TWI751918B - 類比數位轉換器及其操作方法 - Google Patents

類比數位轉換器及其操作方法 Download PDF

Info

Publication number
TWI751918B
TWI751918B TW110107354A TW110107354A TWI751918B TW I751918 B TWI751918 B TW I751918B TW 110107354 A TW110107354 A TW 110107354A TW 110107354 A TW110107354 A TW 110107354A TW I751918 B TWI751918 B TW I751918B
Authority
TW
Taiwan
Prior art keywords
analog
digital
signal
output
circuit
Prior art date
Application number
TW110107354A
Other languages
English (en)
Other versions
TW202139606A (zh
Inventor
馬丁 金紐亞
艾力克 蘇寧
謝典霖
Original Assignee
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台灣積體電路製造股份有限公司 filed Critical 台灣積體電路製造股份有限公司
Publication of TW202139606A publication Critical patent/TW202139606A/zh
Application granted granted Critical
Publication of TWI751918B publication Critical patent/TWI751918B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/322Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M3/368Continuously compensating for, or preventing, undesired influence of physical parameters of noise other than the quantisation noise already being shaped inherently by delta-sigma modulators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/14Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit
    • H03M1/16Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit with scale factor modification, i.e. by changing the amplification between the steps
    • H03M1/164Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit with scale factor modification, i.e. by changing the amplification between the steps the steps being performed sequentially in series-connected stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/027Generators characterised by the type of circuit or by the means used for producing pulses by the use of logic circuits, with internal or external positive feedback
    • H03K3/03Astable circuits
    • H03K3/0315Ring oscillators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/39Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators
    • H03M3/412Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/39Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators
    • H03M3/412Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution
    • H03M3/422Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution having one quantiser only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/458Analogue/digital converters using delta-sigma modulation as an intermediate step
    • H03M3/462Details relating to the decimation process
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/458Analogue/digital converters using delta-sigma modulation as an intermediate step
    • H03M3/464Details of the digital/analogue conversion in the feedback path

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

一種類比數位轉換器(「ADC」)包括一輸入端子,該輸入端子用以接收一類比輸入訊號。一第一ADC電路耦接至該輸入端子且包括一VCO。該第一ADC電路用以輸出基於該類比輸入訊號的在一頻域中的一第一數位訊號。該第一數位訊號包括一誤差分量。一第一DAC用以將該第一數位訊號轉換為一類比輸出訊號。一第一加法電路用以接收該類比輸出訊號、該類比輸入訊號及該類比輸入訊號之一迴路濾波後的版本,且提取該誤差分量,且輸出該誤差分量之一負值。一第二ADC電路用以將該誤差分量之該負值轉換為一數位誤差訊號。一第二加法電路用以接收該第一數位訊號及該數位誤差訊號,且在一輸出端子處輸出對應於該類比輸入的一數位輸出訊號。此外,一種操作類比數位轉換器的方法亦在此揭露。

