TWI611247B - 非線性光學晶體之鈍化 - Google Patents

非線性光學晶體之鈍化 Download PDF

Info

Publication number
TWI611247B
TWI611247B TW105123478A TW105123478A TWI611247B TW I611247 B TWI611247 B TW I611247B TW 105123478 A TW105123478 A TW 105123478A TW 105123478 A TW105123478 A TW 105123478A TW I611247 B TWI611247 B TW I611247B
Authority
TW
Taiwan
Prior art keywords
nlo crystal
crystal
nlo
passivation
laser
Prior art date
Application number
TW105123478A
Other languages
English (en)
Other versions
TW201638646A (zh
Inventor
莊勇何
維拉得摩 杜立賓斯基
Original Assignee
克萊譚克公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 克萊譚克公司 filed Critical 克萊譚克公司
Publication of TW201638646A publication Critical patent/TW201638646A/zh
Application granted granted Critical
Publication of TWI611247B publication Critical patent/TWI611247B/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/3551Crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/3003Hydrogenation or deuterisation, e.g. using atomic hydrogen from a plasma
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/02Heat treatment
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/08Etching
    • C30B33/12Etching in gas atmosphere or plasma
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3501Constructional details or arrangements of non-linear optical devices, e.g. shape of non-linear crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/025Constructional details of solid state lasers, e.g. housings or mountings
    • H01S3/027Constructional details of solid state lasers, e.g. housings or mountings comprising a special atmosphere inside the housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • H01S3/109Frequency multiplication, e.g. harmonic generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/1666Solid materials characterised by a crystal matrix borate, carbonate, arsenide
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • G01N2021/3568Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor applied to semiconductors, e.g. Silicon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N2021/3595Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using FTIR
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N2021/8477Investigating crystals, e.g. liquid crystals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • G01N2021/8822Dark field detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N2021/9511Optical elements other than lenses, e.g. mirrors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers

Abstract

本發明包括:一曝露室,其經組態以含有具有一選定氫濃度之一鈍化氣體,該曝露室進一步經組態以含有供曝露於該室內之該鈍化氣體之至少一個非線性光學(NLO)晶體;一鈍化氣體源,其流體連接至該曝露室,該鈍化氣體源經組態以供應鈍化氣體至該曝露室之一內部部分;及一基板,其經組態以將該NLO晶體固持於該室內,該基板進一步經組態以使該NLO晶體之一溫度保持處於或接近一選定溫度,該選定溫度低於該NLO晶體之一熔化溫度。

Description

非線性光學晶體之鈍化
本發明係關於非線性光學材料領域,且特定而言,係關於一種用於鈍化非線性光學晶體以固化晶體缺陷之系統及方法。
本申請案係關於且主張來自下列申請案(「相關申請案」)之最早可用有效申請日期之權益(例如,主張除臨時專利申請案以外之最早可用優先權日期或依據35 USC § 119(e)主張臨時專利申請案、相關申請案之任何或全部父代申請案、祖父代申請案、曾祖父代申請案等之權益)。
為了USPTO額外法定要求之目的,本申請案構成2011年10月7日提出申請之發明人為Yung-Ho Chuang及Vladimir Dribinski、發明名稱為NLO CRYSTAL PROPERTIES BY HYDROGEN PASSIVATION、申請號為61/544,425之美國臨時專利申請案之一正式(非臨時)專利申請案。
諸多現代雷射系統需要非線性光學(NLO)元件。舉例而言,NLO元件通常用於諸如混頻(例如,諧波產生、參數產生/放大及諸如此類)、拉曼放大、克爾透鏡鎖模、電光調變、聲光調變以及其他應用之應用中。
NLO元件之雷射誘發損傷(LID)係諸多現代雷射系統之一主要限制。LID因雷射輻射與組成一既定NLO元件之材料之間的相互作用而 發生。因此,隨著時間,NLO元件遭受LID,從而可負面地影響諸如透射率、反射率、折射率及諸如此類之物理性質。反過來,因所發生之LID而引起之物理性質之此退化最終導致一雷射系統內之NLO元件之故障。
LID在利用較短波長之電磁光譜(諸如具有小於300nm之波長之深紫外(DUV)光之雷射系統時變得更成問題。另外,雷射誘發損傷率亦受存在於NLO元件中之材料缺陷(諸如變位、雜質、空位及諸如此類)影響。在大多數情況下,一既定NLO元件中之材料缺陷導致該NLO元件對LID的抵抗力下降。因此,NLO元件因材料而具有較短壽命。
本發明係關於藉由利用本文中所揭示之一新穎系統及方法來改良NLO元件之損傷抵抗力從而減輕上述問題。
揭示一種用於固化一或多個非線性光學(NLO)晶體之晶體缺陷以改良效能或提高對雷射誘發損傷的抵抗力。在一項態樣中,提供一種用於藉由利用分子氫或原子來鈍化晶體缺陷從而提高一或多個非線性光學(NLO)晶體對雷射誘發損傷的抵抗力之系統,其中該系統可包括:一曝露室,其經組態以含有具有處於或接近一選定氫濃度之一氫濃度之鈍化氣體,該室進一步經組態以含有欲曝露於該室內之鈍化氣體之至少一個NLO晶體;一鈍化氣體源,其流體連接至該曝露室,該鈍化氣體源經組態以供應鈍化氣體至該曝露室之一內部部分;及一基板,其經組態以將該NLO晶體固持於該室內,該基板進一步經組態以使該NLO晶體之一溫度保持處於或接近一選定溫度,該選定溫度低於該NLO晶體之一熔化溫度。
在另一態樣中,提供一種用於藉由利用氫來鈍化晶體缺陷從而提高一NLO晶體對雷射誘發損傷的抵抗力之方法,其中該方法可包括 如下步驟:(i)使一NLO晶體之一溫度保持處於或接近一選定溫度,該選定溫度低於該NLO晶體之一熔化溫度;及(ii)使該NLO晶體曝露於具有處於或接近一選定氫濃度之一氫濃度之鈍化氣體。
在另一態樣中,提供一種用於藉由利用分子氫或原子來鈍化晶體缺陷從而提高一非線性光學(NLO)晶體對雷射誘發損傷的抵抗力之方法,其中該方法可包括如下步驟:(i)對一NLO晶體執行一退火程序以降低該NLO晶體之水或OH含量;及(ii)使該NLO晶體曝露於具有處於或接近一選定氫濃度之一氫濃度之鈍化氣體。
在另一態樣中,提供一種用於光學檢驗一或多個樣本之系統,其中該系統可包括:一樣本載台;一雷射系統,其經組態以用於照射安置於該樣本載台上之一或多個樣本之表面之一部分,該雷射系統包含:至少一個經鈍化及經退火NLO晶體,該NLO晶體經充分退火以建立低於一選定位準之一水含量,該NLO晶體進一步經充分鈍化以建立一選定鈍化位準;至少一個光源,其經組態以產生一選定波長之光,該光源進一步經組態以將光透射過該NLO晶體;及一晶體外殼單元,其經組態以裝納該NLO晶體;一偵測器,其經組態以接收自該樣本之表面反射之照射之至少一部分;及一計算系統,其通信耦合至該偵測器,該計算系統經組態以獲取關於由該偵測器所接收之照射之至少一部分之資訊,該計算系統進一步經組態以利用關於由該偵測器所接收之照射之至少一部分之資訊來判定該樣本之至少一個缺陷之存在或不存在。
應理解,上述大體說明及下述詳細說明兩者皆僅為例示性及解釋性而未必限制所請求之本發明。併入本說明書中並構成本說明書之一部分的附圖圖解說明本發明之實施例,並與該大體說明一起用於解釋本發明之原理。
100‧‧‧系統
101‧‧‧曝露室
102‧‧‧基板
104‧‧‧晶體
105‧‧‧氣體流入口
106‧‧‧氣體流出口
108‧‧‧鈍化氣體源
110‧‧‧流量控制器
112‧‧‧計算系統
114‧‧‧載體媒體
116‧‧‧程式指令
118‧‧‧流量控制演算法
400‧‧‧雷射系統
402‧‧‧光源
404‧‧‧第一組光束塑形光學器件/光束塑形光學器件
406‧‧‧外殼單元/外殼
408‧‧‧一組諧波分離元件
410‧‧‧第二組光束塑形光學器件
500‧‧‧檢驗系統
503‧‧‧照射光學元件
504‧‧‧偵測器
505‧‧‧檢驗光學元件
506‧‧‧收集光學元件
508‧‧‧分束器
512‧‧‧樣本載台
514‧‧‧計算系統
圖1A係圖解說明根據本發明之一項實施例用於鈍化一NLO晶體之一系統之一方塊圖。
圖1B圖解說明根據本發明之一項實施例用於鈍化一NLO晶體之一系統之一曝露室之一概念圖。
圖2A圖解說明根據本發明之一項實施例用於鈍化一NLO晶體之一方法之一流程圖。
圖2B係圖解說明根據本發明之一項實施例用於鈍化一NLO晶體之一方法之一流程圖。
圖2C係圖解說明根據本發明之一項實施例用於鈍化一NLO晶體之一方法之一流程圖。
圖2D係圖解說明根據本發明之一項實施例用於鈍化一NLO晶體之一方法之一流程圖。
圖3A係圖解說明根據本發明之一項實施例用於退火並鈍化一NLO晶體之一方法之一流程圖。
圖3B係圖解說明根據本發明之一項實施例用於退火並鈍化一NLO晶體之一方法之一流程圖。
圖3C係圖解說明根據本發明之一項實施例用於退火並鈍化一NLO晶體之一方法之一流程圖。
圖3D係圖解說明根據本發明之一項實施例用於退火並鈍化一NLO晶體之一方法之一流程圖。
圖4係圖解說明根據本發明之一項實施例配備有一經退火及經鈍化NLO晶體之一雷射系統之一方塊圖。
圖5係圖解說明根據本發明之一項實施例用於檢驗一晶圓或一光罩之一系統之一方塊圖。
熟習此項技術者可藉由參考附圖來更好地理解本發明之眾多優 點。
現在將詳細參考圖解說明於附圖中之所揭示之標的物。
大體參照圖1A至圖5,根據本發明闡述一種用於鈍化一非線性光學(NLO)晶體之系統及方法。雷射系統通常將NLO晶體用於諸如混頻、拉曼放大、克爾透鏡鎖模、電光調變及聲光調變以及其他應用之諸多應用。曝露於一雷射系統內之電磁輻射影響NLO晶體之物理性質(例如,透射率、反射率、折射率等)。由此產生之NLO晶體物理性質之變化通常稱作雷射誘發損傷(LID)且往往會削弱NLO晶體的正常功能。NLO晶體在其具有更大量或數量的晶體缺陷(諸如變位、雜質、空位及諸如此類)時對LID的抵抗力下降。本發明係關於一種用於利用氫鈍化及/或晶體退火來固化一NLO晶體之晶體缺陷之系統及方法。
如本發明通篇所使用,術語「晶體」、「NLO晶體」或「非線性晶體」通常係指適合於頻率轉換之一非線性光學晶體。舉例而言,本發明之非線性光學晶體可經組態以將一第一波長(例如,532nm)之入射照射頻率轉換至一較短波長(例如,266nm)之一輸出照射。此外,本發明之非線性光學晶體可包括但不限於β-硼酸鋇(BBO)、三硼酸鋰(LBO)、四硼酸鋰(LTB)、硼酸銫鋰(CLBO)、硼酸銫(CBO)、氧化物型非線性晶體及諸如此類。
如本發明通篇所使用,術語「晶圓」通常係指由一半導體或非半導體材料形成之一基板。舉例而言,半導體或非半導體材料包含但不限於單晶矽、砷化鎵及磷化銦。一晶圓可包括一或多個層。舉例而言,此等層可包括但不限於一抗蝕劑、一電介材料、一導電材料及一半導電材料。諸多不同類型之此等層係此項技術中所知的,且本文中所使用之術語晶圓意欲囊括可在其上形成所有類型之此等層之一晶圓。
圖1A及圖1B圖解說明用於鈍化一NLO晶體104以便固化該晶體內 之晶體缺陷之一系統100。可藉由使氫原子附著至晶體104內之懸鍵或斷鍵來固化此等缺陷。舉例而言,該等懸鍵或斷鍵可包括通常係影響物理/光學性質以及NLO晶體壽命之一主要類型之缺陷之懸氧鍵。在一項實施例中,系統100可包括經組態以含有一容積之鈍化氣體之一曝露室101。曝露室101可進一步經組態以含有NLO晶體104以便可使NLO晶體104曝露於含於曝露室101內之鈍化氣體。另外,曝露室101可進一步經組態以含有經組態以在NLO晶體104曝露於含於曝露室101內之鈍化氣體的同時固持NLO晶體104之一基板102。另一選擇為,基板102可係室101之一內部表面之一部分。
本發明之鈍化氣體可包括具有一選定氫濃度之兩種或兩種以上氣體之一氣體混合物。在一項實施例中,該氣體混合物可包括分子氫(H2)。在另一實施例中,該鈍化氣體可包括可在化學反應或離解時產生氫之一低分子量氣體。此等低分子量氣體可包括但不限於NH3或CH4。所期望之氫濃度可包括超過存在於正常大氣條件下之自然氫豐度之一濃度。就此而言,該鈍化氣體之氫濃度可由超過自然存在於空氣中之氫濃度之一濃度組成。在另一態樣中,所期望之氫濃度亦可係一使用者選定濃度或利用NLO晶體104之一或多個物理屬性判定之一濃度。該鈍化氣體混合物可進一步包括諸如氬、氮、氦或諸如此類之一惰性氣體。
在又一實施例中,本發明之鈍化氣體可包括具有在5%至10%之範圍內之一氫濃度之一氣體混合物。本文中注意到,此氫濃度範圍並非係一限制且僅出於舉例說明之目的而呈現。預期該鈍化氣體之氫濃度可包括適合於所既定之應用之任一範圍。在又一實施例中,為改良鈍化效果,該鈍化氣體混合物之氫濃度可包括氫之一重同位素,氘。該混合物中之氘之具體量可藉由最佳化鈍化效果來判定且可從總氫濃度之一小部分到該混合物中之所有氫之100%不等。
在一實施例中,該系統可進一步包括流體耦合至曝露室101且經組態以供應鈍化氣體至該曝露室之一鈍化氣體源108。曝露室101可包括經組態以自鈍化氣體源108接收鈍化氣體且進一步經組態以將接收自鈍化氣體源108之鈍化氣體傳輸至曝露室101之一內部部分之一氣體流入口105。曝露室101可進一步包括經組態以自曝露室101之該內部部分釋放鈍化氣體之一氣體流出口106。
在又一實施例中,系統100可包括流體連接於鈍化氧化源108與曝露室101中間之一流量控制器110。流量控制器110可經組態以控制鈍化氣體供應至曝露室101之速率。流量控制器110可包括一閥、調節器或用於調節鈍化氣體流動穿過將流量控制器110流體連接至曝露室101之至少一個管道之壓力或速率之任一其他構件。該流量控制器可進一步經組態以流體連接至該曝露室之氣體流入口105且進一步經組態以控制鈍化氣體經由氣體流入口105供應至曝露室101之該內部部分之該速率。在另一實施例中,流量控制器110或一額外流量控制器(未展示)可經組態以流體連接至曝露室101之氣體流出口106且進一步經組態以控制自曝露室101之該內部部分移除鈍化氣體之速率。
在另一實施例中,系統100可進一步包括通信耦合至流量控制器110之一或多個計算系統112。計算系統112可經組態以提供用於控制鈍化氧化供應至曝露室101之速率之指令給流量控制器110。計算系統112可進一步經組態以提供用於控制自曝露室101移除鈍化氣體之速率之指令給流量控制器110或一額外流量控制器(未展示)。該計算系統可含有組態有包括一流量控制演算法118之程式指令116之一載體媒體114,諸如一快閃、固態、光學、隨機存取或其他靜態或動態記憶體裝置。流量控制演算法118為此項技術所知,諸如用於組態可包括於流量控制器110中之一壓力閥之演算法。舉例而言,流量控制演算法118可基於壓力閥之機械性質與一所期望流率之間的一相關指示流量 控制器110致動該壓力閥。在某些實施例中,10立方公分/分鐘至200立方公分/分鐘之一使用者選定流率可係有利於鈍化含於曝露室101內之NLO晶體104之一流率。然而,依據鈍化氣體混合物或NLO晶體104之組成,超出10立方公分/分鐘至200立方公分/分鐘範圍之流率可能係合意的。上述流率範圍僅係例示性而非意欲以任何方式限制本發明。
在又一實施例中,經組態以將NLO晶體104固持於曝露室101內之基板102可進一步經組態以控制NLO晶體104之溫度。在一項態樣中,一使用者可選擇大於環境或室內溫度但小於NLO晶體104之熔化溫度之一溫度。舉例而言,基板102可經組態以將該NLO晶體加熱至300℃至350℃之一範圍或某一其他選定溫度以改良氫至該晶體中之滲透、緩和分子氫(例如,H2)或其他含氫分子變成原子氫之分解或排除氫與該NLO晶體之間的不合需要的反應產物(例如,弱OH鍵、水或諸如此類)。本文中預期基板102可經組態以使NLO晶體104之溫度升高、降低及/或保持在有利於成功鈍化NLO晶體104之任一可行溫度或溫度範圍下。因此,上述溫度範圍僅係例示性而非意欲以任何方式限制本發明。
根據上述系統100,圖2A至圖2D圖解說明用於用氫來鈍化NLO晶體104以便固化由懸鍵或斷鍵帶來之晶體缺陷之一方法200之流程圖。參照圖2A,方法202可包括如下步驟中之一或多者:(i)步驟202,其使NLO晶體104之溫度保持處於或接近係一使用者選定溫度或利用NLO晶體104之一或多個屬性(例如,組成、水含量、缺陷程度等)判定之一溫度之一選定溫度;及(ii)步驟204,其使NLO晶體104曝露於具有係一使用者選定氫濃度或利用NLO晶體104之一或多個屬性判定之一氫濃度之一選定氫濃度之鈍化氣體。
在步驟202中,可藉由諸如經組態以將NLO晶體104固持於系統100之曝露室101中之基板102之任一加熱及/或冷卻元件(下稱「加熱 元件」)來控制NLO晶體104之溫度。該加熱元件可經組態以將NLO晶體104加熱或冷卻至可係一使用者選定溫度、利用NLO晶體104之一或多個屬性判定之一溫度或改良氫至該晶體中之滲透、緩和H2分子變成H原子之分解或排除來自氫與NLO晶體104之間的一或多個反應之不合需要的產物(例如,弱OH鍵、水等)之任一溫度之選定溫度。舉例而言,在一項實施例中,該選定溫度可係在大約300℃至350℃之範圍內之一溫度。該加熱元件可進一步經組態以使NLO晶體104之溫度保持處於或接近該選定溫度持續一選定時間週期,諸如充分鈍化NLO晶體104所需之時間。舉例而言,充分鈍化NLO晶體104所需之時間可在大約100小時至200小時之範圍內。因此,在一項實施例中,該加熱元件可經組態以使NLO晶體104之溫度保持處於或接近該選定溫度持續在大約100小時至200小時之範圍內之選定時間週期。包括上述溫度及持續時間僅為舉例說明,且預期可在不背離本發明之本質之情況下顯著改變此等參數。因此,本文中之任何內容均不應視為以任何方式限制本發明。
在步驟204中,可使NLO晶體104曝露於諸如系統100之曝露室101之一大氣控制容器內之鈍化氣體。該鈍化氣體可係具有一選定氫濃度之一氣體混合物。該選定氫濃度可係一使用者選定濃度、利用NLO晶體104之一或多個屬性判定之一濃度或對於藉由使來自該鈍化氣體之氫原子附著至NLO晶體104之斷鍵或懸鍵來固化NLO晶體104之晶體缺陷之任一可接受濃度。舉例而言,在一項實施例中,該鈍化氣體之選定氫濃度可係在該鈍化氣體混合物的大約5%至10%之範圍內之一氫濃度。然而,包括上述氫濃度僅為舉例說明,而非意欲以任何方式限制本發明。
參照圖2B,步驟204可包括使該鈍化氣體可流動穿過該容器之流率保持處於或接近諸如一使用者選定流率、利用NLO晶體104之一或 多個屬性判定之一流率、對於使該容器內之鈍化氣體之氫濃度保持處於或接近該選定氫濃度可接受之一流率或足以藉由使來自該鈍化氣體之氫原子附著至NLO晶體104之斷鍵或懸鍵來固化NLO晶體104之晶體缺陷之任一流率之一選定流率。可藉由系統100之流量控制器110或藉由用於控制氣體移動穿過一或多個管道之壓力或速率之任一閥、調節器或其他構件來調節該流率。舉例而言,在一項實施例中,流量控制器110可經組態以將鈍化氣體流動穿過該曝露室之流率調節至在大約10立方公分/分鐘至200立方公分/分鐘之範圍內之選定流率。然而,包括上述流率範圍僅為舉例說明,且其不應視為以任何方式限制本發明。
參照圖2C及圖2D,方法200之一項實施例可進一步包括監測NLO晶體104之一鈍化程度之一步驟208。可使該鈍化程度與NLO晶體104之OH鍵之一數量或數量變化相關,乃因OH鍵之數量通常隨著NLO晶體104由於使氫原子附著至NLO晶體104之懸氧鍵鈍化而增加。因此,可藉由分析NLO晶體104之一或多個吸收帶來監測該鈍化程度,其中吸收帶受NLO晶體104之OH鍵之數目之一變化影響。可藉由使用為此項技術所知用於偵測NLO晶體104吸收具有一或多個波長之照射之一位準之任一方法來分析吸收帶。在一項實施例中,利用傅立葉轉換紅外線光譜學(FTIR)來監測該鈍化程度。舉例而言,利用傅立葉轉換紅外線光譜學(FTIR),可經由觀察處於NLO晶體104之紅外(IR)光譜中之至少一個吸收帶來監測NLO晶體104之鈍化程度。用於監測NLO晶體104之鈍化程度之一FTIR程序可包括如下步驟中之一或多者:(i)將具有一或多個波長之照射透射過NLO晶體104;(ii)偵測透射過NLO晶體104之照射;及(iii)利用關於透射過NLO晶體104之照射之資訊來判定在一或多個波長下由NLO晶體104吸收之一照射量;及(iv)利用在一或多個波長下由NLO晶體104吸收之照射與NLO晶體104之OH鍵之數 量或數量變化之間的一相關來判定NLO晶體104之鈍化程度。
在方法200之又一實施例中,可在步驟204中使NLO晶體104曝露於鈍化氣體直至NLO晶體104充分鈍化為止。可利用監測NLO晶體104之鈍化程度之步驟208來判定NLO晶體104是否已充分鈍化。舉例而言,可藉由觀察在在大約3200cm-1至4000cm-1之範圍內之IR光譜之一或多個波長下出現或改變強度之NLO晶體104之一或多個吸收帶來判定NLO晶體104之鈍化程度,其中在該波長下出現或改變強度之吸收帶之幅度或強度與NLO晶體104之OH鍵之數量或數量變化相關。舉例來說,可使用FTIR來監測對紅外光譜中接近3580cm-1之-OH鍵(包括H2O)之吸收。舉例而言,可原地執行FTIR監測,其中在一晶體經歷鈍化的同時監測該晶體。步驟208可進一步藉由監測FTIR吸收光譜中之一或多個選定峰值之整合峰值強度之相對變化來判定NLO晶體104是否已充分鈍化。舉例來說,步驟208可在觀察到-OH吸收峰值之一5%降低時判定充分鈍化。
包括上述吸收帶波長範圍及為達成充分鈍化之百分比變化僅為舉例說明且預期可在IR、可見及/或UV光譜中之其他波長下出現一或多個吸收帶;因此,上述波長範圍並非意欲以任何方式限制本發明。
上述步驟既非順序性的亦非強制性的且可以任一次序發生或彼此同時發生。舉例而言,預期在方法200之一項實施例中,可如步驟204中所規定使NLO晶體104曝露於鈍化氣體;且同時,可如步驟208中所規定利用FTIR來監測NLO晶體104之鈍化程度。在某些例項中,組合該等步驟中之一些或全部並按不同於本文中已按其論述該等步驟之次序之一順序來配置該等步驟可能係有利的。本文中之論述僅係說明性的而非意欲將本文中所揭示之該方法或該等方法限制至任一特定順序、次序或組合之步驟。
圖3A至圖3D圖解說明用於鈍化並退火NLO晶體104之一方法 300。參照圖3A,方法300可包括如下步驟中之一或多者:(i)步驟302,其對NLO晶體104執行一退火程序以降低NLO晶體104之水或OH含量;及(ii)步驟304,其使NLO晶體104曝露於具有係一使用者選定氫濃度或利用NLO晶體104之一或多個屬性判定之一氫濃度之一選定氫濃度之鈍化氣體。
在步驟302中,NLO晶體104可在一乾燥大氣(例如,清潔乾燥空氣或乾燥惰性氣體)下經歷一退火程序以自NLO晶體104移除水或OH分子之至少一部分。退火程序為此項技術所知且可包括如下步驟中之一或多者:(i)使NLO晶體104之溫度升高至一選定溫度,諸如足夠高以自NLO晶體104移除水分子而不熔化或損傷NLO晶體104之一值;(ii)使NLO晶體104之溫度保持處於或接近該選定溫度持續一選定時間週期,諸如足以使NLO晶體104之水含量降低至一選定位準之一時間週期;及(iii)當NLO晶體104之水含量已降低至該選定位準時使NLO晶體104之溫度升高或降低至一選定最終溫度,諸如環境或室內溫度。該選定水含量位準可係一使用者選定位準、利用NLO晶體104之一或多個屬性判定之一水含量位準或與所期望之光學/物理效能或增加之晶體壽命相關之任一水含量位準。
在一項實施例中,步驟302之退火程序可進一步包括在一選定時間間隔內使NLO晶體104之溫度升高或降低至該選定溫度之一步驟。舉例而言,可在大約2小時之選定時間週期期間將NLO晶體104逐漸加熱至大約150℃之選定溫度。可藉由任一習知加熱或冷卻裝置來升高、降低或保持NLO晶體104之溫度。舉例而言,基板102可配備有適合於加熱或冷卻NLO晶體104之一加熱或冷卻裝置。在另一例項中,室101可組態為一烤爐或一水箱。該加熱或冷卻裝置可進一步經組態以使NLO晶體104之溫度保持處於或接近該選定溫度持續一選定時間週期,諸如一使用者選定時間週期或利用NLO晶體104之一或多個屬 性判定之一時間週期。舉例而言,可使NLO晶體104之溫度保持處於或接近150℃持續大約10小時。另一選擇為,可使NLO晶體104之溫度保持處於或接近該選定溫度直至NLO晶體104之水或OH含量充分降低為止。包括上述溫度、時間週期及時間間隔僅為舉例說明,且預期可在不背離本發明之本質之情況下顯著改變此等參數。因此,本文中之任何內容均不應視為以任何方式限制本發明。
在又一實施例中,可重複步驟302之退火程序以進一步降低NLO晶體104之水含量。可在必要時利用相同或不同參數(諸如一或多個不同溫度或不同時間週期或間隔)來重複該退火程序。舉例而言,可在大約1小時期間將NLO晶體104加熱至大約200℃。類似地,可使NLO晶體104之溫度保持處於或接近200℃持續100小時或直至NLO晶體104之水或OH含量充分降低為止。包括上述溫度、時間週期及時間間隔僅為舉例說明,且預期可在不背離本發明之本質之情況下顯著改變此等參數。因此,本文中之任何內容均不應視為以任何方式限制本發明。
步驟302之退火程序可進一步包括在一選定時間間隔內使NLO晶體104之溫度逐漸升高或降低至選定最終溫度(例如,環境或室內溫度)之步驟。舉例而言,可逐漸冷卻NLO晶體104或使其在大約3小時或任一其他可接受時間間隔期間冷卻至環境或室內溫度。在一項實施例中,可藉由逐漸移除熱量以使得NLO晶體104之溫度在該選定時間間隔內逐漸降低至環境溫度來冷卻NLO晶體104。在另一實施例中,可利用一冷卻裝置來冷卻NLO晶體104以使NLO晶體104之溫度降低至該選定最終溫度。該選定時間間隔可係任一使用者選定時間間隔或利用NLO晶體104之一或多個屬性判定之一時間間隔。因此,包括本文中所包括之任一時間間隔僅為舉例說明而非意欲以任何方式限制本發明。
參照圖3B及圖3D,步驟302之退火程序可進一步包括藉由分析NLO晶體104之一或多個吸收帶來監測該NLO晶體之水或OH含量之一步驟310,其中吸收帶受NLO晶體104之OH鍵之數目之一變化影響。可藉由使用為此項技術所知用於偵測NLO晶體104吸收具有一或多個波長之照射之一位準之任一方法來分析吸收帶。舉例而言,利用FTIR,可藉由觀察NLO晶體104之紅外(IR)光譜中之至少一個吸收帶來監測NLO晶體104之水或OH含量。用於監測NLO晶體104之水或OH含量之一FTIR程序可包括如下步驟中之一或多者:(i)將具有一或多個波長之照射透射過NLO晶體104;(ii)偵測透射過NLO晶體104之照射;及(iii)利用關於透射過NLO晶體104之照射之資訊來判定在一或多個波長下由NLO晶體104吸收之一照射量;及(iv)利用在一或多個波長下由NLO晶體104吸收之照射與NLO晶體104之OH鍵之數量或數量變化之間的一相關來判定NLO晶體104之水或OH含量或水或OH含量變化。
在又一實施例中,步驟302之退火程序可進一步包括執行該退火程序之一或多個步驟直至利用步驟310之監測程序作出該NLO晶體之水或OH含量已充分降低之一判定為止之一步驟312。舉例而言,可藉由觀察在在大約3200cm-1至4000cm-1之範圍內之IR光譜之一或多個波長下出現之NLO晶體104之一或多個吸收帶來判定NLO晶體104之水或OH含量,其中在該波長下出現之吸收帶之幅度或強度與NLO晶體104之OH鍵之數量或數量變化相關。包括上述吸收帶波長範圍僅為舉例說明且預期可在IR光譜中之其他波長下出現一或多個吸收帶;因此,上述波長範圍並非意欲以任何方式限制本發明。
步驟302之退火程序之上述步驟既非順序性的亦非強制性的。該等步驟可以任一次序發生或彼此同時發生。舉例而言,預期可使NLO晶體104保持在該選定溫度下;同時,可如步驟310所規定利用FTIR 來監測NLO晶體104之水或OH含量。進一步預期可使NLO晶體104之溫度保持在該選定溫度下直至NLO晶體104之水或OH含量已如步驟312所規定充分降低為止。在某些例項中,組合該等步驟中之一些或全部並按不同於本文中已按其論述該等步驟之次序之一順序來配置該等步驟可能係有利的。本文中之論述僅係說明性的而非意欲將本文中所揭示之該方法或該等方法限制至任一特定順序、次序或組合之步驟。
在已退火NLO晶體104以降低NLO晶體104之水或OH含量之後,用氫來鈍化NLO晶體104以固化由一或多個懸鍵或斷鍵(其中有些可能已由步驟302之退火程序而引起)帶來之晶體缺陷可能係有利的。因此,在方法300之步驟304中,可使NLO晶體104曝露於諸如系統100之曝露室101之一容器內之鈍化氣體。該鈍化氣體可係具有一選定氫濃度之一氣體混合物。該氫濃度可係一使用者選定濃度、利用NLO晶體104之一或多個屬性確定之一濃度或對於藉由使來自該鈍化氣體之氫原子附著至NLO晶體104之懸鍵或斷鍵來固化NLO晶體104之晶體缺陷之任一可接受濃度。舉例而言,在一項實施例中,該鈍化氣體之該選定氫濃度可係在該鈍化氣體混合物之大約5%至10%之範圍內之一氫濃度。然而,包括上述氫濃度僅為舉例說明,而非意欲以任何方式限制本發明。在某些實施例中,步驟304可進一步包括來自先前論述之鈍化NLO晶體104之方法200之一或多個步驟或元素。
參照圖3C及圖3D,步驟304之鈍化程序可進一步包括監測NLO晶體104之鈍化程度之一步驟320。可藉由分析NLO晶體104之一或多個吸收帶來監測鈍化程度,其中吸收帶受NLO晶體104之OH鍵之數目之一變化影響。可藉由使用為此項技術所知用於偵測NLO晶體104吸收具有一或多個波長之照射之一位準之任一方法來分析吸收帶。舉例而言,利用FTIR,可藉由觀察NLO晶體104之紅外(IR)光譜中之至少一 個吸收帶來監測NLO晶體104之鈍化程度。用於監測NLO晶體104之鈍化程度之一FTIR程序可包括如下步驟中之一或多者:(i)將具有一或多個波長之照射透射過NLO晶體104;(ii)偵測透射過NLO晶體104之照射;及(iii)利用關於透射過NLO晶體104之照射之資訊來判定在一或多個波長下由NLO晶體104吸收之一照射量;及(iv)利用在一或多個波長下由NLO晶體104吸收之照射與NLO晶體104之OH鍵之數量或數量變化之間的一相關來判定NLO晶體104之鈍化程度。
在又一實施例中,步驟304可進一步包括使NLO晶體104曝露於鈍化氣體直至NLO晶體104充分鈍化為止之一步驟322。可利用監測NLO晶體104之鈍化程度之步驟320來判定NLO晶體104是否已充分鈍化。舉例而言,可藉由觀察在處於大約3200cm-1至4000cm-1之範圍內之IR光譜之一或多個波長下出現或改變強度之NLO晶體104之一或多個吸收帶來判定NLO晶體104之鈍化程度,其中在該波長下出現或改變強度之吸收帶之幅度或強度與NLO晶體104之OH鍵之數量或數量變化相關。包括上述吸收帶波長範圍僅為舉例說明且預期可在IR光譜中之其他波長下出現一或多個吸收帶;因此,上述波長範圍並非意欲以任何方式限制本發明。
上述步驟既非順序性的亦非強制性的且可以任一次序發生或彼此同時發生。舉例而言,預期在步驟304之一項實施例中,可使NLO晶體104曝露於具有選定氫濃度之鈍化氣體;且同時,可如步驟320中所規定利用FTIR來監測NLO晶體104之鈍化程度。進一步預期可使該NLO晶體104曝露於鈍化氣體直至NLO晶體104已如步驟322中所規定充分鈍化為止,其中可利用步驟320之監測技術來判定NLO晶體104是否已充分鈍化。在某些例項中,組合該等步驟中之一些或全部並按不同於本文中已按其論述該等步驟之次序之一順序來配置該等步驟可能係有利的。本文中之論述僅係說明性的而非意欲將本文中所揭示之該 方法或該等方法限制至步驟之任一特定順序、次序或組合之步驟。
將已充分退火並鈍化之NLO晶體104併入至一雷射系統中以達成比利用一未經修改的NLO晶體104可達成更好之物理/光學效能或更大之晶體壽命可能係有利的。本發明之雷射系統組態可包括但不限於諸如鎖模式、CW、Q開關式及包括一或多個非線性晶體之任一其他雷射或雷射系統之組態。本文中之說明進一步意欲包括一廣範圍之可能雷射光譜,包括但不限於諸如深紫外(DUV)、紫外(UV)、紅外、可見及諸如此類之電磁光譜。如本文中所使用,術語「雷射系統」及「雷射」可互換使用以闡述一或多個雷射之一組態。
圖4圖解說明配備有一經鈍化及/或經退火NLO晶體104之一雷射系統400。本發明之雷射系統400可包括但不限於一光源402、一第一組光束塑形光學器件404、如上文先前所闡述之經鈍化/經退火晶體104、一外殼單元406、一組諧波分離元件408及一第二組光束塑形光學器件410。
在一項態樣中,一光源402之輸出可使用光束塑形光學器件404聚焦至處於一經鈍化/經退火NLO晶體104中或接近於一經鈍化/經退火NLO晶體104之一橢圓截面高斯束腰。如本文中所使用,術語「接近於」較佳距晶體104之中心小於瑞利範圍的一半。在一項實施例中,該橢圓之主軸之高斯寬度之間的縱橫比可介於約2:1與約6:1之間。在其他實施例中,該橢圓之主軸之間的比例可在約2:1與約10:1之間。在一項實施例中,較寬之高斯寬度與NLO晶體之離開方向實質對準(例如,達到約10°之對準範圍以內)。
在另一態樣中,外殼單元406可保護NLO晶體104免受環境大氣條件及其他雜質影響,從而有助於維持其經鈍化/經退火條件。應注意,曝露於水及其他雜質之一晶體會隨著時間開始劣化且可回到一未經鈍化或未經退火狀態。晶體外殼單元大體闡述於2008年5月6日提出 申請,發明名稱為「Enclosure For Controlling The Environment of Optical Crystals」之美國專利申請案第12/154,337號中,該美國專利申請案全盤地以引用方式併入本文中。在某些實施例中,外殼單元406可包括適合於裝納雷射系統400之晶體104及其他組件之一大型結構。在其他實施例中,外殼406可足夠大以裝納雷射系統400之所有組件。應注意,外殼越大,雷射系統之維護及修理(防止晶體104退化並維持其經鈍化/經退火條件)需要之預防措施就越多。就此方面,在進一步態樣中,外殼單元406可由適合於主要只包封NLO晶體406之一小型外殼結構組成。
光束塑形光學器件404可包括可改變來自光源402之輸出之截面之變形光學器件。變形光學器件可包括(舉例而言)一稜鏡、一圓柱曲率元件、一徑向對稱曲率元件及一繞射元件中之至少一者。在一項實施例中,光源402可包括產生處於可見範圍(例如,532nm)內以在晶體104內部二倍頻之一頻率之一雷射,光源402可包括產生兩個或兩個以上頻率以組合於晶體402內部從而產生一總和或不同頻率之一雷射源。頻率轉換以及相關聯光學器件及硬體由Dribinski等人闡述於2012年3月6日提出申請之美國專利申請案第13/412,564中,該美國專利申請案全盤地以引用方式併入本文中。
圖5圖解說明一檢驗系統500,該檢驗系統經組態以用於量測或分析一或多個樣本510(諸如一光罩(phtotmask)(亦即,一比例光罩(reticle))、晶圓或可利用一光學檢驗系統來分析之任一其他樣本)之缺陷。檢驗系統500可包括如上文所闡述之一雷射系統400。雷射系統400可包括本發明通篇闡述之經鈍化/經退火NLO晶體104中之一或多者。在一項實施例中,雷射系統400之NLO晶體104可經充分退火以使NLO晶體104之水含量降低至一選定水含量位準。
在又一實施例中,雷射系統400之NLO晶體104可經充分鈍化以固 化由諸如懸氧鍵之懸鍵或斷鍵帶來之晶體缺陷。可經由藉由將氫原子接合至NLO晶體104之斷鍵或懸鍵之鈍化來固化NLO晶體104之懸鍵或斷鍵。在某些情況下,一部分懸鍵或斷鍵可係對NLO晶體104執行之退火程序之產物。NLO晶體104可鈍化至對於達成所期望物理/光學效能、改良之LID抵抗力、改良之輸出光束品質、改良之輸出穩定性、增加之晶體壽命或提高之操作功率可接受之一選定鈍化程度。
雷射系統400之NLO晶體104可具有與NLO晶體104之OH鍵之存在、不存在或數量相關之NLO晶體104之IR光譜中之至少一個吸收帶。可利用FTIR來量測NLO晶體104之該吸收帶以判定NLO晶體104之鈍化程度或水含量位準。NLO晶體104之該吸收帶之一指定幅度或強度可對應於NLO晶體104之充分退火位準或充分鈍化位準。該吸收帶之該指定幅度或強度可係一使用者選定值或利用NLO晶體104之一或多個屬性判定之一值。因此,雷射系統400之NLO晶體104之吸收帶可具有處於或接近該指定幅度或強度之一幅度或強度。雷射系統400可進一步包括經組態以為NLO晶體104提供照射之至少一個電磁源,諸如二極體幫浦固態(DPSS)源或一光纖紅外源。由該電磁源所提供之照射之至少一部分可在晶體104之一頻率轉換程序中直接或間接透射過NLO晶體104。
檢驗系統500可進一步包括經組態以在該檢驗程序期間固持樣本510之一樣本載台512。樣本載台512可經組態以將樣本510固持於其中樣本510可接收自雷射系統400透射之照射之至少一部分之一位置中。樣本載台512可進一步經組態以將樣本510致動至一使用者選定位置。樣本載台512可進一步通信耦合至一或多個計算系統且經組態以將樣本510致動至該使用者選定位置或至由該計算系統所判定之一位置,其中樣本510可接收自雷射系統400透射之照射之至少一部分。
檢驗系統500可進一步包括經組態以直接或間接接收自樣本510 之一表面反射之照射之至少一部分之一偵測器504。偵測器504可包括為此項技術所知之任一合適偵測器,諸如一電荷耦合裝置(CCD)或一基於時間延遲積分(TDI)CCD之偵測器。檢驗系統500可進一步包括通信耦合至偵測器504之一或多個計算系統514。計算系統514可經組態以自偵測器504接收關於自樣本510之表面反射之照射之特性之資訊。計算系統514可經進一步組態以對一載體媒體516執行來自程式指令518之一檢驗演算法。該檢驗演算法可係為此項技術所知用於利用關於自樣本510之表面反射之照射之特性之資訊來量測樣本510之一或多個缺陷之任一檢驗演算法。因此,計算系統514可利用關於自樣本510之表面反射之照射之資訊來進行諸如樣本510之存在、不存在、品質及/或缺陷類型之量測。
檢驗系統500可包括一或多個照射光學元件503(例如,延遲器、四分之一波片、聚焦光學器件、相位調變器、偏光器、反射鏡、分束器、反射器、會聚/發散透鏡、稜鏡等)。照射光學元件503可經組態以直接或間接接收從雷射系統400發出之照射。照射光學元件403可進一步經組態以將直接或間接接收自雷射系統400之照射之至少一部分沿著檢驗系統500之一照射路徑透射及/或引導至樣本510之表面。該照射路徑可係照射沿著其自雷射系統400傳播至樣本510之表面之任一路徑,諸如雷射系統400與樣本510之表面之間的一直接視線。在某些實施例中,該照射路徑可係由一或多個光學元件(包括但不限於該等照射光學元件或本文中所揭示之任何其他光學元件)之一組態所描繪之一路徑。
在一項實施例中,檢驗系統400之照射路徑可包括經組態以將直接或間接接收自雷射系統400之照射之至少一部分透射至樣本510之表面或至該照射路徑之又一組件之一分束器508。分束器508可係能夠將一束照射拆分成兩束或兩束以上照射之任一光學裝置。該照射路徑可 進一步包括經組態以將直接或間接接收自雷射系統400之照射之至少一部分透射至樣本510之表面之檢驗光學元件505(例如,延遲器、四分之一波片、聚焦光學器件、相位調變器、偏光器、反射鏡、分束器、反射器、會聚/發散透鏡、稜鏡等)。
在一項實施例中,檢驗系統500可包括經組態以直接或間接接收自樣本510之表面反射之照射之至少一部分之收集光學元件505(例如,例如,延遲器、四分之一波片、聚焦光學器件、相位調變器、偏光器、反射鏡、分束器、反射器、會聚/發散透鏡、稜鏡等)。收集光學元件506可進一步經組態以將直接或間接接收自樣本510之表面之照射之至少一部分沿著檢驗系統500之一收集路徑透射至偵測器504。該收集路徑可係照射可沿著其自樣本510之表面傳播至偵測器504之任一路徑,諸如樣本410之表面與偵測器504之間的一直接視線。在某些實施例中,該收集路徑可係由一或多個光學元件(包括但不限於該等收集光學元件或本文中所揭示之任何其他光學元件)之一組態所描繪之一路徑。
雖然本發明在一般地檢驗一或多個樣本背景下闡述檢驗系統400,但預期檢驗系統400之發明性態樣可延伸至大量用於製作或分析半導體或半導體組件之檢驗或度量系統。檢驗系統400可針對為此項技術所知之一或多個操作模式而組態。舉例而言,檢驗系統400可針對明場檢驗、暗場檢驗或現在或將來為此項技術所知之任一其他模式或組態而組態。檢驗系統400可進一步針對為此項技術所知之一或多個檢驗能力而組態。舉例而言,檢驗系統400可經組態以用於檢驗一或多個光罩、經圖案化晶圓、未經圖案化晶圓或現在或將來為此項技術所知之任一其他檢驗能力。
應認識到,本發明通篇所闡述之各種步驟可由一單一計算系統或者另一選擇為一多重計算系統實施。此外,該系統之不同子系統可 包括適合於實施上文所闡述之步驟之至少一部分之一計算系統。因此,上文說明不應視為對本發明之一限制而僅為一舉例說明。此外,該一或多個計算系統可經組態以執行本文中所闡述之方法實施例中之任一者之任一(任何)其他步驟。
該計算系統可包括但不限於一個人計算系統、大型計算系統、工作站、影像電腦、平行處理器或此項技術中所知之任一其他裝置。一般而言,術語「計算系統」可廣義定義為囊括具有執行來自一記憶體媒體之指令之一或多個處理器之任一裝置。
實施諸如本文中所闡述之方法之方法之程式指令可經由載體媒體傳輸或儲存於載體媒體上。該載體媒體可係諸如一導線、電纜或無線傳輸鏈路之一傳輸媒體。該載體媒體亦可包括諸如一唯讀記憶體、一隨機存取記憶體、一磁碟或光碟或一磁帶之一儲存媒體。
本文中所闡述之所有方法可包括將方法實施例之一或多個步驟之結果儲存於一儲存媒體中。該等結果可包括本文中所闡述之結果中之任一者且可以此項技術中所知之任一方式儲存。該儲存媒體可包括本文中所闡述之任一儲存媒體或此項技術中所知之任一其他合適儲存媒體。在已儲存結果之後,該等結果可在該儲存媒體中存取且由本文中所闡述之方法或系統實施例中之任一者使用,經格式化以用於顯示給一使用者,由另一軟體模組、方法或系統等使用。此外,可「永久性地」、「半永久性地」、暫時性地或針對任一時間週期儲存該等結果。舉例而言,該儲存媒體可係隨機存取記憶體(RAM),且該等結果可不必無限期地存留於該儲存媒體中。
進一步預期,上文所闡述之方法之實施例中之每一者可包括本文中所闡述之任何其他方法之任何其他步驟。另外,上文所闡述之方法之實施例中之每一者可由本文中所闡述之系統中之任一者執行。
熟習此項技術者將瞭解,存在本文中所闡述之程序及/或系統及/ 或其他技術可受其影響之各種載具(例如,硬體、軟體及/或韌體),且較佳載具將隨其中該等程序及/或系統及/或其他技術部署於其中之上下文而變化。舉例而言,若一實施者判定速度及準確度係極為重要的,則該實施者可選擇一主要硬體及/或韌體載具;另一選擇為,若靈活性係極為重要的,則該實施者可選擇一主要軟體實施方案;或者,再另一選擇為,該實施者可選擇硬體、軟體及/或韌體之某一組合。因此,存在本文中所闡述之程序及/或裝置及/或其他技術可受其影響之數種可能載具,其中沒有一者係天生優於另一者,此乃因欲利用之任一載具係依據其中將部署該載具之上下文及實施者之具體關注問題(例如,速度、靈活性或可預測性)(其中任一者可變化)之一選擇。熟習此項技術者將認識到,實施方案之光學態樣通常將採用經光學定向之硬體、軟體及/或韌體。
熟習此項技術者將認識到,在此項技術中以本文闡明之方式闡述裝置及/或程序,且此後使用工程實踐將此等所闡述裝置及/或程序整合至資料處理系統中係常見的。亦即,本文中所闡述之裝置及/或程序之至少一部分可經由一合理量之實驗而整合至一資料處理系統中。熟習此項技術者將認識到,一典型資料處理系統通常包括以下裝置中之一或多者:一系統單元外殼;一視訊顯示裝置;一記憶體,諸如揮發性及非揮發性記憶體;處理器,諸如微處理器及數位信號處理器;計算實體,諸如作業系統、驅動器、圖形使用者介面及應用程式;一或多個互動裝置,諸如一觸控板或螢幕;及/或控制系統,包括回饋環路及控制馬達(例如,用於感測位置及/或速率之回饋;用於移動及/或調整分量及/或數量之控制馬達)。可利用任一合適市售組件(諸如通常發現於資料計算/通信及/或網路計算/通信系統中之彼等組件)來實施一典型資料處理系統。
本文所闡述之標的物往往圖解說明含於不同其他組件內或與不 同其他組件連接之不同組件。應理解,此等所繪示架構僅係例示性的,且實際上可實施達成相同功能性之諸多其他架構。在一概念意義上,達成相同功能性之任一組件配置係有效地「相關聯」以使得達成所期望之功能性。因此,不管架構或中間組件如何,可將本文中經組合以達成一特定功能性之任何兩個組件視為彼此「相關聯」以使得達成所期望之功能性。同樣地,如此相關聯之任何兩個組件亦可視為彼此「連接」或「耦合」以達成所期望之功能性,且能夠如此相關聯之任何兩個組件亦可視為彼此「可耦合」以達成所期望之功能性。可耦合之特定實例包括但不限於可實體配合及/或實體互動之組件及/或可以無線方式互動及/或以無線方式互動之組件及/或以邏輯方式互動及/或可以邏輯方式互動之組件。
雖然已展示並闡述了本文中所闡述之本標的物之特定態樣,但熟習此項技術者將基於本文中之教示明瞭:可在不背離本文中所闡述之標的物及其更廣泛之態樣之情況下作出改變及修改,且因此,隨附申請專利範圍欲將所有此等改變及修改囊括於其範疇內,如同此等改變及修改歸屬於本文中所闡述之標的物之真正精神及範疇內一般。
此外,應理解,本發明係由隨附申請專利範圍定義。
儘管已圖解說明本發明之特定實施例,但應明瞭,熟習此項技術者可在不背離前述揭示內容之範疇及精神之情況下作出本發明之各種修改及實施例。因此,本發明之範疇應僅受隨附申請專利範圍限制。
據信,藉由上述說明將理解本發明及其諸多附帶優點,且將明瞭可在不背離所揭示標的物或不犧牲所有其材料優點之情況下在組件之形式、構造及配置方面作出各種改變。所闡述形式僅係說明的,且以下申請專利範圍之意圖係囊括並包括此等改變。
100‧‧‧系統
101‧‧‧曝露室
104‧‧‧晶體
108‧‧‧鈍化氣體源
110‧‧‧流量控制器
112‧‧‧計算系統
114‧‧‧載體媒體
116‧‧‧程式指令
118‧‧‧流量控制演算法

Claims (17)

  1. 一種用於光學檢驗一或多個樣本之系統,其包含:一樣本載台;一雷射系統,其經組態以用於照射安置於該樣本載台上之一或多個樣本之表面之一部分,該雷射系統包含:至少一個經鈍化及經退火非線性光學(NLO)晶體,其係在300℃至350℃之間的一溫度下經鈍化及經退火,該NLO晶體經充分退火以建立低於一選定位準之一水含量,該NLO晶體進一步經充分鈍化以建立一選定鈍化位準;至少一個光源,其經組態以產生一選定波長之光,該光源進一步經組態以使光透射穿過該NLO晶體;及一晶體外殼單元,其經組態以裝納該NLO晶體;一偵測器,其經組態以接收自該樣本之該表面反射之照射之至少一部分;及一計算系統,其通信耦合至該偵測器,該計算系統經組態以獲取關於由該偵測器所接收之照射之至少一部分之資訊,該計算系統進一步經組態以利用關於由該偵測器所接收之照射之至少一部分之資訊來判定該樣本之至少一個缺陷之存在或不存在。
  2. 如請求項1之系統,其中該雷射之該NLO晶體展現該NLO晶體之一IR、可見及/或UV光譜中之一或多個吸收帶,其中該吸收帶受該NLO晶體之OH鍵之一數目之一改變影響,該吸收帶具有處於或高於一選定位準之一強度。
  3. 如請求項1之系統,其中該雷射在大約193nm至266nm之範圍內之一或多個波長下操作。
  4. 如請求項1之系統,其中該雷射系統包含具有至少一個二極體幫浦固態(DPSS)源之至少一個雷射。
  5. 如請求項1之系統,其中該雷射系統包含具有至少一個光纖IR源之至少一個雷射。
  6. 如請求項1之系統,其中該系統係針對暗場檢驗而組態。
  7. 如請求項1之系統,其中該系統係針對明場檢驗而組態。
  8. 如請求項1之系統,其中該樣本包含一未經圖案化晶圓。
  9. 如請求項1之系統,其中該樣本包含一經圖案化晶圓。
  10. 如請求項1之系統,其中該樣本包含一比例光罩或光罩中之至少一者。
  11. 如請求項1之系統,其中該系統進一步包括:一或多個照射光學器件,其經組態以將來自該雷射系統之照射沿著一照射路徑引導至該樣本之該表面。
  12. 如請求項1之系統,其中該系統進一步包括:一或多個收集光學器件,其經組態以將自該樣本之該表面反射之照射沿著一偵測路徑引導至該偵測器。
  13. 一種用於鈍化一非線性光學(NLO)晶體之晶體缺陷之方法,其包含如下步驟:在300℃至350℃之間的一溫度下對一NLO晶體執行一退火程序以降低該NLO晶體之水或OH含量;及將該NLO晶體曝露於具有處於在5%至10%之間的一選定氫或氘濃度之氫、氘、一含氫化合物、及一含氘化合物中之至少一者之鈍化氣體以修理該NLO晶體內之懸鍵及斷鍵中之至少一者,其中該鈍化氣體係非含氧的。
  14. 如請求項13之方法,其中利用該NLO晶體之一IR、可見及/或UV光譜中之一或多個選定吸收帶來監測該NLO晶體之水含量,其中 該選定吸收帶之一特性隨該NLO晶體之OH鍵之一豐度而變。
  15. 如請求項13之方法,其中利用該NLO晶體之一IR光譜中之一或多個吸收帶來監測該NLO晶體之一鈍化程度,其中該選定吸收帶之一特性隨該NLO晶體之OH鍵之一豐度而變。
  16. 如請求項13之方法,其中該鈍化氣體包含與處於一選定濃度之氫、氘、一含氫化合物、及一含氘化合物中之該至少一者混合之至少一惰性氣體。
  17. 如請求項13之方法,其中該鈍化氣體包含處於一選定濃度之氫、氘、及一惰性氣體之一混合物,其中該混合物中之氘之相對量提供處於或高於一選定鈍化位準之鈍化。
TW105123478A 2011-10-07 2012-09-26 非線性光學晶體之鈍化 TWI611247B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201161544425P 2011-10-07 2011-10-07
US61/544,425 2011-10-07
US13/488,635 2012-06-05
US13/488,635 US9250178B2 (en) 2011-10-07 2012-06-05 Passivation of nonlinear optical crystals

Publications (2)

Publication Number Publication Date
TW201638646A TW201638646A (zh) 2016-11-01
TWI611247B true TWI611247B (zh) 2018-01-11

Family

ID=48041880

Family Applications (4)

Application Number Title Priority Date Filing Date
TW101135409A TWI554818B (zh) 2011-10-07 2012-09-26 非線性光學晶體之鈍化
TW105123478A TWI611247B (zh) 2011-10-07 2012-09-26 非線性光學晶體之鈍化
TW108109226A TWI735852B (zh) 2011-10-07 2012-09-26 非線性光學晶體之鈍化
TW106141321A TWI658313B (zh) 2011-10-07 2012-09-26 非線性光學晶體之鈍化

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW101135409A TWI554818B (zh) 2011-10-07 2012-09-26 非線性光學晶體之鈍化

Family Applications After (2)

Application Number Title Priority Date Filing Date
TW108109226A TWI735852B (zh) 2011-10-07 2012-09-26 非線性光學晶體之鈍化
TW106141321A TWI658313B (zh) 2011-10-07 2012-09-26 非線性光學晶體之鈍化

Country Status (8)

Country Link
US (4) US9250178B2 (zh)
EP (2) EP3957778A1 (zh)
JP (6) JP6000362B2 (zh)
KR (3) KR102062508B1 (zh)
CN (3) CN103975272B (zh)
IL (3) IL231971A (zh)
TW (4) TWI554818B (zh)
WO (1) WO2013052878A1 (zh)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9793673B2 (en) 2011-06-13 2017-10-17 Kla-Tencor Corporation Semiconductor inspection and metrology system using laser pulse multiplier
US8873596B2 (en) * 2011-07-22 2014-10-28 Kla-Tencor Corporation Laser with high quality, stable output beam, and long life high conversion efficiency non-linear crystal
US9250178B2 (en) * 2011-10-07 2016-02-02 Kla-Tencor Corporation Passivation of nonlinear optical crystals
US9496425B2 (en) 2012-04-10 2016-11-15 Kla-Tencor Corporation Back-illuminated sensor with boron layer
US9042006B2 (en) 2012-09-11 2015-05-26 Kla-Tencor Corporation Solid state illumination source and inspection system
US9151940B2 (en) 2012-12-05 2015-10-06 Kla-Tencor Corporation Semiconductor inspection and metrology system using laser pulse multiplier
US8929406B2 (en) 2013-01-24 2015-01-06 Kla-Tencor Corporation 193NM laser and inspection system
US9529182B2 (en) 2013-02-13 2016-12-27 KLA—Tencor Corporation 193nm laser and inspection system
US9608399B2 (en) 2013-03-18 2017-03-28 Kla-Tencor Corporation 193 nm laser and an inspection system using a 193 nm laser
US9478402B2 (en) 2013-04-01 2016-10-25 Kla-Tencor Corporation Photomultiplier tube, image sensor, and an inspection system using a PMT or image sensor
US11180866B2 (en) 2013-04-10 2021-11-23 Kla Corporation Passivation of nonlinear optical crystals
CN103334156B (zh) * 2013-07-12 2016-03-23 东南大学 一种光学晶体掺杂方法
US9293882B2 (en) 2013-09-10 2016-03-22 Kla-Tencor Corporation Low noise, high stability, deep ultra-violet, continuous wave laser
US9410901B2 (en) 2014-03-17 2016-08-09 Kla-Tencor Corporation Image sensor, an inspection system and a method of inspecting an article
US9804101B2 (en) 2014-03-20 2017-10-31 Kla-Tencor Corporation System and method for reducing the bandwidth of a laser and an inspection system and method using a laser
US9419407B2 (en) 2014-09-25 2016-08-16 Kla-Tencor Corporation Laser assembly and inspection system using monolithic bandwidth narrowing apparatus
US9748729B2 (en) 2014-10-03 2017-08-29 Kla-Tencor Corporation 183NM laser and inspection system
WO2016089449A1 (en) * 2014-12-01 2016-06-09 Kla-Tencor Corporation Apparatus and method for providing a humidity-controlled environment in which to perform optical contacting
US9860466B2 (en) 2015-05-14 2018-01-02 Kla-Tencor Corporation Sensor with electrically controllable aperture for inspection and metrology systems
US10748730B2 (en) 2015-05-21 2020-08-18 Kla-Tencor Corporation Photocathode including field emitter array on a silicon substrate with boron layer
US10462391B2 (en) 2015-08-14 2019-10-29 Kla-Tencor Corporation Dark-field inspection using a low-noise sensor
US10313622B2 (en) 2016-04-06 2019-06-04 Kla-Tencor Corporation Dual-column-parallel CCD sensor and inspection systems using a sensor
US10778925B2 (en) 2016-04-06 2020-09-15 Kla-Tencor Corporation Multiple column per channel CCD sensor architecture for inspection and metrology
US10153215B2 (en) 2016-08-04 2018-12-11 Kla-Tencor Corporation Oven enclosure for optical components with integrated purge gas pre-heater
US10175555B2 (en) 2017-01-03 2019-01-08 KLA—Tencor Corporation 183 nm CW laser and inspection system
US20190056637A1 (en) * 2017-08-21 2019-02-21 Kla-Tencor Corporation In-Situ Passivation for Nonlinear Optical Crystals
US11119384B2 (en) 2017-09-28 2021-09-14 Kla-Tencor Corporation Hermetic sealing of a nonlinear crystal for use in a laser system
US11114489B2 (en) 2018-06-18 2021-09-07 Kla-Tencor Corporation Back-illuminated sensor and a method of manufacturing a sensor
US10943760B2 (en) 2018-10-12 2021-03-09 Kla Corporation Electron gun and electron microscope
US11114491B2 (en) 2018-12-12 2021-09-07 Kla Corporation Back-illuminated sensor and a method of manufacturing a sensor
US11848350B2 (en) 2020-04-08 2023-12-19 Kla Corporation Back-illuminated sensor and a method of manufacturing a sensor using a silicon on insulator wafer
US11237455B2 (en) 2020-06-12 2022-02-01 Kla Corporation Frequency conversion using stacked strontium tetraborate plates
US11644419B2 (en) 2021-01-28 2023-05-09 Kla Corporation Measurement of properties of patterned photoresist
US20230034635A1 (en) * 2021-07-30 2023-02-02 Kla Corporation Protective coating for nonlinear optical crystal
US11567391B1 (en) 2021-11-24 2023-01-31 Kla Corporation Frequency conversion using interdigitated nonlinear crystal gratings
US11899338B2 (en) 2021-12-11 2024-02-13 Kla Corporation Deep ultraviolet laser using strontium tetraborate for frequency conversion

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020109110A1 (en) * 2001-02-14 2002-08-15 Applied Materials, Inc. Laser scanning wafer inspection using nonlinear optical phenomena
US6667828B2 (en) * 2001-07-13 2003-12-23 Zygo Corporation Apparatus and method using a nonlinear optical crystal

Family Cites Families (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2203140C3 (de) * 1972-01-24 1974-06-12 Jenaer Glaswerk Schott & Gen., 6500 Mainz Lichtleitfaser aus Quarzglas
US4013532A (en) * 1975-03-03 1977-03-22 Airco, Inc. Method for coating a substrate
US4113514A (en) * 1978-01-16 1978-09-12 Rca Corporation Method of passivating a semiconductor device by treatment with atomic hydrogen
US4254426A (en) * 1979-05-09 1981-03-03 Rca Corporation Method and structure for passivating semiconductor material
US4405692A (en) * 1981-12-04 1983-09-20 Hughes Aircraft Company Moisture-protected alkali halide infrared windows
CH681495A5 (zh) 1990-03-05 1993-03-31 Tet Techno Investment Trust
JP2828221B2 (ja) 1991-06-04 1998-11-25 インターナショナル・ビジネス・マシーンズ・コーポレイション レーザー光波長変換装置
US5377001A (en) 1991-07-20 1994-12-27 Tet Techno Trust Investment Settlement Apparatus for surface inspection
US5377002A (en) 1991-07-20 1994-12-27 Tet Techno Trust Investment Settlement Apparatus for surface inspections
US5189481A (en) 1991-07-26 1993-02-23 Tencor Instruments Particle detector for rough surfaces
US5563702A (en) 1991-08-22 1996-10-08 Kla Instruments Corporation Automated photomask inspection apparatus and method
US5424244A (en) * 1992-03-26 1995-06-13 Semiconductor Energy Laboratory Co., Ltd. Process for laser processing and apparatus for use in the same
US5709745A (en) * 1993-01-25 1998-01-20 Ohio Aerospace Institute Compound semi-conductors and controlled doping thereof
US6271916B1 (en) 1994-03-24 2001-08-07 Kla-Tencor Corporation Process and assembly for non-destructive surface inspections
US6118525A (en) 1995-03-06 2000-09-12 Ade Optical Systems Corporation Wafer inspection system for distinguishing pits and particles
US5712701A (en) 1995-03-06 1998-01-27 Ade Optical Systems Corporation Surface inspection system and method of inspecting surface of workpiece
US5872387A (en) * 1996-01-16 1999-02-16 The Board Of Trustees Of The University Of Illinois Deuterium-treated semiconductor devices
JP3115250B2 (ja) 1996-01-26 2000-12-04 科学技術振興事業団 セシウム・リチウム・ボレート系結晶
US6619073B2 (en) * 1996-03-05 2003-09-16 Corning Incorporated Method of increasing the initial transmittance of optical glass
US5999310A (en) 1996-07-22 1999-12-07 Shafer; David Ross Ultra-broadband UV microscope imaging system with wide range zoom capability
US5972765A (en) * 1997-07-16 1999-10-26 International Business Machines Corporation Use of deuterated materials in semiconductor processing
US6608676B1 (en) 1997-08-01 2003-08-19 Kla-Tencor Corporation System for detecting anomalies and/or features of a surface
US6201601B1 (en) 1997-09-19 2001-03-13 Kla-Tencor Corporation Sample inspection system
US6503321B2 (en) 1998-02-17 2003-01-07 The Trustees Of Columbia University In The City Of New York Slicing of single-crystal films using ion implantation
KR100819239B1 (ko) 1998-03-11 2008-04-03 가부시키가이샤 니콘 자외 레이저 장치, 레이저 장치, 노광 장치와 노광 방법, 디바이스 제조 방법, 자외광 조사 장치, 물체 패턴 검출 장치, 자외광 조사 방법 및 물체 패턴 검출 방법
JP3997450B2 (ja) 1998-03-13 2007-10-24 ソニー株式会社 波長変換装置
US6255197B1 (en) * 1998-06-10 2001-07-03 Jim Mitzel Hydrogen annealing method and apparatus
JP4126812B2 (ja) 1999-07-07 2008-07-30 富士ゼロックス株式会社 光半導体素子
DE19936699C2 (de) * 1999-08-04 2001-10-31 Nachtmann F X Bleikristall Blei- und bariumfreies Kristallglas
JP2001066654A (ja) * 1999-08-30 2001-03-16 Ushio Sogo Gijutsu Kenkyusho:Kk 複数の結晶保持装置を備えた加工用レーザ装置
AU6875100A (en) 1999-09-10 2001-04-17 Nikon Corporation Laser device and exposure method
JP2001109027A (ja) * 1999-10-05 2001-04-20 Kansai Electric Power Co Inc:The 波長変換用非線形光学結晶の着色による透過率低下防止方法
US6291357B1 (en) * 1999-10-06 2001-09-18 Applied Materials, Inc. Method and apparatus for etching a substrate with reduced microloading
KR100440501B1 (ko) * 2000-03-16 2004-07-15 주성엔지니어링(주) 반도체 소자의 게이트 산화막 형성방법
US6440864B1 (en) * 2000-06-30 2002-08-27 Applied Materials Inc. Substrate cleaning process
US7223676B2 (en) * 2002-06-05 2007-05-29 Applied Materials, Inc. Very low temperature CVD process with independently variable conformality, stress and composition of the CVD layer
US7294563B2 (en) * 2000-08-10 2007-11-13 Applied Materials, Inc. Semiconductor on insulator vertical transistor fabrication and doping process
US6879390B1 (en) 2000-08-10 2005-04-12 Kla-Tencor Technologies Corporation Multiple beam inspection apparatus and method
US7137354B2 (en) * 2000-08-11 2006-11-21 Applied Materials, Inc. Plasma immersion ion implantation apparatus including a plasma source having low dissociation and low minimum plasma voltage
US7037813B2 (en) * 2000-08-11 2006-05-02 Applied Materials, Inc. Plasma immersion ion implantation process using a capacitively coupled plasma source having low dissociation and low minimum plasma voltage
JP2002231628A (ja) * 2001-02-01 2002-08-16 Sony Corp 半導体薄膜の形成方法及び半導体装置の製造方法、これらの方法の実施に使用する装置、並びに電気光学装置
JP3837499B2 (ja) 2001-07-12 2006-10-25 独立行政法人産業技術総合研究所 パルスレーザーの時間同期装置および任意波形生成装置
US6856713B2 (en) * 2001-08-20 2005-02-15 Polymicro Technologies, Llc Optical component and method of making the same
US6642538B2 (en) * 2001-10-24 2003-11-04 The United States Of America As Represented By The Secretary Of The Navy Voltage controlled nonlinear spin filter based on paramagnetic ion doped nanocrystal
US6576411B1 (en) * 2001-11-21 2003-06-10 Eastman Kodak Company Method of passivating a silver donor with a dye and photothermographic systems made thereby
US6497999B1 (en) * 2001-11-21 2002-12-24 Eastman Kodak Company Method of passivating silver donors in photothermographic systems and imaging elements made thereby
US6816520B1 (en) 2001-11-30 2004-11-09 Positive Light Solid state system and method for generating ultraviolet light
US7088443B2 (en) 2002-02-11 2006-08-08 Kla-Tencor Technologies Corporation System for detecting anomalies and/or features of a surface
US7130039B2 (en) 2002-04-18 2006-10-31 Kla-Tencor Technologies Corporation Simultaneous multi-spot inspection and imaging
US6815343B2 (en) * 2002-12-30 2004-11-09 International Business Machines Corporation Gas treatment of thin film structures with catalytic action
US7525659B2 (en) * 2003-01-15 2009-04-28 Negevtech Ltd. System for detection of water defects
JP2004233163A (ja) * 2003-01-29 2004-08-19 Hitachi High-Technologies Corp パターン欠陥検査方法およびその装置
US7957066B2 (en) 2003-02-21 2011-06-07 Kla-Tencor Corporation Split field inspection system using small catadioptric objectives
US7045376B2 (en) * 2003-10-08 2006-05-16 Toppoly Optoelectronics Corp. Method of passivating semiconductor device
JP4831961B2 (ja) 2003-12-26 2011-12-07 株式会社半導体エネルギー研究所 半導体装置の作製方法、選択方法
US7670758B2 (en) * 2004-04-15 2010-03-02 Api Nanofabrication And Research Corporation Optical films and methods of making the same
EP1750172B1 (en) 2004-05-26 2013-04-24 Nikon Corporation Wavelength converting optical system
US7560361B2 (en) * 2004-08-12 2009-07-14 International Business Machines Corporation Method of forming gate stack for semiconductor electronic device
WO2006025820A1 (en) * 2004-08-26 2006-03-09 Midwest Research Institute Method for passivating crystal silicon surfaces
US7593440B2 (en) 2005-03-29 2009-09-22 Coherent, Inc. MOPA laser apparatus with two master oscillators for generating ultraviolet radiation
US8916768B2 (en) * 2005-04-14 2014-12-23 Rec Solar Pte. Ltd. Surface passivation of silicon based wafers
US7345825B2 (en) 2005-06-30 2008-03-18 Kla-Tencor Technologies Corporation Beam delivery system for laser dark-field illumination in a catadioptric optical system
JP4640029B2 (ja) 2005-08-08 2011-03-02 株式会社ニコン 波長変換光学系、レーザ光源、露光装置、被検物検査装置、及び高分子結晶の加工装置
JP2007096046A (ja) 2005-09-29 2007-04-12 Seiko Epson Corp 半導体装置の製造方法、半導体装置、アクティブマトリクス装置および電子機器
US7920616B2 (en) 2005-11-01 2011-04-05 Cymer, Inc. Laser system
US7715459B2 (en) 2005-11-01 2010-05-11 Cymer, Inc. Laser system
US7643529B2 (en) 2005-11-01 2010-01-05 Cymer, Inc. Laser system
US20090296755A1 (en) 2005-11-01 2009-12-03 Cymer, Inc. Laser system
US7471705B2 (en) 2005-11-09 2008-12-30 Lockheed Martin Corporation Ultraviolet laser system and method having wavelength in the 200-nm range
US7494567B2 (en) * 2005-12-15 2009-02-24 Honeywell Asca Inc. Combined paper sheet temperature and moisture sensor
JP4911494B2 (ja) 2006-03-18 2012-04-04 国立大学法人大阪大学 波長変換光学素子、波長変換光学素子の製造方法、波長変換装置、紫外線レーザ照射装置およびレーザ加工装置
US7593437B2 (en) 2006-05-15 2009-09-22 Coherent, Inc. MOPA laser apparatus with two master oscillators for generating ultraviolet radiation
EP2026124A1 (en) 2006-05-26 2009-02-18 Osaka University Wide-band vhf-pulse light oscillator utilizing chirp pulse amplification
JP2009540538A (ja) 2006-06-02 2009-11-19 コーニング インコーポレイテッド Uv及び可視レーザシステム
US7949031B2 (en) * 2006-06-16 2011-05-24 Pbc Lasers Gmbh Optoelectronic systems providing high-power high-brightness laser light based on field coupled arrays, bars and stacks of semicondutor diode lasers
JP4101280B2 (ja) * 2006-07-28 2008-06-18 住友精密工業株式会社 終点検出可能なプラズマエッチング方法及びプラズマエッチング装置
JP2008262004A (ja) 2007-04-11 2008-10-30 Sumitomo Electric Ind Ltd 広帯域光源装置
US20110073982A1 (en) 2007-05-25 2011-03-31 Armstrong J Joseph Inspection system using back side illuminated linear sensor
US8008166B2 (en) 2007-07-26 2011-08-30 Applied Materials, Inc. Method and apparatus for cleaning a substrate surface
JP2009060009A (ja) 2007-09-03 2009-03-19 Sharp Corp 結晶質半導体膜の製造方法およびアクティブマトリクス基板の製造方法
US8962097B1 (en) * 2007-09-07 2015-02-24 Edward Maxwell Yokley Surface properties of polymeric materials with nanoscale functional coating
US7525649B1 (en) 2007-10-19 2009-04-28 Kla-Tencor Technologies Corporation Surface inspection system using laser line illumination with two dimensional imaging
US8298335B2 (en) 2007-12-18 2012-10-30 Kla-Tencor Technologies Corporation Enclosure for controlling the environment of optical crystals
JP2009145791A (ja) 2007-12-18 2009-07-02 Lasertec Corp 波長変換装置、検査装置及び波長変換方法
US20090221149A1 (en) * 2008-02-28 2009-09-03 Hammond Iv Edward P Multiple port gas injection system utilized in a semiconductor processing system
JP2010054547A (ja) 2008-08-26 2010-03-11 Lasertec Corp 紫外レーザ装置
US9080991B2 (en) 2008-09-29 2015-07-14 Kla-Tencor Corp. Illuminating a specimen for metrology or inspection
US9080990B2 (en) 2008-09-29 2015-07-14 Kla-Tencor Corp. Illumination subsystems of a metrology system, metrology systems, and methods for illuminating a specimen for metrology measurements
JP4729093B2 (ja) * 2008-11-27 2011-07-20 株式会社東芝 波長変換光源装置及び波長変換方法
JP4565207B1 (ja) 2009-04-28 2010-10-20 レーザーテック株式会社 波長変換装置及び波長変換方法並びに半導体装置の製造方法
US8669644B2 (en) 2009-10-07 2014-03-11 Texas Instruments Incorporated Hydrogen passivation of integrated circuits
US20110134944A1 (en) 2009-12-08 2011-06-09 The Arizona Board Of Regents On Behalf Of The University Of Arizona Efficient pulse laser light generation and devices using the same
US8711896B2 (en) 2010-01-05 2014-04-29 Kla-Tencor Corporation Alleviation of laser-induced damage in optical materials by suppression of transient color centers formation and control of phonon population
JP2011158869A (ja) 2010-02-04 2011-08-18 Panasonic Corp 波長変換装置
CN102064237A (zh) * 2010-11-29 2011-05-18 奥特斯维能源(太仓)有限公司 一种用于晶体硅太阳电池的双层钝化方法
WO2012154468A2 (en) 2011-05-06 2012-11-15 Kla-Tencor Corporation Deep ultra-violet light sources for wafer and reticle inspection systems
US9793673B2 (en) 2011-06-13 2017-10-17 Kla-Tencor Corporation Semiconductor inspection and metrology system using laser pulse multiplier
US8873596B2 (en) 2011-07-22 2014-10-28 Kla-Tencor Corporation Laser with high quality, stable output beam, and long life high conversion efficiency non-linear crystal
US20130077086A1 (en) 2011-09-23 2013-03-28 Kla-Tencor Corporation Solid-State Laser And Inspection System Using 193nm Laser
US9250178B2 (en) 2011-10-07 2016-02-02 Kla-Tencor Corporation Passivation of nonlinear optical crystals
US20150053908A1 (en) * 2012-03-09 2015-02-26 Privatran Memristive device and method of manufacture
US9605998B2 (en) * 2014-09-03 2017-03-28 Panasonic Intellectual Property Management Co., Ltd. Measurement system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020109110A1 (en) * 2001-02-14 2002-08-15 Applied Materials, Inc. Laser scanning wafer inspection using nonlinear optical phenomena
US6667828B2 (en) * 2001-07-13 2003-12-23 Zygo Corporation Apparatus and method using a nonlinear optical crystal

Also Published As

Publication number Publication date
KR102062508B1 (ko) 2020-01-03
US20160169815A1 (en) 2016-06-16
JP2017083860A (ja) 2017-05-18
KR101961901B1 (ko) 2019-07-17
TW201638646A (zh) 2016-11-01
TWI554818B (zh) 2016-10-21
JP2014534464A (ja) 2014-12-18
US20170025281A1 (en) 2017-01-26
US9250178B2 (en) 2016-02-02
US11227770B2 (en) 2022-01-18
JP2016040549A (ja) 2016-03-24
CN103975272A (zh) 2014-08-06
CN107255897A (zh) 2017-10-17
EP2764403B1 (en) 2021-12-08
US9459215B2 (en) 2016-10-04
KR102269160B1 (ko) 2021-06-23
CN107255898A (zh) 2017-10-17
JP7170686B2 (ja) 2022-11-14
US20130088706A1 (en) 2013-04-11
JP2023002813A (ja) 2023-01-10
US20190198330A1 (en) 2019-06-27
IL249433A0 (en) 2017-02-28
JP6062521B2 (ja) 2017-01-18
JP6415523B2 (ja) 2018-10-31
IL249433B (en) 2018-05-31
TWI658313B (zh) 2019-05-01
EP2764403A4 (en) 2015-04-15
JP2020129134A (ja) 2020-08-27
KR20140073562A (ko) 2014-06-16
JP6000362B2 (ja) 2016-09-28
IL256141A (en) 2018-02-28
EP2764403A1 (en) 2014-08-13
JP2018132773A (ja) 2018-08-23
KR20200000492A (ko) 2020-01-02
CN103975272B (zh) 2017-07-07
TWI735852B (zh) 2021-08-11
IL256141B (en) 2020-04-30
IL231971A (en) 2017-12-31
WO2013052878A1 (en) 2013-04-11
US10283366B2 (en) 2019-05-07
CN107255897B (zh) 2020-10-23
TW201807476A (zh) 2018-03-01
KR20190032640A (ko) 2019-03-27
EP3957778A1 (en) 2022-02-23
TW201319710A (zh) 2013-05-16
IL231971A0 (en) 2014-05-28
TW201925892A (zh) 2019-07-01

Similar Documents

Publication Publication Date Title
TWI611247B (zh) 非線性光學晶體之鈍化
TWI640662B (zh) 非線性光學晶體之鈍化