CN106893545A - 用于电容去离子电极的粘结剂与其形成方法 - Google Patents

用于电容去离子电极的粘结剂与其形成方法 Download PDF

Info

Publication number
CN106893545A
CN106893545A CN201511015951.7A CN201511015951A CN106893545A CN 106893545 A CN106893545 A CN 106893545A CN 201511015951 A CN201511015951 A CN 201511015951A CN 106893545 A CN106893545 A CN 106893545A
Authority
CN
China
Prior art keywords
electrode
capacitive deionization
binding agent
deionization electrode
hydrophobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201511015951.7A
Other languages
English (en)
Other versions
CN106893545B (zh
Inventor
刘柏逸
鐘琍菁
梁德明
洪仁阳
邵信
陈瑞鑫
范舒慈
方峙翔
张敏超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industrial Technology Research Institute ITRI
Original Assignee
Industrial Technology Research Institute ITRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrial Technology Research Institute ITRI filed Critical Industrial Technology Research Institute ITRI
Publication of CN106893545A publication Critical patent/CN106893545A/zh
Application granted granted Critical
Publication of CN106893545B publication Critical patent/CN106893545B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7621Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring being toluene diisocyanate including isomer mixtures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/36Hydroxylated esters of higher fatty acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4825Polyethers containing two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4854Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6674Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/6696Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/36 or hydroxylated esters of higher fatty acids of C08G18/38
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4691Capacitive deionisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Analytical Chemistry (AREA)

Abstract

本发明提供用于电容去离子电极的粘结剂及其形成方法。所述粘结剂是由疏水性的聚醚多元醇、二异氰酸酯、与具有疏水性侧链的二醇反应而成。上述粘结剂可粘结活性材料,以形成电容去离子电极。活性材料与粘结剂的重量比可介于90:5至90:25之间。