Description

類比數位轉換器及其操作方法
本揭示內容是關於一種類比數位轉換器及操作類比數位轉換器的方法。
在多種應用中使用類比數位轉換器(analog-to-digital converter;「ADC」或「A/D」),以便將採樣類比訊號轉換為數位訊號。存在多種ADC架構,諸如管線式ADC架構、快閃ADC架構、積分三角ADC架構、逐次近似暫存器(successive approximation register;「SAR」)等。管線式或分級式ADC使用兩個或兩個以上的分級步驟。將類比輸入電壓粗略轉換為粗略數位值,然後利用數位類比轉換器(digital to analog converter;DAC)將粗略數位值轉換回類比訊號。利用類比比較器將粗略值與輸入電壓進行比較,然後對差值或殘差進行更精細的轉換且對結果進行組合。逐次近似ADC使用比較器來逐漸縮小包含輸入電壓的範圍。在每個接連步驟中,轉換器將輸入電壓與可能表示所選電壓範圍之中點的DAC之輸出進行比較。在此過程中的每 個步驟中,將近似值儲存在逐次近似暫存器(successive approximation register;SAR)中。繼續該些步驟,直至達到所要的解析度為止。
本揭示內容包含一種ADC,ADC包括輸入端子,輸入端子用以接收類比輸入訊號。第一ADC電路耦接至輸入端子且包括VCO。第一ADC電路用以輸出基於類比輸入訊號的在頻域中的第一數位訊號。第一數位訊號包括誤差分量。第一DAC用以將第一數位訊號轉換為類比輸出訊號。第一加法電路用以接收類比輸出訊號、類比輸入訊號及類比輸入訊號之濾波後的版本,且提取誤差分量,且輸出誤差分量之負值。第二ADC電路用以將誤差分量之負值轉換為數位誤差訊號。第二加法電路用以接收第一數位訊號及數位誤差訊號,且在輸出端子處輸出對應於類比輸入的數位輸出訊號。
本揭示內容包含一種ADC,ADC包括輸入端子,輸入端子用以接收類比輸入訊號,其中VCO基底型三角積分ADC電路耦接至輸入端子且用以輸出基於類比輸入訊號的在頻域中的第一數位訊號。第一數位訊號包括雜訊傳送函數。DAC用以將第一數位訊號轉換為類比輸出訊號,且第一加法電路用以接收類比輸出訊號及類比輸入訊號。管線式ADC電路用以將第一加法電路之輸出轉換為第二數位訊號。數位濾波器經耦接來接收由管線式ADC電路輸出的第二數位訊號。數位濾波器具有與雜訊傳送函 數相匹配的數位濾波器函數以自第一數位訊號去除諧波失真。
本揭示內容包含一種操作類比數位轉換器的方法包括:由第一ADC電路將類比輸入訊號轉換為在頻域中的第一數位訊號。將第一數位訊號轉換為類比輸出訊號。自類比輸出訊號提取誤差分量。由第二ADC電路將誤差分量之負值轉換為第二數位訊號。使用與第一數位訊號之雜訊傳送函數相匹配的數位濾波器函數對第二數位訊號進行濾波。由加法電路組合第一數位訊號及第二數位訊號以輸出對應於類比輸入訊號的數位輸出訊號。
100:ADC系統
102:輸入端子
104:輸出端子
110:ADC電路/ADC
112:DAC電路/DAC
114:加法電路/加法塊/加法點
120:ADC電路/ADC
122:加法電路/加法塊
124:數位濾波器
140:迴路濾波器
142:加法塊
144:VCO基底型量化器
146:固有動態元件匹配(DEM)塊
150:DAC
152:加法塊/加法點
160:放大器
162:數位濾波器
164:放大器
166:延遲元件
168:降頻濾波器
201、202、203:級
210:管線校正塊
220:輸入電阻器
222:運算放大器
224:可變調諧電容器
230:VCO
232:環形振盪器
234:反相器
240:頻率編碼器
242:正反器
244:互斥或(XOR)閘
246:延遲元件
250:負載電阻器
260:跨阻抗放大器
262:電阻器
264:運算放大器
266:反饋電阻器
300:方法
310、312、314、316、318、320、322、324:步驟
當結合附圖來閱讀以下詳細描述時,可最好地理解本揭露之態樣。應當注意,根據業內的標準慣例,各種特徵並未按比例繪製。事實上,為了論述清楚起見,可任意增大或減小各種特徵之尺寸。
第1圖係說明根據一些實施例之類比數位轉換器(analog-to-digital converter;「ADC」)系統之態樣的方塊圖。
第2圖係說明根據一些實施例之第1圖的ADC系統之實例之另外態樣的方塊圖。
第3圖係說明根據一些實施例之第1圖的ADC系統之實例之另外態樣的方塊圖。
第4圖係說明出根據一些實施例之第1圖的ADC系統之實例之另外態樣的電路圖。
第5圖係說明根據一些實施例之方法之實例的流程圖。
以下揭露提供許多不同的實施例或實例以用於實施所提供主題的不同特徵。以下描述組件及配置之具體實例以簡化本揭露。當然,這些僅僅為實例,且不欲進行限制。例如,在以下描述中,在第二特徵之上或在其上形成第一特徵可包括將第一特徵與第二特徵形成為直接接觸的實施例,且亦可包括可在第一特徵與第二特徵之間形成額外特徵以使得第一特徵與第二特徵可不直接接觸的實施例。此外,本揭露可在各種實例中重複參考數字及/或字母。此重複係為了簡單及清楚的目的,且本身並不決定所論述之各種實施例及/或組態之間的關係。
另外,為便於描述,在本文中可使用空間相對術語(諸如「在......之下」、「在......下方」、「下部」、「在......上方」、「上部」及其類似者)來描述如圖中所說明之一個元件或特徵與另一個(另一些)元件或特徵之關係。除了圖中所描繪之定向之外,空間相對術語意欲包含在使用中或操作中的裝置之不同定向。可以其他方式來定向裝置(旋轉90度或以其他定向),且同樣可相應地解釋本文所使用之空間相對描述詞。
類比數位轉換器(analog-to-digital converter;「ADC」或「A/D」)將類比訊號轉換為數位訊號。用於某些應用的典型ADC配置(諸如管線式ADC配置、快閃ADC配置、三角積分ADC配置、逐次 近似暫存器(successive approximation register;「SAR」)等)可能使用太多的矽面積,消耗太多功率,且因此可能太昂貴。此外,利用一些已知的ADC方法,可能難以在低電壓及低功率消耗的深次微米過程中獲得足夠高的訊號雜訊比(SNR)及轉換頻寬。
例如,一些三角積分(Delta-Sigma)ADC方法在轉換頻寬上受到限制。另外,採用壓控振盪器(voltage controlled oscillator;VCO)的一些ADC可能受到由於VCO電壓至頻率調諧曲線非線性導致的VCO量化器非線性的限制。此外,為了抑制與VCO量化器相關聯的諧波失真,可能需要更高階的迴路濾波器來滿足所要的量化雜訊減少。這可能導致更高的功率消耗及/或不穩定性問題。
根據本揭露之態樣,提供了級聯式VCO基底型三角積分ADC,該級聯式VCO基底型三角積分ADC用以消除或去除由VCO量化器的非線性引入的輸出訊號之非線性。將VCO基底型三角積分ADC迴路與正向路徑量化器組合,從而組合兩種ADC技術的優勢。例如,VCO具有對其量化雜訊之固有的一階雜訊整形。
第1圖係說明根據所揭示實施例之ADC系統100之實例的方塊圖。一般而言,ADC系統100具有輸入端子102,輸入端子102用以接收類比輸入訊號X(z)。第一ADC級包括耦接至輸入端子之第一ADC電路110。如下文將進一步論述,第一ADC電路110包括VCO, 且用以輸出基於類比輸入訊號X(z)的在頻域中的第一數位訊號Fout(z)。由第一ADC 110輸出的第一數位訊號Fout(z)具有包括VCO量化誤差Qk(z)及VCO諧波失真HDvco的誤差分量。因此,第一數位訊號Fout(z)之誤差分量在本文中表達為Qk(z)+HDvco。
第一數位類比轉換器(DAC)112接收第一數位訊號Fout(z),且將第一數位訊號Fout(z)轉換為類比輸出訊號,該類比輸出訊號連同類比輸入訊號X(z)及迴路濾波器輸出類比訊號LF(z)一起被輸入至第一加法電路114,以提取誤差分量且輸出誤差分量之負值。第二ADC電路120將誤差分量之負值轉換為數位誤差訊號Sout(z),該數位誤差訊號Sout(z)被輸出至第二加法電路122,第二加法電路122亦接收第一數位訊號Fout(z)。在一些實例中,第二ADC電路120之輸出由數位濾波器124濾波。第二加法電路122自第一數位訊號Fout(z)去除誤差分量,且在輸出端子104處輸出對應於類比輸入的數位輸出訊號Dout。
第2圖說明ADC系統100之進一步態樣。如第2圖所示,ADC系統100之第一ADC電路110係用以將類比輸入電壓X(z)編碼為脈衝流的三角積分ADC。使數位輸出Fout(z)通過DAC 150,且在負反饋組態中在加法塊152處自類比輸入訊號X(z)減去所得類比訊號。在所說明之實例中,輸出訊號Fout(z)係k位元的數位訊號,且因此DAC 150係k位元DAC。
加法塊152之輸出由迴路濾波器140接收,迴路濾波器140向加法塊142且亦向加法塊114提供類比輸出LF(z)。加法塊142之類比輸出被輸入至VCO基底型量化器144,VCO基底型量化器144將濾波後的類比訊號轉換為在頻域中的k位元數位輸出訊號Fout(z)。第一DAC 112接收包括誤差分量Qk(z)+Hdvco的第一數位訊號Fout(z)。DAC 112將第一數位訊號Fout(z)轉換為類比輸出訊號,該類比輸出訊號連同類比輸入訊號X(z)及迴路濾波器140之輸出LF(z)一起被輸入至加法電路114,以提取誤差分量Qk(z)+HDvco且輸出誤差分量之負值-[Qk(z)+HDvco]。
第一數位訊號Fout(z),亦即VCO基底型量化器144之輸出如固有動態元件匹配(dynamic element matching;DEM)塊146所表示的方式進行移位。對於VCO基底型ADC(諸如第2圖所示之ADC 110),來自DAC 150的DAC元件以與VCO中心頻率之速度相關的速率自然地旋轉。DAC元件之此種旋轉亦由於脈衝邊緣沿著VCO之環形振盪器的單調進展出現。因此,VCO基底型量化器144隨著邊緣在每個採樣週期中的進展以「桶形移位」方式(即,由DAC 150輸出的數位字之位元的次序被移位或旋轉)藉由延遲級進行動態混洗。因此,由於與VCO基底型量化器144的逐位元連接,對應的DAC元件亦藉由固有DEM塊146以桶形移位方式進行拌碼。
如上文所述,加法塊114提取第一數位訊號輸出Fout(z)之誤差分量Qk(z)+HDvco,且輸出誤差分量之負值-[Qk(z)+HDvco]。類比誤差分量之負值-[Qk(z)+HDvco]可選地由放大器160放大,放大器160應用增益因子G且將放大的類比誤差訊號-[Qk(z)+HDvco]輸出至第二ADC 120。在一些實施例中,第二ADC 120將數位誤差分量Sout(z)提供為m位元的數位輸出。在所說明之實例中,m>k。m位元的誤差訊號Sout(z)由數位濾波器162濾波且被輸出至放大器164,放大器164應用增益因子之倒數1/G以自數位誤差訊號Sout(z)去除增益因子。濾波後的數位誤差訊號Sout(z)連同第一數位訊號Fout(z)一起由加法塊122接收。第一數位訊號Fout(z)可被應用於一或多個數位延遲元件166,以對準k位元的第一數位訊號Fout(z)及m位元的數位誤差訊號Sout(z)。在加法塊122處自第一數位訊號Fout(z)去除數位誤差訊號Sout(z),且作為中間轉換後的數位輸出訊號Cout(z)輸出。中間轉換後的數位輸出訊號Cout(z)被應用於降頻濾波器168,降頻濾波器168在輸出端子104處輸出最終數位輸出訊號Dout。
來自第一ADC 110的在頻域中的第一數位輸出訊號Fout(z)可如以下方程式[1]所示進行表達。
Fout(z)=STF(z)X(z)+NTF(z)[Qk(z)+HDvco]; [1] 其中X(z)係類比輸入訊號,Qk(z)係第一ADC 110之量化誤差,HDvco係來自第一ADC 110之VCO基底型量化器144的諧波失真,且STF(z)及NTF(z)分別係迴路濾波器140之訊號傳送函數及雜訊傳送函數。
由第二ADC 120輸出的數位誤差訊號Sout(z)可如以下所示之方程式[2]所示進行表達。
Sout(z)=z-D[-Qk(z)-HDvco+Qm(z)]; [2]其中z-D係由第二ADC 120施加的時脈延遲之數目(即,「D」個時脈循環延遲),且Qm(z)係第二ADC 120之量化誤差。
另外,中間轉換後的數位輸出訊號Cout(z)可如以下方程式[3]所示進行表達。
Cout(z)=z-DFout(z)+Sout(z)D(z); [3]其中D(z)係數位濾波器162之濾波器傳送函數。將方程式[1]及[2]代入方程式[3],得出如下方程式[4]及[5]。
Cout(z)=z-DSTF(z)X(z)+z-DNTF(z)[Qk(z)+HDvco]-z-DD(z)[Qk(z)+HDvco]+z-DD(z)Qm(z): [4]:及Cout(z)=z-DSTF(z)X(z)+z-D(Qk(z)+HDvco)[NTF(z)-D(z)]+z-DD(z)Qm(z); [5]
若使方程式[5]中的濾波器162之數位濾波器函數D(z)與雜訊傳送函數NTF(z)相同,則自中間轉換後的數位輸出Cout(z)去除雜訊傳送函數,且中間轉換後的數位輸出Cout(z)變成 Cout(z)=z-DSTF(z)X(z)+D(z)Qm(z); [6]。
因此,在方程式[6]中,VCO量化器非線性HDvco被消除且在中間轉換後的數位輸出訊號處不會出現,且因此不包括在輸出訊號Dout中。
第3圖說明ADC系統100之實例之另外態樣。第3圖所示之實例包括如第2圖所示之三角積分ADC電路110,三角積分ADC電路110用以將類比輸入電壓X(z)作為脈衝流編碼至頻域中。VCO基底型量化器144之數位輸出Fout(z)由DAC 150接收,DAC 150輸出類比訊號,在加法塊152處自類比輸入訊號X(z)減去該類比訊號。與第2圖之實例一樣,輸出訊號Fout(z)係k位元的數位訊號。迴路濾波器140接收加法塊152之輸出,且將濾波後的類比訊號輸出至加法塊142且亦輸出至加法塊114。加法塊114提取第一數位輸出訊號Fout(z)之誤差分量Qk(z)+HDvco,且將誤差分量之負值-[Qk(z)+HDvco]輸出至第二ADC 120。
在第3圖之實例中,第二ADC電路120係包括第一級201、第二級202及第三級203的管線式ADC。其他實施例可採用具有更多或更少管線級的ADC。所說明之管線式ADC 120使用由相應ADC級201、202、203進行的三個分級步驟。第一ADC級201將由加法塊114輸出的類比誤差訊號第一次轉換為粗略數位值。利用DAC將該粗略數位值轉換回類比訊號且將其與原始類比誤差訊號進行比較。然後,由接連的第二級202及第三級 203將第一次轉換後的值之間的差值或殘差轉換為越來越精細的輸出。由管線校正塊210對結果進行組合,且將m位元的數位訊號輸出至數位濾波器162。若由加法塊114輸出的類比誤差訊號-[Qk(z)+HDvco]被放大(第3圖中未示出),則數位濾波器162可包括所應用增益因子G之倒數。
如上文所述,在一些實例中,數位濾波器162使其數位濾波器函數D(z)與第一數位輸出訊號Fout(z)之雜訊傳送函數NTF(z)相同,以自轉換後的數位輸出訊號Cout(z)消除VCO量化器的非線性HDvco。向加法塊122提供數位濾波器162之輸出,加法塊122亦接收數位域中的第一數位輸出訊號Fout(z),第一數位輸出訊號Fout(z)由延遲元件166延遲以與數位濾波器162之輸出對準。
第二加法電路122自第一數位訊號Fout(z)去除剩餘誤差分量,且中間數位輸出訊號Cout(z)由降頻濾波器168接收,降頻濾波器168在輸出端子104處輸出對應於類比輸入的數位輸出訊號Dout。
第4圖說明根據一些一些實施例之VCO基底型三角積分ADC 110之另外態樣。類比輸入訊號X(z)作為差分類比電壓訊號Vinp、Vinn在輸入端子102處被接收。迴路濾波器140包括接收差分類比輸入訊號Vinp、Vinn的輸入電阻器220以及運算放大器222。運算放大器222經配置為具有差分輸出的積分器,該些差分輸出經 由可變調諧電容器224被反饋至運算放大器輸入,以解決製程、電壓及溫度(Process,Voltage and Temperature;PVT)變化。
VCO基底型量化器144包括VCO 230,VCO 230接收運算放大器222之差分輸出。VCO 230產生振盪訊號,該振盪訊號具有由自迴路濾波器140接收的電壓訊號進行控制的頻率。VCO 230包括環形振盪器232,環形振盪器232各自具有級聯式連接的一系列反相器234。若達成總共180度的相移以形成正反饋,則獲得振盪。每個反相器234(亦稱為延遲單元)具有相關聯的固有延遲,且所有反相器234之固有延遲之總和使電路以特定頻率振盪。在使用差分控制訊號的實施例中,可使用偶數或奇數個反相器234來達成振盪。在接收到單個輸入訊號的單端實施例中,需要奇數個反相器234來達成振盪。在環形振盪器232中使用反相器234促進在深奈米級過程中的實施。
VCO 230之輸出由頻率編碼器240接收。更具體地,VCO基於自運算放大器222接收的差分訊號輸出差分輸出。在相應正反器242之D之輸入處接收VCO 230之差分輸出。正反器242基於VCO 230之輸出訊號及時脈訊號CLK提供輸出Q。頻率編碼器240另外包括互斥或(XOR)閘244,XOR閘244分別接收正反器242之Q之輸出。XOR閘244之一個輸入直接自其相應的正反器242接收Q之輸出,而另一輸入經由延遲元件 246接收Q之輸入。由頻率編碼器240輸出的頻域訊號由DAC 150接收,DAC 150將對應的差分類比訊號輸出至迴路濾波器140,在迴路濾波器140中,在負反饋組態中在加法點152處自差分類比輸入訊號Vinp、Vinn減去該些差分類比訊號。k位元的頻率數位訊號被進一步輸出至降頻濾波器168,降頻濾波器168處理中間數位訊號Cout(z)以產生數位輸出訊號Dout。
迴路濾波器140之差分輸出經由電阻器262被跨阻抗放大器260接收。來自DAC 112的差分類比輸出訊號亦連同差分類比輸入訊號Vinp、Vinn一起經由負載電阻器250在跨阻抗放大器260的輸入處被接收。因此,如上文所述,在加法點114處組合類比輸入訊號Vinp、Vinn、由迴路濾波器140輸出的類比輸入訊號之濾波後的版本LF(z)以及由DAC 112轉換的第一ADC 110輸出的類比版本,以輸出VCO基底型ADC 110輸出之誤差分量之負值。跨阻抗放大器260由運算放大器264實施,運算放大器264經配置有經由反饋電阻器266反饋至運算放大器輸入的差分輸出。進一步向第二ADC 120提供運算放大器264之差分輸出,如上文所述,第二ADC 120在一些實例中係管線式ADC。
第5圖係說明根據所揭示實例之ADC方法300之態樣的流程圖。在步驟310處,在輸入端子102處接收類比輸入電壓X(z)。在步驟312處,由第一ADC電路110將類比輸入訊號轉換為在頻域中的第一數位訊號 Fout(z)。在一些實施例中,第一ADC電路係三角積分ADC。在步驟314處,由DAC電路112將第一數位訊號轉換為類比輸出訊號。在步驟316處,例如藉由加法電路114將類比輸出訊號與類比輸入訊號進行比較,自類比輸入訊號提取誤差分量。在步驟318處,由第二ADC電路120將誤差分量之負值轉換為第二數位訊號。在一些實施例中,第二ADC電路係管線式ADC。在步驟320處,由數位濾波器124使用與第一數位訊號之雜訊傳送函數NTF(z)相匹配的數位濾波器函數D(z)對第二數位訊號進行濾波。在步驟322處,由加法電路122組合第一數位訊號及第二數位訊號,且在步驟324處,輸出對應於類比輸入訊號X(z)的數位輸出訊號Dout。
因此,所揭示實施例提供一種ADC,ADC包括輸入端子,輸入端子用以接收類比輸入訊號。第一ADC電路耦接至輸入端子且包括VCO。第一ADC電路用以輸出基於類比輸入訊號的在頻域中的第一數位訊號。第一數位訊號包括誤差分量。第一DAC用以將第一數位訊號轉換為類比輸出訊號。第一加法電路用以接收類比輸出訊號、類比輸入訊號及類比輸入訊號之濾波後的版本,且提取誤差分量,且輸出誤差分量之負值。第二ADC電路用以將誤差分量之負值轉換為數位誤差訊號。第二加法電路用以接收第一數位訊號及數位誤差訊號,且在輸出端子處輸出對應於類比輸入的數位輸出訊號。在一些實施例中,第一類比數位轉換器電路包括一三角積分類比數位轉換器。 在一些實施例中,第二類比數位轉換器電路包括一管線式類比數位轉換器。在一些實施例中,類比數位轉換器進一步包括第一放大器及第二放大器。第一放大器耦接在第一加法電路與第二類比數位轉換器電路之間,第一放大器用以將一第一增益因子應用於誤差之負值;第二放大器,耦接在第二類比數位轉換器電路與第二加法電路之間,第二放大器用以將第一增益因子之一倒數應用於第二數位訊號。在一些實施例中,第一放大器包括一跨阻抗放大器。在一些實施例中,類比數位轉換器進一步包括一數位濾波器,數位濾波器耦接在第二類比數位轉換器電路與第二放大器之間。在一些實施例中,誤差分量包括一量化誤差及一諧波失真。在一些實施例中,其中基於類比輸入訊號的在頻域中的第一數位訊號包括一雜訊傳送函數,且其中數位濾波器具有與雜訊傳送函數相匹配的一數位濾波器函數以自第一數位訊號去除諧波失真。在一些實施例中,類比數位轉換器進一步包括一延遲電路,延遲電路耦接在第一類比數位轉換器電路與第二加法電路之間。在一些實施例中,第一數位訊號包括第一數目個位元,且第二數位訊號包括大於第一數目的第二數目個位元。在一些實施例中,第一類比數位轉換器電路包括第三加法電路、迴路濾波器、第四加法電路及第二數位類比轉換器電路。第三加法電路耦接至輸入端子;迴路濾波器用以接收第三加法電路之一輸出且用以向第一加法電路提供類比輸入訊號之濾波後的版本;第四加法電路耦接至輸入端子且用以接收迴路濾波器 之輸出且向壓控震盪器提供一輸出;第二數位類比轉換器電路用以接收第一數位訊號且將一對應的類比訊號輸出至第一加法電路。在一些實施例中,類比輸入訊號係一差分電壓訊號,且其中迴路濾波器包括第一輸入電阻器及一第二輸入電阻器以及運算放大器。第一輸入電阻器及第二輸入電阻器用以接收差分電壓訊號之正分量及負分量;運算放大器具有耦接至第一輸入電阻器及第二輸入電阻器的多個差分輸入及耦接至壓控震盪器的多個差分輸出。在一些實施例中,壓控震盪器包括具有多個反相器的一環形振盪器。
另外的所揭示實施例包括一種ADC,ADC包括輸入端子,輸入端子用以接收類比輸入訊號,其中VCO基底型三角積分ADC電路耦接至輸入端子且用以輸出基於類比輸入訊號的在頻域中的第一數位訊號。第一數位訊號包括雜訊傳送函數。DAC用以將第一數位訊號轉換為類比輸出訊號,且第一加法電路用以接收類比輸出訊號及類比輸入訊號。管線式ADC電路用以將第一加法電路之輸出轉換為第二數位訊號。數位濾波器經耦接來接收由管線式ADC電路輸出的第二數位訊號。數位濾波器具有與雜訊傳送函數相匹配的數位濾波器函數以自第一數位訊號去除諧波失真。在一些實施例中,數位轉換器進一步包括一第二加法電路,第二加法電路用以接收第一數位訊號及數位誤差訊號,且在一輸出端子處輸出對應於類比輸入訊號的一數位輸出訊號。在一些實施例中,類比數位轉換器 進一步包括第一放大器及第二放大器。第一放大器耦接在第一加法電路與第二類比數位轉換器電路之間,第一放大器用以將一第一增益因子應用於誤差之負值;第二放大器,耦接在第二類比數位轉換器電路與第二加法電路之間,第二放大器用以將第一增益因子之一倒數應用於第二數位訊號。在一些實施例中,類比數位轉換器進一步包括一延遲電路,延遲電路耦接在第一類比數位轉換器電路與第二加法電路之間。
在另一所揭示實施例中,一種類比數位轉換器的操作方法包括:由第一ADC電路將類比輸入訊號轉換為在頻域中的第一數位訊號。將第一數位訊號轉換為類比輸出訊號。自類比輸出訊號提取誤差分量。由第二ADC電路將誤差分量之負值轉換為第二數位訊號。使用與第一數位訊號之雜訊傳送函數相匹配的數位濾波器函數對第二數位訊號進行濾波。由加法電路組合第一數位訊號及第二數位訊號以輸出對應於類比輸入訊號的數位輸出訊號。在一些實施例中,方法進一步包括:放大誤差分量。在一些實施例中,方法進一步包括:在組合第一數位訊號及第二數位訊號之前延遲第一數位訊號。
前述內容概述了若干實施例之特徵,使得熟習此項技術者可更好地理解本揭露之態樣。熟習此項技術者應當瞭解,他們可容易地使用本揭露作為設計或修改其他過程及結構以便實現本文所介紹之實施例之相同目的及/或達成該些實施例之相同優勢的基礎。熟習此項技術者亦應 當認識到,此類等效構造不背離本揭露之精神及範疇,且他們可在本文中進行各種變化、取代及更改而不背離本揭露之精神及範疇。
100:ADC系統
102:輸入端子
104:輸出端子
110:ADC電路/ADC
112:DAC電路/DAC
114:加法電路/加法塊/加法點
120:ADC電路/ADC
122:加法電路/加法塊
124:數位濾波器

Claims (10)

  1. 一種類比數位轉換器,包括:一輸入端子,用以接收一類比輸入訊號;一第一類比數位轉換器電路,耦接至該輸入端子且包括一壓控振盪器,該第一類比數位轉換器電路用以輸出基於該類比輸入訊號的在一頻域中的一第一數位訊號,該第一數位訊號包括一誤差分量;一第一數位類比轉換器,用以將該第一數位訊號轉換為一類比輸出訊號;一第一加法電路,用以接收該類比輸出訊號、該類比輸入訊號及該類比輸入訊號之一濾波後的版本,且提取該誤差分量,且輸出該誤差分量之一負值;一第二類比數位轉換器電路,用以將該誤差分量之該負值轉換為一數位誤差訊號;及一第二加法電路,用以接收該第一數位訊號及該數位誤差訊號,且在一輸出端子處輸出對應於該類比輸入訊號的一數位輸出訊號。
  2. 如請求項1所述之類比數位轉換器,其中該第一類比數位轉換器電路包括一三角積分類比數位轉換器。
  3. 如請求項1所述之類比數位轉換器,進一步包括:一第一放大器,耦接在該第一加法電路與該第二類比數 位轉換器電路之間,該第一放大器用以將一第一增益因子應用於該誤差分量之該負值;及一第二放大器,耦接在該第二類比數位轉換器電路與該第二加法電路之間,該第二放大器用以將該第一增益因子之一倒數應用於該數位誤差訊號。
  4. 如請求項1所述之類比數位轉換器,進一步包括一延遲電路,該延遲電路耦接在該第一類比數位轉換器電路與該第二加法電路之間。
  5. 如請求項2所述之類比數位轉換器,其中該第一類比數位轉換器電路包括:一第三加法電路,耦接至該輸入端子;一迴路濾波器,用以接收該第三加法電路之一輸出且用以向該第一加法電路提供該類比輸入訊號之該濾波後的版本;一第四加法電路,耦接至該輸入端子且用以接收該迴路濾波器之該輸出且向該壓控震盪器提供一輸出;以及一第二數位類比轉換器電路,用以接收該第一數位訊號且將一對應的類比訊號輸出至該第一加法電路。
  6. 一種類比數位轉換器,包括:一輸入端子,用以接收一類比輸入訊號;一壓控震盪器基底型三角積分類比數位轉換器電路,耦 接至該輸入端子且用以輸出基於該類比輸入訊號的在一頻域中的第一數位訊號,該第一數位訊號包括一雜訊傳送函數;一第一數位類比轉換器,用以將該第一數位訊號轉換為一類比輸出訊號;一第一加法電路,用以接收該類比輸出訊號及該類比輸入訊號;一管線式類比數位轉換器電路,用以將該第一加法電路之一輸出轉換為一第二數位訊號;以及一數位濾波器,耦接以接收由該管線式類比數位轉換器電路輸出的該第二數位訊號,其中該數位濾波器具有與該雜訊傳送函數相匹配的一數位濾波器函數以自該第一數位訊號去除諧波失真。
  7. 如請求項6所述之類比數位轉換器,進一步包括一第二加法電路,該第二加法電路用以接收該第一數位訊號及該第二數位訊號,且在一輸出端子處輸出對應於該類比輸入訊號的一數位輸出訊號。
  8. 如請求項7所述之類比數位轉換器,進一步包括:一第一放大器,耦接在該第一加法電路與該第二類比數位轉換器電路之間,該第一放大器用以將一第一增益因子應用於一誤差之一負值;及 一第二放大器,耦接在該第二類比數位轉換器電路與該第二加法電路之間,該第二放大器用以將該第一增益因子之一倒數應用於該第二數位訊號。
  9. 一種操作類比數位轉換器的方法,包括:由一第一類比數位轉換器電路將一類比輸入訊號轉換為在一頻域中的一第一數位訊號;將該第一數位訊號轉換為一類比輸出訊號;自該類比輸出訊號提取一誤差分量;由一第二類比數位轉換器電路將該誤差分量之一負值轉換為一第二數位訊號;使用與該第一數位訊號之一雜訊傳送函數相匹配的一數位濾波器函數對該第二數位訊號進行濾波;及由一加法電路組合該第一數位訊號及該第二數位訊號以輸出對應於該類比輸入訊號的一數位輸出訊號。
  10. 如請求項9所述之方法,進一步包括:在組合該第一數位訊號及該第二數位訊號之前延遲該第一數位訊號。
TW110107354A 2020-03-31 2021-03-02 類比數位轉換器及其操作方法 TWI751918B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/835,616 2020-03-31
US16/835,616 US10931299B1 (en) 2020-03-31 2020-03-31 Analog to digital converter with VCO-based and pipelined quantizers

Publications (2)

Publication Number Publication Date
TW202139606A TW202139606A (zh) 2021-10-16
TWI751918B true TWI751918B (zh) 2022-01-01

Family

ID=74659134

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110107354A TWI751918B (zh) 2020-03-31 2021-03-02 類比數位轉換器及其操作方法

Country Status (3)

Country Link
US (3) US10931299B1 (zh)
CN (1) CN113055011B (zh)
TW (1) TWI751918B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI835424B (zh) * 2022-11-24 2024-03-11 瑞昱半導體股份有限公司 管線式類比數位轉換器及其校正方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10931299B1 (en) * 2020-03-31 2021-02-23 Taiwan Semiconductor Manufacturing Company, Ltd. Analog to digital converter with VCO-based and pipelined quantizers
US11658678B2 (en) * 2020-08-10 2023-05-23 Analog Devices, Inc. System and method to enhance noise performance in a delta sigma converter
CN113328749B (zh) * 2021-04-30 2023-12-15 澳门大学 一种模数转换装置
US11870453B2 (en) * 2021-11-22 2024-01-09 Taiwan Semiconductor Manufacturing Company, Ltd. Circuits and methods for a noise shaping analog to digital converter
US11722146B1 (en) * 2022-01-21 2023-08-08 Nxp B.V. Correction of sigma-delta analog-to-digital converters (ADCs) using neural networks
US11990917B2 (en) * 2022-06-07 2024-05-21 Invensense, Inc. Incremental analog to digital converter incorporating noise shaping and residual error quantization
TWI813458B (zh) * 2022-09-29 2023-08-21 瑞昱半導體股份有限公司 具有非同步控制的時間交錯式類比數位轉換器
CN116232334B (zh) * 2023-03-06 2024-02-23 成都士模微电子有限责任公司 一种模数转换器及电子设备
CN117406653B (zh) * 2023-12-12 2024-02-27 浙江国利信安科技有限公司 模拟量输出装置以及工业控制器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7333041B2 (en) * 2005-06-21 2008-02-19 Infineon Technologies Ag System for analog-to-digital conversion
US20080062026A1 (en) * 2006-09-12 2008-03-13 Melanson John L Analog-to-digital converter (adc) having a reduced number of quantizer output levels
TWI554040B (zh) * 2014-05-30 2016-10-11 瑞昱半導體股份有限公司 自校正式以電壓控制振盪器為基礎之類比數位轉換器及其方法
CN109889203A (zh) * 2017-12-06 2019-06-14 三星电子株式会社 半导体器件及其操作方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3910703A1 (de) * 1989-04-03 1990-10-04 Philips Patentverwaltung Hybrider phasenregelkreis
US5557682A (en) * 1994-07-12 1996-09-17 Digisonix Multi-filter-set active adaptive control system
US6940436B2 (en) * 2003-10-31 2005-09-06 Texas Instruments Incorporated Analog-to-digital conversion system with second order noise shaping and a single amplifier
US8284085B2 (en) * 2010-10-06 2012-10-09 Texas Instruments Incorporated Pipelined continuous-time sigma delta modulator
US8400340B2 (en) * 2011-07-18 2013-03-19 Texas Instruments Incorporated Achieving high dynamic range in a sigma delta analog to digital converter
EP2611035B1 (en) * 2011-12-29 2014-07-16 ST-Ericsson SA Continuous-time MASH sigma-delta analogue to digital conversion
US9319011B2 (en) * 2014-04-21 2016-04-19 Taiwan Semiconductor Manufacturing Company, Ltd. Class-D amplifier having mixed signal feedback control
US9325340B2 (en) * 2014-09-02 2016-04-26 Nxp, B.V. Efficient analog to digital converter
US9614510B2 (en) * 2015-03-13 2017-04-04 Texas Instruments Incorporated Input path matching in pipelined continuous-time analog-to-digital converters
US9787316B2 (en) * 2015-09-14 2017-10-10 Mediatek Inc. System for conversion between analog domain and digital domain with mismatch error shaping
US10208371B2 (en) * 2016-07-13 2019-02-19 Apple Inc. Aluminum alloys with high strength and cosmetic appeal
US10784891B2 (en) * 2018-05-09 2020-09-22 Microchip Technology Incorporated Delta-sigma loop filters with input feedforward
US10784766B2 (en) * 2018-09-07 2020-09-22 Microchip Technology Incorporated Adaptive slope compensation for current mode control
US10931299B1 (en) * 2020-03-31 2021-02-23 Taiwan Semiconductor Manufacturing Company, Ltd. Analog to digital converter with VCO-based and pipelined quantizers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7333041B2 (en) * 2005-06-21 2008-02-19 Infineon Technologies Ag System for analog-to-digital conversion
US20080062026A1 (en) * 2006-09-12 2008-03-13 Melanson John L Analog-to-digital converter (adc) having a reduced number of quantizer output levels
TWI554040B (zh) * 2014-05-30 2016-10-11 瑞昱半導體股份有限公司 自校正式以電壓控制振盪器為基礎之類比數位轉換器及其方法
CN109889203A (zh) * 2017-12-06 2019-06-14 三星电子株式会社 半导体器件及其操作方法
US10404270B2 (en) * 2017-12-06 2019-09-03 Samsung Electronics Co., Ltd. Semiconductor device and operating method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI835424B (zh) * 2022-11-24 2024-03-11 瑞昱半導體股份有限公司 管線式類比數位轉換器及其校正方法

Also Published As

Publication number Publication date
US20210305996A1 (en) 2021-09-30
CN113055011A (zh) 2021-06-29
US10931299B1 (en) 2021-02-23
TW202139606A (zh) 2021-10-16
US11438007B2 (en) 2022-09-06
US20220368340A1 (en) 2022-11-17
CN113055011B (zh) 2024-05-24

Similar Documents

Publication Publication Date Title
TWI751918B (zh) 類比數位轉換器及其操作方法
TWI629874B (zh) 量化器
CN109412597B (zh) 一种二阶噪声整形的逐次逼近型模数转换器及模数转换方法
US10439634B2 (en) Sigma delta modulator, integrated circuit and method therefor
US7432841B1 (en) Delta-sigma analog-to-digital converter with pipelined multi-bit quantization
US10439633B2 (en) Sigma delta modulator, integrated circuit and method therefor
US9685976B2 (en) Methods and devices for modifying active paths in a K-delta-1-sigma modulator
JP2001094429A (ja) アナログデジタル混在δς変調器
US6940438B2 (en) Method and circuit for reducing quantizer input/output swing in a sigma-delta modulator
US7034730B2 (en) Pipelined delta sigma modulator analog to digital converter
US7719369B2 (en) Sigma delta digital to analog converter with wide output range and improved linearity
US20110267211A1 (en) Analog-digital converter and operating method thereof
Dorrer et al. 10-bit, 3 mW continuous-time sigma-delta ADC for UMTS in a 0.12/spl mu/m CMOS process
Honarparvar et al. A 10-MHz BW 77.3-dB SNDR 640-MS/s GRO-Based CT MASH ΔΣ Modulator
TWI636670B (zh) Δ-σ調製器
Danesh et al. Ring oscillator based delta-sigma adcs
Dey et al. A 12 MHz BW, 80 dB SNDR, 83 dB DR, 4 th order CT-ΔΣ modulator with 2 nd order noise-shaping and pipelined SAR-VCO based quantizer
Lee et al. Noise-coupled multi-cell delta-sigma ADCs
US9136862B2 (en) Quantizer
Maghami et al. 0.9 V, 79.7 dB SNDR, 2MHz-BW, Highly linear OTA-less 1-1 MASH VCO-based ΔΣ with a Novel Phase Quantization Noise Extraction Technique
Leene et al. A 3rd order time domain delta sigma modulator with extended-phase detection
US20230387930A1 (en) Circuits and Methods for a Noise Shaping Analog To Digital Converter
Maghari et al. Emerging analog-to-digital converters
Kim et al. A ΔΣ ADC using 4-bit SAR type quantizer for audio applications
Sanyal et al. Low-power Scaling-friendly Ring Oscillator based ΔΣ ADC