TWI554040B - 自校正式以電壓控制振盪器為基礎之類比數位轉換器及其方法 - Google Patents

自校正式以電壓控制振盪器為基礎之類比數位轉換器及其方法 Download PDF

Info

Publication number
TWI554040B
TWI554040B TW104115965A TW104115965A TWI554040B TW I554040 B TWI554040 B TW I554040B TW 104115965 A TW104115965 A TW 104115965A TW 104115965 A TW104115965 A TW 104115965A TW I554040 B TWI554040 B TW I554040B
Authority
TW
Taiwan
Prior art keywords
signal
analog
digital
correction
scheduling
Prior art date
Application number
TW104115965A
Other languages
English (en)
Other versions
TW201545484A (zh
Inventor
嘉亮 林
Original Assignee
瑞昱半導體股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞昱半導體股份有限公司 filed Critical 瑞昱半導體股份有限公司
Publication of TW201545484A publication Critical patent/TW201545484A/zh
Application granted granted Critical
Publication of TWI554040B publication Critical patent/TWI554040B/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/10Calibration or testing
    • H03M1/1009Calibration
    • H03M1/1014Calibration at one point of the transfer characteristic, i.e. by adjusting a single reference value, e.g. bias or gain error
    • H03M1/1019Calibration at one point of the transfer characteristic, i.e. by adjusting a single reference value, e.g. bias or gain error by storing a corrected or correction value in a digital look-up table
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/10Calibration or testing
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/10Calibration or testing
    • H03M1/1004Calibration or testing without interrupting normal operation, e.g. by providing an additional component for temporarily replacing components to be tested or calibrated
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/10Calibration or testing
    • H03M1/1009Calibration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/1235Non-linear conversion not otherwise provided for in subgroups of H03M1/12
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/60Analogue/digital converters with intermediate conversion to frequency of pulses

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Analogue/Digital Conversion (AREA)

