TWI520928B - 改良之烷基化方法 - Google Patents

改良之烷基化方法 Download PDF

Info

Publication number
TWI520928B
TWI520928B TW100114445A TW100114445A TWI520928B TW I520928 B TWI520928 B TW I520928B TW 100114445 A TW100114445 A TW 100114445A TW 100114445 A TW100114445 A TW 100114445A TW I520928 B TWI520928 B TW I520928B
Authority
TW
Taiwan
Prior art keywords
zeolite
aromatic compound
zsm
treatment
mcm
Prior art date
Application number
TW100114445A
Other languages
English (en)
Other versions
TW201223922A (en
Inventor
馬修 文生
泰瑞 希爾頓
維傑 南達
Original Assignee
艾克頌美孚化學專利股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 艾克頌美孚化學專利股份有限公司 filed Critical 艾克頌美孚化學專利股份有限公司
Publication of TW201223922A publication Critical patent/TW201223922A/zh
Application granted granted Critical
Publication of TWI520928B publication Critical patent/TWI520928B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/54Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition of unsaturated hydrocarbons to saturated hydrocarbons or to hydrocarbons containing a six-membered aromatic ring with no unsaturation outside the aromatic ring
    • C07C2/64Addition to a carbon atom of a six-membered aromatic ring
    • C07C2/66Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • C07C15/067C8H10 hydrocarbons
    • C07C15/073Ethylbenzene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • C07C15/085Isopropylbenzene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/12Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/20Use of additives, e.g. for stabilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Description

改良之烷基化方法 相關申請案之交互參考
本申請案主張2011年4月15日申請之PCT/US2011/032653及2010年5月20日申請之美國臨時專利申請案61/346,763號(2010EM130)之優先權及利益,該等案之內容係以引用方式全部併入本文中。
本發明有關從至少部分未經處理的可烷基化芳族化合物流製造烷基化芳族化合物的改良方法,其中該至少部分未經處理之可烷基化芳族化合物流含有觸媒毒物,該等觸媒毒物藉由與處理組成物接觸而至少部分去除,且隨意地間歇地供應烷基化劑以判定該處理組成物的老化。尤其是,本發明有關從含有觸媒毒物之苯流製造乙苯、異丙苯及二級丁苯的方法,該觸媒毒物係藉由與處理組成物接觸而至少部分去除,其中該處理組成物為多孔結晶材料。
在藉由本發明改良方法有利地製造之烷基芳族化合物當中,例如乙苯及異丙苯係有價值的大宗化學品,其在工業上用於分別製造苯乙烯單體及共同製造酚與丙酮。事實上,酚之常見製造途徑包括涉及以丙烯將苯烷基化以製造異丙苯,接著將該異丙苯氧化成對應之氫過氧化物,然後將該氫過氧化物解理以製造等莫耳量之酚與丙酮。乙苯可藉由一些不同化學方法製造。已獲致顯著商業成功程度的方法之一係在固態酸性ZSM-5沸石觸媒存在下以乙烯將苯氣相烷基化。此等乙苯製造方法之實例係描述於美國專利第3,751,504號(Keown)、第4,547,605號(Kresge)及第4,016,218號(Haag)。美國專利第5,003,119號(Sardina)描述在乙苯之合成中使用X沸石、Y沸石、L沸石、β沸石、ZSM-5、ω沸石及絲光沸石與菱沸石。美國專利第5,959,168號(van der Aalst)描述在設計為使用氯化鋁為底質之觸媒的廠房中之乙苯合成中使用Y沸石、β沸石、MCM-22、MCM-36、MCM-49及MCM-56。
已獲致顯著商業成功之另一方法係用於從苯及乙烯製造乙苯之液相烷基化作用,由於其係以低於氣相方法之溫度操作,因此有形成較低副產物產率的傾向。例如,美國專利第4,891,458號(Innes)描述使用β沸石液相合成乙苯,然而美國專利第5,334,795號(Chu)描述在乙苯之液相合成中使用MCM-22;而美國專利第7,649,122號(Clark)描述在維持一定水含量存在下,在乙苯之液相合成中使用MCM-22。美國專利第4,549,426號(Inwood)描述使用蒸汽安定化沸石Y進行烷基苯之液相合成。美國專利申請公開案第2009/0234169 A1號(Pelati)描述在至少一個含有藉由包括稀土金屬離子而改質之第一觸媒的觸媒床上之液相芳族烷基化作用。
異丙苯已藉由在Friedel-Craft觸媒(特別是固態磷酸或氯化鋁)上,使用丙烯進行苯之液相烷基化作用來作商業製造。已發現以沸石為底質之觸媒系統的活性更高且對於苯丙基化成異丙苯的選擇性更高。例如,美國專利第4,992,606號(Kushnerick)描述在使用丙烯之苯的液相烷基化作用中使用MCM-22。
其他公開案顯示使用包含結晶沸石之觸媒,該觸媒用於將包含可烷基化芳族化合物與烷基化劑之原料在至少部份液相轉化條件之下轉化成烷基芳族轉化產物。這些前案包括US 2005/0197517A1(Cheng);US 2002/0137977A1(Hendrickson);及US 2004/0138051A1(Shan),其顯示使用包含埋入中孔支撐體中之微孔沸石的觸媒;WO 2006/002805(Spano);及美國專利第6,376,730號(Jan),其顯示使用層狀觸媒;EP 0847802B1;及美國專利第5,600,050號(Huang),其顯示使用包含30至70重量%之H-β沸石、0.5至10重量%之鹵素且其餘為氧化鋁黏合劑之觸媒。
其他此等公開案包括:美國專利第5,600,048號(Cheng),其描述在酸性固態氧化物(諸如MCM-22、MCM-49及MCM-56、X沸石、Y沸石、β沸石或絲光沸石)上藉由液相烷基化作用來製備乙苯;美國專利第7,411,101號(Chen),其描述在酸性固態氧化物(諸如PSH-3、ITQ-2、MCM-22、MCM-36、MCM-49、MCM-56及β沸石)上且在包括高達482℃之溫度及高達13,788 kPa之壓力的轉化條件下藉由液相烷基化作用來製備乙苯或異丙苯;及美國專利第7,645,913號(Clark),其描述係在多段系統中並在以轉化條件下藉由液相烷基化來製備烷基芳族化合物,其中該多段系統係在第一反應區的酸性固態氧化物觸媒上且其觸媒之每單位體積的觸媒酸性部位多於第二區中之觸媒,且乙苯之轉化條件包括高達270℃之溫度與高達8,300 kPa之壓力,而異丙苯之轉化條件包括高達250℃之溫度與高達5,000 kPa之壓力。美國專利申請公開案第2008/0287720 A1號(Clark)描述在水含量維持在1至900 wppm之反應區中於MCM-22族材料之觸媒上的苯之烷基化作用。美國專利申請公開案第2009/0137855 A1號(Clark)描述從稀釋烯原料(其亦包括烷雜質)製造烷基芳族化合物之混合相方法。在後者公開案中,原料中之液體對蒸氣的體積比為0.1至10。
使用沸石之方法的共同問題係,例如,製造烷基芳族化合物(諸如乙苯及異丙苯)之烷基化方法的觸媒操作壽命縮短,其原因係因存在該等方法之原料中的各種觸媒毒物所導致之鈍化。含有毒物吸附劑(諸如黏土、樹脂、分子篩等)之第一步驟防護床或分離區可用以限制該原料中之此等毒物。此種原料包括但不侷限於可烷基化芳族原料,諸如苯原料。顯示此點之公開案實例包括:美國專利第6,894,201 B1號(Schmidt),其使用黏土、分子篩或樹脂吸附劑;美國專利第5,744,686號(Gajda),其使用氧化矽/氧化鋁比超過100且平均孔徑小於5.5埃之非酸性分子篩,諸如沸石4A及ZSM-5;及美國專利申請公開案第2005/0143612 A1號(Hwang),其使用在酸性黏土、沸石、活化氧化鋁、活性碳、矽膠及離子交換樹脂上進行之蒸餾、萃取或吸附作用。原料預處理亦示於美國專利第7,199,275 B2號(Smith)中,其包括與Si/Al莫耳比小於5之第一分子篩(例如13X)接觸,然後與Si/Al莫耳比大於5之第二分子篩(例如4A)接觸;及顯示於美國專利申請公開案第2009/0259084 A1號(Smith)中,其包括與包含沸石X之第一分子篩接觸,然後與包含沸石Y之第二分子篩接觸。
在WO98/07673(Samson)中,製備烷基化苯或烷基化苯之混合物的方法包括在預處理區中且在高於約130℃但低於300℃之溫度下令苯原料與固態酸(諸如酸性黏土或酸沸石)接觸以形成經預處理之苯原料,然後在烷基化/轉烷化觸媒之存在下令該經預處理之苯原料與(a)在烷基化區中之烷基化劑或(b)在轉烷化區中之轉烷化劑接觸,以製備烷基化之苯或烷基化之苯混合物。據稱該預處理步驟改良該烷基化/轉烷化觸媒之使用壽命。較佳產物為乙苯及異丙苯。
含有表面積對體積比在指定範圍內之單一烷基化反應區係示於美國專利第6,888,037 B2號(Dandekar),其中異丙苯係在表面積/體積為80至200 in-1(31至79 cm-1),較佳為100至150 in-1(39至59 cm-1)之觸媒上以液相製造。單一反應區係示於美國專利第7,816,574 B2號(Clark)之烷基化方法中,其中該觸媒為粒徑係125至790微米且表面積/體積大於79 in-1(31 cm-1)之微粒材料。美國專利第5,118,896號(Steigelmann)顯示使用單一烷基化反應區之芳族烷基化方法,即催化蒸餾反應器,其中觸媒之孔隙容積為0.25至0.50 cc/g且孔半徑大於450埃,且觸媒粒徑不大於1/32英吋(0.08 cm)。美國專利第4,185,040號(Ward)顯示使用單一烷基化反應區之芳族烷基化方法,其中沸石Y觸媒之外表面積/體積比為85至160 in-1(34至63 cm-1)。
美國專利申請公開案第2009/0306446 A1號(Clark)顯示在單一反應區中製造單烷基化芳族化合物之方法,該單一反應區中具有兩種不同觸媒,第一觸媒之表面積/體積比大於79 cm-1而第二觸媒包含表面積/體積介於78與79 cm-1之間的粒子。
製造烷基芳族化合物(例如乙苯與異丙苯)之現有烷基化方法本身會製造多烷基化物質以及所希望的單烷基化產物。因此,藉由將多烷基化物質再循環至烷基化反應器或者更常見的是藉由將多烷基化物質進料至分離之轉烷化反應器,以額外芳族進料(例如苯)轉烷化該多烷基化物質以製造額外單烷基化產物(例如乙苯或異丙苯)極為平常。已用於芳族物質之烷基化作用(諸如以乙烯或丙烯烷基化苯)以及用於多烷基化物質(諸如多乙苯與多異丙基苯)之轉烷化作用的觸媒實例係列於美國專利第5,557,024號(Cheng),且包括MCM-49、MCM-22、PSH-3、SSZ-25、沸石X、沸石Y、沸石β、酸去鋁絲光沸石與TEA-絲光沸石。在小結晶(<0.5微米)形式之TEA-絲光沸石上的轉烷化作用亦揭示於美國專利6,984,764。
當該烷基化步驟係以液相進行時,亦希望在液相條件下進行該轉烷化步驟。不過,藉由在較低溫度下操作,液相方法迫使提高對於觸媒之需求,特別是在龐大的多烷基化物質必須轉化成額外單烷基化產物且不製造無用副產物的轉烷化步驟。此已證實在現有觸媒缺乏所需活性或導致產生大量副產物(諸如乙苯與正丙基苯)之異丙苯製造情況中為重大問題。
雖然本技術中建議用於在至少部分液相轉化條件下將包含可烷基化芳族化合物與烷基化劑之原料轉化成烷基芳族轉化產物之觸媒係由具有MWW骨架結構類型之多孔結晶材料(例如鋁矽酸鹽分子篩)所組成,但未教示該經改良方法。發現在至少部分液相轉化條件下進行此等方法之商業可接受方法(其延遲烷基化觸媒鈍化且不會負面影響單一選擇性(例如較低二烷基或多烷基產物形成))將使得可在現有廠房中之產能擴充並降低基層廠房之資本支出。
根據本發明,意外發現從至少部分未經處理的可烷基化芳族化合物流製造烷基化芳族化合物的改良之方法,其中該至少部分未經處理之可烷基化芳族化合物流含有觸媒毒物,該等觸媒毒物藉由與處理組成物接觸而至少部分去除,且隨意地間歇地供應烷基化劑以判定該處理組成物的老化。特別是,本發明有關從含有觸媒毒物之苯流製造乙苯、異丙苯及二級丁苯的方法,該觸媒毒物係藉由與處理組成物接觸而至少部分去除,其中該處理組成物為多孔結晶材料。
發明摘要
根據本發明,提出一種從具有觸媒毒物的至少部分未經處理之可烷基化芳族化合物流與烷基化劑流製造烷基化芳族化合物的改良方法。較佳地,該烷基化芳族化合物為單烷基化芳族化合物,諸如乙苯、異丙苯及二級丁苯;較佳地,該可烷基化芳族化合物為苯;及較佳地,該烷基化劑為乙烯、丙烯或丁烯。該未經處理之可烷基化芳族化合物流係經具有高表面積/體積比且不存在烷基化劑之處理組成物處理,以降低觸媒毒物。
該方法之一具體實例包括以下步驟:(a)在與烷基化反應區分開(較佳係上游分開)之處理區中於處理條件下令該具有觸媒毒物之至少部分未經處理之可烷基化芳族化合物流與處理組成物接觸,以去除至少部分的該等觸媒毒物並形成包含經處理之可烷基化芳族化合物及數量減少之觸媒毒物的經處理流出物流,其中該處理組成物之表面積/表面體積比大於30 in-1(76 cm-1),該等處理條件包括溫度為約30℃(環境溫度)至約300℃,且壓力為約101 kPa(環境壓力)至約4601 kPa;及(b)在該與處理區分開(較佳係下游分開)之烷基化反應區中於至少部分液相催化轉化條件下令該流出物流中之經處理可烷基化芳族化合物及烷基化劑流與觸媒組成物接觸,以形成包含烷基化芳族化合物之烷基化流出物流,其中該觸媒組成物包含多孔結晶材料,該多孔結晶材料具有選自由FAU、BEA、MOR、MWW及其混合所組成之群組的骨架結構類型;其中該至少部分液相催化轉化條件包括約100℃至約300℃之溫度,約689 kPa至約4601 kPa之壓力,約0.01:1至約25:1之經處理可烷基化芳族化合物對烷基化劑之莫耳比,及以烷基化劑計為約0.5至約500 hr-1之進料每小時重量空間速度(WHSV)。
根據本發明另一實施樣態,該方法另外包括間歇地將烷基化劑流與該至少部分未經處理之可烷基化芳族化合物(例如苯)一起供應至該處理區,以在該等處理條件下於該處理組成物存在下產生因該烷基化劑(例如乙烯)與該至少部分未經處理之可烷基化芳族化合物之間的放熱反應所造成之溫度升高,從而該溫度升高表示該處理組成物的相對活性(如下文所討論)。相對活性對時間之改變表示該處理組成物之相對老化速率。該處理組成物老化速率及/或相對活性係用以判定何時置換該處理組成物。
發明詳細說明 定義
如本文所使用,術語「可烷基化芳族化合物」意指可接受烷基之化合物,而「烷基化劑」為可給予烷基之化合物。
應暸解與可作為本文之進料的可烷基化芳族化合物有關之「芳族」一詞係根據先前技術已知範圍。此包括經烷基取代與未經取代單核與多核化合物。只要在所選用之反應條件下不成為觸媒毒物,亦可使用具有雜原子之芳族性化合物。
術語「觸媒毒物」意指存在該至少部分未經處理之可烷基化芳族化合物流(特別是苯流)中之雜質,其包含一或多種含有至少一種以下元素之化合物:氮、鹵素、氧、硫、砷、硒、碲、磷及第1族至第12族金屬。
如本文所使用,術語「間歇地」用於隨意地將烷基化劑流供應至該處理區時意指該烷基化劑係以1秒至高達24小時或更長之間隔,較佳為至少1小時至高達約24小時之間隔供應,然後中斷1分鐘至15天或更長之期間,較佳為10至15天之期間。重要的是,使用循環數不受限制,且可視需要而經常應用以監測該老化速率。
如本文所使用,本改良方法中提到之術語「液相或部分液相」係指反應混合物包含大於或等於10體積百分比之液體,例如大於或等於30體積百分比之液體,至高達100體積百分比之液體。
如本文所使用,術語「表面積/表面體積比」意指將該經調配粒子之表面積除以該經調配粒子之幾何表面體積所獲得之比。如本文所使用,術語「幾何表面體積」意指將經調配粒子當作其表面或內部似乎無任何孔、通道或腔室之體積的實心粒子計算之該經調配粒子的體積。例如,就幾何球體而言,表面積/表面體積比(S/V)為3/r,其中r為該粒子之半徑。
如本文所使用,術語「未經處理之可烷基化芳族化合物」意指在與本發明之處理組成物接觸之前的含有可烷基化芳族化合物與任何觸媒毒物之流。為避免疑慮,此種未經處理之可烷基化芳族化合物可在上游或下游程序中已經進行其他處理步驟,其中至少部分的觸媒毒物可被去除,如此存在待藉由本發明方法去除剩餘之觸媒毒物。
如本文所使用,術語「wppm」意指每百萬分之重量份。
處理組成物
在一或多個具體實例中,本改良方法中使用之處理組成物較佳包含多孔結晶材料,且表面積/表面體積比為大於或等於30 in-1(12 cm-1);或表面積/表面體積比為大於或等於至50 in-1(20 cm-1);或表面積/表面體積比為大於或等於75 in-1(30 cm-1);或表面積/表面體積比為大於或等於125 in-1(50 cm-1);或表面積/表面體積比為大於或等於250 in-1(99 cm-1);或表面積/表面體積比為大於或等於至500 in-1(197 cm-1)。
該處理組成物之表面積/表面體積比在大於或等於30 in-1(12 cm-1)至小於或等於70 in-1(28 cm-1)之範圍內;或在大於或等於75 in-1(30 cm-1)至小於或等於125 in-1(49 cm-1)之範圍內;或在大於或等於125 in-1(49 cm-1)至小於或等於250 in-1(98 cm-1)之範圍內;或在大於或等於250 in-1(98 cm-1)至小於或等於500 in-1(197 cm-1)之範圍內;或在70 in-1(28 cm-1)至100 in-1(39 cm-1)之範圍內;或在180 in-1(71 cm-1)至220 in-1(87 cm-1)之範圍內;或在600 in-1(236 cm-1)至770 in-1(303 cm-1)之範圍內。
製造具有所希望表面積/表面體積比之處理組成物的方法無特定限制。長久以來為人習知之技術之一或多者,諸如噴霧乾燥、製粒、造粒及擠製係用以製造呈球形粒子、擠製物、丸粒及錠劑形式之微結構。該等技術之彙總內容描述於A. B. Stiles與T. A. Koch著之Catalyst Manufacture,Marcel Dekker,New York,1995。
具有所希望表面積/表面體積比之處理組成物可藉由例如控制其粒子大小(即,壓碎粒子)而製成。
具有所希望表面積/表面體積比之處理組成物亦可藉由例如使用經成形之處理組成物製成。經成形處理組成物之非限制性實例包括如美國專利第4,441,990號(Huang)中所述之藉由擠製製成之中空或實心多瓣形擠製物(polylobal extrudate);如美國專利第7,198,845號(Van Hasselt)中所述之中空形擠製物;如美國專利第4,432,643號(Kyan)中所述之縱向通道圓柱形擠製物;如美國專利第4,328,130中所述之具溝紋圓柱形擠製物。
例如,直徑為1/32英吋(0.08 cm)且長度為3/32英吋(0.24 cm)之圓柱形處理組成物的表面積/表面體積比為141 in-1(56 cm-1)。具有如美國專利第4,441,990號之圖4中揭示的外部形狀且最大橫斷面尺寸為1/16英吋(0.16 cm)且長度為3/16英吋(0.48 cm)之四瓣實心擠製物的處理組成物之表面積/表面體積比為128 in-1(50 cm-1)。具有外徑為1/10英吋(0.25 cm)、內徑為1/30英吋(0.08 cm)且長度為3/10英吋(0.75 cm)之中空管狀擠製物的表面積/表面體積比為136 in-1(54 cm-1)。
表面積/體積比可藉由測量處理組成物粒子之實際尺寸與曲率,然後以習知之幾何等式計算該表面積與體積來測定。
作為多孔結晶分子篩之處理組成物的非限制性實例可具有BEA結構,包括β沸石(描述於美國專利第3,308,069號);FAU結構,包括八面沸石、沸石Y、超安定Y型沸石(USY,描述於美國專利第3,293,192號及第3,449,070號)、去鋁Y型沸石(Deal Y,其製備係描述於美國專利第3,442,795號)、稀土交換Y型沸石(REY,描述於美國專利第4,415,438號)、超疏水Y型沸石(UHP-Y超疏水Y型沸石,描述於美國專利第4,401,556號);MOR結構,包括絲光沸石(天然材料),及TEA-絲光沸石(從包含四乙銨導向劑之反應混合物所製備之合成絲光沸石,揭示於美國專利第3,766,093號及第3,894,104號)。該處理組成物可包括上述多孔結晶分子篩之混合物。其他適用之多孔結晶分子篩包括但不侷限於ZSM-3、ZSM-4、ZSM-5、ZSM-14、ZSM-18及ZSM-20,包括其混合物。
在一或多個具體實例中,處理組成物亦可選自由黏土、樹脂、固態磷酸、活化氧化鋁、林得X型沸石(諸如13X)、林得A型沸石(諸如4A或5A)及其混合物所組成之群組作為非限制性實例。
該等分子篩及/或沸石之製造、改質及分子篩之特徵方面的彙總係描述於R. Szostak所著之Molecular Sieves-Principles of Synthesis and Identification,Blackie Academic & Professional,London,1998,第二版。除了分子篩之外,已使用非晶形材料,主要為氧化矽、矽酸鋁及氧化鋁作為吸附劑及觸媒支撐體。
觸媒組成物
適用於本發明之觸媒組成物包含具有選自由FAU、BEA、MOR、MWW及其混合所組成之群組的骨架結構類型(較佳為MWW骨架結構)的多孔結晶材料。
具有該FAU骨架結構類型的多孔結晶材料包括上述八面沸石、Y型沸石、超安定Y型沸石(USY)、去鋁Y型沸石(Deal Y)、稀土Y型沸石(REY)、超疏水Y型沸石(UHP-Y)或其混合物。
具有BEA骨架結構類型之多孔結晶材料為上述之β沸石。
具有MOR骨架結構類型之多孔結晶材料為上述絲光沸石、TEA-絲光沸石或其混合物。
具有該MWW骨架結構類型的多孔結晶材料通常具有包括晶格面距最大值在12.4±0.25、6.9±0.15、3.57±0.07及3.42±0.07埃之X射線繞射圖案。用以表示該材料之特徵的X射線繞射資料係使用銅之K-α雙重線作為入射輻射之標準技術以及配備有閃爍計數器之繞射計與結合之電腦作為收集系統所獲得。
MWW骨架結構類型材料之實例包括MCM-22(描述於美國專利第4,954,325號)、PSH-3(描述於美國專利第4,439,409號)、SSZ-25(描述於美國專利第4,826,667號)、ERB-1(描述於歐洲專利第0293032號)、ITQ-1(描述於美國專利第6,077,498號)、ITQ-2(描述於美國專利第6,231,751號)、ITQ-30(描述於WO 2005-118476)、MCM-36(描述於美國專利第5,250,277號)、MCM-49(描述於美國專利第5,236,575號)、MCM-56(描述於美國專利第5,362,697號)及UZM-8(描述於美國專利第6,756,030號)。
較佳地,該包含具有MWW骨架結構類型之多孔結晶材料的觸媒組成物為PSH-3、SSZ-25、ERB-1、ITQ-1、ITQ-2、ITQ-30、MCM-22、MCM-36、MCM-49、MCM-56、UZM-8、EMM-10、EMM-12、EMM-13或其混合物。
在本發明具體實例中,觸媒以RA220測量的相對活性為至少8.6,例如為8.6至12.0,或以RA180測量為至少3.5,例如為3.5至6.0。
本發明中需要使用之觸媒的製造方法包括本文所列且以引用之方式併入本文中的公開案中所教示之方法。例如,美國專利第4,954,325號描述結晶MCM-22及包含彼之觸媒,美國專利第5,236,575號描述結晶MCM-49及包含彼之觸媒,及美國專利第5,362,697號描述結晶MCM-56及包含彼之觸媒。
黏合劑
本發明中使用之觸媒組成物及處理組成物可包括無機氧化物基質材料或黏合劑。此等基質或黏合劑材料包括合成或天然物質,以及無機材料,諸如黏土、氧化矽及/或金屬氧化物。後者可為天然或包括氧化矽與金屬氧化物的混合物而呈凝膠狀沉澱物或凝膠的形式。可與該無機氧化物材料複合的天然黏土包括蒙脫土與高嶺士族之天然黏土,該等族包括變膨潤石,且該高嶺土通常習知為Dixie、McNamee、Georgia與Florida黏土或主要礦物成份為敘永石、高嶺石、狄克石(dickite)、珍珠陶土或富矽高嶺石之其他者。此等黏土可以原始開採的原態或初步進行煅燒、酸處理或化學改質之狀態使用。
本文所使用之特別可用的基質或黏合劑材料包括氧化矽、氧化鋁、氧化鋯、氧化鈦、氧化矽-氧化鋁、氧化矽-氧化鎂、氧化矽-氧化鋯、氧化矽-氧化釷、氧化矽-氧化鈹、氧化矽-氧化鈦,以及三元組成物諸如氧化矽-氧化鋁-氧化釷、氧化矽-氧化鋁-氧化鋯、氧化矽-氧化鋁-氧化鎂,及氧化矽-氧化鎂-氧化鋯。該基質可呈共凝膠形式。亦可使用該等組分之混合物。
為改善本發明,結晶分子篩與黏合劑或基質之相對比例並無特殊限制。
該用於本發明之觸媒或其結晶分子篩組分可含有或可不含附加官能度,諸如例如,第VI族之金屬(例如Cr及Mo)、第VII族之金屬(例如Mn及Re),或第VIII族之金屬(例如Co、Ni、Pd及Pt),或磷。
可烷基化芳族化合物、烷基化劑及產物
適用於本發明之可烷基化芳族化合物包括必須具有至少一個與該芳核直接鍵結之氫原子的可被烷基化之經替代芳族化合物。該芳環可經一或更多個烷基、芳基、烷芳基、烷氧基、芳氧基、環烷基、鹵根基、及/或不會干擾烷基化反應之其他基團取代。
適用之可烷基化芳族化合物包括苯、萘、蒽、並四苯、苝、蔻與菲,以苯為佳。
通常可存在作為該芳族化合物上之取代基的烷基含有1至約22個碳原子,且經常為約1至8個碳原子,最常為約1至4個碳原子。
適用之可烷基化芳族化合物包括經烷基取代之芳族化合物,其包括包括甲苯、二甲苯、異丙苯、正丙苯、α-甲基萘、乙苯、1,3,5-三甲苯、杜烯、異丙甲苯類、丁基苯、假異丙苯、鄰二乙苯、間二乙苯、對二乙苯、異戊苯、異己苯、五乙苯、五甲苯;1,2,3,4-四乙苯;1,2,3,5-四甲苯;1,2,4-三乙苯;1,2,3-三甲苯;間丁基甲苯;對丁基甲苯;3,5-二乙基甲苯;鄰乙基甲苯;對乙基甲苯;間丙基甲苯;4-乙基間二甲苯、二甲基萘;乙基萘;2,3-二甲基蒽;9-乙基蒽;2-甲基蒽;鄰甲基蒽;9,10-二甲基菲;及3-甲基菲。高分子量烷基芳族化合物亦可用作起始材料,且包括芳族有機物質,諸如藉由以烯烴寡聚物烷基化芳族有機物質所製造者。此等產物在本技術中經常被稱為烷基化物,且包括己基苯、壬基苯、十二烷基苯、十五烷基苯、己基甲苯、壬基甲苯、十二烷基甲苯、十五烷基甲苯等。極常獲得是為高沸點餾份之烷基化物,其中接附在芳族核之烷基接附的大小從約C6至約C12。當異丙苯或乙苯係所希望產物時,本方法產生可接受的少量副產物為諸如二甲苯。此等實例中之二甲苯可低於約500 ppm。
含有苯、甲苯與二甲苯之混合物的重組產物構成特別可用於本揭示之烷基化方法的進料。
適用於本發明之烷基化劑包括烯烴,諸如乙烯及丙烯;醇(包括單醇、二醇、三醇等)諸如甲醇、乙醇及丙醇;醛,諸如甲醛、乙醛及丙醛;及烷基鹵化物,諸如氯甲烷、氯乙烷及氯丙烷等等。
輕質烯烴類之混合物可用作本發明之烷基化方法的烷基化劑。因此,是為各種煉油廠物流,例如,燃料氣體、天然氣加工廠的含乙烯、丙烯等之廢氣、含輕質烯烴類之輕油裂解設備廢氣、煉油FCC丙烷/丙烯物流等之主要成份的乙烯及丙烯的混合物係此處可用之烷基化劑。例如,典型FCC輕質烯烴流具有下列組成:
可從本發明方法製得之反應產物的非限制性實例包括從苯與乙烯之反應製得的乙苯、從苯與丙烯之反應製得的異丙苯、從甲苯與乙烯之反應製得的乙基甲苯、及從甲苯與丙烯之反應製得之異丙甲苯類。本發明之特佳方法機制係有關藉由丙烯烷基化苯而製造異丙苯以及藉由乙烯烷基化苯而製造乙苯。
本改良方法之反應物可部分或完全為液相,且可為純淨不摻雜(即,無刻意以其他材料摻合或稀釋),或可借助於載體氣體或稀釋劑(諸如例如氫或氮)令彼與該所需之觸媒組成物接觸。
觸媒毒物及處理方法
該至少部分未經處理之可烷基化芳族化合物流可含有隨著時間作用而毒化該觸媒組成物的雜質。該等觸媒毒物可佔該至少部分未經處理之可烷基化芳族化合物流的至高達約10 wppm,或至高達5 wppm,或至高達1 wppm,或至高達0.5 wppm,或至高達約0.1 wppm。此種觸媒毒物可在該至少部分未經處理之可烷基化芳族化合物流的至少1 wppm至5 wppm,或1 wppm至10 wppm,或甚至5 wppm至10 wppm(重量計)之範圍內。此種觸媒毒物包含含有至少一種以下元素的一或多種化合物:氮、鹵素、氧、硫、砷、硒、碲、磷及第1族至第12族金屬。
本發明中,該具有觸媒毒物之至少部分未經處理之可烷基化芳族化合物流係藉由在與烷基化反應區分開且在上游之處理區中令該流與處理組成物接觸來處理。該接觸係在處理條件下進行以去除至少部分該觸媒毒物,從而形成包含經處理之可烷基化芳族化合物及數量減少之觸媒毒物的經處理流出物流。較佳地,此種處理係於不存在烷基化劑流之下進行。如上述,該處理組成物包含高表面積/表面體積比的多孔結晶沸石。
在一或多個具體實例中,該處理條件包括溫度為約30℃(環境溫度)至約300℃,約100℃至約200℃,及約100℃至125℃。該處理壓力為約101 kPa(環境壓力)至約4601 kPa,約101 kPa至約3000 kPa,及約101 kPa至約2500 kPa。以該至少部分未經處理之可烷基化芳族化合物之重量計,該處理之每小時重量空間速度(WHSV)在約5至70 hr-1之範圍內,較佳為12至45 hr-1
該處理組成物的吸收容量係每克處理組成物吸收大於約100,或大於約300,或大於約500,或大於約700,或大於約900微莫耳之三甲吡啶。吸收三甲吡啶之容量在每克處理組成物吸收約50至高達約150,約150至約300,約300至約500,約500至約700,約700至約900,約900至約1000微莫耳三甲吡啶之範圍內。
該處理組成物的吸收容量以該處理組成物重量計為大於約900,或大於約1500,或大於約2500,或大於約3500,或大於約5500 wppm之N-甲醯基啉(NFM)。吸收NFM之容量以該處理組成物之重量計為約900至高達約1500,為約1500至約2500,為約2500至約3500,為約3500至約5500,為約5500至約7000 wppm之範圍內。
在操作中,將具有該觸媒毒物之至少部分未經處理之可烷基化芳族流進料至該處理區。在與烷基化反應區分開之處理區中於處理條件下將該未經處理之可烷基化芳族化合物混合物與處理組成物接觸,以去除至少部分的該等觸媒毒物以形成包含經處理之可烷基化芳族化合物及數量減少之觸媒毒物的經處理流出物流,其中該處理組成物之表面積/表面體積比大於30 in-1(76 cm-1),該等處理條件包括溫度為約30℃至約300℃,且壓力為約101 kPa至約4601 kPa。在該處理區中,至少一種觸媒毒物被該處理組成物吸收且牢固結合於該處理組成物,造成從該至少部分未經處理之可烷基化芳族化合物流至少部分地去除該觸媒毒物。
適當選擇處理區中之處理組成物並結合此種處理組成物之高表面積/體積比提供經改良之觸媒毒物去除作用。此外,此種觸媒毒物去除作用另外隨意地與對該處理區間歇地供應烷基化劑結合,以產生因該烷基化劑與該可烷基化芳族化合物之間的放熱反應所造成之溫度升高。該溫度升高提供該處理組成物之相對活性的指示。該溫度升高隨時間降低反應出處理組成物之老化。當溫度升高降至最小水準時,表示該處理組成物已達到可使用壽命終點且應予以置換。
在該具體實例之操作中,處理區中具有處理組成物與至少一個處理區監測器;較佳地,具有至少三個處理區監測器。該等處理區監測器係置於該處理組成物中並測量其溫度。較佳地,以至少三個處理區監測器之至少三個參考值監測該溫度。在三個處理區監測器的情況下,例如,三個處理區監測器均用以監測該處理組成物的溫度。在五個監測器的情況下,例如,該五個監測器中的至少三個係用以監測或測量參數。
將具有該觸媒毒物之至少部分未經處理之可烷基化芳族流進料至該處理區(不存在烷基化劑流之下)。在與烷基化反應區分開之處理區中於處理條件下將該至少部分未經處理之可烷基化芳族化合物流與處理組成物接觸,以去除至少部分的該等觸媒毒物並形成包含經處理之可烷基化芳族化合物及數量減少之觸媒毒物的經處理流出物流,其中該處理組成物包含表面積/表面體積比大於30 in-1(76 cm-1)之多孔結晶沸石,該等處理條件包括溫度為約30℃至約300℃,且壓力為約101 kPa至約4601 kPa。在該處理區中,至少一種觸媒毒物被該處理組成物吸收且牢固結合於該處理組成物,造成從該至少部分未經處理之可烷基化芳族化合物流至少部分地去除該觸媒毒物。
隨意地,間歇地將烷基化劑(例如乙烯)流與該至少部分未經處理之可烷基化芳族化合物(例如苯)一起供應至該處理區,以在該等處理條件下於該處理組成物存在下產生因該烷基化劑與該至少部分未經處理之可烷基化芳族化合物之間的放熱反應所造成之溫度升高。隨著在流上之油上時間(on-oil time)增加,該處理組成物因一或多種觸媒毒物的吸收量而用盡或耗盡。當處理區為從入口接收至少部分未經處理之可烷基化芳族化合物流並從出口將其排出的固定床時,該處理組成物係沿著流動方向從該入口至該出口用盡或耗盡。當所有處理組成物係用盡或耗盡時,該等觸媒毒物之一或多者突破並進入下游烷基化反應區,如此造成其中之觸媒組成物鈍化。較有利的,本發明之具體實例提供處理組成物之老化及/或相對活性的指示,以協助判定何時置換該處理組成物,因此避免一或多種觸媒毒物從處理區突破進入烷基化區。
當間歇地供應烷基化劑時,至少部分未經處理之可烷基化芳族化合物對烷基化劑之莫耳比為大於或等於約10:1;或大於或等於約25:1;或大於或等於約50:1;或大於或等於約75:1;或大於或等於約100:1。至少部分未經處理之可烷基化芳族化合物對烷基化劑的莫耳比係在10:1至25:1,或25:1至50:1;或50:1至75:1;或75:1至100:1之範圍內。在某些具體實例中,處理區中單一處理組成物床的至少部分未經處理之可烷基化芳族化合物對烷基化劑之比係在5:1至50:1範圍內。
由於本發明處理步驟令至少部分未經處理之可烷基化芳族化合物流與處理組成物接觸的結果,至少1重量%,至少5重量%,至少10重量%,至少15重量%,至少25重量%,至少50重量%,至少75重量%,或至高達至少99重量%該至少部分未經處理之可烷基化芳族化合物流中之觸媒毒物被去除。
此外,當供應時,大部分市售至少部分未經處理之可烷基化芳族化合物流為水飽和,且可含有至高達約50 wppm,通常至高達約200 wppm之水。本方法提供將市售至少部分未經處理之可烷基化芳族化合物流中之觸媒毒物數量減少至具有上述水量之可接受含量的有利方法。
烷基化方法
在本發明方法中,用於處理區之實體裝置及用於烷基化反應區之實體裝置可例如分開並串接,從而接著回收來自該處理區之流出物並將之進料至下游反應區。又,只要在包含經處理之可烷基化芳族化合物在反應區之分開部分中於烷基化轉化條件下接觸烷基化觸媒之前,所有可烷基化芳族化合物在該反應區中於處理條件下接觸處理組成物,相同裝置可用於處理區及烷基化反應區二者。在後者狀態下,當然,來自上述步驟(a)之處理區的包含經處理可烷基化芳族化合物與任何未經處理之烷基化劑之流出物可直接送至上述步驟(b)之烷基化反應區。
本發明之經改良烷基化方法可進行以使得反應物(即,來自處理區之包含經處理之可烷基化芳族化合物的流出物)在適當反應區(諸如例如含有觸媒組成物之固定床的流動反應器)中並在有效催化轉化條件下與觸媒組成物接觸。較佳地,至少部分液相催化轉化條件包括溫度為約100℃至約300℃,較佳為約100℃至約285℃,最佳為約100℃至約200℃,壓力為約689至約4601 kPa,較佳為約689至約3102 kPa,經處理可烷基化芳族化合物對烷基化劑之莫耳比為約0.1:1至約25:1,較佳為約0.5:1至約10:1,及烷基化劑計之進料每小時重量空間速度(WHSV)為約0.1至500 hr-1,較佳為約0.5至約100 hr-1
當經處理之可烷基化芳族化合物包含經處理之苯且烷基化劑為乙烯以製造乙苯時,烷基化反應較佳係在至少部分液相催化轉化條件下進行,該等至少部分液相催化轉化條件包括溫度為約100℃至約280℃,為約100℃至約230℃,較佳為約125℃至約260℃;壓力為至高達約4601 kPa,較佳為約689 kPa至約3102 kPa;以乙烯烷基化劑計之每小時重量空間速度(WHSV)為約0.1至約20 hr-1,較佳為約0.5至約6 hr-1;及烷基化反應區中之經處理之苯對乙烯的莫耳比為約0.1:1至約30:1,較佳為約1:1至約20:1。
當經處理之可烷基化芳族化合物包含經處理之苯且烷基化劑為丙烯以製造異丙苯時,反應亦可在至少部分液相催化轉化條件下發生,該等至少部分液相催化轉化條件包括溫度低於約200℃,為約100至約200℃,為約125℃至約180℃;壓力為約3102 kPa或更低,例如為約1724 kPa至約3102 kPa;以丙烯烷基化劑計之每小時重量空間速度(WHSV)為約0.1 hr-1至約25 hr-1,較佳為約0.3 hr-1至約5 hr-1;及烷基化反應器中之經處理之苯對丙烯的莫耳比為約0.1:1至約30:1更佳為約1:1至約20:1。
在本發明反應機制中,烷基化反應器流出物可含有過量芳族進料、單烷基化產物、多烷基化產物及各種雜質。藉由蒸餾回收該芳族進料,並再循環至該烷基化反應器。經常從該再循環流取出少量洩放物以從該迴路消除無反應性之雜質。可進一步蒸餾來自蒸餾之底部物以從多烷基化產物與其他重質物分離出單烷基化產物。
從該烷基化反應器流出物分離出之多烷基化產物可在與該烷基化反應器分開之轉烷化反應器中於適當之轉烷化觸媒上與額外芳族進料反應。該轉烷化觸媒可包含具有上述β沸石、沸石Y、絲光沸石或MWW骨架結構類型材料之結構的結晶分子篩之一或其混合物。
相對活性
用於本發明之觸媒組成物之以RA220測量的相對活性為至少8.6,例如8.6至12.0,或以RA180測量為至少3.5,例如3.5至6.0,使得可在較低反應壓力下操作,例如反應器出口壓力為約3102 kPa或更低,及較低烷基化劑(例如乙烯或丙烯)進料供應壓力為3102 kPa或更低,例如2758 kPa或更低。如本文所使用,相對活性係以RA220測量或以RA180測量,並藉由S. Folger於Elements of Chemical Reactor Engineering第2版,第406-407頁中所述之類似方法測定。在該使用絕熱反應器之方法中,使用能量均衡使溫度升高與乙烯之轉化相關。在熱電偶位置、入口溫度、壓力及轉化率已知之情況下,可使用微差反應器分析測定觸媒之相對活性。就該分析而言,將溫度升高百分比除以床長度之百分比來計算該相對活性。簡而言之,相對活性(RA)=ΔT/L,其中ΔT係溫度升高百分比,而L為床長度百分比。當該絕熱反應器之入口溫度為180℃時,RA之值為RA180,而當該絕熱反應器之入口溫度為220℃時,RA之值為RA220
該RA測定係以下列實驗為例,其中對具有多點熱電偶之絕熱3/4"管反應器裝載大約28克之指定觸媒。將該觸媒緊密地裝填在惰性氧化鋁床之間以提供良好流動分布。將包含乙烯與苯(1:1.5莫耳)且加熱至180或220℃之入口溫度的進料通過使能進行反應之觸媒床,並作為流出物離開該反應器。將一部分的該流出物再循環回該進料,使絕熱溫度升高維持為大約40℃。該再循環對進料(重量)比係維持在6至1,以維持液相條件。該床中之多點熱電偶構成六個熱電偶,其用以測量該床內部6個點處之溫度。結果係描述於下表,其中觸媒A及B為相同MWW結構材料。
實施例1-6
熱重量分析儀(TGA)係可測量物質之重量變化的儀器。TGA的用途之一係吸附來自氣相之化合物以測定此等化合物之親和性。以下實施例1-8顯示從吸附三甲吡啶所測定之各種物質的容量。三甲吡啶為大型胺(例如1,3,5-三甲基吡啶),其亦為吸附之良好探針分子。表2顯示藉由TGA使用三甲吡啶測量之各種可能處理組成物的吸附毒物容量。
可看出,表2顯示使用三甲吡啶測量之具有MWW拓樸的處理組成物之毒物容量遠低於具有非MWW拓樸的處理組成物之毒物容量。此外,具有低於75重量%黏合劑且大於25重量%沸石之處理組成物對於高三甲吡啶吸附容量而言相當重要。
實施例7及8
在實施例7及8中,測定MWW及β沸石處理組成物吸收N-甲醯基啉(NFM)雜質之容量。將兩個烷基化反應器串連,並將含NFM雜質之苯進料供應至具有第一烷基化觸媒(Rx 1)的第一烷基化反應器。該反應1之流出物(Rx 1)為進料至具有第二烷基化觸媒(Rx 2)之第二烷基化反應器的進料。Rx 1及Rx 2各具有分開之乙烯注入點,且該構造類似多段串連之烷基化反應器的前兩階段。就該等實驗而言,Rx 1為反應性防護床,且為烷基化反應器中之第一反應區。Rx 2之鈍化係用以指示Rx 1何時達到其最大毒物容量,且觸媒毒物不再被Rx 1完全保留住。進料以苯進料之重量計為0.3重量wppm之NFM。
實施例7-8中之NFM的吸收容量係從在流上之時間及Rx 2中觀察到鈍化的時間來計算。
可看出,表3顯示以β沸石作為處理組成物之NFM吸收容量係優於包含NWW材料之處理組成物。
實施例1-8顯示有許多材料適於作為吸附劑。一般認為實施例1-8顯示使用高表面積/體積比材料(例如粉末)可獲致非常高之毒物去除能力。然而,此等材料必須調配成結構化粒子以裝載於反應器中。
茲參考以下實驗來描述涉及經改良烷基化機制的本發明之非限制性實例。在該等實驗中,將兩個分開之床、處理區及烷基化反應區串連放置。將含有特定處理組成物之第一床(處理區)用於處理含氮化合物(觸媒毒物)之苯,以保護能進行烷基化反應化學之下游烷基化反應區。將該苯與乙烯一起進料至該反應區。然後將處理區之流出物與乙烯混合並進料至含有烷基化觸媒之烷基化反應區。從烷基化反應區中發生最初發現鈍化時測定安定烷基化操作之天數(運作長度)。該烷基化反應區中之鈍化觸媒因此與處理組成物之運作長度及其表觀容量(在固定流動條件下)相關。一旦處理組成物不再保持毒物(脫滑),則需要予以再生或置換。
以下實施例9說明包含欲用於本文之材料所需的表面積/表面體積比之處理組成物的功效。處理區中之處理組成物的毒物容量係從在流上之時間及在烷基化反應區中觀察到觸媒鈍化的時間來計算。表面積/表面體積比係使用先進實驗室成像及分析系統(Advanced Laboratory Imaging and Analysis System,ALIAS)(得自Cascade Data Systems of Wilsonville,Oregon)以光學方法來測定,以測量粒子尺寸及粒子曲率。
實施例9
將16克數量之包含β沸石、調配成1/16英吋(0.16 cm)圓柱形粒子且表面積/表面體積比為70-100 in-1(28-39 cm-1)之處理組成物置於處理區中,並將28克數量調配成1/20英吋(0.13 cm)之包含MCM-49的四瓣粒子之材料置於烷基化反應區(作為觸媒組成物)。將包含0.3 wppm之N(呈N-甲醯基啉形式)及非常少量之乙烯洩放物的苯進料至在環境壓力下之處理區,其中該苯/乙烯莫耳比為大於或等於100:1(基本上無乙烯),WHSV為21 hr-1且為180℃(液相)。然後將混有乙烯之來自該處理區的流出物進料至含有維持在180℃溫度下之反應區,該混合物呈液相,苯/乙烯之莫耳比為大約18:1,且以乙烯計之WHSV為大約0.77 hr-1。該反應區中之觸媒組成物直到14.5天才開始顯示鈍化。因此,該處理區中至該點之處理組成物的毒物容量計算為大約2200 wppm之N。然後在環境壓力下以苯計之WHSV為21 hr-1及180℃(液相)下,將0.3 wppm之N(呈乙腈形式)進料至處理區。該反應區中之觸媒在又過8-9.5天之後並未鈍化。因此,該處理區中之處理組成物的毒物容量計算為大約1400 wppm之額外N,總計3600 wppm之N。
本文所引用之所有專利、專利申請案、測試步驟、優先權文件、文獻、公開案、手冊及其他文件均以其揭示不與本發明不一致的範圍以及允許併入之所有裁判權的方式完全併入本文中。
當本文中列出數個數值下列與數個數值上限時,從任一下限至任一上限的範圍均在考慮之列。
雖然已經以特殊情況說明本發明之範例具體實例,但應暸解在不違背本發明精神與範疇情況下,對熟悉本技術之人士而言各種其他修改很顯而易見且容易製造。因此,不希望本文附述之申請專利範圍的範疇受到本文所述之實施例和說明限制,而是該等申請專利範圍應視為包括在本發明中可取得專利之新型的所有特徵,包括被熟悉本技術之人士視為與本發明相關之等效物的所有特徵。

Claims (29)

  1. 一種從具有觸媒毒物之至少部分未經處理的可烷基化芳族化合物流及烷基化劑流製造烷基化芳族化合物流之方法,其中該可烷基化芳族化合物流係經處理以減少觸媒毒物,該方法包括以下步驟:(a)在與烷基化反應區分開之處理區中於處理條件下令具有該等觸媒毒物之該可烷基化芳族化合物流與處理組成物接觸,以去除至少部分的該等觸媒毒物並形成包含經處理之可烷基化芳族化合物及數量減少之觸媒毒物的經處理流出物流,其中該處理組成物之表面積/表面體積比大於30in-1(76cm-1),該等處理條件包括溫度為約30℃至約300℃;及(b)在與該處理區分開之該烷基化反應區中於至少部分液相催化轉化條件下令該流出物流中之經處理可烷基化芳族化合物及烷基化劑流與觸媒組成物接觸,以形成包含額外烷基化芳族化合物之烷基化流出物流;其中該觸媒組成物包含多孔結晶材料,該多孔結晶材料具有選自由FAU、BEA、MOR、MWW及其混合所組成之群組的骨架結構類型;其中該至少部分液相催化轉化條件包括約100℃至約300℃之溫度,約689kPa至約4601kPa之壓力,約0.01:1至約25:1之經處理可烷基化芳族化合物對烷基化劑之莫耳比,及以烷基化劑計為約0.5至約500hr-1之進料每小時重量空間速度(WHSV),其中步驟(a)另外包含間歇地將烷基化劑流與該可 烷基化芳族化合物一起供應至該處理區,以在該等處理條件下於該處理組成物存在下產生因該烷基化劑與該可烷基化芳族化合物之間的放熱反應所造成之溫度升高,從而該溫度升高表示該處理組成物的老化。
  2. 如申請專利範圍第1項之方法,其中該觸媒毒物包含至少一種以下元素:氮、鹵素、氧、硫、砷、硒、碲、磷及第1族至第12族金屬。
  3. 如申請專利範圍第2項之方法,其中於接觸步驟(a)中去除該可烷基化芳族化合物流中至少10重量%之該等觸媒毒物。
  4. 如申請專利範圍第1項之方法,其中該處理組成物包含多孔結晶材料。
  5. 如申請專利範圍第4項之方法,其中該處理組成物之多孔結晶材料為選自由β沸石、八面沸石、Y型沸石、超安定Y型沸石(Ultrastable Y(USY))、去鋁Y型沸石(Dealuminized Y(Deal Y))、稀土Y型沸石(Rare Earth Y(REY))、超疏水Y型沸石(超疏水Y型沸石(UHP-Y))、絲光沸石、TEA-絲光沸石、ZSM-3、ZSM-4、ZSM-5、ZSM-14、ZSM-18、ZSM-20及其組合所組成之群組的分子篩。
  6. 如申請專利範圍第1項之方法,其中該處理組成物係選自由黏土、樹脂、固態磷酸、活化氧化鋁、林得X型沸石(Linde type X)、林得A型沸石(Linde type A)及其組合所組成之群組。
  7. 如申請專利範圍第6項之方法,其中該林得X型沸石為13X,而該林得A型沸石為4A或5A。
  8. 如申請專利範圍第4項之方法,其中該多孔結晶材料或該處理組成物另外包含黏合劑,該黏合劑係選自由氧化鋁、氧化矽、氧化鈦、氧化鋯、黏土及其混合物所組成之群組。
  9. 如申請專利範圍第1項之方法,其中具有該FAU骨架結構類型的多孔結晶材料為八面沸石、Y型沸石、超安定Y型沸石(USY)、去鋁Y型沸石(Deal Y)、稀土Y型沸石(REY)、超疏水Y型沸石(UHP-Y)或其混合物。
  10. 如申請專利範圍第1項之方法,其中具有該BEA骨架結構類型的多孔結晶材料為β沸石。
  11. 如申請專利範圍第1項之方法,其中具有該MOR骨架結構類型的該多孔結晶材料為絲光沸石、TEA-絲光沸石或其混合物。
  12. 如申請專利範圍第1項之方法,其中具有該MWW骨架結構類型的該多孔結晶材料的原合成或經煅燒形式具有包括晶格面距最大值在12.4±0.25、6.9±0.15、3.57±0.07及3.42±0.07埃之X射線繞射圖案。
  13. 如申請專利範圍第1項之方法,其中具有MWW骨架結構類型之該多孔結晶材料為PSH-3、SSZ-25、ERB-1、ITQ-1、ITQ-2、ITQ-30、MCM-22、MCM-36、MCM-49、MCM-56、UZM-8、EMM-10、EMM-12、EMM-13或其混合物。
  14. 如申請專利範圍第1項之方法,其中該可烷基化芳族化合物係選自由苯、萘、蒽、稠四苯、苝、蔻、菲及其混合物所組成之群組。
  15. 如申請專利範圍第1項之方法,其中該可烷基化芳族化合物為苯,該烷基化劑為乙烯,及該烷基化芳族化合物為乙苯。
  16. 如申請專利範圍第1項之方法,其中該可烷基化芳族化合物為苯,該烷基化劑為丙烯,及該烷基化芳族化合物為異丙苯。
  17. 如申請專利範圍第1項之方法,其中該可烷基化芳族化合物為苯,該烷基化劑為丁烯,及該烷基化芳族化合物為二級丁苯。
  18. 如申請專利範圍第1項之方法,其中該可烷基化芳族化合物為苯,該烷基化劑為乙烯,該烷基化芳族化合物為乙苯,且該至少部分液相轉化條件包括溫度為約100℃至約280℃,壓力為約3102kPa或更低,以乙烯計之每小時重量空間速度(WHSV)為約0.1至約20hr-1,及烷基化反應器中苯對乙烯之莫耳比為約0.5:1至約30:1。
  19. 如申請專利範圍第18項之方法,其中該處理組成物為選自由β沸石、八面沸石、Y型沸石、超安定Y型沸石(USY)、去鋁Y型沸石(Deal Y)、稀土Y型沸石(REY)、超疏水Y型沸石(UHP-Y)、絲光沸石、TEA-絲光沸石、ZSM-3、ZSM-4、ZSM-5、ZSM-14、ZSM-18、ZSM-20及其混合物所組成之群組的分子篩。
  20. 如申請專利範圍第18項之方法,其中該處理組成物係選自由黏土、樹脂、固態磷酸、活化氧化鋁、林得X型沸石、林得A型沸石及其混合物所組成之群組。
  21. 如申請專利範圍第18項之方法,其中具有該MWW骨架結構類型的多孔結晶材料具有包括晶格面距最大值在12.4±0.25、6.9±0.15、3.57±0.07及3.42±0.07埃之X射線繞射圖案。
  22. 如申請專利範圍第21項之方法,其中具有MWW骨架結構類型之該多孔結晶材料為PSH-3、SSZ-25、ERB-1、ITQ-1、ITQ-2、ITQ-30、MCM-22、MCM-36、MCM-49、MCM-56、UZM-8、EMM-10、EMM-12、EMM-13或其混合物。
  23. 如申請專利範圍第1項之方法,其中該可烷基化芳族化合物包含苯,該烷基化劑為丙烯,該烷基化芳族化合物包含異丙苯,且該至少部分液相轉化條件包括溫度為低於約200℃,壓力為約3102kPa或更低,以丙烯烷基化劑計之每小時重量空間速度(WHSV)為約0.1hr-1至約250hr-1,及烷基化反應器中苯對丙烯之莫耳比為約0.5:1至約30:1。
  24. 如申請專利範圍第23項之方法,其中該處理組成物為選自由β沸石、八面沸石、Y型沸石、超安定Y型沸石(USY)、去鋁Y型沸石(Deal Y)、稀土Y型沸石(REY)、超疏水Y型沸石(UHP-Y)、絲光沸石、TEA-絲光沸石、ZSM-3、ZSM-4、ZSM-5、ZSM-14、ZSM-18、ZSM-20 及其混合物所組成之群組的分子篩。
  25. 如申請專利範圍第23項之方法,其中該處理組成物係選自由黏土、樹脂、固態磷酸、活化氧化鋁、林得X型沸石、林得A型沸石及其混合物所組成之群組。
  26. 如申請專利範圍第23項之方法,其中具有該MWW骨架結構類型的多孔結晶材料具有包括晶格面距最大值在12.4±0.25、6.9±0.15、3.57±0.07及3.42±0.07埃之X射線繞射圖案。
  27. 如申請專利範圍第25項之方法,其中具有MWW骨架結構類型之該多孔結晶材料為PSH-3、SSZ-25、ERB-1、ITQ-1、ITQ-2、ITQ-30、MCM-22、MCM-36、MCM-49、MCM-56、UZM-8、EMM-10、EMM-12、EMM-13或其混合物。
  28. 如申請專利範圍第1項之方法,其中接觸步驟(a)之該處理條件包括以該可烷基化芳族化合物計之每小時重量空間速度(WHSV)在約5至70hr-1之範圍內。
  29. 如申請專利範圍第1項之方法,其中每克該處理組成物吸收大於100微莫耳之三甲吡啶。
TW100114445A 2010-05-20 2011-04-26 改良之烷基化方法 TWI520928B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US34676310P 2010-05-20 2010-05-20
PCT/US2011/032653 WO2011146187A2 (en) 2010-05-20 2011-04-15 Improved alkylation process

Publications (2)

Publication Number Publication Date
TW201223922A TW201223922A (en) 2012-06-16
TWI520928B true TWI520928B (zh) 2016-02-11

Family

ID=44992260

Family Applications (2)

Application Number Title Priority Date Filing Date
TW100114447A TWI520929B (zh) 2010-05-20 2011-04-26 改良的烷基化方法
TW100114445A TWI520928B (zh) 2010-05-20 2011-04-26 改良之烷基化方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW100114447A TWI520929B (zh) 2010-05-20 2011-04-26 改良的烷基化方法

Country Status (11)

Country Link
US (3) US9249067B2 (zh)
EP (2) EP2571833B1 (zh)
JP (5) JP2013527185A (zh)
KR (4) KR20150038737A (zh)
CN (2) CN102892731B (zh)
BR (2) BR112012029308B1 (zh)
ES (2) ES2672228T3 (zh)
RU (2) RU2583439C2 (zh)
SG (2) SG185076A1 (zh)
TW (2) TWI520929B (zh)
WO (2) WO2011146189A2 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9249067B2 (en) * 2010-05-20 2016-02-02 Exxonmobil Chemical Patents Inc. Alkylation process
BR112014012563A2 (pt) 2011-11-24 2017-06-13 Indian Inst Of Tech método para preparar uma composição adsorvente
CN104520706B (zh) 2012-04-17 2017-03-01 印度理工学院 使用量子簇检测水流量
US10307733B2 (en) * 2014-12-18 2019-06-04 Exxonmobil Chemical Patents Inc. Guard bed material, its method of making and use
US20160289140A1 (en) * 2015-03-31 2016-10-06 Uop Llc Highly selective alkylation process with low zeolite catalyst composition
ITUB20160888A1 (it) * 2016-02-19 2017-08-19 Getters Spa Sistema led
US10821425B2 (en) * 2016-06-09 2020-11-03 Exxonmobil Chemical Patents Inc. Treatment of aromatic alkylation catalysts
CN106694033A (zh) * 2016-11-28 2017-05-24 宣城市聚源精细化工有限公司 一种苯和丙烯的烷基化反应催化剂
US11654423B2 (en) 2017-02-28 2023-05-23 Exxonmobil Chemical Patents Inc. Catalyst compositions and their use in aromatic alkylation processes
SG11201908902XA (en) * 2017-03-29 2019-10-30 Exxonmobil Chemical Patents Inc Methods for removing impurities from a hydrocarbon stream and their use in aromatic alkylation processes
US11130720B2 (en) 2018-03-23 2021-09-28 Uop Llc Processes for methylation of aromatics in an aromatics complex
WO2021076259A1 (en) * 2019-10-17 2021-04-22 Exxonmobil Chemical Patents Inc. Production of alkylaromatic compounds
US11827593B2 (en) * 2019-10-17 2023-11-28 Exxonmobil Chemicals Patents Inc. Production of alkylaromatic compounds
WO2021080754A1 (en) * 2019-10-25 2021-04-29 Exxonmobil Chemical Patents Inc. Production of alkylaromatic compounds
US11426959B2 (en) 2019-11-06 2022-08-30 Innovega, Inc. Apparatuses and methods for multistage molding of lenses
WO2022098453A1 (en) * 2020-11-06 2022-05-12 Exxonmobil Chemical Patents Inc. Production of alkylaromatic compounds

Family Cites Families (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6503410A (zh) 1963-02-21 1965-09-20
US3442795A (en) 1963-02-27 1969-05-06 Mobil Oil Corp Method for preparing highly siliceous zeolite-type materials and materials resulting therefrom
US3308069A (en) * 1964-05-01 1967-03-07 Mobil Oil Corp Catalytic composition of a crystalline zeolite
US3293192A (en) 1965-08-23 1966-12-20 Grace W R & Co Zeolite z-14us and method of preparation thereof
US3766093A (en) 1972-01-07 1973-10-16 Mobil Oil Corp Treatment of organic cationcontaining zeolites
SU410004A1 (zh) * 1972-04-13 1974-01-05
US3751504A (en) 1972-05-12 1973-08-07 Mobil Oil Corp Vapor-phase alkylation in presence of crystalline aluminosilicate catalyst with separate transalkylation
US3894104A (en) 1973-08-09 1975-07-08 Mobil Oil Corp Aromatization of hetero-atom substituted hydrocarbons
US4016218A (en) 1975-05-29 1977-04-05 Mobil Oil Corporation Alkylation in presence of thermally modified crystalline aluminosilicate catalyst
US4185040A (en) 1977-12-16 1980-01-22 Union Oil Company Of California Alkylation of aromatic hydrocarbons
US4401556A (en) 1979-11-13 1983-08-30 Union Carbide Corporation Midbarrel hydrocracking
US4459426A (en) 1980-04-25 1984-07-10 Union Oil Company Of California Liquid-phase alkylation and transalkylation process
US4342643A (en) 1980-10-22 1982-08-03 Chevron Research Company Shaped channeled catalyst
US4415438A (en) 1981-11-24 1983-11-15 Dean Robert R Method for catalytically converting residual oils
US4441990A (en) 1982-05-28 1984-04-10 Mobil Oil Corporation Hollow shaped catalytic extrudates
US4547605A (en) 1983-09-28 1985-10-15 Mobil Oil Corporation Catalyst for alkylation of aromatic hydrocarbons
NZ217874A (en) 1985-10-25 1989-01-27 Mobil Oil Corp Quadrulobe catalysts
US4891458A (en) 1987-12-17 1990-01-02 Innes Robert A Liquid phase alkylation or transalkylation process using zeolite beta
US5003119A (en) 1988-05-09 1991-03-26 Lummus Crest, Inc. Manufacture of alkylbenzenes
US4992606A (en) 1988-10-06 1991-02-12 Mobil Oil Corp. Process for preparing short chain alkyl aromatic compounds
US5081086A (en) * 1988-12-29 1992-01-14 Uop Solid phosphoric acid catalyst
US5334795A (en) 1990-06-28 1994-08-02 Mobil Oil Corp. Production of ethylbenzene
US5118896A (en) 1990-10-31 1992-06-02 Amoco Corporation Aromatic alkylation process using large macropore, small particle size, zeolite catalyst
US5362697A (en) 1993-04-26 1994-11-08 Mobil Oil Corp. Synthetic layered MCM-56, its synthesis and use
US5648579A (en) * 1993-09-27 1997-07-15 Uop Continuous alkylation of aromatics using solid catalysts; prevention of catalyst deactivation using a pulsed feed reactor
US5600050A (en) 1994-12-14 1997-02-04 Chinapetro-Chemical Corp. Zeolite catalyst for the liquid phase alkylation and transalkylation of benzene
US5600048A (en) 1994-12-27 1997-02-04 Mobil Oil Corporation Continuous process for preparing ethylbenzene using liquid phase alkylation and vapor phase transalkylation
US5744686A (en) 1995-09-20 1998-04-28 Uop Process for the removal of nitrogen compounds from an aromatic hydrocarbon stream
WO1997045384A1 (en) 1996-05-29 1997-12-04 Exxon Chemical Patents Inc. Aromatic conversion processes and zeolite catalyst useful therein
JP2000516248A (ja) 1996-08-20 2000-12-05 ザ ダウ ケミカル カンパニー アルキル化ベンゼンの製造方法
CA2269554C (en) 1996-10-02 2006-11-21 The Dow Chemical Company A zeolite-based ethylbenzene process adaptable to an aluminum chloride-based ethylbenzene plant
US5719099A (en) * 1996-10-22 1998-02-17 Bhat Industries, Inc. Method and compositions for stabilization of heavy metals, acid gas removal and ph control in contaminated matrices
IT1290846B1 (it) 1996-12-12 1998-12-14 Enichem Spa Composizione catalitica e processo per l'alchilazione e/o la transalchilazione di composti aromatici
US6919491B1 (en) 1997-05-08 2005-07-19 Exxonmobil Oil Corporation Process for preparing short chain alkyl aromatic compounds
JPH11199526A (ja) 1998-01-13 1999-07-27 Asahi Chem Ind Co Ltd エチルベンゼンの製造方法
US5907073A (en) * 1998-02-24 1999-05-25 Fina Technology, Inc. Aromatic alkylation process
US6177381B1 (en) 1998-11-03 2001-01-23 Uop Llc Layered catalyst composition and processes for preparing and using the composition
US6268305B1 (en) 1999-02-27 2001-07-31 Fina Technology, Inc. Catalysts with low concentration of weak acid sites
DE19915106A1 (de) 1999-04-01 2000-10-05 Elenac Gmbh Verfahren zur Isolierung von Olefinen aus Polyolefinanlagen
US6984764B1 (en) 1999-05-04 2006-01-10 Exxonmobil Oil Corporation Alkylaromatics production
US7084087B2 (en) 1999-09-07 2006-08-01 Abb Lummus Global Inc. Zeolite composite, method for making and catalytic application thereof
JP2003534253A (ja) * 2000-04-28 2003-11-18 エクソンモービル・オイル・コーポレイション 炭化水素ストリッピングを用いる芳香族アルキル化触媒の再生
US6617482B1 (en) * 2000-08-16 2003-09-09 Exxonmobil Chemical Patents Inc. Removable of polar contaminants from aromatic feedstocks
DE60009492T2 (de) 2000-09-14 2005-03-17 Fina Technology, Inc., Houston Verfahren zur Hestellung von Ethylbenzol durch Alkylierung und Transalkylierung
US6376729B1 (en) 2000-12-04 2002-04-23 Fina Technology, Inc. Multi-phase alkylation process
ATE381525T1 (de) 2001-02-07 2008-01-15 Exxonmobil Chem Patents Inc Verfahren zur herstellung von alkylaromatischen verbindungen
US20020042548A1 (en) * 2001-07-11 2002-04-11 Dandekar Ajit B. Process for producing cumene
ITMI20012707A1 (it) 2001-12-20 2003-06-20 Enichem Spa Processo per l'alchilazione di composti aromatici
WO2003074452A1 (en) * 2002-02-28 2003-09-12 Stone & Webster, Inc. Production of alkyl aromatic compounds
US7199275B2 (en) 2003-03-24 2007-04-03 Exxonmobil Chemical Patents Inc. Feed pretreating
US6894201B1 (en) * 2003-12-19 2005-05-17 Uop Llc Process and apparatus for the removal of nitrogen compounds from a fluid stream
ITMI20041289A1 (it) 2004-06-25 2004-09-25 Enitecnologie Spa Catalizzatore e processo per la preparazione di idrocarburi aromatici alchilati
US20060194991A1 (en) 2005-02-25 2006-08-31 Fina Technology, Inc. Treatment of alkylation catalyst poisons
JP5017252B2 (ja) 2005-03-31 2012-09-05 エクソンモービル・ケミカル・パテンツ・インク 希釈アルケンを用いたアルキル芳香族の生産
US7425659B2 (en) 2006-01-31 2008-09-16 Exxonmobil Chemical Patents Inc. Alkylaromatics production
CN101384365B (zh) * 2006-02-14 2012-02-08 埃克森美孚化学专利公司 制备分子筛组合物的方法
EP2029511A1 (en) 2006-05-08 2009-03-04 ExxonMobil Chemical Patents Inc. Organic compound conversion process
US7501547B2 (en) 2006-05-10 2009-03-10 Exxonmobil Chemical Patents Inc. Alkylaromatics production
SG172597A1 (en) * 2006-05-24 2011-07-28 Exxonmobil Chem Patents Inc Monoalkylated aromatic compound production
US20080058566A1 (en) * 2006-09-05 2008-03-06 Fina Technology, Inc. Processes for reduction of alkylation catalyst deactivation utilizing low silica to alumina ratio catalyst
US20080058568A1 (en) * 2006-09-05 2008-03-06 Fina Technology, Inc. Processes for the reduction of alkylation catalyst deactivation utilizing stacked catalyst bed
US7649122B2 (en) 2006-11-15 2010-01-19 Exxonmobile Chemical Patents Inc. Alkylaromatics production
US7645913B2 (en) 2007-01-19 2010-01-12 Exxonmobil Chemical Patents Inc. Liquid phase alkylation with multiple catalysts
CA2675264C (en) * 2007-02-09 2013-04-02 Exxonmobil Chemical Patents Inc. Improved alkylaromatic production process
KR100975533B1 (ko) 2007-02-13 2010-08-12 주식회사 알티캐스트 컨텐츠 링크 서비스 제공 방법 및 장치
US7745676B2 (en) * 2007-07-30 2010-06-29 Exxonmobil Chemical Patents Inc. Alkylaromatics production
US8134036B2 (en) 2008-03-13 2012-03-13 Fina Technology Inc Process for liquid phase alkylation
US8865958B2 (en) * 2008-09-30 2014-10-21 Fina Technology, Inc. Process for ethylbenzene production
RU2515979C2 (ru) 2008-10-10 2014-05-20 Бэджер Лайсенсинг ЛЛК Способ получения алкилароматических соединений
US20110137099A1 (en) 2009-12-08 2011-06-09 Saudi Basic Industries Corporation Aromatic alkylation process
SG183322A1 (en) 2010-03-10 2012-09-27 Exxonmobil Chem Patents Inc Alkylated aromatics production
US9249067B2 (en) 2010-05-20 2016-02-02 Exxonmobil Chemical Patents Inc. Alkylation process

Also Published As

Publication number Publication date
JP2013527185A (ja) 2013-06-27
KR20130025400A (ko) 2013-03-11
US9382170B1 (en) 2016-07-05
EP2571833B1 (en) 2018-05-30
JP2017061550A (ja) 2017-03-30
SG185076A1 (en) 2012-12-28
JP6405588B2 (ja) 2018-10-17
KR101574384B1 (ko) 2015-12-03
US20130211164A1 (en) 2013-08-15
RU2012152249A (ru) 2014-06-10
KR20150030261A (ko) 2015-03-19
RU2012152250A (ru) 2014-06-10
US20160207851A1 (en) 2016-07-21
TW201223922A (en) 2012-06-16
KR101574383B1 (ko) 2015-12-03
SG185377A1 (en) 2012-12-28
BR112012028769A2 (pt) 2017-06-13
CN102892732B (zh) 2015-06-03
JP2013526567A (ja) 2013-06-24
CN102892732A (zh) 2013-01-23
KR20150038737A (ko) 2015-04-08
WO2011146187A2 (en) 2011-11-24
CN102892731A (zh) 2013-01-23
US8993820B2 (en) 2015-03-31
RU2577317C2 (ru) 2016-03-20
EP2571833A2 (en) 2013-03-27
JP5757996B2 (ja) 2015-08-05
TW201223923A (en) 2012-06-16
KR20130020794A (ko) 2013-02-28
US9249067B2 (en) 2016-02-02
EP2571832A4 (en) 2015-11-25
CN102892731B (zh) 2015-12-02
EP2571832B1 (en) 2018-03-07
EP2571832A2 (en) 2013-03-27
US20130197287A1 (en) 2013-08-01
BR112012029308B1 (pt) 2018-07-03
JP2015078244A (ja) 2015-04-23
ES2685473T3 (es) 2018-10-09
BR112012029308A2 (pt) 2017-11-28
EP2571833A4 (en) 2016-01-06
RU2583439C2 (ru) 2016-05-10
ES2672228T3 (es) 2018-06-13
JP2015078245A (ja) 2015-04-23
WO2011146187A3 (en) 2012-02-09
WO2011146189A2 (en) 2011-11-24
BR112012028769B1 (pt) 2018-11-13
TWI520929B (zh) 2016-02-11
WO2011146189A3 (en) 2012-04-19

Similar Documents

Publication Publication Date Title
TWI520928B (zh) 改良之烷基化方法
CA2691073C (en) Improved liquid phase alkylation process
EP2134815B1 (en) Improved alkylaromatic production process
CA3049411C (en) Transalkylation process and catalyst composition used therein
JP2020515389A (ja) 触媒組成物及び芳香族アルキル化プロセスにおけるそれらの使用