Description

用于电容去离子电极的粘结剂与其形成方法
技术领域
本发明是关于电极的粘结剂,更特别关于用于电容去离子电极的粘结剂,及其形成方法。
背景技术
碳电极在制备的过程中常需使用高分子粘结剂(polymer binder),用以粘结电极材料颗粒并固定电极材料颗粒与集电板(current collector)。高分子粘结剂接合的效果对电极的功能影响甚巨,故高分子粘结剂特性的调控非常重要。一般电极制备常使用氟系高分子作为粘结剂,其中以PVDF(polyvinylidenefluoride)最为普遍。PVDF粘结剂可形成化学安定网络结构(chemically inertnetwork),其机械强度可有效且大范围支撑活性材料颗粒间的相互连结,于适当用量下不会影响到活性材料的电化学特性。然而PVDF粘结剂具有成本高、可挠性(flexibility)低、及环境友善性低等缺点。
综上所述,目前亟需新的粘结剂组成取代PVDF粘结剂,以用于粘结电极材料颗粒并将其固定至集电板。
发明内容
本发明的目的在于提供一种可取代PVDF粘结剂、用于电极的新型粘结剂,以用于粘结电极材料颗粒并将其固定至集电板。
本发明一实施例提供的用于电容去离子电极的粘结剂,包括:具有疏水性的聚醚多元醇、二异氰酸酯、与具有疏水性侧链的二醇反应而成的产物。
本发明一实施例提供的用于电容去离子电极的粘结剂的形成方法,包括:混合疏水性的聚醚多元醇、二异氰酸酯、与具有疏水性侧链的二醇,反应形成粘结剂。
本发明的优点在于:本发明利用具有疏水性的聚醚多元醇、二异氰酸酯与具有疏水性侧链的二醇反应而成的产物(聚氨酯)作为粘结剂,该聚氨酯在干燥时,具有良好热稳定性、高化学稳定性、且能被电解质湿润,因此含有上述聚氨酯作为粘结剂的电极具有多种用途,例如:上述电极可搭配对电极与两者之间的水相溶液以作电容去离子之用,或将上述聚氨酯作为粘结剂的电极用于其他诸如锂电池、燃料电池、超级电容器或储氢装置等的装置中。
附图说明
图1A是不同分子量的PU电极的虚部阻抗对实部阻抗的曲线图;
图1B是图1A的部份放大图;
图2是不同分子量的PU电极的相角对频率的曲线图;
图3A是PU电极与PVDF电极的虚部阻抗对实部阻抗的曲线图;
图3B是图3A的部份放大图;
图4是PU电极与PVDF电极的相角对频率的曲线图。
具体实施方式
本发明一实施例提供的聚氨酯,是由1摩尔份的疏水性的聚醚多元醇(HO-R2-OH)、3至20摩尔份的二异氰酸酯(ONC-R1-NCO)、与1至6摩尔份的具有疏水性侧链的二醇(HO-R3-OH)反应而成。上述反应如式1所示:
在式1中,R1、R2、与R3取决于二异氰酸酯、疏水性的聚醚多元醇、与具有疏水性侧链的二醇的种类,而x与y取决于疏水性的聚醚多元醇与具有疏水性侧链的二醇的摩尔比例。
另一方面,聚氨酯为无规共聚物,即上述对应x的重复单元与对应y的重复单元的排列方式为无规。
在一实施例中,疏水性的聚醚多元醇种类的碳氢主链(hydrocarbonbackbone)为具高挠曲性与疏水特性,而具有疏水性侧链的二醇种类则为控制链段软硬程度,以及侧链疏水增加粘结剂防水性。
在一实施例中,聚氨酯的数目平均分子量大于1.6×105以上。若聚氨酯的数目平均分子量过低,则无法有效粘结活性材料以作为电极。若聚氨酯的数目平均分子量过高,则粘度(viscosity)过高且结构弹性(elasticity)过低,不利于配制电极浆料并降低电极效能。
举例来说,二异氰酸酯可为六亚甲基二异氰酸酯、甲苯二异氰酸酯、二苯基甲烷二异氰酸酯、或上述的组合。
疏水性的聚醚多元醇可为聚丁二醇、聚丙二醇、或上述的组合。疏水性的聚醚多元醇的挠曲性高且具疏水特性。在一实施例中,聚醚多元醇的数目平均分子量介于1000至5000之间。若疏水性的聚醚多元醇的数目平均分子量过低,分子结构会较硬及脆,不易服帖。若聚醚多元醇的数目平均分子量过高,则分子结构会较软,且内聚强度变弱。具有疏水性侧链的二醇可为C12-26的单脂肪酸甘油酯、C12-26的二聚脂肪酸(dimer acids)、或上述的组合。
具有疏水性侧链的二醇可作为聚氨酯的硬段,控制聚氨酯的软硬程度。另一方面,具有疏水性侧链的二醇的疏水侧链可增加聚氨酯的疏水性,且侧链碳数愈高则疏水性愈高。
在一实施例中,可混合90重量份的活性材料与5至25重量份的粘结剂如上述聚氨酯、与溶剂(如N-甲基吡咯烷酮(NMP)、异丙醇、乙醇、或上述的组合)以形成浆料。接着将浆料涂布于集电板(如铜、铝、钛、其他金属、或上述的合金)上烘干,即形成电极。若粘结剂的比例过低,则无法有效粘结活性及导电材料与集电板而有脱落问题。若粘结剂的比例过高,则可能会增加电极电阻而降低电极效能。举例来说,活性材料可为活性碳材、纳米碳管、石墨烯、或上述的组合等高比表面积的材料。上述活性材料的比表面积介于300m2/g至3000m2/g之间,且其孔洞大小介于1至1000nm。若活性材料的比表面积过小,则会影响电吸附离子容量。若活性材料导电度不足(如活性碳材料),可添加5至20重量份的导电材料帮助导电,且导电材料可为石墨、碳黑、乙炔黑、或上述的组合。但值得注意的是,添加量过多(如石墨或碳黑)的导电材料,会使活性碳的材料重量比例含量下降,导致吸附离子的有效面积降低,进而使其吸附电容下降。
上述聚氨酯在干燥时,具有良好热稳定性、高化学稳定性、且能被电解质湿润,因此含有上述聚氨酯作为粘结剂的电极具有多种用途。在一实施例中,上述电极可搭配对电极与两者之间的水相溶液,以作电容去离子之用。在其他实施例中,上述聚氨酯作为粘结剂的电极可用于其他装置如锂电池、燃料电池、超级电容器、或储氢装置。
为了让本发明的上述和其他目的、特征、和优点能更明显易懂,下文特举数实施例作详细说明如下:
实施例
实施例1
取1摩尔份的聚丁二醇(PTMEG,购自立大化工,数目平均分子量为2000)与3摩尔份的硬脂酸甘油酯(GMS)加入300mL的除水NMP中,加热至70℃形成均相溶液。接着将上述溶液降温至50℃后,将3摩尔份的甲苯二异氰酸酯(TDI)加入上述溶液,待温度稳定后再加热上述反应物至70℃并于70℃下反应。在反应3小时后,每隔一小时取样确认反应物中的-NCO官能基残留量,待-NCO官能基残留量不再降低后,可进一步添加溶剂稀释产物,再加入额外TDI以增加产物分子量。上述链延长反应可进行多次,即可得多种不同数目平均分子量的聚氨酯。PTMEG与TDI(起始用量与后续添加量的总合)的摩尔比介于1:6至1:16之间。聚氨酯产物依数目平均分子量高低可分为含6摩尔份TDI的PU(A)、含7摩尔份TDI的PU(B)、含8摩尔份TDI的PU(C)、含10.5摩尔份TDI的PU(D)、与含13.5摩尔份TDI的PU(E),其数目平均分子量如表1所示。
秤取80重量份的活性碳(activated carbon,AC)作为活性材料、10重量份的石墨粉(购自EMAXWIN)作为导电材、与10重量份上述制备的聚氨酯溶液(15wt%,PU(A)至PU(E))作为粘结剂,均匀搅拌24小时使之成为糊状浆料。接着以涂布间隙300μm的刮刀将糊状物均匀涂布在50μm钛箔上,送入120℃烘箱中烘干4小时,完成PU电极。
比较例
秤取80重量份的活性碳(activated carbon,AC)作为活性材料、10重量份的石墨粉(购自EMAXWIN)作为导电材、与10重量份的聚偏二氟乙烯(Poly(vinylidene fluoride,PVDF)溶液(5wt%,数目平均分子量为534,000,购自Aldrich)作为粘结剂,均匀搅拌24小时使之成为糊状浆料。接着以涂布间隙300μm的刮刀将糊状物均匀涂布在50μm钛箔上,送入120℃烘箱中烘干4小时,完成PVDF电极。
粘结剂最基本的要求是对高比表面积活性材料、导电材料、与集电板有好的粘着性,利用万能拉力机测定活性碳涂层在钛集电板的剥离强度。将制备好的碳电极裁切为2.5cm宽的长条状,再将标准胶带粘上、并以2公斤滚轮来回压合3次,即可制备成T peel拉伸的样品,以万能拉力机定速率30cm/min测试剥离强度,荷重模头显示的力量数值即是剥离强度,单位为kg/25mm。上述粘结剂的剥离强度如表1所示。
表1、不同分子量PU粘结剂的剥离强度
较低分子量的PU(A)及PU(B)其分子特性较为软粘且不成膜,以致电极无法完整成膜,因此活性碳涂层在集电板上易剥离,活性碳分子之间作用力低。由剥离强度的结果也可看出,较低分子量的PU粘结剂接着强度差。随着PU粘结剂分子量提高,可看出PU(C)、(D)、(E)接着强度有提升趋势,由于分子量越大,PU弹性体所含极性胺基比例愈高,与碳材间的接着作用力愈佳,因而粘结剂展现的强度愈高、表面更不沾粘。如表1所示,某些PU粘结剂的接着强度优于PVDF。
接着以循环伏安法(cyclic voltammetry,CV)分析PU电极与PVDF电极的电容值。测试溶液为0.5M NaCl水溶液,工作电极面积1cm x 1cm,对电极为白金线,参考电极为氯化银电极(AgCl/Ag),电位扫描范围为-0.5~0.5V,扫描速率为10mV/s,对CV曲线积分得到的电荷变化量,除以电位窗及电极活性材料重量即得电极的比电容值。
在剥离强度测试(peel test)中得知较低分子量的PU(A)及PU(B)会导致电极涂布的均匀性及接着强度差,以致电极无法完整成膜而无法测得比电容值。如表2所示,随着PU粘结剂分子量提高,可观察到电极涂布均匀性及接着强度有提升趋势(比电容值也从54.0F/g增加至91.1F/g)。由于高分子量的PU粘结剂可形成网状结构,可大范围包覆颗粒、藉由网状强度支撑使颗粒相互连结。较长的PU分子链可避免发生小分子粘结剂阻塞活性碳材孔洞结构,进而提高其比电容值。
表2
另外,利用交流阻抗频谱分析(electrochemical impedance spectroscopy,EIS)进行比较不同分子量的PU电极的阻抗特性,如图1A与图1B所示。图1B是图1A的部份放大图。在图1A与图1B中,纵轴读值为虚部阻抗(capacitanceimpedance),而横轴读值为实部阻抗电阻值(resistance)。由图1A可知,采用高分子量的PU(E)作为粘结剂的电极,在中高频区域(半圆区间)所产生的阻值,比采用低分子量PU(C)及PU(D)作为粘结剂的电极低,因此具有较高的比电容值。而不同频率与相角的变化如图2所示,PU(E)电极在低频区域,其相角明显高于PU(C)及PU(D)电极,显示PU(E)电极较偏向电容反应。推估应是PU(E)的较长分子链不易深入活性碳材孔洞结构,降低孔洞被堵塞的情形,有助于减少碳电极的界面电阻。综上所述,PU(E)电极具有较高比电容值。
实施例2
固定活性碳与石墨粉的重量比为80:10,并调整PU粘结剂的添加重量比为5至20重量份,以确认PU粘结剂添加比例对电容的影响,如表3所示。结果显示当碳材、导电材与PU重量比为80:10:5的时候,碳电极接着性为中,而随着PU添加比例增加而提升至高,此外,不同PU添加比例的碳电极均匀性皆为高。在电容表现的方面,活性碳与PU粘结剂的重量比为80:10、80:15与80:20的电极比电容值相近,而以活性碳与PU粘结剂的重量比为80:15时有最高比电容值为101F/g,值得注意的是,在活性碳与PU粘结剂的重量比为80:5时,电极比电容值67.1F/g表现最低,推论原因当添加的PU粘结剂量过少时,会影响碳颗粒与集电板间有效的连结性,因此反而造成更大的界面电阻而使电容表现较差。
表3
实施例3
取PU(E)电极与PVDF电极进行循环伏安分析比较,如表4所示。结果显示PVDF电极的比电容值为87.3F/g,而PU(E)电极的比电容值为91.1F/g,优于PVDF电极。
表4
粘结剂 活性碳:石墨:粘结剂 电极均匀性 接着性 比电容值(F/g)
PU(E) 80:10:10 91.1
PVDF 80:10:10 87.3
另外,利用交流阻抗频谱分析(electrochemical impedance spectroscopy,EIS)进行比较PU电极与PVDF电极的阻抗特性,如图3A与图3B所示。图3B是图3A的部份放大图。由图3A可知,采用PU(E)作为粘结剂的电极,在中高频区域(半圆区间)所产生的阻值,比采用PVDF作为粘结剂的电极低,因此具有较高的比电容值。而不同频率与相角的变化如图4所示,PU(E)电极在低频区域,其相角较PVDF电极接近90°,显示相较于PVDF电极,PU(E)电极较偏向电容反应,因此以PU(E)粘结剂制备电极的比电容值高于PVDF电极。综上所述,PU可取代PVDF作为电极中活性材料的粘结剂。
虽然本发明已以数个实施例发明如上,然其并非用以限定本发明,任何本技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作任意的更动与润饰,因此本发明的保护范围当视后附的申请专利范围所界定者为准。

Claims (20)

1.一种用于电容去离子电极的粘结剂,包括:
疏水性的聚醚多元醇、二异氰酸酯与具有疏水性侧链的二醇反应而成的产物。
2.如权利要求1所述的用于电容去离子电极的粘结剂,其中所述疏水性的聚醚多元醇为1摩尔份,所述二异氰酸酯为3至20摩尔份,且所述具有疏水性侧链的二醇为1至6摩尔份。
3.如权利要求1所述的用于电容去离子电极的粘结剂,其中所述二异氰酸酯为六亚甲基二异氰酸酯、甲苯二异氰酸酯、二苯基甲烷二异氰酸酯、或上述的组合。
4.如权利要求1所述的用于电容去离子电极的粘结剂,其中所述疏水性的聚醚多元醇为聚丁二醇、聚丙二醇、或上述的组合。
5.如权利要求1所述的用于电容去离子电极的粘结剂,其中所述具有疏水性侧链的二醇为C12-26的单脂肪酸甘油酯、C12-26的二聚脂肪酸、或上述的组合。
6.如权利要求1所述的用于电容去离子电极的粘结剂,其中所述粘结剂的数目平均分子量大于1.6×105
7.如权利要求1所述的用于电容去离子电极的粘结剂,其中所述疏水性的聚醚多元醇的数目平均分子量介于1000~5000之间。
8.如权利要求1所述的用于电容去离子电极的粘结剂,是用以粘结电极中的活性材料,所述活性材料为活性碳材、纳米碳管、石墨烯、或上述的组合,且所述活性材料与所述粘结剂的重量比介于90:5至90:25之间。
9.如权利要求8所述的用于电容去离子电极的粘结剂,其中所述活性材料的比表面积介于300m2/g至3000m2/g之间,且其孔洞大小介于1至1000nm。
10.如权利要求8所述的用于电容去离子电极的粘结剂,其中该电极更包含5至20重量份的导电材料,且该导电材料包括石墨、碳黑、乙炔黑、或上述的组合。
11.一种用于电容去离子电极的粘结剂的形成方法,包括:
混合疏水性的聚醚多元醇、二异氰酸酯与具有疏水性侧链的二醇,反应形成粘结剂。
12.如权利要求11所述的用于电容去离子电极的粘结剂的形成方法,其中所述疏水性的聚醚多元醇为1摩尔份,所述二异氰酸酯为3至20摩尔份,且所述具有疏水性侧链的二醇为1至6摩尔份。
13.如权利要求11所述的用于电容去离子电极的粘结剂的形成方法,其中所述二异氰酸酯为六亚甲基二异氰酸酯、甲苯二异氰酸酯、二苯基甲烷二异氰酸酯、或上述的组合。
14.如权利要求11所述的用于电容去离子电极的粘结剂的形成方法,其中所述疏水性的聚醚多元醇为聚丁二醇、聚丙二醇、或上述的组合。
15.如权利要求11所述的用于电容去离子电极的粘结剂的形成方法,其中所述具有疏水性侧链的二醇为C12-26的单脂肪酸甘油酯、C12-26的二聚脂肪酸、或上述的组合。
16.如权利要求11所述的用于电容去离子电极的粘结剂的形成方法,其中所述粘结剂的数目平均分子量大于1.6×105
17.如权利要求11所述的用于电容去离子电极的粘结剂的形成方法,其中所述疏水性的聚醚多元醇的数目平均分子量介于1000~5000之间。
18.如权利要求11所述的用于电容去离子电极的粘结剂的形成方法,其中所述粘结剂是用以粘结电极中的活性材料,所述活性材料为活性碳材、纳米碳管、石墨烯、或上述的组合,且所述活性材料与所述粘结剂的重量比介于90:5至90:25之间。
19.如权利要求18所述的用于电容去离子电极的粘结剂的形成方法,其中所述活性材料的比表面积介于300m2/g至3000m2/g之间,且其孔洞大小介于1至1000nm。
20.如权利要求18所述的用于电容去离子电极的粘结剂的形成方法,其中所述电极更包含5至20重量份的导电材料,且所述导电材料为石墨、碳黑、乙炔黑、或上述的组合。
CN201511015951.7A 2015-12-17 2015-12-29 用于电容去离子电极的粘结剂与其形成方法 Active CN106893545B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW104142429 2015-12-17
TW104142429A TWI568792B (zh) 2015-12-17 2015-12-17 用於電容去離子電極的黏結劑與其形成方法

Publications (2)

Publication Number Publication Date
CN106893545A true CN106893545A (zh) 2017-06-27
CN106893545B CN106893545B (zh) 2020-10-13

Family

ID=58608304

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201511015951.7A Active CN106893545B (zh) 2015-12-17 2015-12-29 用于电容去离子电极的粘结剂与其形成方法

Country Status (3)

Country Link
US (1) US10259904B2 (zh)
CN (1) CN106893545B (zh)
TW (1) TWI568792B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108483591A (zh) * 2018-04-24 2018-09-04 浙江工业大学 一种提取锂离子的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108219104A (zh) * 2018-01-24 2018-06-29 西安交通大学 端硅氧烷基聚合物粘合剂及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04198292A (ja) * 1990-11-26 1992-07-17 Japan Synthetic Rubber Co Ltd ウレタン系接着剤組成物
CN1649927A (zh) * 2002-08-09 2005-08-03 纳幕尔杜邦公司 由聚三亚甲基醚二醇制备的聚氨酯和聚氨酯-脲弹性体
CN1906225A (zh) * 2004-03-17 2007-01-31 东洋制罐株式会社 盖用密封材料及使用该材料的盖的制造方法
CN102471436A (zh) * 2009-07-31 2012-05-23 拜尔材料科学股份公司 具有基于多异氰酸酯和异氰酸酯官能预聚物以及具有至少两个异氰酸酯反应性羟基的化合物的混合物的聚合物元件的机电换能器
CN103249796A (zh) * 2010-12-10 2013-08-14 日立化成株式会社 光学用粘附材料树脂组合物、光学用粘附材料片材、图像显示装置、光学用粘附材料片材的制造方法以及图像显示装置的制造方法
WO2014121174A1 (en) * 2013-02-04 2014-08-07 Lubrizol Advanced Materials, Inc. Clear hydrophobic tpu
CN104640899A (zh) * 2012-09-18 2015-05-20 巴斯夫欧洲公司 含有被活性(甲基)丙烯酸端基封端的聚氨酯骨架的聚合物及其用作粘合剂的用途
US20150175449A1 (en) * 2013-12-24 2015-06-25 Samsung Electronics Co., Ltd. Capacitive deionization electrodes, capacitive deionization apparatuses including the same, and production methods thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7098291B2 (en) * 2002-06-10 2006-08-29 Rohm And Haas Company Urethane polymer compositions
US20080035548A1 (en) 2006-08-01 2008-02-14 Quos, Inc. Multi-functional filtration and ultra-pure water generator
KR101366806B1 (ko) 2007-07-18 2014-02-24 전북대학교산학협력단 전기 흡착 탈이온 장치용 전극, 그 제조방법 및 이를구비한 전기 흡착 탈이온 장치
KR101309161B1 (ko) 2009-11-17 2013-09-17 삼성에스디아이 주식회사 리튬 이차 전지용 고분자 조성물, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
US9472353B2 (en) * 2011-04-07 2016-10-18 Corning Incorporated Ultracapacitor with improved aging performance
TWI546831B (zh) * 2015-08-03 2016-08-21 中國鋼鐵股份有限公司 電雙層電容之碳電極、其製造方法以及電雙層電容

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04198292A (ja) * 1990-11-26 1992-07-17 Japan Synthetic Rubber Co Ltd ウレタン系接着剤組成物
CN1649927A (zh) * 2002-08-09 2005-08-03 纳幕尔杜邦公司 由聚三亚甲基醚二醇制备的聚氨酯和聚氨酯-脲弹性体
CN1906225A (zh) * 2004-03-17 2007-01-31 东洋制罐株式会社 盖用密封材料及使用该材料的盖的制造方法
CN102471436A (zh) * 2009-07-31 2012-05-23 拜尔材料科学股份公司 具有基于多异氰酸酯和异氰酸酯官能预聚物以及具有至少两个异氰酸酯反应性羟基的化合物的混合物的聚合物元件的机电换能器
CN103249796A (zh) * 2010-12-10 2013-08-14 日立化成株式会社 光学用粘附材料树脂组合物、光学用粘附材料片材、图像显示装置、光学用粘附材料片材的制造方法以及图像显示装置的制造方法
CN104640899A (zh) * 2012-09-18 2015-05-20 巴斯夫欧洲公司 含有被活性(甲基)丙烯酸端基封端的聚氨酯骨架的聚合物及其用作粘合剂的用途
WO2014121174A1 (en) * 2013-02-04 2014-08-07 Lubrizol Advanced Materials, Inc. Clear hydrophobic tpu
US20150175449A1 (en) * 2013-12-24 2015-06-25 Samsung Electronics Co., Ltd. Capacitive deionization electrodes, capacitive deionization apparatuses including the same, and production methods thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108483591A (zh) * 2018-04-24 2018-09-04 浙江工业大学 一种提取锂离子的方法
CN108483591B (zh) * 2018-04-24 2021-07-30 浙江工业大学 一种提取锂离子的方法

Also Published As

Publication number Publication date
TWI568792B (zh) 2017-02-01
CN106893545B (zh) 2020-10-13
US10259904B2 (en) 2019-04-16
US20170174820A1 (en) 2017-06-22
TW201723086A (zh) 2017-07-01

Similar Documents

Publication Publication Date Title
Miao et al. All-solid-state flexible zinc-air battery with polyacrylamide alkaline gel electrolyte
Rani et al. Fluorinated natural graphite cathode for rechargeable ionic liquid based aluminum–ion battery
CN105659426B (zh) 锂离子二次电池的粘合剂用的粒子状聚合物、粘接层及多孔膜组合物
CN101981727B (zh) 多孔膜以及二次电池电极
KR101868240B1 (ko) 비수 이차전지용 바인더, 비수 이차전지용 수지 조성물, 비수 이차전지 세퍼레이터, 비수 이차전지 전극 및 비수 이차전지
Zhang et al. Enhancing bifunctionality of CoN nanowires by Mn doping for long-lasting Zn-air batteries
CN106605325A (zh) 燃料电池用电极催化剂及其制造方法
Sandu et al. Mechanochemical synthesis of PEDOT: PSS hydrogels for aqueous formulation of Li-ion battery electrodes
CN107771351A (zh) 固体聚合物电解质和包含其的电化学装置
CN107681153A (zh) 形成电极用组合物
JPWO2018235722A1 (ja) 電気化学素子電極用バインダー組成物、電気化学素子電極用組成物、電気化学素子用電極、及び電気化学素子
CN101263167A (zh) 用于电池电极的乙烯基氟基共聚物粘合剂
Ye et al. Electrocatalysis of both oxygen reduction and water oxidation using a cost-effective three-dimensional MnO 2/graphene/carbon nanotube
CN109155414A (zh) 固体电解质电池用粘结剂组合物、及固体电解质电池用浆料组合物
CN106104859A (zh) 锂离子二次电池正极用浆料、锂离子二次电池正极用浆料的制造方法、锂离子二次电池用正极的制造方法及锂离子二次电池
CN110518202A (zh) 一种自支撑的V2O5/rGO纳米阵列钠离子电池材料及其制备方法
CN109950543B (zh) 一种适用于锂离子电池电极材料的集流体及其制备和应用
CN106893545A (zh) 用于电容去离子电极的粘结剂与其形成方法
Ding et al. Polyaniline/reduced graphene oxide nanosheets on TiO2 nanotube arrays as a high-performance supercapacitor electrode: Understanding the origin of high rate capability
KR101848237B1 (ko) 아연공기전지 음극재 및 그 제조방법
Park et al. Effect of organic acids and nano-sized ceramic doping on PEO-based solid polymer electrolytes
Grgur et al. Polyaniline as possible anode materials for the lead acid batteries
Kang et al. High-efficiency flexible and foldable paper-based supercapacitors using water-dispersible polyaniline-poly (2-acrylamido-2-methyl-1-propanesulfonic acid) and poly (vinyl alcohol) as conducting agent and polymer matrix
Dalmolin et al. Preparation, electrochemical characterization and charge–discharge of reticulated vitreous carbon/polyaniline composite electrodes
US11094929B2 (en) Energy storage device, an electrode for an energy storage device, and a method of fabricating the electrode

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant