TWI620039B - 位置判斷裝置、位置判斷方法、微影設備及用於製造物件的方法 - Google Patents

位置判斷裝置、位置判斷方法、微影設備及用於製造物件的方法 Download PDF

Info

Publication number
TWI620039B
TWI620039B TW104139186A TW104139186A TWI620039B TW I620039 B TWI620039 B TW I620039B TW 104139186 A TW104139186 A TW 104139186A TW 104139186 A TW104139186 A TW 104139186A TW I620039 B TWI620039 B TW I620039B
Authority
TW
Taiwan
Prior art keywords
substrate
light
mark
unit
light receiving
Prior art date
Application number
TW104139186A
Other languages
English (en)
Other versions
TW201621481A (zh
Inventor
田村剛一
Original Assignee
佳能股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 佳能股份有限公司 filed Critical 佳能股份有限公司
Publication of TW201621481A publication Critical patent/TW201621481A/zh
Application granted granted Critical
Publication of TWI620039B publication Critical patent/TWI620039B/zh

Links

Abstract

位置判斷裝置包括被配置為向旋轉基板的邊緣部分發射光的第一發光單元和被配置為向基板的表面上的至少一個標記發射光的第二發光單元。對準裝置還包括被設置在與基板的表面對應的一側的光接收單元,且光接收單元被配置為接收從第一發光單元發射且接著穿過基板的外側的區域的光、以及接收從第二發光單元發射且接著從至少一個標記反射的光。基於光接收單元的光接收結果來判斷基板的位置。

Description

位置判斷裝置、位置判斷方法、微影設備及用於製造物件的方法
本發明關於一種位置判斷裝置、位置判斷方法、微影(lithographic)設備和用於製造物件的方法。
為了將基板傳輸到預定的曝光位置,向基板轉印例如電路圖案的圖案的曝光設備在傳輸之前對準基板。一個例示性的曝光設備在基板中形成被稱作缺口(notch)的V形切口、藉由檢測缺口的位置來判斷基板的位置、並對準此缺口以校正從預定位置的位置偏離。
然而,由於抗蝕劑洩漏到缺口部分中或者具有缺口的基板的不對稱性,在包括曝光步驟和膜形成步驟的步驟中,在缺口周圍的區域中往往會出現半導體裝置的性能失效。為了解決此問題並還防止產量下降,需要用於對準不具有缺口的基板的技術。
日本專利公開第2007-5794號係關於具有藉 由使用基板的後表面上的標記來判斷基板的位置的機構的對準裝置。它藉由使用用於檢測基板的邊緣的感測器和用於檢測在後表面上的標記的感測器來判斷基板的位置。
日本專利公開第9-139342號還關於具有藉由使用基板的後表面上的標記來判斷基板的位置的機構的對準裝置。它藉由以單一個攝像元件(image pickup element)來接收從形成在基板的前表面上的拍攝(shot)陣列所反射的光、以及從在基板的後表面上的標記所反射的光,來判斷基板的位置。
在日本專利公開第2007-5794號所描述的對準裝置中,用於檢測邊緣的感測器和用於檢測標記的感測器相互分開。因此,需要事先測量兩個感測器的相對位置。如果環境溫度變化大,那麼可能需要頻繁地測量相對位置。
在日本專利公開第9-139342號中描述的對準裝置不包括配置來檢測邊緣的單元。因此,如果需要沿著邊緣來曝光邊緣部分以去除基板上的不必要的抗蝕劑的邊緣曝光處理,則需要重新檢測邊緣。
本發明提供能夠藉由使用共用的感測器來檢測標記和基板的邊緣並且判斷基板的位置的位置判斷裝置、位置判斷方法和微影設備。
根據本發明的實施例之位置判斷裝置包括: 第一發光單元,被配置為對基板的邊緣部分發射光;第二發光單元,被配置為對基板的表面上的至少一個標記發射光;光接收單元,被設置在與基板的表面對應的一側上,且光接收單元被配置為接收從第一發光單元發射且接著穿過基板外側的區域的光、並接收從第二發光單元發射且接著從至少一個標記反射的光;以及判斷單元,被配置為基於光接收單元的光接收結果來判斷基板的位置。
從例示性實施例的以下描述參照所附圖式,本發明的進一步特徵將變得清楚明瞭。
10‧‧‧基板
11‧‧‧標記
12‧‧‧邊緣
13‧‧‧倒角
20‧‧‧外來顆粒
21‧‧‧偏心向量
60‧‧‧中心
80‧‧‧位置波形
81、85、86‧‧‧標記信號
83、84‧‧‧位置
90、91‧‧‧外來顆粒信號
100‧‧‧對準裝置
110‧‧‧光接收元件
111‧‧‧第一光源
112‧‧‧第二光源
113‧‧‧光學系統
120‧‧‧階台
121‧‧‧旋轉階台
122‧‧‧XY階台
123‧‧‧支撐件
125‧‧‧中心
130‧‧‧控制器
131‧‧‧控制器
132‧‧‧控制器
133‧‧‧控制器
134‧‧‧記憶體
140‧‧‧光接收波形
141、145‧‧‧閾值
142、143、144‧‧‧位置
500‧‧‧曝光設備
510‧‧‧光學系統
520‧‧‧曝光階台
530‧‧‧傳輸臂
540‧‧‧待機位置
550‧‧‧輸送臂
S301~S312‧‧‧步驟
S401~S413‧‧‧步驟
圖1是根據第一實施例的對準裝置的前視圖。
圖2是示出根據第一實施例的對準方法的流程圖。
圖3示出根據第一實施例的基板的邊緣部分的光接收波形(light reception waveform)。
圖4示出根據第一實施例的邊緣的位置波形。
圖5是示出根據第一實施例的對準裝置的俯視圖。
圖6示出根據第二實施例的基板的邊緣部分的光接收波形。
圖7示出根據第二實施例的邊緣的位置波 形。
圖8是示出根據第五實施例的對準方法的流程圖。
圖9示出根據第五實施例的對準邊緣的位置波形。
圖10示出包括位置檢測器的微影設備。
[第一實施例]
圖1是根據本發明的第一實施例的對準裝置(位置判斷裝置)100的前視圖。圖1示出基板10被傳輸到階台120的狀態。在將基板10傳輸到用於對其執行處理的裝置之前,對準裝置100檢測基板10的位置,並且基於檢測結果使基板10與預定待機位置對準。在下文中,對準指示相對於平移方向(translation direction)和旋轉方向使基板10與預定位置對準。
階台120包含用於藉由使用z軸方向作為其旋轉軸來旋轉基板10的旋轉階台(旋轉單元)121、用於在XY平面中平移地移動基板10的XY階台122、以及用於支撐基板10的支撐件123。
不具有例如缺口的切口部分或定向平面(orientation flat)的基板被用作基板10。在本實施例中,使用具有300mm的直徑的基板作為基板10。基板10的直徑也可小於300mm、處於300mm至450mm的範圍 中、或者大於450mm。
在邊緣12附近,標記11被形成在被傳輸到階台120的基板10的後表面上。標記11的一個例子是具有藉由雷射打印(laser-marking)或其它處理所形成的不平坦結構的標記。標記的圖案的例子可包括具有被佈置成一列或以二維方式被佈置的複數個半球凹形部分的圖案、線和空間(line-and-space)圖案、以及矩形圖案。
在下文中,基板10的前表面表示基板10之要被處理的表面(在本實施例中,為沿著垂直方向的上表面),且基板10的後表面表示與要被處理的表面相對的表面(在本實施例中,為沿著垂直方向的下表面)。要被處理的表面在垂直方向相對於基板10所在的一側是前表面側,且與要被處理的表面相對的表面在垂直方向相對於基板10所在的一側是後表面側。
第一光源(第一發光單元)111被設置在相對於基板10的前表面側。第二光源(第二發光單元)112被設置在相對於基板10的後表面側。光學系統113和光接收元件(光接收單元、光檢測器)110於垂直方向被設置在第一光源111的下方且位在相對於基板10的後表面側上。第一光源111和第二光源112是用於從對應於基板10的不同表面的側發射光的光源,並且是用於發射具有相同的波長的光的發光二極體(LED)光源。光接收元件110是攝像元件,例如電荷耦合裝置(charge-coupled device,CCD)或互補金屬氧化物半導體(CMOS)。
光接收元件110相對於基板10被設置在與第二光源112相同的一側以面對第一光源111。亦即,在從第一光源111到光接收元件110的光路上、或在從第二光源112到光接收元件110的光路上,並未設置用於極化從光源發射的光通量(light flux)並且彎曲其光路的光學元件。藉由在對準裝置100中使用數量減少的光學元件,可以達成旋轉階台121周圍的空間節省。
第一光源111向基板10的邊緣(邊緣部分)12發射光。特別是,第一光源111沿著垂直方向向下發射光,使得其照明範圍至少包括邊緣(邊緣部分)12,邊緣(邊緣部分)12是基板10與其外部外側的空間之間的邊界。第二光源112以一角度發射光,使得它是對於標記11的暗場照明(dark-field illumination)。
光接收元件110經由光學系統113接收從第一光源111發射且接著穿過邊緣12的外部外側的空間的光(穿過基板外側的區域的光)、以及從第二光源112發射並從標記11反射的光(反射的繞射光和反射的散射光中的至少之一)。亦即,光接收元件110共用於來自第一光源111的光和來自第二光源112的光,換句話說,共用於穿過基板10外側的區域的光和從標記11反射的光。
第一光源111可藉由明場照明(bright-field illumination)發射光。當第一光源111不是暗場照明而是明場照明時,即使若基板10在邊緣12的附近具有用於去除角落(corner)的倒角(chamfer)13,也可防止測量邊 緣12的精度由於在倒角13處反射的光的影響而降低。如圖1所示,第二光源112可沿著向外的方向從與基板的中心對應的內側發射光。此外,以一角度對上面設置了標記11的基板的表面發射光。這可防止檢測標記11或邊緣12的精度由於從倒角13反射的光的影響而降低。
控制器130(判斷單元)與光接收元件110連接。控制器130從光接收元件110的光接收結果檢測標記11和邊緣12,並判斷基板10的位置。控制器131與第一光源111連接並調整第一光源111的光。控制器132與第二光源112連接並調整第二光源112的光。控制器133與階台120連接並控制旋轉階台121和XY階台122的驅動。
控制器130至133中的每一個包括未示出的中央處理單元(CPU)。控制器130至133可相互交換資訊。例如,控制器133可驅動階台120以對準基板10,使得由控制器130所判斷的基板10的位移被校正。
對準操作所需的資訊藉由控制器130至133而儲存於記憶體134中。儲存的資訊的例子可包括由控制器130所判斷的基板10的位置(包含旋轉方向上的位置)以及第一光源111和第二光源112中的每一個的光的量。其它例子可為使用在標記11的檢測和邊緣12的檢測的信號的閾值。控制器130至133和記憶體134可被佈置在單一個控制板或者不同的控制板上,只要它們的功能不受損害即可。
下面,參照圖2至5描述如何藉由控制器130來判斷標記11的位置、邊緣12的位置、以及基板10的位置。
圖2是示出使用對準裝置100的基板10的對準如何進行的流程圖。在基板10被運送到對準裝置100中之前,控制器131調整第一光源111的光(S301)。在光接收元件110中測量來自第一光源111的光的量,且第一光源111的光的量被調整為使得由光的量所指示的信號強度等於最佳值。可在不存在會成為障礙的基板10時,調整第一光源111的光。如果在基板被傳輸之後調整光,則無法檢查在光被基板10阻擋的部分中的光的量。在這種情況下,信號強度可能會在旋轉基板10的操作期間超過允許值(permissible value)。
接著,藉由裝載機器人(loading robot)(未示出)將基板10運送到對準裝置100中(S302)。運送的基板10由支撐件123中的真空吸附機構(未示出)支撐。此時,雖然運送了基板10,但其尚未被對準,且其在平移方向和旋轉方向上通常偏離目標位置。
隨後,控制器132調整第二光源112的光(S303)。由於需要接收從標記11反射的光,當知道在先前的對準中使用的光的量的值時,第二光源112的光藉由使用此值被調整。
控制器133藉由使用旋轉階台121來旋轉基板10(S304)。當旋轉階台121旋轉基板10時,光接收 元件110接收從第一光源111發射的光、以及從第二光源112發射且接著從基板10的後表面反射的光。當第二光源112發射光使得其照明範圍包括標記11時,光接收元件110亦接收從標記11反射的光。光接收元件110在基板10被旋轉的同時從第一光源111和第二光源112中的每一個接收光,並且沿著旋轉方向連續獲得關於基板10中的邊緣12的位置資訊。
控制器130依次擷取光接收信號(S305)並且藉由使用被擷取的信號來檢測基板10中的標記11的位置和邊緣12的位置(S306)。當旋轉階台121以對準所需的量使基板10旋轉時(當使用單一個標記時,為360°),控制器133停止旋轉操作(S307)。
參照圖3描述步驟S306。圖3示出當標記11存在於光接收元件110的視場中時的與光接收結果對應的檢測信號的波形140(在下文中稱作光接收波形)與基板10之間的關係。橫軸表示基板10沿著徑向方向的位置R,且縱軸表示光的量。光接收波形140示出光的量在基板10的外側的區域中以及在內側的部分區域中為大的之狀態。基板10的外側的區域中的光的量對應於從第一光源111發射並穿過未被基板10遮蔽的部分的光。基板10的內側的部分區域中的光的量對應於從標記11反射的光。
在光接收波形140中,控制器130判斷出位置142(在此位置,光的量在掃描從基板10的最外部區 域向基板10的中心移動時首先低於預定的閾值141)是邊緣12的位置。類似地,控制器130判斷出位置143與144之間的中心部分(在此位置,光的量在掃描從位置142向中心側移動時超過預定的閾值145)是標記11的位置。閾值141和145可為相同的值。在來自第一光源111的光的量和從標記11反射的光的量不同的情況下,閾值141和145可能為不同的。
參照圖2,控制器130判斷標記11是否已被檢測到(S308)。當它判斷標記11還沒有被檢測到(“否”)時,處理返回到步驟S303,且重新調整第二光源112的光的量。當在S308中判斷標記11已被檢測到(“是”)時,控制器130在此時於記憶體134中儲存第二光源112的光的量(S309)。控制器130可藉由使用對應於標記11之所獲得的信號強度來判斷可獲得最佳信號強度的光的量並且將其儲存於記憶體134中。
控制器130藉由使用在步驟S305和S306中所獲得的標記11的位置和邊緣12的位置來判斷基板10的位置。控制器130從對於各個旋轉角度的光接收波形140獲得圖4所示的與邊緣12對應的位置波形80。橫軸表示旋轉角度θ,且縱軸表示基板10沿著徑向方向的位置R。當旋轉角度θ=θmark時,檢測標記信號81。
位置波形80由以下的方程式(1)表達:
如圖5所示,當基板10的中心60從階台120的中心125偏離時,r表示偏心向量21(X,Y)的大小,θ表示S304與S307之間的旋轉角度,α表示在偏心向量21與連接中心125和光接收元件110的直線之間形成的角度,且L表示基板10的半徑,以及θmark表示連接中心125和標記11的直線與連接中心125和光接收元件110的直線之間的角度。
控制器130藉由使用位置波形80來判斷基板10沿著水平方向相對於階台120的位置,並且藉由使用θmark來判斷基板10沿著旋轉方向相對於階台120的位置(S310)。
控制器133藉由使用由控制器130所判斷的關於基板10的位置資訊沿著平移方向和旋轉方向驅動階台120,並且將基板10設定於預定的位置(S311)。或者,裝載機器人藉由使用關於基板10的位置資訊將基板10重新佈置於階台120上的預定位置中。這種對準可防止在隨後的傳輸操作或處理操作期間因基板10的位移所導致的處理精度的下降。
最後,基板10從對準裝置100被運送出去(S312)。由於邊緣12也已被檢測,可藉由在S312中的運送出去之前使用檢測結果來執行邊緣曝光處理。
根據本實施例,即使在基板10沒有切口的情況下,也可精確地判斷其位置。因此,可以防止在切口附近的拋光或其它處理的精度下降所導致的晶片之產量的下 降,這種下降經常出現在先前技術中。
由於共用的光接收元件110接收來自第一光源111的光和來自第二光源112的光兩者,當使用基於同時接收的這兩種光的圖像時,可在同一時間檢測到標記11和邊緣12。
與設置了與各獨立光源對應的光接收元件的情況相比,對準裝置100上的安裝負載可以被減少,且另外,不需要光源的對準。這可減少降低標記11和邊緣12的檢測精度的因素,且這可導致基板10的精確對準。
[第二實施例]
在根據第二實施例的對準裝置100中,作為關於在基板10中的從邊緣12到標記11的距離的距離資訊,從邊緣12到標記11的距離、或與其對應的信號寬度被儲存於記憶體134中。其它的配置與根據第一實施例的對準裝置100中的配置基本上相同。
圖6示出當標記11存在於光接收元件110的視場內時的光接收波形140與基板10之間的關係。當外來顆粒20附著於基板10的後表面上時,從外來顆粒20反射的光也在光接收波形140中被表示。當對應於從外來顆粒20所反射的光的信號強度超過閾值145時,控制器130可能將其誤認為從標記11所反射的光。本實施例是這種情況下的有效方法。
控制器130藉由使用光接收波形140來檢測 基板10的邊緣12。控制器130藉由使用被儲存於記憶體134中的從邊緣12到標記11的距離判斷出用於檢測用於識別標記11的位置的位置R的範圍是位置83與84之間的範圍。如果在位置83與84之間的範圍中存在超過閾值145的信號,則控制器130判斷出標記11存在並識別標記11的位置。因此,如同第一實施例,標記11和邊緣12可被檢測且基板10可通過簡單的配置來對準。
藉由使用對每個旋轉角度之從邊緣12到標記11的距離以及徑向方向上的光接收結果的一部分,可以防止由從外來顆粒20反射的光所導致的標記11的不正確檢測(參見圖7)。窄化的檢測範圍可導致標記11的位置檢測所需的時間減少。或者,窄化的檢測範圍內的光接收波形140的詳細分析可導致檢測標記11的位置之提高的精度。
[第三實施例]
如果光接收元件110在基板10旋轉的同時在第一光源111和第二光源112保持照明的狀態下拾取圖像,則可能依據旋轉速度而發生標記11的圖像或邊緣12的圖像的模糊。如果圖像變得模糊,則在光接收波形140中,與邊緣12對應的部分中的波形會可能變得斷斷續續,與標記11對應的峰值波形的半值寬度(half-value width)可能會增加,或者可能會發生其它類似的現象。這可能降低檢測邊緣12或標記11的位置的精度。
為了解決此問題,在根據第三實施例的對準裝置100中,控制器131設定第一光源111的照明間隔,且控制器132設定第二光源112的照明間隔。其它的配置基本上與第一實施例中的對準裝置100中相同,且藉由基本上相同的技術來對準基板10。
亦即,在基板10的旋轉期間,第一光源111和第二光源112發射以短間隔重複開啟和關閉的閃光(flashing light)。這可導致圖像模糊減少,並且可降低對標記11和邊緣12的檢測精度的影響。
圖像模糊在旋轉方向上為較大的。因此,第二光源112照明的時間可比第一光源111照明的時間短。據此,由於進入光接收元件110的第一光源111的光的量較大,與第二光源112相比,具有較小的光的量(亮度)的光源可被選作第一光源111。
[第四實施例]
根據第四實施例的對準裝置100的配置大致上與在第一實施例中的配置相同。在單一個基板10上形成三個標記(複數個標記)11,使得它們相對於基板10的中心60同心地佈置並且相互分開,以使它們的中心角度為各120°。
在這種情況下,當控制器130使得基板10在S304與S307之間旋轉時的旋轉角度僅為120°。這是因為可藉由120°的旋轉檢測到至少一個標記11。以此方式, 藉由依據標記11的數量來調整旋轉方向上的光接收範圍,可以減少用於檢測標記11和邊緣12所需的時間。
如果通過120°的旋轉無法檢測到標記11,則可以改變第二光源112的照明條件。照明條件的例子可包括光的量和光在標記11上的入射角度。
藉由增大光的量所得到的信號強度的增加、或藉由改變照明角度所得到的信號強度的S/N比的提升強化了能夠檢測到標記的可能性。用於改變照明角度的方法的例子可包括用於以各種角度佈置第二光源112並切換照明元件的方法、以及用於佈置用於引導來自第二光源112的光的複數個路徑並藉由使用鏡子來切換路徑的方法。可藉由驅動機構(未示出)來移動第二光源112。
如果使用與第三實施例的組合,則照明時間亦可被包含在發光條件中。可藉由依據後表面上的標記11的數量和基板10的旋轉角度(基板在旋轉方向上的位置)來改變發光條件而在短時間內檢測到標記11。
討論複數個標記為兩種或更多種類型的標記11的另一種情況。如果它們具有不同的線寬度或空間寬度,則可從信號強度的分佈來區分來自標記11中的每一個的光。在這種情況下,控制器130基於複數個標記的位置和類型(關於複數個標記的資訊)以及光接收的結果來識別基板10的位置。基板10被旋轉360°,檢測複數個標記11,且比較基板10上的標記11沿著旋轉方向的位置的實際距離與標記11沿著旋轉方向的檢測距離。可以減 少測量誤差的影響,並亦可提高識別基板10的位置的精度。
[第五實施例]
在根據第五實施例的對準裝置100中,形成在基板10的後表面上的三種不同類型的標記11的形狀(在圖9中示出與三種類型的標記11對應的標記信號81、85和86)作為模板(關於至少一個標記的樣本資訊)儲存於記憶體134中。其它配置基本上與根據第一實施例的對準裝置100中相同。
圖8是示出根據第五實施例的對準如何進行的流程圖。步驟S401至S405大致上與圖2中的步驟S301至S305相同,步驟S409至S413大致上與圖2中的步驟S308至S312相同,且在此處不描述這些步驟。描述著眼於步驟S406至S408。
當在S405中獲得來自光接收元件110的信號時,控制器130僅檢測邊緣12(S406)。在旋轉停止(S407)之後,控制器130藉由使用從光接收元件110所獲得的信號建立如圖9所示的邊緣12的位置被對準的二維圖像。在圖9中,橫軸表示旋轉角度θ,且縱軸表示徑向方向上的位置R。
控制器130建立不具有因旋轉分量而導致的失真且由標記信號81、85和86所表示的二維圖像。控制器130可藉由在標記信號81、85和86與儲存於記憶體134中的 三種不同類型的標記11的圖像之間執行模板匹配(template-matching)來識別基板10的位置(S408)。以此方式,可基於光接收的結果和標記11的模板精確地對準不具有缺口的基板10(S411、S412)。
藉由模板匹配技術,外來顆粒信號90和91或其它類似的信號不會被誤認為標記信號。即使當不同類型的標記被形成在基板10上時,也可容易地識別它們的位置。另外,藉由使用與第二實施例的組合,檢測範圍可被窄化到位置83與84之間的區域。在這種情況下,可以減少檢測所需的時間。
[第六實施例]
第六實施例是一種實施例,在此實施例中,光接收元件110在不同的定時檢測來自第一光源111的透射光和從第二光源112發射且接著從標記11反射的反射光。亦即,首先,從藉由僅使用從第一光源111發射的光所獲得的圖像檢測邊緣12,且接著,從藉由僅使用從第二光源112發射的光所獲得的圖像檢測標記11的位置。
在使用第二光源112檢測標記11中基於邊緣12之首先獲得的位置來校正基板10的偏心的同時,藉由執行旋轉操作,可獲得與圖9所示的圖像類似之邊緣12的位置被對準的二維圖像。在本例子中,相較於從獲得的光接收波形140所建立之邊緣12的位置被對準的二維圖像的情況相比,信號處理所需的時間可被減少。另外,當 光接收元件110的圖像拾取區域被變窄時,信號處理所需的時間可被減少。
依據所需的檢測精度,可在邊緣12的檢測與在標記11的檢測中使用由旋轉階台121所導致的不同的旋轉速度。例如,可藉由在邊緣12的檢測中以比標記11的檢測中的速度高的速度旋轉基板10,來減少在光接收波形140中所獲得的資料要素的數量。在這種情況下,可以減輕信號處理的負擔。
[其它實施例]
以下描述與第一到第五實施例共用的其它實施例。
標記11可以是沒有被使用者處理的而是事先形成以在標準下界定出基板10的結晶方位(crystalline azimuth)的標記。標準標記是三種類型的標記,每個標記具有複數個半球凹形部分的佈置。三種類型的標記具有不同的凹形部分的佈置,且在基板10的後表面上以約120°的間隔被佈置。在此情況下,可以省略用於單獨地形成各標記11所需的時間和步驟。可以使用關於三種類型的標記中的僅僅至少一種類型的標記的資訊和關於邊緣的資訊。
標準標記是形成有沿著平移方向的10μm的量級與沿著旋轉方向的0.1°的量級之位置誤差的標記。因此,相較於當藉由測量三個標準標記的位置來判斷基板 10的位置(x,y,θ)時的基板10的位置,類似於先前的實施例,當一起獲得關於邊緣12的連續位置資訊時,可更精確地判斷基板10的位置。相較於離散地獲得關於邊緣12的位置資訊時所判斷的基板10的位置,可更精確地判斷基板10的位置。
在主要接收來自第一光源111的光的區域中以及在主要接收來自第二光源112的光的區域中,光接收元件110可具有不同的靈敏度。取代基板10的旋轉,可藉由第一光源111和第二光源112的旋轉來檢測邊緣12和標記11。
控制器130可藉由使用在光接收波形140上執行移動平均處理(moving-average processing)所獲得的波形來檢測邊緣12和標記11。由於與外來顆粒20對應的信號通常是局部的,故相較於與標記11對應的信號,由外來顆粒20造成的雜訊信號可以被減少。
移動平均處理是依次計算平均值的處理,每個平均值是在固定時間間隔內計算的。移動平均處理的一個例子可以是將光接收波形140中的各角度θ處的信號強度轉換成包含於θ=±1°的範圍內的信號強度的平均值的處理。
第一光源111可從後表面側沿著垂直方向向上發射光,使得其照明範圍包括邊緣12,且光學系統113和光接收元件110可沿著垂直方向被佈置於第一光源111上方。然而,在這種情況下,從第二光源112發射且接著 從標記11反射的光被引入到光學系統113中,且同時其光路藉由使用另一光學系統(未示出)而被彎曲。來自第一光源111的光可藉由允許其光路藉由使用另一光學系統(未示出)而被彎曲來發射到邊緣12附近。
在第二光源112中所使用的照明方法可以是明場照明。可依據基板10的材料或標記11的形狀來選擇使得能夠容易地檢測標記11的照明方法。如果標記11接近基板10的圓周,則光可藉由暗場照明從中心側斜向地入射。在這種情況下,藉由以光接收元件110較強地檢測到的從倒角13反射的光,可防止包含關於邊緣12和標記11的位置資訊的少量光的檢測被抑制。
如上所述,在一些實施例中,在旋轉階台121旋轉基板10的同時,光接收元件110從第一光源111和第二光源112中的至少一個接收光。
第一光源111和第二光源112具有相同或不同的光源波長。要被發射的光需要具有不影響後續處理的波長。例如,當使用具有被施加於其上的感光材料(例如,光阻劑)的基板10時,以具有感光材料不被曝光的波長(例如,450至800nm)的光照射上面施加了抗蝕劑的基板10的表面。當基板10由允許光從中通過的材料所製成時,例如,當它是玻璃基板時,依據基板,波長可被改變為容易地表現出信號強度的波長。第一光源111和第二光源112可以是LED以外的光源。
[其它設備上的實現]
圖10示出從+Z方向觀看之其中建置有根據第一實施例的對準裝置100的曝光設備(微影設備)500。曝光設備500藉由使用光學系統510發射,例如,i線(波長365nm),且在曝光階台520上的基板10上形成圖案(例如,電路圖案)。
傳輸臂530將處於待機位置540中的基板10傳輸到對準裝置100中的階台120上。在對準裝置100調整基板10的待機位置之後,輸送臂550將基板10放置在曝光階台520上。在完成圖案曝光之後,傳輸臂530將基板10傳輸到待機位置540。
在對準裝置100的附近,曝光設備500可包括與上述的光源和光學系統不同的光源(未示出)和光學系統(未示出)。在藉由旋轉階台121旋轉基板10的同時,曝光設備500基於藉由使用對準裝置100所獲得的關於基板10的邊緣12的位置資訊使基板10的外部(最外部或其稍微內部)環形地曝光(執行邊緣曝光)。
在基板10的外部形成環形突起結構所不必要的抗蝕劑可被去除。這使得能夠在基板10的要被曝光的表面中形成環形突起部分,並且有利於在曝光設備500外側的鍍覆處理機(未示出)中用於防止基板10上的半導體層的分離的鍍覆。特別地,可以防止向基板10的周緣部分供給過量的抗蝕劑、或者由於向偏離預定的位置之區域供給抗蝕劑所導致的對於周緣部分之抗蝕劑的短缺供 給。
藉由本發明的微影設備投影到基板上的光(光束)不限於i線。它可以是在深紫外線區域中的光(例如,KrF光(波長248nm)或ArF光(波長193nm))、或者可以是作為可見光區域中的光的g線(波長486nm)。微影設備可以是向基板發射帶電粒子束並且在晶圓上形成潛像圖案的設備、或者可以是藉由壓印技術在基板上形成圖案的設備。
也可在需要基板10的對準的其它處理單元上建置對準裝置100。
[物品的製造方法]
根據本發明的實施例之用於製造物件的方法包括藉由使用微影設備在基板(例如,晶圓或玻璃板)上形成圖案的步驟、以及對上面形成有圖案的基板執行處理的步驟。物件的例子可包括半導體積體電路元件、液晶顯示元件、攝像元件、磁頭、可讀寫式光碟(CD-RW)、光學元件和光罩。處理的例子可包括蝕刻和離子植入(ion implantation)。也可包括其它已知的處理步驟(例如,顯影、氧化、膜形成、沉積、平坦化、抗蝕劑去除、切割(dicing)、接合和封裝)。
雖然已參照例示性實施例說明了本發明,但應理解的是,本發明不限於所揭露的例示性實施例。以下申請專利範圍的範疇應被賦予最寬廣的解釋,以包含所有 這樣的修改以及相等的結構和功能。

Claims (19)

  1. 一種位置判斷裝置,配置來判斷基板的位置,該位置判斷裝置包含:第一發光單元,被配置為向該基板的邊緣部分發射光;第二發光單元,被配置為向該基板的前表面或後表面上的至少一個標記發射光;光接收單元,被設置在該基板的該前表面或該後表面之側,並且被配置為接收從該第一發光單元發射且接著穿過該基板之外側的區域的光、以及接收從該第二發光單元發射且接著從該至少一個標記反射的光;以及判斷單元,被配置為基於藉由該光接收單元的光接收結果,使用該邊緣部分之被判斷的位置和該至少一個標記之被判斷的位置來判斷該基板的該位置。
  2. 根據申請專利範圍第1項所述的位置判斷裝置,其中,該基板上未設置有定向平面或缺口。
  3. 根據申請專利範圍第1項所述的位置判斷裝置,其中,該基板被設置在階台上,且該判斷單元判斷相對於該階台之該基板的該位置。
  4. 根據申請專利範圍第3項所述的位置判斷裝置,其中,該判斷單元基於該邊緣部分之該被判斷的位置和該至少一個標記之該被判斷的位置來判斷相對於該階台的中心之該基板的位置偏離的量。
  5. 根據申請專利範圍第1項所述的位置判斷裝置,其 中,該第二發光單元從該基板的內側,以相對於該基板的設置有該至少一個標記的表面的一角度且沿著向外的方向發射光。
  6. 根據申請專利範圍第1項所述的位置判斷裝置,其中,該第一發光單元設置在該前表面及該後表面的任一者之該側,且該第二發光單元設置在該前表面及該後表面的另一者之該側。
  7. 根據申請專利範圍第1項所述的位置判斷裝置,還包含旋轉單元,被配置為旋轉該基板,其中,在該旋轉單元旋轉該基板的同時,該光接收單元接收來自該第一發光單元的光和來自該第二發光單元的光中的至少一者。
  8. 根據申請專利範圍第1項所述的位置判斷裝置,其中,該第二發光單元向該基板的該後表面上的該至少一個標記發射光。
  9. 根據申請專利範圍第1項所述的位置判斷裝置,其中,該判斷單元基於該光接收結果和關於該至少一個標記的樣本資訊來判斷該基板的該位置。
  10. 根據申請專利範圍第1項所述的位置判斷裝置,其中,該判斷單元藉由僅使用沿著該基板的徑向方向的該光接收結果的所選部分和關於從該邊緣部分到該至少一個標記的距離的資訊來判斷該至少一個標記的位置。
  11. 根據申請專利範圍第1項所述的位置判斷裝置,其中,該第二發光單元發射閃光。
  12. 根據申請專利範圍第1項所述的位置判斷裝置,其中,該光接收單元基於該至少一個標記的數量來調整該基板的旋轉方向上的光接收範圍。
  13. 根據申請專利範圍第1項所述的位置判斷裝置,其中,該第二發光單元基於該至少一個標記的數量和該基板的旋轉方向上的該基板的該位置來改變發光條件。
  14. 根據申請專利範圍第1項所述的位置判斷裝置,其中,該判斷單元基於在該光接收結果上執行的移動平均處理的結果來判斷該基板的該位置。
  15. 一種用於判斷基板的位置的方法,該方法包含:向基板的邊緣部分以及向設置在該基板的前表面或後表面上的至少一個標記發射光的發射步驟;藉由使用共用攝像元件來接收穿過該基板的外側的區域的光和從該至少一個標記反射的光的接收步驟;基於該接收步驟中的光接收結果來判斷該邊緣部分的位置和該至少一個標記的位置的判斷步驟;以及使用該邊緣部分之被判斷的位置和該至少一個標記之被判斷的位置來判斷該基板的位置的判斷步驟。
  16. 根據申請專利範圍第15項所述的位置判斷方法,其中,該基板上的該至少一個標記包含複數個標記,以及該基板的該位置係基於該接收步驟中的該光接收結果和關於該複數個標記的資訊被判斷。
  17. 一種微影設備,包含:根據申請專利範圍第1至14項中的任一項所述的位 置判斷裝置;以及位置調整單元,被配置為基於藉由該位置判斷裝置所判斷的該基板的該位置,相對於能夠與被放置於其上的該基板一起移動的階台來調整該基板的該位置,其中,該微影設備在藉由該位置調整單元所調整的該基板上形成圖案。
  18. 根據申請專利範圍第17項所述的微影設備,其中,基於藉由該位置判斷裝置所獲得的該基板的該邊緣部分的位置,該微影設備在該基板上執行邊緣曝光。
  19. 一種用於製造物件的方法,該方法包含:藉由使用根據申請專利範圍第17項所述的微影設備在基板上形成圖案的步驟;以及處理具有藉由該形成步驟而形成於其上的該圖案之該基板的步驟,以製造該物件。
TW104139186A 2014-11-28 2015-11-25 位置判斷裝置、位置判斷方法、微影設備及用於製造物件的方法 TWI620039B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-242526 2014-11-28
JP2014242526 2014-11-28
JP2015171202A JP6590599B2 (ja) 2014-11-28 2015-08-31 位置決定装置、位置決定方法、リソグラフィ装置、および物品の製造方法
JP2015-171202 2015-08-31

Publications (2)

Publication Number Publication Date
TW201621481A TW201621481A (zh) 2016-06-16
TWI620039B true TWI620039B (zh) 2018-04-01

Family

ID=56122139

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104139186A TWI620039B (zh) 2014-11-28 2015-11-25 位置判斷裝置、位置判斷方法、微影設備及用於製造物件的方法

Country Status (4)

Country Link
JP (1) JP6590599B2 (zh)
KR (1) KR101993950B1 (zh)
CN (1) CN105652611B (zh)
TW (1) TWI620039B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2019007A (en) * 2016-06-13 2017-12-20 Asml Netherlands Bv Methods and apparatus for determining the position of a target structure on a substrate, methods and apparatus for determining the position of a substrate
JP6276449B1 (ja) * 2017-03-30 2018-02-07 株式会社荏原製作所 基板処理装置、基板処理装置の制御方法、プログラムを格納した記憶媒体
JP6490771B1 (ja) * 2017-09-27 2019-03-27 株式会社アルバック 位置検出装置、位置検出方法、および、蒸着装置
CN109585351B (zh) * 2018-10-29 2021-06-22 苏州腾晖光伏技术有限公司 一种提高晶硅双面太阳电池的背铝栅线对准精度的方法
CN111355541A (zh) * 2020-04-02 2020-06-30 Oppo广东移动通信有限公司 网络设备、搜寻网络信号的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200627085A (en) * 2004-12-27 2006-08-01 Asml Netherlands Bv Lithographic apparatus with multiple alignment arrangements and alignment measurement method
US20060194123A1 (en) * 2005-02-03 2006-08-31 Asml Netherlands B.V. Method of generating a photolithography patterning device, computer program, patterning device, method of determining the position of a target image on or proximate a substrate, measurement device, and lithographic apparatus
US20090130784A1 (en) * 2007-09-06 2009-05-21 Vistec Semiconductor Systems Gmbh Method for determining the position of the edge bead removal line of a disk-like object
TW201415159A (zh) * 2012-10-02 2014-04-16 United Microelectronics Corp 形成光罩的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5194743A (en) * 1990-04-06 1993-03-16 Nikon Corporation Device for positioning circular semiconductor wafers
KR100585470B1 (ko) * 2001-07-20 2006-06-02 에이에스엠엘 네델란즈 비.브이. 리소그래피장치, 디바이스제조방법, 및 그 제조된 디바이스
EP1791169A4 (en) * 2004-08-31 2011-03-02 Nikon Corp ALIGNMENT PROCESS, DEVELOPMENT SYSTEM, SUBSTRATED REPEATABILITY MEASURING METHOD, POSITION MEASURING METHOD, EXPOSURE METHOD, SUBSTRATE PROCESSING DEVICE, MEASURING METHOD AND MEASURING DEVICE
US7342642B2 (en) * 2005-06-20 2008-03-11 Asml Netherlands B.V. Pre-aligning a substrate in a lithographic apparatus, device manufacturing method, and device manufactured by the manufacturing method
JP5084558B2 (ja) * 2008-02-28 2012-11-28 キヤノン株式会社 表面形状計測装置、露光装置及びデバイス製造方法
JP5324231B2 (ja) * 2009-01-08 2013-10-23 日東電工株式会社 半導体ウエハのアライメント装置
CN102402127B (zh) * 2010-09-17 2014-01-22 上海微电子装备有限公司 一种硅片预对准装置及方法
JP5875335B2 (ja) * 2011-11-15 2016-03-02 キヤノン株式会社 位置検出装置および露光装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200627085A (en) * 2004-12-27 2006-08-01 Asml Netherlands Bv Lithographic apparatus with multiple alignment arrangements and alignment measurement method
US20060194123A1 (en) * 2005-02-03 2006-08-31 Asml Netherlands B.V. Method of generating a photolithography patterning device, computer program, patterning device, method of determining the position of a target image on or proximate a substrate, measurement device, and lithographic apparatus
US20090130784A1 (en) * 2007-09-06 2009-05-21 Vistec Semiconductor Systems Gmbh Method for determining the position of the edge bead removal line of a disk-like object
TW201415159A (zh) * 2012-10-02 2014-04-16 United Microelectronics Corp 形成光罩的方法

Also Published As

Publication number Publication date
KR20160065019A (ko) 2016-06-08
TW201621481A (zh) 2016-06-16
JP2016110066A (ja) 2016-06-20
KR101993950B1 (ko) 2019-06-27
CN105652611B (zh) 2018-05-08
CN105652611A (zh) 2016-06-08
JP6590599B2 (ja) 2019-10-16

Similar Documents

Publication Publication Date Title
TWI620039B (zh) 位置判斷裝置、位置判斷方法、微影設備及用於製造物件的方法
US9804103B2 (en) Inspection method, template substrate, and focus offset method
JP5924267B2 (ja) 検査方法、検査装置、露光管理方法、露光システムおよび半導体デバイスの製造方法
US6901314B2 (en) Alignment apparatus for substrates
JP4886549B2 (ja) 位置検出装置および位置検出方法
JP4110095B2 (ja) パターンプロファイルの検査装置及び検査方法、露光装置
US20100171966A1 (en) Alignment apparatus for semiconductor wafer
TW201611174A (zh) 晶圓之位置檢測裝置、晶圓之位置檢測方法及記憶媒體
CN103247548B (zh) 一种晶圆缺陷检测装置及方法
JP2011040434A (ja) 検査装置
US20040114792A1 (en) Mark position detecting apparatus and mark position detecting method
JP2007183239A (ja) 基板面高さ測定方法及びその装置
US9841299B2 (en) Position determining device, position determining method, lithographic apparatus, and method for manufacturing object
TWI731147B (zh) 基板角位置特定方法
US10429744B2 (en) Image improvement for alignment through incoherent illumination blending
EP3324238B1 (en) Exposure apparatus and method
JP2016090444A (ja) 計測装置、リソグラフィ装置、及び物品の製造方法
TW200916762A (en) Inspecting apparatus
KR102634513B1 (ko) 이물질 검출장치, 노광장치 및 물품의 제조방법
JP2015040698A (ja) アライメント装置、及び検査装置
JP2007102580A (ja) 位置決め手法、及び位置決め装置
JP2009170663A (ja) 投影光学ユニット、露光装置、露光方法、およびデバイス製造方法
KR20050067992A (ko) 웨이퍼의 파티클 검출 장치 및 방법
JP2001108637A (ja) 欠陥検査装置及び欠陥検査方法
KR20030090057A (ko) 얼라인먼트기능을 갖는 노광유니트 및 그 얼라인방법