TWI555853B - 磁性特性優秀之半製程非方向性電磁鋼板的製造方法 - Google Patents

磁性特性優秀之半製程非方向性電磁鋼板的製造方法 Download PDF

Info

Publication number
TWI555853B
TWI555853B TW102148447A TW102148447A TWI555853B TW I555853 B TWI555853 B TW I555853B TW 102148447 A TW102148447 A TW 102148447A TW 102148447 A TW102148447 A TW 102148447A TW I555853 B TWI555853 B TW I555853B
Authority
TW
Taiwan
Prior art keywords
mass
steel sheet
less
electrical steel
annealing
Prior art date
Application number
TW102148447A
Other languages
English (en)
Other versions
TW201435090A (zh
Inventor
Yoshiaki Zaizen
Yoshihiko Oda
Hiroaki Toda
Kazuhiro Hanazawa
Original Assignee
Jfe Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfe Steel Corp filed Critical Jfe Steel Corp
Publication of TW201435090A publication Critical patent/TW201435090A/zh
Application granted granted Critical
Publication of TWI555853B publication Critical patent/TWI555853B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

磁性特性優秀之半製程非方向性電磁鋼板的製造方法
本發明,是關於一種半製程非方向性電磁鋼板的製造方法,具體而言,是關於一種磁性特性優秀之半製程非方向性電磁鋼板的製造方法。
近年來,在世界性的省能源化之風氣之下,電氣裝置逐漸被強烈地要求高效率化。非方向性電磁鋼板,作為電氣裝置的鐵心材料廣泛地被使用,為了要達成電氣裝置的高效率化,非方向性電磁鋼板的高磁通密度化、低鐵損化是不可或缺的。對應此要求,對於非方向性電磁鋼板,主要是添加Si或Al等之提高固有阻抗之元素、或是將板厚度縮減來達到低鐵損化;另外,藉由在冷間壓延前使結晶粒徑粗大化、或是將冷間壓延之壓下率最合適化等來達到高磁通密度化,這些努力自先前便有在進行。
此外,非方向性電磁鋼板中,經冲裁成既定的鐵心形狀後,不施以退火便直接使用之全製程材、或是冲裁後施以消除應力退火,改善磁性特性後才使用的半製 程材。後者之半製程材,為了使冲裁性提升,預先使冲裁前的結晶粒變小,並在其後的消除應力退火使結晶粒粗大化,能夠得到良好的鐵損特性。但是,伴隨結晶粒的成長,{111}晶粒將會生長而導致磁通密度降低之問題。
對於此問題,例如,在專利文獻1中揭示有:使其含有0.75~1.5mass%之Mn,並使相對於該Mn較多的C與其共存,在該Mn、C共存之下在冷間壓延後進行退火,使C量成為在0.005%以下,便能夠在消除應力退火後得到具有優秀磁性特性的半製程材。
〔先前技術文獻〕 〔專利文獻〕
〔專利文獻1〕日本特公平06-043614號公報
然而,上述專利文獻1的方法,由於有添加C,在製成最終製品板前,必須施以脫碳退火,而會產生製造成本增大的問題。
本發明,是有鑑於先前技術中所存在的上述問題點而研創。其目的在於低價地提供一種消除應力退火後具有高磁通密度且低鐵損的半製程非方向性電磁鋼板。
發明者們為了解決上述課題,反覆進行積極討論。其結果,發現到極力地減低作為不純物所含有的Se,並將冷間壓延後的再結晶退火之昇溫速度相較於以往更急速地加熱,能夠得到消除應力退火後的磁通密度與鐵損特性顯著優秀的非方向性電磁鋼板,進而著手開發本發明。
亦即,本發明是一種半製程非方向性電磁鋼板的製造方法,是將鋼胚熱間壓延,再冷間壓延之後,施以再結晶退火之非方向性電磁鋼板的製造方法,該鋼胚為含有C:0.005mass%以下、Si:4mass%以下、Mn:0.03~2mass%、P:0.2mass%以下、S:0.004mass%以下、Al:2mass%以下、N:0.004mass%以下、以及Se:0.0010mass%以下,且殘餘部分是由Fe以及不可避免的不純物所成的組成成分,其特徵為:將前述再結晶退火中達到740℃為止的平均升溫速度以100℃/s以上來進行加熱。
本發明所使用之上述鋼胚,除上述組成成分之外,更進一步地含有選自Sn以及Sb當中之一種或兩種,各0.003~0.5mass%。
此外,本發明所使用之上述鋼胚,除上述組成成分之外,更進一步地含有0.0010~0.005mass%的Ca。
依據本發明,不須要添加特別的元素,便能 夠低價地提供一種對於旋轉機械及小型變壓器等電氣裝置的高效率化有所助益之具有優秀磁性特性的非方向性電磁鋼板。
圖1,是顯示再結晶退火的昇溫速度,對於消除應力退火後的磁通密度的影響。
圖2,是顯示再結晶退火的昇溫速度,對於消除應力退火後的鐵損的影響。
圖3,是顯示Se的含有量,對於消除應力退火後的磁通密度的影響。
圖4,是顯示Se的含有量,對於消除應力退火後的鐵損的影響。
〔用以實施發明的方式〕
首先,說明成為開發本發明的契機之實驗。
為了要調查再結晶退火的昇溫速度,對於消除應力退火後的磁性特性的影響,將含有C:0.0025mass%、Si:2.0mass%、Mn:0.10mass%、P:0.01mass%、Al:0.001mass%、N:0.0019mass%、S:0.0020mass%以及Se:0.0002mass%之鋼胚以1100℃×30分再加熱後,將其熱間壓延製成板厚度2.0mm的熱延板,在施以980℃×30 秒的熱延板退火後,將其冷間壓延1次製成板厚度0.35mm的冷延板,其後,在直接通電加熱爐,使平均昇溫速度在30~300℃/s之範圍進行各種變化,加熱至740℃為止,在740℃維持10秒後,使其冷卻製成冷延退火板。
從如此得到的冷延退火板,切下L:180mm×C:30mm的L方向試驗片以及L:30mm×C:180mm的C方向試驗片,施以750℃×2小時的消除應力退火後,以愛普斯坦法(Epstein’s method)測定磁性特性(磁通密度B50、鐵損W15/50),將其結果示於圖1以及圖2。
從這些圖中可以得知,藉由將再結晶退火之平均昇溫速度設為100℃/s以上,便能夠大大地提升磁性特性。可推測是因為,將再結晶退火時的昇溫速度提高,便能夠抑制{111}晶粒之再結晶,而促進{110}晶粒或是{100}晶粒之再結晶,結果,在消除應力退火時,{110}晶粒或是{100}晶粒會侵蝕{111}晶粒而優先進行晶粒成長,故磁性特性會提升。
接下來,依據上述見解,將和上述實驗中所使用的鋼具有類似之組成成分的鋼數次裝料出鋼來製造非方向性電磁鋼板,從該鋼板以和上述相同要領切下愛普斯坦試驗片,施以消除應力退火之後,測定磁性特性,確認到相當大的落差。為了調查此原因,比較調查特性良好之試驗片以及較差的試驗片之後,發現到磁性特性較差的試 驗片,在晶界中析出多量的MnSe,且消除應力退火後的粒徑也變小。
於是,為了調查Se含有量對於消除應力退火時之晶粒成長性的影響,將C:0.0021mass%、Si:1.8mass%、Mn:0.50mass%、P:0.03mass%、S:0.0019mass%、Al:0.3mass%以及N:0.0025mass%作為基本成分,於該成分中將Se在Tr.~0.0050mass%之範圍內做各種變化的方式來添加之鋼,將該鋼在實驗室溶解,製成鋼塊之後,將其熱間壓延製成板厚度2.0mm的熱延板,其後,將其冷間壓延至板厚度0.35mm為止後,在直接通電加熱爐,以平均昇溫速度200℃/s加熱至740℃為止;以30℃/s從740℃加熱至800℃為止,以此溫度維持10秒後,將其冷卻製成冷延退火板。
從如此得到的冷延退火板,切下L:180mm×C:30mm的L方向試驗片以及L:30mm×C:180mm的C方向試驗片,施以750℃×2小時的消除應力退火後,以愛普斯坦法測定磁性特性(磁通密度B50、鐵損W15/50),將其結果示於圖3以及圖4。
從這些圖中,可以得知藉由將Se的含有量減低為0.0010mass%以下,磁性特性便會提升,換言之,添加超過0.0010mass%的Se的話,在晶界中便會析出MnSe,而會阻礙消除應力退火時的晶粒成長,使磁性特性劣化。本發明,是依據上述新穎見解而完成者。
接下來,說明本發明的非方向性電磁鋼板 (製品板)的組成成分。
C:0.005mass%以下
如果C在製品鋼板中含有超過0.005mass%,便會導致磁性衰減而使鐵損特性產生劣化,故上限設為0.005mass%。較佳為0.003mass%以下。
Si:4mass%以下
Si是對提高鋼的固有阻抗,而減低鐵損有效的元素,為了得到此效果添加1mass%以上較佳。另一方面,如添加超過4mass%的話,磁通密度會降低,且難以透過壓延進行製造,所以上限為4mass%。較佳為在1~4mass%,更佳為在1.5~3mass%的範圍內。
Mn:0.03~2mass%
Mn是對改善熱間加工性有效的元素,如未滿0.03mass%會無法得到充分的效果;另一方面,添加超過2mass%的話,會導致原料成本上昇,所以設為在0.03~2mass%的範圍內。較佳為0.05~2mass%,更佳為0.1~1.6mass%的範圍內。
P:0.2mass%以下
P是對提高鋼的固有阻抗,而減低鐵損有效的元素,如果添加0.2mass%以上,會使鋼硬質化,而導致壓延性降低,所以上限設為0.2mass%。較佳為在0.01~ 0.1mass%的範圍內。
S:0.004mass%以下
S是不可避免地混入其中的不純物元素,如果含有超過0.004mass%的話,便會形成硫化物系析出物而阻礙消除應力退火時的晶粒成長,使磁性特性劣化,所以在本發明中將上限設為0.004mass%。較佳為0.003mass%以下。
Al:2mass%以下
Al和Si同樣,是對提高鋼的固有阻抗,而減低鐵損有效的元素,但如果添加超過2mass%的話,便難以透過壓延進行製造,所以上限設為2mass%。下限值沒有特別的限制,就算是0mass%亦可。較佳為在0.001~2mass%,更佳為在0.1~1mass%的範圍內。
N:0.004mass%以下
N是不可避免地混入其中的不純物元素,如果含有超過0.004mass%的話,會形成氮化物系析出物而阻礙消除應力退火時的晶粒成長,使磁性特性劣化,所以在本發明中將上限設為0.004mass%。較佳為0.003mass%以下。
Se:0.0010mass%以下
從上述實驗結果可以得知,Se是會使消除應力退火後的磁性特性劣化的有害元素。因此,在本發明中,將 Se限制為0.0010mass%以下。較佳為0.0005mass%以下。
本發明之非方向性電磁鋼板,除了上述必須成分之外,可適當地含有以下的成分。
Sn、Sb:各0.003~0.5mass%
Sn以及Sb,不只能夠改善集合組織而提升磁通密度,還具有抑制鋼板表層的氧化及氮化,以及伴隨其所產生的表層微細晶粒之生成,而防止磁性特性劣化的作用效果。為了得到此效果,添加0.003mass%以上之Sn以及Sb中的1種或2種較佳。另一方面,如添加超過0.5mass%的話,反而會有造成阻礙結晶粒的成長,而導致磁性特性降低之虞慮。因此,較佳為將Sn以及Sb以各0.003~0.5mass%的範圍內進行添加。
Ca:0.0010~0.005mass%
Ca由於會與Se化合物複合化而形成粗大的析出物,所以具有促進消除應力退火時的晶粒成長,而改善磁性特性的效果。為了得到此效果,添加0.0010mass%以上較佳。另一方面,如添加超過0.005mass%的話,CaS的析出量會變多,反而會提升鐵損值,所以上限設為0.005mass%較佳。
此外,本發明之非方向性電磁鋼板,上述成分以外的殘餘部分是Fe以及不可避免的不純物。但是,只要是不阻礙本發明的作用效果之範圍內,亦可含有其他元素。
接下來,說明本發明之半製程非方向性電磁鋼板的製造方法。
本發明之非方向性電磁鋼板的製造方法是,首先,將具有符合本發明的上述組成成分之鋼,以通常的精鍊製程予以熔製,以連續鑄造法或是造塊-分塊壓延法製成鋼胚,該通常的精鍊製程是使用轉爐或是電氣爐、以及真空除氣裝置等來進行。
接下來,將上述鋼胚以通常的方法熱間壓延,製成熱延板後,因應必要施以熱延板退火。此熱延板退火,在本發明中不是必須的步驟,但由於對磁性特性之提升有效,適當地加以採用較佳。如要施以熱延板退火,退火溫度設為在750~1050℃之範圍內較佳。是因為如果退火溫度未滿750℃,便會有未再結晶組織殘留,而無法得到熱延板退火的效果之虞慮;另一方面,如果超過1050℃,便會對退火設備帶來相當大的負擔。更佳為在800~1000℃之範圍內。
經上述熱間壓延後;或者是經上述熱間壓延後施以熱延板退火過後的鋼板,其後,經過酸洗之後,藉由1次冷間壓延或者是包含中間退火之2次以上的冷間壓延,製成具有最終板厚度的冷延板。此時的壓下率等之壓延條件,和通常的非方向性電磁鋼板的製造條件同樣亦無妨。
接下來,對上述冷間壓延後的鋼板,施以再結晶退火。此再結晶退火,是本發明中最重要的步驟,加 熱條件是急速加熱至再結晶溫度範圍為止,具體而言,須要在室溫~740℃之間以100℃/s以上之平均昇溫速度急速加熱。且,急速加熱的終點溫度至少是740℃即可,或是超過740℃亦可,740℃是再結晶結束的溫度。但是,由於終點溫度愈是高溫,加熱所需要的設備成本或是電力成本會增大,而在低價製造的方面上不理想。且,關於以100℃/s以上急速加熱的方法,並沒有特別的限制,例如通電加熱法或者是誘導加熱法等的方法便能夠合適地進行使用。
經過急速加熱而再結晶的鋼板,其後適當地施以均熱退火之後,予以冷卻,製成製品板。此外,從上述再結晶溫度至均熱溫度為止的昇溫速度、均熱溫度、以及均熱時間,只要遵循通常的非方向性電磁鋼板所被施予的條件來進行即可,並無特別限制,較佳為,例如,從740℃至均熱溫度為止的昇溫速度在1~50℃/s,均熱溫度在740~950℃,均熱時間在5~60秒的範圍內。更佳的均熱溫度是在740~900℃的範圍內。另外,關於均熱退火後的冷卻條件也沒有特別的限制。
〔實施例〕
具有表1所示的各種組成成分的鋼,將其熔製製成鋼胚後,將該鋼胚以1080℃×30分再加熱後,予以熱間壓延製成板厚度2.0mm的熱延板,以同樣的表1所示的各種條件施以熱延板退火後,以1次冷間壓延,製成 在同樣的表1所示的各種板厚度的冷延板。其後,將上述冷延板,以直接通電加熱爐,在同樣的表1所示的條件下急速加熱至急速加熱終點溫度之後,以20℃/s加熱至均熱溫度,維持10秒後,予以冷卻製成冷延退火板(非方向性電磁鋼板)。
從如此得到的冷延退火板,切下L:180mm×C:30mm的L方向樣本,以及C:180mm×L:30mm的C方向樣本,施以750℃×2小時的消除應力退火之後,以愛普斯坦法測定磁性特性(磁通密度B50、鐵損W15/50)。
將上述測定的結果,與鋼成分、再結晶退火 條件一併示於表1。從表1可以得知,符合本發明的組成成分之非方向性電磁鋼板,任一者皆是在消除應力退火後具有優秀磁性特性。

Claims (2)

  1. 一種半製程非方向性電磁鋼板的製造方法,是將鋼胚熱間壓延,再冷間壓延之後,施以再結晶退火之非方向性電磁鋼板的製造方法,該鋼胚為含有C:0.005mass%以下、Si:4mass%以下、Mn:0.03~2mass%、P:0.2mass%以下、S:0.004mass%以下、Al:2mass%以下、N:0.004mass%以下、Se:0.0010mass%以下、以及Ca:0.0010~0.005mass%,且殘餘部分是由Fe以及不可避免的不純物所成的組成成分,其特徵為:將前述再結晶退火中達到740℃為止的平均升溫速度以100℃/s以上來進行加熱。
  2. 如請求項1所記載的半製程非方向性電磁鋼板的製造方法,其中,除上述組成成分之外,更進一步地含有選自Sn以及Sb當中之一種或兩種,各0.003~0.5mass%。
TW102148447A 2013-02-21 2013-12-26 磁性特性優秀之半製程非方向性電磁鋼板的製造方法 TWI555853B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013031607 2013-02-21

Publications (2)

Publication Number Publication Date
TW201435090A TW201435090A (zh) 2014-09-16
TWI555853B true TWI555853B (zh) 2016-11-01

Family

ID=51390849

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102148447A TWI555853B (zh) 2013-02-21 2013-12-26 磁性特性優秀之半製程非方向性電磁鋼板的製造方法

Country Status (8)

Country Link
US (1) US9978488B2 (zh)
EP (1) EP2960345B1 (zh)
JP (1) JP6008157B2 (zh)
KR (1) KR20150093807A (zh)
CN (1) CN104937118A (zh)
RU (1) RU2617304C2 (zh)
TW (1) TWI555853B (zh)
WO (1) WO2014129034A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5892327B2 (ja) * 2012-03-15 2016-03-23 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
US9978488B2 (en) 2013-02-21 2018-05-22 Jfe Steel Corporation Method for producing semi-processed non-oriented electrical steel sheet having excellent magnetic properties
JP6048699B2 (ja) 2015-02-18 2016-12-21 Jfeスチール株式会社 無方向性電磁鋼板とその製造方法ならびにモータコア
CN104805261A (zh) * 2015-04-02 2015-07-29 苏州市鑫渭阀门有限公司 高精度阀体的去应力方法
KR102062184B1 (ko) * 2015-08-04 2020-01-03 제이에프이 스틸 가부시키가이샤 자기 특성이 우수한 무방향성 전자 강판의 제조 방법
WO2017086036A1 (ja) * 2015-11-20 2017-05-26 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
JP6402865B2 (ja) * 2015-11-20 2018-10-10 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
JP6748375B2 (ja) * 2016-10-19 2020-09-02 Jfeスチール株式会社 Si含有熱延鋼板の脱スケール方法
JP6866696B2 (ja) * 2017-03-07 2021-04-28 日本製鉄株式会社 無方向性電磁鋼板およびその製造方法、並びにモータコアおよびその製造方法
BR112019017229B1 (pt) * 2017-03-07 2023-03-28 Nippon Steel Corporation Chapa de aço elétrica não orientada e método de fabricação de chapa de aço elétrica não orientada
CN108660295A (zh) * 2017-03-27 2018-10-16 宝山钢铁股份有限公司 一种低铁损取向硅钢及其制造方法
WO2019182022A1 (ja) 2018-03-23 2019-09-26 日本製鉄株式会社 無方向性電磁鋼板
WO2020217604A1 (ja) * 2019-04-22 2020-10-29 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
CN114008224A (zh) * 2019-06-28 2022-02-01 杰富意钢铁株式会社 无方向性电磁钢板的制造方法和马达铁芯的制造方法以及马达铁芯
KR102325011B1 (ko) * 2019-12-20 2021-11-11 주식회사 포스코 무방향성 전기강판 및 그 제조방법
US20240102122A1 (en) * 2020-12-15 2024-03-28 Lg Electronics Inc. Non-oriented electrical steel sheet, and method for manufacturing same
KR102515028B1 (ko) * 2021-02-10 2023-03-27 엘지전자 주식회사 무방향성 전기강판의 제조방법 및 이에 의해 제조된 무방향성 전기강판
US20240084415A1 (en) * 2021-04-02 2024-03-14 Nippon Steel Corporation Non-oriented electrical steel sheet and method for manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001323344A (ja) * 2000-05-15 2001-11-22 Kawasaki Steel Corp 加工性およびリサイクル性に優れた無方向性電磁鋼板
JP2012149337A (ja) * 2010-12-28 2012-08-09 Jfe Steel Corp 高強度電磁鋼板およびその製造方法
JP2013010982A (ja) * 2011-06-28 2013-01-17 Jfe Steel Corp 無方向性電磁鋼板の製造方法

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3948691A (en) 1970-09-26 1976-04-06 Nippon Steel Corporation Method for manufacturing cold rolled, non-directional electrical steel sheets and strips having a high magnetic flux density
US3935038A (en) 1971-10-28 1976-01-27 Nippon Steel Corporation Method for manufacturing non-oriented electrical steel sheet and strip having no ridging
JPS583027B2 (ja) 1979-05-30 1983-01-19 川崎製鉄株式会社 鉄損の低い冷間圧延無方向性電磁鋼板
JPS58151453A (ja) * 1982-01-27 1983-09-08 Nippon Steel Corp 鉄損が低くかつ磁束密度のすぐれた無方向性電磁鋼板およびその製造法
JPS61102104A (ja) 1984-09-28 1986-05-20 Fujitsu Ltd 物品搬送システムのイニシャライズ処理方法
JPS62180014A (ja) 1986-02-04 1987-08-07 Nippon Steel Corp 鉄損が低くかつ磁束密度の優れた無方向性電磁鋼板およびその製造方法
JPH0643614B2 (ja) 1986-11-22 1994-06-08 住友金属工業株式会社 セミプロセス電磁鋼板の製造方法
JPS644455A (en) 1987-06-25 1989-01-09 Sumitomo Metal Ind Isotropic electromagnetic steel plate having high magnetic flux density
US4898627A (en) 1988-03-25 1990-02-06 Armco Advanced Materials Corporation Ultra-rapid annealing of nonoriented electrical steel
JP2971080B2 (ja) 1989-10-13 1999-11-02 新日本製鐵株式会社 磁気特性の優れた無方向性電磁鋼板
JPH07116512B2 (ja) 1990-01-29 1995-12-13 日本鋼管株式会社 磁気特性の優れたセミプロセス無方向性電磁鋼板の製造方法
RU2092605C1 (ru) 1991-10-22 1997-10-10 Поханг Айрон энд Стил Ко., Лтд. Листы изотропной электротехнической стали и способы их изготовления
JPH05214444A (ja) 1992-01-31 1993-08-24 Sumitomo Metal Ind Ltd 磁気特性面内異方性の小さい無方向性電磁鋼板の製造法
JP3087435B2 (ja) 1992-04-22 2000-09-11 日本電気株式会社 遠隔操作用キーボード付きコンピュータシステム
JPH06228644A (ja) 1993-02-02 1994-08-16 Sumitomo Metal Ind Ltd 小型静止器用電磁鋼板の製造方法
JPH06228645A (ja) 1993-02-02 1994-08-16 Sumitomo Metal Ind Ltd 小型静止器用電磁鋼板の製造方法
US6139650A (en) 1997-03-18 2000-10-31 Nkk Corporation Non-oriented electromagnetic steel sheet and method for manufacturing the same
JP4264987B2 (ja) 1997-06-27 2009-05-20 Jfeスチール株式会社 無方向性電磁鋼板
US5955201A (en) 1997-12-19 1999-09-21 Armco Inc. Inorganic/organic insulating coating for nonoriented electrical steel
US6045571A (en) 1999-04-14 2000-04-04 Ethicon, Inc. Multifilament surgical cord
JP4019577B2 (ja) 1999-12-01 2007-12-12 Jfeスチール株式会社 電動パワーステアリングモータコア
JP4126479B2 (ja) 2000-04-28 2008-07-30 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
AU2003216420A1 (en) 2002-05-08 2003-11-11 Ak Properties, Inc. Method of continuous casting non-oriented electrical steel strip
JP4358550B2 (ja) 2003-05-07 2009-11-04 新日本製鐵株式会社 圧延方向とその板面内垂直方向磁気特性の優れた無方向性電磁鋼板の製造方法
KR100772243B1 (ko) * 2003-10-06 2007-11-01 신닛뽄세이테쯔 카부시키카이샤 고강도 전자 강판 및 그 제조 방법
JP4599843B2 (ja) 2004-01-19 2010-12-15 住友金属工業株式会社 無方向性電磁鋼板の製造方法
JP4329550B2 (ja) 2004-01-23 2009-09-09 住友金属工業株式会社 無方向性電磁鋼板の製造方法
JP5009514B2 (ja) 2005-08-10 2012-08-22 Jfeスチール株式会社 無方向性電磁鋼板
JP4586741B2 (ja) 2006-02-16 2010-11-24 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法
RU2398894C1 (ru) * 2006-06-16 2010-09-10 Ниппон Стил Корпорейшн Лист высокопрочной электротехнической стали и способ его производства
JP4855220B2 (ja) 2006-11-17 2012-01-18 新日本製鐵株式会社 分割コア用無方向性電磁鋼板
JP2008150697A (ja) 2006-12-20 2008-07-03 Jfe Steel Kk 電磁鋼板の製造方法
JP5417689B2 (ja) * 2007-03-20 2014-02-19 Jfeスチール株式会社 無方向性電磁鋼板
JP5854182B2 (ja) 2010-08-30 2016-02-09 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
JP5668460B2 (ja) * 2010-12-22 2015-02-12 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
JP5892327B2 (ja) * 2012-03-15 2016-03-23 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
US9978488B2 (en) 2013-02-21 2018-05-22 Jfe Steel Corporation Method for producing semi-processed non-oriented electrical steel sheet having excellent magnetic properties
TWI531663B (zh) * 2013-04-09 2016-05-01 新日鐵住金股份有限公司 無方向性電磁鋼板及其製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001323344A (ja) * 2000-05-15 2001-11-22 Kawasaki Steel Corp 加工性およびリサイクル性に優れた無方向性電磁鋼板
JP2012149337A (ja) * 2010-12-28 2012-08-09 Jfe Steel Corp 高強度電磁鋼板およびその製造方法
JP2013010982A (ja) * 2011-06-28 2013-01-17 Jfe Steel Corp 無方向性電磁鋼板の製造方法

Also Published As

Publication number Publication date
RU2617304C2 (ru) 2017-04-24
EP2960345A1 (en) 2015-12-30
RU2015139800A (ru) 2017-03-27
KR20150093807A (ko) 2015-08-18
TW201435090A (zh) 2014-09-16
JP6008157B2 (ja) 2016-10-19
CN104937118A (zh) 2015-09-23
EP2960345A4 (en) 2016-06-08
EP2960345B1 (en) 2020-01-01
WO2014129034A1 (ja) 2014-08-28
JPWO2014129034A1 (ja) 2017-02-02
US9978488B2 (en) 2018-05-22
US20150357101A1 (en) 2015-12-10

Similar Documents

Publication Publication Date Title
TWI555853B (zh) 磁性特性優秀之半製程非方向性電磁鋼板的製造方法
TWI516612B (zh) Method for manufacturing non - directional electromagnetic steel sheet
TWI490342B (zh) Manufacturing method of non - directional electromagnetic steel sheet
TWI481724B (zh) Manufacturing method of non - directional electromagnetic steel sheet
KR102093590B1 (ko) 무방향성 전자 강판의 제조 방법
TWI557240B (zh) Excellent non-directional electrical steel plate with excellent magnetic properties
JP5780013B2 (ja) 無方向性電磁鋼板の製造方法
KR101737871B1 (ko) 방향성 전자 강판의 제조 방법
KR102062184B1 (ko) 자기 특성이 우수한 무방향성 전자 강판의 제조 방법
JP5760590B2 (ja) 方向性電磁鋼板の製造方法
WO2013080891A1 (ja) 無方向性電磁鋼板の製造方法
JP6146582B2 (ja) 無方向性電磁鋼板の製造方法