JP2008077956A - Varnish for forming catalyst electrode for fuel cell, catalytic electrode using it, membrane electrode assembly using it, fuel cell using it - Google Patents

Varnish for forming catalyst electrode for fuel cell, catalytic electrode using it, membrane electrode assembly using it, fuel cell using it Download PDF

Info

Publication number
JP2008077956A
JP2008077956A JP2006255517A JP2006255517A JP2008077956A JP 2008077956 A JP2008077956 A JP 2008077956A JP 2006255517 A JP2006255517 A JP 2006255517A JP 2006255517 A JP2006255517 A JP 2006255517A JP 2008077956 A JP2008077956 A JP 2008077956A
Authority
JP
Japan
Prior art keywords
fuel cell
catalyst
varnish
electrode
catalyst electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006255517A
Other languages
Japanese (ja)
Other versions
JP5017981B2 (en
Inventor
Shinichiro Yamagata
紳一郎 山形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2006255517A priority Critical patent/JP5017981B2/en
Publication of JP2008077956A publication Critical patent/JP2008077956A/en
Application granted granted Critical
Publication of JP5017981B2 publication Critical patent/JP5017981B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a varnish for forming catalyst electrode for fuel cell in which a dispersion process of a noble-metal catalyst carrying carbon in the varnish for forming catalyst electrode for fuel cell is less than a conventional one and a formation time of the varnish for forming catalyst electrode is shortened, and a catalyst electrode for fuel cell improved in a noble-metal catalyst utilization rate and having high output characteristics. <P>SOLUTION: The catalyst electrode, a membrane electrode assembly (MEA), and a fuel cell are manufactured using a varnish for forming catalyst electrode for fuel cell comprising a noble-metal catalyst-carrying electron conductive substance, a proton conductive polymer electrolyte, amorphous carbon introduced with a sulfonic acid group, and a solvent. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、車載用、家庭据え置き用、携帯機器用の電源として用いる燃料電池の触媒電極形成用ワニス、それを用いた触媒電極、それを用いた膜電極接合体、それを用いた燃料電池に関する。 The present invention relates to a varnish for forming a catalyst electrode of a fuel cell used as a power source for in-vehicle use, home use, and portable equipment, a catalyst electrode using the same, a membrane electrode assembly using the same, and a fuel cell using the same. .

燃料電池は、その反応生成物が原理的に水のみであり環境への悪影響がほとんどない発電システムとして注目されている。
近年、燃料電池のなかでも、水素イオン伝導性を有するイオン交換膜を電解質として使用する固体高分子型燃料電池は、作動温度が低く、出力密度が高く、かつ、小型化が容易にできるため、車載用、家庭据え置き用、携帯機器用の電源として有望視されている。
The fuel cell has been attracting attention as a power generation system that has essentially no adverse effects on the environment because its reaction product is essentially only water.
In recent years, a solid polymer fuel cell using an ion exchange membrane having hydrogen ion conductivity as an electrolyte among fuel cells has a low operating temperature, a high output density, and can be easily downsized. It is considered promising as a power source for in-vehicle use, home use, and portable equipment.

固体高分子型燃料電池は、多数の単電池セルが積層されて構成されている。
単電池セルは、図1に示すように、アノード側のセパレータ1、アノード側触媒電極2、水素イオン伝導性高分子電解質膜3、カソード側の触媒電極4及びカソード側のセパレータ5を、この順に積層して構成されている。
A polymer electrolyte fuel cell is configured by stacking a large number of unit cells.
As shown in FIG. 1, the unit cell includes an anode-side separator 1, an anode-side catalyst electrode 2, a hydrogen ion conductive polymer electrolyte membrane 3, a cathode-side catalyst electrode 4, and a cathode-side separator 5 in this order. It is configured by stacking.

アノード側の触媒電極2は、電極基材21と、この表面に積層された電極触媒層22とで構成されている。
また、カソード側の触媒電極4は、電極基材41と、この表面に積層された電極触媒層42とで構成されている。
The catalyst electrode 2 on the anode side is composed of an electrode base material 21 and an electrode catalyst layer 22 laminated on this surface.
The cathode-side catalyst electrode 4 includes an electrode base material 41 and an electrode catalyst layer 42 laminated on the surface.

アノード側電極基材21とカソード側電極基材41とは、いずれも、ガス拡散性と導電性とを有する材質から構成されており、例えば、カーボンペーパーあるいはカーボンクロス等が利用されている。 The anode side electrode base material 21 and the cathode side electrode base material 41 are both made of a material having gas diffusibility and conductivity. For example, carbon paper or carbon cloth is used.

また、アノード側電極触媒層22とカソード側電極触媒層42とは、いずれも、カーボン粒子に貴金属触媒を担持させて粒子状とし、これを水素イオン伝導性高分子電解質で電極基材21、41に固定して構成されている。 The anode-side electrode catalyst layer 22 and the cathode-side electrode catalyst layer 42 are both formed into particles by supporting a noble metal catalyst on carbon particles, and this is made of electrode base materials 21 and 41 with a hydrogen ion conductive polymer electrolyte. It is fixed and configured.

アノード側のセパレータ1には反応ガス流路1aが設けられており、これにより、水素イオン伝導性高分子電解質膜および触媒電極からなる膜電極接合体(MEA)に燃料ガスを供給する。 The anode-side separator 1 is provided with a reaction gas channel 1a, which supplies a fuel gas to a membrane electrode assembly (MEA) composed of a hydrogen ion conductive polymer electrolyte membrane and a catalyst electrode.

他方、カソード側のセパレータ5にも反応ガス流路5aが設けられており、これにより、MEAに酸素ガスを供給する。 On the other hand, the reaction gas flow path 5a is also provided in the cathode-side separator 5, whereby oxygen gas is supplied to the MEA.

上記燃料ガス中の水素と酸素ガスとを、貴金属触媒の存在下で反応させることにより、両電極2、4の間に起電力を生じる。 An electromotive force is generated between the electrodes 2 and 4 by reacting hydrogen and oxygen gas in the fuel gas in the presence of a noble metal catalyst.

アノードに送られる燃料ガスとしては、メタンやメタノール等を水蒸気改質して得られる水素ガスリッチな改質ガスを使用することが検討されている。 As the fuel gas sent to the anode, it has been studied to use a hydrogen gas-rich reformed gas obtained by steam reforming methane, methanol, or the like.

メタノールの水蒸気改質は、250〜300℃の温度下においてCu−Zn系等の触媒を使用して、以下のように2段階の反応を用いて行われる。 The steam reforming of methanol is performed using a two-stage reaction as follows using a catalyst such as a Cu—Zn system at a temperature of 250 to 300 ° C.

まず、改質装置を用いてメタノールを水蒸気と反応させ、水素と一酸化炭素(CO)に転化する。
CHOH=2H+CO−90kJ/mol・・・(1)
First, methanol is reacted with water vapor using a reformer to convert it into hydrogen and carbon monoxide (CO).
CH 3 OH = 2H 2 + CO -90kJ / mol ··· (1)

次に、シフトコンバータを用いて、COを水蒸気とシフト反応させて、水素ガスリッチな改質ガスを得る。
CO+HO=H+CO+40kJ/mol・・・(2)
Next, a shift converter is used to shift-react CO with water vapor to obtain a reformed gas rich in hydrogen gas.
CO + H 2 O = H 2 + CO 2 +40 kJ / mol (2)

固体高分子型燃料電池が実用的に普及するうえで、製造コストの低減が求められている。 As solid polymer fuel cells become practically used, reduction of manufacturing cost is required.

貴金属触媒担持カーボン、プロトン伝導性高分子電解質、溶媒からなる燃料電池用触媒電極形成用ワニスは、貴金属触媒担持カーボンの凝集が起こりやすいので、燃料電池用触媒電極形成用ワニスを製造するに際しては、予め貴金属触媒担持カーボンを溶媒に分散させ、次いでプロトン伝導性高分子電解質を混合して燃料電池用触媒電極形成用ワニスを調製しなければならない。 A fuel cell catalyst electrode forming varnish comprising a noble metal catalyst-supporting carbon, a proton conductive polymer electrolyte, and a solvent is prone to agglomeration of the noble metal catalyst-supporting carbon, so when producing a fuel cell catalyst electrode forming varnish, A varnish for forming a catalyst electrode for a fuel cell must be prepared by previously dispersing a noble metal catalyst-supporting carbon in a solvent and then mixing a proton conductive polymer electrolyte.

これを怠ると、燃料電池用触媒電極形成用ワニス中において、貴金属触媒担持カーボンの分散性は著しく悪くなる。 If this is neglected, the dispersibility of the noble metal catalyst-supported carbon in the varnish for forming a catalyst electrode for a fuel cell is remarkably deteriorated.

従って、燃料電池用触媒電極形成用ワニス生成に際しては、分散工程を複数段階で行わなければならず工程数が多くなり、且つ、時間を要するという問題があった。 Accordingly, when the fuel cell catalyst electrode forming varnish is generated, there are problems that the dispersion process has to be performed in a plurality of stages, the number of processes is increased, and time is required.

また、そのようにして分散させた燃料電池用触媒電極形成用ワニス中においても、貴金属触媒担持カーボンの凝集が生じやすい。 In addition, the noble metal catalyst-supported carbon is likely to be aggregated in the fuel cell catalyst electrode forming varnish thus dispersed.

貴金属触媒担持カーボンが凝集し易い燃料電池用触媒電極形成用ワニスを用いて触媒電極を形成すると、プロトン供給経路の形成が妨げられ、貴金属触媒担持カーボンが有効に利用されないという問題も起きてしまう。 If the catalyst electrode is formed using a varnish for forming a catalyst electrode for a fuel cell in which the noble metal catalyst-supported carbon easily aggregates, the formation of a proton supply path is hindered, causing a problem that the noble metal catalyst-supported carbon is not effectively used.

その結果、単位貴金属触媒量あたりで得られる電池性能が低下し、その分、高価であり限られた資源である貴金属触媒を多く使用しなければならないという問題が生じていた。 As a result, the battery performance obtained per unit noble metal catalyst amount is lowered, and accordingly, there is a problem that a large amount of noble metal catalyst, which is an expensive and limited resource, must be used.

この問題を解決する方法として、燃料電池用触媒電極形成用ワニスに界面活性剤を添加する方法が開示されている。(例えば、特許文献1参照) As a method for solving this problem, a method of adding a surfactant to a varnish for forming a catalyst electrode for a fuel cell is disclosed. (For example, see Patent Document 1)

特開平10−284086号公報Japanese Patent Laid-Open No. 10-284086

しかしながら、燃料電池用触媒電極形成用ワニスに界面活性剤を添加した場合、燃料電池用触媒電極形成用ワニス中での貴金属触媒担持カーボンの分散性は改善するものの、分散工程を少なくすることはできない。 However, when a surfactant is added to the fuel cell catalyst electrode forming varnish, the dispersibility of the noble metal catalyst-supported carbon in the fuel cell catalyst electrode forming varnish is improved, but the dispersion step cannot be reduced. .

また、触媒電極内に界面活性剤が残留することによって、安定した電池性能が得られないという新たな問題が生じてしまう。 In addition, the surfactant remaining in the catalyst electrode causes a new problem that stable battery performance cannot be obtained.

本発明の第1の課題は、従来よりも燃料電池用触媒電極形成用ワニス中の貴金属触媒担持カーボンの分散工程が少ない燃料電池用触媒電極形成用ワニス生成時間を短縮させた燃料電池用触媒電極形成用ワニスの製造方法を提供することである。 A first object of the present invention is to provide a catalyst electrode for a fuel cell in which the time required for generating the varnish for forming a catalyst electrode for a fuel cell is reduced as compared with the prior art. It is to provide a method for producing a forming varnish.

また、本発明の第2の課題は、貴金属触媒利用率を改善させ出力特性の高い燃料電池用触媒電極を提供することである。 The second object of the present invention is to provide a fuel cell catalyst electrode having improved output characteristics by improving the utilization rate of the noble metal catalyst.

また、本発明の第3の課題は、前記燃料電池用触媒電極を用いた膜電極接合体および燃料電池を提供することである。 The third object of the present invention is to provide a membrane electrode assembly and a fuel cell using the fuel cell catalyst electrode.

請求項1に記載の発明は、貴金属触媒担持電子伝導性物質と、プロトン伝導性高分子電解質と、スルホン酸基が導入された無定形炭素、および、溶媒を有する燃料電池用触媒電極形成用ワニスである。 The invention according to claim 1 is a varnish for forming a catalyst electrode for a fuel cell, comprising a noble metal catalyst-supported electron conductive material, a proton conductive polymer electrolyte, amorphous carbon into which a sulfonic acid group has been introduced, and a solvent. It is.

スルホン酸基が導入された無定形炭素は、スルホン酸基を持ち、無定形炭素としての性質を示す物質であればどのようなものでもよい。 The amorphous carbon into which the sulfonic acid group is introduced may be any substance as long as it has a sulfonic acid group and exhibits properties as an amorphous carbon.

ここで「無定形炭素」とは、炭素からなる物質であって、ダイヤモンドや黒鉛のような明確な結晶構造を持たない物質をいい、より具体的には、粉末X線回折において、明確なピークが検出されないか、あるいは幅の広いピークが検出される物質を意味する。 Here, “amorphous carbon” refers to a substance made of carbon and does not have a clear crystal structure such as diamond or graphite, and more specifically, a clear peak in powder X-ray diffraction. Means a substance in which no or a broad peak is detected.

スルホン酸基が導入された無定形炭素のプロトン伝導度は特に限定されないが、0.01S/cm以上であることが好ましい。
無定形炭素のプロトン伝導度が、0.01S/cm以上であれば、電子伝導性物質に発生したプロトンを効率良く伝導できる。
0.01S/cm以下であれば、プロトン伝導性が低すぎて白金触媒量を減らすことができない。
(前記プロトン伝導度は、温度80℃、湿度100%条件下、交流インピーダンス法によって測定される値である。)
The proton conductivity of the amorphous carbon into which the sulfonic acid group is introduced is not particularly limited, but is preferably 0.01 S / cm or more.
If the proton conductivity of amorphous carbon is 0.01 S / cm or more, protons generated in the electron conductive material can be efficiently conducted.
If it is 0.01 S / cm or less, the proton conductivity is too low to reduce the amount of platinum catalyst.
(The proton conductivity is a value measured by the AC impedance method under conditions of a temperature of 80 ° C. and a humidity of 100%.)

スルホン酸基が導入された無定形炭素をフッ素化等の化学処理を施したものを用いても良い。 Amorphous carbon into which a sulfonic acid group has been introduced may be subjected to chemical treatment such as fluorination.

電子伝導性物質としては、電子伝導性と比表面積の大きいオイルファーブスブラック、チャンネルブラック、ランプブラック、サーマルブラック、アセチレンブラック、ケッチェンブラックなどのカーボンブラックを用いることができる。 As the electron-conducting substance, carbon black such as oil carb black, channel black, lamp black, thermal black, acetylene black, ketjen black and the like having a large electronic conductivity and specific surface area can be used.

プロトン伝導性高分子電解質は、プロトンを伝導させる高分子電解質であれば好適に用いられる。
その中でもスルホン化されたプロトン伝導性高分子電解質は特にプロトン伝導性が良い。特に、パーフルオロカーボンスルホン酸等のフッ素系陽イオン交換樹脂であることが好ましい。
The proton conductive polymer electrolyte is preferably used as long as it is a polymer electrolyte that conducts protons.
Among them, the sulfonated proton conductive polymer electrolyte has particularly good proton conductivity. In particular, a fluorine-based cation exchange resin such as perfluorocarbon sulfonic acid is preferable.

溶媒は特に限定されないが、貴金属触媒担持電子伝導性物質、プロトン伝導性高分子電解質、および、スルホン酸基が導入された無定形炭素と反応することがない揮発性の液体有機溶媒を用いることが望ましい。 The solvent is not particularly limited, and a volatile liquid organic solvent that does not react with amorphous carbon into which a noble metal catalyst-supported electron conductive material, proton conductive polymer electrolyte, and sulfonic acid groups are introduced may be used. desirable.

請求項2に記載の発明は、前記貴金属触媒が、Au、Pt、Pd、Rh、Ru、OsおよびIrから選ばれた1種または2種以上の金属、または、Moであることを特徴とする請求項1に記載の燃料電池用触媒電極形成用ワニスである。 The invention according to claim 2 is characterized in that the noble metal catalyst is one or more metals selected from Au, Pt, Pd, Rh, Ru, Os and Ir, or Mo. It is a varnish for catalyst electrode formation for fuel cells of Claim 1.

また、貴金属触媒にはW、Sn、ReなどがPt合金に添加物として含まれていてもよい。
上記添加物が含まれていると耐CO被毒性が高まる。
The noble metal catalyst may contain W, Sn, Re, etc. as an additive in the Pt alloy.
When the additive is contained, the CO poisoning resistance increases.

また、上記添加金属は、Pt合金の金蔵間化合物として存在してもよいし、合金を形成してもよい。 The additive metal may exist as an intermetallic compound of a Pt alloy or may form an alloy.

請求項3に記載の発明は、前記プロトン伝導性高分子電解質が、パーフルオロカーボンスルホン酸であることを特徴とする請求項1または請求項2に記載の燃料電池用触媒電極形成用ワニスである。 The invention according to claim 3 is the varnish for forming a catalyst electrode for a fuel cell according to claim 1 or 2, wherein the proton conductive polymer electrolyte is perfluorocarbon sulfonic acid.

請求項4に記載の発明は、請求項1乃至請求項3のいずれか1項に記載の燃料電池用触媒電極形成用ワニスの製造方法であって、
貴金属触媒担持電子伝導性物質と、プロトン伝導性高分子電解質と、スルホン酸基が導入された無定形炭素を混合し、分散機を用いて分散する一段階処理工程を有することを特徴とする燃料電池用触媒電極形成用ワニスの製造方法である。
Invention of Claim 4 is a manufacturing method of the varnish for catalyst electrode formation for fuel cells of any one of Claim 1 thru | or 3, Comprising:
A fuel characterized by having a one-step processing step of mixing a noble metal catalyst-supported electron conductive material, a proton conductive polymer electrolyte, and amorphous carbon into which a sulfonic acid group has been introduced, and dispersing using a disperser It is a manufacturing method of the varnish for battery catalyst electrode formation.

請求項5に記載の発明は、前記分散機が、遊星ボールミル、ホモジナイザー、または、ナノマイザーであることを特徴とする請求項4に記載の燃料電池用触媒電極形成用ワニスの製造方法である。 The invention according to claim 5 is the method for producing a varnish for forming a catalyst electrode for a fuel cell according to claim 4, wherein the disperser is a planetary ball mill, a homogenizer, or a nanomizer.

請求項6に記載の発明は、請求項1乃至請求項3のいずれか1項に記載の燃料電池用触媒電極形成用ワニスを導電性多孔性基材上にコーティングしたことを特徴とする触媒電極の製造方法である。 A sixth aspect of the present invention is directed to a catalyst electrode comprising a conductive porous substrate coated with the varnish for forming a catalyst electrode for a fuel cell according to any one of the first to third aspects. It is a manufacturing method.

請求項7に記載の発明は、前記触媒電極で水素イオン伝導性高分子電解質膜を挟持してなる膜電極接合体(MEA)である。 The invention according to claim 7 is a membrane electrode assembly (MEA) in which a hydrogen ion conductive polymer electrolyte membrane is sandwiched between the catalyst electrodes.

請求項8に記載の発明は、セパレータで膜電極接合体(MEA)を挟持してなる燃料電池である。 The invention according to claim 8 is a fuel cell in which a membrane electrode assembly (MEA) is sandwiched between separators.

本発明により、燃料電池用触媒電極形成用ワニス生成工程数削減、および、燃料電池用触媒電極形成用ワニス生成時間の短縮による製造コスト低減が可能となる。
また、本発明により燃料電池の貴金属触媒利用率を改善させることができる。
According to the present invention, it is possible to reduce the number of steps for producing a fuel cell catalyst electrode forming varnish and to reduce the production cost by shortening the time for producing a fuel cell catalyst electrode forming varnish.
Further, the utilization rate of the noble metal catalyst of the fuel cell can be improved by the present invention.

本発明の燃料電池用触媒電極形成用ワニス、それを用いた触媒電極、それを用いた膜電極接合体、それを用いた燃料電池の製造方法について説明する。 A fuel cell catalyst electrode forming varnish of the present invention, a catalyst electrode using the same, a membrane electrode assembly using the same, and a method for producing a fuel cell using the same will be described.

(貴金属触媒担持電子伝導性物質の作製)
まず、電子伝導性物質を酸化処理して、電子伝導性物質の表面に酸性基を形成する。
(Preparation of noble metal catalyst-supported electron conductive material)
First, the electron conductive material is oxidized to form acidic groups on the surface of the electron conductive material.

電子伝導性物質としては、比表面積が240〜700m/gのアセチレンブラックを用いることができる。 As the electron conductive substance, acetylene black having a specific surface area of 240 to 700 m 2 / g can be used.

比表面積が240m/g以上の場合、高い放電特性(電池電圧)を得ることができる。
また、比表面積が700m/gを超えても放電特性(電池電圧)は変わらないが表面積を大きくする分コストが高くなる。
When the specific surface area is 240 m 2 / g or more, high discharge characteristics (battery voltage) can be obtained.
Moreover, even if the specific surface area exceeds 700 m 2 / g, the discharge characteristics (battery voltage) do not change, but the cost increases as the surface area is increased.

酸性基としては、カルボキシル基を用いることができる。
電子伝導性物質の表面にカルボキシル基を形成することにより、触媒が電子伝導性物質表面に容易に均一に担持し易くなる。
A carboxyl group can be used as the acidic group.
By forming a carboxyl group on the surface of the electron conductive material, the catalyst can be easily and uniformly supported on the surface of the electron conductive material.

酸性基を形成する方法としては、70〜80℃下において、電子伝導性物質を、濃度が0.4〜0.6mol/リットルの過マンガン酸カリウム水溶液と反応させる方法を用いることができる。 As a method for forming an acidic group, a method of reacting an electron conductive substance with an aqueous potassium permanganate solution having a concentration of 0.4 to 0.6 mol / liter at 70 to 80 ° C. can be used.

次に、電子伝導性物質表面の酸性基に含まれるイオンを、触媒を有する錯体陽イオンとイオン交換し、その後、還元する。 Next, ions contained in the acidic group on the surface of the electron conductive material are ion-exchanged with a complex cation having a catalyst, and then reduced.

触媒としては、白金を用いることができる。
白金は、酸素還元能力、水素酸化能力が高いので、白金を用いることにより出力が高い固体高分子型燃料電池を作製することができる。
Platinum can be used as the catalyst.
Since platinum has high oxygen reduction ability and hydrogen oxidation ability, a solid polymer fuel cell with high output can be produced by using platinum.

白金(触媒)の平均粒径(体積平均粒径(Dv))は1nm以上5nm以下であることが望ましい。 The average particle diameter (volume average particle diameter (Dv)) of platinum (catalyst) is preferably 1 nm or more and 5 nm or less.

白金(触媒)の平均粒径(体積平均粒径(Dv))を1nm以上5nm以下にすることにより、触媒の単位重量当たりの表面積が非常に大きい、触媒効率の良い出力特性に優れた燃料電池を作製することができる。 By setting the average particle size (volume average particle size (Dv)) of platinum (catalyst) to 1 nm or more and 5 nm or less, the fuel cell has a very large surface area per unit weight of the catalyst and excellent output characteristics with high catalyst efficiency. Can be produced.

白金(触媒)の平均粒径(体積平均粒径(Dv))を1nm未満にするのは困難で、コストが高くなってしまう。
また、白金(触媒)の平均粒径(体積平均粒径(Dv))が5nmを超えると、触媒の単位重量当たりの表面積が小さくなり、触媒効率が悪くなり、燃料電池の起電力が低くなってしまう。
It is difficult to make the average particle diameter (volume average particle diameter (Dv)) of platinum (catalyst) less than 1 nm, which increases the cost.
In addition, when the average particle size (volume average particle size (Dv)) of platinum (catalyst) exceeds 5 nm, the surface area per unit weight of the catalyst is reduced, the catalyst efficiency is deteriorated, and the electromotive force of the fuel cell is lowered. End up.

錯体陽イオンとしては、ヘキサアンミン白金(IV)塩化物([Pt(IV)(NH]Cl)を用いるのが好ましい。 As the complex cation, hexaammine platinum (IV) chloride ([Pt (IV) (NH 3 ) 6 ] Cl 4 ) is preferably used.

イオン交換する方法としては、表面に酸性基を形成した電子伝導性物質を、触媒を有する錯体陽イオンを溶存種として含有する溶液に浸漬する方法を用いることができる。 As a method of ion exchange, a method of immersing an electron conductive material having an acidic group formed on the surface in a solution containing a complex cation having a catalyst as a dissolved species can be used.

触媒と電子伝導性物質は、重量比で1:2〜2:1の範囲にすることが好ましい。
この範囲よりも触媒重量比が小さいと十分な放電特性(電池電圧)が得られない。
また、この範囲よりも触媒重量比が大きいと触媒粒子を分散性よく電子伝導性物質粉末に担持させることができない。
The weight ratio of the catalyst and the electron conductive material is preferably 1: 2 to 2: 1.
If the catalyst weight ratio is smaller than this range, sufficient discharge characteristics (battery voltage) cannot be obtained.
If the catalyst weight ratio is larger than this range, the catalyst particles cannot be supported on the electron conductive material powder with good dispersibility.

還元する方法としては、水素気流中180℃にて還元する方法を用いることができる。 As a method of reducing, a method of reducing at 180 ° C. in a hydrogen stream can be used.

(スルホン酸基が導入された無定形炭素の作製)
まず、温度240〜260℃下において、芳香族化合物をスルホン酸に溶解する。
(Production of amorphous carbon with sulfonic acid group introduced)
First, the aromatic compound is dissolved in sulfonic acid at a temperature of 240 to 260 ° C.

芳香族化合物としては、アントラセンまたはその誘導体を用いることができる。
アントラセンは多くのポリエン構造を持ち、芳香族化合物の中で最もスルホン酸基を置換し易い。
Anthracene or a derivative thereof can be used as the aromatic compound.
Anthracene has many polyene structures and is most easily substituted with sulfonic acid groups among aromatic compounds.

スルホン酸としては、硫酸を用いることができる。
スルホン酸として硫酸を用いることにより、芳香族化合物に対し親電子置換反応でスルホ基を導入することができる。
As the sulfonic acid, sulfuric acid can be used.
By using sulfuric acid as the sulfonic acid, a sulfo group can be introduced into the aromatic compound by an electrophilic substitution reaction.

温度が240℃未満では、反応速度が遅く、温度が260℃を超えるとスルホン基が分解することが懸念されるため、温度は、240〜260℃が好ましい。 If the temperature is less than 240 ° C, the reaction rate is slow, and if the temperature exceeds 260 ° C, the sulfone group may be decomposed, and therefore the temperature is preferably 240 to 260 ° C.

次に、スルホン酸を濾別除去し、その後、残留物を水洗することにより、スルホン酸基が置換された芳香族化合物を得る。 Next, the sulfonic acid is removed by filtration, and then the residue is washed with water to obtain an aromatic compound substituted with a sulfonic acid group.

スルホン酸基はプロトン伝導に寄与し、スルホン酸基密度が高い方が、プロトン伝導度が高い。 The sulfonic acid group contributes to proton conduction, and the higher the sulfonic acid group density, the higher the proton conductivity.

(燃料電池用触媒電極の作製)
まず、貴金属触媒担持電子伝導性物質、プロトン伝導性高分子電解質、および、スルホン酸基が導入された無定形炭素を、溶媒に溶解し、ボールミルやホモジナイザー、もしくはナノマイザーなどの加圧ノズル式乳化機などを用いて分散処理を施すことにより燃料電池用触媒電極形成用ワニスを生成する。
(Production of catalyst electrode for fuel cell)
First, a pressure nozzle type emulsifier such as a ball mill, a homogenizer, or a nanomizer is prepared by dissolving a noble metal catalyst-supported electron conductive material, proton conductive polymer electrolyte, and amorphous carbon into which a sulfonic acid group has been introduced in a solvent. A varnish for forming a catalyst electrode for a fuel cell is produced by carrying out a dispersion treatment using the above.

プロトン伝導性高分子電解質としては、パーフルオロカーボンスルホン酸を用いることができる。
パーフルオロカーボンスルホン酸は、燃料電池の運転環境に耐えうる、耐熱性、耐酸化劣化性、耐還元劣化性、寸法安定性、耐衝撃性、プロトン伝導性に優れ、プロトン伝導性高分子電解質としては最適である。
As the proton conductive polymer electrolyte, perfluorocarbon sulfonic acid can be used.
Perfluorocarbon sulfonic acid can withstand the operating environment of the fuel cell, has excellent heat resistance, oxidation deterioration resistance, reduction deterioration resistance, dimensional stability, impact resistance, and proton conductivity, and as a proton conductive polymer electrolyte, Is optimal.

溶媒としては、N−メチル−1−ピロリドン、イソプロピルアルコール、ノルマルプロピルアルコール等を用いることができる。 As the solvent, N-methyl-1-pyrrolidone, isopropyl alcohol, normal propyl alcohol, or the like can be used.

次に、燃料電池用触媒電極形成用ワニスを導電性多孔性基材上に積層することにより、燃料電池用触媒電極を得る。 Next, the catalyst electrode for fuel cells is obtained by laminating | stacking the varnish for catalyst electrode formation for fuel cells on a conductive porous base material.

導電性多孔性基材としては、65〜85%の気孔率を有するカーボンペーパーまたはカーボンクロスを用いることができる。 As the conductive porous substrate, carbon paper or carbon cloth having a porosity of 65 to 85% can be used.

カーボンペーパーまたはカーボンクロスは、反応ガス通気性が良く、かつ、電気伝導度が高く、燃料電池用触媒電極の電極基材としては最適である。 Carbon paper or carbon cloth has good reaction gas permeability and high electrical conductivity, and is optimal as an electrode base material for catalyst electrodes for fuel cells.

気孔率が65%未満であると、燃料ガスおよび酸化剤ガスの供給が十分にできず、気孔率が85%を超えると、強度が不足することが懸念される。 If the porosity is less than 65%, the fuel gas and the oxidant gas cannot be sufficiently supplied. If the porosity exceeds 85%, the strength may be insufficient.

積層する方法としては、刷毛塗り法、筆塗り法、バーコータ塗工法、ナイフコータ塗工法、ダイコータ塗工法、スクリーン印刷法、スプレー塗工法などを用いることができる。 As a lamination method, a brush coating method, a brush coating method, a bar coater coating method, a knife coater coating method, a die coater coating method, a screen printing method, a spray coating method, or the like can be used.

(膜電極接合体(MEA)の作製)
まず、2枚の触媒電極の触媒層どうしを向かい合わせにして水素イオン伝導性高分子電解質膜を挟み、熱圧着する。
(Production of membrane electrode assembly (MEA))
First, the hydrogen ion conductive polymer electrolyte membrane is sandwiched with the catalyst layers of the two catalyst electrodes facing each other, and thermocompression bonded.

加熱温度としては、触媒層および水素イオン伝導性高分子電解質膜の樹脂の軟化温度やガラス転位温度を超える温度を用いることができる。
触媒層および水素イオン伝導性高分子電解質膜の樹脂がパーフルオロカーボンスルホン酸の場合は、温度100℃〜300℃、圧力20〜50kgf/cm、時間5秒〜700秒の熱圧着条件を用いることができる。
As the heating temperature, a temperature exceeding the softening temperature of the resin of the catalyst layer and the hydrogen ion conductive polymer electrolyte membrane or the glass transition temperature can be used.
When the resin of the catalyst layer and the hydrogen ion conductive polymer electrolyte membrane is perfluorocarbon sulfonic acid, use the thermocompression bonding conditions of a temperature of 100 ° C. to 300 ° C., a pressure of 20 to 50 kgf / cm 2 , and a time of 5 seconds to 700 seconds. Can do.

最後に、2個のセパレータのガス流路どうしを向かい合わせにして膜電極接合体(MEA)挟み、ボルトとナットで締結して燃料電池を得る。 Finally, the fuel cell is obtained by sandwiching the membrane electrode assembly (MEA) with the gas flow paths of the two separators facing each other and fastening with a bolt and a nut.

ボルトとナットで締結する際の圧力は、膜電極接合体(MEA)の厚さ方向に対して、面圧1〜2kg/cmとすることが好ましい。 The pressure at the time of fastening with a bolt and a nut is preferably a surface pressure of 1 to 2 kg / cm 2 with respect to the thickness direction of the membrane electrode assembly (MEA).

まず、アセチレンブラック(比表面積257m/g)(Cabot社製、Vulcan XC−72R)25gを、0.5mol/リットル過マンガン酸カリウム水溶液10リットルに入れ、75℃下において、5時間反応させた。 First, 25 g of acetylene black (specific surface area 257 m 2 / g) (manufactured by Cabot, Vulcan XC-72R) was put into 10 liter of 0.5 mol / liter potassium permanganate aqueous solution and reacted at 75 ° C. for 5 hours. .

次に、反応生成物を濾別し、75℃の蒸留水を用いて洗浄し、105℃下において乾燥した後、白金含有量10g/リットルのヘキサアンミン白金(IV)塩化物([Pt(IV)(NH]Cl)水溶液に室温で浸漬してイオン交換した。 Next, the reaction product is filtered off, washed with distilled water at 75 ° C., dried at 105 ° C., and then hexaammineplatinum (IV) chloride having a platinum content of 10 g / liter ([Pt (IV ) (NH 3 ) 6 ] Cl 4 ) Ion exchange was performed by immersion in an aqueous solution at room temperature.

次に、反応液から反応生成物を濾別し、その後、反応生成物を75℃の蒸留水を用いて洗浄し、その後、105℃下において乾燥させた後、気温180℃の水素気流中において還元することにより白金担持カーボン(Pt:45質量%担持)を得た。 Next, the reaction product is filtered off from the reaction solution, and then the reaction product is washed with distilled water at 75 ° C., then dried at 105 ° C., and then in a hydrogen stream at a temperature of 180 ° C. By carrying out reduction, platinum-supported carbon (Pt: 45 mass% supported) was obtained.

次に、アントラセン40gを濃硫酸(96%)600mlに溶解し、240℃において15時間加熱し、その後、濃硫酸を濾別除去し、その後、残留物を水洗し、スルホン酸基が導入された無定形炭素(スルホン酸基密度=4.4mmol/g)を得た。 Next, 40 g of anthracene was dissolved in 600 ml of concentrated sulfuric acid (96%) and heated at 240 ° C. for 15 hours, after which the concentrated sulfuric acid was removed by filtration, and then the residue was washed with water to introduce sulfonic acid groups. Amorphous carbon (sulfonic acid group density = 4.4 mmol / g) was obtained.

スルホン酸基が導入された無定形炭素を、金型を用いて一軸成形し、その後、静水圧プレス(CIP)を用いて2000kg/cmの圧力にて、円柱状(直径10mm×高さ0.7mm)ディスクに成形し、その後、円柱状ディスクの両面にPtを蒸着して測定用電極を形成し、その後、測定用電極を、導線を介してインピーダンスアナライザの端子に接続し、その後、円柱状ディスクの状態を100℃、湿度0%(カールフィッシャー法にて測定)にした後、公知の交流インピーダンス法を用いて、測定周波数20kHzの条件にて、円柱状ディスクのオーミック抵抗値を測定し、その後、該オーミック抵抗値(測定装置中のリード抵抗成分は補正した)と円柱状ディスクの寸法からスルホン酸基が導入された無定形炭素のプロトン導電率を算出したところ、スルホン酸基が導入された無定形炭素のプロトン導電率は1.44×10−1S・cm−1であった。 Amorphous carbon into which a sulfonic acid group has been introduced is uniaxially molded using a mold, and then cylindrical (diameter 10 mm × height 0) using a hydrostatic pressure press (CIP) at a pressure of 2000 kg / cm 2. .7 mm) and then forming a measurement electrode by vapor-depositing Pt on both sides of the cylindrical disk, and then connecting the measurement electrode to the terminal of the impedance analyzer via a conductor, After the columnar disk was brought to 100 ° C. and humidity 0% (measured by the Karl Fischer method), the ohmic resistance value of the columnar disk was measured using a known alternating current impedance method at a measurement frequency of 20 kHz. Then, proton conductivity of amorphous carbon into which sulfonic acid groups were introduced from the ohmic resistance value (corrected for the lead resistance component in the measuring apparatus) and the dimensions of the cylindrical disk Was calculated, proton conductivity of the amorphous carbon having sulfonate group introduced therein was 1.44 × 10 -1 S · cm -1 .

次に、スルホン酸基が導入された無定形炭素0.1g、白金担持カーボン(Pt:45質量%担持)1.5g、水4g、2−プロパノール6g、パーフルオロカーボンスルホン酸20w%溶液(溶剤;プロパノール)(デュポン社製、ナフィオン溶液(登録商標))3.5gの順に混合し、遊星ボールミルにて200rpmで1時間処理することにより、燃料電池用触媒電極形成用ワニスを生成した。 Next, 0.1 g of amorphous carbon having sulfonic acid groups introduced, 1.5 g of platinum-supported carbon (Pt: 45 mass% supported), 4 g of water, 6 g of 2-propanol, and 20 w% solution of perfluorocarbon sulfonic acid (solvent; Propanol) (manufactured by DuPont, Nafion Solution (registered trademark)) in an amount of 3.5 g was mixed in this order, and treated with a planetary ball mill at 200 rpm for 1 hour to produce a fuel cell catalyst electrode forming varnish.

燃料電池用触媒電極形成用ワニスの粘度を、粘度計(山一電機社製、ビスコメイトVM−1A−MH((登録商標))で測定したところ、63cPs(25℃)であった。 It was 63 cPs (25 degreeC) when the viscosity of the varnish for catalyst electrode formation for fuel cells was measured with the viscometer (the Yamaichi Denki company make, Viscomate VM-1A-MH ((trademark)).

次に、気孔率80%、厚さ110μmのカーボンペーパー(東レ社製、TGP−H−030)を110mm×110mmのサイズにカットした。 Next, carbon paper (TGP-H-030, manufactured by Toray Industries, Inc.) having a porosity of 80% and a thickness of 110 μm was cut into a size of 110 mm × 110 mm.

次に、カットしたカーボンペーパーに付着したゴミを、エアーガンを用いて除去した後、
スクリーン印刷機にセットした。
Next, after removing dust attached to the cut carbon paper using an air gun,
Set on a screen printer.

次に、前記調整した触媒インクを#250SUSメッシュ×乳剤厚20μm×線径0.05mmのスクリーン上に載せた。 Next, the prepared catalyst ink was placed on a screen of # 250SUS mesh × emulsion thickness 20 μm × wire diameter 0.05 mm.

次に、スキージ圧5kgf/cm、スキージ速度100mm/秒、スクリーンと前記カーボンペーパーのクリアランスが2.5mmの条件にて触媒インクをカーボンペーパー上に押し出し(スクリーン印刷し)、その後、窒素雰囲気中において80℃下で10分間の熱処理を施し、その後、30分間放冷し、触媒電極を形成した。 Next, the catalyst ink was extruded onto the carbon paper (screen printing) under the conditions of a squeegee pressure of 5 kgf / cm 2 , a squeegee speed of 100 mm / second, and a clearance between the screen and the carbon paper of 2.5 mm, and then in a nitrogen atmosphere Was subjected to heat treatment at 80 ° C. for 10 minutes and then allowed to cool for 30 minutes to form a catalyst electrode.

触媒電極の白金触媒担持量は、0.4mg/cmであった。 The amount of platinum catalyst supported on the catalyst electrode was 0.4 mg / cm 2 .

次に、2枚の燃料電池用触媒電極の触媒層を向かい合わせ、その間に厚さ50μmのパーフルオロカーボンスルホン酸膜(水素イオン伝導性高分子電解質膜)(デュポン社製(登録商標)ナフィオン117)を挟み、温度140℃、圧力40kgf/cm、時間10分の条件で熱圧着することにより、膜電極接合体(MEA)を作製した。 Next, the catalyst layers of the two fuel cell catalyst electrodes face each other, and a 50 μm thick perfluorocarbon sulfonic acid membrane (hydrogen ion conductive polymer electrolyte membrane) (DuPont (registered trademark) Nafion 117) is placed between them. The membrane electrode assembly (MEA) was produced by thermocompression bonding under conditions of a temperature of 140 ° C., a pressure of 40 kgf / cm 2 , and a time of 10 minutes.

次に、膜電極接合体(MEA)を、2個のカーボン製セパレータで挟持し、更に、2枚のチタン製集電体で挟み、更に、2枚のヒーターで挟持することにより、有効面積5cmの燃料電池を組み立てた。 Next, the membrane electrode assembly (MEA) is sandwiched between two carbon separators, further sandwiched between two titanium current collectors, and further sandwiched between two heaters, thereby providing an effective area of 5 cm. Two fuel cells were assembled.

燃料電池の温度を80℃に保ち、湿度100%RHで水素および酸素を供給し、0.7Vにおける電流密度(A/cm2)を測定した。また、0.9V(IR抵抗補正後)における電流密度を用いて触媒質量活性(Ag−1)を算出した。
(触媒質量活性は使用触媒質量あたりの比活性であり、触媒利用率の尺度となる。)
触媒質量活性(Ag−1)算出値を表1に示す。
The temperature of the fuel cell was kept at 80 ° C., hydrogen and oxygen were supplied at a humidity of 100% RH, and the current density (A / cm 2) at 0.7 V was measured. Further, the catalyst mass activity (Ag-1) was calculated using the current density at 0.9 V (after IR resistance correction).
(Catalyst mass activity is specific activity per mass of catalyst used and is a measure of catalyst utilization.)
The calculated values of catalyst mass activity (Ag-1) are shown in Table 1.

Figure 2008077956
Figure 2008077956

<比較例1>
スルホン酸基が導入された無定形炭素を加えなかったこと以外は、実施例1と同様にして、燃料電池を製造し、評価を行った。
<Comparative Example 1>
A fuel cell was produced and evaluated in the same manner as in Example 1 except that the amorphous carbon into which the sulfonic acid group was introduced was not added.

<比較例2>
スルホン酸基が導入された無定形炭素を加えず、パーフルオロカーボンスルホン酸を混合する前に遊星ボールミルにて150rpmで0.5時間処理した以外は、実施例1と同様にして、燃料電池を製造し、評価を行った。
(燃料電池用触媒電極形成用ワニスの粘度は、粘度計(山一電機社製、ビスコメイトVM−1A−MH((登録商標))で測定したところ、700cPs(25℃)であった。)
<Comparative example 2>
A fuel cell was produced in the same manner as in Example 1 except that amorphous carbon introduced with a sulfonic acid group was not added and the perfluorocarbon sulfonic acid was treated with a planetary ball mill at 150 rpm for 0.5 hour before mixing. And evaluated.
(The viscosity of the varnish for forming a catalyst electrode for a fuel cell was 700 cPs (25 ° C. when measured with a viscometer manufactured by Yamaichi Electronics Co., Ltd., Viscomate VM-1A-MH (registered trademark)).

<比較例3>
スルホン酸基が導入された無定形炭素を0.1g加えるかわりに、高分子分散剤(花王社製)(ディモールN(登録商標))を0.2g加えた以外は、実施例1と同様にして、燃料電池を製造し、評価を行った。
(燃料電池用触媒電極形成用ワニスの粘度は、粘度計(山一電機社製、ビスコメイトVM−1A−MH((登録商標))で測定したところ、80cPs(25℃)であった。)
<Comparative Example 3>
Example 1 was repeated except that 0.2 g of a polymer dispersant (manufactured by Kao Corporation) (Dimor N (registered trademark)) was added instead of 0.1 g of amorphous carbon having a sulfonic acid group introduced therein. A fuel cell was manufactured and evaluated.
(The viscosity of the fuel cell catalyst electrode forming varnish was 80 cPs (25 ° C. when measured with a viscometer manufactured by Yamaichi Denki Co., Ltd., Viscomate VM-1A-MH (registered trademark)).

表1より、スルホン酸基が導入された無定形炭素を加えることによって、分散処理時間を大幅に短縮できた。
また、スルホン酸基が導入された無定形炭素を加えた燃料電池は、0.7Vにおける電流密度は1.0A/cmであり、触媒質量活性は13.0(Ag−1)となり、スルホン酸基が導入された無定形炭素を加えなかった燃料電池よりも優れた特性を示した。
From Table 1, it was possible to significantly reduce the dispersion treatment time by adding amorphous carbon into which sulfonic acid groups were introduced.
In addition, the fuel cell to which amorphous carbon introduced with a sulfonic acid group was added had a current density at 0.7 V of 1.0 A / cm 2 , a catalyst mass activity of 13.0 (Ag-1), and sulfone. It showed better characteristics than the fuel cell without adding amorphous carbon with acid group.

従来の燃料電池の断面図である。It is sectional drawing of the conventional fuel cell.

符号の説明Explanation of symbols

1・・・・アノード側のセパレータ
2・・・・アノード側触媒電極
3・・・・水素イオン伝導性高分子電解質膜
4・・・・カソード側触媒電極
5・・・・カソード側のセパレータ
21・・・アノード側電極基材
22・・・アノード側電極触媒層
41・・・カソード側電極基材
42・・・カソード側電極触媒層
DESCRIPTION OF SYMBOLS 1 ... Anode side separator 2 ... Anode side catalyst electrode 3 ... Hydrogen ion conductive polymer electrolyte membrane 4 ... Cathode side catalyst electrode 5 ... Cathode side separator 21 ... Anode-side electrode substrate 22 ... Anode-side electrode catalyst layer 41 ... Cathode-side electrode substrate 42 ... Cathode-side electrode catalyst layer

Claims (8)

貴金属触媒担持電子伝導性物質と、プロトン伝導性高分子電解質と、スルホン酸基が導入された無定形炭素、および、溶媒を有する燃料電池用触媒電極形成用ワニス。 A varnish for forming a catalyst electrode for a fuel cell, comprising a noble metal catalyst-supported electron conductive material, a proton conductive polymer electrolyte, amorphous carbon into which a sulfonic acid group has been introduced, and a solvent. 前記貴金属触媒が、Au、Pt、Pd、Rh、Ru、OsおよびIrから選ばれた1種または2種以上の金属、または、Moであることを特徴とする請求項1に記載の燃料電池用触媒電極形成用ワニス。 2. The fuel cell according to claim 1, wherein the noble metal catalyst is one or more metals selected from Au, Pt, Pd, Rh, Ru, Os, and Ir, or Mo. Catalyst electrode forming varnish. 前記プロトン伝導性高分子電解質が、パーフルオロカーボンスルホン酸であることを特徴とする請求項1または請求項2に記載の燃料電池用触媒電極形成用ワニス。 The varnish for forming a catalyst electrode for a fuel cell according to claim 1 or 2, wherein the proton conductive polymer electrolyte is perfluorocarbon sulfonic acid. 請求項1乃至請求項3のいずれか1項に記載の燃料電池用触媒電極形成用ワニスの製造方法であって、
貴金属触媒担持電子伝導性物質と、プロトン伝導性高分子電解質と、スルホン酸基が導入された無定形炭素を混合し、分散機を用いて分散する一段階処理工程を有することを特徴とする燃料電池用触媒電極形成用ワニスの製造方法。
A method for producing a varnish for forming a catalyst electrode for a fuel cell according to any one of claims 1 to 3,
A fuel characterized by having a one-step treatment process in which a noble metal catalyst-supported electron conductive material, a proton conductive polymer electrolyte, and amorphous carbon having sulfonic acid groups introduced therein are mixed and dispersed using a disperser. The manufacturing method of the varnish for battery catalyst electrode formation.
前記分散機が、遊星ボールミル、ホモジナイザー、または、ナノマイザーであることを特徴とする請求項4に記載の燃料電池用触媒電極形成用ワニスの製造方法。 The method for producing a varnish for forming a catalyst electrode for a fuel cell according to claim 4, wherein the disperser is a planetary ball mill, a homogenizer, or a nanomizer. 請求項1乃至請求項3のいずれか1項に記載の燃料電池用触媒電極形成用ワニスを導電性多孔性基材上にコーティングしたことを特徴とする触媒電極の製造方法。 A method for producing a catalyst electrode, comprising coating a conductive porous substrate with the varnish for forming a catalyst electrode for a fuel cell according to any one of claims 1 to 3. 前記触媒電極で水素イオン伝導性高分子電解質膜を挟持してなる膜電極接合体(MEA)。 A membrane electrode assembly (MEA) comprising a hydrogen ion conductive polymer electrolyte membrane sandwiched between the catalyst electrodes. セパレータで膜電極接合体(MEA)を挟持してなる燃料電池。 A fuel cell comprising a membrane electrode assembly (MEA) sandwiched between separators.
JP2006255517A 2006-09-21 2006-09-21 Varnish for forming catalyst electrode for fuel cell, method for producing the same, and method for producing catalyst electrode using the same Expired - Fee Related JP5017981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006255517A JP5017981B2 (en) 2006-09-21 2006-09-21 Varnish for forming catalyst electrode for fuel cell, method for producing the same, and method for producing catalyst electrode using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006255517A JP5017981B2 (en) 2006-09-21 2006-09-21 Varnish for forming catalyst electrode for fuel cell, method for producing the same, and method for producing catalyst electrode using the same

Publications (2)

Publication Number Publication Date
JP2008077956A true JP2008077956A (en) 2008-04-03
JP5017981B2 JP5017981B2 (en) 2012-09-05

Family

ID=39349803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006255517A Expired - Fee Related JP5017981B2 (en) 2006-09-21 2006-09-21 Varnish for forming catalyst electrode for fuel cell, method for producing the same, and method for producing catalyst electrode using the same

Country Status (1)

Country Link
JP (1) JP5017981B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218260A (en) * 2007-03-06 2008-09-18 Toppan Printing Co Ltd Electrode catalyst layer for fuel cell, mea (electrolyte membrane electrode conjugant) composed using the layer, and solid polymer fuel cell
JP2008234900A (en) * 2007-03-19 2008-10-02 Toppan Printing Co Ltd Manufacturing method of catalyst electrode
JP2011524617A (en) * 2008-06-16 2011-09-01 エルコマックス メンブランズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Gas diffusion electrodes containing functionalized nanoparticles

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04162365A (en) * 1990-10-25 1992-06-05 Tanaka Kikinzoku Kogyo Kk Method for preparing electrode of fuel cell
JP2002246033A (en) * 2001-02-14 2002-08-30 Toshiba Corp Electrode, electrode composition, fuel cell using the same and electrode producing method
JP2003109643A (en) * 2001-09-28 2003-04-11 Nippon Steel Corp Fuel cell
JP2005332807A (en) * 2004-04-22 2005-12-02 Nippon Steel Corp Fuel cell
JP2006209999A (en) * 2005-01-25 2006-08-10 Gs Yuasa Corporation:Kk Electrode for polymer electrolyte fuel cell and its manufacturing method
JP2007265730A (en) * 2006-03-28 2007-10-11 Toppan Printing Co Ltd Catalyst layer for fuel cell, membrane electrode conjugant using the layer, and fuel cell
JP2007265844A (en) * 2006-03-29 2007-10-11 Toppan Printing Co Ltd Catalyst layer for fuel cell, membrane electrode conjugant using the layer, and fuel cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04162365A (en) * 1990-10-25 1992-06-05 Tanaka Kikinzoku Kogyo Kk Method for preparing electrode of fuel cell
JP2002246033A (en) * 2001-02-14 2002-08-30 Toshiba Corp Electrode, electrode composition, fuel cell using the same and electrode producing method
JP2003109643A (en) * 2001-09-28 2003-04-11 Nippon Steel Corp Fuel cell
JP2005332807A (en) * 2004-04-22 2005-12-02 Nippon Steel Corp Fuel cell
JP2006209999A (en) * 2005-01-25 2006-08-10 Gs Yuasa Corporation:Kk Electrode for polymer electrolyte fuel cell and its manufacturing method
JP2007265730A (en) * 2006-03-28 2007-10-11 Toppan Printing Co Ltd Catalyst layer for fuel cell, membrane electrode conjugant using the layer, and fuel cell
JP2007265844A (en) * 2006-03-29 2007-10-11 Toppan Printing Co Ltd Catalyst layer for fuel cell, membrane electrode conjugant using the layer, and fuel cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218260A (en) * 2007-03-06 2008-09-18 Toppan Printing Co Ltd Electrode catalyst layer for fuel cell, mea (electrolyte membrane electrode conjugant) composed using the layer, and solid polymer fuel cell
JP2008234900A (en) * 2007-03-19 2008-10-02 Toppan Printing Co Ltd Manufacturing method of catalyst electrode
JP2011524617A (en) * 2008-06-16 2011-09-01 エルコマックス メンブランズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Gas diffusion electrodes containing functionalized nanoparticles

Also Published As

Publication number Publication date
JP5017981B2 (en) 2012-09-05

Similar Documents

Publication Publication Date Title
JP4083721B2 (en) High concentration carbon supported catalyst, method for producing the same, catalyst electrode using the catalyst, and fuel cell using the same
JP5322110B2 (en) Manufacturing method of cathode electrode material for fuel cell, cathode electrode material for fuel cell, and fuel cell using the cathode electrode material
KR100590555B1 (en) Supported catalyst and fuel cell using the same
JP4772741B2 (en) Cathode catalyst for fuel cell, membrane-electrode assembly for fuel cell including the same, and fuel cell system including the same
JP4786453B2 (en) Catalyst for fuel cell cathode, membrane-electrode assembly including the same, and fuel cell system
JP2000012043A (en) Electrode catalyst for solid high-polymer electrolyte- type fuel cell, and electrode, electrolyte film/electrode junction body and solid high-polymer electrolyte-type fuel cell using the catalyst
WO2020059504A1 (en) Anode catalyst layer for fuel cell and fuel cell using same
JP2006019300A (en) Electrode for fuel cell, fuel cell, and manufacturing method therefor
WO2020059503A1 (en) Anode catalyst layer for fuel cell and fuel cell using same
JP2007188768A (en) Polymer electrolyte fuel cell
KR102602407B1 (en) The composition for manufacturing electrode of membrane-electrode assembly for fuel cell and method for manufacturing electrode of membrane-electrode assembly for fuel cell using the same
JP5439875B2 (en) Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell
JP5017981B2 (en) Varnish for forming catalyst electrode for fuel cell, method for producing the same, and method for producing catalyst electrode using the same
JP2006253042A (en) Manufacturing method of catalyst for polymer electrolyte fuel cell
KR20060104821A (en) Catalyst for fuel cell, preparation method thereof, and fuel cell system comprising the same
JP2006209999A (en) Electrode for polymer electrolyte fuel cell and its manufacturing method
JP2005174835A (en) Electrode
JP2019192501A (en) Fuel cell electrode catalyst
JP5092381B2 (en) Catalyst powder for fuel cell, method for producing catalyst powder for fuel cell, and fuel cell
JP2021163699A (en) Catalyst layer for polymer electrolyte fuel cell, membrane electrode assembly, and polymer electrolyte fuel cell
KR20080110313A (en) Fuel composition for polymer electrolyte fuel cell polymer electrolyte fuel cell system comprising same
JP2005141920A (en) Catalyst carrying electrode
JP2006079840A (en) Electrode catalyst for fuel cell, and mea for fuel cell using this
US20230366112A1 (en) Method of preparing metal oxide catalysts for oxygen evolution
JP2005285511A (en) Electrode catalyst ink for fuel cell and manufacturing method of electrode catalyst ink for fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120528

R150 Certificate of patent or registration of utility model

Ref document number: 5017981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees