TWI568792B - 用於電容去離子電極的黏結劑與其形成方法 - Google Patents

用於電容去離子電極的黏結劑與其形成方法 Download PDF

Info

Publication number
TWI568792B
TWI568792B TW104142429A TW104142429A TWI568792B TW I568792 B TWI568792 B TW I568792B TW 104142429 A TW104142429 A TW 104142429A TW 104142429 A TW104142429 A TW 104142429A TW I568792 B TWI568792 B TW I568792B
Authority
TW
Taiwan
Prior art keywords
binder
electrode
active material
electrode according
deionization electrode
Prior art date
Application number
TW104142429A
Other languages
English (en)
Other versions
TW201723086A (zh
Inventor
劉柏逸
鐘琍菁
梁德明
洪仁陽
邵信
陳瑞鑫
范舒慈
方峙翔
張敏超
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to TW104142429A priority Critical patent/TWI568792B/zh
Priority to CN201511015951.7A priority patent/CN106893545B/zh
Priority to US14/983,117 priority patent/US10259904B2/en
Application granted granted Critical
Publication of TWI568792B publication Critical patent/TWI568792B/zh
Publication of TW201723086A publication Critical patent/TW201723086A/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7621Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring being toluene diisocyanate including isomer mixtures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/36Hydroxylated esters of higher fatty acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4825Polyethers containing two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4854Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6674Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/6696Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/36 or hydroxylated esters of higher fatty acids of C08G18/38
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4691Capacitive deionisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)

Description

用於電容去離子電極的黏結劑與其形成方法
本揭露係關於電極,更特別關於電極中的黏結劑。
碳電極在製備的過程中常需使用高分子黏結劑(polymer binder),用以黏結電極材料顆粒並固定電極材料顆粒與集電板(current collector)。高分子黏結劑接合的效果對電極的功能影響甚鉅,故高分子黏結劑特性的調控非常重要。一般電極製備常使用氟系高分子作為黏結劑,其中以PVDF(polyvinylidene fluoride)最為普遍。PVDF黏結劑可形成化學安定網路結構(chemically inert network),其機械強度可有效且大範圍支撐活性材料顆粒間的相互連結,於適當用量下不會影響到活性材料之電化學特性。然而PVDF黏結劑具有成本高、可撓性(flexibility)低、及環境友善性低等缺點。
綜上所述,目前亟需新的黏結劑組成取代PVDF黏結劑,以用於黏結電極材料顆粒並將其固定至集電板。
本揭露一實施例提供之用於電容去離子電極的黏結劑,包括:具有疏水性之聚醚多元醇、二異氰酸酯、與具有疏水性側鏈之二醇反應而成之產物。
本揭露一實施例提供之用於電容去離子電極的黏結劑之形成方法,包括:混合疏水性之聚醚多元醇、二異氰酸酯、與具有疏水性側鏈之二醇,反應形成黏結劑。
第1A圖係不同分子量之PU電極其容抗對阻抗之曲線圖。
第1B圖係第1A圖之部份放大圖。
第2圖係不同分子量之PU電極其相角對頻率之曲線圖。
第3A圖係PU電極與PVDF電極其容抗對阻抗之曲線圖。
第3B圖係第3A圖之部份放大圖。
第4圖係PU電極與PVDF電極其相角對頻率之曲線圖。
本揭露一實施例提供之聚氨酯,係由1莫耳份之疏水性之聚醚多元醇(HO-R2-OH)、3至20莫耳份之二異氰酸酯(ONC-R1-NCO)、與1至6莫耳份之具有疏水性側鏈之二醇(HO-R3-OH)反應而成。上述反應如式1所示:
在式1中,R1、R2、與R3取決於二異氰酸酯、疏水 性之聚醚多元醇、與具有疏水性側鏈之二醇的種類,而x與y取決於疏水性之聚醚多元醇與具有疏水性側鏈之二醇之莫耳比例。另一方面,聚氨酯為無規共聚物,即上述對應x之重複單元與對應y之重複單元之排列方式為無規。在一實施例中,疏水性之聚醚多元醇種類其碳氫主鏈(hydrocarbon backbone)為具高撓曲性與疏水特性,而具有疏水性側鏈之二醇種類則為控制鏈段軟硬程度,以及側鏈疏水增加黏結劑防水性。在一實施例中,聚氨酯之數目平均分子量大於1.6×105以上。若聚氨酯之數目平均分子量過低,則無法有效黏結活性材料以作為電極。若聚氨酯之數目平均分子量過高,則黏度(viscosity)過高且結構彈性(elasticity)過低,不利於配製電極漿料並降低電極效能。
舉例來說,二異氰酸酯可為六亞甲基二異氰酸酯、甲苯二異氰酸酯、二苯基甲烷二異氰酸酯、或上述之組合。疏水性之二異氰酸酯可降低聚氨酯之對稱性,並降低結晶硬度。疏水性之聚醚多元醇可為聚丁二醇、聚丙二醇、或上述之組合。疏水性之聚醚多元醇之撓曲性高且具疏水特性。在一實施例中,聚醚多元醇之數目平均分子量介於1000至5000之間。若疏水性之聚醚多元醇之數目平均分子量過低,分子結構會較硬及脆,不易服貼。若聚醚多元醇之數目平均分子量過高,則分子結構會較軟,且內聚強度變弱。具有疏水性側鏈之二醇可為C12-26之單脂肪酸甘油酯、C12-26之二聚脂肪酸(dimer acids)、或上述之組合。具有疏水性側鏈之二醇可作為聚氨酯之硬段,控制聚氨酯之軟硬程度。另一方面,具有疏水性側鏈之二醇之疏水側鏈可增加聚氨酯之疏水性,且側鏈碳數愈高則疏水性愈 高。
在一實施例中,可混合90重量份之活性材料與5至25重量份之黏結劑如上述聚氨酯、與溶劑(如N-甲基吡咯烷酮(NMP)、異丙醇、乙醇、或上述之組合)以形成漿料。接著將漿料塗佈於集電板(如銅、鋁、鈦、其他金屬、或上述之合金)上烘乾,即形成電極。若黏結劑之比例過低,則無法有效黏結活性及導電材料與集電板而有脫落問題。若黏結劑之比例過高,則可能會增加電極電阻而降低電極效能。舉例來說,活性材料可為活性碳材、奈米碳管、石墨烯、或上述之組合等高比表面積的材料。上述活性材料之比表面積介於300m2/g至3000m2/g之間,且其孔洞大小介於1至1000nm。若活性材料之比表面積過小,則會影響電吸附離子容量。若活性材料導電度不足(如活性碳材料),可添加5至20重量份之導電材料幫助導電,且導電材料可為石墨、碳黑、乙炔黑、或上述之組合。但值得注意的是,添加量過多(如石墨或碳黑)之導電材料,會使活性碳之材料重量比例含量下降,導致吸附離子之有效面積降低,進而使其吸附電容下降。
上述聚氨酯在乾燥時,具有良好熱穩定性、高化學穩定性、且能被電解質濕潤,因此含有上述聚氨酯作為黏結劑的電極具有多種用途。在一實施例中,上述電極可搭配對電極與兩者之間的水相溶液,以作電容去離子之用。在其他實施例中,上述聚氨酯作為黏結劑的電極可用於其他裝置如鋰電池、燃料電池、超級電容器、或儲氫裝置。
為了讓本揭露之上述和其他目的、特徵、和優點 能更明顯易懂,下文特舉數實施例作詳細說明如下:
實施例 實施例1
取1莫耳份之聚丁二醇(PTMEG,購自立大化工,數目平均分子量為2000)與3莫耳份之硬脂酸甘油酯(GMS)加入300mL之除水NMP中,加熱至70℃形成均相溶液。接著將上述溶液降溫至50℃後,將3莫耳份之甲苯二異氰酸酯(TDI)加入上述溶液,待溫度穩定後再加熱上述反應物至70℃並於70℃下反應。在反應3小時後,每隔一小時取樣確認反應物中的-NCO官能基殘留量,待-NCO官能基殘留量不再降低後,可進一步添加溶劑稀釋產物,再加入額外TDI以增加產物分子量。上述鏈延長反應可進行多次,即可得多種不同數目平均分子量之聚氨酯。PTMEG與TDI(起始用量與後續添加量之總合)的莫耳比介於1:6至1:16之間。聚氨酯產物依數目平均分子量高低可分為含6莫耳份TDI之PU(A)、含7莫耳份TDI之PU(B)、含8莫耳份TDI之PU(C)、含10.5莫耳份TDI之PU(D)、與含13.5莫耳份TDI之PU(E),其數目平均分子量如第1表所示。
秤取80重量份之活性碳(activated carbon,AC)作為活性材料、10重量份之石墨粉(購自EMAXWIN)作為導電材、與10重量份上述製備之聚氨酯溶液(15wt%,PU(A)至PU(E))作為黏結劑,均勻攪拌24小時使之成為糊狀漿料。接著以塗佈間隙300μm之刮刀將糊狀物均勻塗佈在50μm鈦箔上,送入120℃烘箱中烘乾4小時,完成PU電極。
比較例
秤取80重量份之活性碳(activated carbon,AC)作為活性材料、10重量份之石墨粉(購自EMAXWIN)作為導電材、與10重量份之聚偏二氟乙烯(Poly(vinylidene fluoride,PVDF)溶液(5wt%,數目平均分子量為534,000,購自Aldrich)作為黏結劑,均勻攪拌24小時使之成為糊狀漿料。接著以塗佈間隙300μm之刮刀將糊狀物均勻塗佈在50μm鈦箔上,送入120℃烘箱中烘乾4小時,完成PVDF電極。
黏結劑最基本的要求是對高比表面積活性材料、導電材料、與集電板有好的黏著性,利用萬能拉力機測定活性碳塗層在鈦集電板的剝離強度。將製備好的碳電極裁切為2.5cm寬的長條狀,再將標準膠帶黏上、並以2公斤滾輪來回壓合3次,即可製備成T peel拉伸的樣品,以萬能拉力機定速率30cm/min測試剝離強度,荷重模頭顯示的力量數值即是剝離強度,單位為kg/25mm。上述黏結劑之剝離強度如第1表所示。
較低分子量的PU(A)及PU(B)其分子特性較為軟黏且不成膜,以致電極無法完整成膜,因此活性碳塗層在集電板上易剝離,活性碳分子之間作用力低。由剝離強度的結果也可看出,較低分子量的PU黏結劑接著強度差。隨著PU黏結劑分 子量提高,可看出PU(C)、(D)、(E)接著強度有提升趨勢,由於分子量越大,PU彈性體所含極性胺基比例愈高,與碳材間的接著作用力愈佳,因而黏結劑展現的強度愈高、表面更不沾黏。如第1表所示,某些PU黏結劑之接著強度優於PVDF。
接著以循環伏安法(cyclic voltammetry,CV)分析PU電極與PVDF電極之電容值。測試溶液為0.5M NaCl水溶液,工作電極面積1cm x 1cm,對電極為白金線,參考電極為氯化銀電極(AgCl/Ag),電位掃瞄範圍為-0.5~0.5V,掃瞄速率為10mV/s,對CV曲線積分得到之電荷變化量,除以電位窗及電極活性材料重量即得電極之比電容值。
在剝離強度測試(peel test)中得知較低分子量的PU(A)及PU(B)會導致電極塗佈的均勻性及接著強度差,以致電極無法完整成膜而無法測得比電容值。如第2表所示,隨著PU黏結劑分子量提高,可觀察到電極塗佈均勻性及接著強度有提升趨勢(比電容值也從54.0F/g增加至91.1F/g)。由於高分子量之PU黏結劑可形成網狀結構,可大範圍包覆顆粒、藉由網狀強度支撐使顆粒相互連結。較長的PU分子鏈可避免發生小分子黏結劑阻塞活性碳材孔洞結構,進而提高其比電容值。
另外,利用交流阻抗頻譜分析(electrochemical impedance spectroscopy,EIS)進行比較不同分子量的PU電極的阻抗特性,如第1A與1B圖所示。第1B圖係第1A圖之部份放大圖。在第1A與1B圖中,縱軸讀值為容抗(capacitance impedance),而橫軸讀值為電阻值(resistance)。由第1A圖可知,採用高分子量之PU(E)作為黏結劑之電極,在中高頻區域(半圓區間)所產生之阻值,比採用低分子量PU(C)及PU(D)作為黏結劑之電極低,因此具有較高之比電容值。而不同頻率與相角之變化如第2圖所示,PU(E)電極在低頻區域,其相角明顯高於PU(C)及PU(D)電極,顯示PU(E)電極較偏向電容反應。推估應是PU(E)之較長分子鏈不易深入活性碳材孔洞結構,降低孔洞被堵塞的情形,有助於減少碳電極之界面電阻。綜上所述,PU(E)電極具有較高比電容值。
實施例2
固定活性碳與石墨粉的重量比為80:10,並調整PU黏結劑的添加重量比為5至20重量份,以確認PU黏結劑添加比例對電容的影響,如第3表所示。結果顯示當碳材、導電材與PU重量比為80:10:5的時候,碳電極接著性為中,而隨著PU添加比例增加而提升至高,此外,不同PU添加比例之碳電極均勻性皆為高。在電容表現的方面,活性碳與PU黏結劑的重量比為80:10、80:15與80:20之電極比電容值相近,而以活性碳與PU黏結劑的重量比為80:15時有最高比電容值為101F/g,值得注意的是,在活性碳與PU黏結劑的重量比為80:5時,電極比電容值67.1F/g表現最低,推論原因當添加之PU黏結劑量過少時,會影響 碳顆粒與集電板間有效的連結性,因此反而造成更大的界面電阻而使電容表現較差。
實施例3
取PU(E)電極與PVDF電極進行循環伏安分析比較,如第4表所示。結果顯示PVDF電極之比電容值為87.3F/g,而PU(E)電極之比電容值為91.1F/g,優於PVDF電極。
另外,利用交流阻抗頻譜分析(electrochemical impedance spectroscopy,EIS)進行比較PU電極與PVDF電極的阻抗特性,如第3A與3B圖所示。第3B圖係第3A圖之部份放大圖。由第3A圖可知,採用PU(E)作為黏結劑之電極,在中高頻區域(半圓區間)所產生之阻值,比採用PVDF作為黏結劑之電極低,因此具有較高之比電容值。而不同頻率與相角之變化如第4圖所示,PU(E)電極在低頻區域,其相角較PVDF電極接近90°,顯示相較於PVDF電極,PU(E)電極較偏向電容反應,因此以PU(E)黏結劑製備電極的比電容值高於PVDF電極。綜上所 述,PU可取代PVDF作為電極中活性材料的黏結劑。
雖然本揭露已以數個實施例揭露如上,然其並非用以限定本揭露,任何本技術領域中具有通常知識者,在不脫離本揭露之精神和範圍內,當可作任意之更動與潤飾,因此本揭露之保護範圍當視後附之申請專利範圍所界定者為準。

Claims (12)

  1. 一種用於電容去離子電極的黏結劑,包括:聚丁二醇、甲苯二異氰酸酯、與硬脂酸甘油酯反應而成之一黏結劑,其中該黏結劑之數目平均分子量大於1.6×105
  2. 如申請專利範圍第1項所述之用於電容去離子電極的黏結劑,其中該聚丁二醇為1莫耳份,該甲苯二異氰酸酯為3至20莫耳份,且該硬脂酸甘油酯為1至6莫耳份。
  3. 如申請專利範圍第1項所述之用於電容去離子電極的黏結劑,其中該聚丁二醇之數目平均分子量介於1000~5000之間。
  4. 如申請專利範圍第1項所述之用於電容去離子電極的黏結劑,係用以黏結一電極中的活性材料,該活性材料包括活性碳材、奈米碳管、石墨烯、或上述之組合,且該活性材料與該黏結劑之重量比介於90:5至90:25之間。
  5. 如申請專利範圍第4項所述之用於電容去離子電極的黏結劑,其中該活性材料之比表面積介於300m2/g至3000m2/g之間,且其孔洞大小介於1至1000nm。
  6. 如申請專利範圍第4項所述之用於電容去離子電極的黏結劑,其中該電極更包含5至20重量份之導電材料,且該導電材料包括石墨、碳黑、乙炔黑、或上述之組合。
  7. 一種用於電容去離子電極的黏結劑之形成方法,包括:混合一聚丁二醇、甲苯二異氰酸酯、與硬脂酸甘油酯,反應形成一黏結劑, 其中該黏結劑之數目平均分子量大於1.6×105
  8. 如申請專利範圍第7項所述之用於電容去離子電極的黏結劑之形成方法,其中該聚丁二醇為1莫耳份,該甲苯二異氰酸酯為3至20莫耳份,且該硬脂酸甘油酯為1至6莫耳份。
  9. 如申請專利範圍第7項所述之用於電容去離子電極的黏結劑之形成方法,其中該聚丁二醇之數目平均分子量介於1000~5000之間。
  10. 如申請專利範圍第7項所述之用於電容去離子電極的黏結劑之形成方法,其中該黏結劑係用以黏結一電極中的活性材料,該活性材料包括活性碳材、奈米碳管、石墨烯、或上述之組合,且該活性材料與該黏結劑之重量比介於90:5至90:25之間。
  11. 如申請專利範圍第10項所述之用於電容去離子電極的黏結劑之形成方法,其中該活性材料之比表面積介於300m2/g至3000m2/g之間,且其孔洞大小介於1至1000nm。
  12. 如申請專利範圍第10項所述之用於電容去離子電極的黏結劑之形成方法,其中該電極更包含5至20重量份之導電材料,且該導電材料包括石墨、碳黑、乙炔黑、或上述之組合。
TW104142429A 2015-12-17 2015-12-17 用於電容去離子電極的黏結劑與其形成方法 TWI568792B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW104142429A TWI568792B (zh) 2015-12-17 2015-12-17 用於電容去離子電極的黏結劑與其形成方法
CN201511015951.7A CN106893545B (zh) 2015-12-17 2015-12-29 用于电容去离子电极的粘结剂与其形成方法
US14/983,117 US10259904B2 (en) 2015-12-17 2015-12-29 Binder for capacitive deionization electrode and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104142429A TWI568792B (zh) 2015-12-17 2015-12-17 用於電容去離子電極的黏結劑與其形成方法

Publications (2)

Publication Number Publication Date
TWI568792B true TWI568792B (zh) 2017-02-01
TW201723086A TW201723086A (zh) 2017-07-01

Family

ID=58608304

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104142429A TWI568792B (zh) 2015-12-17 2015-12-17 用於電容去離子電極的黏結劑與其形成方法

Country Status (3)

Country Link
US (1) US10259904B2 (zh)
CN (1) CN106893545B (zh)
TW (1) TWI568792B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108219104A (zh) * 2018-01-24 2018-06-29 西安交通大学 端硅氧烷基聚合物粘合剂及其制备方法和应用
CN108483591B (zh) * 2018-04-24 2021-07-30 浙江工业大学 一种提取锂离子的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030232956A1 (en) * 2002-06-10 2003-12-18 Brinkman Larry Frank Urethane polymer compositions
US20140016246A1 (en) * 2011-04-07 2014-01-16 Corning Incorporated Ultracapacitor with improved aging performance
TW201543513A (zh) * 2015-08-03 2015-11-16 China Steel Corp 電雙層電容之碳電極、其製造方法以及電雙層電容

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04198292A (ja) * 1990-11-26 1992-07-17 Japan Synthetic Rubber Co Ltd ウレタン系接着剤組成物
US6852823B2 (en) * 2002-08-09 2005-02-08 E. I. Du Pont De Nemours And Company Polyurethane and polyurethane-urea elastomers from polytrimethylene ether glycol
JP4592306B2 (ja) * 2004-03-17 2010-12-01 東洋製罐株式会社 蓋用密封材及びそれを用いた蓋の製造方法
US20080035548A1 (en) 2006-08-01 2008-02-14 Quos, Inc. Multi-functional filtration and ultra-pure water generator
KR101366806B1 (ko) 2007-07-18 2014-02-24 전북대학교산학협력단 전기 흡착 탈이온 장치용 전극, 그 제조방법 및 이를구비한 전기 흡착 탈이온 장치
EP2280034A1 (de) * 2009-07-31 2011-02-02 Bayer MaterialScience AG Elektromechanischer Wandler mit einem Polymerelement auf Basis einer Mischung aus Polyisocyanat und Isocyanat-funktionellem Prepolymer und einer Verbindung mit mindestens zwei isocyanatreaktiven Hydroxygruppen
KR101309161B1 (ko) 2009-11-17 2013-09-17 삼성에스디아이 주식회사 리튬 이차 전지용 고분자 조성물, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
JP6166901B2 (ja) * 2010-12-10 2017-07-19 日立化成株式会社 光学用粘着材樹脂組成物、光学用粘着材シート、画像表示装置、光学用粘着材シートの製造方法及び画像表示装置の製造方法
CN104640899B (zh) * 2012-09-18 2017-05-24 巴斯夫欧洲公司 含有被活性(甲基)丙烯酸端基封端的聚氨酯骨架的聚合物及其用作粘合剂的用途
AU2014212059B2 (en) * 2013-02-04 2017-02-16 Lubrizol Advanced Materials, Inc. Clear hydrophobic TPU
KR102212322B1 (ko) * 2013-12-24 2021-02-03 삼성전자주식회사 전기 흡착 탈이온 전극, 그 제조 방법 및 이를 포함한 전기흡착 탈이온 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030232956A1 (en) * 2002-06-10 2003-12-18 Brinkman Larry Frank Urethane polymer compositions
US20140016246A1 (en) * 2011-04-07 2014-01-16 Corning Incorporated Ultracapacitor with improved aging performance
TW201543513A (zh) * 2015-08-03 2015-11-16 China Steel Corp 電雙層電容之碳電極、其製造方法以及電雙層電容

Also Published As

Publication number Publication date
US20170174820A1 (en) 2017-06-22
TW201723086A (zh) 2017-07-01
CN106893545A (zh) 2017-06-27
CN106893545B (zh) 2020-10-13
US10259904B2 (en) 2019-04-16

Similar Documents

Publication Publication Date Title
An et al. A wearable second skin‐like multifunctional supercapacitor with vertical gold nanowires and electrochromic polyaniline
Xie et al. Stretchable all-solid-state supercapacitor with wavy shaped polyaniline/graphene electrode
US8947853B2 (en) Super capacitor structure and the manufacture thereof
JP2019117788A (ja) 窒素が添加された全固体電池用硫化物界固体電解質
CN103534851B (zh) 催化剂微粒、碳载催化剂微粒、催化合剂和电极的各自的制造方法
Li et al. Multidimensional and binary micro CuCo2O4/nano NiMoO4 for high-performance supercapacitors
Sandu et al. Mechanochemical synthesis of PEDOT: PSS hydrogels for aqueous formulation of Li-ion battery electrodes
He et al. Fabrication of a graphene-based paper-like electrode for flexible solid-state supercapacitor devices
Tranchot et al. Impact of the slurry pH on the expansion/contraction behavior of silicon/carbon/carboxymethylcellulose electrodes for Li-ion batteries
JP4651486B2 (ja) 含フッ素重合体水性分散液
CN107771351A (zh) 固体聚合物电解质和包含其的电化学装置
Javed et al. Insights to pseudocapacitive charge storage of binary metal-oxide nanobelts decorated activated carbon cloth for highly-flexible hybrid-supercapacitors
JP2016069388A (ja) ポリマー電解質組成物、リチウム金属二次電池用負極及びリチウムイオン二次電池用電解質並びにそれらを用いたリチウム金属二次電池及びリチウムイオン二次電池
CN101263167A (zh) 用于电池电极的乙烯基氟基共聚物粘合剂
TWI568792B (zh) 用於電容去離子電極的黏結劑與其形成方法
Ding et al. Polyaniline/reduced graphene oxide nanosheets on TiO2 nanotube arrays as a high-performance supercapacitor electrode: Understanding the origin of high rate capability
Benehkohal et al. Enabling green fabrication of Li-ion battery electrodes by electrophoretic deposition: growth of thick binder-free mesoporous TiO2-carbon anode films
Zhao et al. Electrochemical behavior of polyaniline microparticle suspension as flowing anode for rechargeable lead dioxide flow battery
Tao et al. ATMP doped conductive PANI/CNTs composite hydrogel electrodes toward high energy density flexible supercapacitors
Bhajantri et al. Investigation on the structural and ion transport properties of magnesium salt doped HPMC-PVA based polymer blend for energy storage applications
Kang et al. High-efficiency flexible and foldable paper-based supercapacitors using water-dispersible polyaniline-poly (2-acrylamido-2-methyl-1-propanesulfonic acid) and poly (vinyl alcohol) as conducting agent and polymer matrix
Dalmolin et al. Preparation, electrochemical characterization and charge–discharge of reticulated vitreous carbon/polyaniline composite electrodes
JP2012204010A (ja) 非水系二次電池電極用組成物、及びそれを用いた非水系二次電池
JP2012204009A (ja) 非水系二次電池電極用組成物、及びそれを用いた非水系二次電池
WO2014156595A1 (ja) バナジウム固体塩電池及びその製造方法