えた導電性でかつガス不透過性の材料よりなる一組のセパレータ10により挟持して、単セル11が構成される。そして、空気や酸素などの酸化剤を空気極6に供給し、水素を含む燃料ガスもしくは有機物燃料を燃料極7に供給して発電するものである。 FIG. 2 is an exploded cross-sectional view showing a configuration of an embodiment of a single cell of a polymer electrolyte fuel cell provided with the membrane electrode assembly 12. An air electrode having a structure in which a mixture of carbon black and polytetrafluoroethylene (PTFE) is applied to carbon paper facing the air electrode side electrode catalyst layer 2 and the fuel electrode side electrode catalyst layer 3 of the membrane electrode assembly 12. A side gas diffusion layer 4 and a fuel electrode side gas diffusion layer 5 are disposed. Thereby, the air electrode 6 and the fuel electrode 7 are comprised, respectively. A gas flow path 8 for reaction gas flow is provided opposite to the air electrode side gas diffusion layer 4 and the fuel electrode side gas diffusion layer 5, and a cooling water flow path 9 for cooling water flow is provided on the opposing main surface. A single cell 11 is formed by being sandwiched by a pair of separators 10 made of a gas-impermeable and gas-impermeable material. Then, an oxidant such as air or oxygen is supplied to the air electrode 6, and a fuel gas containing hydrogen or an organic fuel is supplied to the fuel electrode 7 to generate electricity.

図3は、本発明の実施形態に係る燃料電池用電極について模式的に示す説明図である。触媒インクは、少なくとも一つのプロトン解離基を分子内に有し含窒素複素環部分を含む化合物13を金属触媒粒子担持カーボン14の表面に吸着させ(工程1)、前記化合物を表面に有する金属触媒属粒子担持カーボン14と、高分子電解質15と溶媒を混合して調製する(工程2)。工程1により、高分子電解質15が入ることのできない微細孔14aに存在する金属触媒粒子14bまで、プロトンが移動可能になる。また、工程2においては、カーボンの分散性が向上することにより、今まで高分子電解質15が入ることのできなかったカーボン粒子間の隙間14cにも、高分子電解質15を入れることができ、金属触媒粒子を有効に利用することができる。 FIG. 3 is an explanatory view schematically showing a fuel cell electrode according to an embodiment of the present invention. The catalyst ink has a compound 13 having at least one proton dissociating group in the molecule and a nitrogen-containing heterocyclic moiety adsorbed on the surface of the metal catalyst particle-supporting carbon 14 (step 1), and the metal catalyst having the compound on the surface. It is prepared by mixing the genus particle-supporting carbon 14, the polymer electrolyte 15, and a solvent (step 2). In Step 1, protons can move to the metal catalyst particles 14b existing in the micropores 14a where the polymer electrolyte 15 cannot enter. Further, in the process 2, by improving the dispersibility of carbon, the polymer electrolyte 15 can be put into the gaps 14c between the carbon particles that the polymer electrolyte 15 could not enter until now. The catalyst particles can be used effectively.

本発明に係る膜電極接合体の製造方法の一実施例についてさらに説明する。電極触媒層2、3中に供給するための前記導電性多孔質体などからなるガス拡散層4、5上に、触媒インクを塗布し、その後、乾燥させることにより電極触媒層2、3を積層し、その後、この電極触媒層2、3にイオン交換膜1を挟持して熱圧着により接合して膜電極接合体(MEA)12を製造する方法を用いてもよい。ガス拡散層4、5上に触媒層2、3を形成するインキの塗布方法はドクターブレード法、スクリーン印刷法、スプレー法などを用いてもよい。 An embodiment of the method for producing a membrane electrode assembly according to the present invention will be further described. The electrode catalyst layers 2 and 3 are laminated by applying a catalyst ink on the gas diffusion layers 4 and 5 made of the conductive porous material to be supplied into the electrode catalyst layers 2 and 3 and then drying. Then, a method of manufacturing the membrane electrode assembly (MEA) 12 by sandwiching the ion exchange membrane 1 between the electrode catalyst layers 2 and 3 and joining them by thermocompression bonding may be used. As a method for applying the ink for forming the catalyst layers 2 and 3 on the gas diffusion layers 4 and 5, a doctor blade method, a screen printing method, a spray method, or the like may be used.

また、膜電極接合体(MEA)12の製造方法としては、イオン交換膜1の両面に触媒層2、3を転写やスプレー噴霧により作製し、その後、ガス拡散層4、5で挟持する方法を用いても良い。 In addition, as a method of manufacturing the membrane electrode assembly (MEA) 12, a method in which the catalyst layers 2 and 3 are formed on both surfaces of the ion exchange membrane 1 by transfer or spray spraying, and thereafter sandwiched between the gas diffusion layers 4 and 5. It may be used.

本発明の実施の形態に係る燃料電池用電極は少なくとも一つのプロトン解離基を分子内に有し含窒素複素環部分を含む化合物が吸着している金属触媒粒子を含むことを特徴とするものであり、金属触媒粒子の劣化を抑制することができ、燃料電池用電極として長時間利用することができるという顕著な効果を奏する。また、本発明によれば、そのような燃料電池用電極を簡易に製造することができ、充分な耐久性と発電特性を有する燃料電池用電極、これの製造方法、これを備える膜電極接合体、およびこれを備える燃料電池を提供することができるので、産業上の利用価値が高い。したがって、本発明は高分子形燃料電池、特に家庭用燃料電池システムや燃料電池自動車などにおける、燃料電池単セルやスタックに好適に活用することができる。   An electrode for a fuel cell according to an embodiment of the present invention is characterized in that it contains metal catalyst particles having at least one proton dissociating group in the molecule and adsorbing a compound containing a nitrogen-containing heterocyclic moiety. In addition, it is possible to suppress the deterioration of the metal catalyst particles, and there is a remarkable effect that it can be used for a long time as an electrode for a fuel cell. In addition, according to the present invention, such a fuel cell electrode can be easily manufactured, and has sufficient durability and power generation characteristics. A fuel cell electrode, a method for manufacturing the same, and a membrane electrode assembly including the same , And a fuel cell including the same can be provided, so that the industrial utility value is high. Therefore, the present invention can be suitably used for a single fuel cell or a stack in a polymer fuel cell, particularly in a home fuel cell system or a fuel cell vehicle.

1 イオン交換膜
2 空気極側電極触媒層
3 燃料極側電極触媒層
4 空気極側ガス拡散層
5 燃料極側ガス拡散層
6 空気極
7 燃料極
8 ガス流路
9 冷却水流路
10 セパレータ
11 単セル
12 膜電極結合体
13 少なくとも一つのプロトン解離基を分子内に有し含窒素複素環部分を含む化合物
14 金属触媒粒子担持カーボン
14a カーボン微細孔
14b 金属触媒粒子
14c カーボン粒子間の隙間
15 高分子電解質

DESCRIPTION OF SYMBOLS 1 Ion exchange membrane 2 Air electrode side electrode catalyst layer 3 Fuel electrode side electrode catalyst layer 4 Air electrode side gas diffusion layer 5 Fuel electrode side gas diffusion layer 6 Air electrode 7 Fuel electrode 8 Gas flow path 9 Cooling water flow path 10 Separator 11 Single Cell 12 Membrane electrode assembly 13 Compound having at least one proton dissociation group in the molecule and containing a nitrogen-containing heterocyclic moiety 14 Metal catalyst particle-supporting carbon 14a Carbon micropore 14b Metal catalyst particle 14c Gaps 15 between carbon particles 15 Polymer Electrolytes

Claims (7)

少なくとも一つのプロトン解離基を分子内に有し含窒素複素環部分を含む化合物が吸着した金属触媒粒子を含むことを特徴とする燃料電池用電極。 An electrode for a fuel cell comprising metal catalyst particles adsorbed with a compound having at least one proton-dissociating group in the molecule and having a nitrogen-containing heterocyclic moiety. 前記プロトン解離基が、スルホン酸基であることを特徴とする請求項1に記載の燃料電池用電極。   The fuel cell electrode according to claim 1, wherein the proton dissociation group is a sulfonic acid group. 前記含窒素複素環部分は、ピリジン環を含むことを特徴とする請求項1または2に記載の燃料電池用電極。   The fuel cell electrode according to claim 1, wherein the nitrogen-containing heterocyclic moiety includes a pyridine ring. 前記金属触媒粒子は、白金または白金合金を含むことを特徴とする請求項1乃至3のいずれか1項に記載の燃料電池用電極。   4. The fuel cell electrode according to claim 1, wherein the metal catalyst particles include platinum or a platinum alloy. 5. 少なくとも一つのプロトン解離基を分子内に有し含窒素複素環部分を含む化合物を金属触媒粒子の表面に吸着させ、前記化合物をその表面に吸着させた前記金属触媒属粒子と、高分子電解質と、溶媒とを混合して触媒インクを調製し、
前記触媒インクを用いて製造すること特徴とする燃料電池用電極の製造方法。
A metal catalyst particle having at least one proton-dissociating group in the molecule and having a nitrogen-containing heterocyclic moiety adsorbed on the surface of the metal catalyst particle, the metal catalyst genus particle having the compound adsorbed on the surface thereof, a polymer electrolyte, , Mix with solvent to prepare catalyst ink,
A method for producing an electrode for a fuel cell, comprising producing the catalyst ink.
請求項1乃至4のいずれか1項に記載の燃料電池用電極を備えることを特徴とする膜電極接合体。 A membrane electrode assembly comprising the fuel cell electrode according to any one of claims 1 to 4. 請求項1乃至4のいずれか1項に記載の燃料電池用電極を備えることを特徴とする燃料電池。 A fuel cell comprising the fuel cell electrode according to any one of claims 1 to 4.
JP2009222260A 2009-09-28 2009-09-28 Electrode for fuel cell and this manufacturing method, membrane electrode assembly, and fuel cell Pending JP2011071007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009222260A JP2011071007A (en) 2009-09-28 2009-09-28 Electrode for fuel cell and this manufacturing method, membrane electrode assembly, and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009222260A JP2011071007A (en) 2009-09-28 2009-09-28 Electrode for fuel cell and this manufacturing method, membrane electrode assembly, and fuel cell

Publications (1)

Publication Number Publication Date
JP2011071007A true JP2011071007A (en) 2011-04-07

Family

ID=44016088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009222260A Pending JP2011071007A (en) 2009-09-28 2009-09-28 Electrode for fuel cell and this manufacturing method, membrane electrode assembly, and fuel cell

Country Status (1)

Country Link
JP (1) JP2011071007A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018069979A1 (en) * 2016-10-11 2018-04-19 日産自動車株式会社 Catalyst layer production method, catalyst layer, catalyst precursor, and catalyst precursor production method
JPWO2021090746A1 (en) * 2019-11-08 2021-05-14

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008047401A (en) * 2006-08-14 2008-02-28 Nissan Motor Co Ltd Catalyst layer and manufacturing method of catalyst layer
JP2008077974A (en) * 2006-09-21 2008-04-03 Nissan Motor Co Ltd Electrode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008047401A (en) * 2006-08-14 2008-02-28 Nissan Motor Co Ltd Catalyst layer and manufacturing method of catalyst layer
JP2008077974A (en) * 2006-09-21 2008-04-03 Nissan Motor Co Ltd Electrode

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018069979A1 (en) * 2016-10-11 2018-04-19 日産自動車株式会社 Catalyst layer production method, catalyst layer, catalyst precursor, and catalyst precursor production method
JPWO2021090746A1 (en) * 2019-11-08 2021-05-14
WO2021090746A1 (en) * 2019-11-08 2021-05-14 国立研究開発法人産業技術総合研究所 Electrochemical oxygen reduction catalyst
CN114616700A (en) * 2019-11-08 2022-06-10 国立研究开发法人产业技术综合研究所 Catalyst for electrochemical oxygen reduction
JP7265292B2 (en) 2019-11-08 2023-04-26 国立研究開発法人産業技術総合研究所 Catalyst for electrochemical oxygen reduction

Similar Documents

Publication Publication Date Title
Kumar et al. An overview of unsolved deficiencies of direct methanol fuel cell technology: factors and parameters affecting its widespread use
Kruusenberg et al. Highly active nitrogen-doped nanocarbon electrocatalysts for alkaline direct methanol fuel cell
Ercelik et al. Characterization and performance evaluation of PtRu/CTiO2 anode electrocatalyst for DMFC applications
JP2007250274A (en) Electrode catalyst for fuel cell with enhanced noble metal utilization efficiency, its manufacturing method, and solid polymer fuel cell equipped with this
JP4655168B1 (en) Method for producing electrode catalyst layer for fuel cell
JP2006260909A (en) Membrane electrode assembly and polymer electrolyte fuel cell using the same
CN101964423A (en) Direct methanol fuel cell anode catalyst Pt/ MnO2-RuO2/ CNTs and preparation method thereof
US20200335808A1 (en) Membrane electrode assembly for solid polymer fuel cell and solid polymer fuel cell
JP5428493B2 (en) Method for producing polymer electrolyte fuel cell
Negro et al. Polymer electrolyte fuel cells based on bimetallic carbon nitride electrocatalysts
JP4858658B2 (en) Membrane electrode assembly for polymer electrolyte fuel cell and polymer electrolyte fuel cell having the same
JP2012074234A (en) Carbon-coated catalyst material for solid polymer fuel cell, production method therefor, electrode catalyst layer, and membrane electrode assembly
JP2009231049A (en) Platinum-supported carbon, catalyst for fuel cell, membrane electrode assembly, and fuel cell
JP2011071007A (en) Electrode for fuel cell and this manufacturing method, membrane electrode assembly, and fuel cell
CN111886733A (en) Membrane electrode assembly and solid polymer fuel cell
JP5487701B2 (en) Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell
JP2012212661A (en) Electrode catalyst layer for fuel cell, manufacturing method of electrode catalyst layer, membrane electrode assembly for fuel cell, and solid polymer fuel cell
JP5928072B2 (en) Manufacturing method of membrane electrode assembly
US20130004884A1 (en) Slurry for fuel cell electrode catalyst layer, electrode catalyst layer, membrane electrode assembly, and fuel cell
JP2008077956A (en) Varnish for forming catalyst electrode for fuel cell, catalytic electrode using it, membrane electrode assembly using it, fuel cell using it
Fan et al. Applications of metal hydride-based bipolar electrodes
US20230411631A1 (en) Electrochemical cell with bilayer electrocatalyst structure including graphene-based material
JP5682390B2 (en) Electrode catalyst layer and production method thereof, membrane electrode assembly and production method thereof, polymer electrolyte fuel cell, composite particle and production method thereof
Xiao et al. Electrocatalysis for Proton Exchange Membrane Fuel Cells
KR20040042195A (en) Polyelectrolyte nanocomposite membrane and the preparation method thereof and the fuel cell using the prepared polyelectrolyte nanocomposite membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131224