Description

自校正式以電壓控制振盪器為基礎之類比數位轉換器及其方法
本發明是關於一種類比數位轉換器(analog-to-digital converter;ADC),特別是關於一種自校正式以電壓控制振盪器為基礎之類比數位轉換器及其方法。
本領域熟習技術人員應了解於說明書中所使用的與微電子相關之各種術語與基本概念,例如:P型金氧半電晶體(p-channel metal-oxide semiconductor transistor;PMOS transistor)、「源極退化(source degeneration)」、「電壓」、「電流」、「振盪」、「電壓控制振盪器(voltage-controlled oscillator;VCO)」、「環形振盪器」、「頻率」、「時脈」、「類比數位轉換器(analog-to-digital converter;ADC)」及「數位類比轉換器(digital-to-analog converter;DAC)」。這些術語與基本概念能由諸如教科書等現有技術文件而顯而易見,因此於說明書中不再對其進行定義或解釋。其中,教科書可例如:類比CMOS積體電路的設計(Design of Analog CMOS Integrated Circuits,Behzad Razavi著、McGraw-Hill出版,且 ISBN 0-07-118839-8)。
電壓控制振盪器接收一電壓並輸出一振盪信號,且振盪信號的頻率(振盪的頻率)是由接收到的電壓所決定。第1圖為電壓控制振盪器的理想轉移特性的示意圖。參照第1圖,頻率隨著電壓增加而線性增加;當電壓為「Va 」時,頻率為「fa 」;而當電壓增加為「Vb 」時,頻率亦對應線性增加為「fb 」。若減少振盪信號的頻率,則能推論出電壓會因而減少。有時,取代直接偵測振盪信號的頻率,偵測振盪信號的相位更為方便;於此,頻率能藉由先偵測相位再執行相位的時間導數(time derivative)來直接偵測。只要頻率是以數位字來偵測及表示,此數位字就是電壓的數位表示法。在此方式下,電壓控制振盪器能用以實現類比數位轉換器。
參照第2圖,以電壓控制振盪器為基礎之類比數位轉換器200包括一電壓控制振盪器210、一相位數位轉換器(phase-to-digital converter;PDC)220以及一導數運算器(derivative operator)230。電壓控制振盪器210接收一電壓V並輸出一振盪信號K。相位數位轉換器220接收振盪信號K並依據一時脈CLK所提供的時序輸出一相位取樣信號P,並且此相位取樣信號P表示振盪信號K的相位。導數運算器230又稱微分運算器,並且其運算式為「1-Z-1 」。導數運算器230接收相位取樣信號P並輸出一數位輸出信號D。其中,電壓控制振盪器210包括一電壓電流轉換器(voltage- to-current converter;V2I)211以及一電流控制環形振盪器(current-controlled ring oscillator;ICRO)212。電壓電流轉換器211轉換電壓V為一電流I。電流控制環形振盪器212依據電流I產生振盪信號K。相位數位轉換器220包括一環形取樣器(ring sampler)221以及一相位解碼器(phase decoder)222。環形取樣器221藉由利用時脈CLK取樣振盪信號K來輸出一數位取樣信號S。相位解碼器222將數位取樣信號S解碼成相位取樣信號P。如同前述,振盪信號K的頻率取決於電壓V;振盪信號K的相位以相位取樣信號P來偵測及表示;數位輸出信號D為相位取樣信號P的時間導數,並且數位輸出信號D表示振盪信號K的頻率(因為頻率為相位的時間導數)因而能直接表示電壓V。電壓電流轉換器211、電流控制環形振盪器212、環形取樣器221及相位解碼器222的詳細架構及運作如下列作者G. Taylor及I. Galton的二篇文獻所述:(1)2010年12月第45卷第12號之IEEE固態電路期刊(IEEE Journal of Solid-State Circuits)中第2634-1546頁的「Mostly-Digital Variable-Rate Continuous-Time Delta-Sigma Modulator ACD」;以及(2)2013年2月第48卷第4號之IEEE固態電路期刊中第983-995頁的「A Reconfigurable Mostly-Digital Delta-Sigma ADC with a Worst-case FOM of 160dB」。
類比數位轉換器200有一議題是:電壓控制振盪器210的轉移特性實際上無法完全地線性;即,振盪信號K的頻率無法隨著電壓V線性地改變。於此,除非執行校正,不然數位輸出信號D無法精準地表示電壓V。雖然作者G. Taylor及I. Galton已努力研究以藉由校正來達成精準的類比數位轉換,但是校正架構是麻煩的且要耗費長時間來完成。
鑒於以上的問題,本發明在於提供一種自校正式以電壓控制振盪器為基礎之類比數位轉換器及其方法,藉以利用自校正架構以電壓控制振盪器為基礎執行準確的類比數位轉換,進而有效地校正以電壓控制振盪器為基礎之類比數位轉換器。
在一實施例中,一種類比數位轉換器包括一輸入調度單元、N個類比數位轉換單元、一輸出調度單元、一校正控制器以及一數位類比轉換器。於此,N為大於2之整數。輸入調度單元接收輸入信號及校正信號並依據選擇信號輸出N個調度信號。N個類比數位轉換單元分別接收N個調度信號、N個控制信號及N個映射表並分別輸出N個原始資料及N個精煉資料。輸出調度單元接收N個精煉資料並依據選擇信號輸出一輸出資料。校正控制器接收N個原始資料並輸出選擇信號、N個控制信號、N個映射表及一數位碼。數位類比轉換器接收數位碼並輸出校正信號。其中,選擇信號具有N個可能值,並且N個調度信號中選擇信號所指定之一個調度信號是源自於校正信號,而N個調度信號中之其他N-1個調度信號是源自輸入信號。在一實施例中,選擇信號是在N個可能值之間輪轉。在一實施例中,各類比數位轉換單元包括一電壓控制振盪器、一相位數位轉換器、一導數運算器以及一非線性校正單元。電壓控制振盪器接收各自對應的調度信號並依據各自對應的控制信號輸出一振盪信號。相位數位轉換器接收振盪信號並輸出一數位相位信號。導數運算器接收數位相位信號並輸出一原始資料。非線性校正單元接收對應的原始資料並根據對應的映射表輸出一精煉資料。在一實施例中,當輸入調度單元是將校正信號調度為調度信號時,校正控制器根據對應的原始資料的結果更新對應的映射表。在一實施例中,校正控制器使用一最小均方誤差演算法更新對應的映射表。
在一實施例中,一種類比數位轉換方法包括:接收一輸入信號、利用一數位類比轉換器產生一校正信號、提供N個類比數位轉換器、選擇N個類比數位轉換器中之一以進行校正、將校正信號調度給選擇之類比數位轉換器以執行校正信號的類比數位轉換並收集其產生的原始資料、將輸入信號調度給其他N-1個類比數位轉換器以執行輸入信號的類比數位轉換並收集其精煉資料、基於從選擇之類比數位轉換器收集之原始資料更新耦接於執行校正信號的類比數位轉換之選擇之類比數位轉換器的控制信號與映射表、加總從其他N-1個類比數位轉換器收集之精煉資料以產生一輸出資料、以及選擇N個類比數位轉換器中之另一個類比數位轉換器並重覆執行調度步驟、更新步驟與加總步驟。其中,各類比數位轉換器耦接控制信號與映射表並輸出原始資料與精煉資料。在一實施例中,更新步驟是利用一最小均方誤差演算法來更新映射表。在一實施例中,各類比數位轉換器包括:一電壓控制振盪器、一相位數位轉換器、一導數運算器以及一非線性校正單元。電壓控制振盪器接收校正信號和輸入信號中之一並依據耦接之控制信號輸出一振盪信號。相位數位轉換器接收振盪信號並輸出一數位相位信號。導數運算器接收數位相位信號並輸出原始資料。非線性校正單元接收原始資料並依據耦接之映射表輸出精煉資料。
在一實施例中,一種類比數位轉換的自校正方法包括:將一校正信號調度給一類比數位轉換器以執行校正信號的類比數位轉換來得到一原始資料、設定校正信號為一第一位準並執行原始資料的平均以得到一第一均值、設定校正信號為一第二位準並執行原始資料的平均以得到一第二均值、設定校正信號為一第三位準並執行原始資料的平均以得到一第三均值、設定校正信號為一第四位準並執行原始資料的平均以得到一第四均值、以類比數位轉換為理想狀態的推測情況決定第一均值的第一理想值、第二均值的第二理想值、第三均值的第三理想值及第四均值的第四理想值、以及實施最小均方誤差演算法來獲得用以將第一均值、第二均值、第三均值及第四均值分別映射成第一理想值、第二理想值、第三理想值及第四理想值之一組係數,以縮小均方誤差。
以下之詳細描述係參照所附圖式,藉由圖式說明,揭露本發明各種可實行之實施例。所記載之實施例是明確且充分揭露,以致使所屬技術領域中具有通常知識者能據以實施。不同之實施例間並非相互排斥,某些實施例可與一個或一個以上之實施例進行合併而成為新的實施例。因此,下列詳細描述並非用以限定本發明。
參照第3圖,類比數位轉換器(ADC)300包括一輸入調度單元310、一抖動調度單元330、三個類比數位轉換單元340、350、360、一輸出調度單元370、一校正控制器380以及一數位類比轉換器(DAC)390。三個類比數位轉換單元340、350、360各自耦接在輸入調度單元310、抖動調度單元330與輸出調度單元370之間。校正控制器380的輸入端耦接三個類比數位轉換單元340、350、360的輸出端,而校正控制器380的輸出端耦接輸入調度單元310的控制端、抖動調度單元330的控制端、三個類比數位轉換單元340、350、360的控制端、輸出調度單元370的控制端以及數位類比轉換器390的輸入端。數位類比轉換器390的輸出端耦接輸入調度單元310的輸入端。輸入調度單元310接收一輸入信號Vi 及一校正信號Vc ,藉以依據一選擇信號SS輸出三個調度信號V0 、V1 、V2 。抖動調度單元330依據選擇信號SS輸出三個抖動信號I0 、I1 、I2 。三個類比數位轉換單元340、350、360接收三個調度信號V0 、V1 、V2 、三個抖動信號I0 、I1 、I2 及三個控制信號C0 、C1 、C2 ,藉以與三個精煉資料D0 、D1 、D2 一起輸出三個原始資料R0 、R1 、R2 。其中,三個精煉資料D0 、D1 、D2 分別基於三個映射表T0 、T1 、T2 而產生。輸出調度單元370接收三個精煉資料D0 、D1 、D2 ,藉以依據選擇信號SS輸出一輸出資料Dout 。校正控制器380接收三個原始資料R0 、R1 、R2 ,藉以輸出選擇信號SS、三個控制信號C0 、C1 、C2 、三個映射表T0 、T1 、T2 及數位碼Wc 。數位類比轉換器390接收數位碼Wc ,藉以輸出一校正信號Vc 。類比數位轉換單元340、350、360均為以電壓控制振盪器(VCO)為基礎之類比數位轉換器,即,如同第2圖中之類比數位轉換器200。
在時序上,三個類比數位轉換單元340、350、360是依據一第一時脈CK1運作;校正控制器380是依據一第二時脈CK2運作;以及抖動調度單元330是依據一第三時脈CK3運作。舉例來說(但本發明不限於此),在一實施例中,第一時脈CK1的頻率為1.28GHz;第二時脈CK2的頻率為5MHz;而第三時脈CK3的頻率為160MHz。
對於類比數位轉換器300,輸入信號Vi 為需轉換成數位資料之輸入信號,而校正信號Vc 為以校正為目的而自我產生之預先已知的校正信號。三個類比數位轉換單元340、350、360對輸入信號Vi 或校正信號Vc 執行類比數位轉換。在給定階段,輸入調度單元310將輸入信號Vi 調度給三個類比數位轉換單元340、350、360中之二者,並將校正信號Vc 調度給三個類比數位轉換單元340、350、360中之剩餘者。三個原始資料R0 、R1 、R2 為三個類比數位轉換單元340、350、360的類比數位轉換的直接結果,並且因類比數位轉換單元340、350、360中之電壓控制振盪器的非線性轉換特性(如同前述)而具有誤差。三個映射表T0 、T1 、T2 用來修正非線性轉換特性,並分別提供給三個類比數位轉換單元340、350、360來產生三個精煉資料D0 、D1 、D2 。然而,三個精煉資料D0 、D1 、D2 中只有二個精煉資料為對輸入信號Vi 進行類比數位轉換的結果,而剩餘一個精煉資料為對校正信號Vc 進行類比數位轉換的結果。輸出調度單元370基於與對輸入信號Vi 進行類比數位轉換之二個類比數位轉換單元對應的二個精煉資料產生輸出資料Dout 。剩餘之一個類比數位轉換單元稱之為校正中;其對校正信號Vc 進行類比數位轉換來產生對應之原始資料(R0 、R1 或R2 ),並且所產生的對應之原始資料(R0 、R1 或R2 )是用以更新其所對應的控制信號(C0 、C1 或C2 )及映射表(T0 、T1 或T2 )。校正控制器380發出選擇信號SS給輸入調度單元310,使其有效地選擇三個類比數位轉換單元340、350、360中之一者進行校正,並允許另外二個類比數位轉換單元對輸入信號Vi 進行類比數位轉換。校正控制器380亦發出選擇信號SS給輸出調度單元370,使其有效地選擇來自對輸入信號Vi 進行類比數位轉換之二個類比數位轉換單元的精煉資料。此外,校正控制器380發出選擇信號SS給抖動調度單元330,使其將抖動信號調度給對輸入信號Vi 進行類比數位轉換之二個類比數位轉換單元。校正控制器380處理來自校正中之類比數位轉換單元的一原始資料(R0 、R1 或R2 ),並更新對應之控制信號(C0 、C1 或C2 )及對應之映射表(T0 、T1 或T2 )。再者,校正控制器380發出數位碼Wc 給數位類比轉換器390,使其依據校正程序產生校正信號Vc
抖動信號I0 、I1 、I2 是用以抑制寄生基調(spurious tone),否則此寄生基調會產生並減低類比數位轉換的效能;他們是可有可無,但是最好是有。換言之,若移除抖動調度單元330且三個抖動信號I0 、I1 、I2 不存在(或為0),儘管類比數位轉換器300可能有很差的效能,但將仍然可以運作。
在一實施例中,選擇信號SS具有三個可能值:0、1及2。當選擇信號SS為0時,類比數位轉換單元340為校正中;當選擇信號SS為1時,類比數位轉換單元350為校正中;以及當選擇信號SS為2時,類比數位轉換單元360為校正中。在一實施例中,輸入調度單元310執行可由下列Verilog模型(一種硬體描述語言)來行為上描述之功能:
即,當選擇信號SS為0時,校正信號Vc 被分配為調度信號V0 ,而輸入信號Vi 被分配為調度信號V1 、V2 ;當選擇信號SS為1時,校正信號Vc 被分配為調度信號V1 ,而輸入信號Vi 被分配為調度信號V0 、V2 ;以及當選擇信號SS為2時,校正信號Vc 被分配為調度信號V2 ,而輸入信號Vi 被分配為調度信號V0 、V1
在一實施例中,輸出調度單元370執行可由下列Verilog模型來行為上描述之功能:
即,當選擇信號SS為0時,輸出資料Dout 為精煉資料D1 與精煉資料D2 的總合;當選擇信號SS為1時,輸出資料Dout 為精煉資料D0 與精煉資料D2 的總合;以及當選擇信號SS為2時,輸出資料Dout 為精煉資料D0 與精煉資料D1 的總合。
在一實施例中,抖動調度單元330包括一抖動信號產生器,並且此抖動信號產生器產生一第一擬隨機信號Id1 以及一第二擬隨機信號Id2 。於此,第二擬隨機信號Id2 為第一擬隨機信號Id1 的反向。抖動調度單元330是以可由下列Verilog模型來行為上描述之方式來調度第一擬隨機信號Id1 與第二擬隨機信號Id2
即,當選擇信號SS為0時,抖動信號I0 為0、第一擬隨機信號Id1 被分配為抖動信號I1 ,並且反相信號(第二擬隨機信號Id2 )被分配為抖動信號I2 ;當選擇信號SS為1時,抖動信號I1 為0、第一擬隨機信號Id1 被分配為抖動信號I2 ,並且反相信號(第二擬隨機信號Id2 )被分配為抖動信號I0 ;以及當選擇信號SS為2時,抖動信號I2 為0、第一擬隨機信號Id1 被分配為抖動信號I0 ,並且反相信號(第二擬隨機信號Id2 )被分配為抖動信號I1 。在一實施例中,第一擬隨機信號Id1 與第二擬隨機信號Id2 為由電流式數位類比轉換器依據第三時脈CK3運作而產生之電流信號。例如,以線性迴授位移暫存器來產生擬隨機信號;此為本領域所熟知,故於此不再贅述。
在一實施例中,輸入信號Vi 、校正信號Vc 、三個調度信號V0 、V1 、V2 以及三個抖動信號I0 、I1 、I2 可為差動信號。差動信號包括一第一端信號(標示有「+」)與一第二端信號(標示有「-」)。舉例來說,應能瞭解,當輸入信號標示為「Vi 」時,輸入信號Vi 包括第一端輸入信號Vi +與第二端輸入信號Vi -。同樣地,能以此類推地標示校正信號Vc 、三個調度信號V0 、V1 、V2 以及三個抖動信號I0 、I1 、I2 ;即,校正信號Vc 包括第一端校正信號Vc +與第二端校正信號Vc -;調度信號V0 /V1 /V2 包括第一端調度信號V0+ /V1+ /V2+ 與第二端調度信號V0- /V1- /V2- ;抖動信號I0 /I1 /I2 包括第一端抖動信號I0+ /I1+ /I2+ 與第二端抖動信號I0- /I1- /I2- 。另外,各資料包括一第一部分資料(標示有「+」)與一第二部分資料(標示有「-」);即,各原始資料R0 /R1 /R2 包括第一部分原始資料R0+ /R1+ /R2+ 與第二部分原始資料R0- /R1- /R2- 。同樣地,各映射表包括一第一子表(標示有「+」)與一第二子表(標示有「-」);即,各映射表T0 /T1 /T2 包括第一子表T0+ /T1+ /T2+ 與第二子表T0- /T1- /T2-
第4圖為適用於實現第3圖之類比數位轉換單元340、350、360之類比數位轉換單元400的功能方塊圖。以第3圖所示之類比數位轉換單元350之信號方式(其接收調度信號V1 、抖動信號I1 、控制信號C1 及映射表T1 並且輸出精煉資料D1 及原始資料R1 )為例,然而應可明瞭的,除了輸入/輸出信號不同外,相同的實施例亦能應用到類比數位轉換單元340、360。同樣地,於此使用差動信號,因此各信號包括一第一端信號(標示有「+」)與一第二端信號(標示有「-」),如同前述。類比數位轉換單元400包括一電壓電流轉換器(V2I)401、一對加總電路411、412、一對電流控制環形振盪器(ICRO)421、422、一對相位數位轉換器(PDC)431、432、一對導數運算器(derivative operator)441、442(其運算式為「1-Z-1 」)、一對非線性校正(nonlinearity correction;NLC)單元451、452以及一加總單元461。加總電路411耦接在電壓電流轉換器401與電流控制環形振盪器421之間,並且加總電路412耦接在電壓電流轉換器401與電流控制環形振盪器422之間。相位數位轉換器431耦接在電流控制環形振盪器421與導數運算器441之間,並且相位數位轉換器432耦接在電流控制環形振盪器422與導數運算器442之間。非線性校正單元451耦接在導數運算器441與加總單元461之間,並且非線性校正單元452耦接在導數運算器442與加總單元461之間。電壓電流轉換器401依據控制信號C1 將調度信號V1 轉換成一中間電流信號Ii (其包括第一端中間電流信號Ii+ 與第二端中間電流信號Ii- )。加總電路411、412加總中間電流信號Ii 與抖動信號I1 以產生一總合電流It (其包括第一端總合電流It+ 與第二端總合電流It- )。電流控制環形振盪器421、422接收總合電流It 並輸出一振盪信號K1 (其包括第一端振盪信號K1+ 與第二端振盪信號K1- )。相位數位轉換器431、432接收振盪信號K1 並輸出一數位相位信號P1 (其包括第一端數位相位信號P1+ 與第二端數位相位信號P1- )。導數運算器441、442接收數位相位信號P1 並輸出原始資料R1 。非線性校正單元451、452接收原始資料R1 並依據映射表T1 輸出精煉資料D1 。如前述,於此使用差動信號,因此精煉資料D1 包括一加端精煉資料D1+ 及一減端精煉資料D1- 。為了將差動信號轉換成單端信號,因此需要使用加總單元461以將加端精煉資料D1+ 減去減端精煉資料D1- 。注意,於此使用第一時脈CK1來提供時序。
第5圖為適用於實現第4圖之電壓電流轉換器401之電壓電流轉換器500的概要示意圖。電壓電流轉換器500包括一對電流源501、502以及一差動對電晶體505、506。電晶體505耦接在電流源501與電流節點507之間,而電晶體506耦接在電流源502與電流節點508之間。電流源501、502受控於控制信號C1 並用以輸出一偏壓電流Ib (其包括第一端偏壓電流Ib+ 與第二端偏壓電流Ib- )。差動對電晶體505、506可以P型金氧半電晶體(PMOS transistor)實現。差動對電晶體505、506接收偏壓電流Ib 與調度信號V1 ,並輸出中間電流信號Ii 給電流節點507、508。同時,抖動信號I1 (其包括第一端抖動信號I1+ 與第二端抖動信號I1- )亦注入至電流節點507、508,因而形成總合電流It 。應注意的是,第4圖之加總電路411、412能隱含地由將抖動信號I1 與中間電流信號Ii 都注入至電流節點507、508來實現。電壓電流轉換器500更包括一電阻503。電阻503耦接在電流源501與電晶體505的接點以及電流源502與電晶體506的接點之間。電阻503提供差動對電晶體505、506的源極退化。在一實施例中,當控制信號C1 的值增加時,偏壓電流Ib 則隨之增加;反之,當控制信號C1 的值減少時,偏壓電流Ib 則隨之減少。應注意的是,「VDD 」表示供電節點,如同本領域通常技術人員所熟知。在一實施例中,控制信號C1 為8位元數位字,並且電流源501、502皆為8位元電流式數位類比轉換器。
再次參照第4圖。相位數位轉換器431、432能以環形取樣器及在其後之相位解碼器來實現,如同第2圖所示之相位數位轉換器220。有關實現電流控制環形振盪器421、422、環形取樣器及相位解碼器之詳細資訊能由前述之作者G. Taylor及I. Galton的二篇文獻而顯而易見,故於此不再贅述。
在一實施例中,第一子表T1+ 與第二子表T1- 為分別將第一部分原始資料R1+ 與第二部分原始資料R1- 映射為加端精煉資料D1+ 及減端精煉資料D1- 之子表。在一實施例中,電流控制環形振盪器421、422皆為28相位環形振盪器;第一端數位相位信號P1+ 與第二端數位相位信號P1- 分別代表振盪信號K1 (其包括第一端振盪信號K1+ 與第二端振盪信號K1- )的數位相位,且為在範圍{0, 1, 2, 3, ..., 27}中之整數;括第一部分原始資料R1+ 與第二部分原始資料R1- 為在範圍{-14, -13, –12, ..., 11, 12, 13}中之整數;第一子表T1+ 為表列第一部分原始資料R1+ 的28個可能值中之每一者與加端精煉資料D1+ 的對應值之28項目表;以及第二子表T1- 為表列第二部分原始資料R1- 的28個可能值中之每一者與減端精煉資料D1- 的對應值之28項目表。非線性校正單元451、452分別透過查表依據第一子表T1+ 與第二子表T1- 將第一部分原始資料R1+ 與第二部分原始資料R1- 映射為加端精煉資料D1+ 與減端精煉資料D1-
參照第3圖,在一實施例中,校正控制器380包括一有限狀態機(finite state machine)。有限狀態機依據第二時脈CK2運作,並且在三個狀態S0、S1、S2下循環以分別校正類比數位轉換單元340、350、360,如第6圖所示之流程圖600所示。在狀態S0,將選擇信號SS設為0,並且依據原始資料R0 校正類比數位轉換單元340;在狀態S1,將選擇信號SS設為1,並且依據原始資料R1 校正類比數位轉換單元350;在狀態S2,將選擇信號SS設為2,並且依據原始資料R2 校正類比數位轉換單元360。以校正類比數位轉換單元350(當選擇信號SS設為1時)之架構為例,應能明瞭的是相同架構亦能透過改變信號而應用在校正類比數位轉換單元340、360,即,分別將選擇信號SS改變為0及2、分別改變調度信號V1 為調度信號V0 及調度信號V2 、分別改變控制信號C1 為控制信號C0 及控制信號C2 、分別改變原始資料R1 為原始資料R0 及原始資料R2 、分別改變映射表T1 為映射表T0 及映射表T2 、以及分別改變抖動信號I1 為抖動信號I0 及抖動信號I2
當校正類比數位轉換單元350時,有二個必要的校正:控制信號C1 與映射表T1
控制信號C1 需被建立,以致使電流控制環形振盪器421、422(參照第4圖)的平均頻率約等於第一時脈CK1的頻率。當電流控制環形振盪器421、422的平均頻率約等於第一時脈CK1的頻率時,第一部分原始資料R1+ 與第二部分原始資料R1- 的平均(即,(R1+ +R1- )/2)的均值將約為0。在一實施例中,下列演算法是用以適應控制信號C1 :計算在第一時脈CK1的216 個週期的期間(R1+ +R1- )/2的均值;若在第一時脈CK1的216 個週期的期間(R1+ +R1- )/2的均值為負,增加控制信號C1 的值以增加偏壓電流Ib(參照第5圖),以致提升電流控制環形振盪器421、422的平均頻率;反之,則減少控制信號C1 的值。
映射表T1 的自適應性如下所述。如前述,諸如第3圖之類比數位轉換單元350等以電壓控制振盪器為基礎之類比數位轉換器(其能以第4圖之類比數位轉換單元400實現,且此類比數位轉換單元400是使用電壓電流轉換器401與電流控制環形振盪器421、422來實現一對電壓控制振盪器)因電壓控制振盪器的非線性轉移特性而發生效能退化。因此,調度信號V1 的線性變化不會導致原始資料R1 的線性變化。為了修正非線性特性,非線性校正單元451、452(參照第4圖)是用以將原始資料R1 映射為精煉資料D1 ,以致使調度信號V1 的線性變化導致精煉資料D1 的近乎線性變化。於類比數位轉換單元350的校正期間(即,選擇信號SS設為1),調度信號V1 設為一預知值,並且映射表T1 (第一子表T1+ 與第二子表T1- )必須被調整(適應),以致使精煉資料D1 的結果值相等於由具有線性轉移特性之理想電壓控制振盪器所預期的值。在一實施例中,第一子表T1+ 與第二子表T1- 是基於三次多項式函數,並且此三次多項式函數能由下列二個公式所數學上地描述: D1+ (R1+ )=β0+1+ R1+2+ R1+ 23+ R1+ 3 (1) D1- (R1- )=β0-1- R1-2- R1- 23- R1- 3 (2)
於此,β0+ 、β1+ 、β2+ 、β3+ 為用以將第一部分原始資料R1+ 映射為加端精煉資料D1+ 之映射表(第一子表T1+ )之三次多項式函數的係數;以及β0- 、β1- 、β2- 、β3- 為用以將第二部分原始資料R1- 映射為減端精煉資料D1- 之映射表(第二子表T1- )之三次多項式函數的係數。校正的目的是為了找到β0+ 、β1+ 、β2+ 、β3+ 、β0- 、β1- 、β2- 、β3- 的理想值,以致使加端精煉資料D1+ 及減端精煉資料D1- 的結果值與由第一端調度信號V1+ 與第二端調度信號V1- 的預知值所預期的值,如此彷彿其中的電壓控制振盪器為理想且完美的線性。為了找到三次多項式函數的四個係數,需要彼此不同的四個輸入值。在一實施例中,數位碼Wc (其是由第3圖之校正控制器380發出以建立校正信號Vc ,並且此校正信號Vc 於選擇信號SS為1時被調度給類比數位轉換單元350)具有相互不同的四個值Wc1 、Wc2 、Wc3 、Wc4 ,並且此四個值Wc1 、Wc2 、Wc3 、Wc4 分別對應於校正信號Vc (其於選擇信號SS為1時被調度給類比數位轉換單元350)的四個位準Vc1 、Vc2 、Vc3 、Vc4 ;針對其中具有電壓控制振盪器之推測情況,精煉資料D1 的四個目標值Dc1 、Dc2 、Dc3 、Dc4 為理想且完美的線性。係數(β0+ 、β1+ 、β2+ 、β3+ 、β0- 、β1- 、β2- 、β3- )能利用一最小均方誤差方法得到。在一實施例中,校正控制器380使用由下列步驟細分之演算法,以更新係數: 步驟1:設定第一時脈CK1的216 個週期的數位碼Wc 為Wc1 ,並且在這段時間跨度的期間得到第一部分原始資料R1+ 與第二部分原始資料R1- 的統計均值分別為Rc1+ 與Rc1– 。 步驟2:設定第一時脈CK1的216 個週期的數位碼Wc 為Wc2 ,並且在這段時間跨度的期間得到第一部分原始資料R1+ 與第二部分原始資料R1- 的統計均值分別為Rc2+ 與Rc2– 。 步驟3:設定第一時脈CK1的216 個週期的數位碼Wc 為Wc3 ,並且在這段時間跨度的期間得到第一部分原始資料R1+ 與第二部分原始資料R1- 的統計均值分別為Rc3+ 與Rc3– 。 步驟4:設定第一時脈CK1的216 個週期的數位碼Wc 為Wc4 ,並且在這段時間跨度的期間得到第一部分原始資料R1+ 與第二部分原始資料R1- 的統計均值分別為Rc4+ 與Rc4– 。 步驟5:藉由使用下列公式實施一最小均方誤差方法以得到能將原始資料R1 的統計均值映射成精煉資料D1 的對應目標值之係數:(3)(4)
藉由使用由公式(3)(4)獲得之係數並且實施由公式(1)(2)所描述之映射,校正信號Vc 的四個位準Vc1 、Vc2 、Vc3 、Vc4 將分別導致四個目標值Dc1 、Dc2 、Dc3 、Dc4 ,其是由理想且完美線性的類比數位轉換器所預期的值。在此方式下,類比數位轉換單元350則被校正。
藉由使用上述的方法,能較前述作者G. Taylor及I. Galton的二篇文獻所教導的方法(其是使用擬隨機校正信號來執行校正,因此因校正信號的隨機本質而需要更長的時間來獲得可靠的統計平均值)更快地得到係數。
如第7圖之流程圖700所示,類比數位轉換方法包括:接收一輸入信號(步驟710)、利用一數位類比轉換器產生一校正信號(步驟720)、提供N個類比數位轉換器(ADC)(步驟730)、選擇N個類比數位轉換器中之一以進行校正(步驟740)、將校正信號調度給選擇之類比數位轉換器以執行校正信號的類比數位轉換並收集其原始資料(步驟750)、將輸入信號調度給其他N-1個類比數位轉換器以執行輸入信號的類比數位轉換並收集其精煉資料(步驟760)、基於來自選擇之類比數位轉換器的原始資料更新耦接於選擇之類比數位轉換器(其執行校正信號的類比數位轉換)的控制信號與映射表(步驟770)、加總從其他N-1個類比數位轉換器收集之精煉資料以產生一輸出資料(步驟780)、以及選擇N個類比數位轉換器中之另一個類比數位轉換器並重覆執行調度步驟、更新步驟與加總步驟。其中,N為大於二的整數。各類比數位轉換器包括一電壓控制振盪器、一相位數位轉換器、一導數運算器以及一非線性校正單元。電壓控制振盪器接收輸入信號或校正信號並依照一控制信號輸出一振盪信號。相位數位轉換器接收振盪信號並輸出一數位相位信號。導數運算器接收數位相位信號並輸出一原始資料。非線性校正單元接收原始資料並基於一映射表輸出一精煉資料。在一實施例中,使用一最小均方誤差演算法來更新映射表。
如第8圖之流程圖800所示,類比數位轉換的自校正方法包括:將一校正信號調度給一類比數位轉換器以執行校正信號的類比數位轉換來得到一原始資料(步驟810)、設定校正信號為一第一位準並執行原始資料的平均以得到一第一均值(步驟820)、設定校正信號為一第二位準並執行原始資料的平均以得到一第二均值(步驟830)、設定校正信號為一第三位準並執行原始資料的平均以得到一第三均值(步驟840)、設定校正信號為一第四位準並執行原始資料的平均以得到一第四均值(步驟850)、以類比數位轉換為理想狀態的推測情況決定第一均值的第一理想值、第二均值的第二理想值、第三均值的第三理想值及第四均值的第四理想值(步驟860)、以及實施最小均方誤差演算法來獲得用以將第一均值、第二均值、第三均值及第四均值分別映射成第一理想值、第二理想值、第三理想值及第四理想值之一組係數,以縮小均方誤差(步驟870)。
雖然本發明以前述之實施例揭露如上,然其並非用以限定本發明,任何熟習相像技術者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之專利保護範圍須視本說明書所附之申請專利範圍所界定者為準。
Va‧‧‧電壓
Vb‧‧‧電壓
fa‧‧‧頻率
fb‧‧‧頻率
200‧‧‧類比數位轉換器
210‧‧‧電壓控制振盪器
211‧‧‧電壓電流轉換器
212‧‧‧電流控制環形振盪器
220‧‧‧相位數位轉換器
221‧‧‧環形取樣器
222‧‧‧相位解碼器
230‧‧‧導數運算器
V‧‧‧電壓
I‧‧‧電流
K‧‧‧振盪信號
S‧‧‧數位取樣信號
CLK‧‧‧時脈
P‧‧‧相位取樣信號
D‧‧‧數位輸出信號
300‧‧‧類比數位轉換器
310‧‧‧輸入調度單元
330‧‧‧抖動調度單元
340‧‧‧類比數位轉換單元
350‧‧‧類比數位轉換單元
360‧‧‧類比數位轉換單元
370‧‧‧輸出調度單元
380‧‧‧校正控制器
390‧‧‧數位類比轉換器
Vi‧‧‧輸入信號
Vc‧‧‧校正信號
V0‧‧‧調度信號
V1‧‧‧調度信號
V2‧‧‧調度信號
SS‧‧‧選擇信號
I0‧‧‧抖動信號
I1‧‧‧抖動信號
I2‧‧‧抖動信號
C0‧‧‧控制信號
C1‧‧‧控制信號
C2‧‧‧控制信號
D0‧‧‧精煉資料
D1‧‧‧精煉資料
D2‧‧‧精煉資料
R0‧‧‧原始資料
R1‧‧‧原始資料
R2‧‧‧原始資料
T0‧‧‧映射表
T1‧‧‧映射表
T2‧‧‧映射表
Dout‧‧‧輸出資料
CK1‧‧‧第一時脈
CK2‧‧‧第二時脈
CK3‧‧‧第三時脈
Wc‧‧‧數位碼
400‧‧‧類比數位轉換單元
401‧‧‧電壓電流轉換器
411‧‧‧加總電路
412‧‧‧加總電路
421‧‧‧電流控制環形振盪器
422‧‧‧電流控制環形振盪器
431‧‧‧相位數位轉換器
432‧‧‧相位數位轉換器
441‧‧‧導數運算器
442‧‧‧導數運算器
451‧‧‧非線性校正單元
452‧‧‧非線性校正單元
461‧‧‧加總單元
V1+‧‧‧第一端調度信號
V1-‧‧‧第二端調度信號
Ii+‧‧‧第一端中間電流信號
Ii-‧‧‧第二端中間電流信號
I1+‧‧‧第一端抖動信號
I1-‧‧‧第二端抖動信號
It+‧‧‧第一端總合電流
It-‧‧‧第二端總合電流
K1+‧‧‧第一端振盪信號
K1-‧‧‧第二端振盪信號
P1+‧‧‧第一端數位相位信號
P1-‧‧‧第二端數位相位信號
R1+‧‧‧第一部分原始資料
R1-‧‧‧第二部分原始資料
T1+‧‧‧第一子表
T1-‧‧‧第二子表
D1+‧‧‧加端精煉資料
D1-‧‧‧減端精煉資料
500‧‧‧電壓電流轉換器
501‧‧‧電流源
502‧‧‧電流源
503‧‧‧電阻
505‧‧‧差動對電晶體
506‧‧‧差動對電晶體
507‧‧‧電流節點
508‧‧‧電流節點
VDD‧‧‧供電節點
Ib+‧‧‧第一端偏壓電流
Ib-‧‧‧第二端偏壓電流
600‧‧‧流程圖
S0‧‧‧將選擇信號SS設為0,並依據原始資料R0校正類比數位轉換單元340
S1‧‧‧將選擇信號SS設為1,並依據原始資料R1校正類比數位轉換單元350
S2‧‧‧將選擇信號SS設為1,並依據原始資料R2校正類比數位轉換單元360
700‧‧‧流程圖
710‧‧‧接收一輸入信號
720‧‧‧利用一數位類比轉換器產生一校正信號
730‧‧‧提供N個類比數位轉換器,其中各類比數位轉換器耦接一控制信號與一映射表並輸出一原始資料與一精煉資料
740‧‧‧選擇N個類比數位轉換器中之一以進行校正
750‧‧‧將校正信號調度給選擇之類比數位轉換器
760‧‧‧將輸入信號調度給其他N-1個類比數位轉換器
770‧‧‧基於來自選擇之類比數位轉換器的原始資料更新耦接選擇之類比數位轉換器的控制信號與映射表
780‧‧‧加總來自其他N-1個類比數位轉換器之精煉資料以產生一輸出資料
790‧‧‧選擇另一類比數位轉換器並重覆執行調度步驟、更新步驟與加總步驟
800‧‧‧流程圖
810‧‧‧將一校正信號調度給一類比數位轉換器以執行校正信號的類比數位轉換來得到一原始資料
820‧‧‧設定校正信號為一第一位準並執行原始資料的平均以得到一第一均值
830‧‧‧設定校正信號為一第二位準並執行原始資料的平均以得到一第二均值
840‧‧‧設定校正信號為一第三位準並執行原始資料的平均以得到一第三均值
850‧‧‧設定校正信號為一第四位準並執行原始資料的平均以得到一第四均值
860‧‧‧以類比數位轉換為理想狀態的一推測情況決定第一均值的第一理想值、第二均值的第二理想值、第三均值的第三理想值及第四均值的第四理想值
870‧‧‧實施一最小均方誤差演算法來獲得用以將第一均值、第二均值、第三均值及第四均值分別映射成第一理想值、第二理想值、第三理想值及第四理想值之一組係數,以縮小一均方誤差
[第1圖]為電壓控制振盪器(VCO)的理想轉移特性的示意圖。 [第2圖]為習知之以電壓控制振盪器為基礎之類比數位轉換器(ADC)的功能方塊圖。 [第3圖]是根據本發明一實施例之類比數位轉換器(ADC)的功能方塊圖。 [第4圖]為適用於實現第3圖之類比數位轉換單元之類比數位轉換單元的功能方塊圖。 [第5圖]為適用於實現第4圖之電壓電流轉換器之電壓電流轉換器的概要示意圖。 [第6圖]為適用於實現第3圖之類比數位轉換單元之校正控制器的流程圖。 [第7圖]是根據本發明一實施例之類比數位轉換方法的流程圖。 [第8圖]是根據本發明一實施例之類比數位轉換的自校正方法的流程圖。
300‧‧‧類比數位轉換器
310‧‧‧輸入調度單元
330‧‧‧抖動調度單元
340‧‧‧類比數位轉換單元
350‧‧‧類比數位轉換單元
360‧‧‧類比數位轉換單元
370‧‧‧輸出調度單元
380‧‧‧校正控制器
390‧‧‧數位類比轉換器
Vi‧‧‧輸入信號
Vc‧‧‧校正信號
V0‧‧‧調度信號
V1‧‧‧調度信號
V2‧‧‧調度信號
SS‧‧‧選擇信號
I0‧‧‧抖動信號
I1‧‧‧抖動信號
I2‧‧‧抖動信號
C0‧‧‧控制信號
C1‧‧‧控制信號
C2‧‧‧控制信號
D0‧‧‧精煉資料
D1‧‧‧精煉資料
D2‧‧‧精煉資料
R0‧‧‧原始資料
R1‧‧‧原始資料
R2‧‧‧原始資料
T0‧‧‧映射表
T1‧‧‧映射表
T2‧‧‧映射表
Dout‧‧‧輸出資料
CK1‧‧‧第一時脈
CK2‧‧‧第二時脈
CK3‧‧‧第三時脈
Wc‧‧‧數位碼

Claims (9)

  1. 一種類比數位轉換器,包括: 一輸入調度單元,接收一輸入信號及一校正信號並依據一選擇信號輸出N個調度信號,其中N為大於二的整數; N個類比數位轉換單元,分別接收N個調度信號、N個控制信號及N個映射表並分別輸出N個原始資料及N個精煉資料; 一輸出調度單元,接收該N個精煉資料並依據該選擇信號輸出一輸出資料; 一校正控制器,接收該N個原始資料並輸出該選擇信號、該N個控制信號、該N個映射表及一數位碼;及 一數位類比轉換器,接收該數位碼並輸出該校正信號; 其中,該選擇信號具有N個可能值,並且該N個調度信號中該選擇信號所指定之一個調度信號是源自於該校正信號,而該N個調度信號中之其他N-1個調度信號是源自該輸入信號。
  2. 如請求項1所述之類比數位轉換器,其中該選擇信號是在該N個可能值之間輪轉。
  3. 如請求項1所述之類比數位轉換器,其中各該類比數位轉換單元包括: 一電壓控制振盪器,接收對應的該調度信號並依據對應的該控制信號輸出一振盪信號; 一相位數位轉換器,接收該振盪信號並輸出一數位相位信號; 一導數運算器,接收該數位相位信號並輸出該原始資料;及 一非線性校正單元,接收對應的該原始資料並根據對應的該映射表輸出該精煉資料。
  4. 如請求項3所述之類比數位轉換器,其中當該輸入調度單元是將該校正信號調度為該調度信號時,該校正控制器根據對應的該原始資料的結果更新對應的該映射表。
  5. 如請求項4所述之類比數位轉換器,其中該校正控制器使用一最小均方誤差演算法更新各自對應的該映射表。
  6. 一種類比數位轉換方法,包括: 接收一輸入信號; 利用一數位類比轉換器產生一校正信號; 提供N個類比數位轉換器,每一該類比數位轉換器耦接一控制信號與一映射表並輸出一原始資料與一精煉資料; 選擇該N個類比數位轉換器中之一以進行校正; 將該校正信號調度給選擇之該類比數位轉換器以執行該校正信號的類比數位轉換,並將該輸入信號調度給該N個類比數位轉換器中之其他N-1個類比數位轉換器以執行該輸入信號的類比數位轉換; 基於來自選擇之該類比數位轉換器的該原始資料更新與選擇之該類比數位轉換器耦接的該控制信號與該映射表; 加總來自該其他N-1個類比數位轉換器之該些精煉資料以產生一輸出資料;及 選擇該N個類比數位轉換器中之另一個類比數位轉換器並重覆執行該些調度步驟、該更新步驟與該加總步驟。
  7. 如請求項6所述之類比數位轉換方法,其中該更新步驟是利用一最小均方誤差演算法來更新該映射表。
  8. 如請求項6所述之類比數位轉換方法,其中各該類比數位轉換器包括:一電壓控制振盪器,接收該校正信號和該輸入信號中之一並依據耦接之該控制信號輸出一振盪信號;一相位數位轉換器,接收該振盪信號並輸出一數位相位信號;一導數運算器,接收該數位相位信號並輸出該原始資料;及一非線性校正單元,以接收該原始資料並依據耦接之該映射表輸出該精煉資料。
  9. 一種類比數位轉換的自校正方法,包括: 將一校正信號調度給一類比數位轉換器以執行該校正信號的類比數位轉換來得到一原始資料; 設定該校正信號為一第一位準並執行該原始資料的平均以得到一第一均值; 設定該校正信號為一第二位準並執行該原始資料的平均以得到一第二均值; 設定該校正信號為一第三位準並執行該原始資料的平均以得到一第三均值; 設定該校正信號為一第四位準並執行該原始資料的平均以得到一第四均值; 以該類比數位轉換為理想狀態的一推測情況決定該第一均值的一第一理想值、該第二均值的一第二理想值、該第三均值的一第三理想值及該第四均值的一第四理想值;及 實施一最小均方誤差演算法來獲得用以將該第一均值、該第二均值、該第三均值及該第四均值分別映射成該第一理想值、該第二理想值、該第三理想值及該第四理想值之一組係數,以縮小一均方誤差。
TW104115965A 2014-05-30 2015-05-19 自校正式以電壓控制振盪器為基礎之類比數位轉換器及其方法 TWI554040B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/291,441 US9214951B1 (en) 2014-05-30 2014-05-30 Self-calibrating VCO-based analog-to-digital converter and method thereof

Publications (2)

Publication Number Publication Date
TW201545484A TW201545484A (zh) 2015-12-01
TWI554040B true TWI554040B (zh) 2016-10-11

Family

ID=54702981

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104115965A TWI554040B (zh) 2014-05-30 2015-05-19 自校正式以電壓控制振盪器為基礎之類比數位轉換器及其方法

Country Status (3)

Country Link
US (1) US9214951B1 (zh)
CN (1) CN105141311B (zh)
TW (1) TWI554040B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI751918B (zh) * 2020-03-31 2022-01-01 台灣積體電路製造股份有限公司 類比數位轉換器及其操作方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10382048B2 (en) * 2015-05-28 2019-08-13 Analog Devices, Inc. Calibration of analog-to-digital converter devices
US10530372B1 (en) 2016-03-25 2020-01-07 MY Tech, LLC Systems and methods for digital synthesis of output signals using resonators
US10020818B1 (en) 2016-03-25 2018-07-10 MY Tech, LLC Systems and methods for fast delta sigma modulation using parallel path feedback loops
US9634681B1 (en) * 2016-07-27 2017-04-25 Nxp Usa, Inc. Analog-to-digital conversion with linearity calibration
US10367522B2 (en) 2016-11-21 2019-07-30 MY Tech, LLC High efficiency power amplifier architectures for RF applications
TWI685208B (zh) * 2018-12-07 2020-02-11 財團法人工業技術研究院 位置編碼裝置與方法
US11933919B2 (en) 2022-02-24 2024-03-19 Mixed-Signal Devices Inc. Systems and methods for synthesis of modulated RF signals

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080024338A1 (en) * 2006-07-27 2008-01-31 Realtek Semiconductor Corp. Calibration apparatus for mismatches of time-interleaved analog-to-digital converter
US20110128171A1 (en) * 2009-02-19 2011-06-02 Takashi Oshima Analog/digital converter and semiconductor integrated circuit device
US20120326903A1 (en) * 2011-06-24 2012-12-27 Chung Yung-Hui Method and apparatus for performing nonlinearity calibration
US8542138B2 (en) * 2011-01-28 2013-09-24 The Regents Of The University Of California Ring oscillator delta sigma ADC modulator with replica path nonlinearity calibration

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5361067A (en) * 1992-11-30 1994-11-01 Motorola Inc. Digital linearization calibration for analog to digital converter
US7545295B2 (en) * 2007-09-14 2009-06-09 Realtek Semiconductor Corp. Self-calibrating digital-to-analog converter and method thereof
US7994957B2 (en) * 2009-06-30 2011-08-09 Mediatek Singapore Pte. Ltd. Current steering digital-to-analog converter
US9041569B2 (en) * 2013-06-28 2015-05-26 Silicon Laboratories Inc. Method and apparatus for calibration of successive approximation register analog-to-digital converters

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080024338A1 (en) * 2006-07-27 2008-01-31 Realtek Semiconductor Corp. Calibration apparatus for mismatches of time-interleaved analog-to-digital converter
US20110128171A1 (en) * 2009-02-19 2011-06-02 Takashi Oshima Analog/digital converter and semiconductor integrated circuit device
US8542138B2 (en) * 2011-01-28 2013-09-24 The Regents Of The University Of California Ring oscillator delta sigma ADC modulator with replica path nonlinearity calibration
US20120326903A1 (en) * 2011-06-24 2012-12-27 Chung Yung-Hui Method and apparatus for performing nonlinearity calibration

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
B. Zeinali, T. Moosazadeh, M. Yavari and A. Rodriguez-Vazquez, "Equalization-Based Digital Background Calibration Technique for Pipelined ADCs," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 22, no. 2, pp. 322-333, Feb. 2014. *
C. R. Grace, P. J. Hurst and S. H. Lewis, "A 12-bit 80-MSample/s pipelined ADC with bootstrapped digital calibration," in IEEE Journal of Solid-State Circuits, vol. 40, no. 5, pp. 1038-1046, May 2005. *
G. Mitteregger, C. Ebner, S. Mechnig, T. Blon, C. Holuigue and E. Romani, "A 20-mW 640-MHz CMOS Continuous-Time \Sigma \Delta ADC With 20-MHz Signal Bandwidth, 80-dB Dynamic Range and 12-bit ENOB," in IEEE Journal of Solid-State Circuits, vol. 41, no. 12, pp. 2641-2649, Dec. 2006. *
G. Taylor and I. Galton, "A Mostly-Digital Variable-Rate Continuous-Time Delta-Sigma Modulator ADC," in IEEE Journal of Solid-State Circuits, vol. 45, no. 12, pp. 2634-2646, Dec. 2010. *
G. Taylor and I. Galton, "A Reconfigurable Mostly-Digital Delta-Sigma ADC With a Worst-Case FOM of 160 dB," in IEEE Journal of Solid-State Circuits, vol. 48, no. 4, pp. 983-995, April 2013. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI751918B (zh) * 2020-03-31 2022-01-01 台灣積體電路製造股份有限公司 類比數位轉換器及其操作方法
US11438007B2 (en) 2020-03-31 2022-09-06 Taiwan Semiconductor Manufacturing Company, Ltd. Analog to digital converter with VCO-based and pipelined quantizers

Also Published As

Publication number Publication date
US9214951B1 (en) 2015-12-15
CN105141311A (zh) 2015-12-09
TW201545484A (zh) 2015-12-01
US20150349794A1 (en) 2015-12-03
CN105141311B (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
TWI554040B (zh) 自校正式以電壓控制振盪器為基礎之類比數位轉換器及其方法
KR102656504B1 (ko) 고 선형성 위상 보간기
Taylor et al. A reconfigurable mostly-digital delta-sigma ADC with a worst-case FOM of 160 dB
Rao et al. A deterministic digital background calibration technique for VCO-based ADCs
Szplet et al. An FPGA-integrated time-to-digital converter based on two-stage pulse shrinking
JP6257077B2 (ja) グリッチ・エネルギー・エラーを低減するための電流ステアリング源を有するデジタル−アナログ変換器
US9065479B2 (en) Digital to analog converter with an intra-string switching network
US8081101B2 (en) Analog-to-digital converter using oscillators
JP6114390B2 (ja) アナログデジタル変換器
KR20190111314A (ko) 그레이 코드 생성기
US10425091B2 (en) Fractional clock generator
JPWO2014061117A1 (ja) Ad変換器
JP2019071604A (ja) 電圧・時間変換器及びアナログ・デジタル変換器
TW201822473A (zh) 三角積分調變器與其信號轉換方法
TWI749879B (zh) 導管式類比數位轉換器之控制電路
Rombouts et al. A digital error-averaging technique for pipelined A/D conversion
US7209063B2 (en) Semiconductor integrated circuit having switch circuit of digital signal
JP6591780B2 (ja) データ加重平均化回路、インクリメンタルデルタシグマad変換器、及びデータ加重平均化方法
Li et al. VCO-Based ADC With Digital Background Calibration in 65nm CMOS
JP2006019818A (ja) 過渡応答特性を形成する方法および装置
Xu et al. Sub-picosecond resolution and high-precision TDC for ADPLLs using charge pump and SAR-ADC
CN113556123B (zh) 一种校准模数转换器非线性的数字校准方法及系统
JP6818665B2 (ja) Da変換器及びadpll回路
Kim A two-step offset calibration in dynamic comparator using body voltage control
JP2016213597A (ja) データ加重平均化回路、インクリメンタルデルタシグマad変換器、及びデータ加重平均化方法